
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Parallel Implementation of Particle Swarm
Optimization on FPGA

Alexandre L. X. Da Costa, Caroline A. D. Silva, Matheus F. Torquato and Marcelo A. C. Fernandes

Abstract—This work proposes a parallel implementation, with
fixed point, of the Particle Swarm Optimization (PSO) algorithm
on Field-Programmable Gate Array (FPGA). Results associated
with the processing time and area occupancy on FPGA for several
numbers of particles and dimensions were analyzed. Studies
concerning the accuracy of the PSO response for the optimization
problem using the Rastrigin function were also analyzed for the
hardware implementation. The project was developed on the
Virtex-6 xc6vcx240t 1ff1156 FPGA.

Index Terms—Particle Swarm Optimization, Reconfigurable
Hardware, FPGA, Parallel Computing.

I. INTRODUCTION

PROBLEM solving using metaheuristics has been the
object of study in literature and industry research. One

of the most important aspects associated with metaheuristic
algorithms is their capacity of providing a good approximate
solution (sometimes the best solution) to a complex problem
within a reasonable time [1], [2]. This characteristic ensured
the widespread use of metaheuristics for solving real-time
problems [3], [4]. The Particle Swarm Optimization (PSO)
is a nature-inspired metaheuristic related to both Swarm
Intelligence and Evolutionary Computation. It requires only
primitive mathematical operators and is computationally inex-
pensive regarding both memory requirements and speed [5].
Although initially designed for solving nonlinear continuous
functions, PSO is currently used to solve several other types
of problems.

Parallel to the demands associated with metaheuristics, there
are also the demands associated with processing large volumes
of data, creating the novel lines of knowledge such as Big Data
and Mining of Massive Datasets. This new demand shows that
even simple algorithms may require a high computational ef-
fort when the volume of data grows exponentially [6]. One way
to minimize this problem is the parallelization of algorithms.
Parallelism comes naturally not only to reduce the search time
but also to improve the quality of the solutions provided by
[7]. The performance improvement provided by parallelization
techniques can be intensified with an implementation of high-
performance hardware platforms such as High-Performance
Processors, Application-specific Integrated Circuits (ASIC)
and Field-programmable Gate Arrays (FPGA). Among these
platforms, FPGAs have been noteworthy as an alternative that

Alexandre L. X. Da Costa, Caroline A. D. Silva and, Marcelo A.
C. Fernandes are with Department of Computer Engineering and Au-
tomation, Federal University of Rio Grande do Norte, Natal, Brazil, e-
mail: alexluz321@gmail.com, carolads@gmail.com, mfernandes@dca.ufrn.br.
Matheus F. Torquato is with College of Engineering, Swansea University,
Swansea, Wales, UK, e-mail: m.f.torquato@swansea.ac.uk

combines high processing, low consumption and low cost
when compared to other ones. FPGAs presents good rates
when analyzing the power consumption and the silicon area
efficiency [8]. In addition, as stated in [9], [10].

Thus, this paper aims to present a parallel implementation
of the PSO algorithm in FPGA. It is important to note that
the architecture proposed in this work seeks to optimize the
performance of the PSO by reducing its processing time,
making possible its use in real-time systems with large volume
of data and severe processing time restrictions. All the details
associated to the implementation, as well as the performance
analyzes of the proposed system for different dimensions and
number of particles are presented in the following sections.

II. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization is a stochastic population-
based metaheuristic algorithm that mimics the social behavior
of natural creatures like bird flocking and fish schooling. In
these swarms, the coordinated behavior using local movements
emerges without central control. A swarm consists of a pop-
ulation of N particles flying through a d-dimensional search
space. Each particle is a candidate solution to the optimization
problem.

The PSO operation starts by generating an initial population
of particles, and iteratively moving these particles over the
search space, so the swarm reaches the optimal (or quasi-
optimal) solution or any other stop criterion is met. Each
particle’s movement is guided toward its best position found
(local best position) and toward the best position ever found
by the swarm (global best position), which are updated as
better positions are found. The success of a particle, i.e. the
particle being in a better position than the other ones is
measured by the fitness function, which often corresponds
to the objective function of the addressed problem. Simple
mathematical equations over the particle’s position pj(k+1) =
pj(k) + vj(k + 1), and particle’s velocity vj(k + 1) =
wvj(k) + c1r1(pBestj − pj(k)) + c2r2(gBest − pj(k)) are
required to perform each particle’s movement. Where pj(k) =
[pj1(k), . . . , pj,d] and vj(k) = [vj1(k), . . . , vj,d] represent the
position and velocity of the j-th particle, respectively; k indi-
cates the current iteration; pBestj = [pBestj1, . . . , pBestjd]
and gBest = [gBest1, . . . , gBestd] represents the local and
global best positions; r1 and r2 are random values in the range
[0, 1]; and w, c1 and c2 are configurable parameters of the
algorithm. Let N be the number of particles in the swarm
P(k) = [p1(k), . . . ,pN (k)], each one having a length of m
bits, a fitness value Fj , a j-th position pj(k) in the search

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/237198014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

space. The basic operation of PSO presented in the Algorithm
1.

Algorithm 1: Particle Swarm Optimization.

1 Initialize P[m](1) with random-valued particles;
2 for k ← 1 to K do
3 g̃BestF[m]← Big-number;
4 for j ← 1 to N do
5 Fj(k)[m]← FitnessEval(pj [m](k));
6 if (Fj [m](k) < pBestFj [m]) then
7 pBestFj [m]← Fj [m](k);
8 for i← 1 to d do
9 pBestji[m]← pji[m](k);

10 end
11 end
12 if (Fj [m](k) < g̃BestF[m]) then
13 g̃BestF[m]← Fj [m](k);
14 for i← 1 to d do
15 g̃Besti[m]← pji[m](k);
16 end
17 end
18 end
19 if (g̃BestF[m] < gBestF[m]) then
20 gBestF[m]← g̃BestF[m];
21 for i← 1 to d do
22 gBesti[m]← g̃Besti[m];
23 end
24 end
25 if (stop criterion is met) then return(gBest[m]);
26 for j ← 1 to N do
27 for i← 1 to d do
28 vji[m](k + 1)← wvji[m](k)

+c1r1(pBestji[m]− pji[m](k))
+c2r2(gBesti[m]− pji[m](k));

29 pji[m](k+1)← pji[m](k)+ vji[m](k+1);
30 end
31 end
32 end

III. PARALLEL METAHEURISTICS

Although the use of metaheuristic algorithms significantly
allows reducing the processing time of a complex problem,
for nontrivial problems, executing the reproductive cycle of a
simple population-based method on long particles and/or large
populations usually requires high computational resources. In
general, evaluating a fitness function for every particle is
frequently the most costly operation of this algorithm [7], [11].

In this context, parallelization techniques can be used for
an even greater processing time reduction. Among the several
techniques of parallelization, the data decomposition arises
intuitively for population-based metaheuristics. The most com-
mon data decomposition strategies for this class of meta-
heuristics are the parallelization of the fitness computation;
and the concurrent execution of metaheuristics over multiple
subpopulations. Indeed, the performance of population-based
algorithms is often improved when running in parallel [7].

In the first case, the parallelization strategy does not modify
the characteristics of convergence of the algorithm, since only
the computation of fitness values of the particles is performed
concurrently. In the second strategy, the population is split into
different parts where several processes concurrently execute
iterations of the corresponding metaheuristics, including the
fitness evaluation computation, on different subpopulations.
According to the modeling, every process either can exploit
distinct search subspaces, or can use the entire search space.
Although the first alternative may be more interesting from an
optimization point of view, the second one is more often used
for simpler and more comprehensive modeling. Thus, the con-
vergence behavior could be different in sequential and parallel
versions of the algorithms as the different subpopulations usu-
ally evolve concurrently and only exchange some information
about their particles after completing some iterations [12]. In
this work, a fine-grained concurrent execution of a Particle
Swarm Optimization over a number of particles searching the
entire search space is performed. This approach is particularly
suitable for algorithms like PSO since the evaluation of the
fitness function and the application of movement operators to
the particles can be independently done.

IV. PARALLEL PSO HARDWARE IMPLEMENTATION

Figure 1 presents a general architecture of the hardware
implementation of a parallel PSO algorithm. As discussed
in Section III, the whole algorithm was developed using
a parallel architecture in order to accelerate the processing
speed, taking advantage of the resources available in hardware.
The structure shown allows the visualization of four main
blocks: the particles module (PM), the comparison module
of gBest (CM gBest), the register bank of gBest (RB gBest)
and, the register of the gBest fitness value (R gBestF). In
this implementation, a set of N particles of dimension d is
optimized for K generations. The R gBestF register is used
to store the fitness value of the gBest coordinates, gBestF[m].
This value is updated with each generation, in case there
is a better fitness value from PM, g̃BestF[m] (Lines 19-
24 of Algorithm 1). The modules previously mentioned and
depicted in Figure 1 are going to be detailed in the following
subsections.

A. Particles Module (PM)

The particles module is shown in Figure 2 and it is com-
posed of N PM Pj, and N −1 CM Pjv submodules. The PM
module input are the coordinates of gBest[m](k) with depth
d. In Figure 2 the coordinates are shown by the bus size d,
which is the input of the module and then it is distributed to
all PM Pj. The set of N PM Pj implements the Lines 4-11
and Lines 26-31 of Algorithm 1, in parallel. Each j-th PM Pj
is shown in details in Figure 3.

The CM Pjv implementation is shown in detail in Figure
4. They are used to compare which of the particles in the
swarm has obtained the best fitness value, and thus pass the
information on this particle forward. The CM Pjv compares
the j-th with the v-th particle and pass to forward the best one.
In each CM Pjv, d+1 two-input multiplexers are responsible

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

PM

R_gBestF

CM_gBest

gBest1[m](k)

gBestF[m](k)

RB_gBest

gBestF[m](k+1)

gBestF[m](k)

gBest1[m](k)

gBest2[m](k)

gBestd[m](k)

gBest2[m](k)

gBestd[m](k)

gBest1[m](k+1)

gBest2[m](k+1)

gBestd[m](k+1)

˜

˜
˜

˜

Fig. 1. Parallel PSO implementation.

for forwarding information about the particle with the lowest
fitness value (see Figure 4). This includes the fitness value
itself and the d components of the particle coordinates. The
outputs of the multiplexers (CM MUX0jv and CM MUX1jv
to CM MUXdjv) are selected by the CM COMPjv comparator
that selects the lowest fitness value. This notation will be
adopted throughout the whole work. After the N − 1 CM Pjv
submodules processing (parallel implementation of the Lines
12-17 of the Algorithm 1) is generated the best particle of the
k-th iteration, g̃Best[m](k), and it is passed to the CM gBest
module.

PM_P1

PM_P2

PM_PN

CM_P12

CM_Pjv

dgBest[m](k) d+1

d+1

FN[m](k+1)

pN1[m](k+1)
pN2[m](k+1)

pNd[m](k+1)

gBestF[m](k)

gBestd[m](k)˜

gBest1[m](k)˜

˜

gBest2[m](k)˜

d+1

d+1

Fig. 2. PM implementation.

B. Comparison Module of gBest (CM gBest) and Register
Bank of gBest (RB gBest)

This module is similar to the comparator module, CM Pjv,
showed in Figure 4. Therefore, in this case the inputs are
the g̃BestF and gBestF) plus d pairs of coordinates (a set of
coordinates for each particle to be compared) where d is the
particle dimension. The objective of this module, it is updated
the gBest particle if necessary. This module implements the
Lines 19-24, in parallel.

The RB gBest module is designed entirely with registers
only. Each one of the d registers holds one of the dimensions
of the best particle position in the swarm, called gBest. The
values stored in these registers, in turn, will be forwarded to

the CM gBest in order to be compared with the new position
found in the swarm, and thus, to detect if gBest has been
exceeded or not.

V. RESULTS AND DISCUSSION

In order to validate the PSO implementation proposal on
FPGA, the algorithm was analyzed by optimizing the Rastrigin
function [13], [14], defined by the expression f(x) = Ad +∑d

i=1

(
x2i −A cos(2πxi)

)
, where A = 10 is a constant and d

is the number of dimensions of the function. This function is
widely used to validate optimization techniques due to its high
complexity which is a result of its numerous local minimums.
The presented work used the Rastrigin function with d = 3,
d = 6, and d = 10 dimensions. For each dimension, different
implementations of the PSO were tested, whose swarms were
composed of n = 5, n = 10 or n = 15 particles. In addition,
the m size (in bits) of the particles had also undergone
variations. The target FPGA was the Virtex 6 xc6vcx240t
1ff1156. This Virtex 6 FPGA has 301440 registers, 150720
logical cells (LUT) that can be used to implement logical
functions or memories and 768 DSP cells with multipliers and
accumulators.

In all tests carried out, the PSO operations were performed
at a sampling rate (or throughput) Rs = 1

Ts
(Sample per

second - Sps), where Ts is the time for each k-th iteration.
Thus, Rs also can represent iterations per second (Ips). How
the design uses the full parallel technique, it spends one clock
cycle per iteration, in other words, Ts is the length of the one
clock cycle.

The Tables I, II and III present the synthesis results in
the target FPGA for PSO implementations with swarms of
n = 5, n = 10, and n = 15 particles, respectively. It
was observed that, in general, the sampling rate Rs and the
occupation of logic cells were very sensitive both to the
increase in the number of particles in the swarm and to the
increase in the number of bits of the particles that make up
the particles. The columns RN, LN and MN show the number
of registers, number of LUTs and number of multipliers
already embedded in hardware, respectively. The columns RF
show the occupation rate (in percent) of the fitness function
(PM FitnessEvalPj blocks) with regard to the total of logic
cells occupation, columns LN. The estimate of the dynamic
power consumption in watts is presented in the columns called
of DP.

The logical cells (LUTs) occupation, LN columns, was
crescent and approximately linear according to the increase
of the number of particles, as for the increase of the size
of the particles and as to the increase of the size of the
optimization function. In the most critical implementations
(n = 15 particles, d = 10 dimensions and m = 20 bits,
and n = 15 particles, d = 6 dimensions and m = 32 bits),
the LUTs occupancy rate did not even reach 30%. This fact
is important for implementations that demand larger popu-
lations or particles carrying more information, that is, more
bits to represent them. The most critical situation regarding
occupation was observed in the use of the FPGA embedded
multipliers (DSP blocks), column MN. It was used 79% of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

PM_FitnessEvalPj

PM_CalcPj1

Sel
D0
D1

pj1[m](k+1)

pBestj1[m]˜

gBestj1[m]

pBestj1[m]

PM_CalcPj2

Sel
D0
D1

PM_RpBestj2
pBestj2[m]

PM_CalcPjd

Sel
D0
D1

PM_RpBestjd

pBestControlj[1](k)PM_MUX1j

Fj[m](k+1)pj1[m](k+1)

pj2[m](k+1)

pjd[m](k+1)

PM_MUX2j

PM_MUXdj

pj2[m](k+1)

pBestj2[m]˜

gBestj2[m]

pBestjd[m]

pjd[m](k+1)

pBestjd[m]˜

gBestjd[m]

PM_RBestFitPj

<
Sel
D0
D1

PM_MUXj

PM_RpBestj1

Fig. 3. PM Pj submodule.

TABLE I
FPGA SYNTHESIS RESULTS FOR PSO WITH N = 5 PARTICLES.

m
d = 3 d = 6 d = 10

RN LN MN RF Rs DP RN LN MN RF Rs DP RN LN MN RF Rs DP
(%) (MSps) (W) (%) (MSps) (W) (%) (MSps) (W)

12 723 2936 45 52 66.94 0.160 1366 5774 90 55 61.56 0.308 2224 9301 150 58 53.75 0.436
16 928 3808 45 45 61.67 0.187 1790 7380 90 48 55.99 0.332 2895 12239 150 49 50.64 0.499
20 1192 4808 60 38 59.66 0.239 2259 9350 120 40 51.83 0.396 3680 15327 200 42 46.00 0.617
32 1903 7924 120 24 45.54 0.311 3609 15134 240 27 42.29 0.596 5882 24765 400 28 34.89 0.738

TABLE II
FPGA SYNTHESIS RESULTS FOR PSO WITH N = 10 PARTICLES.

m
d = 3 d = 6 d = 10

RN LN MN RF Rs DP RN LN MN RF Rs DP RN LN MN RF Rs DP
(%) (MSps) (W) (%) (MSps) (W) (%) (MSps) (W)

12 1436 5933 90 52 62.13 0.223 2674 11239 180 56 44.00 0.346 4386 18590 300 58 42.44 0.530
16 1826 7673 90 45 52.84 0.244 3499 14704 180 48 42.12 0.390 5716 24980 300 48 37.96 0.567
20 2308 9767 120 37 50.72 0.309 4414 18743 240 40 41.70 0.487 7187 31084 400 41 33.34 0.621
32 3693 15717 240 24 39.07 0.410 7010 30215 480 27 32.68 0.642 − − − − − −

TABLE III
FPGA SYNTHESIS RESULTS FOR PSO WITH N = 15 PARTICLES.

m
d = 3 d = 6 d = 10

RN LN MN RF Rs DP RN LN MN RF Rs DP RN LN MN RF Rs DP
(%) (MSps) (W) (%) (MSps) (W) (%) (MSps) (W)

12 2128 8634 135 53 53.83 0.244 4029 17394 270 54 45.06 0.453 6496 28007 450 58 39.52 0.648
16 2710 11179 135 46 49.50 0.296 5229 22018 270 48 38.52 0.444 8462 36574 450 49 33.52 0.663
20 3452 14609 180 37 41.52 0.325 6541 28906 360 39 35.03 0.523 10706 46683 600 41 33.10 0.693
32 5469 23357 360 25 33.36 0.440 10425 46293 720 26 28.75 0.535 − − − − − −

these resources to a configuration of n = 15 particles with
d = 10 dimensions. Alternatively, this problem can be solved
by implementing part of the multipliers with logical cells.

The results showed significant gains in comparison to the
studies in the literature presented in [15]–[19] where, for
the Rastrigin function with n = 10 particles and d = 6
dimensions, the throughput obtained was between 44MSps
(or 44 mega iterations per second) and 32MSps (or 32 mega
iterations per second) for 12 and 32 bits, respectively. These
values are equivalent to a speedup of ≈ 212× (44 MSps

207 KSps) for
12 bits and of ≈ 154× (32 MSps

207 KSps), for 32 bits [18].

The architecture proposed in [15], [19] used a semi-parallel
approach where there is a general purpose processor to for
computing the velocity and position of all particle (Lines 26-
31 of Algorithm 1), and this creates a serialization process
(a bottleneck). In the scheme proposed in this paper, each
particle has a specific processor for computing their velocity
and position avoiding the bottleneck. The works [15], [19]
need N × d clocks for computing the velocity and position of
all particle, and in this paper, the Lines 26-31 of Algorithm
1 were parallelized, and all information is computed in one
clock. Similar to works presented in [15] and [19], the papers
[16]–[18] shared five specific processor for computing the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

>

CM_COMPjv
CM_MUX0jv

D0

D1

Sel
Fl[m](k)

CM_MUX1jv

D0

D1

Sel

D0

D1

Sel

CM_MUXdjv

pv,1[m](k)

Fj[m](k)

Fv[m](k)

pj,1[m](k)
pl,1[m](k)

pl,d[m](k)

pv,1[m](k)
pj,d[m](k)

Fig. 4. CM Pjv submodule.

velocity and position of all particles. Another bottleneck found
in [16]–[18] is about the information storage. The velocity,
position, and best position are store on, and this way creates
serial access. The architecture proposed in this paper, each
particle has specific registers for storage the velocity, position,
and best position, in other words, there is parallel access for
all information.

Regarding the hardware occupation, it was observed that
the implementation proposed in this work also obtained gains
when compared to other similar works from the literature. In
[15], ≈ 145000 LUTs were used from a Virtex FPGA 6 for
n = 10 particles and d = 6, by contrast, in the proposal
here presented only ≈ 30000 were used, that represents, a
reduction of 4.8×. For the same PSO configurations, the work
[18] used 24025 registers and 73881 LUTs, already in work
here presented were used 7010 registers and 30215 LUTs, a
reduction about 3.4× and 2.4× for the registers and LUTs,
respectively.

In order to compare with multi-core platform the PSO,
based on Algorithm 1, was implemented on Intel(R) Core(TM)
i7-7820HQ CPU 2.90 GHz 16 GB 2133 MHz LPDDR3
500 GB SSD. For the same PSO parameter used to FPGA,
the multi-core platform had a throughput about the 9.5 Kps
(or 9500 iterations per second). The FPGA speedup was of
≈ 4631× (44 MSps

9.5 KSps) for 12 bits and of ≈ 3368× (32 MSps
9.5 KSps), for

32 bits.
It is important to note that in none of the observed works

a hardware with n = 15 particles and dimension d = 10 was
mentioned. These results show that this proposed implemen-
tation can be used as a reference for several other associated
works.

VI. CONCLUSION

This paper presented a proposal for a parallel implemen-
tation of the Particle Swarm Optimization algorithm (PSO)

at fixed point on FPGA. All details regarding the proposal
implementation were presented and analyzed in terms of oc-
cupation area and processing time. The proposed architecture
was submitted to tests with the Rastrigin function obtaining the
expected results. The results obtained were quite significant
and point to new possibilities of using embedded PSO in
hardware for real time applications with large data volume.

REFERENCES

[1] M.-C. R. Rojas-Morales, N.; Rojas and E. M. Ureta, “A survey and clas-
sification of opposition-based metaheuristics,” Computers & Industrial
Engineering, 2017.

[2] A. A. Soler-Dominguez, A.; Juan and R. Kizys, “A survey on financial
applications of metaheuristics,” ACM Comput. Surv., 2017.

[3] M. A. Kamel, X. Yu, and Y. Zhang, “Real-time optimal formation
reconfiguration of multiple wheeled mobile robots based on particle
swarm optimization,” in 2016 12th World Congress on Intelligent
Control and Automation (WCICA), June 2016, pp. 703–708.

[4] V. Fathi and G. A. Montazer, “An improvement in rbf learning algorithm
based on pso for real time applications,” Neurocomputing, vol. 111, pp.
169 – 176, 2013.

[5] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Particle
swarm optimization, vol. 4, 1995, pp. 1942–1948.

[6] A. Leskovec, J.; Rajaraman and J. D. Ullman, “Mining of massive
datasets.” Cambridge university press, 2014.

[7] E. Alba, G. Luque, and S. Nesmachnow, “Parallel metaheuristics: Recent
advances and new trends,” International Transactions in Operational
Research, vol. 20, pp. 1–48, 01 2012.

[8] S. Hauck and A. DeHon, Reconfigurable Computing: The Theory and
Practice of FPGA-Based Computation (Systems on Silicon). Morgan
Kaufmann, 2010.

[9] A. C. D. de Souza and M. A. C. Fernandes, “Parallel fixed point
implementation of a radial basis function network in an fpga,” Sensors,
vol. 14, no. 10, pp. 18 223–18 243, 2014.

[10] M. F. Torquato and M. A. C. Fernandes, “High-performance
parallel implementation of genetic algorithm on fpga,” Circuits,
Systems, and Signal Processing, Jan 2019. [Online]. Available:
https://doi.org/10.1007/s00034-019-01037-w

[11] M. Cárdenas-Montes, M. A. Vega-Rodrı́guez, J. J. Rodrı́guez-Vázquez,
and A. Gómez-Iglesias, “Gpu-based evaluation to accelerate particle
swarm algorithm,” in Computer Aided Systems Theory – EUROCAST
2011, R. Moreno-Dı́az, F. Pichler, and A. Quesada-Arencibia, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 272–279.

[12] M. Cámara, J. Ortega, and F. Toro, “Comparison of frameworks for
parallel multiobjective evolutionary optimization in dynamic problems,”
in Studies in Computational Intelligence, 01 2012, vol. 415, pp. 101–
123.

[13] L. A. Rastrigin, “Extremal control systems,” in Theoretical Foundations
of Engineering Cybernetics Series, Moscow, 1974.

[14] H. Mühlenbein, M. Schomisch, and J. Born, “The parallel genetic
algorithm as function optimizer,” Parallel Comput., vol. 17, no. 6-7,
pp. 619–632, Sep. 1991.

[15] R. M. Calazan, N. Nedjah, and L. M. Mourelle, “A hardware accelerator
for particle swarm optimization,” Applied Soft Computing, vol. 14, pp.
347 – 356, 2014.

[16] A. Rathod and R. A. Thakker, “Fpga realization of particle swarm
optimization algorithm using floating point arithmetic,” in 2014 Inter-
national Conference on High Performance Computing and Applications
(ICHPCA), Dec 2014, pp. 1–6.

[17] D. M. M. Arboleda, C. H. Llanos, L. d. S., and M. Ayala-Rincon,
“Hardware architecture for particle swarm optimization using floating-
point arithmetic,” in 2009 Ninth International Conference on Intelligent
Systems Design and Applications, Nov 2009, pp. 243–248.

[18] D. M. Munoz, C. H. Llanos, L. d. S. Coelho, and M. Ayala-Rincon,
“Comparison between two fpga implementations of the particle swarm
optimization algorithm for high-performance embedded applications,” in
2010 IEEE Fifth International Conference on Bio-Inspired Computing:
Theories and Applications (BIC-TA), Sept 2010, pp. 1637–1645.

[19] S.-A. Li, C.-C. Hsu, C.-C. Wong, and C.-J. Yu, “Hardware/software co-
design for particle swarm optimization algorithm,” Information Sciences,
vol. 181, no. 20, pp. 4582 – 4596, 2011, special Issue on Interpretable
Fuzzy Systems.

https://doi.org/10.1007/s00034-019-01037-w

	Introduction
	Particle Swarm Optimization
	Parallel Metaheuristics
	Parallel PSO Hardware Implementation
	Particles Module (PM)
	Comparison Module of gBest (CM_gBest) and Register Bank of gBest (RB_gBest)

	Results and Discussion
	Conclusion
	References

