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The quest of demonstrating beneficial quantum error correction in near-term noisy quantum processors can
benefit enormously from a low-resource optimization of fault-tolerant schemes, which are specially designed for
a particular platform considering both state-of-the-art technological capabilities and main sources of noise. In this
work we show that flag-qubit-based fault-tolerant techniques for active error detection and correction, as well as
for encoding of logical qubits, can be leveraged in current designs of trapped-ion quantum processors to achieve
this break-even point of beneficial quantum error correction. Our improved description of the relevant sources
of noise, together with detailed schedules for the implementation of these flag-based protocols, provide one of
the most complete microscopic characterizations of a fault-tolerant quantum processor to date. By extensive
numerical simulations, we provide a comparative study of flag- and cat-based approaches to quantum error
correction, and show that the superior performance of the former can become a landmark in the success of
near-term quantum computing with noisy trapped-ion devices.
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I. TOWARDS FAULT-TOLERANT (FT) QUANTUM ERROR
CORRECTION (QEC) WITH TRAPPED IONS

A. Introduction

1. Development and assessment of near-term QEC devices

The prospect of processing information quantum mechan-
ically and, thereby, solving computational problems beyond
the reach of classical devices [1], has stimulated enormous
research efforts, which aim at building and scaling up pro-
totype quantum processors [2]. To date, the field of quantum
computing has reached a considerable level of maturity, allow-
ing for high-accuracy control over ever-larger qubit registers.
These advances are expected to enable the construction and
operation of near-term devices estimated to contain about 30
to 100 qubits, which, for the first time, demonstrate quantum
advantages [3].

Currently, large efforts are focusing on identifying specific
applications and algorithms, such as hybrid quantum-classical
approaches [4–8], which can be directly executed as low-
depth quantum circuits on available registers of bare physical
qubits. In this way, one may demonstrate a quantum advantage
using faulty qubits without the resource overhead required for
quantum error correction (QEC) [9]. On a longer-term per-
spective, however, the construction of general-purpose large-
scale fault-tolerant (FT) quantum processors will require
encoding of information in logical qubits, and repetitive ap-
plication of active QEC cycles to detect and correct errors oc-
curring during storage and processing [10–13]. Various phys-
ical platforms have emerged as promising candidate systems
to build such scalable devices, including trapped ions [14],
Rydberg atoms in optical lattices or trap arrays [15], as well
as solid-state platforms such as superconducting circuits [16],
nitrogen-vacancy centers [17], or quantum dots [18].

A first generation of proof-of-principle implementations
have demonstrated basic QEC codes in a variety of plat-
forms [19–24], including minimal versions of the topological
color code [25,26] and surface code [27–29]. Current efforts
focus on the demonstration of fault tolerance in near-term and
potentially scalable devices [30–32], and the implementation
of full QEC cycles on logical qubits in the parameter regime
where they outperform their constituent physical qubits [33].
On the theory side, an essential contribution to push these
developments concerns (i) the development and optimization
of resource-efficient and fault-tolerant protocols especially de-
signed for a particular platform, and (ii) the faithful modeling
of the underlying quantum hardware and experimental noise
processes, which is crucial to assess the performance of the
first-generation low-distance QEC codes. In this context, a
series of studies have shown that it is important to include
realistic error sources such as non-Pauli errors [34,35], qubit
leakage [36,37] and losses [38,39], as well as spatially and
temporally correlated noise [40]. Oversimplified single- or
few-parameter noise models that neglect these effects can lead
to a drastic over- or underestimation of the QEC prospects.

In this work we present a detailed theoretical study that
aims at identifying the requirements and parameter regimes
for beneficial QEC in state-of-the-art and near-future trapped-
ion quantum processors. In our work we focus on a thorough
and realistic modeling of the experimental QEC toolbox in
high-optical-access segmented ion traps [41], which allow one
to manipulate dual-species ion crystals [42] under cryogenic
conditions. This architecture is scalable, as one-dimensional
(1D) trapping zones can be coupled via junctions into larger
potentially two-dimensional (2D) trap array structures form-
ing a so-called quantum charge-coupled device (QCCD) [43],
which is complementary to approaches based on optical
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coupling of ions in separated traps [44]. We carefully model
physical qubits as multilevel ions, with associated amplitude
damping and leakage processes due to spontaneous decay
of the electronic states. The experimentally available toolset,
most prominently the set of single- and two-qubit entangling
operations, are described with non-Pauli or correlated error
channels, as derived from a detailed and quantitative quantum
optical modeling of the underlying microscopic electronic and
vibrational dynamics.

On the QEC side, we choose to work with the distance-3
topological seven-qubit color code [45]. Here we pay par-
ticular attention to recently proposed FT stabilizer readout
protocols based on so-called flag qubits [46], and compare
their performance with other established FT readouts that
involve a larger number of ancilla qubits [47,48]. For the
flag-based syndrome measurement, we provide optimized and
resource-efficient compilations of the required circuits into
the trapped-ion gate primitives, and furthermore complement
these QEC protocols for the correction of standard com-
putational errors (bit and/or phase flips) by a new leakage
suppression technique. Extensive Monte Carlo wave function
simulations of the QEC protocols and noise processes allow us
to identify the parameter regimes in which reaching the break-
even point of useful QEC is expected to become feasible
in realistic near-term trapped-ion based quantum information
processors.

2. Topological QEC and color codes

As advanced above, a promising route for the extensibil-
ity of prototype quantum processors towards large-scale FT
quantum computers is the use of active QEC. Here the logical
information is redundantly encoded in several entangled data
qubits defining the so-called code subspace, such that errors
drive the system out of this subspace, and can be detected and
corrected by measuring collective observables without dam-
aging the encoded information [9]. A particularly promising
type of encoding is that offered by topological planar codes,
such as the surface version [49] of Kitaev’s toric code [50]
and topological color codes [45]. For both families of codes,
the physical qubits can be arranged on a planar lattice, and the
collective observables can be defined as local stabilizers [51],
i.e., multiqubit Pauli operators that involve only groups of
spatially neighboring qubits on the lattice. This locality of the
check operators implies that only local quantum processing is
required to detect and correct the possible errors. Besides this
locality property, topological codes are particularly interesting
due to the high FT threshold values [52–54], i.e., reliable
computations of arbitrary length will become feasible if the
error per operation is below a certain threshold.

We will present below a generic trapped-ion toolbox that
can be used to implement any topological stabilizer code.
However, one of our main goals is to understand the minimal
requirements to prove the beneficial nature of QEC in near-
term trapped-ion experiments, lying a set of building blocks
to construct future QEC experiments with ever increasing
registers. Therefore, we will here optimize the resources for
the smallest, yet fully functional seven-qubit topological color
code. This code, unitarily equivalent to Steane’s code [55],
is an instance of the so-called triangular color codes (see

FIG. 1. Color code scheme: (Upper panel) The quantum infor-
mation is redundantly encoded in n = 7 data qubits forming a planar
code with np = (n − 1)/2 = 3 plaquettes, leading to s = 2np = 6
stabilizers, which yields k = n − s = 1 logical qubits. The code
space is defined via S(p)

x , S(p)
z stabilizer operators, each acting on

a plaquette p = 1, 2, 3 that involves four data qubits. The number
of qubits along the boundaries determine the distance of the code
d = 3, such that t = (d − 1)/2 = 1 errors can be corrected. We
note that the form of the plaquettes is a mere visualization, and
they could be deformed such that an equilateral triangle is formed,
as used in Refs. [25,33]. (Lower panel) Larger color codes are
constructed by growing a so-called 4.8.8. triangular lattice, which is
a three-colorable tilling of the plane with n = (d2 + 2d − 1)/2 data
qubits, each of which belongs (in the bulk) to one square and two
neighboring octagons, e.g., d = 9, n = 49. The logical operators,
which can be defined in a bit-wise manner, can also be deformed into
X - and Z-type colored strings XL and ZL connecting two boundaries
of a different color. Thereby, logical information is encoded globally,
such that the local errors occurring at low enough rates on physical
qubits have a smaller impact as the lattice size grows.

Fig. 1) [45], and allows one to store and manipulate a single
logical qubit redundantly encoded into seven physical qubits.
The code, which belongs to the family of CSS codes [11,12],
can correct a single error due to either bit or phase flips. The
most likely bit- and phase-flip errors can be inferred from the
measurements of three Z- and X -type plaquette stabilizers, as
shown in Fig. 1,

S(1)
x = X1X2X3X4, S(2)

x = X2X3X5X6, S(3)
x = X3X4X6X7,

S(1)
z = Z1Z2Z3Z4, S(2)

z = Z2Z3Z5Z6, S(3)
z = Z3Z4Z6Z7.

(1)

These commuting operators define the so-called code space
Vcode ⊂ H spanned by all stabilizer eigenstates |�〉 of eigen-
value +1, S(p)

α |�〉 = |�〉. In this case, the code subspace is
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FIG. 2. Trapped-ion universal gate set: (Upper panel) Native
trapped-ion gates. For a single-ion register, we can apply single-qubit
rotations X (θ ),Y (θ ), Z (θ ). For a two-ion register, we can apply
entangling MS gates. For an N-qubit register of co-trapped ions, the
rotations X (θ ),Y (θ ) act globally on all N qubits, whereas the Z (θ )
rotations can be addressed individually to the desired qubit subset.
Finally, the entangling MS gates also act globally on all N qubits,
creating multipartite entangled states. (Middle panel) The global
operations [e.g., an X (θ ) rotation] can be applied to single qubits
of a larger subset by applying spin-echo-type refocusing techniques.
(Lower panel) The native trapped-ion gates form a universal gate
set. This follows, for instance, from the equivalence of the Pauli and
universal gate set (i.e., S gate, Hadamard H , and CNOT, generate the
Pauli group, whereas including the T gate instead of S = T 2 leads to
a universal gate set [1]) with certain sequences of trapped-ion gates.

two dimensional, encoding a single logical qubit ZL|0〉L =
|0〉L, ZL|1〉L = −|1〉L, and XL|0〉L = |1〉L, XL|1〉L = |0〉L,
where ZL = ⊗iZi, XL = ⊗iXi are possible representations of
the generators of the logical qubit.

Besides being the smallest fully functional topological
qubit, the seven-qubit color code [45] permits a transversal
bit-wise realization of the entire group of Clifford gate oper-
ations (see Fig. 2), which contrasts the case of the smallest-
possible nine-qubit surface code [56,57]. In both cases, a
universal set of logical gate operations can be achieved by
complementing the Clifford operations with a single non-
Clifford gate such as the T gate (see Fig. 2) by magic-state
injection [58]. Therefore, from a resource-optimization phi-
losophy, we shall model near-term trapped-ion experiments
based on the seven-qubit color code, which can then be
extended to larger registers, hosting logical qubits of larger
logical distance and increased error robustness, as illustrated
in Fig. 1.

FIG. 3. Scheme of the segmented trap and elementary opera-
tions: We consider a planar trap composed of several arms connected
via Y junctions. These arms consist of a linear section divided into
three storage (S1, S2, S3), and two manipulation (M1, M2) zones,
each of which contains small segmented electrodes that allow for
ion trapping and control of the motional degrees of freedom. From
left to right, and upper to lower arms, the possible operations con-
sidered in this work are (m) merge sets of ions into a single crystal,
(2) two-qubit entangling gates, (j) shuttling of ion(s) across a junc-
tion, (sh) shuttling an ion(s) among neighboring trapping zones, and
(R) rotation of an ion crystal. In addition, one can apply (1) single
qubit gates, (c) sympathetic laser cool the ion crystal, (r) repump a
leaked qubit, and (s) split an ion crystal. The resulting operations are
indicated by black arrows with the above letters as labels.

3. The trapped-ion QEC toolbox

We now describe briefly the main ingredients of the QCCD
trapped-ion toolbox for QEC explored in this work (see
Appendix A for more details). Building on [33,59], we will
focus on the elementary operations that can be implemented
with high-optical-access (HOA) segmented ion traps in a
cryogenic environment [41] (see Fig. 3). We consider a
two-species ion register, such that the elementary quantum
information units can be stored in the electronic states of
one of the species (e.g., 40Ca+ optical qubits are encoded
in the ground-state and metastable electronic levels |0〉 =
|4S1/2,−1/2〉 |1〉 = |3D5/2,−1/2〉, which are labeled by the
principal quantum number and various orbital and spin angu-
lar momenta |nL2S+1

J , MJ〉). On the other hand, the remaining
species (e.g., 88Sr+) shall be exploited for sympathetic cooling
to maintain sufficiently low temperatures of the ion register
at certain stages of the QEC cycles. These ions are confined
above a planar segmented trap divided into manipulation and
storage regions, where various elementary operations can be
performed:

(i) Electronic-state manipulation techniques. The quantum
information can be processed by exploiting various forms of
the laser-ion interaction in a given manipulation zone, which
yields a universal gate set [60] (see Table I). This gate set
contains (o1) and (o2) multi-ion entangling gates gates based
on the so-called Mølmer-Sørensen (MS) scheme [61,62],
which allows us to generate entanglement between co-trapped
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TABLE I. Extended trapped-ion QEC toolbox. Description of
current and future trapped-ion capabilities for a QCCD approach to
FT QEC, following [33]. We include the duration and infidelity of
operations acting on the internal degrees of freedom, and the duration
and final mean number of phonons in the longitudinal center-of-mass
mode for the operations involving the external degrees of freedom of
the ions.

Current Current Anticipated Anticipated
Operation duration infidelity duration infidelity

(o1) Two-qubit 40 μs 1 × 10−2 15 μs 2 × 10−4

MS gate
(o2) Five-qubit 60 μs 5 × 10−2 15 μs 1 × 10−3

MS gate
(o3) One-qubit

gate
5 μs 5 × 10−5 1 μs 1 × 10−5

(o4) Measurement 400 μs 1 × 10−3 30 μs 1 × 10−4

(o5) Qubit reset 50 μs 5 × 10−3 10 μs 5 × 10−3

(o6) Recooling 400 μs n̄ < 0.1 100 μs n̄ < 0.1
(o7) Ion shuttling 5 μs n̄ < 0.1 5 μs n̄ < 0.1
(o8) Ion split and

merge
80 μs n̄ < 6 30 μs n̄ < 1

(o9) Ion rotation 42 μs n̄ < 0.3 20 μs n̄ < 0.2
(o10) Junction 100 μs n̄ < 3 200 μs –

crossing (per ion)
(o11) Leakage 60 μs 5 × 10−3 20 μs 5 × 10−3

repumping

ions mediated by the quantum vibrations of the ion crystal
(i.e., phonons). We note that trapped-ion architectures offer
the most accurate entangling gates reported to date [63], and
that current efforts are also being directed towards increasing
the gate speed [64]. The corresponding unitary of an N-ion
entangling gate is parametrized as

UMS,φ (θ ) = e−i θ
4 S2

φ , Sφ =
N∑

i=1

cos(φ)Xi + sin(φ)Yi, (2)

where Xi = σ x
i , Yi = σ

y
i , and Zi = σ z

i are expressed in terms
of Pauli matrices, and φ, θ are fully tunable laser parameters
described in Appendix A, where a realistic description of
the MS scheme in the presence of noise and errors is also
presented.

In the main part of the text, however, we will advocate
for a hardware-agnostic language that tries to make trapped-
ion QEC accessible to nonexperts. In particular, the fully
entangling MS gates UMS,0(π/2) [UMS,π/2(π/2)] used in this
work, which generate GHZ-type entangled states such as

|01, 02, . . . , 0N 〉→ 1√
2

(|01, 01, . . . , 0N 〉−i|11, 12, . . . , 1N 〉),

(3)

will be represented by an abstract circuit analogous to the
usual CNOT gate [1]. We use a vertical string joining encircled
X (Y ) operations for all the qubits involved in the gate (see
Fig. 2), which are the ions of a single species co-trapped in
the same manipulation zone (see Fig. 3).

In addition to the MS gates, the universal gate set contains
(o3) one-qubit gates (see Table I). These gates can either arise

from global rotations around an axis lying in the equatorial
plane of the Bloch sphere, which yields the unitary

UR,φ (θ ) = e−i θ
2 Sφ , (4)

acting simultaneously on all qubits of a certain manipulation
zone; or from local rotations about the z axis

URi,z(θ ) = e−i θ
2 Zi , (5)

which can be addressed to the desired ith qubit. Once again,
the corresponding microscopic evolution in the presence of
the main sources of errors are discussed in Appendix A.
These gates will be represented by white rectangular boxes
with labels X (θ ),Y (θ ) for the global rotations, and Z (θ ) for
the local ones (see Fig. 2). As shown in this figure, this
trapped-ion native gate set can be used to obtain the more
standard universal gate set of the circuit-based approach to
quantum computation [1], up to irrelevant global phases. In a
hardware-agnostic spirit, one can use these relations to gener-
ate any particular unitary operation on an N-qubit trapped-ion
register.

In addition to these operations, to translate any quantum-
information protocol into the trapped-ion hardware, we note
that the ions have a so-called closed cycling transition [60]
that leads to (o4) projective measurements in the z basis by
collecting a state-dependent fluorescence due to the emitted
photons from the cycling transition, and (o5) qubit initializa-
tion and reset by optical pumping.

(ii) Ion-crystal-reconfiguration techniques. The trapped-
ion QEC toolbox includes techniques to control the external
and motional degrees of freedom of the ion crystal. In particu-
lar, we shall exploit the other species, e.g., 88Sr+ ions, for (o6)
recooling of the ion crystal using sympathetic laser cooling
techniques. In this way one can cool the vibrational mode that
is used as a quantum data bus to generate entanglement, prior
to any entangling gate (see Table I), such that high fidelities
can be still be achieved after the ion crystal has gone through
a sequence of reconfiguration operations.

These crystal reconfiguration operations, which heat the
vibrational modes, can be applied in both manipulation and
storage regions, as they require control over the trapping po-
tentials but no lasers are involved. We consider the following
elementary operations: (o7) fast shuttling of ions or small
crystals across different segments of a single arm of the trap;
(o8) fast splitting and merging of ion crystals; and (o9) fast
swapping of pairs of ions and rotations of small crystals
around a reflexion axis. Although these operations do not
appear explicitly in the abstract circuits of Fig. 2, they are
a fundamental ingredient in the microscopic schedules that
need to be realized for the implementation of a particular QEC
protocol.

Following the spirit of this work, a hardware-agnostic
language would not require us to know the particular pulse
sequences required to perform these microscopic operations
(see Fig. 3), nor the schedules of such operations that must be
applied to perform a sequence of gates for particular stages
of the QEC protocol. Accordingly, some of these details
are relegated to Appendix B. For nonexperts in trapped-ion
physics, we only need to know that these reconfiguration
operations do not act on the quantum information encoded in
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the electronic states. Therefore, we only have to incorporate
the effect of the environmental noise that affects the qubits
during the time that these operations take (see Table I). We
will describe the corresponding error models in the following
subsection.

So far, (o1)–(o9) form the QEC toolbox used to assess the
progress of near-term trapped-ion QEC [33]. As discussed in
Ref. [59], the extensibility towards larger registers requires
including (o10) transport of ions across junctions [65,66]
connecting different arms of the trap (see Fig. 2). In this
work we include a new and important ingredient in this
toolbox. As discussed below, a realistic modeling of the
microscopic trapped-ion noise requires considering leakage
of the electronic state out of the computational subspace.
Due to the choice of 40Ca+ optical qubits, the metastable
qubit state |1〉 = |3D5/2,−1/2〉 can spontaneously decay into
the ground-state qubit state |0〉 = |4S1/2,−1/2〉, resulting in
an amplitude damping within the computational subspace.
However, there is a also a finite branching ratio for the decay
into a different ground-state level |�〉 = |4S1/2,+1/2〉, giving
rise to leakage out of the qubit subspace. As discussed below,
although the trapped-ion QEC protocols [33,59] can cope with
amplitude-damping errors, the leakage cannot be counteracted
by the error correction, such that the leaked population will
accumulate as the protocol proceeds, compromising the use-
fulness of the QEC.

To counteract this detrimental effect, we include a (o11)
repumping pulse sequence that can bring the population of the
electronic state back to the computational subspace without
affecting the coherences. The main idea is that, contrary to the
bare-leakage errors, which are uncorrectable, the repumped-
leakage errors behave effectively like amplitude damping
within the computational space, and can thus be corrected by
subsequent QEC cycles (see Fig. 4). In a hardware-agnostic
language, knowledge of the laser pulse sequence for the
repumping detailed in Appendix A is not required. Instead, we
need to describe a microscopic noise model describing how a
faulty repumping alters the amplitudes of the quantum state,
which will be described in the following section.

B. Realistic microscopic error models

As emphasized in the Introduction, theoretical predictions
about the performance of QEC can differ substantially de-
pending on the assumptions about the experimental capabil-
ities, and the models used to describe the effects of envi-
ronmental noise and/or experimental imperfections. A clear
example of this trend is the existence of a wide range of
FT thresholds [52–54] depending on the noise model [67].
Therefore, meaningful assessments of the near-term prospects
of various technologies to demonstrate the break-even point
of beneficial QEC require a realistic microscopic noise mod-
eling. We believe these types of studies are important to
guide near-future technological developments that must be
accomplished in the progress towards FT quantum computers.

In Refs. [33,59], a microscopic description of the possible
technical imperfections and environmental sources of noise
has been presented. In this section we build on these efforts
to update the microscopic description providing, to the best
of our knowledge, the most complete and realistic error

FIG. 4. Repumping scheme for leakage errors: Due to sponta-
neous decay, the population of the leaked level can grow, but initially
vanishing coherences with the qubit levels will not build up. In the
first step (upper-left panel), a π pulse brings the population of the
leaked state |�〉 to the metastable level, coherently hiding the qubit
state in the ground-state manifold. In a second step (upper-right
panel), by driving a dipole-allowed transition between the metastable
level and higher-excited levels, the leaked population can be pumped
back to the computational subspace via spontaneous decay onto
the ground-state manifold. Note that the coherences initially present
between the populations stored in the ground-state manifold are not
affected in this process. In a third step (lower-right panel), a π pulse
brings the hidden and repumped qubit state back to the computational
subspace (lower-left panel).

model for near-term QEC that can be found in any candidate
platforms explored to date. Following our hardware-agnostic
effort, we describe the main properties of the noise model for
nonexperts, and relegate the details to Appendix A.

1. Coherent errors for single-qubit gates

Let us consider the global (4) and local (5) single-qubit
rotations. As advanced in the Introduction, and described
in detail in Appendix A, the single-qubit gates (4) and (5)
are defined by parameters θ, φ that depend on the laser-
beam intensity and phase, which may fluctuate around the
target value θ → θ (t ) = θ + δθ (t ), φ → φ(t ) = φ + δφ(t ).
The corresponding global rotations used in Fig. 2 must be
substituted by

X (θ ) → X̂ (θ ) = e−i θ (t )
2 Sδφ(t ) , Y (θ ) → Ŷ (θ ) = e−i θ (t )

2 Sδφ(t )+π/2 ,

(6)

where we have assumed that the phase fluctuations occur
on a much slower timescale than the intensity fluctuations.
Accordingly, the gates suffer from under- or over-rotations
due to laser intensity fluctuations leading to nonzero δθ (t );
while the phase drifts δφ(t ) yield fluctuations in the rotation
axis

Sδφ(t ) =
∑

i

cos[δφ(t )]Xi + sin[δφ(t )]Yi,

Sδφ(t )+π/2 =
∑

i

cos[δφ(t )]Yi − sin[δφ(t )]Xi. (7)
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Finally, local rotations in Fig. 2 should be substituted by

Z (θ ) → Ẑ (θ ) = e−i θ (t )
2 Z . (8)

In this case, since they arise from two-photon AC-Stark shifts,
the typically slow phase drifts have no effect on the rotation
axis. Conversely, intensity fluctuations can again yield under
and over rotations via δθ (t ).

In contrast to typical Kraus-map modeling of noise in
QEC, our faulty gates are not characterized by a single error
rate, but instead by two fluctuating functions δθ (t ), δφ(t ) de-
scribed by a random process with parameters fixed by experi-
mental considerations [68,69]. A hardware-agnostic approach
only requires prior knowledge of these fluctuating functions,
such that the faulty gates X̂ (θ ), Ŷ (θ ), Ẑ (θ ) can be simulated
in highly parallelized full-wave-function simulations, as dis-
cussed below, going in this way beyond the typical Pauli errors
explored in QEC [70].

2. Error model for two-qubit entangling gates

Let us now consider the MS gates (2) for a two-ion crystal,
which are essential ingredients in the FT stabilizer readout for
trapped-ion QEC. The MS scheme creates a state-dependent
force by exploiting the laser-ion interaction in the regime
of resolved phonon sidebands [61,62]. This force, which
displaces the ions along trajectories that depend on their
electronic state, can also yield a collective geometric phase
responsible for the entangling gate [71]. We note that the
underlying laser-driven qubit-phonon dynamics can lead to
various sources of errors, such as motional errors (i.e., residual
spin-phonon entanglement of spectator modes and Debye-
Waller fluctuations of the Rabi frequencies) [62], dephasing
(i.e., decoherence due to fluctuations of global magnetic
fields), and fluctuations of the laser intensity and phase. The
time evolution of the two qubits subjected to the laser-ion
interaction is

ρ(tg) = Trph(Ugρ0U
†
g ), Ug = e−itgH0 T

{
e−i

∫ tg
0 dt ′Hint (t ′ )},

(9)

where Trph represents the partial trace over the phonons, tg
is the gate time, H0 contains the independent dynamics of
the electronic and vibrational degrees of freedom, T is the
time-ordering operator, and Hint (t ′) describes the laser-ion
interactions in the resolved-sideband regime [72], including
the above potential sources of errors (see Appendix A). In this
microscopic description, ρ0 contains the initial qubit state and
a thermal state for the vibrations with typical phonon numbers
described in Table I, whereas the final qubit state is obtained
by tracing over the vibrational states on the time-evolved
state.

We solve numerically the qubit-phonon dynamics (9), and
perform process tomography [73] to express the final qubit
state as the result of a generic quantum channel

ρ(tg) =
∑

n

pnKn ρ0K†
n ,

∑
n

pnK†
n Kn = I. (10)

Here Kn are two-qubit Kraus operators, and pn are their cor-
responding probabilities, already averaged over the stochastic
processes that describe dephasing and laser-parameter fluctu-
ations. Note that all the different sources of error introduced

above will result in a set {pn}16
n=1, where p1 ≈ 1 corresponds to

a Kraus operator K1 close to the ideal MS gate (2), whereas the
remaining weights {p2, p3, . . . } correspond to the most likely
errors and we use a decreasing ordering (see Appendix B).
It turns out that these weights decay very fast, and that the
more relevant errors occur as single-qubit Pauli operators in
the same basis as the MS gate.

For the hardware-agnostic description, once the set
{pn, Kn,∀n : pn > ptrunc} is given, one can readily incorporate
it in a Monte Carlo approach full-wave-function simulation.
For a pure-state Monte Carlo evolution, we need to gen-
erate random numbers r ∈ [0, 1] and apply the numerically
generated Kn if r falls in the respective probability inter-
val

∑n−1
k pk � r <

∑n
k pk , where p0 = 0. In this way, one

samples over all the relevant Kraus operators, such that the
stochastic average yields the noisy MS gate.

3. Amplitude damping and qubit leakage

Typically, environmental dephasing is considered to be the
main source of noise affecting idle trapped-ion qubits [33,59].
However, near-term technical improvements are expected
to reach coherence times close to the limit of T2 = 2T1 ≈
2.2 s, such that amplitude damping from the metastable
state |1〉 = |3D5/2,−1/2〉 into |0〉 = |4S1/2,−1/2〉 must be
also considered. Moreover, the spontaneous decay can also
populate a ground-state level that does not belong to the
computational subspace |�〉 = |4S1/2,+1/2〉, leading to the
aforementioned leakage errors. Given the Markovian nature
of the electromagnetic environment responsible for this spon-
taneous decay, and the typical separations between co-trapped
ions forming a crystal, we can directly rule out effects from
temporal [74] and spatial [75] correlations in the spontaneous
decay.

Let us note that the amplitude-damping channel ρ(t ) =∑
n LnρL†

n with L0 = |0〉〈0| + √
1 − pad(t )|1〉〈1| and L1 =√

pad(t )|0〉〈1|, can be incorporated in a circuit-based simula-
tion by means of an auxiliary qubit [1]. This ancilla qubit must
be entangled with the data qubit via a controlled rotation of
angle θd, a subsequent CNOT gate, and finally measured in the
computational basis (see upper panel of Fig. 5). In this simpli-
fied case, the rotation angle is fixed by the spontaneously de-
cayed population θd = 2arcsin([1 − exp(−tid/T1)]1/2), such
that the amplitude-damping error rate is pad(t ) = sin2

(θd/2).
To incorporate the possible leakage ρ(t ) = ∑

n LnρL†
n

with L0 = |0〉〈0| + |�〉〈�| + √
1 − pad(t ) − p�(t )|1〉〈1|, L1 =√

pad(t )|0〉〈1|, and L2 = √
p�(t )|�〉〈1|, we must generalize the

circuit to describe this process. We consider that the initial
state has no coherences between the computational states and
the leaked level. Since the leaked population can only increase
by incoherent spontaneous decay, such coherences cannot be
built up, and we can therefore use at all times one auxiliary
classical bit per ion to store the information about the leaked
level, i.e., � = 0 (� = 1) if the qubit has (has not) leaked.
As depicted in the lower panel of Fig. 5, the circuit-based
simulation of simultaneous amplitude damping and leakage
requires a couple of ancillary qubits, and a pair of controlled
rotations that are also conditioned on the qubit not having
leaked into |�〉. As described in detail in Appendix A(c), the
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FIG. 5. Circuit-based simulation of amplitude damping and leak-
age: (Upper panel) The amplitude damping channel can be obtained
from a circuit that couples the data qubit to an ancillary qubit
using a pair of entangling gates, a conditional Y rotation, and a
CNOT, followed by a measurement of the ancillary qubit. This is
fully equivalent to the circuit where the second entangling gate is
substituted by a single-qubit rotation that is applied conditional on
the result of the ancilla measurement, as depicted by a double line
where the classical information determines the subsequent single-
qubit rotation. (Lower panel) Circuit to simulate the amplitude
damping and leakage, including an auxiliary classical bit to account
for leakage events, and a pair of ancillary qubits. These qubits are
entangled to the data qubit via controlled Y rotations that depend on
the state of both the classical and quantum bits, such that one can
simulate simultaneously the damping and leakage via measurement-
dependent operations.

rotation angles must now be set to

θ� = 2 arcsin

√
�′(1 − e−(�+�′ )t )

� + �′ ,

θd = 2 arcsin

√
�(1 − e−(�+�′ )t )

� + �′e−(�+�′ )t , (11)

where we have introduced the branching ratio of spontaneous
decay into the leaked level �′/�, which is typically small (i.e.,
�′/� ≈ 4/9 for our particular 40Ca+optical qubits [76]). We
note that in the numerical simulation it is sufficient to use in
total merely two ancillary qubits, independently of the number
N of ions, to simulate leakage dynamics on the entire register
of trapped-ion qubits.

Following our hardware-agnostic goal, one can model the
spontaneous decay by simply implementing the circuit of
Fig. 5 with the angles given by Eq. (11). Let us now discuss
how the subsequent operations are affected by the leakage. For
single qubit gates, if the ion is indeed in the |�〉 level, the lasers
will only cause an off-resonant AC-Stark shift that can be fully
neglected as there are no coherences between the leaked and
unleaked states. For the two-qubit MS gates, the situation is a

bit more involved. In case both qubits have leaked, the lasers
responsible for the gate will be highly off-resonant leading to
irrelevant AC-Stark shifts that can be neglected as before. On
the other hand, if only one of the qubits has leaked, the lasers
will still be near-resonant with the sidebands of the unleaked
qubit. This qubit will evolve under a state-dependent force,
as discussed in a previous subsection, realizing a trajectory
in phase space, during which the spin is entangled with
the motion. Note, however, that the timing of the gate still
guarantees that the phase-space trajectory will be closed (i.e.,
it is always an integer multiple of the detuning, regardless of
one of the ions not participating in the MS gate). Hence, to
leading order in our MS-gate error model, the unleaked qubit
simply develops a closed trajectory that is equivalent to the
identity operator. For the subsequent elementary operations
after the idle periods, if the classical bit signals leakage � = 0,
single-qubit gates simply act as the identity, while two-ion MS
gates act as the identity on the qubits involved in the gate.
Therefore, in a hardware-agnostic language, the elementary
operations involving a leaked level correspond to the identity.

In addition to these improved error models, we also use
dephasing noise in the Markovian regime, as well as a bit-
flip channel to model imperfect qubit initialization and read-
out [33,59], forming altogether our microscopic trapped-ion
error model.

C. Flag- versus cat-based stabilizer readout

We now describe two possible strategies for one of the
crucial operations in active QEC: the readout of the plaquette
stabilizers (1). Obtaining −1 measurement values signal the
occurrence of errors, which take the state out of the code
subspace |�〉 /∈ Vcode. The role of the active QEC strategies
is to devise a strategy to: (a) perform these measurements
without affecting the quantum information encoded in the
system, (b) avoid the uncontrolled propagation of errors
using FT constructions of the corresponding circuits, and
(c) devise decoders that allow us to infer the most likely
error for a given set of stabilizer measurements. Until very
recently [46], there were three main strategies for FT stabilizer
readout [47,77,78].

Regarding the trapped-ion experimental capabilities, the
required resources can be minimized with a Shor-type read-
out [33], whereby the nondemolition measurement makes use
of ancillary qubits prepared in entangled cat states to avoid the
proliferation of errors during the FT readout [47,48]. How-
ever, the preparation and certification of highly entangled cat
states is still a resource-intensive requirement. As discussed in
Ref. [59], the resources can be optimized further by moving
into a flag-based readout scheme [46,79], whereby the cat
states are substituted by a so-called flag qubit, which is op-
erated in combination with a bare syndrome qubit onto which
the stabilizer information gets mapped. One of the goals of the
present work is to perform a comparative numerical study of
cat- and flag-based approaches using the realistic trapped-ion
error model. We thus start by describing these two different
FT strategies.

In the flag-based approach, the flag qubit is coupled to
the syndrome qubit by a pair of MS entangling gates (see
Fig. 6), which serves to detect the cascading of correlated
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FIG. 6. Flag-based stabilizer readout with the trapped-ion uni-
versal gate set: Trapped-ion circuit for the flag-based measurements
of S(p)

x , S(p)
z . The upper qubits labeled as i1, i2, i3, i4 correspond to

one of the stabilizers (1) of a particular plaquette (see Fig. 1), and
are represented by black lines. The lower qubits s, f , represented
by gray lines, correspond to the syndrome and flag ancillary qubits,
respectively, which are initialized in the |1〉 state. Note that the
z-type stabilizer readout is obtained from the x-stabilizer readout by
a simple y rotation, and there is no need to change control and target
as occurs for CNOT-based schemes.

errors into the data qubits. The combination of the flag
readout with subsequent stabilizer measurements allows us
to identify and correct the most likely error. Let us recall
that errors propagate through the entangling MS gates acting
on the i, j pair of qubits as follows: UMS,0(π/2)Xi = XiUMS,0

(π/2), UMS,0(π/2)Xj = XjUMS,0(π/2), UMS,0(π/2)Zi = YiXj

UMS,0(π/2), and UMS,0(π/2)Zj = XiZ jUMS,0(π/2) [33]. Us-
ing the rules for the propagation, together with the straight-
forward rotations by single-qubit gates, one can ascertain that
an error has indeed occurred whenever the flag is triggered
(i.e., projective measurement in the z basis M f = −1). By
performing a subsequent measurement of the three conjugate
stabilizers, one can determine and correct the most likely error
including the potentially dangerous correlated errors (see
Table II). Note that these subsequent measurements can be
realized using the unflagged versions of the circuits (i.e., using
a bare syndrome qubit) while maintaining the fault tolerance
at level 1 (i.e., the correcting power of the seven-qubit code,
namely t = 1, is not compromised by the syndrome extraction
circuits, which maintain fault tolerance at this level and do
not allow errors to cascade). The reason is that since the flag
has already been triggered, and the seven-qubit color code
can only cope with a single error, the only correctable events
are those where subsequent gates do not introduce additional
errors, such that fault tolerance can be attained using bare

ancillas. If, on the other hand, the flag is not triggered but
the stabilizer signals an error −1, we know that an error must
have occurred on a single qubit at FT level 1, such that we
can again measure the remaining stabilizers with unflagged
circuits to find which single-qubit error is the most likely one.

Let us now describe the so-called DiVicenzo-Aliferis
scheme [48], which is the scheme requiring less resources
for a trapped-ion implementation within the class of cat-state
based approaches [33]. In particular, four ancillary qubits,
prepared in a cat state by a sequence of single- and two-qubit
gates, are coupled to the data qubits of a certain plaquette via
sequential MS gates (see Fig. 7). The main idea of this scheme
is that the measurements of the ancillary qubits Ma3 , Ma4 can
be used to detect if a correlated error may have propagated into
the data block, compromising the FT nature of the readout. In
particular, if (Ma3 , Ma4 ) = (+1,−1) during the measurement
of the X (Z) type stabilizer, the most likely error is a two-
qubit phase (bit) flip error Zi3 Zi4 (Xi3 Xi4 ), which must be
corrected to guarantee fault tolerance. On the other hand, if
(Ma3 , Ma4 ) = (−1,+1), only a single-qubit error may have
occurred, which can be identified by measuring all the re-
maining stabilizers (see Table III). We note that the stabilizer
information is encoded in the parity of the measurement of
the two remaining ancilla qubits S(p)

α |�〉 = −Ma1 Ma2 |�〉. Let
us remark that, to avoid a wrong syndrome extraction due to
faulty measurements, the stabilizer readout must be performed
twice, or three times if the results do not agree, keeping the
syndrome inferred from these last measurements.

It is already apparent by comparing Figs. 6 and 7 that
the cat-based approach requires more resources than the flag-
based scheme, not only in terms of qubits but also in terms of
the required operations. Note also that, although the syndrome
extraction of Tables II and III seem to be simpler for the
cat-based approach, the cat-based approach indeed requires
more resources in terms of operations, as the readout needs to
be performed up to three times to discard wrong syndromes
due to measurement errors. We also note that the QCCD
trapped-ion implementation of these circuits will contain a
considerable overhead of the other elementary operations of
Table I, such as various required crystal reconfigurations.
Therefore, the resource-consuming nature of the cat-based
approach can only get amplified when one considers a real-
istic trapped-ion implementation. The goal of this work is to
explore how these differences affect the QEC performance at
a quantitative level, and determine if the flag-based approach
can be an important improvement for the demonstration of
beneficial QEC in trapped ions under a realistic microscopic
model of noise.

D. Optimized FT flag-based encoding

Another important QEC operation is the redundant en-
coding of a particular logical state, such as |0〉L or |+〉L.
An advantage of the stabilizer formalism is the existence
of clear strategies to accomplish such encoding [1]. For the
seven-qubit color code, one may start from |ψ0〉 = ⊗i|0〉i, and
measure fault tolerantly all X -type stabilizers (1) following,
for instance, the two approaches discussed above. Depending
on the outcome of these measurements, one can perform the
corresponding operations to project into the code subspace,
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TABLE II. Decoding table for the trapped-ion flag-based syndrome extraction: (Upper panel) The procedure for the readout of the S(p)
x

plaquette stabilizers in order p = 1, 2, 3 depends on the outcome of the flag. If no flag is triggered Mf = +1, and no error is detected Ms = +1
in the syndrome qubit, one can move to the next stabilizer p + 1. If the flag is not triggered Mf = +1, but a syndrome error is detected
Ms = −1, one proceeds to measure all remaining X -type stabilizers with unflagged circuits, and identify the single-qubit phase-flip error using
the leftmost column. If, on the other hand, the flag is triggered Mf = −1, one should measure all remaining stabilizers using unflagged circuits
to identify the error, possibly correlated, that has indeed occurred (three remaining columns). The decoding depends on the particular plaquette
where the flag is triggered, and is specific to the chosen order, p = 1, 2, 3 in this case. (Lower panel) The procedure for the readout of the S(p)

z

plaquette stabilizers is analogous, but the roles of Z and X are exchanged everywhere.

Chao-Reichardt flag-based readout of X -type stabilizers

No flag triggered Mf = +1 S(1)
x flag triggered Mf = −1 S(2)

x flag triggered Mf = −1 S(3)
x flag triggered Mf = −1

Syndrome Error Syndrome Error Syndrome Error Syndrome Error
(S(1)

x , S(2)
x , S(3)

x ) correction (S(1)
z , S(2)

z , S(3)
z ) correction (S(1)

z , S(2)
z , S(3)

z ) correction (S(1)
z , S(2)

z , S(3)
z ) correction

(+1,+1, +1) I (+1,+1, +1) Xf (+1, +1, +1) Xf (+1, +1, +1) Xf

(+1,+1, −1) Z7 (+1,+1, −1) X7Xf (+1, +1, −1) X5X6 (+1, +1, −1) X7

(+1,−1, +1) Z5 (+1,−1, +1) X3X4 (+1, −1, +1) X5Xf (+1, −1, +1) X6X7

(+1,−1, −1) Z6 (+1,−1, −1) X6Xf (+1, −1, −1) X6 (+1, −1, −1) X6Xf

(−1,+1, +1) Z1 (−1,+1, +1) X1 (−1, +1, +1) X1Xf (−1, +1, +1) X1Xf

(−1,+1, −1) Z4 (−1,+1, −1) X4 (−1, +1, −1) X4Xf (−1, +1, −1) X4Xf

(−1,−1, +1) Z2 (−1,−1, +1) X2Xf (−1, −1, +1) X2 (−1, −1, +1) X2Xf

(−1,−1, −1) Z3 (−1,−1, −1) X3Xf (−1, −1, −1) X3Xf (−1, −1, −1) X3

Chao-Reichardt flag-based readout of Z-type stabilizers

No flag triggered Mf = +1 S(1)
z flag triggered Mf = −1 S(2)

z flag triggered Mf = −1 S(3)
z flag triggered Mf = −1

Syndrome Error Syndrome Error Syndrome Error Syndrome Error
(S(1)

z , S(2)
z , S(3)

z ) correction (S(1)
x , S(2)

x , S(3)
x ) correction (S(1)

x , S(2)
x , S(3)

x ) correction (S(1)
x , S(2)

x , S(3)
x ) correction

(+1,+1, +1) I (+1, +1, +1) Zf (+1,+1, +1) Zf (+1,+1, +1) Zf

(+1,+1, −1) X7 (+1, +1, −1) Z7Zf (+1,+1, −1) Z5Z6 (+1,+1, −1) Z7

(+1,−1, +1) X5 (+1, −1, +1) Z3Z4 (+1,−1, +1) Z5Zf (+1,−1, +1) Z6Z7

(+1,−1, −1) X6 (+1, −1, −1) Z6Zf (+1,−1, −1) Z6 (+1,−1, −1) Z6Zf

(−1,+1, +1) X1 (−1, +1, +1) Z1 (−1,+1, +1) Z1Zf (−1,+1, +1) Z1Zf

(−1,+1, −1) X4 (−1, +1, −1) Z4 (−1,+1, −1) Z4Zf (−1,+1, −1) Z4Zf

(−1,−1, +1) X2 (−1, −1, +1) Z2Zf (−1,−1, +1) Z2 (−1,−1, +1) Z2Zf

(−1,−1, −1) X3 (−1, −1, −1) Z3Zf (−1,−1, −1) Z3Zf (−1,−1, −1) Z3

TABLE III. Decoding table for the trapped-ion cat-based syndrome extraction: The procedure for the cat-based syndrome extraction of the
S(p)

α plaquette stabilizers depends on the combined readout of the pair of ancillary qubits Ma3 , Ma4 . If one finds Ma3 = −1, Ma4 = +1, only a
single-qubit error may have occurred at FT level 1, which can be identified from the combined measurements of all the stabilizers according to
the two leftmost columns. Conversely, the values Ma3 = +1, Ma4 = −1 signal that a correlated error may have propagated into the data qubits.
The most likely dangerous errors are listed in the two rightmost columns, and depend on which stabilizer was being measured.

DiVicenzo-Aliferis cat-based readout of the stabilizers

Correlated error absent Ma3 = −1, Ma4 = +1 Correlated error present Ma3 = +1, Ma4 = −1

Syndrome Error Syndrome Error Corresponding Error Corresponding Error
(S(1)

x , S(2)
x , S(3)

x ) correction (S(1)
z , S(2)

z , S(3)
z ) correction stabilizer correction stabilizer correction

(+1,+1, +1) I (+1, +1, +1) I S(1)
x Z3Z4 S(1)

z X3X4

(+1,+1, −1) Z7 (+1, +1, −1) X7 S(2)
x Z5Z6 S(2)

z X5X6

(+1,−1, +1) Z5 (+1, −1, +1) X5 S(3)
x Z6Z7 S(3)

z X6X7

(+1,−1, −1) Z6 (+1, −1, −1) X6

(−1,+1, +1) Z1 (−1, +1, +1) X1

(−1,+1, −1) Z4 (−1, +1, −1) X4

(−1,−1, +1) Z2 (−1, −1, +1) X2

(−1,−1, −1) Z3 (−1, −1, −1) X3
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FIG. 7. Trapped-ion cat-based stabilizer readout: Trapped-ion
circuit for the cat-based measurements of S(p)

x , S(p)
z . The upper qubits

i1, i2, i3, i4, represented by black lines, correspond to one of the
stabilizers (1) of a particular plaquette (see Fig. 1). The lower qubits
a1, a2, a3, a4, represented by gray lines, correspond to the syndrome
ancillary qubits prepared in a verified cat state from the initial |0〉
product state. Here a1, a2 contain the stabilizer information, whereas
a3, a4 are used to verify that no correlated error has occurred during
the cat-state preparation, which would cascade into the data qubits.
Note again that the z-type stabilizer readout is obtained from the
x-stabilizer readout by a simple y rotation.

e.g., into |0〉L. Likewise, for the |+〉L encoding, one simply
needs to exchange the roles of the x and z bases. Note how-
ever, that this is a resource-intensive approach, as it requires
performing full rounds of active QEC.

Interestingly, there are more efficient encoding strategies
based on a verification step to ascertain that the desired level
of fault tolerance has been achieved. Starting from Steane’s
encoding based on Latin rectangles [80], it is possible to op-
timize the encoding into |0〉L following the strategy discussed
in Ref. [81]. However, if errors take place, the imperfect
encoding becomes non-FT, as pairs of data qubits from the
same logical block are coupled, and single errors can cascade
into multiple errors. We now describe a flag-based approach
that can detect and correct such dangerous correlated errors
(see Fig. 8).

As realized by Goto [82] for the CNOT version of this
circuit, prior to the last pair of entangling gates inside the
leftmost shaded rectangle of Fig. 8, all propagated errors are
equivalent to single-qubit errors. Since these are correctable
within the seven-qubit color code, one can ensure fault tol-
erance at level 1 by making sure that no correlated error is
being created by the last pair of MS gates. The verification

step can be thus greatly simplified, as it only requires detecting
two dangerous bit flips, one of which is highlighted in Fig. 8.
The verification can be accomplished by two additional MS
gates that couple the data qubits to an ancillary flag qubit (see
the blue pair of gates in Fig. 8). As depicted in this figure,
one can detect when such a correlated error has occurred by
measuring the flag qubit in the z basis M f = −1. Additionally,
by introducing an MS gate between the first data qubit and the
ancilla (see the green gate in Fig. 8), the measurement gives
information about the logical operator of the seven-qubit code,
which indeed stabilizes the logical |0〉L state, such that the
target encoding into |0〉L is not altered by the verification step.

Let us now go beyond by showing that one cannot only
detect when a correlated error may have occurred and use
post-selection to achieve a FT encoding, but also distinguish
between the two types of correlated errors, and correct them
instead of using post-selection. The philosophy is similar
to the flag-based approach, as it relies on additional mea-
surements, which can be used in combination with the flag
measurement to correct for the dangerous correlated errors.
By measuring the logical operators ZL = Z1Z2Z5 and Z ′

L =
Z5Z6Z7 of Fig. 9, we can ascertain that the two-qubit errors
become equivalent to single-qubit errors (up to the code
stabilizers) after the corrections listed in the lower table of
Fig. 9, such that fault tolerance at level 1 is achieved without
any post-selection. Let us finally note that the FT encoding
into the logical |+〉L state can be achieved using the same
circuit, and applying a Hadamard gate (see Fig. 2) to all qubits
in the data block, right at the end of the circuit. This is a
direct consequence of the transversality of the Hadamard gate
in color codes.

II. NUMERICAL ASSESSMENT OF THE FT
PERFORMANCE OF TRAPPED-ION QEC

A. Assessing the benefit of trapped-ion QEC

A possible criterion to determine the success of FT-QEC
would be to demonstrate a reduced error rate for a set of
representative quantum circuits, including non-Clifford oper-
ations, with respect to the best possible unencoded qubits [30].
This criterion, however, is too demanding for near-future ex-
periments in various technologies. For trapped ions, the very
large coherence times on the order of seconds, together with
the very high fidelities for elementary operations exceeding
99.9%, indicate that the above criterion will be extremely dif-
ficult to meet with near-term devices considering the overhead
in complexity for QEC (i.e., these bare operations and quali-
ties are already so good that it is unlikely that short-distance
QEC codes, with an increased complexity and making use
of lower-fidelity entangling gates, will allow us to improve
them further). In order to assess the progress of near-term
QEC, a milder criterion would be to demonstrate that a
complete round of error detection and correction proves to
be beneficial rather than detrimental. This criterion should be
applied to a setup that, although it might not use the best bare
qubits nor the best single- and two-qubit gates, it suffices to
accommodate all the requirements for QEC with small codes,
and has a clear route for scaling up towards larger distances.
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z

FIG. 8. Fault-tolerant MS-based encoding in the seven-qubit color code: Encoding circuit for the logical |0〉L based on a particular sequence
of eight MS gates, and six single-qubit rotations. The last pair of MS gates, inside a shaded rectangle, can lead to two-qubit errors in the data
block, and must be detected by a flag qubit to ensure fault tolerance. This verification step, inside the rightmost shaded rectangle, consists of
three MS gates that couple data qubits to the ancillary qubit (in gray), and seven single-qubit rotations. By using the error propagation of MS
gates mentioned above, one can check that the single phase-flip error during the preparation turns into a pair of bit-flip errors, detected by
the flag measurement Mf = −1. The corresponding errors are represented with gray stars, and the labels indicate their type as one propagates
through the circuit.

This criterion can be translated into a quantitative, and
experimentally relevant, assessment to guide future quan-
tum hardware developments by introducing the concept of

FIG. 9. Flag-based correction of encoding correlated errors: (Up-
per panel) Possible errors, represented by red stars, which may have
taken place when the ancilla measurement of Fig. 8 yields Mf = −1.
By measuring the two equivalent logical operators ZL and Z ′

L, it is
possible to find single-qubit corrections that will turn the possible
errors into single-qubit errors (lower panel) that can be corrected
by the QEC code. Note that when the logical outcomes are ZL =
Z ′

L = −1, this should be caused by an operator that involves more
qubits and has not arisen via propagation, but instead by multiple
errors occurring on the bare physical qubits. These errors cannot
be corrected by the code anyway, so the flag-based routine is FT at
level 1.

integrity of a quantum memory for a particular quantum-
information task: state discrimination [33]. As formalized in
Ref. [83], we start by considering that a qubit with density
matrix ρ is to be stored in a code-based memory channel 

for a specified period of time through the following process.
(i) Setup: At t = 0 Alice encodes the single qubit ρ into
an n-qubit logical code ρn = E(ρ) where E is the encoding
map. (ii) Noise channel: Evolution and degradation of the
logical qubit occurs while it is stored, and which may in-
clude the effects of active QEC, informally denoted as action
by Igor. We have ρ ′

n = N(ρn) where N is the noise map.
(iii) Conclusion: At t = τ , Bob performs a QEC cycle, and
then reverses Alice’s encoding process to obtain a single
physical qubit ρ̃ = D(ρ ′

n) where D is the decoding map.
We want to evaluate quantitatively the integrity of the

entire channel  = D ◦ N ◦ E, thus incorporating Alice’s en-
coding E, the noise and Igor’s QEC N, and Bob’s decoding
D. Intuitively, integrity is “the probability that Bob, receiving
a logical qubit from the memory, can infer its state.” More
precisely, it is the probability that Bob can still distinguish
two states ψ , ψ⊥ that were, when originally prepared by
Alice, fully distinguishable [83]. Thus, the integrity R of the
quantum memory channel can be defined as

R() = minψD ((ψ ),(ψ⊥)), (12)

where D (A, B) = 1
2 Tr{[(A − B)†(A − B)]1/2} is the trace dis-

tance derived from the trace norm [1]. We recall that the
maximum probability that an ideal experimentalist would
succeed in identifying which of two states, ρ1 and ρ2, he or
she has been presented with, given a 50:50 prior, is pg =
1
2 + 1

2R(ρ1, ρ2). Therefore, the minimum in definition (12)
ensures that we consider all possible states that Alice might
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encode, reporting the worst possible degradation. To measure
the integrity of a memory channel, we consider that Bob is
given the information that Alice’s initial qubit was ψ or ψ⊥.
Bob then makes a guess by a measurement of his choice
to determine if (ρ) is (ψ ) or (ψ⊥), with worst case
probability pg, such that R() = 2pg − 1. A key enabling
observation [83] is that, for a wide variety of error models,
the minimum of Eq. (12) can be found by having Alice only
preparing logical states in the Pauli x, y, or z basis. Moreover,
Bob will have optimal performance when he measures in the
same basis which Alice has used, which makes the protocol
experimentally practical.

The integrity can be used to quantify the beneficial nature
of QEC (i.e., the level of success of Igor) by using m to label
the memory channel when Igor performs m rounds of error
correction [83], and defining a series of milestones:

(M1) Beneficial error correction: A round of QEC is
beneficial if Bob’s probability of subsequently discriminating
the state correctly is higher when Igor indeed performs that
round

R(1) > R(0) for some memory time τ. (13)

(M2) Beneficial multiround error correction: For a suffi-
ciently high performing Igor, and a long τ , it will be beneficial
to have multiple rounds of correction. This will be a signature
of progress toward a practical quantum memory

R(m) > R(m−1) for some memory time τ. (14)

These two milestones compare the memory integrity of an
error-corrected encoded qubit with an encoded qubit without
additional QEC. However, we would also like to address the
question of whether it is worth using encoded memories at all,
which requires comparing to error-corrected encoded qubit
with a simple unencoded memory. We use the symbol � for
that memory channel, and define the following milestones:

(M3) Beneficial encoded memory: The actively corrected
encoded memory beats the simple single-qubit memory

R(m) > R(�) for some memory time τ. (15)

Here we require only that this is true for some specific value
of m > 0. We note that this milestone and the concept of a
“pseudothreshold” [84,85] can be related [83].

(M4) Strictly superior encoded memory: The most chal-
lenging goal of our memory characterization is

max
m

R(m) > R(�) for any memory time τ. (16)

Here the maximum is over a family of memory channels
having the same duration, but with differing numbers of error
correction cycles m. If this condition is satisfied, it means
that for any desired duration τ , we can sustain our encoded
quantum memory at a higher integrity than a single physical
qubit memory by applying a suitable number of QEC cycles.

Building on these milestones, we describe in the following
sections numerical results obtained from full wave-function
simulations, which aim at assessing the performance of the
trapped-ion color code under the improved microscopic error
models. These numerical results replace the previous study
with a simpler noise model [33], which furthermore assumed
ideal nonfaulty encoding E and decoding D maps. In this way,

the present results represent a nontrivial increase in sophis-
tication of the description of the experimental architecture
and, we believe, one of the most sophisticated numerical
simulations of QEC in a realistic quantum processor to date.

B. Leakage noise: Beneficial QEC by repumping

Let us start by exploring numerically the effects of leakage
noise since, as argued above, it has the potential of causing
a large detrimental effect on the performance of trapped-ion
QEC. We recall that the seven-qubit color code can correct
for bit- and phase-flip errors, but cannot overcome the effects
of population leaked from the computational subspace. As
discussed in the previous section, the Alice-Igor-Bob scenario
of state discrimination offers a clear, intuitive, and quantitative
method to assess the prospects of trapped-ion hardware to
demonstrate beneficial QEC [33,83]. In a previous study [33],
in order to single out Igor’s QEC capabilities clearly, Alice
and Bob were modeled as ideal agents that can encode and
decode any quantum state perfectly. However, Alice’s encod-
ing and Bob’s decoding will present imperfections in any
realistic experiment, which could interfere and complicate our
assessment of the beneficial role of Igor. In this section we
quantify this potential interference by numerically studying
the memory integrity using faulty encoding and decoding
strategies.

To understand the impact of leakage, we use the afore-
mentioned Alice-Igor-Bob framework, where Alice encodes
imperfectly a logical |+〉L (or |−〉L), which then experiences
a period of environmental noise before Igor does a round
of imperfect flag-based QEC. Finally, this logical state is
subjected to a second period of environmental exposure, be-
fore an imperfect Bob finally attempts to determine whether
Alice created |+〉L or |−〉L. For the environmental noise
model, we consider the improved microscopic error model of
Sec. I B, and artificially switch on and off the leakage and the
repumping sequence, which will be applied prior to gates of
Igor’s attempt at QEC. In Fig. 10 we present these numerical
studies, which will allow us to discuss neatly the dangerous
effects of leakage, and how to combat them with repumping.

The green dashed-dotted line represents the integrity R(�)
of the unencoded memory using a bare physical qubit, and
only serves the purpose of providing a guide-to-the-eye for the
expected degradation of the memory due to the trapped-ion
environmental noise, which includes damping and leakage.
Let us note that the linear decay of the integrity display, in
this case, how single-qubit errors acting on the physical qubit
affect the bare physical memory. The blue dashed line stands
for the integrity of the encoded memory, after a single round
of flag-based QEC by Igor R(1), where the spontaneous
emission from the metastable state only contributes with
amplitude damping (i.e., we artificially set �′ = 0, � = 1/T1,
thus switching off the leakage). In this way, this line serves as
a guide-to-the-eye for the optimal beneficial effects of Igor’s
QEC, as the single-qubit environmental noise and gate errors
can now be corrected by the seven-qubit color code. We note
that the characteristic nonlinear decay of the integrity gives
direct evidence of the fault tolerance of the scheme (i.e., only
two or more errors can affect the encoded memory, such that
the short-time scaling of the integrity is quadratic rather than
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FIG. 10. Beneficial QEC with repumping sequence: Integrity of
bare and encoded quantum memories as a function of the memory
time τ . The green dashed-dotted line represents the integrity degra-
dation for a bare physical qubit due to environmental noise, including
both dephasing and spontaneous emission including a 4:9 damping
to leakage ratio. The yellow squares represent the integrity for an
encoded memory when Igor performs a single round of QEC at
τ/2, which aims to correct errors from the environmental noise and
Alice’s imperfect encoding. When the repumping sequence is applied
prior to gates of Igor’s QEC cycle, the memory integrity increases
considerably (red circles), almost reaching the maximum set by a
noise model where spontaneous emission only occurs in the damping
channel without any leakage (blue dashed line).

linear). The same interpretation of the characteristic scaling
applies to other figures in the paper. Notice how the memory
integrity is only defined after a finite τmin, which corresponds
to the time required by Igor’s flag-based QEC cycle. For τ >

τmin, the encoded quantum memory is subjected to additional
environmental noise in the time lapses before and after Igor’s
attempt at QEC. Let us also note that, in contrast to the
bare memory, the encoded memory integrity would not not
start from the maximal value R(1) = 1 even for a perfect
encoding by Alice. Instead, it does start from a lower integrity,
as the imperfect QEC contributes to the initial degradation.
The clear advantage of QEC is that the initial slope of the
integrity signals a slower degradation with respect to the bare
single-qubit memory.

With these limiting cases, we can now understand the
effects of leakage noise. The yellow squares represent the
same QEC integrity R(1), but this time activating a maximal
leakage (i.e., � = �′ = 1/2T1). As the figure clearly shows,
the integrity gets degraded considerably faster with respect to
the noise model without leakage (blue dashed line), leading to
a much smaller region where QEC is beneficial in comparison
to the bare single-qubit memory (i.e., compare the shaded
graay regions). This confirms our previous expectation that
the effect of leakage can have important detrimental effects
and compromise considerably the prospects of demonstrating
beneficial QEC in near-term architectures. Let us note that,
although this limiting case � = �′ does not represent the

optical qubit, it gives a qualitative description of the maximal
effect of leakage in other qubit choices where the leakage can
be higher (i.e.„ hyperfine qubits driven by two-photon Raman
transitions [86]). Let us now discuss how the repumping
scheme can overcome the additional leakage degradation even
in this worst case scenario. As shown by the red circles,
which represent the integrity R(1) when repumping is
applied prior to gates of the QEC cycle, the degradation of
the integrity almost reaches the optimal case where all the
spontaneous decay occurs in the amplitude damping channel
(i.e.„ blue dashed line). These results also confirm our previ-
ous statement that the repumping turns leakage into a sort of
amplitude damping, which is correctable by the QEC code.

C. Break-even point: Assessing the performance of flag- and
cat-based trapped-ion QEC

Once the method to combat leakage noise has been bench-
marked with our microscopic model of flag-based trapped-ion
QEC, let us move on to a comparative numerical study of
the performance of cat- and flag-based approaches for QEC
with the trapped-ion seven-qubit color code. We now use the
complete and realistic microscopic noise model discussed at
length in Sec. I B, and set the leakage and amplitude-damping
rates to the experimental value of �′ = 4�/9. We remind the
reader that, in order to simulate numerically the different QEC
approaches, we have to translate the corresponding circuits
(see Figs. 6, 7, and 9) into the corresponding microscopic
schedules with the sequence of elementary operations in the
QCCD trapped-ion processor (see Appendix B). These mi-
croscopic schedules are then translated into the corresponding
sequence of faulty operations and idle periods where the
environmental noise affects the idle qubits, which is then
numerically simulated using our full wave-function Monte
Carlo approach.

Let us start by considering the milestones M1 and M3,
which will allow us to explore the beneficial nature of a
single round of QEC, comparing the potential of cat- and
flag-based approaches. The numerical results for the Alice-
Igor-Bob scheme to quantify the memory integrity of both
QEC schemes are presented in Fig. 11. In the left panel, we
use the green dashed-dotted (blue dashed) line as a guide-
to-the-eye representing the integrity degradation of a bare
physical (encoded but not corrected) memory. In addition, we
represent the encoded memory integrity when Igor performs
a single round of QEC using the cat-based (yellow squares)
and flag-based (red circles) approaches. This figure clearly
shows that, for memory times beyond the corresponding τmin,
both schemes are always better than the encoded but not QEC
memory (blue dashed line), thus meeting the criterion (13) for
milestone M1 of beneficial error correction. Let us note that
this is in general not always guaranteed, as the attempt of QEC
introduces a large overhead of additional faulty operations
that may introduce more noise than the one that the code
can correct for. One can see from the inset of the right panel
that the effect of the faulty QEC is to start off from a lower
integrity (see the dashed black lines), which could potentially
lie below the uncorrected encoded integrity (blue dashed line)
if Igor’s QEC capabilities were not sufficiently good. In the
present case, however, our numerical results show that the
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FIG. 11. Comparative assessment of cat- and flag-based trapped-ion QEC: Integrity of bare and encoded quantum memories as a function
of the memory time τ . The green dashed-dotted line represents the integrity degradation for a bare physical qubit, the blue dashed line stands for
the integrity of an encoded but un-corrected memory, and the yellow squares and red circles represent the memory integrity for a seven-qubit
color code corrected via a single round of cat- and flag-based QEC, respectively. The right panel shows a short-time inset of the integrity
degradation of the various memories, and allows for a clearer comparison between the cat- and flag-based approaches.

expected near-term improvements of trapped-ion hardware
(see Table I) can suffice to demonstrate beneficial QEC M1
using either of the cat- or flag-based approaches.

Let us note, however, that the more resource-intensive cat-
based approach performs considerably worse than the flag-
based approach (see the inset of the right panel for small
memory times). In this figure, one observes that the minimal
time τmin of the cat-based approach is much larger than that
of the flag-based QEC, which is a consequence of the larger
depth of the circuits, and higher number of crystal reconfig-
uration operations leading to longer idle periods, which are
required to prepare the cat states ensuring FT at level 1. As
a consequence of this larger depth, the cat-based encoded
memory is exposed to more errors and environmental noise,
such that the corresponding integrity (first yellow square)
starts off at a considerably lower value with respect to the flag-
based approach (first red circle). This flag-based improvement
will be important when we consider multiple rounds of QEC,
as the high short-time integrity can then be maintained for
larger and larger memory times with a very small degradation.

Let us now address the milestone M3 (15), which aims at
quantifying a beneficial encoded memory when the encoded
and error-corrected memory performs better than the bare
physical qubit. As depicted in the left panel of Fig. 11, this
milestone can be achieved again for both cat- and flag-based
approaches with the expected trapped-ion resources. This
milestone can be achieved for a wide range of memory times
τ ∈ [τmin, τmax], which cannot be either too short nor too large.
At very short times, the unencoded qubit will always beat the
QEC memory as Igor does not have sufficient time to perform
the full round of QEC. On the other hand, at very large
times, the environmental noise keeps affecting the multiqubit
memory introducing errors that can no longer be corrected,
and degrades the integrity beyond that of a single unencoded
qubit. Let us note that, once again, the region τ ∈ [τmin, τmax]

where M3 is achieved is considerably larger for the flag-based
approach than for the cat-based one.

Having concluded that the flag-based approach to trapped-
ion QEC yields a clear advantage, let us now address the
milestones M2 and M4 for an encoded quantum memory
with multiple rounds of flag-based QEC (see Fig. 12). In this
figure we represent the integrity degradation for the seven-
qubit color code quantum memory after a time τ , where a
number of nonperfect flag-based QEC cycles are interspersed
between periods of pure environmental noise [i.e., yellow
squares m = 1 round of QEC R(1), orange triangles m = 2
rounds of QEC R(2), red diamonds m = 3 rounds of QEC
R(3), and dark-red circles m = 4 rounds of QEC R(4)].
We note that, prior to each of Igor’s attempts at QEC, we
apply a repumping sequence to project the leaked population
back to the computational subspace. In this figure the green
dashed line represents, again, the integrity degradation of a
bare unencoded memory, which sets the standard that the QEC
memory must beat to achieve the milestones.

Regarding milestone M2 for beneficial multiround error
correction, we note that the corresponding criterion (14) is
clearly met for all of the displayed memory times, as the
integrity of the memory is readily improved as more rounds
of QEC are applied. This figure also shows that milestone M3
for a beneficial encoded memory beating the bare physical
qubit (15) is achieved for larger and larger memory times as
one increases the number of rounds of Igor’s QEC. Finally,
regarding the final and more stringent milestone M4 for a
strictly superior encoded memory, we recall that the corre-
sponding criterion (16) requires that it is always possible to
beat the bare memory for any target memory duration by
applying sufficiently many rounds of QEC. In Fig. 12 one
can identify a trend of the memory integrity as one increases
the number of QEC cycles, whereby the slow-time QEC
protection can be extended to longer and longer memory
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FIG. 12. Beneficial QEC with multiple rounds of QEC: Integrity
of bare and encoded quantum memories as a function of the mem-
ory time τ . The green dashed-dotted line represents the integrity
degradation for a bare physical qubit, while the symbols stand for
the integrity of error-corrected seven-qubit color-code memories
which are subjected to m rounds of flag-based QEC (i.e., m = 1
yellow squares, m = 2 orange triangles, m = 3 red diamonds, and
m = 4 dark-red circles). We also display the regions where various
milestones can be achieved, as well as the asymptotic slope for
frequent QEC rounds.

times as more rounds of QEC are applied. In the limit of
many cycles, we depict a qualitative straight envelope with
a slope that improves the robustness of the bare physical
memory. Accordingly, our numerical simulations suggest that
it should be possible to beat the bare memory for any target
τ . For instance, if the target memory time is τ � 0.4 s, our
numerical results show that it suffices to apply m = 4 rounds
of flag-based QEC to beat the bare memory.

III. CONCLUSIONS AND OUTLOOK

We have presented a detailed account of QEC in near-
term trapped-ion devices, considering important aspects that
complement and improve the recent study of [33]. First, we
have improved the previous microscopic error model in sev-
eral directions: in the present work we consider coherent and
correlated noise, non-Pauli errors such as amplitude damping
and qubit leakage, and a more refined microscopic error model
for the entangling MS gates. With these improvements, we
believe that our current description of trapped-ion QEC in
segmented dual-species ion traps contains one of the most
realistic error models in QEC studies to date. Second, we have
discussed the trapped-ion implementation of a new set of FT
QEC tools based on the use of flag qubits, both for active
detection and correction of errors but also for a FT optimized
encoding. These flag-based trapped-ion QEC tools rely on
a realistic modeling of the hardware capabilities and micro-
scopic schedules that underlie the more abstract circuit-based
approach, and have the potential to change the prospects of ex-
perimental trapped-ion QEC with near-term devices. Finally,

we have presented detailed Monte Carlo full wave function
numerical simulations to assess the QEC capabilities of this
flag-based approach, and to compare it to other more resource-
intensive FT schemes. Our simulations which, to date, may
constitute the most sophisticated numerical account of QEC
under a complex non-Pauli noise model, clearly show that the
flag-based approach is superior for the expected trapped-ion
technologies. This statement is substantiated quantitatively by
comparing the memory integrity of the QEC codes, and its
potential to achieve various milestones in an experimentally
relevant scenario. We believe that this study will be useful
to guide near-term efforts for QEC with trapped-ion quantum
processors.
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APPENDIX A: TRAPPED-ION QUANTUM INFORMATION
PROCESSING (QIP): MICROSCOPIC QEC TOOLBOX

AND ERROR MODELS

In this Appendix we present a microscopic description of
the QEC toolbox and the error models with details omitted in
the main part of the text, focusing on 40Ca+ optical qubits to
store and manipulate the quantum information.

(a) Coherent errors for single-qubit rotations. We start
by describing in detail the errors for single-qubit gates (4)
and (5), which are driven by lasers tuned to the so-called
carrier transition, or highly off-resonant lasers leading to an
AC-Stark shift.

For the carrier transition, quantum gates (4) are imple-
mented by coupling the lowest-lying S state to a metastable
D state forming the optical qubit |0〉 = |4S1/2,−1/2〉 |1〉 =
|3D5/2,−1/2〉, which are labeled by the principal quan-
tum number and various orbital and spin angular momenta
|nL2S+1

J , MJ〉) (see Fig. 13) via resonant light at 729 nm.
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FIG. 13. Amplitude damping and leakage for the 40Ca+ optical qubit: Level structure for the 40Ca+ optical qubit with |0〉 =
|S1/2, mj = −1/2〉 and |1〉 = |D5/2, mj = −1/2〉. The finite lifetime of the metastable state is T1 = 1/� ≈ 1.1 s, and there is a finite branching
ratio �′/� = 4/9, leading to a finite probability that the spontaneous decay results in population of the S1/2, mj = +1/2 level. According to
our computational model, � represents the damping rate, while �′ represents the smaller leakage rate.

The coupling strength of the laser-ion interaction is given
by the Rabi frequency �, whereas the product between Rabi
frequency � and interaction time τθ yields the pulse area
θ = �τθ . Note the proportionality between squared Rabi fre-
quency and the laser intensity �2 ∝ I0. On a Bloch sphere
picture, the pulse area corresponds to a rotation angle θ around
a specific axis determined by the azimuthal angle φ. The
rotation axis is restricted to the equatorial plane and defined by
adjusting the relative phase between laser and ion. Therefore,
the carrier quantum gates (4) applied to a single qubit can be
described as follows:

UR,φ (θ ) = cos
θ

2
I + i sin

θ

2
(cos φX̂ + sin φŶ ). (A1)

One can clearly see that laser intensity fluctuations will
have an impact on the Rabi frequency �(t ), and therefore
induce an incorrect pulse area θ (t ). Additionally, fluctuations
in the laser phase φ(t ) will lead to an error in the orien-
tation of the rotation axis. The noisy gate should thus be
obtained from the time-ordered exponential UR,φ(t )[�(t )] =
T{e−i

∫
dt�(t )Xφ(t )}, which will depend on the particular dynam-

ical pattern of fluctuations. Assuming that the phase fluctu-
ations occur on a much slower timescale than the gates, as
is typically the case in experiments, we can obtain an error
model where phase and pulse-area fluctuations have clearly

separated effects

Ueff,φ(t )[θ (t )] = cos
θeff(t )

2
I + i sin

θeff(t )

2
[cos φX̂eff(t )

+ sin φŶeff(t )]. (A2)

Here intensity fluctuations introduce a noisy rotation angle

θeff(t ) = θ

√
I (t )

〈I (t )〉 , (A3)

while a fluctuating phase φ(t ) = φ + δφ(t ) between laser
light and ion changes the orientation of the rotation axis from
the ideal transformation due to a slower phase drift between
consecutive gates,

X̂eff(t ) = cos δφ(t )X̂ + sin δφF (t )Ŷ ,

Ŷeff(t ) = cos δφ(t )Ŷ − sin δφ(t )X̂ . (A4)

These equations are readily generalized to the multi-ion case
where the carrier gates act globally on all ions residing in the
same trap region (6).

Regarding the local rotations (5) via AC-Stark shifts, we
note that these two-photon processes will be largely insensi-
tive to slow phase drifts. Therefore, they will only suffer from
intensity fluctuations, which modify the pulse area and the
rotation angle according to Eq. (8).
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The next ingredient in the noise model is to use a particular
stochastic process for the intensity and phase fluctuations. In
this work, we use the so-called Ornstein-Uhlenbeck random
process F (t ) [68,69], which evolves under the following
Langevin equation

dF (t )

dt
= −F (t )

τc
+ √

c�(t ). (A5)

Here c is the diffusion constant of the random process, τc is
the correlation time, and �(t ) is a Gaussian white noise with
averages �(t ) = 0, �(t )�(0) = δ(t ), where δ(t ) is the Dirac
delta modeling the uncorrelated noise. This stochastic differ-
ential equation can be integrated exactly yielding a Gaussian
random process with autocorrelation function F (t )F (0) =
cτc
2 e−t/τc . The idea is that, by adjusting the model constants,

we can numerically simulate both the intensity and laser
phase noise with their different characteristics using differ-
ent numerically generated random processes {F1(t ), F2(t )} →
{φ(t ), θ (t )}.

This type of noise modeling is well suited for its imple-
mentation in a pure-state Monte Carlo formalism where par-
allelism is exploited to calculate averages over the stochastic
time-dependent noise. Essentially, for each idling time tI, one
must average over |ψ (t + tI )〉 = Ueff,φ(t+tI )[θ (t + tI )]|ψ (t )〉
for the different noise realizations. Numerically, one dis-
cretizes the time interval in steps of δt = tI/N , and computes

|ψ (t + tI )〉 ≈
N∏

m=1

Ueff,φ(tm )[θ (tm)]|ψ (t )〉. (A6)

Here the values of the stochastic process are calculated by the
update formula of the Ornstein-Uhlenbeck process, which is
valid for any discretization t2 = t1 + δt ,

F (t2) = F (t1)e− δt
τc +

[
cτc

2

(
1 − e− 2δt

τc

)]1/2

n, (A7)

where n is normal random variable of mean 0 and variance
1. Different unitary time evolutions (A6) are calculated in
parallel for different values of n, which generate different
samplings of the process F (t ) ∈ {θ (t ), δφ(t )}, and are incor-
porated in our full wave-function simulations.

For the numerical simulation of the phase noise, we have
considered δt = 1 μs, and τc = 0.1 s such that we are close
to the aforementioned Wiener model with c = 0.01. For
the intensity fluctuations, we take a much shorter correlation
time τc = T2/1000. These parameters are are chosen such that
the fidelity of the various gates coincides with the values listed
in Table I.

(b) Microscopic errors for the entangling gates. Let us
now discuss the microscopic error model for the entangling
gates (2). We consider the MS gates mediated by the longitu-
dinal center-of-mass (CoM) mode of a crystal of two 40Ca+

ions. As a starting point, we will consider an MS gate that
suffers from motional errors from both the CoM and stretch
modes (i.e., residual spin-phonon entanglement and Debye-
Waller fluctuations of the Rabi frequency), and collective
dephasing (i.e., decoherence due to fluctuations of global
magnetic fields). These Debye-Waller factors are caused by
the thermal population of the vibrational modes, both bus and
spectator modes [62]. This model will be the starting point

that can be improved by incorporating the effects of the off-
resonant carrier, and fluctuating laser intensities and phases.

At this level, the time evolution of the two qubits can be
formally written as follows:

ρ(tg) = Trph(Ugρ0U
†
g ), Ug = e−itgH0 T

{
e−i

∫ tg
0 dt ′Hc(t ′ )},

(A8)

where tg is the gate time, and H0 = ∑
i

ω0
2 σ z

i + ∑
n ωna†

nan

is the Hamiltonian for the uncoupled qubits and longitudinal
phonons of frequency ω0 and {ωn}N

n=1, respectively. The qubit-
phonon coupling in the MS scheme with the above sources of
noise can be written as

Hc(t ) =
∑

i

F (t )

2
σ z

i +
∑
i,n

F̂inσ
φ
i ane−iωnt cos(δt ) + H.c.,

(A9)

where we have used an Ornstein-Uhlenbeck random process
F (t ), similar to the ones used to model laser fluctuations in
single-qubit gates, to model the dephasing during the MS gate.
Additionally, the second term represents a state-dependent
dipole force proportional to σ

φ
i = cos φσ x

i − sin φσ
y
i , where

φ is the common phase of a pair of laser beams tuned to
the red and blue motional sidebands of the ions with oppo-
site detunings (i.e., ωL = ω0 ± δ ≈ ω0 ± ωz, where ωz is the
axial trap frequency that coincides with the lowest-frequency
center-of-mass-mode ω1 = ωz). We note that the strength of
the force F̂ jn = F jn(1 − 1

2ηna†
nan) is proportional to the laser

intensity F jn ∝ IL, which can also be fluctuating, but also
depends on the phonons (i.e., Debye-Waller effect) where ηn

is the Lamb-Dicke parameter.
This equation is precisely the starting point to calculate

the quantum state fidelity of a maximally entangled state as
generated by a fully entangling MS gate, and extract the noise
parameters of the effective gate error model of Ref. [33]. In
this part of the Appendix we describe a different approach that
relies on the full numerical simulation of the unitary for time
evolution, from which one can obtain a quantum channel for
the reduced density matrix describing the trapped-ion qubits
that is not based on a single number like the aforementioned
state fidelity [33]. Evaluating the above time evolution (9)
using a pure-state formalism can only be achieved for a per-
fectly ground-state-cooled crystal. In more realistic situations,
the vibrations are in a low-excitation thermal state after laser
cooling, and one has to treat the full density-matrix evolution.
Since we ultimately want to describe the noisy MS gate within
the Monte Carlo pure-state formalism, we need to find a
quantum channel that describes the reduced dynamics of the
two qubits by the MS gate

ρ(tg) =
∑

n

pnKnρ0K†
n ,

∑
n

pnK†
n Kn = I. (A10)

Here Kn are the two-qubit Kraus operators to be found, and
pn are their corresponding probabilities. In former studies,
the noisy MS gate ρ(tg) = εMS(UMSρ0U

†
MS) was described

as the ideal gate UMS = (I − iσφ
i1
σ

φ
i2

)/
√

2 followed by an
idealized depolarising channel [1], εMS(•), which depends on
the number of qubits involved in the gate [33]. In this work
we improve upon this model, and describe the noisy MS gate
directly in terms of the exact set of Kraus operators with
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FIG. 14. Average χ matrix for a noisy MS gate: Longitudinal MS gate for two 40Ca+ ions, where the axial trap frequency is ωz/2π =
0.975 MHz. We consider that the longitudinal modes are laser cooled to n̄CoM = 0.1, and n̄stretch = 0.016, and the CoM mode is exploited to
mediate a one-loop MS gate with a laser Rabi frequency of �L/ωz = 0.1. We model the collective dephasing with a Markovian Ornstein-
Uhlenbeck process associated to T2 = 0.2 s.

certain probabilities that can be numerically computed (A10).
We note that both descriptions can be readily incorporated in
a pure-state Monte Carlo evolution.

We obtain the desired quantum channel (A10) numeri-
cally by truncating the vibrational Hilbert space, calculat-
ing the full time-evolution operator Ug (9), and performing
quantum process tomography to determine the corresponding
{pn, Kn} [73]. For two qubits, a generic quantum channel can
be expressed in the so-called χ -matrix representation ρ(tg) =∑

n,m χn,mEnρ0E†
m, where the set of 16 operators {En} is ob-

tained from all the possible tensor products of {I, σ x, iσ y, σ z}.
The χ matrix can be extracted from the action of the micro-
scopic time evolution Trph(Ugρ jU †

g ) and that of the quantum-
channel operators Enρ jE†

m on a set of initial states {ρ j} that
forms a basis of the space of operators. For the two-qubit case,
we follow a compact recipe [73] to extract the χ matrix for the
noisy MS gate, which can be diagonalized

χ =
∑

n

pn|vn〉〈vn|, Kn =
∑

m

〈em|vn〉Em, (A11)

where {pn, |vn〉} are the eigenvalues and eigenvectors of the
χ matrix, and {|em〉} are the Cartesian unit vectors of a 16-
dimensional vector space.

According to this discussion, we can reconstruct the quan-
tum channel for the MS gate (A10) by simply diagonalizing
the χMS matrix associated to the microscopic evolution (9)
for each realisation of the random process that models the
collective dephasing noise. After averaging over Ns random
samplings of the noise, we can build χ̄MS and extract the aver-
age Kraus operators for Kn with probabilities pn. In Fig. 14 we
represent the real and imaginary parts of the average χ -matrix
representation of a noisy MS gate that generates a maximally
entangled state with average error ε̄MS = 8.44 × 10−4 in tg =
72 μs. For these values, we obtain the following probabili-
ties pn ∈ {0.999, 0.0005, 0.0002, 0.0001, . . . }, where the dots
represent probabilities below 10−8. Essentially, K1 is very
similar to the ideal gate UMS = (I − iσφ

i1
σ

φ
i2

)/
√

2, whereas
the other Kraus operators K2, K3, K4 represent single and
two-qubit errors in the basis of the MS gate. As anticipated
above, this more realistic, microscopically derived error chan-

nel differs substantially from the depolarizing channel used in
Ref. [33].

We note that this approach can be easily incorporated in
the Monte Carlo numerical simulations of previous sections.
First, we want to use the set {pn, Kn,∀n : pn > ptrunc} to
approximate the microscopic channel (A10). For a pure-state
Monte Carlo evolution, we need to generate random numbers
r ∈ [0, 1] and apply the numerically generated Kn if r falls
in the respective probability interval,

∑n−1
k pk � r <

∑n
k pk ,

where p0 = 0. In this way, one randomly samples over all
the relevant Kraus operators, such that the stochastic average
yields the desired evolution of the noisy MS gate.

From the initial experience gained with this microscopic
numerical modeling, we can now account for another im-
portant source of errors that is not considered in Eq. (A9).
Although the dephasing and thermal noise can be the leading
source of MS gate error in situations where the T2 time
is much shorter, or where the vibrations are not cooled to
sufficiently small phonon occupation numbers (e.g., see some
of the QEC performance of [33], where sympathetic recooling
prior to the MS gates was not exploited), for the current
regime of parameters, an off-resonant carrier term that acts in
an orthogonal basis with respect to the state-dependent force
can actually be the leading source of error.

Rather than treating this term in perturbation theory, which
underlies the analysis of [33], and the approach of publica-
tions [61,62], we use the formalism developed by Roos [72]
to take this term into account. By moving into a rotating frame
with respect to the off-resonant carrier, the state-dependent
dipole force in Eq. (A9) must be changed into

Hc(t ) ≈
∑
i,n

Fin(J0 + J2)
(
σ x

i cos �

+ σ z
i sin �

)
anei(ζ−ωnt ) cos(δt ) + H.c., (A12)

where we have introduced the phase difference ζ between
the laser beams driving the blue and red sidebands, and
� = 2�L sin ζ/ωL leads to an intensity-dependent rotation
angle over the basis of the MS gate, as can be seen by
comparing Eq. (A12) to Eq. (A9). In addition, we have intro-
duced the first-class Bessel functions J0 = J0(2�L/ωL), and
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J2 = J2(2�L/ωL). We note that for the numerical simulation,
the additional magnetic-field noise of Eq. (A9) is also in-
cluded, as well as small additional contributions to Eq. (A12)
that stem from the Debye-Waller factors mentioned above,
and effective spin-spin interactions that appear as one moves
onto the aforementioned rotating frame (see Ref. [72] for
details on such small qubit-qubit couplings, which also de-
pend on J1 = J1(2�L/ωL)). In addition to the dephasing and
motional errors also accounted for in Eq. (A9), this new
formulation (A12) allows us to account for the effects of the
off-resonant carrier. Even if the effect of a finite ζ and ψ can
be partially overcome by an adiabatic switching of the forces,
together with a refocusing pulse shaping that inverts the sign
of the state-dependent force at the middle of the gate, slow
fluctuations in the intensity (and thus on ζ ) yield a residual
error that can be a leading source of infidelity of the MS gate.
In order to capture these effects in the effective noise model,
we repeat the above procedure of process tomography, but this
time using Eq. (A12), together with the additional terms, in the
numerical simulation. In these numerics, we set the parame-
ters for a perfect entangling gates at ζ = 0, and then modify
its value to account for possible drifts and errors that are in
accordance to Table I. We again perform process tomography,
and extract a set {pn, Kn,∀n : pn > ptrunc}, which is directly
fed into the full wave-function numerical simulations.

(c) Amplitude damping and qubit leakage. Let us now
discuss the details of environmental spontaneous decay which,
in addition to amplitude damping, can also populate the
ground-state Zeeman sublevel S1/2(mj = +1/2) lying outside
of the computational subspace (i.e., leakage), as depicted in
Fig. 13. In this part of the Appendix, we give some of the
details of the circuit model for the simulation of this process
that were omitted in the main text.

Once again, let us start by considering the circuit model of
amplitude damping (see the left panel of Fig. 5(a), and Chap-
ter 8 of [1]). In this figure the controlled rotation of angle θd

can be expressed as UCR = 1
2 (1 − Zd )e−i π

4 Ya + 1
2 (1 + Za)Ia,

while the CNOT is UCNOT = 1
2 (1 − Za)e−i π

2 Xd + 1
2 (1 + Za)Id ,

where we label the data qubit with d and the ancillary one
with a. After the measurement, the state of the data qubit will
be

ρf = Tra{Pa,0ρ
′Pa,0 + Pa,1ρ

′Pa,1}, (A13)

where ρ ′ = UCNOTUCR(ρ ⊗ |0〉a〈0|a)U †
CRU †

CNOT for an arbi-
trary state of the data qubit ρ, and where we have introduced
the ancilla projectors onto the computational basis states
Pa,0/1. Accordingly, we only need to look at the diagonal
elements of the transformed density matrix

ρ ′
11 = sin2(θd/2)ρ11|1〉d〈1|d ,

ρ ′
00 = ρ00|0〉d〈0|d + cos(θd/2)

(
ρ10|1〉d〈0|d + ρ01|0〉d〈1|d

)
+ cos2(θd/2)ρ11|1〉d〈1|d . (A14)

One can easily check that this evolution is equivalent to that
of the amplitude-damping channel ρf = εd (ρ) := L0ρL†

0 +
L1ρL†

1, with the following Kraus operators:

L0 = |0〉d〈0|d +
√

1 − pd |1〉d〈1|d , L1 = √
pd |0〉d〈1|d ,

(A15)

where one finds that the angle of the controlled rotation must
be fixed by the decay parameter pd = sin2(θd/2), where pd =
1 − exp(−�t ). We note that, at the level of the reduced density
matrix of the data qubit, the circuit of the left of the upper
panel of Fig. 5 is equivalent to that in the right, where the
classical information of the measurement is used to apply a
conditional X gate on the data qubit with probability pd =
sin2(θd/2) (i.e., only when the measurement result indicates
that the ancillary qubit was in |1〉a).

In order to simulate the simultaneous amplitude damping
and leakage of Fig. 13, we can build on this philosophy and,
as argued in the main text, use an additional classical bit to
store the information about the leaked level (i.e., � = 1 if
the qubit has not leaked into the S1/2, mj = +1/2 level, and
� = 0 if the qubit has indeed leaked). The leakage with rate �′,
which can be simulated by means of an ancilla qubit a1 that
is subject to a controlled rotation UCR = [ 1

2 (1 − Zd )e−i π
4 Ya1 +

1
2 (1 + Zd )Ia1 ]δ�,1 + δ�,0I that is only applied when the qubit
is still not leaked (i.e., conditional on the classical bit being
� = 1, as depicted in the lower panel of Fig. 5). After mea-
suring the ancillary qubit, one applies a conditional classical
NOT operation on the classical bit, which will turn it into
the leaked state � = 0 with probability sin2(θ�/2) = p�(t ) =
�′(1 − e−(�+�′ )t )/(� + �′), which is obtained by solving the
corresponding master equation for the population p�(t ) ex-
plicitly.

After that, a different controlled rotation U ′
CR = [ 1

2 (1 −
Zd )e−i π

4 Ya2 + 1
2 (1 + Zd )Ia2 ]δ�,1 + δ�,0I is applied to a fresh

ancillary qubit a2, which is conditioned on the classical bit
being � = 1 with probability [1 − p�(t )]. This indicated that
the qubit is still not leaked, and can thus decay into the |0〉 =
|S1/2, mj = −1/2〉 state. In that case, the ancilla qubit a2 is
rotated by an angle θd when the data qubit lies in the compu-
tational |1〉 = |D5/2, mj = −1/2〉 state, such that it can indeed
decay by spontaneous emission. The corresponding amplitude
damping is simulated by the final X gate conditioned on
the measurement result. Accordingly, the probability of the
damping channel is pd = (1 − p�) sin2(θd ), which must be
equal to the physical value pd (t ) = �(1 − e−(�+�′ )t )/(� +
�′e−(�+�′ )t ), and gives the condition to set the rotation angle
to the correct value sin2(θd/2) = pd (t ). As a summary, the
rotation angles obtained are those of Eq. (11) of the main text.

This circuit is equivalent to the amplitude damping and
leakage channel ρf = εd,l (ρ) := L0ρL†

0 + L1ρL†
1 + L2ρL†

2,

with the following Kraus operators:

L0 = |0〉d〈0|d + |�〉d〈�|d +
√

1 − pd − p�|1〉d〈1|d ,
L1 = √

pd |0〉d〈1|d , (A16)

L2 = √
p�|�〉d〈1|d .

Let us now describe the microscopic details of the re-
pumping scheme, which consists of steps (1)–(2)–(3)–(1)
(see Fig. 15). Here (1) corresponds to a π pulse between
|D5/2, mj = −1/2〉 and the leaked state |S1/2, mj = 1/2〉. If
the state of the qubit has not leaked, the quantum information
is protected as the remaining operations (2) and (3) do not
take place, and the final (1) π pulse brings the population
back to |D5/2, mj = −1/2〉, yielding the initial unleaked qubit
state. On the other hand, if the qubit had indeed leaked into
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FIG. 15. Repumping scheme for the 40Ca+ optical qubit: The repumping cycle consists of (1) applying a π pulse that brings the population
of the leaked level to the metastable state, or otherwise hides the qubit in the |1〉 state into the leaked level. Then (2) one applies a laser
driving the dipole-allowed transition to the excited P3/2 level, such that the population of the leaked state will (3) spontaneously decay into the
ground-state manifold. By finally applying (1) another π pulse, the population is repumped back into the computational subspace, albeit losing
coherences and affecting the information stored in the qubit.

the |S1/2, mj = 1/2〉 level, (2) the lasers tuned to the dipole-
allowed transition will bring this population up to an excited P
level, which (3) will decay very fast into the S1/2 ground-state
manifold. At this point, the leakage has become a sort of
amplitude damping, while the original coherences of the qubit
state hidden in the ground-state manifold are still present.
Then, a final (1) π pulse between brings the qubit back to the
computational space |S1/2, mj = −1/2〉, |D5/2, mj = −1/2〉,
such that subsequent rounds of QEC can project it back onto
the stabilizer subspace.

Clearly this repumping scheme will not be perfect, since
the π pulses will be faulty, and there might be branching to
other levels as well. As a first error model, we consider that ε

is related to the infidelity of the π pulses in the repumping, and
other possible imperfections. At the level of our circuit model
with the classical bit, we fail to repump with probability ε2,
such that � = 0 remains in the leaked bit. On the other hand,
with probability 1 − ε2, we repump into a mixed state in the
computational basis.

APPENDIX B: MICROSCOPIC QEC SCHEDULES

As advanced in the main text, the different circuits for QEC
correction, which are expressed in terms of the trapped-ion
native set of gates Figs. 6, 7, and 9, must be translated into

detailed microscopic schedules for their implementation in the
QCCD segmented trap. This schedules consist of specific se-
quences of elementary operations, combining quantum gates
and crystal reconfiguration operations (see Table I), which
allow us to implement the desired approaches to QEC, and the
Alice-Igor-Bob protocol to assess the integrity of the encoded
memory.

Various microscopic schedules, regarding the cat-based
approach to QEC, have been described in Ref. [33]. Likewise,
the trapped-ion set of microscopic instruction to perform flag-
based QEC are contained in Ref. [59]. In this Appendix we
present the missing microscopic schedule to implement a re-
alistic Alice-Igor-Bob protocol, i.e., with imperfect encoding
and decoding. Let us focus on the FT encoding of the logical
|0〉L state using our toolbox (o1)–(o11) for the mixed-species
ion QCCD. W start by considering the efficient encoding
using the layout of ions in the DiVicenzo-Aliferis FT read-
out [33], which required seven data qubits and four ancillary
qubits for the syndrome readout, both of which belong to the
same atomic species. Additionally, this scheme exploited two
cooling ions of a different species and isotope for sympathetic
recooling of the ion crystal. The arrangement of these ions
within the central region of the segmented trap is depicted in
the inset of Fig. 16. Let us emphasize, however, that the sched-
ule to be presented below only requires minor modifications
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FIG. 16. Schedule for the efficient encoding in the seven-qubit color code: Sequence of trapped-ion operations that must be applied to
realize the encoding circuit for the logical |0〉L in Fig. 8. The data {d1, . . . , d7}, ancillary {a1, . . . , a4}, and cooling {c1, c2} ions are represented
with different colors following the convention of Fig. 3. These ions are arranged in different zones of a single arm of the trap, following the
labeling of Fig. 3. We distribute these ions among the different columns of the table, reserving the rightmost column to list the operations
that bring one configuration to the following one, where time flows downwards in the table. The split and merge and shuttle operations are
represented by arrows, and can be deduced from consecutive ion configurations. The remaining operations have labels in the rightmost column.
In particular, X±(i) = Xi(±π/2), Y±(i) = Yi(±π/2) are local rotations obtained from Eqs. (4) and (5) by spin-echo pulses [33]. These rotations
act on the qubit i, and are depicted by yellow ellipses. The entangling gates are labeled as MS(i, j) corresponding to Eq. (2) for φ = 0 and
θ = π . This MS gate acts on the ion pair i, j, previously isolated by crystal reconfigurations, and is depicted by a a pink ellipse over the ions
involved in the gate. Finally, Rot stands for rotation of the crystal signaled by blue arrows, Cool stands for sympathetic cooling of the crystal
depicted with a blue ellipse, Meas stands for the fluorescence measurement of the ancillary ion depicted with a semicircular detector above the
ion, and Reorder stands for crystal reconfigurations that bring the ions back to the original positions. Note that idle ions that do not take place
in the set of operations are only drawn once in their corresponding column, until they are used at later stages, when they are explicitly drawn
again.

to be adapted to other QEC schemes, such as the flag-based
QEC, which requires a different configuration with only seven
data qubits, two ancillary qubits, and one cooling ion [59].

In Fig. 16 we represent the initial distribution of the 13 ions
among the different zones (see the first line) of a single arm
of the segmented trap (see Fig. 3). The idea is that all the two-
qubit MS gates, with the required sympathetic cooling, are to
be applied in the M1 region by bringing the corresponding
pairs of ions sequentially according to the order of the circuits
in Fig. 8. The microscopic schedule of Fig. 16 focuses on the
encoding of the |0〉L state, although that of |+〉L has also been
worked out and is being used in the numerical simulations.

The subsequent lines of this figure represent a different step of
the microscopic schedule, and the columns describe the par-
ticular ion occupation of each trap zone during such step. We
use similar conventions as in Refs. [33,59], the operations to
be performed are listed in the rightmost column, and we also
use straight black arrows to depict crystal splitting, shuttling,
and merging; and curved arrows to denote crystal rotations
(see the caption for further details). This microscopic schedule
is translated into a quantum channel representation, which
is then simulated numerically in combination with the QEC
protocol to test for the beneficial role of Igor with imperfect
Alice and Bob performance.
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