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Abstract—In this paper, an efficient and accurate imaging
algorithm is presented for Ground-Based Synthetic Aperture
Radar (GB-SAR) or other radar systems that could be formed by
a physical or synthetic linear aperture. The imaging algorithm
is based on the fractional Fourier transform for the azimuth
compression. A mathematical framework is derived according to
the projection of a sample reflectivity image onto the pseudopolar
coordinate and its implementation was presented. With the data
acquisition geometry and the pseudopolar imaging coordinate,
the phase of a point target can be expressed as a quadratic
phase exponential. It makes that only one-dimensional fractional
Fourier transform is needed for the azimuth compression of
the time domain backscatter data for the GB-SAR imaging
problem. By further research, the optimal transformation order
which represents the spatial frequency changes by the fractional
Fourier transform was given subsequently. Taking advantage of
this optimal representation, the proposed approach avoids the
large calculation that occurs in the time domain back projec-
tion (TDBP). Comparing to the far-field pseudopolar format
algorithm (FPFA), the accuracy of the proposed algorithm is
much improved. Meanwhile, the proposed approach holds the
almost same computational cost and complexity as the FPFA.
The proposed approach keeps the advantages of the imaging
quality of the TDBP and the computational cost of the FPFA
that are two important aspects of the GB-SAR applications. Both
the numerical simulation and the field GB-SAR experiment show
that the algorithm is more suitable for the high precision GB-
SAR imaging, especially for the near-field.

Index Terms—Ground based synthetic aperture radar (GB-
SAR), imaging algorithm, the fractional Fourier transform
(FrFT), near-filed imaging, linear aperture radar

I. INTRODUCTION

ROUND-based synthetic aperture radar (GB-SAR) is

capable of continuous monitoring, providing high sen-
sitivity concerning the terrain deformations. Compared to
air- and space-borne SAR, GB-SAR has advantages in the
continuous monitoring of targets. Currently, some commercial
GB-SAR systems are available. Most of them have a fixed
rail of 2m length and a radar sensor moving on the linear
rail to acquire SAR data with Ku-band (17GHz) [1][2]. In the
last ten years, Tohoku University has applied this technology
to the post-landslide monitoring, and a vast number of field
campaigns has been carried out in Japan [3][4]. Typically, a
site monitoring with GB-SAR instruments produces a large
number of data which needs to be focused. For example, the
post-landslide monitoring site in Kumamoto with one of our
polarimetric GB-SAR system produces a total of 35000 x 4
images in an entire year. Moreover, the real-time monitoring
is required for the fast movement and the disaster alarm.
In one word, an extremely fast and high-resolution imaging

algorithm is needed for the environmental monitoring by GB-
SAR. To cope with the huge volume of data, an accurate
focusing algorithm which has more efficient computation is
proposed in this paper. This algorithm can also be applied to
any radar system which is formed by a physical or synthetic
linear aperture.

GB-SAR can be regarded as a linear synthetic aperture radar
system. The process of constructing an image from a linear
synthetic aperture radar data consists of a two-dimensional
compression. First of all, the received echo from each of the
acquisition point is compressed. Then the echo is compressed
along the azimuth direction by taking advantage of the radar
motion in order to synthesize a larger antenna aperture. Nowa-
days, many imaging algorithms were developed by concerning
different purposes and applications. The algorithms consist of
two classes: one is the time domain algorithm, the other is the
frequency domain algorithm. The time domain algorithm is, as
the name implied, focusing in the time domain. The frequency
domain algorithm is done in the frequency domain. Both of
them have clear advantages and disadvantages.

The time domain methods base on the fact that they can
handle an arbitrary system geometry, however, they are slow.
The frequency domain methods base on the fact that they are
relatively fast by utilizing the fast Fourier transform (FFT),
however, they require the sampling positions to lie uniformly
on a straight line. Also, the frequency domain methods need
a lot of memories to store and evaluate the 2-dimensional
Fourier transforms, and the data must be zero-padded to avoid
wrap-around effects from the Fourier transforms. There are
different algorithms in both of the main groups, all of them
are developed to suit for different types of systems, qualities,
speed and other criteria.

The frequency domain methods utilizing the FFT are com-
mon as the receiver positions which can be modeled to lie on a
straight line. The narrowband system and the wideband system
must be separated. If working with a narrowband system,
we can perform a 2D FFT, a multiplication of the transfer
function and a 2D IFFT (the inverse FFT) to construct an
image [5]. In this case, a range cell migration compensation
has to be applied to account for the non-linear nature of
the range samples. This process is called Stolt-interpolation
[6][7], too. However, direct implementations of these imaging
algorithms are still based on the variant of the range-Doppler
(RD) algorithm in the area of SAR processing [8]-[11]. There
are also many other popular methods such as the wavenumber
algorithm (also called the w — k algorithm) [12]-[14] and the
chirp scaling algorithm [15]-[17]. All of them perform some
kind of range cell migration compensation, but are relatively



fast due to the use of FFTs.

The time domain methods can also be used in this area. If
the image scenes are small or the trajectory of the platform
deviates much from a straight, there is no point by the FFT-
based method. If there is much motion error, the cost of
applying for motion compensation and autofocus algorithms
using FFTs is so large that the saving of the computational
is lost. The delay-and-sum [18]-[19], back projection (BP)
[20]-[25] and Kirchhoff migration (KM) [26] are the relevant
algorithms in the time domain.

Back projection (BP) is an exact inversion technique and
frequently used for the linear aperture radar imaging. It works
in both near and far field, which means that the range of the
different contributions is important for finding the focusing
delays. To implement this method in practice, the available
discrete range samples must be interpolated [11]. Usually,
the linear interpolation is used. However, it is possible to
apply an advanced interpolator at the expense of the increased
computation time. Although this algorithm can handle an
arbitrary array geometry and make no approximations, except
for the interpolation, it has one major drawback. For each
aperture and the pixel position, we need to compute the
range between the sensor element and the pixel, interpolate
in the received signal and finally add the value found in the
image matrix. For a small image, the direct back projection
is quite efficient and often preferred due to its simplicity and
robustness. However, for the image with a large aperture and
size, the expense of the processing time is substantially great.

Another important issue is that whether the GB-SAR is in
the near or the far field of the scene. In the near field, the
spherical nature of the wave must be taken into account when
focusing. If the range satisfies the criteria [27] which is in
the far field of the scene, a highly simplified imaging algo-
rithm named far-field pseudopolar format algorithm (FPFA) is
proposed in [28]. The FPFA method formats the reflectivity
map onto the pseudopolar coordinate and tends to minimize
the processing cost. This robust algorithm is frequently used
for GB-SAR applications, but it is developed for the far-field
imaging.

Therefore, the goal of this paper is to present an efficient
and accurate imaging algorithm to suitable the GB-SAR appli-
cations. In this paper, a mathematical framework to focus the
time domain data by the fractional Fourier transform (FrFT)
is developed under the assumption of the linear aperture and
the pseudopolar coordinate. Then, the optimal transformation
order which represents the spatial frequency changes by the
fractional Fourier transform was also given. This optimal
representation avoids the large calculation which occurs in
the time domain back projection (TDBP). Comparing to the
FPFA method, the accuracy of the proposed algorithm is much
improved. At the same time, we achieve almost the same
computational cost and complexity.

This paper is organized as follows. Section II presents
the mathematical framework of the imaging algorithm and
the optimization focusing condition. In Section II-A, a brief
review, the main applications and the current formulation form
of the fractional Fourier transform are introduced. In Section
II-B, the mathematical formulation of focusing a GB-SAR

image by the FrFT under a pseudopolar coordinate system
and the associated coordinate transformations are exhibited.
Moreover, the final form of the formulation of the algorithm
as an image series is also given in Section II-B. The optimized
focusing condition and the optimized rotated angle of the
formulation are discussed in Section II-C. Section III presents
the comparison of the imaging quality and the computational
cost among the TDBP, the FPFA and the proposed approach.
The results of an extensive validation of the algorithm with the
numerical simulations, the field measurements by GB-SAR
data are summarized in Section IV. Finally, the conclusions
and the current focus of our research are outlined in Section
V.

II. MATHEMATICAL FRAMEWORK
A. Fractional Fourier Transform

In this section, a brief overview of the FrFT and its
implementation is presented. The FrFT is first introduced in its
current form by Namias [29] in 1979, although the principle
underlying FrFT can be found in the work of Wiener and
Wely in the 1920s. Later, a rigorous formal study of the
FrFT was carried out in [30]. In recent years, the FrFT has
received much attention due to its extensive applications in
optics [31][32], signal processing [33][34], acoustic wave [35],
ultrasound quantum mechanics [36] and pattern recognition
[37].

By a complex scaling of a multiplication of a quadratic
phase exponential in the transformed domain with the Fourier
transform, the exact form of the fractional Fourier transform is
shown in Namias [29]. The relation between the angle ¢ and
the corresponding fractional Fourier transform denoted by
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where ¢ € (—3,%), t is the time and u represent the
frequency.

Equation (1) forms the basis for the fractional Fourier
transform algorithms. Equation (1) can be simplified as the
conventional Fourier transform when ¢ is an integer multiple
of /2. A physical interpretation of (1) is that it can be realized
as a quadratic phase exponential in one domain. The FrFT can
transform a signal in the time domain (or in the frequency
domain) into the domain between the time and frequency by
a rotation.

B. Focusing Formulation

The specificity of the GB-SAR is the limited length of the
synthetic aperture size compared with the conventional SAR.
In the typical GB-SAR system such as IBIS-L, FASTGBSAR,
the linear rail on the Ku-band with the 300 MHz bandwidth is
2 m, which is equivalent to the fixed 0.5 m range resolution.
The azimuth resolution J, depending on the range strongly is

defined as:
A
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where A is the wavelength, L, is the synthetic aperture length
and r is the range distance.

In our model, we set the GB-SAR acquisition geometry as
in Fig.1, the platform where the sensor elements are mounted
follows a path in the z direction (also called the along-
track, the azimuth, the cross-range direction, or the slow time
domain). The first step is to calculates the reflected signal
from a target at the object coordinates (z,,y,). The position
of the transmitting and the receiving antenna on the linear rail
is @, — %, Tn + g, respectively. We suppose that the spacing
d between the receiving and the transmitting element is small
enough to be ignored. Here x,, is marked as the phase center
where the transmitting sensor element sends out a pulse. The
time domain reflected signal is compressed as D(z,,t) in
which the received echo from each acquisition point z,,, where
t is the double route delay. Since the electromagnetic waves
travel with a much higher speed than that of the platform, ¢ is
also called as the fast time domain. Due to the time domain
back projection, the synthesis of a radar image can be achieved
by integrating the time domain signal with respect to different
radar positions x,,. Therefore, the radar reflectivity map at the
point p is estimated as follows:

ATi R,
P(zp,yp) = /D(xn,t) - exp( Wio Ydx, 3)

where R,, denotes the double range to the object in meters and
Ao denotes the wavelength of the system starting frequency.

In this work, we propose an exact mathematical formulation
starting from (3) of focusing a GB-SAR image by the FrFT.
For the typical GB-SAR system, the amplitude term of the
working frequency bandwidth could be ignored, when it varies
slowly along the azimuth with certain range. By assuming
the pseudopolar coordinate for the object space, the simplest
focusing scheme [28] is obtained which is usually adopted for
GB-SAR.

The second step is to find an accurate expression for the
distance between the target and the sensor
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Applying the first order Taylor expands, (4) can be rewritten
as follows:
2
Ry (@, xp, yp) = (p — xp sin b + 2—;) %)

by the approximation |(2z,, sin § — 22 )/p| < 1. Therefore, the
focusing formation could be rewritten as:
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When considering that psinf = syu and z,, = sqv, the
focusing formation can be expressed as follows:
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where s; and so are the real value of the scale parameters.

Finally, we introduce a new parameter g to adjust the expo-
nential term in the above formation. Until now, the focusing
formation can be written as follows:

P(p,0) = s+ &3 (2mgsin6) /D(v,t)
©)
.ej%(gsfu2725152uv+s§v2)dv.
By comparing this formation with the definition of the FrFT
(1), we conclude that P(p,#) is proportional to the FrFT at
the position z,, , i.e.,
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Here A is a constant for the certain range. Equation (10)
holds if and only if
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Since cot? ¢ + 1 = csc? ¢, we obtain
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which yields
0<g<l. (16)

For a given range p and the rotated angle ¢ of the fractional
Fourier transform, we notice that the parameters g, |s1| and
|s2| are determined uniquely. Equation (12) yields that cot ¢ >
0. Therefore, we have

0<¢<g. (17)
So far, we have obtained a new focusing formation (9) and

the corresponding necessary conditions 0 < g < 1 and 0 <
o< /2.



Fig. 1. GB-SAR acquisition geometry.

Fig. 2. Relationship between the phase of one single target and the position
on the linear rail at a certain range.
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Fig. 3. Geometric interpretation of the relationship between the optimal
rotated angle of fractional Fourier transform and the instantaneous spatial
frequency.

C. Optimal Focusing Condition

In Section B, we present the proposed mathematical for-
mation and the necessary conditions for focusing a GB-SAR
image. In this section, we focus on the optimization focusing
condition. Furthermore, we compare our computational cost
to that of the FPFA.

There is a point target in the line of the sight (LOS) direction
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Fig. 4. The optimal rotated angle of the FrFT for a certain range by
considering the IBIS-L GB-SAR system.

shown in Fig. 2. At each position along the rail, the point
targets contribute to the same amplitude for all the reflections
in the range resolution. However, the phase 1) is different
slightly for the distance from the antenna to the target. In
the case of GB-SAR, the phase v at the position x,, of the
antenna can be expressed as follows:
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The spatial frequency v are the spatial analog of the angular
velocity w and the frequency f in the time domain of a signal.
In this paper, we rewrite the spatial frequency v with regard
to the phase v in the polar coordinate as follows:

_k(xn) 1 dyp(xn)  2sinf 2,
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where k is the angular wavenumber. Hence the spatial fre-
quency v is linear to the antenna position for a certain range.

As the range increasing, the difference of the instantaneous
spatial frequency at different antenna position decrease. And
the variety of this spatial frequency will produce a greater blur
in the traditional Fourier based focusing algorithm. However,
the distribution of the above linear spatial frequency has the
narrowest representation in the fractional domain. Thus, by
finding the optimal rotated angle ¢ of the FrFT we can provide
a highly focused response in the azimuth direction of a certain
range signal.

The solid line in Fig.3 indicates the variety of the spatial
frequency at different antenna position x,. As the axis (the
dashed line) rotates to a position perpendicular to the solid
line, then the magnitude response reaches the maximum value.
For the simplest case, the optimal angle is defined as follows:

(18)
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From an observation of the real GB-SAR, the data is discrete

along the linear rail. Using the interpretation shown in Fig.3
we obtain

¢opt = tanil( (20)
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where Av is the spatial sampling frequency; x,, is the step size
of the scan along the linear rail and N denote the number

Gopt = tan™( 21)



of the acquisition points along the linear rail. Since Av =
Az, /N, we have
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Equation (22) shows the optimal rotated angle of the FrFT
for a certain range of the GB-SAR data, which means that
we can get an an optimal rotated angle by (22) for any range
of the data in the GB-SAR observation. The optimal rotated
angle is determined by the starting frequency, the size of the
step and the number of the acquisition of the GB-SAR system
setting. Moreover, it is also determined by the slant range.
Using the optimal rotated angles with (11)-(13), the parameters
s1, 52 and g which are used to focus a GB-SAR image by the
proposed FrFT approach can be calculated.

The distance of the range from the radar to any arbitrary
points within the image scene is denoted as p’. Then the far
field criteria of the radar aperture is

212
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where ). is the wavelength at the center frequency of the
radar. For a typical commercial GB-SAR system working at
Ku-band with 5mm step size along the 2 m linear rail, the
far field criteria is around 460m. The optimal rotated angle
calculated by (22) is presented in Fig.4. The rotated angle
changes from 0 to 90 degree until the range distance reach the
criteria. When the range distance satisfies the far field criteria,
the proposed approach match to the FPFA.

Gopt = tan™*( (22)

/
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III. IMAGE QUALITY AND COMPUTATIONAL COST

This section presents the performance of our proposed ap-
proach. The quantitative analysis is carried out from the quality
of the images and the speed of the algorithm. Moreover, we
compare our algorithm with the TDBP and the FPFA.

A. Image Quality

It is important to establish the GB-SAR image quality in
different imaging algorithms. There are several measures used
to judge the quality of an image. In this paper, we focus on the
point spread functions in the azimuth direction, and calculate
the peak to the sidelobe ratio (PSLR) and the integrated
sidelobe ratio (ISLR). PSLR is the ratio between the peak of
the main lobe and that of the most prominent side lobes [38].
ISLR is defined as the ratio between the energy of the main
lobe and that integrated over all the side lobes [39]. Both sides
of the main lobe in azimuth direction in a range resolution,
are calculated in this paper. Since the extent of the scene is
limited, we typically integrate over several (5 to 10) lobes on
both sides of the main one.

In the following simulations, we compare our approach to
two different algorithm on the imaging of one reflector: the
TDBP and the FPFA. The position of the reflector changes
from 3 m to 500 m in range. The parameters of a real GB-
SAR system are used in the simulations. Figure 5 and 6 show
PSLR and ISLR of the reflector for the TDPB, the FPFA
and the proposed approach, respectively. For the proposed
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Fig. 5. Peak to side lobe ratio of the TDBP, the FPFA and the proposed
approach.
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Fig. 6. Integrated side lobe ratio of the TDBP, the FPFA and the proposed
approach.

approach, the criteria |(2z,, sin@ — 22)/p| is approximately
10 m in range. When the slant range satisfies the criteria,
PSLR (=~ —29dB ) and ISLR (~ —18dB) do not change much
between the proposed approach and the TDBP. Notably, PSLR
and ISLR of the FPFA move close to that of the TDBP with
the range increasing until to the far field condition. Therefore,
when the target position satisfies the approximated criteria, the
image quality by the proposed approach shows the main lobe
equally comparing to that of the TDBP. It is worth mentioning
that the criteria satisfies most of the application conditions.
Now, the typical criteria given for the current commercial GB-
SAR system is around 10 m.

B. Computational Cost

The synthesis of an entire reflectivity image using (3) has
associate a high computational cost defined by O(NN'M"),
where M’ and N’ denote the number of pixels in the x and y
directions, respectively. N denotes the acquisition point along
the linear rail. In practice, the TDBP need the interpolation
before the azimuth compression. Typically, an FFT with zero
padding will be used.

The proposed approach based on the FrFT has the similar
properties as the FPFA. Before focusing the GB-SAR image
by (9), the 1-D Fourier transform is needed to transform the
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Fig. 7. Computation time of the TDBP, the FPFA and the proposed approach.

signals from the frequency domain to the time domain. Then 1-
D fractional Fourier transform need to be used for the azimuth
compression. Ozaktas (1996) [40] presented an efficient and
accurate computation algorithm of the FrFT which has the
same computational cost as the FFT. In the proposed approach,
the total computational cost from the raw data to the image
is O(MNlogM N + M(N + 4)). Here M is the number of
the frequency points and N is the number of the acquisition
points along the linear rail. O(M NlogM N) is the sum of the
computational cost in 1-D FFT for the range compression and
1-D fractional Fourier transform for the azimuth compression.
And O(M(N+4)) is the computational cost for the calculation
of the parameters. When the parameters are given fixed, we
use them repeatedly for a GB-SAR measurement with the
fixed acquisition parameters. For example, if we focus a real
GB-SAR measurement with the scene size of 500 m in the
range and 400 m in the azimuth, the computational cost of the
proposed approach is 50 times lower than that of the TDBP.
However, for the FPFA, no parameters need to be calculated
beforehand and the computational cost is O(M NlogM N).
To test the computational cost of the algorithms, we use an
Inter(R) Core(TM) i7-6700 CPU@3.40GHz with 32GB RAM
Desktop PC with MATLAB. The results of the simulations are
shown in Fig. 7, which show the comparison for different size
of the scene focusing by the TDBP, the FPFA and the proposed
FrFT algorithm presented in Section B.The proposed FrFT
approach save much more time than the TDBP which can be
observed in Fig. 7. However, the proposed FrFT approach costs
more computational time than the FPFA. That is due to two
factors: first, the parameters in the proposed FrFT approach
do not appear in the FPFA. Second, the Fourier transform
function in the FPFA is more efficient in MATLAB. Up to
now, we have proved that the proposed FrFT approach can
improve the computational cost comparing to the TDBP.

IV. RESULTS

The previous section analyzed the performance and the
accuracy of our proposed FrFT algorithm. In this section, the
efficiency of our algorithm is analyzed using both the numeri-
cal simulation and the field experiment. Moreover, we compare
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Fig. 8. Simulation model and focused GB-SAR image by different methods;
(a) a point target located at 10 m in range; (b) the TDBP; (c) the FPFA; (d)
the proposed approach.
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Fig. 9. Azimuth cuts of reflectivity image at range 10 m obtained by the
TDBP, the FPFA and the proposed approach, respectively.

the quality of the focused images obtained by the proposed
FrFT approach, the TDBP, and the FPFA, respectively.

A. Numerical Simulation

The parameters of the simulation are given the same as
the real GB-SAR system. The radar system operates at 17
GHz (Ku-band) carry frequency and 300MHz bandwidth and
the aperture size is 2 m. Before focusing the image, Hanning
window function has been applied to the data both in the fre-
quency domain and the time domain. The reflectivity images
using the TDBP, the FPFA, and the proposed FrFT approach
are obtained, respectively.

Define a scene consisting of a point scatter at 10 m in the
range direction and O m in the azimuth direction as shown in
Fig.8(a). The focused image by the TDBP, the FPFA and the
proposed approach are shown in Fig.8 (b)-(d), respectively.
The focused image by the FPFA and the proposed approached
are plotted in the pseudopolar coordinate, while the focused
image by the TDBP is plotted in the Cartesian coordinate. As
it can be seen from Fig. 8, the point scatter by the proposed



Fig. 10. GB-SAR observation at Kawauchi Campus, Tohoku University. The
red vector indicate the trihedral corner reflector.

TABLE I
SPECIFICATIONS OF IBIS-L GB-SAR SYSTEM

Parameter Value
Central Frequency f 17.175 GHz
Central Wavelength A 17.44 mm
Bandwidth B 300 MHz
Scan Length Ly 2 m
Scan time At 5 min
Maximum Distance Ryax 4000 m
Range Resolution 6, 0.5 m

Cross-Range Resolution . 4.4 mrad (0.44m m at 100 m range)

approach is well focused. We investigate the result by cutting
the azimuth of the reflectivity image at 10 m range as shown
in Fig. 9. It can be observed that the azimuth resolution of the
point scatter focused by the proposed approach shows small
differences to that by the TDBP. Therefore, the results clearly
show that the proposed approach is an excellent method.

B. GB-SAR Measurement

Also, the algorithm is tested on the data of the real experi-
ment acquired by IBIS-L GB-SAR system. The site is located
at the Kawauchi campus of Tohoku University, Sendai, Japan,
as shown in Fig.10. The IBIS-L GB-SAR system used in this
study features two horn antennas, one for transmitting and
the other for receiving, both with vertical polarization. The
system operates in the Ku-band with the center frequency of
17.175 GHz and the bandwidth of 300 MHz. The radar is
a stepped-frequency system with variable frequency sampling
points that are determined on the basis of the observational
range. The entire radar-and-antenna assembly is mounted on
a linear rail and it scans about 2 m repeatedly. The 2 m scan
spends two minutes and it is repeated every 5 minutes. The
system acquires data every Smm along a 2m scan length at
401 azimuth positions. The rest parameters of the system are
summarized in Table 1.
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Fig. 12. Trihedral Corner Reflector and focused image by different methods;
(a) a trihedral corner reflector; (b) the TDBP; (c) the FPFA; (d) the proposed
approach.

‘
o- - - -TDBP 4
N === FPFA
e Proposed approach
-10
=
§-20
s
2-30
&
2
S -40
3
L]
-50 Pg\W/
-60
-70
Azimuth Range[m]
Fig. 13.  Azimuth cuts of reflectivity image at range 30 m obtained by the

TDBP, the FPFA and the proposed approach, respectively.

A trihedral corner reflector (TCR) is placed about 33 m
away from the center of the linear rail, shown in Fig.10 by
the white arrow. This reflector is mounted on a tripod and the
height is adjusted to be on the radar line of sight as shown
in Fig.12(a). The focused GB-SAR images obtained by the
TDBP, the FPFA and the proposed approach are shown in
Fig.11 (a)-(c), respectively. The white circles in Fig.11 indicate
the TCR discussed above. The enlarged image that of the
TCR by the TDBP, the FPFA and the proposed approach
are shown in Fig.12 (b)-(d), respectively. The azimuth cuts
of the TCR located at 33 meters in range is shown in Fig.13.
From these results, it is obvious that the image focused by
the proposed approach shows equally main lobe compare
to that by the TDBP, while the FPFA produces defocusing
in both the azimuth and the range direction since the far
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Fig. 11.

range approximations do not hold for the target position here
considered.

V. CONCLUSION

In this paper, we report an efficient and accurate imaging
algorithm for GB-SAR. The algorithm is suitable for any
radar systems that could form as a physical or synthetic linear
aperture. This technique is a type of modified time domain
back projection and focuses on the reflectivity map of a polar
coordinate. By purely considering the geometrical coordinate
and the spatial phase of a fixed target in the linear antenna
aperture, it is clearly shown that the azimuth phase mecha-
nism could be realized as a quadratic phase exponential. The
quadratic phase exponential satisfies the form of the fractional
Fourier transforms so that only the 1-D fractional Fourier
transform is required to the azimuth compression. Relies on
the geometry of the imaging scenario, the spatial frequency
along the line rail which is related to the quadratic phase
exponential can be optimally represented by the fractional
Fourier transform with a certain rotated angle. Considering
the real GB-SAR system acquisition parameters, the optimal
focusing condition is also given in this paper. Moreover, we
compare our algorithm from the imaging quality and the
computational cost. Compared with the TDBP, the proposed
approach obtained almost the same imaging quality, while
the computational cost is extremely low. Compared to the
FPFA, computational cost of the proposed approach is almost
identical, while the proposed approach also provide accurate
imaging results, especially in the near-field. The numerical
simulations and the field GB-SAR experiments show that the
accurate image can be obtained by the proposed approach
no matter in the near- or the far-field. Furthermore, our
approach has lower computational cost, which is an important
requirement for the GB-SAR applications.
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