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Abstract: Extensions to the canonical ΛCDM model which incorporate elastic scattering
between dark matter and Standard Model radiation predict the suppression of matter
perturbations on small scales and modifications to the cosmic microwave background
anisotropies. Studying these scenarios not only allows us to constrain the particle physics
properties of dark matter, it also reveals if they can alleviate remaining tensions in cos-
mological data sets. In this context, the present thesis considers several aspects of dark
matter-photon and dark matter-neutrino interactions.

One central aspect of our work is the accurate description of additional scattering terms in
the numerical solutions. In the context of dark matter-photon interactions, we demonstrate
the robustness of earlier studies with respect to inconsistencies in the tight coupling
approximation and to the negligence of the dark matter sound speed. Accounting for the
latter, however, potentially tightens limits from large-scale structure observations for light
dark matter candidates. Our updated constraints, derived from the Planck 2015 data
release, are about 20% tighter than previous CMB limits in the most conservative case.

We further extend dark matter-photon interactions to a mixed dark matter scenario
in which two components, one collisional and one collisionless, contribute to the relic
abundance. In particular a small fraction of interacting dark matter impacts the matter
power spectrum in a fashion very similar to massive neutrinos. In this case, CMB data
only imposes weak constraints on the interaction strength, and our Fisher forecast for the
DESI survey predicts notably larger error margins on the neutrino mass.

Dark matter-neutrino interactions alter the initial conditions and cause inconsistencies in
the ultra-relativistic fluid approximation, which impact the matter power spectrum on small
scales. Still, we can reinforce the validity of previous studies that neglected those effects.
In addition to the canonical collisional damping, dark matter-neutrino interactions imply
the suppression of structure by mixed damping. Indeed, our exploration of the parameter
space reveals the relevance of mixed damping for observational constraints. To provide
insight into the underlying physical processes, we derive an analytical approximation to the
evolution of dark matter perturbations in the mixed damping regime, which accomplishes
to capture all qualitative features of our full numerical results.
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Chapter 1

The ΛCDM cosmological standard model

The standard model of cosmology, the so-called ΛCDM model, is hugely successful in
describing observations over a vast range of scales, reaching from the present-day Hubble
radius, at the largest, down to the size of galaxies. Yet, it remains an effective description,
as the physical nature of two central elements, that of the dark energy Λ and of cold dark
matter (CDM), is unknown. Despite a dedicated program, aiming for the detection of
dark matter in the laboratory, the only evidence for its existence to date derives from
cosmological and astrophysical observations. These also provide most of the current
knowledge about the properties of dark matter.

In this situation, a possibility to better understand one of the universe’s most fundamental
constituents is to consider alternatives to the vanilla assumptions of cold, non-interacting
dark matter, and to study how successfully these can describe the cosmological and
astrophysical data. This approach is highly complementary to direct detection efforts
and to laboratory searches for dark matter. The past decades have seen vast progress in
the area of observational cosmology, and by now the field has clearly entered the realm of
a data driven precision science. In the future, an ambitious program aims for more precise
measurements of the cosmic microwave background (CMB) polarisation and of the CMB
anisotropies on small scales. In addition, galaxy surveys and lensing measurements aspire
to determine the matter power spectrum at an increased accuracy.

To fully exploit present and future data sets requires precise theory predictions not only for
the canonical ΛCDMmodel but also for alternative scenarios. The present thesis is intended
to contribute precisely at this theory frontier. It studies dark matter interactions with
Standard Model radiation, concretely with neutrinos and photons, and thereby primarily
considers the evolution of cosmological perturbations in the linear regime.

This work is outlined as follows. In the remainder of this first Chapter we present the main
aspects of the ΛCDM model and discuss its observational status in the following Chapter 2.
Cosmological perturbations in the linear regime are described by the coupled, linearised
Boltzmann Einstein equations, which we derive in Chapter 3 for the cases of ΛCDM,
dark matter-photon interactions and dark matter-neutrino interactions. In scenarios with
non-standard dark matter interactions, several approximation schemes, derived under
the assumption of a ΛCDM evolution, have to be reconsidered. These rather technical
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aspects are presented in Chapter 4. Having established the formalism, Chapter 5 deals
with interactions between dark matter and photons, examines the numerical accuracy
and derives updated constraints on the parameter space from Planck CMB observations.
Chapter 6 extends dark matter-photon interactions to a scenario with two dark matter
components, one of them interacting, the other collisionless. We constrain the parameter
space from CMB observations and put special emphasis on forecasting the sensitivity of
future galaxy surveys to such a scenario. Finally, interactions between dark matter and
neutrinos and the numerical accuracy of theory predictions in this context are the topic
of Chapter 7. In scenarios with dark matter-neutrino interactions, there is an alternative
damping mechanism to the usually considered collisional damping, called mixed damping.
We investigate its parameter space and derive an analytical approximation to the evolution
of dark matter perturbations in the mixed damping regime. Finally, in Chapter 8, we
summarise our results.

1.1 The metric of the universe

Modern cosmology, and in particular its theoretical foundations, rest upon two major
premises: the theory of general relativity and the cosmological principle. The Einstein
equation [10]

Gµν = 8π
m2

P
Tµν , (1.1.1)

connects the evolution of the space-time metric, described by the Einstein tensor Gµν ,
to the matter distribution characterised by the stress-energy tensor Tµν (c.f. Sec 3 for a
more detailed discussion). The Planck mass mP appearing in Eq. (1.1.1) is related to the
gravitational constant by mP = G−1/2 = 1.22×1019 GeV. If, as stated by the cosmological
principle, the stress-energy tensor is spatially isotropic and homogeneous, there exist only
three geometries which solve the Einstein equations [11–14]. All of them are described by
the Friedmann-Robertson-Walker (FRW) metric

ds2 = c dt2 − a2(t)
(

dr2

1− k r2 + r2 dθ2 + r2 sin2 θ dφ2
)
, (1.1.2)

and reflected by the choice of the curvature parameter k ∈ {−1, 0, 1}. A universe of
negative curvature exhibits an open geometry, one of positive curvature is closed, and
the intermediate case of k = 0 corresponds to a spatially flat universe. The spherical
coordinates r, θ, φ in Eq. (1.1.2) are referred to as comoving coordinates. An observer
who is at rest with respect to the comoving frame will remain so and he will measure the
proper time, t. The absolute value of the scale factor a has no physical importance and
is commonly fixed to equal one at the current time, i.e. a0 = 1. Physically meaningful,
however, is the time dependence of a, which determines how the proper distance between
two comoving observers evolves. The time evolution of the scale factor is quantified by the
Hubble rate

H ≡ da/dt

a
= ȧ

a
, (1.1.3)
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and evolves according to the Friedmann equations

H2 = 8π
3m2

P
ρ− k

a2 , (1.1.4)

ä

a
= − 4π

3m2
P

(ρ+ 3p) , (1.1.5)

where ρ is the energy density and p the pressure. Especially the first Friedmann equation
makes the connection between the energy density in the universe and its geometry very
explicit and allows to define the critical energy density

ρcrit = 3m2
P

8π H2
0 . (1.1.6)

A universe of sub-critical energy density is open and a universe with ρ > ρcrit is closed.
Recent measurements strongly suggest a flat spatial geometry, i.e. ρ = ρcrit [4,15]. Also the
inflationary paradigm (c.f. Sec. 1.2.1), an integral component of the cosmological standard
model, predicts a flat geometry, and hence we assume that k = 0 throughout this thesis.

Having fixed the geometry of the universe, the evolution of the scale factor still depends on
the universe’s energy density and its equation of state w = p/ρ. Distinct contributions to
the energy density come to dominate at different cosmological epochs, these are radiation
in the form of massless or highly relativistic particles ρr (wr = 1/3), non-relativistic matter
ρm (wm = 0), and vacuum energy ρΛ with wΛ = −1. While the latter is mathematically
accounted for easily – the Einstein equation (1.1.1) is invariant under the addition of a
constant – insight into its physical origin is not that obvious. The second Friedmann
equation (Eq. 1.1.4) predicts a different evolution of the scale factor, depending whether
the universe is dominated by matter, radiation or dark energy

a(t) ∝


t1/2 matter domination ,

t2/3 radiation domination ,

exp
(√

Λ/3 t
)

dark energy domination ,

(1.1.7)

where Λ = (8π)/m2
P ρΛ. Finally, energy conservation (see Sec. 3.2.3 for a derivation)

ρ̇ = −3H (ρ+ p) , (1.1.8)

determines how each individual component evolves with the scale factor. Namely,

ρm ∝ a−3 , ρr ∝ a−4 and ρΛ = const . (1.1.9)

Obviously from Eq. (1.1.7), a flat universe populated by matter, radiation or dark energy
is expanding, and the expansion is decelerating if matter or radiation are the dominant
components but accelerating for dark energy domination. The expansion implies that
the universe must have been denser and hotter at an earlier time. Extrapolation to very
early times reveals a singularity, where the scale factor is infinitely small, which coined
the name Big Bang model. Initial acceptance of the Big Bang model rooted on three
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observational pillars. First, the direct observation of the expansion [16,17], whose current
status is summarised in Sec. 2.1. Further, the thermal conditions in the early universe
allow to predict the abundances of light elements from Big Bang nucleosynthesis (BBN,
c.f. Sec 1.2.3) and the presence of a thermal photon population remaining of a hotter
and denser epoch, the cosmic microwave background (CMB) radiation (c.f. Sec. 1.2.5 and
Sec. 2.3).

The expansion causes distant galaxies to recede from Earth and hence their spectra are
redshifted by the Doppler effect. Light observed today from faraway objects at wavelength
λobs was emitted at a shorter wavelength λemit, determining the redshift z as

1 + z ≡ λobs
λemit

= 1
aemit

. (1.1.10)

Because it is closely related to the scale factor at the time of emission aemit, the redshift
is simultaneously used as a time and a distance measure. For objects which are close to
the Earth, the Hubble rate approximately remained constant between the emission and
detection of their light and is given by the present-day value H0. Then indeed, the redshift
is a linear function of the physical distance d

z = H0 d . (1.1.11)

The linear relation holds for d . 50 Mpc [18], but to compute the distance to the the oldest
observed astrophysical objects requires the integration of the full expression in Eq. (1.1.4).

Several different species add to the total matter and radiation densities, which affect the
expansion history. From the Standard Model, photons, neutrinos and baryons are the most
important contributions, where the latter summarise electrons, protons and light nuclei.
In addition, observations strongly support the presence of dark matter, a non-relativistic
species which only interacts gravitationally. Finally, the energy density of vacuum energy
is particularly important for the late time evolution. A practical parameterisation, to keep
track of all individual species, is to express their present-day abundance as a fraction of
the critical density

Ωi = ρi,0
ρcrit

, where i = γ, ν, b, dm, Λ, ... . (1.1.12)

Interactions between the individual species and departures from thermal equilibrium are
described by the laws of thermodynamics, but their presence renders the prediction of each
individual component’s energy density a non-trivial task. In the following subsection we
discuss the particle content of the universe in more detail. Eventually, the combination
of general relativity, which determines the metric, and thermodynamics culminates in the
ΛCDM cosmological standard model, which is summarised in Sec. 1.3.
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1.2 Cosmological history

1.2.1 Inflation

As mentioned previously, the observed cosmological energy density is very close to the
critical value Eq. (1.1.6), yet a priori there is no theoretical preposition for a flat universe.
Observations also indicate a remarkable smoothness of the universe on very large scales, the
so called horizon problem. Inflation addresses these two fine-tuning issues and, in addition,
provides an origin for small initial density perturbations from which the present large-scale
structure of galaxies, clusters, filaments and voids grew by gravitational collapse.

The scales over which physical processes are in causal contact are given by the comoving
Hubble radius (aH)−1. It measures the distance a particle can travel at the speed of light
in one expansion time, that is roughly the time over which the scale factor doubles. The
Hubble radius at CMB decoupling is about ∼ 100 Mpc, subtending an angle of about 1◦ on
today’s sky. The horizon problem marks the surprising smoothness of the CMB on much
larger scales [19,20], which by far exceeds the level one would expect if these regions had
never been in causal contact. There is, however, a subtle difference between the comoving
Hubble radius, determining if two points are currently in causal contact, and the comoving
horizon χ, which indicates if two points have ever been in causal contact [21],

χ =
∫ t

0

dt′

a(t′) =
∫ a

0

da′

a′
1

a′H(a′) . (1.2.1)

During the radiation and the matter-dominated epoch, the universe’s expansion decelerates,
i.e. aH decreases, and the largest contributions to χ arise at late times. If, however, the
universe undergoes an early era of accelerated expansion during which aH grows rapidly,
significant contributions to χ arise from this era. Hence, distances separated by more than
a Hubble radius in the radiation and matter-dominated epoch might have been in causal
contact at the beginning of inflation. Typical inflationary models solve the horizon problem
by postulating an era of exponential growth, during which the scale factor increases by at
least 60 e-folds, i.e. by a factor of e60 [21, 22].

The accelerated expansion in these most common models originates from a scalar field
ϕ, called inflaton, which evolves slowly in a flat potential [23, 24]. During the slow-roll
phase, the inflaton’s potential energy V (ϕ) is nearly constant and much less than the
kinetic energy, hence the field acts like a cosmological constant pϕ = −ρϕ = const. If
ρϕ dominates the energy density, the Hubble rate is a constant Hi, and the Friedmann
equation (1.1.4) is solved by

a(t) = ae e
Hi(t−te) t < te , (1.2.2)

where the subscript e refers to values at the end of the inflationary epoch. Irrespective of
its initial magnitude, the curvature term in the Friedmann equation (1.1.4) is suppressed
by the exponential increase of the scale factor, explaining why the current energy density
is so close to the critical value.



26 Chapter 1. The ΛCDM cosmological standard model

Inflation terminates when the condition of a slowly rolling inflaton field is no longer
valid, e.g. because the inflaton field approaches the minimum of its potential [19, 25].
Subsequently, during reheating [26, 27], a hot Big Bang cosmology is recovered as the
inflaton field decays into the particles of the Standard Model, possibly via intermediate
exotic states. Typically inflationary models associate reheating with temperatures of
∼ 1015 GeV, but stringent observational constraints only provide a much weaker bound,
Trh > 4 MeV at 95% C.L. [28].

During the rapid expansion, small quantum fluctuations in the inflaton field are stretched
to exceed the Hubble radius. While causally disconnected, perturbations remain frozen.
However, as the Hubble radius increases in the radiation and the matter-dominated era,
fluctuations regain their causal connection and grow by gravitational instability. Eventually,
they evolve into the observed large-scale structure. The random initial fluctuations are
Gaussian distributed in the baseline models of inflation and fully characterised by their
two-point correlation function, the power spectrum P (k),

〈
δ(k)δ(k′)

〉
= (2π)3 δD

(
k − k′)P (k) , ∆2

s (k) = k3 P (k)
2π2 . (1.2.3)

The scale-invariant power spectrum ∆2
s (k) is often a convenient quantity to work with.

Further, k denotes a mode in Fourier space and k its modulus, angular brackets indicate
expectation values and the subscript “D” discriminates the Dirac delta-distribution δD

from density fluctuations δ = (ρ− 〈ρ〉)/ 〈ρ〉.

Cosmological perturbations can be classified into adiabatic or curvature perturbations
and isocurvature perturbations. While the latter are relevant in more exotic inflationary
models, the former are rather prevalent. Adiabatic perturbations can be characterised as
fluctuations in the local curvature, where all components of the energy density contribute to
the perturbation [29]. They subdivide further, according to their properties under a gauge
transformation, into scalar, vector and tensor modes. Only scalar perturbations couple to
matter perturbations and are the most important for structure formation [21,30,31]. In its
vanilla form, inflation predicts a nearly scale-invariant white noise spectrum for adiabatic
scalar perturbations

∆2
s,p(k) = As

(
k

ks

)ns−1
. (1.2.4)

The reference scale ks is arbitrary a priori and usually adapted to the experimental region of
sensitivity if a specific observation is considered. Gravitational instability alters the simple
power law shape of Eq. (1.2.4), and the additional subscript “p” discriminates primordial
perturbations against the processed spectra at lower redshifts. Near scale invariance means
that the spectral index ns is very close to one. Departures from unity permit insight into
the dynamics of the inflaton field. Namely, given the slow-roll parameters

ε = m2
P

16π

(
∂V/∂ϕ

V

)2
, η = m2

P
8π

(
∂2V/∂ϕ2

V

)
, (1.2.5)

the spectral index is
ns = 1− 6ε+ 2η . (1.2.6)
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The evolution of scalar, vector and tensor perturbations decouples according to the decom-
position theorem, and can be described independently [21]. In particular the production of
tensor perturbations is predicted by inflation, and these are observable via their effect on
anisotropies in the CMB at large scales [32–35]. While scalar modes dominate, the ratio
between the scalar and the tensor power spectrum ∆2

t , is sensitive to the inflationary scale.
It is parameterised by

r (k) = ∆2
t (k)

∆2
s (k) , (1.2.7)

and usually given at some fiducial scale. The predictions for the tensor-to-scalar ratio by
different models of inflation cover several orders of magnitude, such that a measurement
of r would allow to constrain possible inflationary scenarios [36]. At the present, however,
there are only upper limits on r (see Sec. 2.3).

1.2.2 The hot thermal universe

After the end of inflation, reheating restores the conditions of a hot Big Bang cosmology,
meaning that the universe is filled with a hot plasma of radiation and heavier species,
which are kept in equilibrium by frequent interactions. At temperature Ti, the phase space
distribution of a species i in kinetic equilibrium follows a Fermi-Dirac or a Bose-Einstein
statistic, respectively for fermions and bosons [29]

fi =
[
exp

(
Ei − µi
Ti

)
± 1

]−1
, (1.2.8)

where Ei =
√
p2
i +mi is the energy and µi refers to the chemical potential. The latter is

much smaller than the temperature for almost all species and at all times [21] and can be
neglected to good approximation. The phase-space distribution in Eq. (1.2.8) describes the
smooth universe at zeroth order and hence is independent of the spatial position and the
direction of the momentum pi. First order perturbations around the smooth background
evolution are considered in Sec. 3.

The energy density of a species ρi can be expressed as an integral over its phase space
distribution as

ρi = gi

(2π)3

∫
d3p Ei(p) fi(p) , (1.2.9)

where gi counts the internal degrees of freedom. In the ultra-relativistic limit this integral
evaluates to

ρi
Ti�m−−−−−→


π

2

30 gi T
4
i bosons

7
8
π

2

30 gi T
4
i fermions

. (1.2.10)

On the other hand, in the non-relativistic limit the energy density is proportional to the
number density, ρi = mi ni, and becomes exponentially suppressed

ρi
Ti�m−−−−−→ gimi

(
miTi
2π

)3/2
e
−mi
Ti . (1.2.11)

At the high temperatures associated with the very early universe, pair production and
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annihilation of Standard Model particles maintain thermal equilibrium. Then, Ti = Tγ,
and, because the energy density of non-relativistic species is exponentially suppressed, the
total energy density of the plasma is to good approximation given by

ρ =
( ∑

i=bosons
gi + 7

8
∑

i=fermions
gi

)
π

2

30 T 4
γ

(mi � Tγ). (1.2.12)

In a similar fashion, the pressure pi of a species is determined by an integral over the phase
space distribution

pi = gi
(2π)3

∫
d3p fi(p) p2

i

3Ei(p) −−−−−→

ρi/3 for Ti � mi

ni Ti for Ti � mi

. (1.2.13)

Finally, the entropy density can be defined as

si = ρi + pi
Ti

, (1.2.14)

and its sum over all species in thermal equilibrium is conserved [29].

There are several, notable departures from thermal equilibrium which significantly affected
the evolution of the universe. Some of the most important, the production of light elements
during Big Bang nucleosynthesis, and the production of dark matter, are discussed in the
subsequent Secs. 1.2.3 and 1.2.4. Here, we consider the decoupling of neutrinos. A species
with interaction rate Γi is in equilibrium with the plasma if it interacts repeatedly while
the scale factor doubles. That is

Γi =
∑
j

Γi−j � H , (1.2.15)

where Γi−j refers to all individual interaction rates in the plasma. For neutrinos the
dominant reactions are with electrons, and the interaction rate evolves as Γν ' G2

F T
5
γ

[29].
Neutrinos decouple from the plasma at a temperature of Tγ ' 1 MeV, and by then all three
neutrino species are highly relativistic. After the decoupling, the neutrino temperature
is only affected by the cosmological redshift and scales as Tν ∝ a−1. Shortly after, the
temperature drops below the electron mass and the annihilation of e± pairs releases entropy
to the photons, reheating them. The ratio between the electron and neutrino temperature
is determined by the conservation of entropy (1.2.14) within the photon plasma. Before the
annihilation, the photon temperature equals the neutrino temperature and both, relativistic
electrons with ge = 4 and photons with gγ = 2 contribute. Equating ∑i si before and
after the electron annihilation gives(

2 + 7
8 × 4

)
T 3
ν

= 2× T 3
γ
, (1.2.16)

and therefore Tν = (4/11)1/3 Tγ.

Even after neutrinos have decoupled, their energy density contributes in the Friedmann
equation (1.1.4) and increases the Hubble rate. Hypothetical additional light decoupled
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states beyond the standard model have the same impact. The combined effect of decoupled
radiation is parameterised by the effective number of neutrinos, Neff , and the total radiation
density after electron decoupling is given by

ρrad =
[
Neff ×

7
8

( 4
11

)4/3
+ 1

]
ργ . (1.2.17)

In the Standard Model, there are three light neutrino species and [37–39]

NΛCDM
eff = 3.046 . (1.2.18)

The value is slightly larger than 3, because electron annihilation occurs shortly after
neutrino decoupling and affects the high-energy neutrino tail, and because quantum elec-
trodynamic effects at finite temperature cause the plasma properties to deviate from the
ideal gas description.

Although the Standard Model of particle physics presumes massless neutrinos, this is
contradicted by the observation of neutrino oscillations [40–42]. These are sensitive to the
mass differences between states and can provide a lower bound on the absolute neutrino
mass scale [43] (∑

mν
)osc.

& 0.06 eV . (1.2.19)

Neutrino oscillations indicate that at least two neutrino species become non-relativistic
during the late-time evolution of the universe. We postpone a detailed discussion of the
implications to Sec. 6.2.3.

Accounting for the possibility of decoupled, radiative species with a temperature other
than Tγ, Eq. (1.2.12) generalises to

ρ = g∗
π

2

30 T 4
γ
, (1.2.20)

where the effective radiative degrees of freedom g∗ are defined as

g∗ =
∑

i=bosons
gi

(
Ti
Tγ

)4

+ 7
8

∑
i=fermions

gi

(
Ti
Tγ

)4

. (1.2.21)

For temperatures well in the excess of 300 GeV all species of the Standard Model contribute
to the sum and g∗ = 106.75. Subsequently, the effective degrees of freedom decline
through confinement and the annihilation of heavy species, and in the temperature range
100 MeV & Tγ & 1 MeV Standard Model contributions arise from photons, electrons and
positrons and neutrinos and amount to 10.75. Finally, at T � 1 MeV, after neutrinos have
decoupled and electrons have annihilated with positrons, g∗ = 3.36. A similarly compact
notation can be introduced for the entropy density,

g∗s =
∑

i=bosons
gi

(
Ti
Tγ

)3

+ 7
8

∑
i=fermions

gi

(
Ti
Tγ

)3

. (1.2.22)
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such that
s = 2π2

45 g∗s T
3
γ
. (1.2.23)

1.2.3 Big Bang nucleosynthesis

The synthesis of light elements commences when the photon temperature falls to about
1 MeV. At this stage, the reaction rates between photons, electrons, protons and neutrons
are large enough to maintain equilibrium. Pair annihilation would have extinguished the
neutrons and protons by then, if there was not a small initial asymmetry between the
baryon and anti-baryon abundances. The amount of leftover baryons is described by the
baryon-to-photon ratio,

ηb ≡
nb
nγ

= 5.5× 10−10
(

Ωbh
2

0.020

)
, (1.2.24)

which remains constant as the universe expands. Although essential to establish the
presently observed conditions in the universe, the origin of the baryon/anti-baryon asymme-
try is obscure. Baryon-number violation is required for the production of a net asymmetry
as well as C and CP violation and a departure from thermal equilibrium [44]. These three
requirements, the Sakharov conditions, are achieved at some high energy scale by the most
common models of baryogenesis, such as electroweak baryogenesis [45] or leptogenesis [46].
Still, the baryon asymmetry of the universe needs to be generated at a lower scale than
that of inflation, otherwise it would be washed out. Here, we plainly presume the existence
of a baryon/anti-baryon asymmetry, but its precise origin is beyond the scope of this work.

Helium is the most abundant element after hydrogen and produced from the fusion of
deuterium and tritium. The bottleneck for this process is the creation of deuterium via
p + n↔ D + γ. In nuclear statistical equilibrium, the deuterium density is approximately

nD
nb
∼ ηb

(
Tγ
mp

)
eBD/Tγ , (1.2.25)

where mp = 938.27 MeV is the proton mass and BD = 2.22 MeV the deuterium binding
energy. Thus, while Tγ & BD, the deuterium abundance is suppressed by the smallness of
ηb. Deuterium production becomes effective, i.e. nD/nb ∼ 1, at Tnuc,

ln (ηb) + 3
2 ln

(
Tnuc
mp

)
∼ − BD

Tnuc
, (1.2.26)

which numerically evaluates to Tnuc ' 0.07 MeV. However, the amount of deuterium
produced by then depends on the availability of free neutrons.

At temperatures larger than Tnuc, only free protons and neutrons exists, which interact by
the weak process p + e− ↔ ν+ n. In nuclear statistical equilibrium (indicated here by the
“(0)” superscript) the proton to neutron ratio is

n(0)
p /n(0)

p = exp
(
mn −mp

Tγ

)
, (1.2.27)
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where mn − mp = 1.293 MeV. If weak interactions were rapid enough to maintain the
equilibrium distribution until Tnuc, neutrons would have been completely deteriorated, and
no light elements could form. However, the annihilation rate being Γp+e→n+ν ∼ G2

FT
5
γ
, the

interactions freeze out at a temperature around 0.5 MeV, when neutrons contribute about
15% to the total baryon abundance. Subsequently, the neutron abundance is affected by
neutron decay, n→ p + e− + ν, with lifetime τn = 886.7 s and decreases by an additional
factor of e−t/τn . The time elapsed between weak decoupling and Tnuc is determined by

1
Tγ

dTγ
dt

= −H = −
√

8 π
3m2

P
ρ , (1.2.28)

where ρ is given by Eq. (1.2.20) and we used that the universe is dominated by radiation at
the time of Big Bang nucleosynthesis. Taking Neff = 3.046 (c.f. Eq. (1.2.17)), the neutron
abundance Xn ≡ nn/(np + nn) is

Xn (Tnuc) = 0.11 . (1.2.29)

The binding energy of 4He is much larger than that of deuterium, and helium is fused
immediately after deuterium production starts. Eventually, almost all neutrons available
are processed into 4He and the resulting helium mass fraction is [47–51]

X4 ≡
4n
(4He

)
nb

= 2Xn(Tnuc) . (1.2.30)

Because the reactions which fuse deuterium and 3He are not completely efficient, small
traces of the respective isotopes remain unburnt, each at a level of about 10−5 when
compared to the hydrogen abundance. Some 7Li is synthesised as well, at a level of
∼ 10−10 [19]. However, when the deuterium abundance becomes significant, the Coulomb
barrier to synthesise heavier elements is already large compared to thermal energies. This
and the lack of stable isotopes with mass numbers 5 and 8 prevents the nucleosynthesis of
heavier elements. Those are produced in stellar nucleosynthesis at a later time.

Big Bang nucleosynthesis gives direct, observational insights into the thermal conditions in
the early universe. In particular, the light element abundances are sensitive to the baryon
density, because it determines Tnuc, and to the number of relativistic degrees of freedom
at temperatures around 1 MeV, which affect the Hubble rate and therefore the neutron
abundance at Tnuc. Importantly, the observed isotope abundances agree well with the
predictions of BBN [52].

1.2.4 Dark matter production

There is a plethora of observational evidence supporting the existence a species with small
velocity dispersion, which interacts with the Standard Model sector predominantly through
gravity – cold dark matter (CDM). Amongst this evidence are galactic rotation curves, the
dynamics of galaxy clusters and gravitational lensing. Perturbations in the baryon density
only can grow after baryons and photons have decoupled, too late to explain the oldest
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observed galaxies or anisotropies in the CMB [19,21,29]. The X-ray emission from galaxy
clusters [53, 54] and fluctuations in the CMB [15], independently indicate that baryons
only contribute 16% to the total matter abundance.

Observations impose that dark matter has to be a stable particle with neither electric nor
colour charge and a small velocity dispersion. No candidate from the Standard Model
can meet all requirements. However, there is a multitude of extensions to the Standard
Model, which provide suitable options. Those candidates often experience some weak,
non-gravitational interactions with the Standard Model, which can enable their production
in the early universe and their experimental detection at the present.

The most prominent mechanism to generate the dark matter relic abundance is the freeze
out of a weakly coupled, massive particle (WIMP) [21, 29, 55]. At high temperatures
Tγ � mdm, dark matter production from Standard Model collisions and dark matter
annihilation proceed at equal rates. When the plasma temperature drops below the dark
matter mass, production becomes less efficient than annihilation, and the dark matter
abundance gets suppressed exponentially (c.f. Eq. (1.2.11)). Soon after, the rate for dark
matter annihilation drops below the Hubble rate. At this time, dark mater chemically
decouples, and henceforth the comoving dark matter density remains fixed.

In the most simple case, where the dark matter particle is stable, symmetric and has no
significant self interactions, the Boltzmann equation (c.f. Eq. (3.4.8)), can be integrated
to [56,57]

dndm
dt

+ 3H ndm = 〈σdmv〉
[
(neq

dm)2 − n2
dm

]
, (1.2.31)

where 〈σdmv〉 is the thermally averaged annihilation cross section [58], ndm the dark
matter number density and neq

dm =
∫
d3pf eq

dm the number density in chemical equilibrium.
For convenience, the integrated Boltzmann equation is further rewritten in terms of the
dimensionless variables Y ≡ ndm/s and x = mdm/Tγ,

x

Yeq

dY

dx
= Γdm

H

( Y

Yeq

)2

− 1

 , (1.2.32)

with the effective interaction rate Γdm = neq
dm 〈σdmv〉. With this parameterisation, Y

is proportional to the comoving number density and remains constant if ndm ∝ a−3.
Numerical integration of Eq. (1.2.32) reveals that for H � Γdm and x� 1 the dark matter
number density follows the equilibrium distribution and Y ∼ const.. When Γdm ∼ H, Y
starts to decrease. Eventually, in the H � Γdm regime, Y approaches a constant again,
marking the freeze out of dark matter. If the temperature at freeze out is Tf ∼ mdm/20,
the predicted dark matter relic abundance,

Ωdmh
2 = 5.36× 109

√
g∗

g∗s

mdm
Tf

(n+ 1) GeV−1

mP 〈σdmv〉
, (1.2.33)

roughly matches observations [21, 29]. Here, g∗, g∗s and 〈σdmv〉 are evaluated at Tf and n
characterises the temperature dependence of the annihilation cross section, i.e. n = 0 for
s-wave and s = 1 for p-wave annihilation.
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Famously, Eq. (1.2.33) predicts the correct relic abundance for a particle with mdm ∼
100 GeV and weak-scale interactions, a circumstance referred to as the WIMP miracle [59].
Nevertheless, freeze out production of dark matter is viable over a broad mass range. Owing
to the fact that freeze out creates a dark matter population with a thermal distribution
and that the freeze out time decreases for smaller dark matter masses, light thermal dark
matter candidates are often referred to as warm dark matter. The free streaming of warm
dark matter suppresses initial perturbations in the matter power spectrum and prohibits
the formation of structures on scales smaller than the free streaming length. Small-scale
density fluctuations observed in the Ly-α forest (c.f. Sec. 2.2.3) impose the constraint [60]

mdm & 3.3 keV . (1.2.34)

In addition to freeze out, there are plenty alternative dark matter production mechanism,
which have gained popularity in view of collider and direct detection null results. Among
them is the possibility that dark matter is a feebly interacting massive particle (FIMP),
produced from the thermal plasma by freeze in [55,61]. In this scenario, the dark matter
particle never reaches chemical equilibrium with the heat bath. Instead, some particle σ
in the plasma decays into dark matter. The process σ → dm + dm continues to increase
the dark matter abundance until the temperature drops to Tγ ' mσ and nσ becomes
Boltzmann suppressed. Assuming that the initial dark matter density is negligible and
that back reactions are insignificant due to the smallness of ndm, the relic abundance is
given by [61]

Ωdmh
2 = 4.48× 108 gσ

g∗s
√
g∗

mdm
GeV

mP Γσ→dm+dm
m2
σ

, (1.2.35)

where gσ counts the intrinsic degrees of freedom of the field σ, g∗ and g∗s are evaluated
at Tγ ' mσ and Γσ→dm+dm is the decay width. The FIMP couplings required to produce
the correct relic abundance are O(8) magnitudes smaller than the weak-scale couplings
of WIMPs [55]. Indeed, these couplings are sufficiently small to be compatible with
the central freeze in assumption, that is that dark matter has not thermalised with the
visible sector at Tγ > mσ. Alternatively, freeze in can proceed via annihilation, i.e. by
the process σ + σ → dm + dm. In this case, the relic abundance is established when
max (mdm,mσ) /Tγ ∼ O(1).

Yet another option is the entirely non-thermal production of a very light scalar or pseudo-
scalar particle from the misalignment mechanism [62–64]. In the early universe, the
equation of motion for such a field ϕ with mass mϕ is [65, 66]

ϕ̈+ 3H ϕ̇+m2
ϕ ϕ = 0 , (1.2.36)

and its solution breaks into two regimes. At early times, when H � mϕ, ϕ is constant.
Later, when the Hubble rate and mϕ become of the same order, Eq. (1.2.36) describes a
damped, harmonic oscillator. In this regime, the energy density stored in the coherent
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oscillations of ϕ precisely behaves like dark matter

ρϕ(a) '
m2
ϕ ϕ

2
ini

2

(
aosc
a

)3
, for a > aosc , (1.2.37)

where aosc is defined from mϕ = H(aosc). The dark matter abundance depends on the
initial value ϕini ' ϕ(aosc) which, in many cases, is a random value between 0 and 2π. Dark
matter production from misalignment is entirely non-thermal and does not rely on any
couplings between dark matter and the visible sector. The canonical example for such a
dark matter candidate is the QCD axion [67–69], whose mass exhibits an extra temperature
dependence such that oscillations in the axion field commence when Tγ ∼ 1 GeV. Axions
with masses in the ballpark of O(1)µeV to O(100)µeV could naturally account for all
observable dark matter [19]. For more general models of axion like particles and fuzzy dark
matter [70], masses as low as 10−21 eV are viable [71]. Because the misalignment effect
produces a dark matter population with extremely small velocity dispersion, the warm
dark matter mass bound of Eq. (1.2.34) does not apply in this case.

Beyond the baseline mechanism outlined here, a large variety of more complex scenarios
exists. So are the freeze out predictions modified if the dark matter particle has significant
self-couplings [72–74]. In dark freeze out, as another example, an extended dark sector
is populated in a freeze in manner, thermalises within itself and, eventually, dark matter
freezes out from the dark sector [75, 76]. The similarity between the baryon and dark
matter abundances motivate to consider the production of dark matter from an initial
asymmetry [77, 78]. Sterile neutrinos in the keV mass range can be produced either by
freeze in or freeze out and explain the small neutrino masses observed in the Standard
Model simultaneously with the dark matter abundance [79]. Alternatively, there is the
possibility that dark matter emerges during reheating from inflaton decay [80].

1.2.5 Recombination

Compton scattering between photons and electrons is effective while the photon tempera-
ture exceeds the binding energy of hydrogen, BH = 13.6 eV, and the large photon to baryon
ratio (c.f. Eq. 1.2.24) ensures that every neutral hydrogen atom is immediately ionised
by a high energy proton. Meanwhile, electrons and the other baryons, namely protons,
helium and small abundances of other light isotopes, are tightly coupled by Coulomb
interactions. Only when the temperature has decreased sufficiently, neutral hydrogen can
form during the epoch of recombination. As the abundance of free electron decreases,
Compton scattering becomes less effective and photons decouple from baryons.

To predict the time of recombination, we neglect helium, which contributes about one in
ten nuclei. Charge neutrality of the universe implies that the number densities of free
electrons and protons equal each other. Thus, the free electron fraction is [21]

Xe ≡
ne

ne + nH
= np
np + nH

. (1.2.38)



1.2. Cosmological history 35

While the process of hydrogen formation, e− + p↔ H + γ, is in thermal equilibrium, the
free electron fraction obeys the Saha equation [21,29]

1−Xeq
e

(Xeq
e )2 = 4

√
2 ζ(3)√
π

ηb

(
Tγ
me

)3/2
e
BH
Eγ . (1.2.39)

The Saha equation correctly predicts the temperature at recombination T∗ by which anO(1)
fraction of electrons is confined in neutral hydrogen. The smallness of ηb in Eq. (1.2.39)
leads to a significant delay of recombination, and T∗ ' 0.3 eV is much smaller than the
hydrogen binding energy. However, the equilibrium assumption eventually breaks down
and Eq. (1.2.39) can not reliably evolve Xe further. Rather, the Boltzmann equations for
the coupled system of baryons and photons need to be solved numerically [81–83]. The full
numerical treatment shows that the free electron fraction drops very quickly from unity
to 10−3, implying a steep decrease in the rate for photon-electron scattering,

Γγ−b = ne σT , (1.2.40)

where σT = 1708.36 GeV2 is the Thomson cross section [19, 29]. As a consequence, the
photon scattering rate drops below the Hubble rate and the universe becomes transparent to
radiation. The free streaming photons have an almost perfect black body spectrum, which
is redshifted by the expansion of the universe [51, 84], and comprise the cosmic microwave
background [85, 86]. The COBE/FIRAS measurement of the CMB temperature [87]
determines its present-day value as

TCMB = (2.7255± 0.0006) K , (1.2.41)

and confirm the black body nature of the CMB spectrum. The CMB temperature is
remarkably uniform over the whole sky and exhibits only small anisotropies at the level
of ∆T/T ∼ 10−5 [20], which originate from inflationary perturbations. Temperature and
polarisation anisotropies in the CMB are a powerful test of the ΛCDM model [15] and
further discussed in Sec. 2.3.

1.2.6 Structure formation

The cosmic large-scale structure, the galaxies, clusters, voids and filaments, originates
from small inflationary density perturbations. After inflation, their wavelength exceeds the
Hubble radius and fluctuations are frozen, but they start to evolve as they regain causal
contact during the matter- and radiation-dominated epoch. Then, pressure and the cosmic
expansion act to decrease δ, while it is enhance by self-gravity [21]. The combination of
these competing forces determines the evolution of density perturbations, which differs
considerably between species.

Scales which enter the horizon before electroweak decoupling are observationally not acces-
sible. Thus, in the context of structure formation, neutrinos are described as relativistic,
free streaming particles at early times. At late times, the neutrino mass has to be accounted
for, we postpone the discussion of its effect to Sec. 6.2.3. Their large velocity dispersion
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enables free streaming neutrinos to escape from overdense regions, and perturbations in
the neutrino density decrease by free streaming damping [29,88].

Dark matter is completely collisionless as well and, under standard ΛCDM assumptions,
has a negligible velocity dispersion. Only the cosmological expansion and gravity affect the
evolution of its perturbations. At early times, when radiation dominates the gravitational
potentials and determines the Hubble rate, their growth is slowed down, but it accelerates
during matter domination [89]. While a perturbation is in the linear regime, that is
δ . 0.1 [90], it evolves according to [21]

δdm ∝

ln a radiation domination

a matter domination
. (1.2.42)

Matter-radiation equality, marking the transition between both regimes, occurs slightly
before CMB decoupling at a temperature and redshift of

Teq = 0.77 eV
(

Ωmh
2

0.142

)
, (1.2.43a)

zeq = 3.3× 103
(

Ωmh
2

0.142

)
. (1.2.43b)

Photons and baryons, finally, are tightly coupled before the epoch of recombination. The
pressure support from photons prevents baryon perturbations from growing, even though
baryons are fully non-relativistic. Diffusion between photons and baryons at the time
of last scattering further damps their perturbations, this process is called collisional or
Silk damping [91]. The coupling of baryons and photons, as well as diffusion damping,
have important observable consequences for the CMB anisotropy spectrum and the matter
power spectrum. We further discuss these in Sec. 2.3.1 and Sec. 2.2.1, respectively. After
decoupling, photons free stream, while baryons fall into the potential wells created by dark
matter.

Dark matter overdensities continue to grow until they reach the non-linear regime, δ ∼ 1.
At this point an overdense region separates out from the cosmological expansion, collapses
and virializes to eventually form a halo. Smaller structures enter the Hubble radius earlier
and are the first objects to collapse. As larger scales enter the non-linear regime, the
small halos are merged, and partly destroyed, into bigger ones, and the formation of the
cosmological large-scale structure proceeds in a hierarchical bottom-up way.

The evolution of perturbations in the linear regime, is formally described by the linearised
Einstein and Boltzmann equations, which we derive in Chapter 3. In the non-linear regime,
n-body simulations are a powerful tool, to predict the formation of large-scale structure.
They follow the self-gravitational evolution of a large number of test particles on a comoving
grid. By the time perturbations grow non-linear, their size is much smaller than the Hubble
radius and the gravitational dynamics can be approximated as Newtonian [90].
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1.2.7 The universe at late times

After recombination, when the pressure support from the thermal plasma ceases, neutral
atoms fall in the potential wells of dark matter perturbations and condense. The formation
of early stars requires halo masses around (105 − 107)M�, where M� refers to the solar
mass. Only halos above this threshold can incarcerate gas at temperatures in excess of
1, 000 K [92,93], and therefore star formation is suspended until a redshift of ∼ 70. After
decoupling, the CMB is soon redshifted to near infrared wavelength, and the universe
enters the so-called dark ages, where there is no source of light in the visible spectrum in
the universe.

The modest energy injection from early stars reionises only a small fraction of the cosmo-
logical helium abundance [94,95]. The first galaxies, formed abundantly in halos of masses
& 108M� around z ∼ 10, can harbour more substantial star formation rates [96,97]. They
most likely drove the ionisation of the intergalactic medium (IGM), the non-virialized
matter residing in the voids between galaxies and larger collapsed structures [97,98]. This
late-time reionisation is evident from the CMB, where it suppresses temperature fluctu-
ations but generates polarisation anisotropies at small scales. A simple, one parameter
description suffices to characterise the effect of reionisation, it is given by the optical depth
to Thomson scattering from reionisation [4, 98]

τre = (nH,0 + np,0) c σT

∫ zmax

0
dz Xe(z)

(1 + z)2

H(z) , (1.2.44)

where (nH,0 + np,0) is the total number density of hydrogen nuclei today and zmax labels
some early time, before the onset of reionisation, when the free electron fraction Xe is
negligible.

Measurements of the spectra of very distant supernovae [99–101] allow to extend the
Hubble diagram beyond the simple proportionality law of Eq. (1.1.11). They reveal that
the expansion of the universe is accelerating. Furthermore, the CMB anisotropy spectrum
strongly favours a flat universe [102, 103], yet the mass inferred from gravitational lensing
[104] and X-ray surveys [53, 54] only accounts for ∼ 30% of ρcrit [19]. A straightforward
way to explain the accelerated expansion and the missing energy density is the introduction
of a dark energy component with constant energy density ρΛ wΛ = −1 as in Eq. (1.1.7).
This assumption, comprised in the ΛCDM model, implies that the transition from matter
to dark energy domination occurred very recently, at a redshift of

zΛ = 0.764
( ΩΛ

0.962

)1/3 ( Ωm
0.308

)−1/3
− 1 , (1.2.45)

where Ωm is the fractional energy density of all non-relativistic matter. However, the
required value of ρΛ is hard to motivate, and at least 1015 times smaller the vacuum energy
density predicted from Standard Model quantum effects [19,105]. There is also room for
a time-varying dark energy component, any equation of state with w < −1/3 results in
an accelerated expansion according to Eq. (1.1.5). Alternatively, modifications to general
relativity can accommodate the acceleration [106].
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1.3 The cosmological standard model

The ΛCDM model summarises the cosmological history outlined in the previous section
and successfully describes the observational data available at present. It is based on the
presumption that general relativity is an adequate description of gravity, that the universe
is spatially homogeneous and isotropic and that it has negligible curvature. Accordingly,
the Friedmann-Robertson-Walker metric (Eq. (1.1.2)) with k = 0 describes the universe’s
geometry and its evolution is governed by the Friedmann equations (1.1.4) and (1.1.5).
Several different species contribute to the total energy density, and those relevant to
describe current observations are:

• Dark energy, with a constant equation of state.

• Dark matter, which is stable, pressureless and has only gravitational interactions.

• Baryonic matter, to which electrons, protons, neutrons and nuclei contribute, with
the primordial helium fraction set by Big Bang Nucleosynthesis.

• The CMB photons. Their temperature can be measured directly to accurate precision
and without dependence on any further cosmological parameters [87]. In the baseline
scenario it is fixed to TCMB = 2.2755 K.

• Three light Standard Model neutrino species. At first order, cosmology is only
sensitive to the sum of their masses [107,108]. In the baseline scenario this is fixed
to the minimum value required by neutrino oscillations, which, assuming a normal
hierarchy, is ∑mν = 0.06 eV.

An early inflationary epochs provides small, adiabatic, Gaussian density perturbations
with a near scale-invariant primordial spectrum. The cosmic large-scale structure grows
from these fluctuations by gravitational instability. Inflation also predicts the existence
of tensor perturbations, but at the present a scalar-to-tensor ratio of r = 0 provides an
excellent fit to the data available. After inflation, reheating restores thermal conditions,
and light elements form during Big Bang nucleosynthesis. Neutrinos decouple from the
thermal plasma when Tγ ∼ 1 MeV and at T∗ ' 0.3 eV neutral hydrogen forms and photons
decouple. At later times the first galaxies reionise the intergalactic medium.

Notably, under the assumption of a ΛCDM cosmology, six free parameters suffice to
characterise cosmological observations. For many purposes it is convenient to introduce
the dimensionless Hubble constant h

H0 = 100× h km
Mpc s . (1.3.1)

A common set of parameters, convenient in the description of observations, is [4]

Ωdmh
2 , Ωbh

2 , ln
(
1010As

)
, ns , τre , 100 θ∗ , (1.3.2)
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where Ωdm and Ωb refer to the energy density in baryons and dark matter normalised to
ρcrit, c.f. Eq. (1.1.12). Two parameters, As and ns, describe the spectrum of inflationary
perturbations as defined in Eq. (1.2.4), and τre gives the optical depth to Thomson scatter-
ing from reionisation (1.2.44). Finally, θ∗ is the angular scale of the acoustic oscillations,
which specifies the position of the CMB acoustic peaks. It is determined by the comoving
sound horizon at recombination rs (z∗) and the comoving angular diameter distance to
recombination DM(z∗) [109]

θ∗ = rs (z∗)
DM(z∗)

, (1.3.3)

where z∗ is the redshift of recombination. The sound horizon follows from the sound speed
of the baryon-photon plasma cpl (see Eq. (2.2.2))

rs (z) '
∫ t(z)

0
dt cpl(t) . (1.3.4)

The angular diameter distance relates the size of an object at redshift z to the sky angle
it subtends

DM (z) =
∫ 1

a(z)

da′

a′2H(a′) . (1.3.5)

Further cosmological quantities of interest, e.g. H0, ΩΛ or the redshift of reionisation zre,
are completely determined by the parameters in Eq. (1.3.2). Another derived parame-
ter, important in the context of structure formation, is the root mean square of density
fluctuations today on a scale of R = 8 Mpc/h, defined as [109]

σ2
8 =

∫
dk

k
∆2

s (k)
(3j1 (k R)

k R

)3
, (1.3.6)

where ∆2
s is the dimensionless, linear matter power spectrum at z = 0 and j1 refers to the

spherical Bessel function of first order.

The baseline ΛCDM scenario, outlined here, is the same as assumed by the Planck collab-
oration [4, 109]. Its underlying assumptions have been extensively scrutinised. Amongst
the most familiar extensions to the ΛCDM model are:

• Departures from the dynamics predicted by general relativity.

• Modifications to the spectrum of inflationary perturbations, such as non-Gaussianities,
isocurvature perturbations and a running of the spectral index ns. Actually, latter
is implied by slow-roll inflation, but, due the smallness of ns, present data is well
described assuming an entirely scale-invariant spectrum.

• The introduction of spatial curvature, parameterised by Ωk = 1 −∑i Ωi, where i
labels matter, radiation and vacuum energy.

• Modifications to the dark energy equation of state, i.e. wΛ 6= 1, or a time varying
equation of state wde (a) = wde,0 + (1− a) wde,a [4].

• Non-minimal neutrino masses, i.e. ∑mν 6= 0.06 eV.
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• Additional radiative degrees of freedom, that is Neff 6= 3.046.

• Relaxing the assumption that dark matter has zero pressure. This is, for example,
the case for warm dark matter or fuzzy dark matter.

• Allowing for dark matter self-interactions, dark matter annihilation, extended dark
matter sectors or scattering between dark matter and Standard Model particles.

In the following Chapter, we summarise the observational status of the ΛCDM model,
discuss how the baseline parameters are determined from observations, and what freedom
remains on possible extensions of the ΛCDM scenario.



Chapter 2

Observational status of the cosmological standard
model

The past decades have seen a tremendous progress in observational cosmology, and to date
five of the six free parameters in Eq. (1.3.2) are measured to better than 1% accuracy [15].
Importantly, cosmological observations cover a wide range of redshifts and scales, so that
complementary probes allow for consistency checks and can reveal potential tensions. Here,
we give a brief overview of the observational status of the ΛCDM model.

2.1 Direct measurements of the Hubble constant

The Hubble diagram [16] provides the most direct evidence of the cosmic expansion.
For its determination, the luminosity distance and the redshift of distant astrophysical
sources, such as galaxies, clusters, supernovae and quasars need to be measured. While the
latter – an accurate determination of the redshift – is rather straightforward [21], distance
measures are challenging and often afflicted with systematics. In the following we explain
three possibilities to directly measure the expansion rate, the distance ladder, time delay
strong lensing and from gravitational waves.

2.1.1 The distance ladder

One of the most reliable methods to measure the Hubble constant directly is by the
distance ladder, which was key motivation for the NASA/ESA Hubble Space Telescope
(HST) [110]. The approach uses Cepheid variable stars, whose intrinsic brightness is tightly
related to their luminosity period [111], to calibrate secondary distance measures. Amongst
these are the lightcurves of type Ia and type II supernovae (SN), the Tully-Fisher relation
and surface-brightness fluctuations. Relying on brighter sources, the secondary distance
measures can extend further out in the Hubble flow [110].

For the most recent study along these lines [112], the SH0ES team uses SN Ia as secondary
distance measurements. Their intrinsic brightness is calibrated from Cepheids in the
supernova’s host halos, observed at distances up to 40 Mpc. At the near end, the ladder is
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completed by establishing the distance to Cepheids in the Large Magellanic Cloud from
measurements of 20 detached eclipse binaries (DEBs) [113]. This yields, as best estimate
of the Hubble constant [112],

HSNIa
0 = (74.03± 1.42) km Mpc−1 s−1 , (2.1.1)

and reduces uncertainties by 15% with respect to the previous best estimate [114] based
on the distance ladder.

2.1.2 Time delay strong lensing

An alternative approach for the determination of H0, completely independent of the
distance ladder, is to measure the time-delay of strongly lensed images [115]. The lensed
image of a source β experiences a time delay with respect to the unperturbed path, which
depends on the redshift of the deflector zd and the time delay distance D∆t. The rays
which create multiple lensed images, θi, experience different path lengths and gravitational
potentials Φ (θi), hence there is a net difference between the image’s time delay

∆tij = D∆t
c

[(
(θi − β)2

2 − Φ(θj)
)
−
(

(θj − β)2

2 − Φ(θj)
)]

. (2.1.2)

This difference can be measured, for a variable source, by time monitoring the individual
image’s brightness [116]. The time delay distance is a combination of angular diameter
distances to the deflector Dd, to the source Ds and between the source and the deflector
Dds,

D∆t = (1 + zd) DdDs
Dds

. (2.1.3)

Because D∆t ∝ H−1
0 [117], the Hubble constant can be inferred from measurements of the

time delay.

Quasars are suitable sources for time delay strong lensing due to their brightness and
variability. To establish accurate time delays requires the long-term monitoring of a
sufficiently sized sample. Further, deep, high resolution imaging of the lens is needed for
a reliable model of the deflector, as well as a measurement of the lens galaxy’s velocity
dispersion. Finally, the mass distribution along the line of sight needs to be characterised
[117,118].

For the most resent H0LiCOW result [118], six strongly lensed quasars are analysed. A sub-
stantial data set provides the required information to characterise the systems, it contains
time delay measurements of the COSMOSMOGRAIL collaboration [119], radio monitoring
of the source, deep imaging by the Hubble Space Telescope and with ground based adaptive
optics, spectroscopic data of the lens galaxy to estimate its velocity dispersion along with
deep wild field spectroscopy to characterise the line of sight. The data allows for a 2.4%
determination of the Hubble constant

HTDSL
0 =

(
73.3+1.7

−1.8

)
km Mpc−1 s−1 , (2.1.4)
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Time delay strong lensing is primarily sensitive to H0, but can, considering departures
from the ΛCDM baseline model, also constrain the spatial curvature or the dark energy
equation of state. In combination with other data sets, in particular with the CMB and
baryon acoustic oscillations discussed below, its high complementarity allows to break
degeneracies [118]. Finally, a sample of ∼ 40 strongly lensed quasars would allow to
determine H0 to ∼ 1% accuracy, which is feasible in the near future [118].

2.1.3 Gravitational waves as standard sirens

Gravitational waves, detected recently by LIGO [120] and VIRGO [121], can serve as
standard sirens, and it is possible to extract the distance to an event directly from the
gravitational wave signal [122–126]. Still, for a determination of H0, the event’s redshift
is required. In the case of the neutron star merger GW 170817 [127], the observation
of its electromagnetic counter-part allowed to identify NGC 4493 as host galaxy of the
event. Black hole mergers, on the other hand, are not accompanied by an electromagnetic
signal. Even without the unique identification of the host halo, H0 can be determined
statistically, considering a potential set of hosts from galaxy catalogues [122]. Such an
approach requires ∼ 100 gravitational wave events for a ∼ 5% measurement of the Hubble
constant [128].

The combined analysis of GW 170817 and 5 black hole mergers from the first and second
LIGO/VIRGO observing run gives [129]

HGW
0 =

(
68+14
−7

)
km Mpc−1 s−1 , (2.1.5)

and improves the result based on GW 170817 only [18] by about 7%. Although consistent
with the distance ladder and time delay strong lensing, the measurement exhibits consider-
ably larger error margins. However, gravitational wave measurements of H0 are still at an
early stage, and upcoming observing runs, with improved detector sensitivity and higher
event rates, are expected to improve the constraint [129].

2.2 The universe’s large-scale structure

While the observations discussed previously probe the homogeneous universe, perturbations
around this background contain a wealth of information. In this section, we consider
perturbations in the matter content – the large-scale structure of the universe – from
which cosmological parameters can be inferred and the ΛCDM mode can be checked for
its consistency. Anisotropies in the CMB are then considered in Sec. 2.3

2.2.1 Cosmological matter distribution

Density perturbations remain Gaussian while they evolve in the linear regime and then
are fully characterised by their two-point correlation function. We derive the formalism
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Figure 2.1: The power spectrum of density perturbations at z = 0. The baseline scenario
assumes a ΛCDM cosmology and ∑mν = 0.06 eV, while the heavy neutrino example
considers ∑mν = 0.40 eV. Non-linear corrections are shown for the baseline scenario only.

to predict the matter power spectrum in the linear regime – the linearised Boltzmann-
Einstein equations – in Chapter 3. Importantly, within the baseline ΛCDM model, the
matter power spectrum is entirely determined by the six free parameters of Eq. (1.3.2).
One realisation, which assumes the Planck 2018 central values from Tab. 2.1, is shown in
Fig. 2.1. Scales smaller than ∼ 10 Mpc have entered the non-linear regime and non-linear
corrections are represented by the green, dashed line in Fig. 2.1. However, the accurate
predictions of non-linearities requires numerically-expensive n-body simulations. Often,
it is practical to extrapolate the linear evolution until the present epoch, and to work
in terms of the linear matter power spectrum at z = 0, represented by the black line
in Fig 2.1. Observations at different scales and redshift can then be projected onto the
extrapolation [130]. Several features in the matter power spectrum, detailed below, are
sensitive to cosmological parameters and the properties of dark matter.

Large scales enter the Hubble radius after matter-radiation equality and then grow propor-
tional to the scale factor. Here, the primordial spectrum is translated into an approximate
P (k) ∝ k scaling at the present epoch. Before matter-radiation equality, however, the
growth of perturbations is retarded according to Eq. (1.2.42), and a mode receives the
more suppression, the earlier it enters the Hubble radius. Consequently, on small scales
the matter power spectrum is a decaying function of the wavenumber [21]. The presence
of these two regimes is called Meszaros effect [89], and a turnover in the matter power
spectrum marks the transition between them. It occurs precisely at the scale which entered
the horizon at matter-radiation equality,

keq =
√

2 πH0
Ωm√

Ωr
= 0.032

(
Ωm h

2

0.1408

)
Mpc−1 , (2.2.1)

where Ωr refers to the total contribution of radiation to the critical energy density.

The baryon contribution to the total matter density imprints a distinct feature on the



2.2. The universe’s large-scale structure 45

matter power spectrum, called baryon acoustic oscillations (BAO). Prior to recombination,
baryons and photons form a tightly coupled plasma. Density perturbations excite sound
waves in the baryon-photon plasma, which propagate at the plasma’s sound speed [131],

c2
pl =

[
3
(

1 + 3 ρb
4ργ

)]−1

. (2.2.2)

The phase of the oscillations at the time of decoupling is frozen into the baryon perturba-
tions as well as the CMB anisotropies, for the latter see Sec. 2.3. The baryon scattering
rate is

Γb−γ = Rγb Γγ−e = 3 ρb
4 ργ

ne σT , (2.2.3)

and differs from the photon scattering rate by a momentum conserving factor Rγb =
(3 ρb) / (4 ργ). Thus, baryon decoupling at a redshift of zdrag is slightly delayed with respect
to recombination [132]. Close to last scattering, photons diffuse from overdense regions
and later free stream, dragging along the baryons. This process, called Silk damping [91],
decreases the magnitude of baryon perturbations on small scales. After the end of the drag
epoch, baryons evolve as non-relativistic matter, and their oscillations lead to a contrast
in the present-day matter power spectrum at the level of 10% [133,134].

The observation of baryon acoustic oscillations on top of a smooth spectrum affirms the
growth of density perturbations prior to recombination, and is a further indicator for the
existence of dark matter [133]. The characteristic scale of the oscillations is set by the
sound horizon (1.3.4) at baryon decoupling rs (zdrag), and provides a “standard ruler”,
a sharp length scale whose comoving size is known accurately [135]. The baryon sound
horizon can be obtained to good precision from the CMB, current observations giving
rs = (144.43± 0.26) Mpc [4], and is well separated from non-linear scales [136]. This
makes theory predictions very robust, but extracting the weak BAO signal at such a large
scale requires huge survey volumes [137]. From measurements of the acoustic scales at
varying redshifts one can infer the angular diameter distance DA(z) and the Hubble rate
H(z) and hence track the expansion history of the universe. Considering the Ly-α forest
(Sec. 2.2.3) and galaxy clustering (Sec. 2.2.2), the BAO feature can be tracked over a
redshift range of 0 < z < 2.5 [15], with the best current measurements of the BAO feature
being given by the BOSS survey [138]. At low redshifts, z . 0.5, the BAO probe of
the expansion history is complementary to SN type Ia observations. At larger redshifts,
however, the technique is especially powerful in probing the cosmic geometry and the
nature of dark energy. In particular, BAO observations break degeneracies when analysed
jointly with CMB data sets [15].

Proceeding to small scales, a cut-off of non-gravitational origin is expected in the matter
power spectrum [90]. Its observation would advance the understanding of the particle
nature of dark matter significantly but is difficult due to the small scales involved. For
example suppresses the free streaming of warm dark matter perturbations below the free
streaming scale [139, 140] and imposes the bound in Eq. (1.2.34). WIMP dark matter
remains kinetically coupled the the Standard Model plasma even after chemical decou-



46 Chapter 2. Observational status of the cosmological standard model

pling established the relic abundance via the freeze out mechanism. In this case, elastic
scattering and, after kinetic decoupling, free streaming prevents the growth of small scale
perturbations [141]. For neutralino dark matter, a candidate motivated by supersymmetry,
the possible cut-off scale ranges from 10−11M� to a few times 10−4M� [142]. The cut-off
can be even smaller if dark matter is produced by the misalignment mechanism and set
by the Hubble radius when the field commences to oscillate. For the classical QCD axion,
halos as small as 10−12M� are viable [143–146]. Very light misalignment candidates,
on the other hand, experience a suppression of perturbations below their present-day de
Broglie wavelength [70].

Heavy neutrinos, finally, imprint a characteristic cut-off scale (c.f. Eq. (6.2.6)) on the
matter power spectrum as well, followed by a small suppression of power with respect
to the case of massless neutrinos. The decrease, whose physical origin is discussed in
Sec. 6.2.3, can lie between a factor of 0.04 to 0.08 for viable neutrino masses.

2.2.2 Galaxy surveys

Because the bulk of cosmic matter is dark and not directly observable by telescopes,
probing the matter distribution observational is not straightforward. One approach is to
infer the total matter power spectrum from the clustering of luminous tracers, such as
galaxies. However, galaxies do not follow the underlying matter distribution perfectly [147],
but experience a so-called galaxy bias [19,148].

On the largest cosmological scales, where perturbations are linear, a scale-independent,
deterministic bias model applies. The number density of tracers, nt, follows the distribution
of matter except for a constant linear bias parameter bt and

δt (x) ≡ nt (x)
〈nt〉

− 1 = bt δ (x) . (2.2.4)

In general, however, the bias is scale dependent and stochastic. If not accounted for cor-
rectly, it can introduce systematic effects in the determination of cosmological parameters
from redshift surveys [149]. In comparison to cosmologies with massless neutrinos, neutrino
masses introduce and additional, scale dependent bias [150]. This scale dependence can be
neglected in the analysis of current surveys, but it is important for future observations [151],
especially when the signatures of non-zero neutrino masses are targeted [152–154].

The halo bias is important for the comparison between galaxy surveys and n-body sim-
ulations, and without it the two produce inconsistent results [155]. It can be studied
theoretically from simulations of galaxy formation [156]. For its experimental determina-
tion, modern surveys consider higher order correlation functions [157–160] and observations
of weak lensing [161].

2.2.3 The Lyman-α forest

The light emitted by distant quasars traverses neutral hydrogen clouds along the line
of sight. Ly-α absorption in these clouds and the subsequent redshift of the spectrum
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produce a set of absorption lines blueward of 121.6 (1 + zs) nm, where zs is the source’s
redshift. Because the gas largely traces the underlying matter distribution [162], the
so-called Ly-α forest is sensitive to the matter power spectrum.

The probability for Ly-α absorption at redshift z, P = exp (−τLy-α ), is determined by the
optical depth [98]

τLy-α = 1.3 ∆b

(
XHI
10−5

) (1 + z

4

)3/2 ( dv/dz

H(z)/(1 + z)

)−1
, (2.2.5)

where ∆b is the baryon density in units of the cosmic mean, XHI the neutral hydrogen
fraction and dv/dz the line of sight velocity gradient of the gas. Ly-α observations are
particularly sensitive for 2 . z . 5. In this range, the line has redshifted to the optical
range and a large abundance of bright quasars permits high signal to noise observations.
Further, the density and ionisation state of the intergalactic medium at those times provide
ideal sensitivity for gas densities close to the cosmic mean [98].

The Ly-α forest probes smaller scales than galaxy surveys and the CMB. These are of a
few Mpc and fall into the mildly non-linear regime, where no reliable analytic models are
available. Instead, cosmological simulations are used to predict the matter power spectrum
and to relate the baryon distribution to inhomogeneities in the total matter abundance [98].
Analyses commonly consider the Ly-α line of sight power spectrum

PLy-α (k) ≡ L−1
LOS |δF(k)|2 (2.2.6)

where LLOS is the length of the sight line and δF(k) the Fourier transform of the transmis-
sion overdensity at a position x, i.e. δF(x) = (F (x)/ 〈F (x)〉) − 1. At high wavenumbers
PLy-α (k) is sensitive to the small-scale smoothing of the gas and can probe the gas temper-
ature or constrain models of warm dark matter [60]. Low wavenumbers, on the other hand,
are complementary to probes at larger scales and sensitive to the large-scale structure
of dark matter. The Ly-α power spectrum alone constraints Ωm, ns and σ8 to better
than 10% precision [163]. The BAO feature can also be extracted from the correlation of
Ly-α absorption lines. Assuming a ΛCDM cosmology, the BAO measurement of eBOSS
at z = 2.34 is consistent with results from the CMB [164].

2.2.4 Cosmic shear

Associated with the cosmic large-scale structure is a tidal field, which acts as gravitational
lens on the light emitted by distant galaxies and distorts their shapes. In contrast to
galaxy surveys and Ly-α observations, gravitational lensing is sensitive to the total mass
along the line of sight. Thus, it directly probes the total matter distribution, rather than
inferring it from baryons [147, 165]. Because the distortions caused by lensing are small,
on the order of a few percent, and the intrinsic shape and size of the lensed galaxy are
unknown, the effect is measured statistically, from the correlation between galaxy shapes.
This technique is called “cosmic shear” or “weak cosmological lensing” [166].
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Major complications in the cosmological interpretation of the lensing signal arise because
the bulk of statistical power stems from significantly non-linear scales [4], and because not
only weak lensing affects the galaxy correlation function but also the intrinsic alignment
between galaxies and their surrounding potentials [167]. The modelling of this shape noise,
for example, significantly affects the results of the Kilo-Degree Survey (KiDS) survey [168].

Cosmic shear is sensitive to the clustering of matter over a wide range of scales, from the
highly non-linear sub-Mpc regime to several hundreds of Mpc [166]. Further, it probes the
time evolution of perturbations if the source galaxies are divided into redshift bins [169].
In the context of the canonical ΛCDM model, weak lensing is sensitive to Ωm and σ8, and
in particular to the combination σ8 Ωα

m where α ' 0.5−0.7. It constrains the gravitational
potentials at a lower redshift than the CMB and hence offers a complementary probe.
Further, CMB lensing and cosmic shear probe orthogonal directions in the Ωm-σ8 plane,
and the combination of both significantly reduces degeneracies [170]. Beyond the ΛCDM
model, weak lensing is of particular importance studies of to the dark energy equation of
state and models of modified gravity, both of which predict modifications to the late-time
growth of matter perturbations [171].

The Hubble Space Telescope Cosmic Evolution Survey (COSMOS) [172] obtained the
shapes of half a million galaxies, whose analysis reveals overdense regions, which are
insufficiently dense to generate X-ray emission. The observed filaments, objects which
have gravitationally collapsed along two axes [173], resemble very well the predictions from
n-body simulations of structure formation [174]. More recently, the Dark Energy Survey
(DES) [175] observed 26 million galaxies at redshift 0.2 ≤ 1.3 over a sky area of 1321 deg2.
Cosmic shear alone constrains the amplitude of matter perturbations, parameterised by
S8 ≡ σ8 (Ωm/0.3)0.5, to [176]

SDES−shear
8 = 0.782± 0.027 at 68% C.L. , (2.2.7)

assuming a ΛCDM cosmology with unknown neutrino masses. To tightly constrain the dark
energy equation of state, DES considers several additional probes, namely the lightcurves of
type Ia supernovae, baryon acoustic oscillations and galaxy clustering. Their combination,
again not assuming a specific value for ∑mν, yields [177]

SDES ,wCDM
8 = 0.786+0.029

−0.019 , wDES ,wCDM
Λ = −0.80+0.09

−0.11 at 68% C.L. (2.2.8)

2.2.5 Discrepancies at small scales

The ΛCDM model describes the distribution of matter in the universe remarkably well
over a wide range of scales, from the cosmic horizon (∼ 15, 000 Mpc) at largest down to the
typical spacing between galaxies (∼ 1 Mpc) [155,178]. The lower end of this range already
is deeply in the non-linear regime, where predictions are obtained from numerical n-body
simulations. Proceeding to even smaller scales, high resolution simulations of Milky Way
sized halos [179–183] predict the existence of dark matter clumps at all resolved masses.
Comparing the abundance and structure of these predicted small-scale halos to observed



2.2. The universe’s large-scale structure 49

dwarf galaxies reveals several discrepancies, which are commonly summarised as small
scale crisis [178]. Amongst these issues are the missing satellite problem [184, 185], the
cusp-vs-core problem [186,187] and the too-big-to-fail problem [188].

The missing satellite problem addresses a mismatch in the abundance of substructures in
Milky Way sized halos. While simulations predict the existence of O(103) subhalos with
masses in principle large enough to support stellar cooling, only ∼ 50 satellite galaxies are
known in the Milky Way and only ∼ 30 for Andromeda [189]. Investigating the structure
of small dark matter halos itself, the cusp-vs-core problem arises. In simulations, their
density profiles are of the form ρ (r) ∝ r−γ with γ ' 0.8− 1.4 [190] and display a central
cusp. In contrast, most galaxies in low-mass, dark matter-dominated halos with well
measured rotation curves prefer a cored profile with γ ' 0 − 0.5, see e.g. [191]. As a
closely related issue, simulations also prefer a lower central density as observed in satellite
galaxies [192,193]. The mismatch in the total mass of dwarf galaxies and its first derivative,
the density profile, might likely be of common origin and is often discussed jointly [178].
Finally, the most massive subhalos in simulations have systematically higher central density
than the brightest Milky Way dwarf galaxies [188, 194]. Although subhalos with masses
matching the brightest Milky Way dwarfs exist in simulations, these never are amongst the
∼ 10 most massive [178]. Why those less massive halos should have formed galaxies when
the heavier ones failed to is unclear. The mismatch, dubbed too-big-to-fail-problem, has
also been observed for Andromeda satellites [195], dwarf galaxies in the Local Group [196]
and more isolated low-mass galaxies [197,198].

The small scale problems provide motivation to consider alternatives to the paradigm of
collisionless, pressureless dark matter. However, given the huge success of ΛCDM on large
scales, any viable solution should behave as cold dark matter there. For example, the
matter power spectrum of warm dark matter exhibits a cut-off at small scales. Because
structure formation proceeds in a hierarchical, bottom-up manner, the truncation’s impact
extends to halos which are 2 - 3 orders of magnitude heavier than the free streaming
scale. These exhibit a reduced central density, which helps to alleviate the too-big-to-
fail problem [199]. Dark matter scattering with Standard Model particles beyond the
kinetic decoupling time implied by WIMP models has a similar effect [200–202]. And dark
matter self-interactions in virialized halos can transfer kinetic energy from high- to low-
velocity particles, which heats the central part of the halo and reduces the density [203,204].
Simulations with self-interacting dark matter (SIDM) [205–208] suggest an interaction cross
section around σdm−dm/mdm = (0.5− 10) cm2/g to alleviate the cusp-vs-core and the too-
big-to-fail problem [178], but substructure counts remain nearly identical to collisionless
dark matter [209]. In contrast to this value, the high central density of galaxy clusters
limits the dark matter self interaction cross section to σdm−dm . 0.5 cm2/g. One possibility
to solve small scale discrepancies with self interacting dark matter and simultaneously
accommodate the constraints from clusters, are models with an velocity dependent cross
section, which decreases for higher velocities.

Despite the existence of many beyond-ΛCDM solutions to the small scale problems, it
is noteworthy that hard to model baryonic processes can significantly alter predictions
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for the shape and observability of dark matter halos. Indeed, there exist well motivated
solutions to the small scale problems, which require no modifications to the ΛCDM premise.
The heating of the intergalactic medium by reionisation can inhibit galaxy formation in
small mass halos [210–212], and these truly dark objects would go undetected in surveys.
In combination with a careful consideration of the luminosity bias [213], this mechanism
settles the missing satellite problem [178,214]. Baryonic feedback can erase central cusps
and create cored density profiles in halos with suitable star formation [215,216]. If the star
formation rate is too low, there is not enough energy release from supernovae to significantly
alter the density profile. In contrast, for a too high star formation rate, the excess central
mass can compensate outflows and drag dark matter back in [217, 218]. Several groups’
simulations indicate that baryonic feedback is efficient in producing cores in halos with a
viral mass above 1010M� (or a stellar mass above 106M�). Still, these solutions are not
ab initio ΛCDM predictions and depend on various adopted parameters for the modelling
of galaxy formation [178]. The situation is more complicated in case of the too-big-to-fail
problem. Only about half the observed dwarfs are above the threshold where baryonic
feedback induces cores. Several environment dependent feedback mechanism, e.g., tidal
stripping, disk shocking and ram pressure stripping, can be effective within a few viral
radii of the host galaxy. If those are key factors in setting the central density of small halos,
satellites should differ systematically from field galaxies [219–226], but no such dependence
has been detected yet [196]. Other environmental effects, like cosmic web stripping, are
effective over larger distances but still can not explain the too-big-to-fail problem in field
galaxies [227]. Finally, the discrepancy could be afflicted by observational systematics,
and there is a number of factors which affects the conversion between the observed HI line
width and the underlying gravitational potential [228].

At present, the question to what extent small scale discrepancies challenge the ΛCDM
paradigm is still open. Further progress is possible from a more complete understanding of
the observational samples, searches for dark matter halos with masses below the threshold
for galaxy formation or the characterisation of central structures in very faint objects.
Meanwhile, given the absence of a dark matter signal in direct detection, indirect, astro-
physical evidence provides the strongest clues about the nature of dark matter. It seems
important to take astrophysical discrepancies seriously and explore all possible theoretical
solutions [178].

2.3 The cosmic microwave background

Thermal relic photons, which free stream from the epoch of recombination, constitute the
cosmic microwave background. Historically, the CMB discovery [85,86] played key role in
establishing acceptance for the hot Big Bang model. Its temperature (1.2.41) and spectrum
was measured precisely, most recently by the COBE/FIRAS experiment [87], and closely
follows the expected black body shape. The absence of spectral distortions [229] puts tight
constraints on energy injection into the photons, e.g. from dark matter annihilation or
decay, at redshifts z . 2× 106 [230].
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Beyond the homogeneous background distribution, small anisotropies in the CMB tem-
perature and polarisation enable precision tests of cosmology. The fluctuations probe
larger scales and relate to higher redshifts, around the epoch of recombination, than the
previously discussed large-scale structure observations. Governed by linear perturbation
theory, the CMB spectrum can be predicted very precisely, such that five of the six ΛCDM
parameters are constrained with a precision better than 1% from the latest Planck data
release [15].

2.3.1 The temperature autocorrelation spectrum

The CMB exhibits temperature anisotropies on the 10−5 level, which emerge from the ran-
dom inflationary perturbations. As for matter inhomogeneities, the Gaussian fluctuations
are fully characterised by their two point correlation, which diagonalises over the harmonic
domain. To make the transition, the CMB temperature, observed on a sphere as function
of the direction n̂, is expanded in terms of spherical harmonics Yl,m [19]

T (n̂) =
∞∑
l=0

m∑
m=−l

aT
l,m Yl,m (n̂) . (2.3.1)

For a given multipole l, all coefficients aT
l,m are statistical independent, and drawn from a

Gaussian with zero mean and variance [21]〈
aT
l,m

(
aT
l′,m′

)∗〉
= δl,l′δm,m′ CTT

l . (2.3.2)

The angular power spectrum CTT
l encodes all theoretical knowledge about the CMB

anisotropies in a given cosmological model. Considering observations, the average over all
coefficients,

〈∣∣∣aT
l,m

∣∣∣2〉, provides an estimator for CTT
l . However, for a given multipole l, at

most (2l + 1) /2 independent coefficients aT
l,m can be observed in an all-sky survey. This

imposes an intrinsic limit on the accuracy to which the angular power spectrum can be
determined,

∆CTT
l

CTT
l

=
√

2
2l + 1 , (2.3.3)

which is called the cosmic variance and can not be overcome by experimental accuracy. For
example, the uncertainty of the temperature auto-correlation spectrum from the Planck
2015 data release is dominated by cosmic variance up to l ' 1586 [231].

The angular power spectrum inferred from the Planck all-sky maps [15] is shown in Fig. 2.2,
alongside with the best-fit theory spectrum. The peculiar pattern of peaks and toughs in the
multipole range 100 . l . 1000 emerges from the oscillations of the photon-baryon plasma,
which also generate the BAO pattern in the matter power spectrum. Its characteristic
scale is set by the sound horizon at recombination rs (z∗), when photons decouple [232,233].
The first peak corresponds to the mode which went through 1/4 of an oscillation between
entering the Hubble radius and decoupling and signifies a maximal overdensity. It is
followed by a peak at the mode which completed 1/2 of an oscillation period and exhibits
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Figure 2.2: CMB angular power spectra as measured by the Planck satellite [4] in
comparison with the best-fit ΛCDM predictions. The theory spectra are shown with and
without secondary corrections induced by weak lensing.
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maximal underdensities. The pattern continues as the multipole moment increases, with
odd peaks representing maximal overdensities and even peaks maximal underdensities.
The oscillations of the baryon-photon plasma are driven by the gravitational potentials,
photon pressure acts as restoring force and baryons provide some inertia. The latter has
to be overcome in the rebound of oscillations, hence odd peaks are higher than the even
ones. The height ratio between odd and even peaks is directly sensitive to the baryon
density. A larger baryon fraction also decreases the plasma’s sound speed and oscillation
frequency, which shifts the acoustic peaks to higher multipoles [19,21]

After recombination, the height of the CMB acoustic peaks is proportional to the ampli-
tude of primordial perturbations As. Later, when reionisation increases the free electron
abundance, isotropic photon scattering partially erases fluctuations. The present-day peak
height is determined by the combination of both effects and sensitive to As e

−2τre where
the optical depth to reionisation, τre, is defined in Eq. (1.2.44).

At high multipoles, l & 1000, The CMB acoustic peaks become increasingly suppressed.
Recombination does not occur instantaneously, but there is a finite width to the surface
of last scattering, and photon diffusion from overdense regions damps fluctuations. The
damping scale is set by the distance a photon can random walk prior to decoupling [21]

λdiff ∼ (ne σTH)−1/2 , (2.3.4)

and increases if the baryon density is small. Therefore, for models with a small baryon
abundance, the damping sets in at a larger scale. The effect of diffusion damping [91]
handicaps the measurement of the anisotropy spectrum at high multipoles significantly.

The oscillatory pattern of CMB anisotropies does not continue to the largest scales, l . 100,
which enter the Hubble radius after recombination. Here, the temperature anisotropies
directly reflect primordial perturbations [19,21], and l (l + 1) Cl is approximately constant,
which is called the Sachs-Wolf effect [234]. At late times, the Sachs Wolf effect is modified
by the presence of dark energy. Free streaming CMB photons experience a blueshift when
entering an overdense region, and, upon escaping it, are redshifted. If the gravitational
potential remains constant in the meantime, as is the case in a matter-dominated universe,
the net effect cancels. The contribution of vacuum energy to the expansion rate causes the
decay of gravitational potentials and leads to an increase of temperature anisotropies at low
multipoles, called the Integrated Sachs-Wolf effect [235]. The presence of this increase has
been confirmed from the correlation of large-scale structure and CMB anisotropies at low
multipoles [236]. If the dark energy equation of state deviates from unity, it further modifies
the Integrated Sachs-Wolf effect. However, cosmic variance seriously affects observations
at large scales and usually prevents the deviation of significant constraints [19].

Reionisation and the decay of gravitational potentials in the dark energy dominated epoch
impose secondary effects on the CMB, which modify the primordial spectrum established
at recombination. Of further importance along these lines is the weak gravitational lensing
of CMB photons by non-linear structures at low redshifts [237]. The deflections primarily
arise from structures at redshifts between 0.5 and 10, are of order 2-3 arcsecond and
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coherent over patches of a few degrees [15]. In spectrum of temperature anisotropies,
lensing slightly smooths the peak/tough structure. Because lensing couples adjacent
multipoles, it introduces non-Gaussianities to the CMB perturbations [238], to which
higher order correlations of temperature maps, polarisation maps and their derivatives are
sensitive [239,240]. The effect of gravitational lensing has been detected with more than
40σ significance from Planck data [241]. The reconstruction of lensing potentials permits
an independent estimate of As and helps to break the As e

τre degeneracy. The combination
of lensing potentials, BAO data and CMB anisotropies tightly constraints Ωm, σ8 and H0.
In particular σ8 is determined to better than 1% accuracy as σ8 = 0.811± 0.006 [241].

2.3.2 CMB polarisation

The polarisation dependence of Thomson scattering causes the CMB to be linearly polarised
at a level of ∼ 5% of the temperature anisotropies [242]. The differential cross section is,

dσ

dΩ = 3σT
8π |ε̂1 · ε̂2|2 , (2.3.5)

where ε̂1 and ε̂ are the directions of the incident and the scattered polarisation. Photons
polarised transversely to the outgoing direction pass unimpeded, while parallelly polarised
radiation is blocked. Still, for isotropic incident radiation, the outgoing radiation is
unpolarised due to the superposition of individual scatterings. A net linear polarisation can
only be generated from quadrupole anisotropies. Before recombination, when Thomson
scattering is effective, the tight coupling between baryons and photons suppresses the
quadrupole moment (c.f. Sec 4.2). Hence the small polarisation signal directly probes the
thickness of the last scattering surface [19,21].

Linear polarisation can be decomposed in several ways. While the Stokes parameters Q and
U are a convenient description for the evolution of perturbations, the decomposition into
curl free E-modes and divergence free B-modes is practical to discuss physical implications.
Analogous to temperature fluctuations (2.3.1), the Stokes parameter in the direction n̂ can
be expanded in terms of spin-2 spherical harmonics [243,244]

(Q+ iU) (n̂) =
∞∑
l=2

l∑
m=−l

2al,m 2Yl,m , (2.3.6)

(Q− iU) (n̂) =
∞∑
l=2

l∑
m=−l

−2al,m −2Yl,m . (2.3.7)

A linear combination of the respective expansion coefficients connects the Stokes parameters
to the E- and B-mode description,

aE
l,m = −1

2 (2al,m + −2al,m) (2.3.8)

aB
l,m = i

2 (2al,m − −2al,m) , (2.3.9)
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from which the rotationally-invariant, scalar quantities E(n̂) and B(n̂) are defined as

E(n̂) =
∞∑
l=2

l∑
m=−l

aE
l,m Yl,m(n̂) (2.3.10)

B(n̂) =
∞∑
l=2

l∑
m=−l

aB
l,m Yl,m(n̂) . (2.3.11)

B-modes have opposite parity than temperature anisotropies and E-mode polarisation,
therefore the cross-correlation between the aB

l,m coefficients and aT/E
l,m vanishes. In total,

there are four angular power spectra which can be observed in the CMB〈
aE
l,m

(
aE
l′,m′

)∗〉
= δl,l′δm,m′ CEE

l , (2.3.12)〈
aE
l,m

(
aT
l′,m′

)∗〉
= δl,l′δm,m′ CET

l , (2.3.13)〈
aB
l,m

(
aB
l′,m′

)∗〉
= δl,l′δm,m′ CBB

l , (2.3.14)

alongside with the CTT
l coefficients of Eq. (2.3.2).

The CMB E-mode polarisation was first measured by the DASI experiment [245]. More
recent results from the Planck satellite [15] are displayed in the lower two panels of
Fig. 2.2, which show the E-mode autocorrelation spectrum (EE) and the cross-correlation
with temperature anisotropies (TE). Like the temperature spectrum, the polarisation
spectra show a characteristic structure of peaks and thoughts, which also originates from
acoustic oscillations in the baryon-photon plasma. There is no polarised Sachs-Wolff
effect, and at high multipoles the polarisation spectra become zero. Photon scattering
after reionisation introduces a small bump in the polarisation spectra at low multipoles.
This signature, particularly visible in the EE-spectrum, partially breaks the degeneracy
in As e

τre . The observed CMB polarisation agrees well with expectations based on the
temperature spectrum – a further support for the consistency of the ΛCDM model. Its
primary merit is a tighter constraint on the reionisation optical depth [15,19], while errors
on further ΛCDM parameters do not reduce by much with the addition of polarisation
data [15,19].

The Thomson scattering of scalar perturbations only sources E-mode polarisation. Tensor
perturbations, in contrast, produce roughly equal amounts of B- and E-modes [246,247].
A measurement of the CMB B-mode polarisation would determine the tensor-to-scalar
ratio (1.2.7) and provide insight into the inflationary scale [35, 36], but imposes severe
experimental challenges. At small angular scales, gravitational lensing transforms some
E-mode polarisation into B-modes [238,248], and this secondary effect contaminates the
primordial B-mode signal. Even more severe limitations are imposed by foreground effects
[36]. Interstellar dust grains align with the galactic magnetic field and produce thermal
emission with a degree of linear polarisation [249]. No dust free windows, at the level
required for future CMB polarisation, exist on the sky [4,250], such that a correct modelling
of foregrounds is essential. So showed the combined analysis of Planck and BICEP data
that the formerly announced detection of B-modes at the level r = 0.20+0.07

−0.05 [251] is
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Planck 2015 results Planck 2018 results
best-fit 68% C.L. best-fit 68% C.L.

Ωbh
2 0.022242 0.02226± 0.00023 0.022383 0.02237± 0.00015

Ωdmh
2 0.11977 0.1186± 0.0020 0.12011 0.1200± 0.0012

100 θ∗ 1.040862 1.04103± 0.00046 1.040909 1.04092± 0.00031
τre 0.0781 0.066± 0.016 0.0543 0.0544± 0.0073

ln
(
1010As

)
3.0904 3.062± 0.029 3.0448 3.044± 0.014

ns 0.9658 0.9677± 0.0060 0.96605 0.9649± 0.0042
H0 −− 67.8± 0.9 −− 67.36± 0.54
ΩΛ −− 0.692± 0.012 −− 0.6847± 0.0073
σ8 −− 0.8149± 0.0093 −− 0.8111± 0.0060

Table 2.1: Parameters of the ΛCDM cosmological standard model estimated from Planck
CMB measurements at 68% C.L.. The 2015 results are based on the temperature power
spectrum and polarisation at low multipoles [7], while the 2018 baseline data set also
contains polarisation at larger multipoles and the autocorrelation of lensing potentials [4].

actually consistent with polarised dust foregrounds [36].

2.3.3 Cosmological parameters and constraints

Since their initial discovery by the COBE satellite [20], the CMB anisotropies have been
mapped with increasing accuracy by the WMAP [252] and the Planck [15] space missions
and, in addition, by a variety of ground- and balloon-based experiments. The final Planck
data release provides high-fidelity maps of the temperature fluctuations, E-mode polar-
isation and the lensing potentials as well as the corresponding correlation spectra [15].
Ground-based experiments measure the CMB at high resolution, extending the angular
correlation spectra to larger multipoles. While the focus of BICEP/KECK [253] and
POLARBEAR [254] is on the detection of B-modes, measurements of temperature and
E-mode polarisation with the South Pole Telescope (SPT) and the Atacama Cosmology
Telescope (ACT) provide information which is complementary to Planck’s results. Due
to the wider survey area, the Planck spectra are statistically more powerful than ACT
and SPT measurements [15]. Still, data from the latter experiments is used to constrain
low-amplitude foregrounds in the Planck analysis. The Planck observations are in good
agreement with ACT and SPT temperature maps [255] and with the ACT polarisation
results. The inclusion of ACT polarisation spectra [256] in the analysis has little impact
on ΛCDM parameters, but slightly improves extended scenarios which modify the CMB’s
damping tail. The SPT collaboration found a moderate tension between their polarisa-
tion data and the ΛCDM model preferred by Planck, especially at larger multipoles [257].
This could hint at the need for extensions beyond the ΛCDM model, but systematics in
As e

−2τre might contribute to this discrepancy as well [4]. The consistency between the
Planck ΛCDM model and polarisation spectra at high multipoles should become clearer
as ACTPol and SPTpol accumulate more data.
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The baseline ΛCDMmodel provides an excellent fit to the Planck data, which puts stringent
constrains on all six free parameters simultaneously. These results are summarised in
Tab. 2.1. Most precisely measured is the angular scale of acoustic oscillations θ∗ with an
accuracy of 0.03%, while limits on the optical depth to reionisation are the weakest. BBN
allows to infer the baryon density from the deuterium to helium ratio observed in the
Ly-α forest [258]. The constraint,

0.021 ≤
(
Ωbh

2
)BBN

≤ 0.024 , (2.3.15)

is consistent with Planck observations [19], but exhibits considerably larger errors.

Because CMB anisotropies and matter perturbations share a common, inflationary origin,
an interesting consistency check for the ΛCDM paradigm is the comparison of the matter
power spectrum derived from either kind of observation. This is, for example, presented
in Fig. 19 of Ref. [15], which projects the individual measurements on the present-day
linear matter power spectrum. CMB temperature anisotropies probe the largest scales
and relate to high redshifts, around recombination. On intermediate scales, the CMB
polarisation provides additional high-redshift information. The high-redshift constraints
overlap with probes at later times, such as CMB lensing, sensitive around 0.5 . z .

10, and galaxy clustering, which assesses the recent state of the universe. At smaller
scales, cosmic shear and the Ly-α forest become relevant. The latter probes redshifts
in the range z ' 2 − 3, and the former those redshifts intermediate between the CMB
and the Ly-α observations. Overall, the consistency of observations, spanning the entire
redshift range between recombination and today and covering three orders in length scale
is rather remarkable. In the context of CMB analyses, BAO observations are particularly
important. The associated scales are largely unaffected by non-linear physics, making the
measurements very robust, and their inclusion breaks degeneracies in the CMB data and
often tightens parameter constraints. In this context, the Planck collaboration considers
data sets from the 6dF galaxy survey [259], an estimate of the acoustic scale from the
SDSS DR7 galaxy sample [260] and the SDSS DR12 data release [261].

The tighter limits permitted by the combination of CMB and BAO data are also of
importance to many extensions beyond the 6-parameter ΛCDM model, like those outlined
at the end of Sec. 1.3. To date, there is no compelling evidence for any of them [4], and
we summarise the constraints in the following.

• The fluctuations observed in the CMB are consistent with purely adiabatic, scalar
curvature perturbations. Detected non-Gaussianities agree with expectations from
secondary effects in the ΛCDM framework, like lensing, the integrated Sachs-Wolf
effect and foregrounds [4].

• The running of the spectral index is constrained by the combination of Planck
temperature, polarisation and lensing data with BAO observations [4],(

dns
d ln k

)CMB+BAO
= −0.0045± 0.0067 at 68% confidence. (2.3.16)
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• The Planck measurement of B-mode polarisation is limited by noise and systematics
[4]. Tighter limits on the tensor-to-scalar ratio (1.2.7), evaluated at a fiducial scale
of 0.05 Mpc−1, are obtained from BICEP2/Keck measurements, using Planck data
to clean dust foregrounds [253],

r
(
0.05 Mpc−1

)
< 0.06 at 95% confidence . (2.3.17)

• Concerning the spatial curvature, CMB data alone suffers from a geometric degen-
eracy between Ωm and ΩΛ, which BAO data can lift. The tight constraints on the
curvature density,

ΩCMB+BAO
k = 0.0007± 0.0019 at 68% confidence , (2.3.18)

suggest that the universe is flat to 0.2% accuracy [4].

• Modifications to the dark energy equation of state mainly cause late time effects in
the growth of structure and the cosmological expansion rate. Combining BAO data,
Planck temperature, polarisation and lensing spectra and the Pantheon Sample of
1048 type Ia supernovae [262] yields for the dark energy equation of state [4]

wCMB+BAO+SNa
Λ = −1.028± 0.032 at 68% confidence . (2.3.19)

The previously discussed DES constraint (2.2.8), on the other hand, is completely
independent of CMB data.

• The impact of neutrino masses on CMB anisotropies is small and primarily arises from
the early Integrated Sachs-Wolf effect. Close to recombination, radiation significantly
contributes to the energy density, which causes the cosmic equation of state to deviate
from zero and hence a decay of the gravitational potentials. Analogously, the late
Integrated Sachs-Wolf effect, discussed in Sec. 2.3.1, emerges from the late-time dark
energy contribution. For neutrino masses of ∑mν ∼ O (1 eV), the transition from
the relativistic to the non-relativistic regime impacts the equation of state close to
recombination [263]. The matter power spectrum, however, is more sensitive to
the neutrino mass scale, and the tightest constraints are obtained when the CMB
spectra are analysed in combination with lensing potentials and BAO measurements,
yielding [4] (∑

mν
)CMB+BAO

< 0.12 eV at 95% confidence . (2.3.20)

While cosmology provides the tightest upper bound on the neutrino mass scale at
present [264], the constraint is model dependent and can weaken considerably in
extended cosmological scenarios with additional free parameters [265].

• The presence of additional thermal relics at the epoch of recombination increases the
Hubble rate for fixed θ∗ and zeq. The resulting increase of the photon diffusion scale
(2.3.4) is noticeable in the CMB anisotropy spectra, as well as from baryon acoustic
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oscillations [19]. Current bounds,

NCMB+BAO
eff = 2.99+0.34

−0.33 at 95% confidence , (2.3.21)

mildly disfavour a thermal relic which froze out after the QCD phase transition and
would contribute δNeff = 0.3 per degree of freedom [4].

2.3.4 Discrepancies with other data sets

The baseline ΛCDM scenario describes CMB observations remarkably well [4], and in
general there is good agreement between the CMB and other data sets. Still, some discrep-
ancies exist. These could be statistical fluctuations, hints for underestimated systematics
or they might also point to need for extension beyond the ΛCDM paradigm.

First, there is a moderate tension in the amplitude of matter perturbations, parameterised
here by S8, and the matter density, Ωm. Planck data in combination with BAO determines
these as [4]

SCMB+BAO
8 = 0.8102± 0.0060 ,

ΩCMB+BAO
m = 0.3111± 0.0056 ,

}
at 68% confidence . (2.3.22)

An analysis of the combined DES likelihood for weak lensing and galaxy clustering [266]
under the assumption ∑mν = 0.06 eV, on the other hand, yields [4]

SDES
8 = 0.792± 0.024 ,

ΩDES
m = 0.257+0.023

−0.031 ,

}
at 68% confidence . (2.3.23)

Similarly, the KiDS data set implies a smaller perturbation amplitude and a lower matter
density [267,268] than the Planck data. At the moment it is unclear whether the discrepancy
is a statistical fluctuation, caused by systematics or an indicator of physics beyond ΛCDM.

A second, more severe, discrepancy exists in the determinations of the Hubble constant.
From Planck temperature, polarisation and lensing data the Hubble constant today is
determined as [4]

HCMB
0 = (67.36± 0.54) km Mpc−1 s−1 at 68% confidence . (2.3.24)

Further, the combination of weak lensing, galaxy clustering, baryon acoustic oscillations
and measurements of Big Bang nucleosynthesis is completely independent of the CMB
results and yields [269]

HDES+BAO+BBN
0 =

(
67.2+1.2

−1.0

)
km Mpc−1 s−1 at 68% confidence . (2.3.25)

In contrast, the distance ladder approach (2.1.1) and time delay strong lensing (2.1.4),
favour considerably larger values. Their tension with the CMB estimate amounts to 4.4σ
and 3.1σ, individually, or to 5.3σ, when combined [112,118]. CMB and BAOmeasurements
depend on the sound horizon at recombination, rs (z∗), and at baryon decoupling rs (zdrag),
respectively, which provide a characteristic scales in either observation. The presence of
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such a well known scale allows to determine the angular diameter distance and hence offers
sensitivity to the Hubble rate. In either case, the sound horizon is determined at a high
redshift at or close to recombination. Thus, the discrepancy in H0 is often understood in
terms of a tension between early and late-time determinations of the Hubble rate, as e.g.
in Fig. 4 of [112]. Gravitational waves provide yet another independent measurement of H0

at low redshifts, but have not yet reached the required sensitivity to clarify the situation.

By now, the discrepancy between early- and late-time measurements of the Hubble constant
seems rather significant. It might be caused by systematics in either analysis, but dedicated
studies [270–276] have not identified any obvious problems. On the other hand, high-
redshift probes do not measure H0 directly, but assume a specific cosmological model
to infer it from the data. In particular would the preferred value change if ΛCDM can
not predict the sound horizon accurately. In this regard, it is intriguing to consider
modifications to the cosmological baseline scenario. No simple, one-parameter extensions,
like changes to the dark energy equation of state, an increase in Neff or non-zero spatial
curvature, can alleviate the problem [15]. Interactions between dark matter and neutrinos
[277] or an early (z & 3000) dark energy component [278], which decays like radiation at
later times, manage to ease the tension without fully resolving it [112]. Another possibility
are neutrino self-interactions [279], for which the CMB data prefers a larger H0 and a
smaller σ8 value. These scenarios also imply a rather large effective number of neutrinos,
Neff = 4.02 ± 0.29. Finally, a local underdensity could explain the discrepancy [280],
without modifications to the ΛCDM model.



Chapter 3

The evolution of linear cosmological perturbations

Overall, the ΛCDM scenario provides an excellent description of cosmological observations.
Yet, discrepancies remain and the particle physics nature of dark matter is not addressed.
Both shortcomings motivate to consider extensions the the ΛCDM paradigm. Either, these
help to lift degeneracies, or, by imposing consistency with the data, the properties of dark
matter can be constrained. In this context, we abandon the premise that dark matter
is collisionless at all times and scales of interest and, in particular study dark matter
interactions with Standard Model radiation. These have been evoked to resolve small
scale problems [200,281,282], and the scattering between dark matter and neutrinos can
ease the Hubble tension [277]. The existence of precise theory predictions is crucial for a
meaningful comparison to observations. In the context of CMB observations and the matter
distribution in the linear regime, these are provided by the linearised Boltzmann-Einstein
equations. We review their derivation under ΛCDM assumptions in this section, closely
following Ref. [283], before updating the formalism carefully to include dark matter-photon
and dark matter-neutrino interactions, respectively.

3.1 Notations and conventions

We treat the evolution of perturbations in the linear regime in terms of comoving coordi-
nates, xµ = (τ,x). The comoving time τ is related to the proper time t by dτ = dt/a(t),
and unperturbed FRW line element (1.1.2) takes the form

ds2 = a2 (τ)
(
−dτ2 + dxidx

i
)
, (3.1.1)

where we also assumed spatial flatness. Greek indices denote the four space-time coordi-
nates xµ, µ ∈ (0, 1, 2, 3), while Latin letters indicate spatial vectors x = xi, i ∈ (1, 2, 3).
Repeated indices are summed over according to the Einstein sum convention.

While an overdot represents derivatives with respect to proper time, derivatives with
respect to conformal time are indicated by a prime. Working in terms of conformal time,
it is practical to define reduced Hubble rate

H ≡ a′

a
= aH . (3.1.2)
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Quantities which concern the homogeneous background are indicated by an overbar and
perturbations around that homogeneous background by an δ, such that e.g. the energy
density can be written as ρ = ρ̄+ δρ. On the whole, our notation follows closely that of
Ref. [283].

To distinguish the interacting scenarios, we label dark matter with photon interactions by
a subscript “γdm” and dark matter with neutrino interactions by a subscript “νdm”. The
label “cdm” emphasises a truly collisionless component in the sense of ΛCDM, while “dm”
is used to summarise all aforementioned possibilities.

3.2 The perturbed Einstein equations

Two aspects are important in the evolution of cosmological perturbations. First, the
Einstein equation (1.1.1) describes the metric evolution, which depends on the collective
cosmological energy density, represented by the stress-energy tensor. Second, several
different species contribute to the stress-energy tensor, and their individual evolution is
governed by the Boltzmann equation (3.4.1). We discuss the latter in the subsequent
sections and here focus on metric perturbations.

3.2.1 Perturbed Einstein tensor

The evolution of cosmological perturbations commences when their size is comparable
to the Hubble radius and requires a fully-relativistic treatment in the terms of general
relativity. Yet, the smallness of fluctuations permits a perturbative solution in powers of
small departures from the homogeneous background. Different gauges exist to represent
perturbations to the FRW metric, the most common are synchronous gauge [284] and the
conformal Newtonian gauge [30]. Coordinates in the former are defined with respect to a
freely falling observer, and, in the absence of interactions, the gauge is comoving with dark
matter. The gauge condition is fixed by requiring that the dark matter velocity divergence
vanishes at all times. Interactions of dark matter with other species introduce a coupling
between the respective velocity divergences and necessitate modifications to the gauge
fixing [285]. Instead, we choose to work in Newtonian gauge, where the perturbed line
element to describe scalar perturbations is

ds2 = a2 (τ)
[
− (1 + 2ψ) dτ2 + (1− 2φ) dxidxi

]
. (3.2.1)

Being related to the metric tensor, ds2 = gµνg
µν , the line element determines the Einstein

tensor,
Gµν = Rµν −

1
2 gµν R , (3.2.2)

where the Ricci tensor is defined as contraction of the curvature tensor, Rµν = Rλµλν , and
the Ricci scalar is given by R = Rµµ. The curvature tensor itself can be computed from
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the metric’s Christoffel symbols

Rλκµν = ∂ν Γλκµ − ∂µ Γλκν + ΓβκµΓλβν − ΓβκνΓλβµ . (3.2.3)

Finally, the Christoffel symbols follow from the metric tensor

Γλµν = 1
2 g

λρ (∂ν gρν + ∂µ gρν − ∂ρ gµν) . (3.2.4)

Expanded to first order in metric perturbations, the Christoffel symbols of the perturbed
line element in Newtonian (3.2.1) gauge are

Γ0
00 = H+ ψ′ , (3.2.5a)

Γ0
0i = ∂i ψ , (3.2.5b)

Γi00 = δij ∂j ψ , (3.2.5c)

Γ0
ij = H δij −

[
φ′ + 2H (φ+ ψ)

]
δij , (3.2.5d)

Γij0 =
(
H− φ′

)
δij , (3.2.5e)

Γijk = −δij ∂k φ− δik ∂j φ+ δjk ∂i φ . (3.2.5f)

Taken all together, the components of the Einstein tensor (3.2.2), expanded to first order
in perturbations, are given by

G00 = 3H2 + 2∇2φ− 6Hφ′ , (3.2.6a)

G0i = 2 ∂i
(
φ′ +Hψ

)
, (3.2.6b)

Gij = −
(
2H′ +H2

)
δij +

[
∇2 (ψ − φ) + 2φ′′ + 2

(
2H′ +H2

)
(φ+ ψ)

+ 2Hψ′ + 4Hφ′
]
δij + ∂i ∂j (φ− ψ) . (3.2.6c)

3.2.2 Perturbed stress-energy tensor

For a perfect fluid of energy density ρ pressure P the stress-energy tensor, appearing on
right hand side of the Einstein equation (1.1.1), is [283]

Tµν = P gµν + (ρ+ P ) UµUν , (3.2.7)

and Uµ = dxµ/
√
−ds2 denotes the fluid’s four-velocity. In the fluids rest frame, defined

by the condition U i = 0, we find

UµUµ = −1 = g00U
0U0 = −a2 (1 + 2ψ)

(
U0
)2

, (3.2.8)

which implies that, to first order in metric perturbations, the zero component of the
four-velocity is given by

U0 = a−1 (1− ψ) . (3.2.9)
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Next, we consider a small coordinate velocity of the fluid vi ≡ dxi/dτ , which can be
regarded as a perturbation of the same order as the metric perturbations. From the
definition of the coordinate velocity it follows that

v = dx

dτ
= d xi

dτ
ê = dxi/

√
−ds2

dτ/
√
−ds2

= U i

U0
ê , (3.2.10)

where ê is a unit vector in the direction of v. Finally, the fluid’s four-velocity at first order
in perturbations is given by

Uµ = a−1
(
1− ψ, vi

)
. (3.2.11)

A full first-order expression of the stress-energy tensor is obtained by expressing the energy
density and the pressure in terms of fluctuations around the homogeneous background, i.e.
ρ = ρ̄+ δρ and P = P̄ + δP . Here, δρ and δP are perturbations of the same order as the
metric perturbations, ψ and φ, and as the coordinate velocity v. With this definition we
obtain

T 0
0 = −(ρ̄+ δρ) , (3.2.12a)

T 0
i =

(
ρ̄+ P̄

)
vi , (3.2.12b)

T i0 = −
(
ρ̄+ P̄

)
vi , (3.2.12c)

T ij =
(
P̄ + δP

)
δij + Πi

j . (3.2.12d)

The anisotropic shear, Πi
j , in Eq. (3.2.12d), is added by hand to describe departures from

a perfect fluid [283]. Any trace of Πi
j can be absorbed in δP , and thus it is practical to

define the anisotropic shear as the traceless component of T ij , imposing Πi
i = 0.

The linear perturbations are most conveniently evolved in Fourier space, where individual
k-modes decouple. There, denoting unit vector by a hat, the notation simplifies by defining
the velocity divergence θ and the shear stress σ as

θ ≡ i kivj , (3.2.13)(
ρ̄+ P̄

)
σ ≡ −

(
k̂ik̂j −

1
3δij

)
Πij . (3.2.14)

3.2.3 Zeroth order evolution: the Friedmann equations

The Friedmann equations (1.1.4) and (1.1.5), anticipated in Sec. 1.1, follow directly from the
Einstein equation under the assumption of an unperturbed FRW metric. Evidently from
Eq. (3.2.6a) and Eq. (3.2.12a) the time-time component to zeroth order in perturbations

H2 = a2 8π
3m2

P
ρ̄ , (3.2.15)

gives the first Friedmann equation. The trace over spatial components of the Einstein and
the stress-energy tensor is Gii = 3 a−2 (2H′ +H2) and T ii = 3P̄ , respectively, to zeroth
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order in perturbations. Both expressions combine to the second Friedmann equation

H′ = 8π
3m2

P

(
ρ̄+ 3 P̄

)
. (3.2.16)

3.2.4 The Einstein equations at first order in perturbations

With the expansions of the Einstein tensor (3.2.6) and the stress-energy tensor (3.2.12) to
first order in perturbations, we have all ingredients in place to write down the first-order
evolution equations for metric perturbations. In Fourier space, using the zeroth order
results, these are [30,283,284,286,287]

k2φ+ 3H
(
φ′ +Hψ

)
= − 4π

m2
P
a2 δρ , (3.2.17a)

k2 (φ′ +Hψ) = 4π
m2

P
a2 (ρ̄+ P̄ ) θ , (3.2.17b)

φ′′ +H
(
ψ′ + 2φ′

)
+
(

2a
′′

a
−H2

)
ψ + k2

3 (φ− ψ) = 4π
m2

P
a δP , (3.2.17c)

k2 (φ− ψ) = 12π
m2

P
a2
(
ρ̄+ P̄

)
σ . (3.2.17d)

The first two equations correspond to the time-time and the time-space components of the
Einstein equations, the latter two are obtained from the trace and the trace-free part of
the space-space component. The set provides redundant information, only two equations
are needed for a complete description of the metric perturbations. A common choice in
numerical codes [288] is to obtain φ from the integration of Eq. (3.2.17b) and ψ by solving
Eq. (3.2.17d) algebraically.

3.3 Evolution of non-relativistic species

In general, the Boltzmann equation determines the phase space distribution of each individ-
ual species. However, in the case of non-relativistic, collisionless matter, energy momentum
conservation suffices to characterise the evolution of perturbations. We exploit this relation
here, to determine the equations governing dark matter perturbations and also extend the
results to baryons.

3.3.1 Stress-energy conservation

The conservation of energy and momentum in general relativity is expressed by the van-
ishing covariant derivative ∇µ of the stress-energy tensor, i.e.

∇µTµν = ∂µT
µ
ν + Γµµα Tαν − Γαµν Tµα = 0 . (3.3.1)

The Christoffel symbols of the perturbed metric are given in Eq. (3.2.5), and the conser-
vation equation is straightforwardly applied to the perturbed stress-energy tensor (3.2.12).
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To zeroth order in perturbations, the ν = 0 component of the conservation equation reduces
to Eq. (1.1.8), while, keeping first and second order terms, we obtain

ρ̄′ + δρ′ +
(
ρ̄+ P̄

)
∂iv

i + 3H (ρ̄+ δρ)− 3φ′
(
ρ̄+ P̄

)
+ 3H

(
P̄ + δP

)
= 0 . (3.3.2)

By using the zeroth-order result, the definition of the density contrast δ ≡ δρ/ρ, of the
equation of state w = δP/δρ and of the adiabatic sound speed of the fluid cs = dP/dρ =
w + ρ dw/dρ, the this expression further simplifies to

δ′ = −3H
(
c2
s − w

)
δ − (1 + w)

(
θ − 3φ′

)
. (3.3.3)

In the same manner we consider the ν = i component of Eq. (3.3.1), which simplifies to

v′i = − P̄ ′ vi

ρ̄+ P̄
− ∂j Πj

i

ρ̄+ P̄
− ∂i δP

ρ̄+ P̄
−H vi − ∂i ψ , (3.3.4)

and finally, after Fourier transformation and contraction with ki, becomes

θ′ = −H (1− 3w) θ − w′

1 + w
θ + δP/δρ

1 + w
k2 δ − k2 σ + k2ψ . (3.3.5)

The conservation equations for δ (3.3.3) and for θ (3.3.5) are valid for a single, uncoupled
fluid. If several, coupled species a are considered, the stress-energy tensor in Eq. (3.3.1) is
replaced by the sum over all individual contributions,∑a T

µν
a . In this case the zeroth-order

conservation equation of the energy density becomes∑
a

ρ̄′a = −3H
∑
a

(
ρ̄+ P̄

)
. (3.3.6)

In many cases one type of energy, e.g., matter, radiation or a cosmological constant,
dominates the energy density by several orders of magnitude. Then, the respective one-
component equation (1.1.8) suffices to compute the universe’s expansion rate.
In the following subsections, we consider several scattering processes, such as Thomson
scattering between photons and electrons and elastic dark matter scattering with photons
or neutrinos. The elastic processes do not couple the energy densities and Eq. (3.3.3)
remain valid for each individual δ. The same is not given for the velocity dispersion,
instead the combined conservation equation for several species applies

∑
a

(
ρ̄a + P̄a

)
θ′a =−H

∑
a

ρ̄a (1 + wa) (1− 3wa) θa −
∑
a

w′a ρ̄a θa + k2∑
a

δPa
δρa

ρ̄aδa

− k2∑
a

ρ̄a (1 + wa)σa + k2ψ
∑
a

ρ̄a (1 + wa) . (3.3.7)

The two equations provided by stress-energy conservation contain a total of three unknown
parameters, δ, θ and σ, to characterise perturbations in the fluid. As such, the problem
is under-constrained. Because the anisotropic stress of a non-relativistic component can
be neglected, stress-energy conservation suffices to evolve the specie’s perturbations in
this case, but not for partially or fully relativistic particles. Within the ΛCDM particle
content, dark matter and baryons can be regarded as non-relativistic at all epochs and
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scales relevant for the computation of CMB anisotropies and the large-scale structure. We
discuss their respective evolution equations in the following.

3.3.2 Dark matter evolution equations

The evolution of dark matter perturbations is particularly simple. The ΛCDM model
postulates that dark matter is a collisionless, pressureless, perfect fluid, which interacts
with other species only through gravity. Hence the single-species equations Eq. (3.3.3) and
Eq. (3.3.5) are directly applicable with ccdm = wcdm = w′cdm = σcdm = 0, and give

δ′cdm = −θcdm + 3φ′ , (3.3.8a)

θ′cdm = −H θcdm + k2 ψ . (3.3.8b)

3.3.3 Baryon evolution

Baryons behave as a non-relativistic fluid with σb , wb � 1. Thomson scattering causes
a non-zero baryon sound speed, which can affect the velocity divergence of large-k modes
[283], but is negligible elsewhere. Hence, the baryon density perturbations evolve according
to

δ′b = −θb + 3φ′ . (3.3.9)

The combined conservation equation for the velocity divergence of baryons and photons
(3.3.7) yields

4
3ργ θ

′
γ

+ ρb θ
′
b =

= 1
3 k

2 ργ δγ −
4
3 k

2 ργ σγ + 4
3 ργ k

2 ψ −H ρb θb + k2 c2
b ρbδb + k2 ρbψ

= 4
3 k

2 ργ
δγ
4 −

4
3 k

2 ργ σγ + 4
3 k

2ργ ψ + 4
3 ργκ

′
γb (θb − θγ) + ρb θ

′
b . (3.3.10)

In the last line, we already anticipated the photon evolution equation (3.4.36), which is
derived independently, from the Boltzmann equation, in Sec. 3.4.3. The comoving rate for
Thomson scattering is

κ′
γb = ane σT . (3.3.11)

From the comparison of the last latter two lines we obtain

θ′b = −H θb + k2 c2
b δb + k2 ψ −Rγb κ′γb (θb − θγ) . (3.3.12)

The factor Rγb in front of the interaction term ensures momentum conservation in the
scattering process and is a shorthand notation for

Rγb ≡
4 ργ
3 ρb

. (3.3.13)
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The baryon sound speed, cb, appears in Eq. (3.3.12), where it is multiplied with the baryon
density contrast δb. To compute θ′ at first order in perturbations, a zeroth-order expression
of the baryon sound speed is required. The ideal gas law connects the baryon pressure
to its energy density and temperature Tb, Pb = (ρb/m̄b) kB Tb. The baryon molecular
weight, m̄b, includes free electrons and all ions and neutral atoms of hydrogen and helium,
while kB represents the Boltzmann constant. Using the conservation of the baryon energy
density at zeroth order (1.1.8), ρ̄′b = −3H ρ̄b, the baryon sound speed is

c2
b = P̄ ′b

ρ̄′b
= ρ̄−1

b
kB
m̄b

(
ρ̄′b Tb + ρ̄b T

′
b
)

= kB Tb
m̄b

(
1− 1

3
∂ lnTb
∂ ln a

)
. (3.3.14)

The derivation neglects variations in m̄b, which are largest during recombination. At these
times, the sound speed is dominated by the pressure support from photons in comparison
to which the variations in the average molecular mass have a negligible effect [283]. Finally,
to evaluate the baryon sound speed, we need to know the baryon temperature. It follows
from the first law of thermodynamics, dE = dW+dQ, which implies that the heat supplied
to a system is

dQ = m

[
3
2 d

(
P̄

ρ̄

)
+ P̄ d

(1
ρ

)]
. (3.3.15)

Equating the heat change with conformal time and the heating rate by the photons

Q′ = kB

(3
2 T
′
b + 3H Tb

)
!= 4ργ
ρb

kB κ
′
γb (Tγ − Tb) , . (3.3.16)

gives a differential equation for the evolution of the baryon temperature,

T ′b = −2H Tb + 8ργ
3ρb

κ′
γb (Tγ − Tb) . (3.3.17)

which can be integrated numerically. While Thomson scattering is effective in heating the
baryons, i.e. while Rγb κ′γb � H, the second term dominates the evolution of Tb, and the
baryon temperature closely follows that of the photons. In contrast, for Rγb κ′γb � H,
baryons are cooled by the cosmic expansion.

3.4 Evolution equations for relativistic species

Anisotropic stress and higher order multipoles of the phase space distribution are important
for an accurate description of relativistic species. In this case, energy momentum conser-
vation not suffices to describe the evolution of perturbations, instead the full Boltzmann
equation needs to be considered. We derive its linearised form in the following, addressing
the cases of photons and neutrinos.
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3.4.1 Perturbed Boltzmann equations for massless species

The Boltzmann equation describes the time evolution of a specie’s phase space distribution,
including departures from the equilibrium configuration [29], and can be written as

D

dτ
f
(
xi, Pj , τ

)
=
[
∂

∂τ
f
(
xi, Pj , τ

)]
C
. (3.4.1)

The collision term on the right hand side accounts for interactions with other species, while
the covariant derivative on the left side depends on the metric and thus describes how
the phase space function reacts to changes in the geometry of the underlying space. In
Eq. (3.4.1), we allow for an inhomogeneous phase space distribution, which depends on
the spatial location xi, on conformal time τ and on the conjugate momenta P j . The latter
are related to the proper momenta pi by

Pi = a (1− φ) pi . (3.4.2)

The dependence on metric perturbations can be migrated by defining the comoving three-
momentum q

q ≡ ap ≡ q n̂ , (3.4.3)

where n̂ is a unit vector in the direction of q and q = |q|. With this definition, the phase
space element becomes

3∏
k=1

dPk = (1− 3φ) q2dq dΩ , (3.4.4)

The time component of the conjugate momentum is related to the proper energy ε =√
q2 + a2m2, measured by a comoving observer, as

P0 = − (1 + φ) ε . (3.4.5)

We choose this set of coordinates to express the phase space distribution as a smooth,
zeroth-order background distribution, f0, plus a first order perturbation around f0

f
(
xi, q, n̂j , τ

)
= f0 (q)

[
1 + Ψ

(
xi, q, n̂j , τ

)]
. (3.4.6)

The background distribution is a Fermi-Dirac distribution in the case of neutrinos and
a Bose-Einstein distribution for photons or. In the coordinates used here, Eq. (1.2.8)
becomes

f0 = ga
[
eε/T0 ± 1

]−1
. (3.4.7)

The plus sign applies to fermions, the minus sign to bosons, T0 = a T (τ) and ga counts the
internal degrees of freedom, which are gγ = 2 and for photons and gν = 6 for neutrinos.

The covariant derivative on the left hand side of the Boltzmann equation (3.4.1), evaluated
in the just described coordinates, is

Df

dτ
= ∂f

∂τ
+ dxi

dτ

∂f

∂xi
+ dq

dτ

∂f

∂q
+ dn̂i

dτ

∂f

∂n̂i
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= f0
∂Ψ
∂τ

+ q

ε
(n̂i ∂iΨ) + q

(
φ′ − ε

q
n̂i ∂iψ

)
∂ f0
∂q

, (3.4.8)

where, in the second line we only kept first order terms. Because f0 is independent of n̂,
∂f/∂n̂j is at least a first order term as well as the change of momentum direction with
time, and the last term in the first line is dropped entirely. Further, in transforming the
first two terms we used that, to first order in perturbations,

∂ q

∂τ
= q φ′ − εi ∂iφ , and d xi

dτ
= qi

ε
. (3.4.9)

The zeroth order distribution obeys

q

f0

∂ f0
∂q

= ∂ ln f0
∂ ln q , (3.4.10)

which allows to simplify the equation in Fourier space as

∂Ψ
∂τ

+ q

ε
i (n̂ · k) Ψ + ∂ ln f0

∂ ln q

(
φ′ − i ε

q
n̂ · kψ

)
= 1
f0

[
∂f0
∂τ

]
C
. (3.4.11)

Expressing the stress-energy tensor in terms of the phase space distribution allows to make
the connection between the evolution of metric perturbations and perturbations in the
particle content,

Tµν =
∫ ( 3∏

k=1
dPk

)
(− |gµν |)−1/2 PµPν

P0
f(xi, Pj , τ) . (3.4.12)

Here, the determinant of the metric tensor evaluates to (− |gµν |)−1/2 = a−4 (1− ψ + 3φ),
and the solid angle is associated with the momentum direction n̂i, such that

∫
dΩ n̂in̂j =

4π δi,j/3 and
∫
dΩ n̂i =

∫
dΩ n̂in̂jn̂k = 0. With the decomposition of the phase space

distribution from Eq. (3.4.6), the energy momentum tensor reads

T 0
0 = a−4

∫
d2dq dΩ

√
q2 +m2a2 f0 (q) (1 + Ψ) , (3.4.13a)

T 0
i = a−4

∫
q2dq dΩ q n̂i f0 (q) Ψ , (3.4.13b)

T ij = a−4
∫
q2dq dΩ q2 n̂in̂j√

q2 +m2a2 f0 (q) (1 + Ψ) . (3.4.13c)

The equation of state for a fully relativistic species is w = 1/3 and therefore

ρ̄ = 3P̄ = a−4
∫
q2dq dΩ q f0 (q) . (3.4.14)

Eliminating these zeroth order terms from Eq. (3.4.13), we obtain the first order perturba-
tions of the stress-energy tensor,

δρ = a−4
∫
q2dq dΩ q f0 (q) Ψ , (3.4.15a)

δT 0
i = a−4

∫
q2dq dΩ q n̂i f0 (q) Ψ , (3.4.15b)

Πi
j = a−4

∫
q2dq dΩ q

(
n̂in̂j −

1
3δ

i
j

)
f0 (q) Ψ . (3.4.15c)
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3.4.2 Neutrino evolution

Unless interactions beyond the Standard Model are introduced, neutrinos decouple from
the thermal bath at temperatures around 1 MeV. This is well before any scales probed by
the CMB or the large-scale structure have entered the horizon. Therefore, in the context of
the evolution of cosmological perturbations, neutrinos can be regarded as collisionless and
the term in the right hand side of Eq. (3.4.11) vanishes. We further neglect the neutrino
mass in this section, such that first order perturbations to the stress-energy tensor are given
by Eq. (3.4.15). In addition, for a relativistic species, the dependence on the momentum q

can be integrated from the Boltzmann equations. More precisely, integrating Eq. (3.4.11)
over

∫
d3dq f0 (q) and finally dividing by the same integral yields[

∂

∂τ

∫
dq q3 fν,0Ψν + ikµ

∫
dq q3 fν,0 Ψν

+
(
φ′ + i k µψ

) ∫
dq q4 ∂ fν,0

∂q

] /(∫
dq q3 fν,0(q)

)
= 0 , (3.4.16)

where we have introduced and additional subscript ν to denote neutrino quantities, and
µ ≡ k̂ · n̂ is the cosine of the angle between the Fourier mode and the momentum direction.
An expansion in Legendre polynomials Pl (µ) absorbs the angular dependence

Fν(k, n̂, τ) ≡
∫
q3 dq fν,0 (q) Ψν∫
q3 dq fν,0 (q) ≡

∞∑
l=0

(−i)l (2l + 1)Fνl (k, τ) Pl (µ) . (3.4.17)

In terms of the normalised, momentum-integrated phase space perturbation Fν the Boltz-
mann equation for neutrinos takes the simple form

∂ Fν
∂τ

+ i k µFν = 4
(
φ′ − i k µψ

)
. (3.4.18)

Moreover, the lowest-order Legendre coefficients, Fν,l, of the expansion are directly related
to perturbations in the stress-energy tensor. The lowest-order Legendre polynomials are
given by,

P0 (µ) = 1 , P1 (µ) = µ and P2 (µ) = 1
2
(
3µ2 − 1

)
, (3.4.19)

and obey the orthogonality relation∫
dΩPm(µ)Pn(µ) = 2π

∫ 1

−1
dxPm(x)Pn(x) = 4π

2n+ 1 δmn . (3.4.20)

Thus, the perturbations of the stress-energy tensor for a relativistic species (3.4.15) can
be written in terms of Legendre coefficients as

δν = 1
4π

∫
dΩ

(∫
dq q3 fν,0Ψν∫
dq q3 fν,0

)
= Fν,0 , (3.4.21a)

θν = ikj
∫
dΩ

∫
dq q3 nj fν,0 Ψ

4
3
∫
dq q3 fν,0

∫
dΩ

= 3k
4 Fν,1 , (3.4.21b)
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σν =
[
a−4k2

∫
dΩ

∫
dq q3

(
µ2 − 1

3

)
fν,0 Ψ

] /(4 k2

3 ρ̄ν

)
= 1

2 Fν,2 (3.4.21c)

To obtain evolution equations for the perturbed components of the stress energy tensor, we
insert the multipole expansion (3.4.17) into the momentum-integrated Boltzmann equation
(3.4.18) and use the recursion relation for Legendre polynomials,

(l + 1)Pl+1 (µ) = (2l + 1)µPl (µ)− l Pl−1 (µ) , (3.4.22)

to obtain
∞∑
l=0

(−i)l (2l + 1)F ′
ν,l Pl (µ) + ik P1 (µ) Fν,0 +

∞∑
l=2

(i)l+2 k l Fν,(l−1) Pl (µ)

+
∞∑
l=0

(i)l+4 k l Fν,(l+1) (l + 1)Pl (µ) = 4
(
φ′P0 (µ)− i k P1 (µ)ψ

)
. (3.4.23)

The evolution of the individual multipoles follows from integrating this equation against
Legendre polynomials

∫ 1
−1 dµPl (µ):

δ′
ν

= −4
3θν + 4φ′ , (3.4.24a)

θ′
ν

= k2
(
δν
4 − σν

)
+ k2ψ , (3.4.24b)

F ′
ν,l = k

2l + 1
[
l Fν,(l−1) − (l + 1)Fν,(l+1)

]
for l ≥ 3 . (3.4.24c)

Expressing the Boltzmann equation in terms of multipole moments of the momentum-
integrated phase space distribution function leads to an infinite set of coupled differential
equations. In this set, a particular multipole l only depends on the two neighbouring
modes l + 1 and l − 1. To solve this so-called Boltzmann hierarchy numerically, requires
its truncation at some high multipole lmax. The naive method, setting Fν,lmax = 0, creates
propagation errors which proceed down to l = 0 where they are reflected and amplify. For
a more robust truncation, the behaviour of Fν,l is extrapolated to lmax + 1. We derive
an analytical expression for the evolution of the neutrino multipoles in Sec. 7.3.4. The
large multipoles exhibit damped oscillations, similar to spherical Bessel functions, with
frequency kτ , see Eq. (7.3.18). Using the recurrence relation for spherical Bessel functions,
the evolution of Fν(lmax+1) is approximated by [283]

Fν,(lmax+1) '
2lmax + 1

kτ
Fν,lmax − Fν,(lmax−1) , (3.4.25)

and Fν,lmax accordingly evolves as

F ′
ν,lmax = k

(
Fν,(lmax−1) −

lmax + 1
k τ

Fν,lmax

)
. (3.4.26)
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3.4.3 Photon evolution

Considering the evolution of photon perturbations, the collision term in the right hand
side of Eq. (3.4.12) can not be neglected, but describes Thomson scattering with electrons.
As already elucidated in Sec. 2.3.2, these scatterings partly polarise the CMB and the
phase space distribution functions of the polarisation states ε̂1 and ε̂2 differ

f
(
k, q, n̂, τ, ε̂1/2

)
= fγ,0 (q)

[
Ψγ1/γ2 (k, q, n̂, τ)

]
. (3.4.27)

The polarisation vectors are orthogonal to each other and orthogonal to the momentum
direction, i.e. n̂ · ε̂1/2 = ε̂1 · ε̂2 = 0. The Boltzmann equation (3.4.1) applies to both
phase space distributions individually, hence Ψγ1 and Ψγ2 both obey Eq. (3.4.18) and are
coupled by the collision term. A practical choice is to track the sum and the difference of
both polarisation states, which correspond to the intensity and the Stokes parameter Q,
respectively. In analogy to the momentum-integrated neutrino phase space distribution
(3.4.17), we define

Fγ =
∫
dq d3 fγ,0 (q) (Ψγ1 + Ψγ2)∫

dq q3 fγ,0 (q) , (3.4.28a)

Gγ =
∫
dq d3 fγ,0 (q) (Ψγ1 −Ψγ2)∫

dq q3 fγ,0 (q) . (3.4.28b)

The momentum-integrated Boltzmann equation for the Stokes parameters is

F ′
γ

+ ik µFγ − 4
(
φ′ − ik µψ

)
=
(
∂ Fγ
∂τ

)
C
, (3.4.29a)

G′
γ

+ ik µGγ =
(
∂ Gγ
∂τ

)
C
. (3.4.29b)

Again, it is useful to expand the momentum-integrated phase space distribution in multi-
poles,

Fγ (k, n̂, τ) =
∞∑
l=0

(−i)l (2l + 1) Fγ,l (k, τ) Pl (µ) , (3.4.30a)

Gγ (k, n̂, τ) =
∞∑
l=0

(−i)l (2l + 1) Gγ,l (k, τ) Pl (µ) . (3.4.30b)

The lowest-order intensity multipoles are closely related to the stress-energy tensor,

δγ = Fγ,0 , θγ = 3k
4 Fγ,1 , and σγ = 1

2 Fγ,2 . (3.4.31)

And, given the intensity multipoles, the temperature autocorrelation spectrum is [283]

CTT
l = π4

∫
d3k |Fγ,l (k, τ)|2 (3.4.32)

To evaluate the Boltzmann equation further, its scattering term needs to be specified. The
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process of interest is Thomson scattering between photons and electrons, i.e.

γ (p1) + e− (p3) ←→ γ (p2) + e− (p4) ,

for which the scattering term, to all orders in perturbations, is [21]
(
∂ fγ
∂τ

)
C

= 1
E1

∫ ( 4∏
i=2

d pi

(2π)3 2Ei

)
|Me+γ↔e+γ|2 (2π)4 δ4 (p1 + p2 − p3 − p4)

× {fe (p4) fγ (p2)− fe (p3) fγ (p1)} . (3.4.33)

Simulated emission and Pauli blocking have been neglected in the product of electron (fe)
and photon (fγ) phase space distributions in the last parenthesis of this expression. The
matrix element for electron-photon scatteringMe+γ↔e+γ can e.g. be found in Ref. [289].
Evaluating it in the low energy limit and expanding the scattering term to first order in
perturbations yields [283,289,290](

∂ Fγ
∂τ

)
C

= κ′
γb

[
−Fγ + Fγ,0 + 4 n̂ · vb −

1
2 (Fγ,2 +Gγ,0 +Gγ,2)P2 (µ)

]
= κ′

γb

[
4i
k

(θγ − θb) P1 +
(

9σγ −
1
2 Gγ,0 −

1
2 Gγ,2

)
P2 −

∞∑
l=3

(−i)l (2 + l) Fγ,l Pl
]
,

(3.4.34a)(
∂ Gγ
∂τ

)
C

= κ′
γb

[
−Gγ + 1

2 (Fγ,2 +Gγ,0 +Gγ,2) (1− P2 (µ))
]

= κ′
γb

[
1
2 (Fγ,2 +Gγ,0 +Gγ,2) (1− P2)−

∞∑
l=0

(−i)l (2 + l) Gγ,l Pl
]
. (3.4.34b)

The scalar product between the incident photon’s momentum n̂ and the baryon velocity
vb can be expressed as

n̂ · vb =
(
n̂ · k̂

) (
k̂ · vb

)
= − i θb

k
µ , (3.4.35)

which was used to simplify the first line of the intensity scattering term.

With the in interaction terms in place, the evolution equations for the photon multipoles
follow from integrating Eq. (3.4.29) against Legendre polynomials,

∫ 1
−1 dµPl (µ), just as in

the neutrino case:

δ′
γ

= −4
3 θγ + 4φ′ , (3.4.36a)

θ′
γ

= k2
(1

4 δγ − σγ
)

+ k2 ψ + κ′
γb (θb − θγ) , (3.4.36b)

σ′
γ

= 4
15 θγ −

3
10 k Fγ,3 −

9
10 κ

′
γbσγ +

κ′
γb

20 (Gγ,0 +Gγ,2) , (3.4.36c)

F ′
γ,l = k

2l + 1
[
l Fγ,(l−1) − (l + 1) Fγ,(l+1)

]
− κ′

γb Fγ,l l > 3 , (3.4.36d)

G′
γ,0 = −k Gγ,1 −

κ′
γb
2 (Gγ,0 − Fγ,2 −Gγ,2) , (3.4.36e)

G′
γ,1 = k

3 (Gγ,0 − 2Gγ,2)− κ′
γbGγ,1 , (3.4.36f)
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G′
γ,2 = k

5 (2Gγ,1 − 3Gγ,3) +
κ′
γb

10 (Fγ,2 +Gγ,0 +Gγ,2)− κ′
γbGγ2 , (3.4.36g)

G′
γ,l = k

2l + 1
(
lGγ,(l−1) − (l + 1)Gγ,(l+1)

)
− κ′

γbGγ,l l ≥ 3 . (3.4.36h)

Obviously, Thomson scattering couples the lowest multipoles of the different polarisation
states. For l > 3, however, we again obtain a hierarchy of equations in which each coefficient
Fγ,l and Gγ,l only depends on its neighbouring higher and lower multipole. The same
truncation scheme as for neutrinos (3.4.25) can be applied to this hierarchy, thus that the
two highest-order equations are given by

F ′
γ,lmax = k

(
Fγ,(lmax−1) −

lmax + 1
kτ

Fγ,lmax

)
− κ′

γb Fγ,lmax , (3.4.37a)

G′
γ,lmax = k

(
Gγ,(lmax−1) −

lmax + 1
kτ

Gγ,lmax

)
− κ′

γbGγ,lmax . (3.4.37b)

3.5 Dark matter scattering with neutrinos

The preceding sections provide the equations required to predict the evolution of metric
perturbations, dark matter, baryons, neutrinos and photons in the ΛCDM scenario. We
now turn to one of the main objectives of this thesis, dark matter-neutrino scattering, and
augment the respective Boltzmann equations by appropriate scattering terms.

A thermally produced dark matter particle must have a mass of at least 3.3 keV (1.2.34),
and typical WIMP candidates are even heavier, in the GeV ballpark and above. In this
case, the dark matter mass is much larger than the neutrino mass and the neutrino kinetic
energy. We therefore consider elastic dark matter-neutrino scattering processes of the
form [200,281,282,291,292]

ν (p1) + νdm (p3) ←→ ν (p2) + νdm (p4) ,

where νdm refers to a dark matter species which exhibits neutrino interactions. The
case is similar to photon-baryon interactions, which likewise are treated in the low-energy
Thomson limit.

Concerning the neutrino evolution, elastic scattering with electrons signifies that the
interaction term on the right hand side of the Boltzmann equation (3.4.1) differs from zero
and is given by an expression similar to Eq. (3.4.33)

(
∂ fν
∂τ

)
C

= 1
E1

∫ ( 4∏
i=2

d pi

(2π)3 2Ei

)
|Mνdm+ν↔νdm+ν|2 (2π)4 δ4 (p1 + p2 − p3 − p4)

× {fνdm (p4) fν (p2)− fνdm (p3) fν (p1)} . (3.5.1)

In principle, this implies that the Boltzmann equations depend on the precise particle-
physics mechanism for the scattering through its matrix element. In practice, however, the
model dependence can be absorbed in a few parameters, as shown in the following. Even
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more important, of these parameters only one, the energy dependence of the scattering
cross section, has a significant impact on the observables. Cosmological observations
therefore allow to place constraints on the dark matter interaction strength with neutrinos
which are largely independent of the underlying particle physics mechanism and apply to
a wide range of models at the same time.

3.5.1 Interacting neutrino hierarchy

To include the dark matter-neutrino interaction term in the Boltzmann equations, we
adopt the parameterisation of Ref. [293], defining the projection of the matrix element on
the Legendre polynomials as

Al (p) = 1
2

∫ 1

−1
dµ Pl (µ)

( 1
gνdm gν

|Mνdm+ν↔νdm+ν|2
)∣∣∣∣t=2p2(µ−1)
s=m2

νdm+2mνdm p

, (3.5.2)

where gν and gνdm are the internal degrees of freedom of the neutrinos and the dark
matter particle, and mνdm is the dark matter mass. In the low energy limit, the dark
matter particle is at rest before and after the scattering and the neutrino changes its
direction but not its energy. Then, the Mandelstam variables reduce to t = 2p2(µ − 1)
and s = m2

νdm + 2mνdm p, as indicated above, where p = |p1| = |p2| and µ is the cosine
between the ingoing and the outgoing neutrino direction. The neutrino scattering rate is
related to the projection on the two lowest multipoles,

κ′
νdm = anνdm

128 π3m2
νdm

gν
ρν

∫ ∞
0

dp

(
∂fν
∂p

)
p4 [A0(p)−A1(p)] . (3.5.3)

Further, from the projected matrix element the angular coefficients αl can be defined

αl ≡
∫
dp p4

(
∂fν
∂p

)
[A0(p)−Al(p)]∫

dp p4
(
∂fν
∂p

)
[A0(p)−A1(p)]

. (3.5.4)

These coefficients absorb the model-dependent angular part of the scattering term in the
Boltzmann equations, which become [282,291,293,294]

δ′
ν

= −4
3 θν + 4φ′ , (3.5.5a)

θ′
ν

= k2
(
δν
4 − σν

)
+ k2ψ − κ′

νdm (θν − θνdm) , (3.5.5b)

σ′
ν

= 8
30 θν −

3
10 k Fν,3 − α2 κ

′
νdm σν , (3.5.5c)

F ′
ν,l = k

2l + 1 [l Fν,l−1 − (l + 1)Fν,l+1]− αl κ′νdmFν,l , (3.5.5d)

F ′
ν,lmax = k

[
Fν,lmax−1 −

lmax + 1
kτ

Fν,lmax

]
− αl κ′νdmFν,lmax . (3.5.5e)

In Sec. 3.5.3 we investigate possible interaction scenarios and the scattering rates and
angular coefficients they imply.
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3.5.2 Modified dark matter evolution

Having derived the interacting neutrino hierarchy, the dark matter evolution has to be
modified accordingly. The interactions do not affect the evolution of δν, hence the con-
servation equation for δ (3.3.3) still applies to each species individually. In contrast, the
coupling between the neutrino and the dark matter velocity divergence implies that we
have to consider their combined momentum conservation, given by Eq. (3.3.7). Just as was
the case for baryons, the scattering with neutrinos can transfer heat to the dark matter
population and implies a non-zero sound speed

c2
νdm = kB Tνdm

mνdm

(
1− 1

3
∂ lnTνdm
∂ ln a

)
. (3.5.6)

The magnitude of the sound speed, and correspondingly its influence on the evolution of
dark matter perturbations, decreases with increasing dark matter mass, for large enough
masses it becomes negligible. We investigate the effect of such a sound speed term for
the case of dark matter-photon interactions. Concerning neutrino interactions, our main
objective is to provide a physical understanding of the so-called mixed damping regime.
In this context, we work in the most-baseline scenario, assume a sufficiently large value
for mνdm and neglect the sound speed term in the dark matter evolution equations, which
become

δ′
νdm = −θνdm + 3φ′ , (3.5.7a)

θ′
νdm = k2ψ −Hθνdm −Rνdmκ

′
νdm (θνdm − θν) . (3.5.7b)

Again, the factor Rνdm in front of the scattering term ensures momentum conservation
and is defined as

Rνdm = 4 ρν
3 ρνdm

. (3.5.8)

With the parameterisation of the scattering term chosen in Eq. (3.5.2) to (3.5.4), the
two lowest neutrino multipoles are independent of the angular coefficients αl, and neither
do these enter the evolution of dark matter perturbations directly. Instead, the particle
physics details of the interaction only manifest themselves in the evolution of the higher
order neutrino multipoles.

3.5.3 Scattering terms

Previous works, which studied dark matter-neutrino scattering and its impact on the CMB
and large-scale structure, have adopted differing values for the angular coefficients αl, for
instance, α2 = 2 and αl>2 = 1 in Ref. [295] or α2 = 9/5 and αl>2 = 1 in Ref. [277].
None of them refers to a particular model for the interaction to motivate these values.
To gauge expectations on possible values of αl and the energy dependence of κ′

νdm, we
consider the simplified-model classification of dark matter-neutrino interactions in [296].
This work lists all possible, renormalizable interactions between dark matter and active,
left handed neutrinos, which arise if the Standard Model is extended by a dark matter
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particle and a mediator. Those simplified scenarios violate gauge invariance and are only
viable as part of a more complex UV-completion, see e.g. Ref [297]. Here, they serve us as
a phenomenological benchmark to assess what structures are possible for the interaction
term. The twelve possible simplified models found in Ref. [296] are summarised in Tab. 3.1,
where we quote the full matrix element, and computed the respective low-energy limit, the
scattering cross section and the angular coefficients.

The scattering rate κ′
νdm is always proportional to the dark matter number density nνdm,

which prompts to rewrite the dark matter-neutrino scattering rate (3.5.3) in the same form
as the rate for Thomson scattering (3.3.11)

κ′
νdm = anνdm σνdm , (3.5.9)

where all mode-dependence is contained in the elastic scattering cross section, σνdm. Cos-
mological observations are neither sensitive to the precise value of the dark matter mass nor
to the dark matter number density but can determine the energy density of dark matter
to good precision. A practical way to parameterise the dark matter-neutrino scattering
rate is by introducing a new, dimensionless parameter,

uνdm = σνdm
σTh

(
mνdm

100 GeV

)−1
. (3.5.10)

The temperature dependence of the scattering cross sections is given by a power law, and
in Tab. 3.1 we encounter two different possibilities for its exponent, nνdm = 2, 4. The
neutrino temperature obeys Tν ∝ a−1, hence we further account for the energy dependence
of the scattering cross section by defining

uνdm ≡ uνdm,0 a
−nνdm . (3.5.11)

The angular coefficients are always O(1) parameters and only couple to higher order
neutrino multipoles. Their effect on cosmological observables is very minor. Thus, the
twelve simplified models considered initially reduce to two scenarios, characterised by
the temperature dependence of the cross sections. Each of these contains one additional
parameter with respect to the baseline ΛCDM set, the normalised interaction strength
uνdm. Comparison of the CMB spectra and the matter power spectrum predicted from
these evolution equations with observations allows to put constraints on uνdm.

3.6 Dark matter-photon scattering

3.6.1 Modified Boltzmann hierarchy

The formalism to include elastic scattering between dark matter and photons into the
Boltzmann equations is very similar to dark matter-neutrino interactions. Here, we consider
the process

γ (p1) + γdm (p3) ←→ γ (p2) + γdm (p4) , (3.6.1)
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where γdm refers to a dark matter species with photon interactions. Following the same
steps as in the previous section, that is projecting the squared matrix element for the
scattering process in the low energy limit onto Legendre polynomials, we can again obtain
a modified Boltzmann hierarchy for the evolution of photon perturbations. Instead of
classifying all possible interaction scenarios, we here adopt a different approach and consider
a single baseline scenario, where the matrix element for dark matter photon scattering
exhibits the same angular and polarisation dependence as Thomson scattering. This
structure arises, for example, in the case of millicharged dark matter [293]. Still, our
results are not limited to a specific choice of model, and we expect that the angular
coefficients do not affect limits on the scattering rate significantly. Of course, the explicit
verification of this assumption would be desirable for future projects.

The modified Boltzmann equations for photons are now given by

δ′
γ

= −4
3θγ + 4φ′ , (3.6.2a)

θ′
γ

= k2
(1

4δγ − σγ
)

+ k2ψ + κ′
γb (θb − θγ) + κ′

γdm (θγdm − θγ) , (3.6.2b)

σ′
γ

= 4
15θγ −

3
10 kFγ,3 −

9
10
(
κ′
γb + κ′

γdm

)
σγ

+ 1
20
(
κ′
γb + κ′

γdm

)
(Gγ,0 +Gγ,2) , (3.6.2c)

F ′
γ,l = k

2l + 1
[
l Fγ,(l−1) − (l + 1)Fγ,(l+1)

]
−
(
κ′
γb + κ′

γdm

)
Fγ,l , l ≥ 3 (3.6.2d)

G′
γ,0 = −k Gγ,1 −

1
2
(
κ′
γb + κ′

γdm

) (
Gγ,0 − F ′γ,2 −Gγ,2

)
, (3.6.2e)

G′
γ,1 = k

3 (Gγ,0 − 2Gγ,2)−
(
κ′
γb + κ′

γdm

)
Gγ,1 , (3.6.2f)

G′
γ2 = k

5 (2Gγ,1 − 3Gγ,3) +
κ′
γb + κ′

γdm
10 (Fγ,2 +Gγ,0 +Gγ,2)

−
(
κ′
γb + κ′

γdm

)
Gγ,2 , (3.6.2g)

G′
γ,l = k

2l + 1
(
lGγ,(l−1) − (l + 1)Gγ,(l+1)

)
−
(
κ′
γb + κ′

γdm

)
Gγ,l , l ≥ 3 . (3.6.2h)

Scatterings with two different species, the baryons and dark matter, now affect the evolution
of photon perturbations. The latter occurs at a rate of κ′

γdm, which is given by

κ′
γdm = anγdm σγdm . (3.6.3)

Two possibilities are commonly considered for the energy dependence of the dark matter
scattering cross section [285], namely σγdm = const. and σγdm ∝ T−2

γ
. For the highest

multipoles, lmax, the truncation equations (3.4.37) remain valid, given that κ′
γb is replaced

by κ′
γb + κ′

γdm.

To constraint the dark matter interactions from cosmological data, the introduction of a
dimensionless parameter, which is proportional to the scattering rate, again is beneficial.
We define

uγdm = σγdm
σTh

(
mγdm

100 GeV

)−1
, (3.6.4)
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where mγdm is the mass of the dark matter particle. In analogy to the neutrino case, we
further account for an energy dependent cross section as

uγdm ≡ uγdm,0 a
−nγdm . (3.6.5)

3.6.2 Dark matter evolution and dark matter sound speed

Scattering between dark matter and photons affects the evolution of dark matter pertur-
bations, and in particular the dark matter velocity divergence is modified. The photon
density contrast, on the other hand, is unaffected by the scattering terms and likewise does
δ′
γdm keep its original form. From Eq. (3.3.7) and the result obtained on θ′

γ
in Eq. (3.6.2)

it follows that the dark matter perturbations obey

δ′
γdm = −θγdm + 3φ′ , (3.6.6a)

θ′
γdm = k2ψ −Hθγdm + c2

γdm k
2 δγdm −Rγdm κ

′
γdm (θγdm − θγ) . (3.6.6b)

The momentum conserving factor in front of the scattering term is defined as

Rγdm = 4 ργ
3 ργdm

. (3.6.7)

For the case of dark matter-photon scattering we do not restrict the analysis to the limit
of large dark matter masses but explicitly allow for a non-vanishing dark matter sound
speed

c2
γdm = kB Tγdm

mγdm

[
1− 1

3
∂ lnTγdm
∂ ln a

]
. (3.6.8)

The derivation of the dark matter temperature works completely analogous to the baryon
temperature, presented in Eq. (3.3.15) to (3.3.17), and we obtain

T ′
γdm = −2H Tγdm + 8 ργ

3 ργdm
κ′
γdm (Tγ − Tγdm) . (3.6.9)

An important difference to the baryon case is, however, that the dark matter mass mγdm is
a priori unknown and can vary over several orders of magnitude. If the dark matter mass
is large enough, the sound speed becomes negligible and the evolution of perturbations
depends on seven free parameters, only: the six baseline ΛCDM parameters and uγdm.
Below this limit, the dark matter mass has to be considered as an additional free parameter.
We discuss the effect of the dark matter sound speed on cosmological perturbations in
Sec. 5.1.3.





Chapter 4

Numerical considerations and approximation
schemes

The evolution of cosmological perturbations in the linear regime is determined by an
extensive set of coupled differential equations, the linearised Boltzmann and Einstein
equations. While there exist approximative analytic solutions [132, 298], only numerical
results achieve the precision required by present-day cosmological observations. Specific
Boltzmann codes exist for this purpose, the two most widespread being CAMB [299] and
CLASS [288]. In this thesis we exclusively use the latter.

To constrain a cosmological model from observations, several thousands or millions of
spectra often need to be computed, each for a different set of parameters. In this context,
the speed of Boltzmann codes is essential and addressed by several approximation schemes.
In some cases, these schemes also cure numerical instabilities and further improve the codes’
accuracy. However, the introduction of additional scattering terms requires a careful review
of the simplifying assumptions.

In particular the line of sight integration and the tight coupling approximation receive
modifications from dark matter-photon interactions. In the case of dark matter-neutrino
scattering, the conditions under which the ultra-relativistic fluid approximation is applica-
ble have to be reviewed. The latter scenario also causes changes in the initial conditions.
In this section, we derive the required modifications.

4.1 Line of sight integration

In principle, it is possible to evolve the differential equations for the metric, baryon and dark
matter perturbations alongside with the multipole hierarchies for photons and neutrinos
numerically and to predict the CMB spectrum from these results. In practice, such an
approach requires to solve a system of thousands of coupled equations. Furthermore, the
multipoles oscillate rapidly, which demands a dense sampling over wavenumbers.

It is also possible to express the CMB anisotropies as time integral over the past light
cone, where the integrand is the product of a source and a geometrical term [300, 301].
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The geometrical term is rapidly oscillating but independent of the cosmological model,
while the source term varies only slowly as a function of the wavelength. In addition,
the latter only depends on the lowest-order multipoles. This formulation greatly reduces
computational efforts.

The line of sight integration approach is exact in the sense that it can achieve arbitrary
precision within the limits of linear perturbation theory [301]. Because the generalisation
to scenarios with dark matter-photon interactions is straightforward, we directly treat
this extended case. From our results, the ΛCDM equations can be recovered easily, by
imposing κ′

γdm = 0.

4.1.1 Modified equations for dark matter-photon scattering

To match the notation of the original derivation of the line of sight integration [301], we de-
fine a rescaled version of the momentum-integrated phase space perturbations, ∆T ≡ Fγ/4
and ∆P ≡ Gγ/4, as well as the short hand notation Γ ≡ Fγ,2 +Gγ,0 +Gγ,2. Starting point
for our derivation are the momentum-integrated Boltzmann equations (3.4.29), expressed
in terms of these new variables

∆T ′ + ik µ∆T =
(
φ′ − ik µψ

)
+
(
κ′
γb + κ′

γdm

) [
−∆T + ∆T

0 −
1
8 ΓP2 (µ)

]
+ κ′

γb µ vb + κ′
γdm µ vγdm , (4.1.1a)

∆P ′ + ik µ∆P =
(
κ′
γb + κ′

γdm

) [
−∆P + 1

8 (1− P2 (µ)) Γ
]
. (4.1.1b)

In analogy to the baryon velocity (3.4.35), we here express the dark matter velocity
divergence in terms of µ, the cosine of the angle between k and the photon’s momentum
direction n̂, and the dark matter velocity

n̂ · vγdm = − i θγdm
k

µ = µ vγdm . (4.1.2)

Equally, we have for the modulus of the baryon velocity n̂ · ve = µ ve.

To simplify the notation in the following, we define integrals over the Thomson and the
dark matter scattering rates

κγb ≡ −
∫ τ

τ0
dτ ′ κ′

γb
(
τ ′
)

and κγdm ≡ −
∫ τ

τ0
dτ ′ κ′

γdm
(
τ ′
)
, (4.1.3)

where τ0 ≥ τ is the current conformal time. For either of these integrals, i.e. for i =
γb , γdm, the following relation holds

d

dτ
e−κi = e−κi

d

dτ

(∫ τ

τ0
dτ ′κ′i

(
τ ′
))

= κ′i e
−κi . (4.1.4)

First, we focus on the polarisation term ∆P . By multiplying Eq. (4.1.1b) with exp (ikµ− κγb − κγdm)
and using the just derived relation (4.1.4) we obtain

∂

∂τ

(
∆P eikµ−κγb−κγdm

)
= ∆P ′ eikµ−κγb−κγdm + ∆P (ikµ− κγb − κγdm) eikµ−κγb−κγdm
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= 1
8 e

ikµ−κγb−κγdm
(
κ′
γb + κ′

γdm

)
[1− P2 (µ)] Γ . (4.1.5)

By definition we have κγb (τ0) = κγdm (τ0) = 0. On the other hand, the smaller τ , the denser
is the universe and correspondingly the scattering rate increases, hence κγb , κγdm →∞
for τ → 0. With this, integrating both sides of Eq. (4.1.5) over the past light cone, we
obtain

∆P (τ0) = 3
16

∫ τ0

0
dτ ei k µ (τ−τ0) g(τ)

(
1− µ2

)
Γ , (4.1.6)

where we wrote the second Legendre polynomial in its explicit form (3.4.19) and defined
the combined visibility function as

g (τ) ≡
(
κ′
γb + κ′

γdm

)
e−κγb−κγdm . (4.1.7)

Finally, to absorb the wavenumber dependence fully in the exponential function, we express
µ as derivative of ei k µ τ with respect to τ and perform an integration by parts,

∆P (τ0) = 3
16

∫ τ0

0
dτ eikµ(τ−τ0)

[
g Γ + 1

k2
d2

dτ2 (g Γ)
]
. (4.1.8)

In principle, this procedure produces two boundary terms, namely[
ei k µ(τ−τ0)

i k µ
µ2g Γ

]τ0

0
and

[
−e

i k µ(τ−τ0)

(ikµ)2
d

dτ

(
µ2g Γ

)]τ0

0
. (4.1.9)

However, at τ = 0 the visibility function is zero and the corresponding boundary terms
vanish, while the terms at τ0 only affect the monopole and hence are not observable [301].

The intensity term ∆T can be manipulated in a very similar manner. We first multiply
Eq. (4.1.1a) with exp (ikµ− κγb − κγdm) and take the derivative with respect to conformal
time to obtain the relation

∂

∂τ

(
ei k µ τ−κγb−κγdm∆T

)
= ei k µ τ−κγb−κγdm

[
∆T ′ +

(
ik µ+ κ′

γb + κ′
γdm

)
∆T
]

= eik µ τ−κγb−κγdm

[
φ′ − ik µψ +

(
κ′
γb + κ′

γdm

)(
∆T

0 −
1
8 P2 (µ) Γ

)
+ κ′

γb µ vb + κ′
γdm µ vγdm

]
.

(4.1.10)

In case of the intensity distribution, the integration over the past light cone, followed by
an integration by parts to completely absorb the µ-dependence in the exponential function,
yields

∆T (τ0) =
∫ τ0

0
dτ eik µ(τ−τ0)

[
e−κγb−κγdmφ′ − µ e−κγb−κγdm

(
i k ψ − κ′

γbvb − κ′γdmvγdm
)

− 3
16 g µ

2 Γ + g

(
∆T

0 + 1
16 Γ

)]
=
∫ τ0

0
dτ eikµ(τ−τ0)

{
e−κγb−κγdm φ′ + g

4

(
δγ + 1

4 Γ
)

+ d

dτ

[
e−κγb−κγdm ψ

]
− e−κγb−κγdm

ik

(
κ′′
γbvb + κ′

γb

(
κ′
γb + κ′

γdm

)
vb + κ′

γb v
′
b + κ′′

γdmvγdm

+ κ′
γdm(κ′

γb + κ′
γdm)vγdm + κγdmv

′
γdm

)
+ 3

16 k2
d

dτ

(
g′ Γ + g Γ′

)}
. (4.1.11)
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As advanced in the introduction, with these manipulations we have expressed the temper-
ature and the polarisation phase space distributions as integrals along the past light cone,
and the integrand is the product of a geometrical term and a cosmological source term.
To make the latter decomposition explicit, we write

∆T/P (k, µ, τ0) =
∫ τ0

0
dτeik µ (τ−τ0) ST/P (k, τ) . (4.1.12)

By comparison with Eq. (4.1.8) and Eq. (4.1.11), the source functions are given by

ST (k, τ) = e−κγb−κγdm φ′ + g

4

(
δγ + 1

4 Γ
)

+ e−κγb−κγdm

k2

{[
κ′′
γb + κ′

γb

(
κ′
γb + κγdm

)]
θb + κ′

γbθ
′
b

+
[
κ′′
γdm + κ′

γdm

(
κ′
γdm + κ′

γb

)]
θγdm + κ′

γbθ
′
γdm

}
+ d

dτ

[
e−κγb−κγdmψ + 3

16k2
(
g′ Γ + g Γ′

)]
,

(4.1.13a)

SP (k, τ) = 3
16

[
g Γ + 1

k2
d2

dτ2 (g Γ)
]

(4.1.13b)

As expected, if κ′
γb is set to zero our results reduces to Eq. (12) of Ref. [301] and we have

also verified that it agrees with the results from Ref. [6].

To obtain present-day multipole moment, we expand the plane wave in the integral of
Eq. (4.1.12) in terms of its radial and angular eigenfunctions. These are spherical Bessel
functions jl and Legendre polynomials Pl, respectively,

ei k µ =
∞∑
l=0

(2l + 1) il jl (k) Pl (µ) . (4.1.14)

Taking the ensemble average over the angular component µ, we obtain [301]

∆T,P
l (k) =

∫ τ0

0
dτ ST,P (k, τ) jl [k (τ0 − τ)] . (4.1.15)

Just as ∆T and ∆P are directly proportional to the momentum-integrated phase space
distributions Gγ and Gγ, ∆T

l and ∆P
l are a rescaled version of the multipole expansions

Fγ,l and Gγ,l.

4.1.2 Numerical implementation

To obtain CMB spectra with the line of sight approach, one has to sample the source
term over time and wavenumber and then numerically perform the integral over the past
light cone (4.1.15). The original Boltzmann hierarchy (3.4.36) is well suited to obtain
ST,P as a function of conformal time. However, because the source term only requires
knowledge about the lowest-order multipoles, l ≤ 4, the hierarchy can be truncated at
much smaller lmax, than if the anisotropies were computed using brute force. Within the
CLASS code [288], the temperature source function is split into three pieces, which are
stored individually [302]. In the past, this split generated some confusion about the correct
way to include the additional terms caused by dark matter-photon scattering. We therefore
think it is useful to explicitly give the expressions we implemented.
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In the absence of dark matter-photon scattering, the three source functions in CLASS are
defined as

ST0
∣∣
κ′
γdm=0 ≡ g

(
δγ
4 + φ

)
2e−κγb φ′ + k−2 (g θ′b + g′ θb

)
, (4.1.16a)

ST1
∣∣
κ′
γdm=0 ≡ e

−κγb k (ψ − φ) , (4.1.16b)

ST2
∣∣
κ′
γdm=0 ≡ g Γ/8 . (4.1.16c)

These source functions combine to the full expression according to

ST
∣∣
κ′
γdm=0 = e−κγb + g

4

(
δγ + 1

4 Γ
)

+ d

dτ

[
e−κγbψ

]
+ k−2 g θb + 3

16 k2
d2

dτ2 (g Γ)

= S0
T

∣∣
κ′
γdm=0 + 1

k

d

dτ
S1
T

∣∣
κ′
γdm=0 + 1

2

(
3
k2

d2

dτ2 S
2
T

∣∣
κ′
γdm=0 + S2

T

∣∣
κ′
γdm=0

)
.

(4.1.17)

We require that the same combination of individual components should produce Eq. (4.1.13a),
in the case where the dark matter-photon scattering term included, and obtain

ST0 = g

(
δγ
4 + φ

)
+ 2e−κγb−κγdm φ′ + 1

k2

[
g
(
κ′
γbθb + κ′

γdmθγdm
)

+e−κγb−κγdm
(
κ′′
γbθb + κ′′

γdmθγdm
)

+ e−κγb−κγdm
(
κ′
γb θ

′
b + κ′

γdmθ
′
γdm

)]
(4.1.18a)

S1
T = e−κγb−κγdm k (ψ − φ) , (4.1.18b)

S2
T = g Γ/8 . (4.1.18c)

For the polarisation multipoles the situation is simpler. Dark matter-photon scattering
enters the polarisation source function (4.1.13b) only indirectly, through the definition of
the visibility function, g. Hence, once these modifications are accounted for, no explicit
changes to the computation of the source function are required.

4.2 Tight coupling approximation

At early times, baryon and possibly also dark matter scattering significantly affects the
photon evolution. Well before recombination, the Thomson scattering rate (3.3.11) evolves
as κ′

γb ∝ a−3 but drops rapidly when free electrons and protons combine to neutral
hydrogen, see Fig. 4.1. On the other hand, the dark matter-photon scattering rate (3.6.3)
evolves as a power law of temperature at all epochs, that is κ′

γdm ∝ a−nγdm−3.

In particular at early times, the respective scattering rates are large and lead to a very
stiff system of equations, which is difficult to integrate numerically. The rapid scattering
also suppresses the higher order photon multipoles. In this regime, it is possible to remove
the scattering terms from the evolution of the velocity divergence and to expand all higher
order multipoles in inverse powers of the scatting rate [232]. This approach is called the
tight coupling approximation and allows to significantly reduce computational efforts [288].

We restrict this discussion to the case where σγdm is constant, i.e. nγdm = 0. In this case,
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for viable interaction cross section, the photon scattering rate with dark matter is much
smaller than the Thomson scattering rate, κγdm � κ′

γb, and no specific dark matter tight
coupling approximation needs to be devised. Still, the presence of dark matter-photon
scattering affects the conventional tight coupling approximation in the photon-baryon
sector and needs to be taken into account carefully.

The photon-baryon tight coupling approximation in the presence of dark matter-photon
scattering was derived in Ref. [6] and e.g. employed in Refs. [201, 202, 285, 303]. Yet,
our final result differs from this expression. We therefore proceed in two steps and first
obtain the baryon-photon tight coupling approximation disregarding the dark matter-
photon scattering terms. This derivation was presented in [288] for synchronous gauge. By
reproducing the steps in Newtonian gauge and comparing our final expressions to those
implemented in CLASS, we can affirm the correctness of our procedure. We then repeat
the derivation but in the presence of the dark matter-photon scattering term.

4.2.1 Baryon-photon tight coupling approximation

The large magnitude of κ′
γb at early times handicaps the numerical integration of the

Boltzmann hierarchy, and the first step in the derivation of the tight coupling approximation
is to obtain equations for the photon and baryon velocity divergence where this rate does
not appear explicitly. To this end we combine Eq. (3.4.36b) and Eq. (3.3.12) to

θ′b +Rγb θ
′
γ

= (1 +R) k2ψ +Rγb k
2
(
δγ
4 − σγ

)
−Hθb + c2

b k
2 δb . (4.2.1)

The photon-baryon slip Θ′
γb is defined as the time derivative of the difference between the

photon’s and the baryon’s velocity divergence, i.e.

Θγb ≡ θγ − θb . (4.2.2)

Subtracting RγbΘγb from the previous equation yields an expression for the baryon velocity
divergence, from which indeed any explicit appearance of κ′

γb has been removed. Further,
inserting this new form for θ′b back into Eq. (4.2.1) the same can be achieved for the photon
velocity term. The new equations read

θ′b = − (1 +Rγb)−1
[
Hθb − c2

b k
2 δb − k2Rγb

(
δγ
4 − σγ

)
+RγbΘγb

]
+ k2 ψ , (4.2.3a)

θ′
γ

= −R−1
γb

[
θ′b +H θb − c2

b k
2 δb

]
+ k2

(
δγ
4 − σγ

)
+ 1 +Rγb

Rγb
k2 ψ . (4.2.3b)

At first sight, rewriting the velocity divergences in the form of Eq. (4.2.3) just seems to
shift the problem. However, when Thomson scattering occurs at a rapid rate, the photon-
baryon slip and the photon shear are small and can be expanded in inverse powers of the
Thomson scattering rate,

κ′−1
γb ≡ τc . (4.2.4)
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In fact, the opacity due to Thomson scattering τc is a dimensional quantity. In treating it
as a small parameter, we assume that the opacity is much smaller than all other time and
length scales, which affect the evolution of photon perturbations, i.e.

τcH � 1 and τc k � 1 . (4.2.5)

We first focus on Θγb for which we obtain from Eq. (3.4.36b) and Eq. (3.3.12)

τc

[
Θ′
γb −H θb + k2

(
−δγ4 + σγ + c2

b δb

)]
+ (1 +Rγb) Θγb = 0 . (4.2.6)

Schematically, we can write this equation as

εy′ (τ) + y (τ) /f (τ) + ε g (τ) = 0 , (4.2.7)

where ε is a small parameter, and f (τ) and g (τ) are known functions that vary smoothly
on scales of ε. We obtain a partial solution to Eq. (4.2.7) from a sum series ansatz,

y (τ) =
∑
n=1

εn yn (τ) , y1 (τ) = −f (τ) g (τ) , , y2 (τ) = −y′1 (τ) f (τ) . (4.2.8)

The most general solution is given by the sum of the partial solution and yh (τ), the
solution to the homogeneous equation. For g (τ) = 0 Eq. (4.2.7) is solved by

yh (τ) = C exp
(
−1
ε

∫
dτ ′f−1 (τ ′)) . (4.2.9)

In the physical scenario, f (τ) is always positive, see Eq. (4.2.12b), and the homogeneous
solution gets exponentially suppressed. Thus, up to second order in the small parameter
ε, Eq. (4.2.7) is solved by

y = −ε f g + ε2 f
(
f ′ g + f g′

)
. (4.2.10)

Before making the connection between Θγb and the schematic equation (4.2.7), we have
to recognise a subtlety. The expansion parameter ε is constant in time while τ ′c 6= 0. To
overcome this obstacle, we introduce τ̄c, the opacity at some arbitrary time around which
the expansion is performed. Multiplying Eq.(4.2.6) by τ̄c/τc gives

0 = τ̄cΘ′γb + τ̄c

[
−H θb + k2

(
c2

b δb −
δγ
4 + σγ

)]
+ τ̄c
τc

(1 +Rγb) Θγb

= τ̄cΘ′γb + τ̄cgΘ (τ) + Θγb/f̄Θ (τ) , (4.2.11)

from which we can identify the functions f and g in the schematic solution as

gΘ = −H θb + k2
(
c2

b δb −
δγ
4 + σγ

)
, (4.2.12a)

f̄Θ = τc
τ̄c

1
1 +Rγb

= τc
τ̄c
fΘ . (4.2.12b)
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Thus, the photon and the baryon velocity divergence differ by

Θγb = −f̃Θ gΘ + f̃Θ
(
f̃ ′
Θ
gΘ + f̃Θ gΘ

)
+O

(
τ3

c

)
, (4.2.13)

where we have defined
f̃Θ ≡

τc
1 +Rγb

. (4.2.14)

The evolution of the baryon and the photon velocity divergence (4.2.3) depends on the
first derivative of Θγb, which can be written as

Θ′
γb =

(
f̃ ′
Θ

f̃Θ

)
Θγb + f̃Θ

(
−g′
Θ

+ f̃ ′′
Θ
gΘ + 2f̃ ′

Θ
g′
Θ

+ f̃Θ g
′′
Θ

)
+O

(
τ3

c

)
.

The derivative of f̃Θ with respect to conformal time is straightforward to compute and
contains terms proportional to τ ′c and f ′Θ. In the implementation, the former is provided by
the numerical modelling of recombination. The latter follows from the relations Rγb ∝ a−1

and R′
γb = −HRγb and hence is

f ′
Θ

= HRγb
(1 +Rγb)2 . (4.2.15)

As in Ref. [288], we write the derivative of gΘ as

g′
Θ

= −H′ θb −H θ′b + k2
((
c2

b

)′
δb + c2

b δ
′
b −

δ′
γ

4 + σ′
γ

)

= 2HΘ′
γb −

a′′

a
θb + k2

[
c̄2

b δb + c2
bδ
′
b −

δ′
γ

4 + σ′
γ
−Hψ

]
+H θ′b +H2 θb

− k2Hc2
b δb + k2Hψ − 2H θ′

γ

= 2HΘ′
γb −

a′′

a
θb + k2

[
c̄2

b δb + c2
bδ
′
b −

δ′
γ

4 + σ′
γ
−Hψ − H2 δγ + 2H σγ

]

+ H (Rγb + 2)
τc

Θγb . (4.2.16)

A number of relations are necessary to obtain this expression for g′
Θ
. Firstly, we defined

c̄2
b ≡

(
H c2

b +
(
c2

b

)′)
. (4.2.17)

This quantity is zero while c2
b ∝ a−1, i.e. while Thomson scattering is rapid and the

baryon temperature in Eq. (3.3.14) tracks the photon temperature closely. Further we
used that H′ +H2 = a′′/a and that −2H θ′b = 2H

(
Θ′
γb − θ′γ

)
. Finally from Eq. (3.4.36b)

and Eq. (3.3.12) obtain

Rγb
τc

Θγb = θ′b +H θb − k2ψ − k2 c2
b δb , (4.2.18)

θ′
γ

= k2 ψ + k2
(
δγ
4 − σbγ

)
− Θγb

τc
. (4.2.19)
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Now, at first order in τc, the photon-baryon slip is

Θ′
γb =

(
τ ′c
τc

+ f ′
Θ

fΘ

)
Θγb − τc fΘ g

′
Θ

+O(τ2)

=
(
τ ′

τc
− 2H

1 +Rγb

)
Θγb −

τc
1 +Rγb

[
−a
′′

a
θb

+k2
(
−Hψ − H δγ2 + c̄2

bδb + c2
bδ
′
b −

δ′
γ

4

)]
+O

(
τ2

c

)
. (4.2.20)

In this result we neglected the Θ′
γb and the σγ term in g′

Θ
. Both are first order in τc by

themselves and multiplied by an additional factor of τc, therefore they do not contribute
to the first order result.

While Θγb ∼ O (τc) follows directly from the expansion in Eq. (4.2.13), σγ ∼ O (τc) is not
as obvious. To see that the photon shear indeed contributes at first order in τc, we rewrite
Eq. (3.4.36c) as

σγ −
1
18 (Gγ,0 +Gγ,2) = τc

9

[8
3 θγ + 3k2 Fγ,3 − 10σ′

γ

]
. (4.2.21)

In combination with the equations for the zeroth and the first polarisation multipole
(Eq. (3.4.36e) and Eq. (3.4.36e)) this is consistent with Gγ,0 ∼ Gγ,2 ∼ σγ at first order in
τc. For the first polarisation multipole, Eq. (3.4.36f) gives

Gγ,1 = τc

[
−G′

γ,1 + k

3 (Gγ,0 − 2Gγ,2)
]
, (4.2.22)

from which we conclude that it only contributes atGγ,1 ∼ O
(
τ2

c
)
. Finally, from Eq. (3.4.36d)

and Eq. (3.4.36h), the leading order behaviour for multipoles at l ≥ 3 is

Fγ,l = l k τc
2l + 1 Fγ,(l−1) and Gγ,l = l k τc

2l + 1 Gγ,(l−1) . (4.2.23)

The l = 3 multipoles only contribute at O
(
τ2

c
)
, and with increasing multipole moment the

terms become more and more suppressed.

For the second-order solution in the tightly coupled limit, we require a first order expression
for σγ, in order to evaluate g′

Θ
, as well as second order expressions to σγ, Gγ,0 and Gγ,2.

The latter set the initial conditions for the integration of the Boltzmann hierarchy, when
the tight coupling approximation is switched off. From Eq. (3.4.36e) and Eq. (3.4.36g) we
obtain that

Gγ,0 = −2τcG
′
γ,0 + 2σγ +Gγ,2 +O

(
τ3

c

)
, (4.2.24a)

Gγ,2 = 10 τc
9

(2k
5 Gγ,1 −G′γ,2

)
+ 2

9 σγ + 1
9 Gγ,0 +O

(
τ3
)
, (4.2.24b)

Inserting the second into the first expression, we obtain Gγ,0, which we use in turn to
determine Gγ,2

Gγ,0 = 5
2 σγ −

25
4 τc σ

′
γ

+O
(
τ3

c

)
, (4.2.25a)
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Gγ,2 = 1
2 σγ −

5
3 τcσ

′
γ

+O
(
τ3

c

)
. (4.2.25b)

With these results, Eq. (3.4.36c) for the evolution of the photon shear becomes

σ′
γ

= 16
45
(
τc θ
′
γ

+ τ ′c θγ
)
, (4.2.26)

and the final first and second order results for the photon shear are

σγ = 16
45 τc θγ +O

(
τ2

c

)
= 8 τc

45

[
2 θγ

(
1− 11

6 τ ′c

)
− 2 θ′

γ

(11
6 τc

)]
+O

(
τ3

c

)
. (4.2.27)

Finally, all ingredients are in place to compute the second order results for the photon-
baryon slip according to Eq. (4.2.15)

Θ′
γb =

(
1− 2H f̃Θ

){(τ ′c
τc
− 2H

1 +Rγb

)
Θγb − f̃Θ

[
−a
′′

a
θb + k2

(
c̄2

b δbc
2
b δ
′
b −

δ′
γ

4 −Hψ −
H δγ

2

)]}
− k2 f̃Θ

(
σ′
γ

+ 2H σγ
)

+ f̃Θ
(
f̃ ′′
Θ
gΘ + 2f̃ ′

Θ
g′
Θ

+ f̃Θ g
′′
Θ

)
+O

(
τ3

c

)
. (4.2.28)

To evaluate the last brackets requires expressions for gΘ, g′Θ and g′′
Θ
which are accurate to

zeroth order in τc. Those follow directly from the definition of gΘ in Eq. (4.2.12) and read

gΘ = −H θb + k2
(
c2

bδb −
δγ
4

)
+O (τc) (4.2.29a)

g′
Θ

= H′ θb −H θ′b + k2
[(
c2

b

)′
δb +

(
c2

b −
1
3

) (
−θb + 3ψ′

)]
+O (τc) (4.2.29b)

g′′
Θ

= −H θ′′b − 2H′ θ′b −H′′ θb + k2
[(
c2
s

)′′
δb − 2

(
c2
s

)′ (
θb − 3ψ′

)
+
(1

3 − c
2
b

) (
θ′b − 3φ′

)]
+O (τc) . (4.2.29c)

Our result agrees with the expressions implemented in CLASS for Newtonian gauge.

4.2.2 Inclusion of dark matter-photon interactions in the tight coupling
approximation

We now turn to the inclusion of dark matter-photon scattering into the tight coupling
approximation. Starting from the evolution of the baryon and photon velocity divergences
in Eq. (3.3.12) and Eq. (3.6.2b), respectively, we obtain a new set of evolution equations
without any explicit occurrence of the Thomson scattering rate κ′

γb

θ′b = − 1
1 +Rγb

[
H θb − c2

b k
2 δb − k2Rγb

(
δγ
4 − σγ

)
+RγbΘ′

γb + κ′
γdmRγb (θγ − θγdm)

]
+ k2 ψ , (4.2.30a)

θ′
γ

= −R−1
γb

[
H θb − c2

b k
2 δb + θ′b

]
+ k2

(
δγ
4 − σγ

)
+ 1 +Rγb

Rγb
k2 ψ − κ′

γdm (θγ − θγdm) .

(4.2.30b)
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Figure 4.1: Comparison of the rates for photon scattering and the cosmological expansion,
assuming a constant dark matter-photon interaction cross section. The orange shaded
region roughly indicates when the tight coupling approximation is applied.

These equations still contain the rate for dark matter-photon scattering κ′
γdm, and in our

derivation we assume it to be much smaller than the Thomson scattering rate. This means
the tight coupling conditions (4.2.8), now generalise to

τcH � 1 , τc k � 1 , and τc κ
′
γdm � 1 . (4.2.31)

If σγdm = const., the condition on κ′
γdm does not impose an actual new constraint on the

applicability of the tight coupling approximation. This becomes very clear from Fig. 4.1,
where we compare the dark matter-photon scattering rate to the Thomson scattering rate
and the Hubble parameter. Well before recombination, the photon scattering rates with
electrons and dark matter evolve parallel with their ratio set by uγdm. Phenomenological
viable models require uγdm ∼ 10−4 or smaller (c.f. Sec. 5.3), for which κ′

γdm � κ′
γb is

safely guaranteed whenever κ′
γb � H. More care is required when non-constant dark

matter scattering cross sections are concerned. In those cases where σγdm increases with
temperature, κ′

γdm might easily become larger than the Thomson scattering rate at early
times. A tight coupling approximation then still is possible but requires an expansion in
both inverse scattering rates.

Generalising the expression for the photon-baryon slip to include interactions between
photons and dark matter, we obtain from Eq. (3.3.12) and Eq. (3.6.2b)

τc

[
Θ′
γb −H θb + k2

(
c2

b δb −
δγ
4 + σγ

)
+ κ′

γdm (θγ − θγdm)
]

+ (1 +Rγb) Θγb = 0 .
(4.2.32)

This equation has the same structure as the schematic equation (4.2.7), which we used
to derive the expansion in the previous section. However, it differs from the precise
expression in Eq. (4.2.6) by the appearance of an additional term proportional to κ′

γdm.
Thus Eq. (4.2.15), which determines Θ′

γb up to second order in τc, remains valid given that
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we redefine the function gΘ accordingly,

gΘ = −H θb + k2
(
c2

b δb −
δγ
4 + σγ

)
+ κ′

γdm (θγ − θγdm) . (4.2.33)

Performing the same manipulations as in Eq. (4.2.16), the time derivative of gΘ is

g′
Θ

= −H′ θb −H θ′b + k2
(
c2

b

)′
δb + k2 c2

b δ
′
b −

k2 δ′
γ

4 + k2 σ′
γ

+ κ′′
γdm (θγ − θγdm) + κ′

γdm

(
θ′
γ
− θ′

γdm

)
= 2HΘ′

γb −
a′′

a
θb + k2

[
c̄2

b δb + c2
b δ
′
b −

δ′
γ

4 + σ′
γ
−Hψ

]
+ κ′′

γdm (θγ − θγdm)

+ κ′
γdm

(
θ′
γ
− θ′

γdm

)
+HRγbκ′γbΘγb + 2 k2Hψ − 2 k2Hψ

− 1
2H k

2 δγ + 2H k2 σγ + 2Hκ′
γbΘγb + 2Hκ′

γdm (θγ − θγdm)

= 2HΘ′
γb −

a′′

a
θb + k2

[
c̄2

b δb + c2
b δ
′
b −

δ′
γ

4 + σ′
γ
−Hψ − H δγ2 + 2Hσγ

]
+ κ′

γdm

(
θ′
γ
− θ′

γdm

)
+H κ′

γb (2 +Rγb) Θγb . (4.2.34)

To arrive at the final expression we used that

κ′′′
γdm = σγdm

mγdm

(
a′ ργdm + a ρ′

γdm

)
. = −2H κ′

γdm (4.2.35)

The first order solution for the photon-baryon slip in the presence of dark matter-photon
scattering is now given by

Θ′
γb =

(
τ ′

τc
− 2H

1 +Rγb

)
Θγb −

τc
1 +Rγb

[
−a
′′

a
θb + k2

(
c̄2

b δb + c2
b δ
′
b −

δ′
γ

4 −
H δγ

2 −Hψ
)

+ κ′
γdm

(
θ′
γ
− θ′

γdm

)]
+O

(
τ2

c

)
. (4.2.36)

At this point, we are not able to confirm the findings of Ref. [6] and in particular Eq. (3.2.19)
therein. The term κ′

γdm

(
θ′
γ
− θ′

γdm

)
does not appear in our result but instead we obtain

a term κ′′
γdm (θγ − θγdm). Since the steps which led to the expression of Ref. [6] were not

explicitly presented, we are unable to trace back at which point the discrepancy occurred.

In order to obtain expressions for the photon shear and the zeroth and the second po-
larisation multipole, we compare the governing equations with and without the dark
matter-photon scatting term, that is Eq. (3.6.2) and Eq. (3.4.36). They take the exactly
same form, except for the replacement κ′

γb → κ′
γb + κ′

γdm. Because the dark matter
scattering rate is much smaller than that for Thomson scattering, we have(

κ′
γb + κ′

γdm

)−1
= τc,2 ∼ O (τc) , (4.2.37)

and we can repeat the exact same steps as in the previous section but using τc,2 as expansion
parameter. We then recover Eq. (4.2.25) as result for the polarisation multipoles and
Eq. (4.2.27) for the photon shear but with τc replaced by τc,2.
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Finally, at second order in τc the photon-baryon slip is given by

Θ′
γb =

(
1− 2H τc

1 +Rγb

){(
τ ′

τc
− 2H

1 +Rγb

)
Θγb

− τc
1 +Rγb

[
−a
′′

a
θb + k2

(
c̄2

bδb + c2
b δ
′
b −

δ′
γ

4 −
H δγ

2 −Hψ
)

+ κ′
γdm

(
θ′
γ
− θ′

γdm

)]}

− τc k
2

1 +Rγb

(
2Hσγ + σ′

γ

)
+ f̃Θ

(
f̃ ′
Θ
gΘ + 2f̃ ′

Θ
g′
Θ

+ f̃ g′′
Θ

)
+O

(
τ3

c

)
, (4.2.38)

where the required first order expressions for gΘ and its derivatives follow directly from
Eq. (4.2.33)

gΘ = −H θb + k2
(
c2

bδb −
δγ
4

)
+ κ′

γdm (θγ − θγdm) +O (τc) (4.2.39)

g′
Θ

= −H′θb −Hθ′b + k2
[(
c2

b

)′
δb +

(1
3 − c

2
b

) (
θb − 3φ′

)]
+ κ′′

γdm (θγ − θγdm)

+ κ′
γdm

(
θ′
γ
− θ′

γdm

)
+O (τc) (4.2.40)

g′′
Θ

= −H′′θb − 2H′ θ′b −H θ′′b + k2
[(
c2

b

)′′
δb − 2

(
c2
s

)′ (
θb − 3φ′

)
+
(1

3 − c
2
b

) (
θ′b − 3φ′

)]
+ κ′′′

γdm (θγ − θγdm) + 2κ′′
γdm

(
θ′
γ
− θ′

γdm

)
+ κ′

γdm

(
θ′′
γ
− θ′′

γdm

)
+O (τc) . (4.2.41)

For the numerical implementation of this result we choose the accuracy level “class com-
promise”. This is the CLASS default setting for the tight coupling approximation [288]. It
considers the photon shear at second order but uses a reduced expression for the photon-
baryon slip, which avoids some of the numerically most expensive terms.

4.3 Ultra-relativistic fluid approximation

Both approximation schemes discussed previously address perturbations in the photon
fluid and are modified by photon couplings with dark matter. Dark matter-neutrino
scattering, in contrast, affects neither the line of sight integration, nor the tight coupling
approximation. However, it requires a careful re-examination of the conditions under which
the ultra-relativistic fluid approximation can be applied.

In the ΛCDM scenario, where neutrinos interact only gravitationally, the lowest multipoles
δν, θν and σν suffice to account for the neutrino’s impact on the Einstein equations and
on the evolution of other species. Nevertheless, because higher and lower multipoles
are coupled, the latter can not simply be neglected. The original truncation scheme for
the Boltzmann hierarchy (3.4.25) is designed to avoid unphysical reflections but works
imperfectly if lmax < kτ . However, once a neutrino perturbation is well inside the Hubble
radius, multipoles in the range 2 < l � kτ become suppressed, and the lowest moments
decouple from the higher ones. This central observation permits the ultra-relativistic
fluid approximation, a consistent truncation for free-streaming radiation on sub-horizon
scales that only considers multipoles up to the shear. During the radiation-dominated
era, τ = H−1 holds, and imposing a lower threshold on kτ , i.e. kτ ≥ (kτ)ufa, is a good
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criterion to evaluate whether a perturbation is well within the Hubble radius. In practice,
the threshold (kτ)ufa typically ranges between 10 and 50 [288].

The advantages of such a truncation are twofold. First, it immediately reduces the number
of equations which have to be integrated at late times to just three. Second, because
the full Boltzmann hierarchy is only evolved until some early time (kτ)ufa /k, a lower
multipole moment can be chosen for the cut-off lmax. Accordingly, the ultra-relativistic
fluid approximation also benefits the computational costs at early times.

4.3.1 Truncation scheme for collisionless neutrinos

Before we discuss how the ultra-relativistic fluid approximation can be applied in the case
of dark matter-neutrino interactions, we briefly sketch the most important steps of its
derivation in the ΛCDM scenario. Only synchronous gauge was discussed in Ref. [288],
here we obtain the truncation equations in Newtonian gauge. Our result agrees with the
expression implemented in CLASS.

The argumentation begins with the free streaming solution to the momentum-integrated
Boltzmann equation, which we derive in Sec. 7.3.4. Here, we anticipate the result (7.3.18),

Fν,l (k, µ, τ) = [δν (k) + 4ψ]τ=0 jl (kτ)− 4 i µ
k

[θν (k)]τ=0 j
′
l (kτ)

+ 4
∫ τ

0
dτ̃ jl [k (τ − τ̃)]

(
φ′ + ψ′

)
.

as starting point. The first line of this expression describes how initial conditions propagate
to later times, the second line how perturbations adjust to power injection from metric
perturbations. The spherical Bessel functions obey the identity

j′′l (k τ) = j′l (k τ)− l + 1
k τ

j′ (k τ) + l + 1
(k τ)2 jl (k τ) , (4.3.1)

and vary over time scales ∼ k−1. Thus, in the limit kτ � 1, that is when a perturbation
is well inside the Hubble radius, the last term in Eq. (4.3.1) can be omitted. The free
streaming solution becomes

F ′l − k Fl−1 + l + 1
τ

Fl = 4k ψ δ(l−1),0 − 4 l + 1
τ

∫ τ

0
dτ̃

(
τ̃

τ − τ̃

)
jl [k (τ − τ̃)]

(
φ′ + ψ′

)
(4.3.2)

Crucially, the metric perturbations vary smoothly over the timescale of τ , while the Bessel
function oscillates over k−1 and shows a peak around l+ 1

2 . If the integral runs over a large
enough interval, i.e. when τ � k/l, the convolution only picks up a significant contribution
near τ̃ ∼ τ . Hence, one can approximate it as∫ τ

0
dτ̃

(
τ̃

τ − τ̃

)
jl [k (τ − τ̃)]

(
φ′ + ψ′

)
' τ

[
φ′ (τ) + ψ′ (τ)

] ∫ τ̃

0
dτ̃

jl [k (τ − τ̃)]
τ − τ̃

(4.3.3)

For l = 2, the remaining integrand is of the form j2 (x) /x, and evaluates to −1/3. By
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further assuming ψ ' φ, which is justified for small anisotropic stress, we obtain

σ′
ν

= 2
3 θν −

3
τ
σν + 4φ′ . (4.3.4)

This expression for the time derivative of the anisotropic stress only depends on neutrino
multipoles of the same or lower order and on the metric perturbations, hence it cuts off the
Boltzmann hierarchy. In contrast to the ordinary truncation scheme, which is based on the
assumption Fν,l ∝ jl (kτ) and neglects the metric term in the free streaming solution, the
ultra-relativistic fluid approximation accounts metric contributions at leading order [288].

4.3.2 Revised treatment for interacting neutrinos

Unfortunately, the ultra-relativistic fluid approximation does not readily generalise when
interactions with dark matter affect the neutrino evolution. Starting point for the derivation
was the free streaming solution to the collisionless Boltzmann equations (7.3.18), which is
not valid for interacting neutrinos. In some numerical codes, used e.g. to study the impact
of dark matter-neutrino scattering on the CMB spectra [277] or on the matter power
spectrum [295], we encountered a modified version of the truncation equation (4.3.4),

σ′
ν

= 2
3 θν −

3
τ
σν + 4φ′ − αl κ′νdm σν , (4.3.5)

where αl = 9/10, 1, respectively. However, we neither found a derivation of this expression,
nor did we manage to calculate it from the steps outline in the previous section.

Instead of incorporating the scattering term in the truncation equation, we choose to delay
the ultra-relativistic fluid approximation until neutrinos have decoupled from dark matter.
The scale factor at neutrino decoupling aν,dec can be estimated from the condition

H (aν,dec) = κ′
νdm (aν,dec) . (4.3.6)

Assuming that the decoupling occurs in the radiation-dominated epoch, aν,dec is given by

anνdm+1
ν,dec = 3m2

P
8π H0

Ωνdmh
2

√
Ωrh2

uνdm,0 σT
100 GeV = 1.2× 10−2 × uνdm,0

(
Ωνdmh

2

0.1186

)
. (4.3.7)

Indeed, neutrino decoupling during matter domination is ruled out by CMB constraints
for nνdm = 0, 2, and in the mixed damping study of Sec.7 we are exclusively concerned
with decoupling before matter-radiation equality. The conformal time at aν,dec is

τν,dec = aν,dec
H0
√

Ωr
=


5.53× 103 Mpc×

(
uνdm
εufa

)
×
(

Ωdm
0.1186

)
ifnνdm = 0

10.6× 104 Mpc×
(
uνdm
εufa

) 1
3 ×

(
Ωdm

0.1186

) 1
3 ifnνdm = 2

19.2× 104 Mpc×
(
uνdm
εufa

) 1
5 ×

(
Ωdm

0.1186

) 1
5 ifnνdm = 4

. (4.3.8)

To delay the ultra-relativistic fluid approximation beyond neutrino decoupling, we impose
for the largest mode of interest kmax

τν,dec kmax > (kτ)ufa . (4.3.9)
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With the described approach we evolve the full, interacting Boltzmann hierarchy (3.5.5)
up to a larger conformal time. Unphysical reflections affect the solution after τ = lmax/k,
and we adapt lmax accordingly, to minimise their impact. As a benchmark point we use

lmax ' (kτ)ufa ' kmax τν,dec (4.3.10)

In Sec. 7.2.1 we assess the accuracy of our treatment and compare our results to those
obtained by previous studies.

4.4 Initial conditions

Before the evolution equations for cosmological perturbations can be solved numerically,
initial conditions need to be specified. In particular neutrino interactions with dark matter
modify the initial conditions from the canonical ΛCDM expressions. The the traceless
space-space component of the linearised Einstein equations (3.2.17d)

k2 (φ− ψ) = 12π
m2

P
a2
(
ρ̄+ P̄

)
σ ,

illustrate the cause for the change. In general, the numerical evolution of perturbations
commences well before recombination, in the radiation-dominated era. Then, Thomson
scattering suppresses σγ, but in the ΛCDM scenario free streaming neutrinos contribute
some anisotropic stress and causes a small difference between the metric potentials. If, in
contrast, neutrinos are in kinetic equilibrium with dark matter, then σν is small, and the
two metric perturbations equal each other.

Initial conditions for the ΛCDM scenario have mostly been derived in synchronous gauge
[283, 304]. From these expressions staring values in Newtonian gauge are obtained by a
gauge transformation [283]. To be able to compare our results at an intermediate level
and thereby verify our calculations, we follow the same approach here. That is, we derive
the default initial conditions in synchronous gauge in Sec. 4.4.1 and for the interacting
neutrino scenario in Sec. 4.4.2. We then perform a gauge transformation to obtain starting
values for the numerical integration in Newtonian gauge in Sec. 4.4.3.

4.4.1 Default initial conditions in synchronous gauge

In synchronous gauge, scalar metric perturbations are described by two variables, h and
η. To derive their initial conditions, we start from the time-time and the space-space
component of the linearised Einstein equations [283]

k2 η − 1
2Hh

′ = −4π a2

m2
P

∑
i

δρsyn
i , (4.4.1a)

h′′ + 2Hh′ − 2k2τ = −8π a2

m2
P

∑
i

3 δP syn
i , (4.4.1b)
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where we have introduced the superscript “syn” to explicitly denote perturbations in the
synchronous gauge (perturbations in Newtonian gauge do not carry a superscript). During
the radiation-dominated epoch, only photons and neutrinos, whose equation of state is
δP = δρ/3, contribute significantly in the sums on the right hand side, and the conformal
Hubble rate is H = τ−1. By adding Eq. (4.4.1a) and Eq. (4.4.1b) and using the Friedman
equation (1.1.4), we obtain a second order equation for h

τ2 h′′ + τ h′ + 6 [(1−Rν) δγ +Rν δν] = 0 . (4.4.2)

For briefness, we denote the fractional energy density in neutrinos as Rν ≡ ρ̄ν/ (ρ̄ν + ρ̄γ).

While Eqs. (4.4.1a) and (4.4.2) describe the metric perturbations, we also require ex-
pressions for the matter fluctuations. The tight coupling between photons and baryons
suppresses the photon multipoles for l ≥ 2 and drives θγ − θb to zero, as discussed in
Sec. 4.2.1. Similarly, the higher order neutrino multipoles are suppressed by successive
powers of kτ . Initial conditions have to be chosen when the mode of concern is larger
than the Hubble radius, hence kτ � 1, and we neglect all neutrino multipoles beyond the
anisotropic shear. Under these assumptions, the evolution equations for matter perturba-
tions in synchronous gauge simplify to [283]

δ
′syn
γ

+ 4
3 θ

′syn
γ

+ 2
3 h
′ = 0 , (4.4.3a)

δ
′syn
ν

+ 4
3 θ

′syn
ν

+ 2
3 h
′ = 0 , (4.4.3b)

θ
′syn
γ
− 1

4k
2 δsyn
γ

= 0 , (4.4.3c)

θ
′syn
ν
− 1
k
k2 (δsyn

ν
− 4σsyn

ν
) = 0 , (4.4.3d)

σ
′syn
ν
− 2

15
(
2θsyn
ν

+ h′ + 6η′
)

= 0 . (4.4.3e)

The system of coupled differential equations, composed of Eq. (4.4.2), Eq. (4.4.2) and
Eqs. (4.4.3), determines the initial conditions. To find a solution, we expand each pertur-
bation variable as a power series in kτ . Substituting the expansion and matching terms
of like powers in kτ yields a set of linear equations, which we solve for the individual
coefficients. For a high precision study of the tight coupling approximation, Ref. [304]
follows a similar approach but also considers σν and extends the expansion to inverse
powers of the Thomson scattering rate. In CLASS the initial conditions are implemented
to lowest order in kτ and zeroth order in κ′−1

γb . As we discuss in Sec. 7.2.2, the lowest order
expressions are also sufficient for our purpose.

To ease the comparison with Ref. [283], we denote the second order coefficient in the
expansion of h as Cini and reformulate all other variables in terms of it. With this, we
obtain as initial conditions in the ΛCDM scenario

hini (k , τ) = Cini (kτ)2 − 5 + 4Rν
36 (15 + 4Rν)

Cini (kτ)4 +O
(
(kτ)5

)
, (4.4.4a)
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ηini (k , τ) = 2Cini −
5 + 4Rν

6 (15 + 4Rν)
Cini (kτ)2 +O

(
(kτ)3

)
, (4.4.4b)

δsyn
γ, ini (k , τ) = −2

3Cini (kτ)2 + 10 + 4Rν
27 (15 + 4Rν)

Cini (kτ)4 +O
(
(kτ)5

)
, (4.4.4c)

δsyn
ν, ini (k , τ) = −2

3Cini (kτ)2 + 2 (7 + 2Rν)
27 (15 + 4Rν)

Cini (kτ)4 +O
(
(kτ)5

)
, (4.4.4d)

θsyn
γ, ini (k , τ) = −Cini

18 k4τ3 +O
(
(kτ)5

)
, (4.4.4e)

θsyn
ν, ini (k , τ) = −2 (23 + 4Rν)

3 (15 + 4Rν)
Cini k

4τ3 +O
(
(kτ)4

)
, (4.4.4f)

σsyn
ν, ini (k , τ) = 4Cini

3 (15 + 4Rν)
(kτ)2 +O

(
(kτ)3

)
. (4.4.4g)

Our results agree with those quoted in Ref. [283] and with the coefficients at corresponding
power in Ref. [304]. Importantly, none of the arguments below Eq. (4.4.1), which we used
to obtain the simplified evolution equations for the matter perturbations, looses its validity
when dark matter-photon scattering is introduced. The additional scattering term in the
photon evolution is driven to zero in the limit of tight coupling and suppressed by the
smallness of the interaction rate in the decoupled limit. Thus, the default initial conditions
(4.4.4) remain valid for dark matter-photon interactions.

For completeness, we also give the initial conditions for dark matter and baryons, which
follow from the assumption of photon-baryon tight coupling and constant entropy per
particle [283]

δsyn
dm, ini = δsyn

b, ini = 3
4 δ

syn
γ, ini , (4.4.5a)

θsyn
b, ini = θsyn

γ, ini , (4.4.5b)

θdm, ini = 0 . (4.4.5c)

The last relation corresponds to the synchronous gauge condition. At first sight, this term
seems not to generalise to dark matter-photon interactions, which drive θdm ' θγ. Leading
order contributions in Newtonian gauge, however, arise from gauge transformation terms
and restore the equality, as shown in Sec. 4.4.3.

4.4.2 Interacting neutrinos in synchronous gauge

Tight coupling between dark matter and neutrinos suppresses the neutrino anisotropic
stress, analogous to the suppression of σγ by Thomson scattering. Setting σν to zero in
Eq. (4.4.3d) allows to discard Eq. (4.4.3e) and the solution in powers of kτ simplifies to

hini (k , τ) = Cini (kτ)2 − Cini
108 (kτ)4 +O

(
(kτ)5

)
, (4.4.6a)

ηini (k , τ) = 2Cini −
Cini
18 (kτ)2 +O

(
(kτ)3

)
, (4.4.6b)

δsyn
γ, ini (k , τ) = δsyn

ν, ini (k , τ) = −2
3Cini (kτ)2 + 2

81Cini (kτ)4 +O
(
(kτ)5

)
, (4.4.6c)

θsyn
γ, ini (k , τ) = θsyn

ν, ini = −Cini
18 k4τ3 +O

(
(kτ)5

)
. (4.4.6d)
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The initial conditions for the density perturbations of non-relativistic matter and for the
baryon velocity remain unchanged from their original expressions (4.4.5a) and (4.4.5b).
For the dark matter velocity we now impose

θsyn
νdm, ini = θsyn

ν, ini . (4.4.7)

As the succeeding section shows, the latter requirement does not impact the initial condi-
tions in Newtonian gauge to lowest order.

The initial conditions derived in this section assume tight coupling between dark matter
and neutrinos and between photons and baryons. CLASS ensures that the latter condition
is met and starts the integration of a given mode when it is well outside the Hubble radius
(kτ � 1) and in the tight-coupling regime (κγb � H). Dark matter-neutrino interactions
demand a more complicated treatment. Depending on the coupling strength parameter
uνdm, a mode can enter the Hubble radius in the decoupled regime (κνdm � H), where
Eqs. (4.4.4) apply, in the tightly coupled limit, where Eqs. (4.4.6) are valid, or at an
intermediate time. To decide between the limiting cases, we evaluate the ratio between the
scattering and the Hubble rate for each mode at its default initial time. If it falls below a
threshold, κνdm/H � 1, indicating that neutrinos have decoupled from dark matter, we
proceed with default initial conditions. Otherwise, we ensure to advance the initial time
sufficiently so that the condition of tight coupling is satisfied and use Eqs. (4.4.6) to set
the initial conditions.

4.4.3 Gauge transformation

The metric perturbations in synchronous and Newtonian gauge are related by [283]

ψ (k , τ) = 1
2k2

{
h′′ (k , τ) + 6η′′ (k , τ) +H

[
h′ (k , τ) + 6η′ (k , τ)

]}
, (4.4.8a)

φ (k , τ) = η (k , τ)− H2k2
[
h′ (k , τ) + 6η′ (k , τ)

]
, (4.4.8b)

and the stress-energy tensor transforms as

(T syn)µν = ∂ x̂µ

∂xσ
∂ xρ

∂x̂ν
T σρ , (4.4.9)

where x̂µ denotes coordinates in synchronous and xµ in Newtonian gauge. Expanding the
derivatives and the stress-energy tensor to first order in perturbations yields transformation
equations for the lowest multipoles [283]

δsyn
a = δa − α

ρ̄′

ρ̄
, (4.4.10a)

θsyn
a = θa − αk2 , (4.4.10b)

σsyn
a = σa . (4.4.10c)
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Here, the subscript a applies to all species which contribute to the stress-energy tensor,
and the coefficient appearing in the density and velocity perturbation is

α = 1
2k2

(
h′ + 6η′

)
. (4.4.11)

From the preceding relations it is straightforward to obtain the initial conditions in New-
tonian gauge. During radiation domination ρ̄′/ρ̄ = −4τ−1, and for the ΛCDM initial
conditions the α-factor evaluates to

α = − 40Cini
15 + 4Rν

(ΛCDM) . (4.4.12)

To lowest order in kτ we obtain for the ΛCDM and the dark matter-photon interacting
scenario

ψini = 20
15 + 4Rν

Cini (ΛCDM/γdm) , (4.4.13a)

φini = 20 + 8Rν
15 + 4Rν

Cini (ΛCDM/γdm) , (4.4.13b)

4
3 δb, ini = 4

3 δdm, ini = δγ, ini = δν, ini = − 40
15 + 4Rν

Cini (ΛCDM/γdm) , (4.4.13c)

θb, ini = θdm, ini = θν, ini = θγ, ini = 10
15 + 4Rν

Cini k
2τ (ΛCDM/γdm) , (4.4.13d)

σν, ini = 4
3 (15 + 4Rν)

Cini (ΛCDM/γdm) . (4.4.13e)

The contribution from the gauge transformation determines the velocities at leading order,
such that θdm = θγ is automatically guaranteed.

Evaluate in the limit of tight coupling between dark matter and neutrinos we obtain

α = 2
3 Ciniτ (νdm) , (4.4.14)

and the initial conditions become

ψini = φini = 4
3 Cini (νdm) , (4.4.15a)

4
3 δb, ini = 4

3 δνdm, ini = δν, ini = δγ, ini = −8
3 Cini (νdm) , (4.4.15b)

θb, ini = θνdm, ini = θν, ini = θγ, ini = 2
3 Cini k

2τ (νdm) . (4.4.15c)

As required by the absence of anisotropic stress, the two metric perturbations in Newtonian
gauge equal each other in this case.



Chapter 5

Updated constraints on dark matter-photon
scattering

The preceding section reveals difference with earlier studies of dark matter-photon inter-
actions, concerning the tight coupling approximation. Further, in Sec. 3.6.2 we explicitly
allow for a dark matter sound speed term, which has been neglected so far. Finally, since
previous studies constrained the parameter space of the γdm-scenario from CMB observa-
tions, the Planck collaboration has released new data. In this section we aim to address
all aforementioned points.

To this end, we implement the extended Boltzmann equations (3.6.2) in the cosmology
code CLASS v2.61 [288]. The implementation also accounts for the modified dark matter
evolution (3.6.6) and computes the dark matter sound speed according to Eq. (3.6.8). For
the source functions in the line of sight integration and for the tight coupling approximation
we use the modified expressions of Eq. (4.1.18) and Eq. (4.2.38), respectively.

We focus on a constant cross section for dark matter-photon scattering, and, in the first
section of this chapter, investigate its effect on cosmological observables. There, we also
study the impact of our revised expressions for the tight coupling approximation and the
consequences of the dark matter sound speed. The Planck CMB observations and our
inference strategy are detailed in Sec. 5.2, while we present our results in Sec. 5.3 and put
them into context with other studies in Sec. 5.4.

5.1 Phenomenology of dark matter-photon scattering

5.1.1 CMB anisotropies and large-scale structure

The photon scattering rate with dark matter (3.6.3) is proportional to the dark matter
number density times the scale factor and, if nγdm ≥ −2, decreases as the universe expands.
Eventually, the scattering rate drops below the expansion rate, and photons kinetically
decouple from the dark matter. Only if photon decoupling from dark matter occurs before
recombination, the anisotropy spectrum observed in the CMB is not altered completely.

1Our modified code is publicly available from https://github.com/bufeo/class_v2.6_gcdm.git.

https://github.com/bufeo/class_v2.6_gcdm.git
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A rough estimate for the scale factor at which photons decouple from dark matter, aγ,dec,
is provided by the condition

H (aγ,dec) = κ′
γdm (aγ,dec) . (5.1.1)

This does not coincide with the scale factor aγdm,dec at which dark matter kinetically
decouples from photons. Rather, because of the momentum conserving factor Rγdm in
the evolution of the dark matter perturbations (3.6.6), the latter is determined by the
condition

H (aγdm,dec) = Rγdm κ
′
γdm (aγdm,dec) . (5.1.2)

Assuming that either species decouples during the radiation-dominated epoch, as is indeed
the case for all phenomenological viable scenarios, the respective scale factors are

aγ,dec = 0.016× uγdm , (5.1.3a)

aγdm,dec = 0.002×√uγdm . (5.1.3b)

Interactions with dark matter leave a distinct imprint on the CMB angular spectra. Some
examples, namely two interacting and the ΛCDM scenario, are compared in Fig. 5.1 to the
Planck 2015 results. For all spectra we set the six ΛCDM parameters to their Planck 2015
best-fit value (see Tab. 2.1) and vary uγdm as indicated. Unrealistically large scattering
cross sections make the effect of dark matter-photon scattering visible by eye, indeed both
values chosen in Fig. 5.1 exceed the upper bound found in Sec. 5.3. For now, we neglect the
dark matter sound speed, but return to its impact in Sec. 5.1.3. Essentially, the scattering
of photons with dark matter leads to [282,294]

• a shift of the acoustic peaks to higher multipoles,

• an increase of the first acoustic peak, and

• the damping of fluctuations on small scales.

In the following, we discuss the physical mechanisms which cause each of the changes.

The peak-trough structure of the CMB arises from acoustic oscillations in the tightly
coupled baryon-photon plasma prior to recombination, and the location of the peak is
determined by the plasma’s sound speed, cpl. In the ΛCDM scenario, cpl is given by
Eq. (2.2.2), but additional interactions with dark matter modify its value to

c2
pl = 1

3

[
1 + 3 ρb

4 ργ
+ 3 ργdm

4 ργ

]−1

. (5.1.4)

This expression is valid while photons are in equilibrium with dark matter, but the de-
coupling is not an instantaneous process, and residual effects increase the sound speed
with respect to its ΛCDM value even beyond aγ,dec. Correspondingly, perturbations in the
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Figure 5.1: CMB angular power spectra measurements from the Planck satellite [5] in
comparison to the corresponding best-fit ΛCDM predictions and two different realisations
of the dark matter-photon interacting scenario.
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Figure 5.2: The linear matter power spectrum for a ΛCDM cosmology and several
scenarios in which dark matter interacts with photons.

baryon-photon plasma oscillate at a lower frequency and the acoustic peaks are shifted to
higher multipoles.

Second, the interactions with the dark matter component decrease the photon diffusion
length, which in turn causes the increase of the first acoustic peak. The increase is
noticeable for both interacting scenarios in Fig. 5.1. Still, for a lower normalised scattering
rate of uγdm = 10−4, it amounts to a ∼ 0.1% effect in the temperature and a ∼ 0.3% effect
in the E-mode polarisation autocorrelation spectrum [294].

The decreased amplitude of fluctuations on small scales, finally, results from diffusion
damping at the photons’ last scattering surface with dark matter. The effect is very
apparent for the model with uγdm = 10−2. For such a large interaction parameter, photons
decouple from dark matter at aγ,dec = 1.2 × 10−4, where we accounted for the effect of
matter and radiation on the expansion rate. Indeed, this is only briefly before recombination
at a∗ ' 9.2 × 10−4. The damping is still recognisable in Fig. 5.1 for uγdm = 10−3 in the
temperature and the polarisation spectrum, but as the interaction strength parameter
decreases, it becomes less distinct and affects only larger multipoles.

The distribution of dark matter, and in particular inhomogeneities on small scales, are
also affected by dark matter-photon scattering. In Fig. 5.2 we illustrates the impact in
terms of the linear matter power spectrum at z = 0. In general, interactions with a
relativistic species suppress the growth of perturbations in the dark matter sector. Large
modes, however, enter the Hubble radius after dark matter has kinetically decoupled. Their
evolution is not affected by the scattering, and on the corresponding scales the matter
power spectrum remains unaltered. According to Eq. (5.1.3), dark matter decouples from
photons the earlier, the smaller the parameter uγdm. Hence, for smaller values of uγdm the
suppression of power sets in at smaller scales.

To further illustrate how photon scattering affects dark matter perturbations, we show
the evolution of a single mode in Fig. 5.3 and compare it to the ΛCDM scenario. In
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the latter case, perturbations start to increase upon Hubble crossing. The interacting
mode, in contrast, enters the horizon while dark matter and photons are coupled, and
participates in the acoustic oscillations of the baryon-photon plasma. For the parameters
chosen, dark matter decouples from photons around aγdm,dec ' 2.0 × 10−5 and photons
from dark matter at aγ,dec = 1.6× 10−6. By the time photons stop feeling the impact of
dark matter, neither the baryons nor dark matter contribute significantly to the plasma’s
sound speed (5.1.4). Hence, the oscillation frequency of the baryon-photon plasma is
largely the same in either scenario. The situation would be different for larger interaction
strengths, as the previous discussion of CMB anisotropies showed. Diffusion damping
prior to the time of dark matter decoupling is clearly noticeable from Fig. 5.3 and further
decreases the perturbation’s amplitude. Eventually, the combination of impeded growth at
early times and damping around decoupling causes the suppression observed in the matter
power spectrum. Upon dark matter decoupling, the phase of the acoustic oscillations in
the baryon-photon-dark matter plasma is imprinted on the dark matter mode. Analogous
to baryon acoustic oscillations, this causes the oscillatory feature apparent on small scales
in Fig. 5.2.

5.1.2 Impact of the tight coupling approximation

The tight coupling approximation address the evolution of photon and baryon perturbations
at early times, when the large Thomson scattering rate leads to a stiff system of equations.
We have generalised the formulae to account for dark matter-photon scattering under the
condition that κ′

γdm � κ′
γb in Sec. 4.2.2, but could not reproduce the result quoted in

earlier studies [6].

To evaluate how discrepancies in the tight coupling approximation affect the theory pre-
dictions, we obtain the numerical code used in Refs. [6,294], which is based on the CLASS
version 1.6. With this and or own implementation, we predict l (l + 1) / (2π) Cl for the
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temperature and E-mode autocorrelation and the cross-correlation spectrum on multipoles
up to l = 2500. Considering uγdm = 10−4 and the Planck 2015 best-fit ΛCDM parameters
from Tab. 2.1, the largest differences occur in case of the temperature autocorrelation spec-
trum and can reach up to ∼ 10µK. CLASS itself, however, has undergone major changes
from the 1.6 to the 2.6 version [302], and many precision and cosmological parameters,
concerning e.g. reionisation or the primordial helium abundance during BBN, are altered.

To isolate the effect of the differing tight coupling approximation, we transfer the respective
expressions of Ref. [6] to a later version CLASS. More precisely, we use CLASS v2.5 with
all modifications required by dark matter-photon interactions implemented and allow two
options for the tight coupling formulae. An additional input parameter decides between
them. The differences between CMB spectra predicted with either version of the tight
coupling approximation are shown in Fig. 5.4. We have updated our earlier results [1],
to also show a larger normalised interaction rate of uγdm = 10−3. Notably, the precise
shape of the curves depends on some precision parameters which are not directly related
to the tight coupling approximation. This causes the differences between Fig. 5.4 here and
results in Fig. 4 of Ref. [1]. In the present case, we leave all precision parameters to their
default settings. Because the default precision parameters are also used to obtain fits for
observational data, we believe this gives the most meaningful comparison.

Our main conclusion [1] remains unaltered. The inconsistencies in the tight coupling
approximation impact theory predictions for the CMB angular spectra at a level far below
the experimental sensitivity. We further assess the effect on the matter power spectra and
find it equally negligible. Even though we think it is important to have the formalism on a
solid footing, the discrepancies should not modify constraints obtained in previous studies
of dark matter-photon scattering [6, 294].
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5.1.3 The dark matter sound speed

The dark matter sound speed was neglected in the preceding discussion. Because its
magnitude is inversely proportional to the dark matter mass (3.6.8), discarding the sound
speed is equivalent to considering the limit of large dark matter masses. Here, we quantify
the threshold above which this large mass limit applies and investigate how the sound
speed affects observational signatures.

We show the redshift dependence of the dark matter sound speed in Fig. 5.5, considering
a lighter and a heavier dark matter particle and several possibilities for uγdm. The effect
of the dark matter mass on the magnitude of the sound speed is very apparent, it directly
determines the overall scaling of the curves. Furthermore, from Fig. 5.5 two distinct phases
in the evolution are noticeable. At early times, when dark matter is in kinetic equilibrium
with photons, the coupling term in Eq. (3.6.9) determines the dark matter temperature
and Tγdm ' Tγ ∝ a−1. In contrast, after dark matter has decoupled, its temperature
redshifts as Tγdm ∝ a−2. The transition between both regimes is set by the normalised
rate for dark matter-photon scattering and occurs later for larger values of uγdm.

To estimate at which level the sound speed impacts CMB anisotropies, we consider several
benchmark scenarios. In a first set, we fix the six ΛCDM parameters to their Planck
best-fit values (see Tab. 2.1) and vary the dark matter mass and interaction strength. A
second set considers the same ΛCDM parameters and interaction strengths but explicitly
imposes c2

γdm = 0. We then compare the values predicted for l (l + 1) / (2π) Cl by the
corresponding scenarios, considering the TT-, TE- and EE-spectrum at multipoles up to
l = 2500. This is about the range over which the Planck satellite has measured the CMB,
and noticeable differences would affect the constraints presented in Sec. 5.3.

In Tab. 5.1, we give some examples for differences between our benchmark scenarios,
obtained for uγdm = 0.01. As expected, the observed differences only mildly depend on uγdm
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mγdm l (l + 1) / (2π) ∆CTT
l l (l + 1) / (2π) ∆CTE

l l (l + 1) / (2π) ∆CEE
l

10 keV 13.4µK2 0.74µK2 0.08µK2

1 MeV 0.14µK2 0.007µK2 8× 10−4 µK2

1 GeV 0.003µK2 3× 10−4 µK2 4× 10−5 µK2

Table 5.1: Maximal differences in the CMB spectra, generated by the dark matter sound
speed, over the multipole range 2 ≤ l ≤ 2500.

and decrease for smaller interaction parameters. In contrast, the differences vary strongly
with the dark matter mass, and become largest for light dark matter candidates. For
either spectrum, we observe that the inclusion of the dark matter sound speed affects our
computations below the percent level, given that mγdm & 10 keV. In this case, the impact
on the temperature autocorrelation is at most 0.3% and on the E-mode autocorrelation at
most 0.8%. For dark matter even lighter than ∼ 10 keV, the sound speed approaches unity
when small modes of interest cross inside the Hubble radius. This would necessitate more
profound modifications to the dark matter evolution, which are beyond the scope of this
work. Therefore, we neglect the sound speed term when fitting the Planck data. As an
advantage, this removes the dark matter mass as free parameter, which otherwise would
be very weakly constrained by the data.

The CMB probes large cosmological scales. Those cross inside the Hubble radius late,
when the sound speed is already small and only has a minor impact. In contrast, small
scales in the matter power spectrum can indeed be sensitive to the dark matter sound
speed. Today, these scales are in the non-linear regime, where n-body simulations are
required to predict observable signatures [201,202,295,303]. Still, these simulations depend
on the linear matter power spectrum to determine the initial conditions.

We present some examples for the matter power spectrum in presence of a sound speed
term in Fig. 5.6. Clearly, the sound speed causes a decrease of small scale power. Thereby,
the onset of the suppression is largely determined by the dark matter mass, which sets
the overall scaling of c2

γdm as discussed previously. On the other hand, the suppression of
structure caused by scattering terms in the Boltzmann equations is only sensitive to the
normalised interaction rate, uγdm. Whether the suppression due to the sound speed or
due to the scattering terms dominates, depends on the precise combination of interaction
strength and dark matter mass considered. When the dark matter sound speed gives the
dominant contribution, the matter power spectrum is significantly altered with respect
to the high mass limit but rather insensitive to changes in the dark matter interaction
strength. The two scenarios with mγdm = 10 keV from Fig. 5.6 serve as an example for
this case. Even though uγdm varies by two orders of magnitude, the scale at which the
suppression sets in and the shape of P (k) are only mildly affected. Transition to the latter
limiting case, where the suppression is entirely caused by scattering terms, occurs earlier
for larger uγdm. Correspondingly, the zero sound speed limit is applicable for smaller
dark matter masses if uγdm is larger. In any case, for a normalised scattering rate of
uγdm ≥ 10−9, we find that already a reasonably small dark matter mass of mγdm ' 1 GeV
can be treated in the zero sound speed limit.
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Figure 5.6: Impact of the dark matter sound speed on the linear matter power spectrum.

5.2 Data and methodology

5.2.1 The Planck likelihoods

At present, the best measurement of the CMB anisotropy spectrum on large scales, which
are the most relevant for cosmology, is provided by the Planck satellite [15]. It operated
from August 2009 to October 2013, scanned the intensity and the linear polarisation of
the full microwave sky, and produced maps for nine frequencies between 25 GHz and 1000
GHz. Cosmological results were released in three major steps. The 2013 results [305]
comprised mainly temperature data obtained over the first 14 month of the mission. In
the 2015 release [5], full-mission results were published, while the final 2018 data [15] saw
several updates to the analysis pipeline, in particular for the polarisation data. In this
study, we exclusively consider data from the 2015 release.

The Planck maps are contaminated by instrumental noise, instrumental systematics and
astrophysical foregrounds, all to be addressed before a meaningful comparison between
the data and any theoretical model is possible. Cosmological models only predict the
correlation of fluctuations, not the precise location of over- or underdensities. Accordingly,
the Planck collaboration released their data in form of a likelihood code [231] which
estimates, given a theoretical prediction for the CMB spectrum, the probability that it
leads to the observed data. In this computation a hybrid approach is adopted, splitting
the CMB spectra into a low multipole (l ≤ 29) and a high multipole part.

For low multipoles, l ≤ 29, the number of pixels is small, and the direct computation of
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the likelihood in pixel space is feasible. The most important foregrounds at large scales are
synchrotron emission by electrons in the galaxy’s magnetic field, thermal bremsstrahlung
from electrons in ionised hydrogen clouds (free-free emission), spinning dust emission
caused by the dipole moment of dust grains in the interstellar medium [306] and thermal
emission from galactic dust. These foregrounds are removed from the data by template
fits [307], and, based on the χ2 of the fit, low confidence regions are masked. The remaining
polarisation map at 70 GHz covers 46% of the sky, and 7% of the sky are disguised from
the CMB temperature maps. The power spectra are obtained from the cleaned, masked
maps. Eventually, this results in the lowTEB likelihood for the CTT

l , CTE
l , CEE

l and CBB
l

coefficients. A lowP likelihood, which excludes the temperature autocorrelation spectrum,
would in principle also be available, but for the analysis in Sec. 5.3 we always consider the
full lowTEB likelihood.

At high multipoles, l ≥ 30, the strategy for obtaining likelihoods is based on a pseudo-Cl
approach. To the debiased, deconvolved maps a numerical spherical harmonic transforma-
tion is applied, and a Gaussian approximation estimates the distribution of cross power
spectra. The CMB is brightest between 70 GHz and 217 GHz. Three frequency chan-
nels fall in this range, at 100 GHz, 143 GHz and 217 GHz, which are considered for the
maps. Foreground emission, especially that by galactic dust and radio point sources, is
a significant contribution to the data and can exceed the CMB. The most contaminated
regions are therefore excised from the maps, but still foregrounds contribute to the power
spectra at high multipoles. Apart from the aforementioned galactic dust and radio point
sources, there are contributions from the cosmic infrared background (CIB) and the Sun-
yaev–Zeldovich effect [308]. The former component, the CIB, is radiated by thermal dust
in early galaxies. These are too distant to be spatially resolved, and their emission blurs
into a smooth background. The latter, the Sunyaev–Zeldovich effect, arises when CMB
photons Compton scatter with high energy electrons in galaxy clusters along the line
of sight and, on average, receive an energy boost. It can be further classified into the
thermal Sunyaev–Zeldovich (tSZ) effect, where the electron energy is due to high thermal
velocities and the kinetic Sunyaev–Zeldovich (kSZ) effect, a much smaller contribution
due to the bulk motion of the gas in the galaxy cluster. While the Sunyaev–Zeldovich
effect is interesting on its own for the detection and study of galaxy clusters [309, 310],
it has to be taken into account as a foreground in the analysis of CMB data. Fifteen
nuisance parameters describe how calibration uncertainties and foregrounds contribute to
the temperature autocorrelation spectrum. The nuisance parameters are inferred simulta-
neously with the cosmological parameters when computing fits for a model. Six additional
parameters each characterise foregrounds in the E-mode autocorrelation spectrum and in
the cross-correlation between temperature and E-mode polarisation. Extensive tests by
the Planck collaboration [231] showed that, for the ΛCDM model, degeneracies between
foreground and calibration parameters do not affect the determination of cosmological
parameters in general. However, cosmological parameters are mildly correlated with the
amplitudes of the point source contribution and of the Sunyaev–Zeldovich effect. In par-
ticular the latter is only weakly constrained by the Planck data. To keep the tSZ and
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Name Multipoles Description Nuisance
parameters

lowTEB 2 ≤ l ≤ 29 temperature and polarisation,
CTT
l , CTE

l , CEE
l , CBB

l

1
(redundant)

highTT 30 ≤ l ≤ 2508 temperature autocorrelation,
CTT
l . 15

highTTTEEE 30 ≤ l ≤ 1996
(polarisation)

temperature and polarisation,
CTT
l , CTE

l , CEE
l

27

lensing 40 ≤ l ≤ 400 CMB lensing,
Cϕϕl

1
(redundant)

Table 5.2: Overview of the Planck likelihoods considered in Sec. 5.3.

kSZ nuisance parameters from wandering into unphysical regions, which have already been
excluded by ACT and SPT observations on small scales [311], the Planck collaboration
imposes a Gaussian prior on their combined amplitude

l (l + 1)
[
CkSZ
l + 1.6CtSZ

l

]
= (9.5± 3) µK . (5.2.1)

In the following analysis, we consider either the temperature-only highTT likelihood or
the full highTTTEEE likelihood for the CTT

l , CTE
l and CEE

l coefficients. This split is
necessary, because of residual systematics in the E-mode polarisation measurements at the
µK2 level. Due to these systematics, results obtained with the highTTTEEE likelihood
have to be interpreted with caution and are considered preliminary. The temperature
likelihood at high multipoles, on the other hand, can be considered very robust [231], and
its uncertainty is dominated by cosmic variance up to l . 1586.

Lensing potentials along the line of sight, finally, can be estimated from non-Gaussianities
in the CMB fluctuations. There autocorrelation spectrum, Cϕϕl , is included in the 2015
data release in form of a lensing likelihood [312], and we consider it for some of our fits.
An overview of the previously discussed likelihoods is provided in Tab. 5.2.

5.2.2 Inference strategy

Eventually, the goal of our analysis is to determine what values the parameters of the
interacting dark matter model can take, given the CMB spectra observed by Planck. Corre-
lations between the dark matter-photon scattering parameter, uγdm, the six ΛCDM param-
eters (1.3.2) and the likelihoods’ nuisance parameters can not be excluded a priori, hence
all have to be inferred simultaneously. The parameters’ probability distribution, given the
experimental results, is connected to the previously discussed likelihood, P (d |ϑ,M), by
Bayes theorem

P (ϑ |d,M) = P (d |ϑ,M) P (ϑ |M)
P (d |M) . (5.2.2)
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In this formulation, the vector ϑ contains nuisance and cosmological parameters, d is the
data vector andM denotes the model. Assumptions underlying the likelihood construction
are equally addressed byM as the cosmological scenario. The Planck likelihoods evaluate
the probability of the observed data given the coefficients Cl, rather than for a set of
cosmological parameters. However, because the anisotropy spectrum is uniquely predicted
by the cosmological parameters, this subtlety does not affect the following discussion.
In the context of parameter inference, the evidence P (d |M) is simply a normalisation
constant and usually ignored [313].

Finally, the parameters’ probability previous to the experimental results is reflected by
the prior, P (ϑ |M). Common choices include Gaussian, uniformly flat or logarithmically
flat priors, the latter being particularly popular for quantities that are unconstrained
over several orders of magnitude. Priors are not invariant under a reparameterization,
thus a flat prior, chosen to be possibly uninformative, can be strongly informative on a
non-linear function of the original parameter [313]. In the context of one-sided parameter
constraints, logarithmically flat priors pose the threat of assigning a large prior weight to
regions where the data is uninformative. A further issue is the choice of prior boundaries.
So would uγdm = 0 be a natural lower bound in the dark matter-photon interacting
scenario, but, considering logarithmic intervals, some negative number has to serve as
proxy. Indeed, constraints derived on dark matter-photon interactions from logarithmic
priors show considerable sensitivity to the interval range and can become unrealistically
tight [314]. For this inference, we generally adopt uniformly flat priors apart from some
rare, specially emphasised cases with Gaussian priors.

Given the full posterior, P (ϑ |d,M), the probability of a single parameter ϑi is obtained
from marginalisation over all other parameters [313]

P (ϑi |d,M) =
∫ ∏

j 6=i
dϑj

 P (ϑ |d,M) . (5.2.3)

Only few cases exist where the posterior is analytically accessible, but the Planck CMB
data is certainly not amongst them. To evaluate the likelihood at some point in parameter
space, the angular power spectrum, Cl, is first computed with a Boltzmann code and
then passed to the numerical Planck tools. The straightforward option, to explore the
posterior numerically on a rectangular grid, is only feasible for a very small number of
free parameters. Indeed, the required number of grid points scales exponentially with the
dimensionality of the parameter space. Even for the simplest case studied here, with seven
cosmological and 15 nuisance parameters, a different approach is required.

Sampling techniques allow to map the posterior distribution of high dimensional parameter
spaces [315]. The approach is based on a set of independent samples, obtained by a
procedure which ensures that the probability of taking taking a sample at a particular
position is proportional to the posterior at that location. The number density of samples
in parameter space then is proportional to the posterior. To find the expectation value of
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a quantity of interest, f (ϑ), one can consider the estimator

Ef ≡
1
N

N∑
i=1

f (ϑi) . (5.2.4)

The central limit theorem states that, for a large enough number of samples, N , the
probability of Ef tends towards a Gaussian, which is centred at 〈f (ϑ)〉 and has the
variance σ2

E = σ2
f/N , where σ2

f is the true variance for f (ϑ). The statement does not
depend on whether f (ϑ) follows a Gaussian itself, so reliable estimates can be obtained
for general distributions [315].

The most common method to generate appropriate samples are Monte Carlo Markov
chains. Its name derives from the Markov property, meaning that the rule to obtain a
sample at position ϑ (i+1) only depends on the previous point ϑ (i) but not on any earlier
samples. The number density of samples is proportional to the posterior density if the
transition probability, T

(
ϑ(i), ϑ(i+1)

)
, meets the condition of detailed balance [315]

P
(
ϑ(i+1) |d,M

)
T
(
ϑ(i+1), ϑ(i)

)
= P

(
ϑ(i) |d,M

)
T
(
ϑ(i),ϑ(i+1)

)
. (5.2.5)

That is, if the probability of being at position ϑ(i) and going to ϑ(i+1) is the same a
for being at ϑ(i+1) and going to ϑ(i). There is a number of possible definitions for the
transition probability, and the efficiency of the sampling depends on this choice. Amongst
the most common is the Metropolis-Hastings algorithm. Starting from the current position,
ϑ(i), a new point is proposed from some arbitrary proposal density Q

(
ϑ(i),ϑ(i+1)

)
. This

new point is accepted with probability

A
(
ϑ(i), ϑ(i)

)
= min

1 ,
P
(
ϑ(i+1) |d,M

)
Q
(
ϑ(i+1), ϑ(i)

)
P
(
ϑ(i) |d,M

)
Q
(
ϑ(i),ϑ(i+1))

 , (5.2.6)

such that the overall transition probability is [315]

T
(
ϑ(i), ϑ(i+1)

)
= A

(
ϑ(i),ϑ(i+1)

)
Q
(
ϑ(i),ϑ(i+1)

)
. (5.2.7)

Otherwise, if the proposal is rejected, there are two samples at the exact same location.
For a symmetric proposal probability, Q

(
ϑ(i),ϑ(i+1)

)
= Q

(
ϑ(i+1),ϑ(i)

)
, a new point is

always accepted if it has a higher posterior than the current, and otherwise it is accepted
with a probability that equals the ratio of posterior probabilities at the new and the current
position.

For the application of the Metropolis-Hastings algorithm in practice, it is important to
choose a proposal density which can be sampled easily. This choice will, however, affect
the performance of the algorithm and how efficiently it explores the parameter space. An
acceptance rate of order unity should be aspired for the method to perform well, realistic
cases often achieve 0.2 to 0.3. Strong degeneracies between the model parameters confine
the posterior to thin sheets in the high-dimensional parameter space and usually reduce
the acceptance rate drastically. If known beforehand, such a situation is best avoided by
adopting a suitable parameterisation of the problem with parameters as independent as
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possible [315]. The choice of ΛCDM parameters stated in Eq. (1.3.2) is primarily motivated
by this concern. Once the samples have been obtained, expectation values and confidence
intervals can be derived according to Eq. (5.2.4).

A common choice for the proposal density is a Gaussian distribution whose covariance, if
unknown, can be obtained from some short, preliminary chains. However, for the Planck
data there already exist covariance matrices for the analysis of the ΛCDM scenario. Since
the model we aim to study only contains one parameter more than ΛCDM, we find it
practical to fall back to these covariance matrices. We augment them by an additional line
and column for uγdm, these contain an initial guess on the variance as diagonal entry and
zeros otherwise. We then experiment with two different approaches. Either we compute a
new covariance matrix from some initial chains and obtain our final results from it. Or we
remain with the initial matrix throughout the analysis, and compensate for the reduced
acceptance rate by requiring more samples in our chains. In either way, we obtain good
convergence. Although the choice of a Gaussian proposal density is very practical and
appropriate for many cases, it leads to poor acceptance rates if the posterior distribution
significantly departs from a Gaussian, like, for example, in the case of “banana shaped”
posteriors [315].

The estimate of parameters and confidence regions from Monte Carlo Markov chains is
based on the assumption that each position is an independent sample of the underlying
posterior. This, however, is only accurate asymptotically. At the beginning of the sampling
process, the chains successively proceed to larger likelihoods, and in the case of multi-modal
posteriors, a chain is likely to explore only one of the posterior maxima. An adequate
way to determine whether the chain is sampling the underlying distribution correctly is to
compare the results of multiple realisations of the sampling process. For an estimate to
be reliable, the root mean square difference between individual chains’ results should be
much smaller than the posterior uncertainty. Following this logic, a possible measure for
the convergence of chains is the Gelman-Rubin ratio [315]

R = variance between chains
mean variance within chain . (5.2.8)

For reliable estimates, this ratio should tend to R−1 ∼ 0. Practically, we aim for R < 0.05
at least [316].

We use the MontePython v2.2.2 [316] implementation of the Metropolis-Hastings algo-
rithms to sample our model’s posterior distribution. Monte Python is interfaced with our
modified CLASS [288] version for the computation of CMB angular spectra. Finally, the
likelihood is provided by the Planck software plc-2.0.
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5.3 Planck constraints

5.3.1 Parameters and data sets

Our baseline cosmological model has seven free parameters, six of which are the same as
in ΛCDM (1.3.2) and the additional dark matter-photon scattering parameter uγdm. For
all we assume flat priors. As in the original Planck analyses, we consider two massless and
one massive neutrino species, for the latter we choose mν = 0.06 eV. The effective number
of neutrinos (1.2.17) is fixed to the Standard Model expectation Neff = 3.046. In what
follows we refer to this set of parameters as “γdm”. We also test scenarios in which the
effective neutrino number is free to vary, again assuming flat priors on all parameters and
fixing the neutrino mass. This set we denote as “γdm +Neff”. Finally, we obtain results
for the canonical ΛCDM case, setting uγdm = 0 ( denoted as “ΛCDM”). By comparing our
ΛCDM results to those published by the Planck collaboration we can cross-check that our
analysis pipeline is performing correctly.

As baseline parameter set we consider the low-multipole temperature and polarisation
likelihood (lowTEB) and the temperature cross-correlations spectrum at high multipoles
(highTT). In addition, we also obtain results from the full temperature and polarisation
likelihood at high multipoles (highTTTEEE). Further, we extend either of these inferences
by including the lensing likelihood (lensing). The respective likelihoods and the naming
convention we use for them are also summarised in Tab. 5.2.

For some scenarios we find that inferred value of H0 is in less than 2σ tensions with
local Cepheids measurement of Ref. [114]. Those scenarios are reanalysed, replacing
100 θ∗ by H0 as a free parameter and assuming a Gaussian prior for it, namely H0 =
73.24 ± 1.75 km(s Mpc)−1. The corresponding results are denoted by the extension "+
R16".

5.3.2 ΛCDM cross-checks

We infer the cosmological parameters for the ΛCDM scenario using the lowTEB + highTT
and the lowTEB + highTTTEEE data sets. Comparing our results with those published
by the Planck collaboration2, we observe that some of the nuisance parameters differ by as
much as 1σ. Those parameters affected worst describe the amplitude of the thermal Sun-
yaev–Zeldovich effect at 143 GHz (AtSZ

143), the amplitude of the kinetic Sunyaev–Zeldovich
effect (AkSZ) and the contributions of point sources to the power spectrum at 100 GHz
and at 143 GHz (APS

100 and APS
143). While our results overestimate contributions from the

Sunyaev–Zeldovich effect, they underestimate the amplitudes related to point sources.

We believe that this discrepancy originates from the additional prior, which the Planck
collaboration applies to the combined amplitudes of the thermal and the kinetic Sun-
yaev–Zeldovich effect [7], see Eq. (5.2.1). While the Planck collaboration uses the Cos-

2http://wiki.cosmos.esa.int/planckpla2015/images/f/f7/Baseline_params_table_2015_limit68.pdf

http://wiki.cosmos.esa.int/planckpla2015/images/f/f7/Baseline_params_table_2015_limit68.pdf
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data set lowTEB + highTT lowTEB + highTT + lensing

scenario γdm γdm + Neff γdm γdm + Neff

Ωb h
2 0.02231+0.00022

−0.00025 0.02238+0.00036
−0.00039 0.0223+0.00023

−0.00024 0.0224+0.00034
−0.00039

Ωγdm h
2 0.1198± 0.0023 0.1208+0.0039

−0.0043 0.119± 0.002 0.1203± 0.004
100 θ∗ 1.042324+0.00048

−0.00064 1.042443+0.00076
−0.00056 1.042350+0.0005

−0.00054 1.042182+0.00069
−0.00079

ln
(
1010As

)
3.094+0.033

−0.038 3.1+0.043
−0.050 3.072+0.028

−0.030 3.082+0.033
−0.045

ns 0.9661+0.0061
−0.0064 0.9696+0.014

−0.017 0.9672+0.0055
−0.0063 0.9721+0.015

−0.016
τre 0.08005+0.018

−0.019 0.08205+0.018
−0.025 0.07022+0.016

−0.017 0.07405+0.015
−0.022

10+4 uγdm < 2.254 < 2.142 < 1.805 < 1.818
Neff 3.046 3.137+0.29

−0.35 3.046 3.161+0.30
−0.33

H0
3 67.56+0.94

−1.00 68.27+2.6
−2.9 67.83+0.91

−0.93 68.78+2.5
−3.0

σ8 0.8003+0.029
−0.02 0.8057+0.032

−0.028 0.7942+0.024
−0.014 0.7999+0.028

−0.023

Table 5.3: Cosmological parameters obtained from the baseline data set in the dark
matter-photon interacting scenario. Upper and lower bounds correspond to the 68 C.L.
interval, while upper limits are quoted at 95% C.L..

moMC package [299,317] to sample the parameter space, the MontePython implementation
only accounts for priors on individual parameters but not for cross-correlations.

Ultimately, we are only interested in the correct determination of the model parameters.
The central values obtained for them vary by at most 0.4σ with respect to Planck results.
In particular, the parameter for which discrepancies are the largest is the optical depth to
reionisation. Comparable shifts have been obtained by the Planck collaboration, comparing
results obtained with the codes CAMB and PICO [231]. To further verify the validity
of our results, we use the “lite" likelihood, which has been marginalised over nuisance
parameters and thus is unaffected by the issue described above. We find a very good
agreement between the confidence intervals for cosmological parameters extracted from
the “lite" and the full likelihood. Therefore we believe the intervals found for our model
parameters are accurate.

5.3.3 Results based on the high-multipole temperature spectrum

Using our baseline data set (lowTEB + highTT), we can constrain all seven parameters
of the γdm model as well as the eight parameters in the γdm + Neff case. These results
are summarised in Tab. 5.3. We also present the constraints obtained when extending
the baseline data by the lensing likelihood. From the lowTEB + highTT data set, we
find a 95 % C.L. upper limit on the dark matter-photon scattering cross section of σγdm ≤
2.25×10−6 σT (mγdm/GeV). This limit is about 20% stronger than those derived previously
[285] from the 2013 Planck data release. The constraint tightens up by another 20% when
the lensing data is included in the analysis.

3H0 is given in units of km/(Mpc s)
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Figure 5.7: One and two dimensional posterior distributions for selected cosmological
parameters obtained from the lowTEB + highTT baseline parameter set for the γdm
scenario, assuming flat priors. The two dimensional contours depict 68% (red) and 95%
(orange) confidence levels respectively.

Treating the effective number of neutrinos as a free parameter only marginally affects
the limits on uγdm. While the central values of Neff lie somewhat above the Standard
Model prediction, Neff = 3.046, the difference remains well below 1σ for all scenarios.
However, for the scenarios where Neff is free to vary, we observe a slight increase of H0.
Two different causes are possible. First, interactions between dark matter and photons
increase the magnitude of the first acoustic CMB peaks and shift them to larger multipoles,
a larger Hubble constant counteracts those effects. Second, already in the ΛCDM scenario
there is a degeneracy between H0 and Neff , that effects a rise of the Hubble constant
when the effective number of neutrinos is free to vary. The Planck collaboration reported
H0 = 68.0+2.6

−3.0 km/(s Mpc) for the ΛCDM scenario when analysing the lowTEB + highTT
data sets for variable Neff and H0 = 68.5+2.5

−3.0 km/(s Mpc) by adding the lensing data.
The similarity with our constraints from Tab. 5.3 indicates that H0 is well constrained
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from the CMB data and cannot be significantly altered by the inclusion of dark matter-
photon scattering. The robustness of H0 constraints with respect to dark matter-photon
interactions is further supported from the two dimensional posterior distributions. One
example, considering the baseline lowTEB + highTT data set and the γdm scenario, is
shown in Fig. 5.7. Dark matter-photon scattering leads to a decreased amplitude for small-
scale anisotropies, and if this effect is leading the constraint indeed no degeneracy with H0

would be expected. Nevertheless, because the tension with local H0 measurements [114] is
below 2σ, we study the combined analysis of the γdm +Neff scenario from the lowTEB +
highTT and the R16 data sets and present the corresponding results in Sec. 5.3.5.

Finally, we note that all the data sets reported in this section prefer a smaller central value
and larger confidence limits for σ8 than in the ΛCDM scenario. The Planck collaboration
reported σ8 = 0.829± 0.014 for the lowTEB + highTT analysis and σ8 = 0.8149± 0.0093
with the addition of lensing data. Allowing Neff to vary these intervals become σ8 =
0.834+0.022

−0.025 and σ8 = 0.820+0.018
−0.021 respectively. In comparison, our value of σ8 decreases by

roughly 3% (see Tab. 5.3) while the size of the lower confidence interval increases by about
50% when Neff is kept fixed and 10% if it is free to vary. These combined effects reduce
the tensions with the KiDS-450 measurement σ8

√
Ωm/0.3 = 0.745± 0.039. [104] below 1σ.

The reason for the change becomes apparent in Fig. 5.2, where we show the linear matter
power spectrum for various interaction strengths. Dark matter-photon interactions lead
to a suppression of power on small scales. The largest value of the elastic scattering cross
section to mass ratio, that is allowed by CMB observations, leads to a visible suppression
of the linear matter power spectrum at 8 Mpc, precisely. Correspondingly, we note a
degeneracy between uγdm and σ8 in the two dimensional posterior shown in Fig. 5.7, where
a larger dark matter-photon scattering parameter prefers a smaller value for σ8.

5.3.4 Parameter constraints considering high-multipole polarisation

Our results obtained under the inclusion of high-multipole polarisation data are summarised
in Tab. 5.4. The additional information from polarisation at small scales further tightens
the constrain uγdm. Including data from temperature and polarisation at low and high
multipoles as well as lensing potentials, the limit at 95% C.L. becomes as small as σγdm ≤
1.49× 10−6 σT (mγdm/GeV). This makes the constraint 35% stronger than that derived
in Ref. [285].

The addition of small-scale polarisation data partially breaks the degeneracy between H0

and Neff . Now, the data requires values of H0, which are too low to reduce tensions with
local measurements below 2σ, even if Neff is free to vary. All our results on Neff are
perfectly compatible with the Standard Model expectation.

As in the previous section, we find lower values for σ8 than in the ΛCDM scenario. Namely
the Planck collaboration reports σ8 = 0.831 ± 0.013 for the lowTEB + highTTTEEE
data set and σ8 = 0.8150± 0.0087 if lensing data is included. Allowing Neff to vary, this

4H0 is given in units of km/(Mpc s)
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data set lowTEB + highTTTEEE lowTEB + highTTTEEE
+ lensing

scenario γdm γdm + Neff γdm γdm + Neff

Ωb h
2 0.02228± 0.00016 0.02221+0.00022

−0.00026 0.02228+0.00015
−0.00017 0.02218+0.00022

−0.00024
Ωγdm h

2 0.1201+0.0014
−0.0016 0.1192+0.0030

−0.0032 0.1197+0.0015
−0.0014 0.1182+0.0031

−0.0028
100 θ∗ 1.042057+0.00034

−0.00039 1.042218+0.00059
−0.00061 1.042119+0.00037

−0.00038 1.042306+0.00054
−0.00056

ln
(
1010As

)
3.097+0.038

−0.028 3.087+0.035
−0.039 3.069+0.021

−0.028 3.06+0.026
−0.028

ns 0.964+0.0046
−0.0048 0.961+0.0096

−0.0095 0.9646+0.0051
−0.0047 0.9604+0.0091

−0.0095
τre 0.08107+0.019

−0.016 0.07734+0.016
−0.018 0.06755+0.012

−0.014 0.06557+0.012
−0.014

10+4 uγdm < 1.579 < 1.623 < 1.490 < 1.359
Neff 3.046 2.974+0.20

−0.21 3.046 2.943+0.19
−0.20

H0
4 67.33+0.67

−0.66 66.8± 1.6 67.52+0.66
−0.60 66.78+1.5

−1.6
σ8 0.8103+0.024

−0.018 0.8036+0.027
−0.021 0.7982+0.022

−0.012 0.7946+0.021
−0.016

Table 5.4: Cosmological parameters for dark matter-photon interacting scenarios from
data sets including high-multipole polarisation. Upper and lower bounds correspond to
68% C.L. intervals, while upper limits are given at 95% C.L..

confidence limits become σ8 = 0.828± 0.018 and σ8 = 0.809± 0.013. Even for the tighter
constraints on uγdm, provided by high-multipole polarisation, damping in the matter power
spectrum sets in close enough to 8 Mpc to cause the decrease. Consequently, all data sets
presented here are in less than 1σ tension with the KiDS-450 measurement of σ8.

5.3.5 Combination with local measurements of H0

For those scenarios where Neff is free to vary and high-multipole polarisation data is
excluded, the tension between the value inferred for H0 and local measurements [114] is
less than 2σ. However, applying an Gaussian prior on the Hubble constant that reflects the
R16 results, we notice that larger values of H0 and Neff are not supported by CMB data.
That is true even when dark matter-photon scattering is allowed, and the corresponding
results are summarised in Tab. 5.5. In both cases studied, H0 only shifts very slightly and
tensions remain at 1.9σ and 1.7σ respectively. Likewise, Neff experiences only a small shift
towards larger values, remaining compatible with the Standard Model expectation at the
1σ level.

5.4 Discussion

In the standard ΛCDM model, dark matter is completely collisionless. Yet, the late kinetic
decoupling between dark matter and photons leads to observational signatures not only in
the CMB temperature and polarisation spectra, but also affect the matter power spectrum.

5H0 is given in units of km/(Mpc s)
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data set lowTEB + highTT lowTEB + highTT
+ lensing

scenario γdm + Neff

Ωb h
2 0.02241+0.00036

−0.00039 0.02246+0.0031
−0.0046

Ωγdm h
2 0.1212+0.0034

−0.0044 0.1208± 0.0039
H0

5 68.36+2.6
−3.0 69.27+2.3

−3.5
ln
(
1010As

)
3.104+0.04

−0.05 3.089+0.037
−0.047

ns 0.9704+0.014
−0.017 0.9746+0.012

−0.02
τre 0.08369+0.018

−0.025 0.07686+0.017
−0.021

10+4 uγdm < 2.488 < 1.724
Neff 3.154+0.27

−0.35 3.215+0.25
−0.39

σ8 0.805+0.035
−0.025 0.8048+0.027

−0.025

Table 5.5: Cosmological parameters in dark matter-photon interacting scenarios consid-
ering a R16 inspired prior. Upper and lower bounds correspond to the 68% C.L. interval,
while upper limits are given at 95% C.L..

In light of the null-results obtained at colliders and direct detection experiments these
imprints provide an alternative, highly complementary opportunity to investigate the
particle physics nature of dark matter.

To ensure the robustness of theory predictions in the linear regime, we review the governing
formalism, explicitly deriving the modified Boltzmann equations (Sec. 3.6), the source
functions for the line of sight integration (Sec. 4.1), and modifications to the tight coupling
approximation (Sec. 4.2). Various expressions have been used in the past for the tight
coupling approximation. We show that these discrepancies only affect the computed CMB
spectra at the 0.01µK2 level, well below the experimental sensitivity. However, we think
it self-sufficient to have the formalism standing on a solid footing. Dark matter-photon
interactions lead to non-zero dark matter sound speed. The inclusion of such a term affects
the CMB predictions at a sub-percent level and hence can be neglected in this context.
Its effect on the matter power spectrum can, however, be sizeable and has the potential
to strengthen constraints, especially for light dark matter candidates.

We perform a similar analysis to Ref. [277,285] and include the full 2015 Planck temperature,
polarisation, and lensing data. Already from the high multipole temperature data, i.e. the
lowTEB + highTT data set, we obtain a 20% tighter constraint than those based on the
2013 data release [285], giving σγdm ≤ 2.25× 10−6 σT (mγdm/GeV) at 95% confidence level.
Further improvement are achieved by considering lensing and high-multipole polarisation
data, leading to an overall decrease by 35% with respect to the results of Ref. [285].
However, our tightest constraint, σγdm ≤ 1.49× 10−6 σT (mγdm/GeV) (at 95% confidence
level), based on the lowTEB + highTTTEEE + lensing data set, has to be taken with a
grain of salt. The Planck collaboration considers the high-multipole polarisation data as
preliminary due to unresolved systematics of O(µK2). The Planck 2018 data release [15]
provides more accurate polarisation data and can further improve constraints on uγdm.
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The prior dependence of interacting dark matter scenarios is explicitly addressed by
Ref. [314]. While the linear flat and Jeffrey’s prior produce mutually consistent results
within 20%, bounds from logarithmically flat priors are sensitive to the precise values
adopted for the boundaries and can bear artificially tight constraints. The conservative
result from Ref. [314], σγdm ≤ 1.72 × 10−6 σT (mγdm/GeV), derived from the lowTEB +
highTTTEEE + lensing data set under the assumption of a Jeffrey’s prior agrees with our
limits.

The energy transfer between dark matter and photons due to the intrinsically different
scaling relations of their respective temperatures was neglected in our study. Depending
on the dark matter mass and the scattering cross section, the photons’ energy loss changes
the effective number of radiative degrees of freedom [318]. The difference amounts to
|∆Neff | ∼ O

(
10−3) for most of the parameter space and hence does not affect our results.

However, the thermal coupling between non-relativistic dark matter and photons also
effects spectral distortions, i.e. departures from a perfect black body spectrum, in the CMB.
Constraints on the magnitude of spectral distortions from COBE/FIRAS [87] place limits
on the dark matter-photon scattering rate, in particular for light dark matter candidates,
and impose σγdm ≤ 1.5× 10−9 σT (mγdm/GeV) for mγdm . 0.1 MeV. A future experiment
like PIXIE could extend this limit to mγdm ∼ 1 GeV [319]. Also cosmological perturbations
impact spectral distortions, on an level to which future experiments, like PRISM [320], are
sensitive. The prospective constraint extends to heavier dark matter masses and becomes
competitive with current CMB limits, namely σγdm ≤ 1.65× 10−6 σT (mγdm/GeV) [321].

The scale at which departures between the ΛCDM and the interacting scenario emerge
decreases with the scattering parameter uγdm. Despite its robustness, the CMB has only
limited sensitivity to small scales. Studies of the abundance of dwarf galaxies can improve
constrains by several orders of magnitude but are subject to larger theory uncertainties from
the correct modelling of baryonic effects. Dark matter-only n-body simulations of Milky
Way like halos obtained σγdm ≤ 5.5×10−9 σT (mγdm/GeV) [303]. Subsequent studies of halo
properties, in particular spin and concentration, found that the missing satellite and the too-
big-to-fail problem (c.f. Sec. 2.2.5) are alleviated for σγdm ∼ 10−9 σT (mγdm/GeV). The
latter value, however, is in mild tension with the latest constraints on dark matter-photon
scattering, obtained from the measurements of the reionisation history and counts of Milky
Way satellites analysed with a semi-analytical approach, σγdm ≤ 8×10−10 σT (mγdm/GeV).

Currently, Milky Way satellite counts reach the best sensitivity to dark matter-photon
interactions, but results from the CMB anisotropy spectrum are far more robust. Probing
the matter power spectrum between these two extremes and searching for the imprint of
dark matter particle properties is one of the science goals of the Euclid mission [322]. Euclid
can constrain dark matter-photon scattering through its impact on the linear matter power
spectrum at considerably smaller scales than the CMB. Such an analysis requires precise
theory predictions and up-to-date constraints on the possible interaction strength [323].
In this regard, the presented assessment of systematic errors in the theory predictions and
the updated Planck constraints make an important contribution.





Chapter 6

On the effect of multi-component dark matter

The existence of multiple dark matter components, which differ in their particle physics
properties, is a natural extension to the canonical scenario of a single, pressureless fluid.
Hidden sectors have been studied extensively. However, the simplest examples contain the
dark matter particle itself and a mediator, whose abundance becomes suppressed in the late
universe [324]. Small scale problems, amongst others, motivate us to consider admixtures
of cold and warm or hot dark matter, recent limits on such scenarios are e.g. given in
Ref. [325]. Multi component dark matter in the sense that species differ in their kinetic
decoupling, on the other hand, have not received much attention. Some exceptions are the
case of dark matter interactions with dark radiation. A small fraction of such an interacting
dark matter has the potential to alleviate tensions between independent measurements
of H0 and σ8 [326]. Dissipative interactions between two dark matter components can
affect non-linear cosmological structure formation [327] and are interesting in the context
of small scale problems. Finally, for an example where dark matter interacts with the
Standard Model, a decaying component which features interactions with photons affects
weak lensing signals [328]. This model, however, constitutes a special case, where the dark
matter decoupling time is fixed at recombination.

Here, we take a first step towards a more general understanding of mixed dark matter mod-
els featuring interactions with the Standard Model. Concretely, we study two-component
dark matter, of which one component is collisionless and the other scatters elastically
with photons. The damping of small scale perturbations in this scenario has a rich and
interesting phenomenology. Especially the impact of a small fraction of interacting dark
matter on the matter power spectrum is very similar to that of massive neutrinos. This
begs the risk of confusing the two scenarios when searching for a signal of non-zero neutrino
masses in future large-scale structure surveys.

We start our discussion by establishing the mixed damping scenario and the governing
equations in Sec. 6.1, and discuss the relevant physical effects in Sec. 6.2. Finally, we
confront our predictions with existing CMB measurements by Planck and perform a Fisher
forecast to assess the ability of future large-scale structure survey to discriminate between
massive neutrinos and interacting dark matter in Sec. 6.4.



126 Chapter 6. On the effect of multi-component dark matter

6.1 The mixed dark matter scenario

There are two distinct dark matter components in the scenario considered. The former,
denoted as “CDM”, is truly collisionless at all times and on all scales relevant to the CMB
and large-scale structure. The latter “γdm” component, alike the dark matter model
discussed in Sec. 5, features elastic interactions with photons, which fall out of equilibrium
some time prior to recombination. We assume a constant cross section, σγdm, for the
scattering process and express its impact in terms of the normalised scattering parameter
uγdm, defined in Eq. (3.6.4) as

uγdm = σγdm
σT

(
mγdm

100 GeV

)−1
.

Further, the total dark matter abundance is the sum of the individual components, i.e.
Ωdm = Ωcdm + Ωγdm, and we define the interacting dark matter fraction as

fγdm ≡
Ωγdm
Ωdm

. (6.1.1)

To embed this phenomenological description in a full particle physics model of dark matter
would require the specification of a production mechanisms for either component. Before
the respective comoving densities settle to the relic abundance, the interacting dark matter
fraction is time dependent. Because the main objective of our study is to investigate the
general impact of multi-component dark matter, we avoid these additional complications
and presume that dark matter production completed before any modes of interest crossed
into the Hubble radius.
The evolution equations for collisionless dark matter are given in Eqs. (3.3.8) and those for
the collisional component in Eqs. (3.6.6). The sound speed of the collisional component
in principle introduces and additional parametric dependence on the dark matter mass.
However, for mγdm & O(GeV) its effect is negligible. In the following we focus on the
heavy dark matter limit. Conveniently, this implies that the assumption of a constant
fγdm is automatically satisfied for dark matter produced from freeze out.
The photon evolution is affected by the cold dark matter component only indirectly, through
its contribution to the gravitational potentials. The collisional component, on the other
hand, directly enters the term for the photon velocity, see Eqs. (3.6.2) for the full, coupled
photon hierarchy. Alongside with the modified Boltzmann hierarchy, we also consider the
modifications to the line of sight integration (4.1.18) and the tight coupling approximation
(4.2.38), required by the presence of dark matter-photon scattering. All modifications to
the photon evolution caused by dark matter interactions depend on the scattering rate
κ′
γdm = anγdm σγdm. The fact that interacting dark matter contributes only a fraction to

the total dark matter abundance is reflected in a reduction of the number density, nγdm,
with respect to the fully interacting scenario.
Baryon and neutrino perturbations, finally, are affected by the mixed dark matter scenario
only indirectly, through the gravitational potentials. Their evolution equations maintain
their canonical form given in Eq. (3.3.9), Eq. (3.3.12) and in Eqs. (3.4.24), respectively.
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To evolve the coupled Boltzmann and Einstein equations numerically, we modified the
Boltzmann code CLASS v2.61 [288]. The changes demanded by mixed dark matter are
more comprehensive than in the purely interacting scenario. Rather than modifying the
dark matter and photon equations, we now introduce an additional dark matter species
and account for its effect on the background evolution and on the metric potentials. In an
extensive set of cross-checks we firstly impose uγdm = 0 and compare the results for various
fractions of interacting dark matter to ΛCDM predictions. Second, we set fγdm = 1, vary
uγdm, and consider the implementation of purely interacting dark matter from the previous
section as reference. In all cases we find that the CMB spectra and the matter power
spectrum agree to the level of the numerical accuracy.

6.2 Phenomenological implications of mixed dark matter

Our numerical implementation of the mixed dark matter scenario in CLASS enables us to
precisely predict the CMB angular spectra and the matter power spectrum in the linear
regime. In this section we discuss how these observables are affected by the presence of an
interacting component supplemental to the canonical collisionless dark matter.

6.2.1 CMB temperature and polarisation spectra

The phenomenological implications of purely interacting dark matter are discussed in the
previous chapter, Sec. 5.1, where we identify three major effects on the CMB angular
spectra. These are an increase of the first acoustic peak, a shift of the peaks towards larger
multipoles and the damping of power on small scales.

The same features are present in the mixed dark matter case, as Fig. 6.1 reveals. There, we
have chosen a large interaction strength parameter of uγdm = 0.01 to make all effects visible
by eye. Modifications to the ΛCDM predictions become less pronounced as the fraction
of interacting dark matter decreases, and the mixed dark matter spectra are intermediate
between the purely collisional and the ΛCDM case. The fraction of interacting dark matter,
fγdm controls the interpolation between the two limiting cases.

6.2.2 Matter power spectrum

While the CMB spectra of purely interacting and of mixed dark matter are closely related,
this is not the case for the matter power spectrum, where the impact of mixed dark matter
can considerably differ from the purely interacting scenario. In the pure-γdm scenario,
the matter power spectrum exhibits a characteristic cut-off scale and, proceeding from the
cut-off to larger wavenumbers, a series of damped oscillations. As one example, we show
the matter power spectrum for uγdm = 10−5 in Fig. 6.2 in comparison to several mixed
dark matter realisations of equal interaction strengths. Several features are common to all
mixed dark matter scenarios:

1Our modified code is publicly available from https://github.com/bufeo/class_v2.6_mixedDM.git.

https://github.com/bufeo/class_v2.6_mixedDM.git
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Figure 6.1: CMB angular spectra predicted in the mixed dark matter scenario for an
interaction strength parameter of uγdm = 0.01 and varying fractions of interacting dark
matter.
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a) On large scales there is no difference between ΛCDM, pure-γdm and mixed DM.

b) On intermediate scales, those following the cut-off scale for pure-γdm, there is a sup-
pression of power. The decrease is more pronounced for larger fractions of interacting
dark matter. In particular can a large fraction of interacting dark matter produce
less power in this regime than pure-γdm.

c) On small scales, the mixed-DM power spectrum evolves parallel to the ΛCDM one but
with reduced magnitude. The reduction is controlled by the fraction of interacting
dark matter and less pronounced if fγdm is smaller.

The classification applies regardless of the precise value of uγdm, but the cross section
to mass ratio controls the wavenumber where the transition between individual regimes
occurs.

The ΛCDM-like behaviour on the large scales of region (a) is understood easily. These
modes enter the Hubble radius after dark matter has kinetically decoupled from photons,
and therefore are not affected by the scattering processes. The time of dark matter
decoupling, aγdm,dec, is determined by the condition

H (aγdm,dec) = κ′
γdm (aγdm,dec) = 4 ργ

3 ργdm
anγdm σγdm

∣∣∣∣∣
aγdm,dec

. (6.2.1)

Because the energy density of non-relativistic matter is proportional to its number density,
both quantities cancel in the second equality. The time of dark matter kinetic decoupling
is therefore independent of fγdm and given by Eq. (5.1.3a). In contrast, the scale factor
at which photons decouple from dark matter is proportional to the dark matter number
density. Its value in the purely interacting scenario (5.1.3b) is reduced by a factor fγdm

for the mixed dark matter case.

A striking feature of mixed dark matter is the reduction of power at intermediate scales
even in comparison to the purely interacting scenario. To illustrate its cause, we show the
evolution of a single mode with wavelength k = 5h/Mpc, interaction strength uγdm = 10−5

and varying dark matter fractions in the top panel of Fig. 6.3. In the matter power spectrum
of Fig. 5.2, this mode precisely lies at the dip. The matter power spectrum (1.2.3) measures
the magnitude of the density contrast in Fourier space, but is insensitive to the phase.
Perturbations in the collisionless component start to grow upon entering the Hubble radius
and their growth always proceeds in the negative direction. The collisional component, in
contrast, participates in the oscillation of the photon baryon plasma, which modifies the
mode’s phase. Upon decoupling, the perturbation in the collisional component starts to
grow in the positive direction.

Both modes depicted in Fig. 6.3 enter the Hubble radius before matter-radiation equality
(aeq ' 3.0× 10−4), and the growth of matter perturbations accelerates once the universe
has transitioned to the matter-dominated epoch. In this era, the gravitational potentials
are dominated by matter perturbations and both components, the collisional and the
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Figure 6.2: The linear matter power spectrum predicted for several scenarios of mixed
dark matter with an interacting strength of uγdm = 10−5. Only the smallest scales, where
a departure from the ΛCDM predictions becomes evident, are shown.

collisionless one, act as sources. For example, the source term of the time-time component
of the Einstein equations (3.2.17) becomes

δρ ' ρdm [(1− fγdm) δcdm + fγdm δγdm] + ρb δb . (6.2.2)

Two factors are decisive for the late time evolution of perturbations: the time passed
between Hubble crossing and kinetic decoupling of the γdm perturbation, and the fraction
of interacting dark matter. If the γdm component spends only a short time in the coupled
regime and simultaneously there is a significant fraction of interacting dark matter, the
γdm component dominates the potentials and eventually determines the evolution of the
dark matter perturbations as a whole. This is the case for fγdm = 0.9 in the top panel of
Fig. 6.3, where the collisional component overturns the collisionless one. For all other mixed
dark matter scenarios in Fig. 6.3, the fraction of interacting dark matter is too small for the
γdm-component to dominate. Because cold dark matter perturbations start growing upon
horizon entry and the γdm component experiences collisional damping, perturbations in
the collisionless component dominate even for a comparably large fraction of interacting
dark matter. In these cases, the collisional component experiences the turn around after
matter-radiation equality. The larger the fraction of collisionless dark matter, the earlier
the turn around occurs. Regardless of which species comes to dominate the evolution, the
growth of perturbations is hampered while the collisional and the collisionless component
compete.

For an intuitive understanding of how the competition between dark matter components
hinders the growth of perturbations, it is useful to consider the configuration in position
space. There, the phase shifts between CDM and γdm perturbations correspond to a
configuration in which overdensities in the collisional component predominantly coincide
with underdense regions in the collisionless component and vice versa. Hence, perturbations



6.2. Phenomenological implications of mixed dark matter 131

10−6 10−5 10−4 10−3 10−2
−100

−75

−50

−25

0

25

50

δρ
/ρ

uγDM = 10−5, k = 5 h/Mpc

10−7 10−6 10−5 10−4 10−3 10−2

scale factor a

−80

−60

−40

−20

0

δρ
/
ρ

k = 30 h/Mpc

ΛCDM

fγdm = 1.0

fγdm = 0.9

fγdm = 0.8

fγdm = 0.5

Figure 6.3: Time evolution of the density contrast in the γdm (bold colours) and the
CDM (pastel colours) component. The remaining model parameters are chosen to match
those of the matter power spectrum in Fig. 6.2.

in the individual dark matter species partially chancel each other, and the potential wells
are less deep than they would be for single component dark matter of either kind.

The cancellation between individual dark matter components is less severe if perturbations
in the γdm component are sufficiently suppressed. This is the case for modes in region (c),
which cross the Hubble radius earlier. By the time the pressure from photon interaction
ceases, perturbations in the CDM component are already well developed, and the γdm
component falls in their potential wells. Some examples are shown in the bottom panel
of Fig. 6.3, where the γdm component follows the collisionless evolution regardless of the
fraction of interacting dark matter. Still, because the potential wells are less deep initially,
there is a suppression in the matter power spectrum on the scales in region (c). This
suppression is the more severe the larger fγdm.

6.2.3 Comparison with the case of heavy neutrinos

In many respects, the mixed dark matter scenario is similar to a ΛCDM cosmology with
heavy neutrinos. After weak decoupling when Tγ ∼ 1 MeV, neutrinos behave as hot dark
matter, that is as a relativistic, collisionless fluid. Flavour oscillations indicate that at least
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two neutrino states are massive, but provide only lower bounds on their masses (1.2.19).
Given these constraints [43], at least two states have transitioned to the non-relativistic
regime before the present epoch, at a scale factor of

aν,nr =

(
4
11

)1/3
Tγ,0

mν
' 2.80× 10−3 ×

(
mν

0.06 eV

)−1
. (6.2.3)

In either scenario, mixed dark matter and ΛCDM with heavy neutrinos, a fraction of the
late-time dark matter abundance arises from a component which does not evolve as a cold,
collisionless fluid at early times. In the former case, interacting dark matter transitions
from the collisional to the collisionless regime, in the latter, neutrinos develop from hot
into cold dark matter.

At the present epoch, the contribution from heavy neutrinos to the critical density is

Ωνh2 = 3 gν
4

ξ (3)
π2

4
11T

3
γ
×
(∑

mν
)
' 6.39× 10−4

( ∑
mν

0.06 eV

)
, (6.2.4)

where gν = 2 counts the internal degrees of freedom of a single mass state. The fractional
contribution of neutrinos to the present matter density is denoted as

fν ≡
Ων
Ωm

. (6.2.5)

There is a subtle difference between this definition and the interacting dark matter fraction
(6.1.1). While the former is normalised with respect to the total dark matter abundance,
i.e. Ωdm = Ωcdm + Ωγdm, also baryons and neutrinos contribute to Ωm in Eq. (6.2.5). In
contrast to mixed dark matter, where a priori fγdm can take any value between zero and
one, observational bounds on the neutrino mass imply a neutrino fraction much smaller
than unity. More precisely, within the ΛCDM model Eq. (1.2.19) and Eq. (2.3.20) imply
0.005 . fν . 0.01.

Neutrinos behave identicaly to cold dark matter on large scales which enter the Hubble
radius after aν,nr, and the transition is characterised by the comoving wave number

kν,nr = (aH)|a=aν,nr
= 0.0024 Mpc−1

(0.06 eV
mν

)−1/2 ( 0.142
Ωmh2

)−1/2
. (6.2.6)

On smaller scales, free streaming prevents the neutrinos from clustering and initially
suppresses their perturbations. Only when neutrinos have become non-relativistic, they
fall into the dark matter potential wells. In this epoch, the neutrino density contrast grows
faster than the characteristic ∝ a evolution during matter domination to catch up with
δdm. However, due to the strong initial suppression, only modes very close to kν,nr reach
the asymptote, on smaller scales δν � δdm persists up to the present epoch [88]. The lack
of small scale structure in the neutrino sector displays in the matter power spectrum as
a suppression on scales below kν,nr. Back reaction of the neutrino perturbations on the
metric perturbations further amplifies the suppression. Perturbations grow by gravitational
instability and are diluted by the universe’s expansion, in a matter-dominated universe
both effects cancel at the level of metric perturbations, which remain constant. Below
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kν,nr neutrinos contribute to the expansion but not to the density contrast. The unbalance
causes the slow decay of the metric perturbations and impedes the growth of dark matter
perturbations [88]. Eventually, the cumulative effect of massive neutrinos is to suppress
the matter power spectrum below the free streaming scale by a factor ∼ 8fν with respect
to a scenario characterised by identical Ωm but massless neutrinos [329].

Galaxy surveys are sensitive to the power suppression induced by heavy neutrinos [330],
and thus to the neutrino mass scale. The effect, however, strongly resembles the impact
of mixed dark matter with a small fraction of interacting dark matter, see Fig. 2.1 for
an example. In the following we explore the vulnerability of cosmological neutrino mass
bounds to the presence of mixed dark matter further. In particular, we obtain limits on
the mixed dark matter scenario from Planck CMB data and perform a Fisher forecast for
the Dark Energy Spectroscopic Instrument (DESI) [331] survey.

6.3 Data and methodology

6.3.1 Neutrino mass measurements from galaxy surveys

Neutrino oscillations established that neutrinos have non-zero masses [40–42], and probe
the mass difference between states [43]. Cosmology, in contrast, is primarily sensitive
to the sum of neutrino masses. The neutrino mass scale can also be probed in the
laboratory, by the kinematics of β-decay and, if neutrinos are Majorana particles, by
searches for neutrinoless double-β (0ν2β) decay [332]. The strongest laboratory limits at
present, mνe ≤ 2 eV from tritium decay [19], are surpassed by cosmological constraints∑
mν ≤ 0.12 eV [4]. In the future, β-decay measurements, such as the ongoing KATRIN

experiment [333] and Project8 [334], can improve the laboratory limit by an order of
magnitude, and 0ν2β searches have the potential to discover a mass around 0.020 eV at
3σ significance [335]. In comparison, redshift surveys in combination with Planck data
and possibly lensing surveys, are expected to measure the sum of neutrino masses to
∼ (0.01− 0.02) eV in the next decade [264]. The disadvantage of these cosmological limits
is their dependence on the assumed cosmology, and bounds can weaken significantly when
more complex models with additional free parameters are considered [265]. In this regard, a
detection of the neutrino mass scale with cosmology is also a crucial test for the consistency
with laboratory probes [264].

Here, we focus on prospective neutrino mass constraints from the Dark Energy Spectro-
scopic Instrument (DESI) [331]. In combination with Planck data, DESI is expected to
measure the neutrino mass sum to at least 0.02 eV at 68% C.L. for the minimal allowed
value of 0.06 eV [9]. DESI is a ground based experiment at the Mayall telescope in Kitt
Peak, Arizona. The instrument is devised to track the redshift evolution of the matter
power spectrum, which is sensitive to the dark energy equation of state and modifications
of general relativity. Over a duration of five years, DESI will cover a survey area of 14,000
square degrees at wavelength 360 nm ≤ λ ≤ 980 nm. First light is planned for January
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2020 and the first data assembly for a cosmology analysis for April 2022. The survey con-
siders three types of tracers of the matter power spectrum: luminous red galaxies (LRGs),
emission line galaxies (ELGs) and quasars (QSOs). Luminous red galaxies are massive
galaxies with no recent star formation, DESI expects to observe 4 × 106 of them over a
redshift range 0.4 . z . 1.0. Emission line galaxies, which have a high star formation rate
and exhibit strong emission line features in their spectra, are more abundant in the survey
with 1.71× 107 observations expected for 0.6 . z . 1.7. Ly-α absorption lines in quasar
spectra offer sensitivity to hydrogen clouds along the line of sight, and, in addition, quasars
directly serve as tracers. The observation of 1.7 × 106 quasars at redshifts 0.9 . z . 2.1
is expected in the former mode and, continuing to higher redshifts 2.1 . z . 3.5, about
7× 105 Ly-α spectra [336].

6.3.2 Fisher forecast

To investigate DESI’s sensitivity to mixed dark matter and to the neutrino mass in the
presence of mixed dark matter, we perform a Fisher forecast. This standard tool is often
used to predict how well future experiments can determine cosmological parameters. It
is based on the Fisher information matrix, defined as the second derivative of the log-
likelihood L with respect to the parameters of interest ϑi [337,338]

Fij = −
〈
∂2 lnL
∂ϑi ∂ϑj

〉
. (6.3.1)

The angle brackets indicate an ensemble average over the experimental data expected
for a fiducial model with parameters ϑfid

i . Further, the likelihood in the Fisher matrix
formalism is identical to the definition used earlier in Eq. (5.2.2), i.e. L = P (d |ϑ,M).
An estimation of the fiducial parameter’s prospective error follows from the Cramér-Rao
bound

σ2
ij ≥

(
F−1

)
ij
, (6.3.2)

which states that that no unbiased estimator can perform better than the Fisher matrix
error. Thus, after marginalisation over all other parameters, a single parameter ϑi can at
best be measured with accuracy

(
F−1)

ii. The equality applies for Gaussian likelihoods, in
more general cases the Fisher matrix formalism can only provide an optimistic estimate.

The combined likelihood of several, independent experiments is given by the product of
their individual likelihoods. Accordingly, Eq. (6.3.1) implies that the Fisher matrices
of several observations can be added to estimate their combined error [338]. This is
particularly useful to judge the complementarity of experiments. Following the same line

C.L. 68.3% 95.5% 99.7%

∆χ2 2.30 6.18 11.8

Table 6.1: The value of ∆χ2 for two dimensional confidence contours at the level of 1σ,
2σ and 3σ, respectively [8].
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of thought, a Fisher matrix with the respective 1σ intervals on its diagonal can account
for (Gaussian) prior information, for example from a previous experiment [339].

Two dimensional confidence regions are useful, for example to search for parameter de-
generacies. They can be estimated from the inverse Fisher matrix by taking the rows
and columns of interest and inverting this sub-matrix back. The resulting 2 × 2 matrix,
denoted as D, describes a two dimensional Gaussian likelihood surface [338]

χ2 =
∑
i,j

(
ϑi − ϑfid

i

)
Dij

(
ϑj − ϑfid

j

)
, (6.3.3)

where χ2 refers to the chi-square distribution. Surfaces of constant χ2 = ∆χ2 define the
boundaries of confidence intervals, and Tab. 6.1 quotes the correspondence between the
value of ∆χ2 and some most common choices for the confidence level in two dimensions [8].
The two dimensional confidence regions of a Gaussian probability distributions are always
ellipses, whose semi-major axis a and, the semi-minor axis b and the rotation angle α are
given by

a =
√

∆χ2

Dii +Djj

2 +

√
(Dii −Djj)2

4 +D2
ij

−1/2

, (6.3.4a)

b =
√

∆χ2

Dii +Djj

2 −

√
(Dii −Djj)2

4 +D2
ij

−1/2

, (6.3.4b)

tan (2α) = 2Dij

Dii −Djj
. (6.3.4c)

For poorly constrained parameters or in cases where the likelihood is very non-Gaussian,
results obtained by a Fisher forecast have to be interpreted with caution. In particular
should the obtained error estimates not be taken too literally, but regarded as optimistic
estimates. The comparison with Monte Carlo Markov chain likelihood sampling showed,
for example, that the Fisher matrix can not reproduce the highly non-elliptical shapes
when the dark energy equation of state is determined from purely geometrical probes, such
as supernovae and baryon acoustic oscillations. The consequence is an underestimation of
the error on w0 and wa by 30%− 70% [340]. In the context of cluster surveys, the Fisher
forecast performs well for minimal cosmological models, but, concerning modifications
to the equation of state, the results vary by 30% − 100% in comparison with MCMC
sampling [341]. Still, even in these weakly constrained cases, the sense that a constraint is
poor is generally preserved by the Fisher forecast [9].

To estimate the Fisher matrix of galaxy surveys, one can consider the tracer two-point
correlation Ptt (k) as observable. That is the n-th entry to the data vector d is the average
power spectrum measured in a thin shell of radius kn in Fourier space [342]. Tracers are
biased with respect to the underlying matter distribution P (k), c.f. Sec. 2.2.2. Restricting
the analysis to large scales, we assume a linear bias bt such that

Ptt (k, µ) =
(
bt + βµ2

)2
P (k) . (6.3.5)
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The second contribution in the parenthesis is proportional to the cosine, µ, between a
mode’s wavevector k and the line of sight, and to the growth rate β ≡ d ln

(√
P (k, a)

)
/d ln a

[148]. This term accounts for redshift space distortions, i.e. the fact that galaxies are
observed in redshift space rather than real space, and corrects the redshift space power
spectrum for the effect of peculiar motions [343].

Under the assumption that the likelihood is a multivariant, n-dimensional Gaussian with
covariance C and mean m,

L = 1√
(2π)n |C|

exp
[
−1

2 (x−m) C−1 (x−m)†
]
, (6.3.6)

the Fisher matrix (6.3.1) becomes

Fij = 1
2tr

(
C−1 ∂ C

∂ϑi
C−1 ∂ C

∂ϑj

)
+ ∂m†

∂ϑi
C−1 ∂m

∂ϑj
. (6.3.7)

Two main sources of statistical uncertainty contribute to the covariance of Ptt (k, µ), cosmic
variance, due to the finite survey volume, and Poissonian shot noise in the counting of
galaxies. Their combined variance is

σP (k)
Ptt (k) = Ptt (k) + n−1

t
Ptt (k) , (6.3.8)

where nt refers to the number density of the tracer population, averaged over redshifts.
Nearby modes in a survey with finite volume are highly correlated over a cell size of
(2π)3 /Vsurvey. If all available modes are to be considered for Eq. (6.3.7) nevertheless, their
individual contribution needs to be weighted down by a factor 2π

√
2/ (K2 δk δµVsurvey),

where δk and δµ define the bin size [338]. If the shell size δk is small compared to the
survey volume, the first term in Eq. (6.3.7) dominates [342] the variance. Promoting the
sum over kn, which is implicit in the trace, into a continuous integral, the Fisher matrix
is [338,342]

Fij =
∫ 1

−1

∫ kmax

kmin

k2 dkdµ

2 (2π)3
∂ lnPtt (k , µ)

∂ϑi

∂ lnPtt (k , µ)
∂ϑj

Veff (k , µ) , (6.3.9)

where the effective volume is

Veff =
(

nP (k , µ)
1 + nP (k , µ)

)2
Vsurvey . (6.3.10)

The lower integration limit in Eq. (6.3.9) is set by the survey design, only modes with
kmin ≥ 2π/ 3

√
Vsurvey fit into its volume. For the upper limit we choose kmax = 0.2h/Mpc

to exclude highly non-linear scales.

In surveys with multiple tracers, the relative clustering between different types of tracers
improves constraints beyond the limit expect from cosmic variance arguments [344]. Con-
sidering the effective power of a tracer P eff

α = nα Pα as parameter of interest, which should
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be inferred from the data, the multi-tracer Fisher matrix is [344,345]

Fαβ = 1
4

P eff
α P eff

tot
1 + P eff

tot
δαβ +

P eff
α P eff

β

(
1− P eff

tot

)
(
1 + P eff

tot
)2

 . (6.3.11)

Here, P eff
tot = ∑

α P
eff
α is the total effective power. A parameter transformation generalises

the result to an alternative set of free parameters ϑi

Fij =
∑
α,β

∫
d3k d3x

(2π)3
d logP eff

α

dϑi
Fαβ

d logP eff
β

dϑj
. (6.3.12)

6.4 Observational impact of mixed dark matter

6.4.1 Parameter space allowed by the CMB

To constrain the mixed damping parameter space from CMB measurements, we use the
approach of Sec. 5.2.2 and interface our modified CLASS version with the MCMC sampling
code MontePython version 3.0.1 [316,346]. As data set we consider the lowTEB + highTT
+ lensing combination of likelihoods from the Planck 2015 data release [231], see Tab. 5.2.

Our results show that the posterior is very non-Gaussian shaped in the (uγdm, fγdm) plane.
Although MCMC sampling still provides valid results, the use of a Gaussian proposal
density decreases the acceptance rate and slows down the chain’s convergence. The
situation can be somewhat improved by sampling over two auxiliary parameters, u±

γdm
and f±

γdm, which can take positive and negative values. They are related to the physical
parameters as

uγdm =
∣∣∣u±
γdm

∣∣∣ , fγdm =
∣∣∣f±
γdm

∣∣∣ . (6.4.1)

Given the samples of the auxiliary parameters, the physical parameters’ expectation values
follow directly from Eq. (5.2.4). For all cosmological and nuisance parameters we adopt
flat priors, and the ranges for the auxiliary parameters are u±

γdm ∈
[
−10−3, 10−3] and

f±
γdm ∈ [−1, 1].

The parameter space allowed by Planck data for the mixed damping scenario is shown
in Fig. 6.4. If the fraction of interacting dark matter is large, the interaction strength
parameter uγdm can be fairly well constrained. The limits, however, weaken considerably
as fγdm decreases, and for less than 10% interacting dark matter there no longer are
restrictions on uγdm. A large scattering rate can be compensated by a small fraction of
interacting dark matter, and, vice versa, a large γdm abundance is allowed if the cross
section to mass ratio is small.

Further, we probe explicitly what cross sections to mass ratios are allowed if the fraction
of interacting dark matter is fixed to 50% and to 10%. For these inferences we extend
the prior range for uγdm to u±

γdm ∈
[
−10−2, 10−2], and obtain u(50%)

γdm < 5.36 × 10−4 and
u

(10%)
γdm < 3.18× 10−2 at 95% C.L.. In comparison to the purely interacting scenario, where
uγdm < 1.81×10−4 (c.f. Tab 5.3), the bound relaxes just mildly when only half of the dark
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Figure 6.4: One and two dimensional posterior contours for cosmological parameters
in the mixed dark matter model, inferred from the Planck 2015 “lowTEB + highTT +
lensing” likelihoods, assuming flat priors. The two dimensional contours depict 68% (red)
and 95% (orange) confidence levels, respectively.

matter participates in the photon interactions. However, for an interacting dark matter
fraction of 10% the allowed cross section to mass ratio is almost two orders of magnitude
larger as in the purely interacting case.

6.4.2 Fisher forecast for future observations of the large-scale structure

Considering future DESI observations, our main questions are whether DESI can lift the
degeneracy between uγdm and fγdm in the mixed dark matter scenario, and how well
the data can discriminate the effect of massive neutrinos from mixed dark matter. For
comparison, we also present results on DESI’s sensitivity to purely interacting dark matter.

The Fisher matrix formalism is outlined in Sec. 6.3.2. In addition to the interaction
strength parameter, the interacting dark matter fraction and the neutrino mass scale
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tracer bias

emission line galaxies (ELG) bELG (z)×D (z) = 0.84
luminous red galaxies (LRG) bLRG (z)×D (z) = 1.7
high redshift quasars (QSO) bQSO (z)×D (z) = 1.2

Table 6.2: Linear bias parameters for the DESI tracers taken from Ref. [9]. The growth
factor is normalised at the present epoch, i.e. D (1) = 1.

our scenarios contain five cosmological baseline parameters, namely Ωbh
2, Ωdmh

2, 100 θ∗,
ns and As. As their fiducial values we assume the Planck 2018 best-fit results [4], see
Tab. 2.1. Galaxy surveys can not constrain the six free parameters of the ΛCDM model
by themselves, let alone the up to eight free parameters in the extended models considered
here. To break degeneracies, large-scale structure data is usually analysed in conjunction
with CMB observations. We include Planck information on the five baseline parameters in
form of a diagonal Fisher matrix, which contains the individual squared inverse one sigma
intervals for each parameter as quoted in Tab. 2.1. This conservative approach neglects
any information CMB data might provide on the neutrino mass or mixed dark matter
parameters as well as on possible correlations between parameters.

In additional to the five baseline parameters, we fix the optical depth to reionisation,
τre = 0.0543, and the effective number of neutrinos, Neff = 3.046. In the pure-γdm and
mixed dark matter scenarios we describe the neutrino sector by two massless and a massive
state with mν = 0.06 eV. Where the neutrino mass is considered a free parameter, we
correct the dark matter density for its variations according to Eq. (6.2.4). This approach
is equivalent to considering the total non-relativistic matter density at the present epoch
as free parameter rather than the dark matter density. Its advantage is, that the effect of
the increased matter density and of the power suppression on small scales, both caused by
heavy neutrinos, are separated. Concerning the bias, we adopt the customary assumption
that its redshift dependence is cancelled by the linear growth factor D (z), and thus that
b (z)D (z) is constant [338]. All tracers considered in our analysis, namely emission line
galaxies, luminous red galaxies and the clustering of quasars, experiences a different bias
for which we adopt the same values as in Ref. [9]. These are summarised in Tab. 6.2.

We first consider purely interacting dark matter and fix fγdm = 1. For a fiducial interaction
strength of uγdm = 2.0 × 10−4, we obtain as estimate for the 1σ error bound δuγdm =
8.5× 10−6. Lowering the cross section to mass ratio further to 2.0× 10−5 gives δuγdm =
7.1× 10−6. Thus, DESI could robustly detect interacting dark matter whose interaction
strength saturates the CMB bounds and improve CMB constraints by close to an order of
magnitude.

However, the sensitivity reduces seriously if the fraction of interacting dark matter is
added as free parameter. This becomes very evident from the summary of forecasted
error bounds in Tab. 6.3. For a fiducial cross section to mass ratio of 2× 10−4 the error
on the fraction of interacting dark matter is so large that mixed dark matter can not
be discriminated from the canonical ΛCDM case. Simultaneously, the bound on uγdm
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ufid
γdm ffid

γdm δuγdm δfγdm

2× 10−4

0.1 2.0× 10−4 1.8
0.3 8.6× 10−4 2.3
0.5 5.9× 10−4 2.6
0.7 4.9× 10−4 3.0
0.9 2.7× 10−4 2.1

2× 10−3

0.1 1.3× 10−2 0.76
0.3 5.1× 10−4 9.5× 10−2

0.5 3.2× 10−4 9.9× 10−2

0.7 2.4× 10−4 0.10
0.9 1.9× 10−4 0.11

Table 6.3: 1-σ marginalised errors estimated for DESI in combination with Planck
2018 CMB priors, assuming a mixed dark matter scenario and a fixed neutrino mass of
mν = 0.06 eV.
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Figure 6.5: Confidence contours predicted for a DESI analysis of the mixed dark matter
scenario. All illustrated scenarios assume ufid

γdm = 2× 10−3.

increases, indicating a degeneracy between the two mixed dark matter parameters. Alike,
if the fiducial interaction strength increases, the sensitivity on fγdm also improves. For
ufid
γdm = 2×10−3 it is possible to discriminate mixed dark matter from ΛCDM if the fraction

of interacting dark matter is at least 30%. The degeneracy between the interaction strength
and the fraction of interacting dark matter is also apparent from Fig. 6.5, where we show
the corresponding two dimensional confidence regions for ufid

γdm = 2 × 10−3 and several
choices of ffid

γdm. Interestingly, it becomes less severe as the fraction of interacting dark
matter increases, allowing for a more accurate determination of the interaction strength
parameter.

Finally, we investigate how well mixed dark matter and neutrino masses can be determined
simultaneously from future DESI data. In these scenarios, we always assume a fiducial
neutrino mass of mfid

ν
= 0.06 eV and test several assumptions on the mixed dark matter

parameters. For comparison, we also estimate the neutrino mass error in the absence of
any interacting dark matter and obtain δmν = 9.1 × 10−3. This limit is stronger than
that of Ref. [9], presumably because it does not account for uncertainties in τre. Despite
being optimistic, the bound provides a reference to which the mixed dark matter forecasts
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ufid
γdm ffid

γdm δ uγdm δ fγdm δ mν

1.0× 10−3 0.5 4.13× 10−4 0.30 2.08× 10−2

1.0× 10−3 0.3 6.79× 10−4 0.30 2.03× 10−2

1.0× 10−3 0.1 1.96× 10−3 0.28 1.97× 10−2

4.0× 10−4 0.5 5.55× 10−4 1.15 2.05× 10−2

Table 6.4: 1-σ marginalised errors estimated for DESI in combination with Planck 2018
CMB priors, assuming a mixed dark matter scenario with unknown neutrino mass. The
fiducial value for the neutrino mass is always mν = 0.06 eV.

can be compared. In all tested fiducial scenarios, we observe that the error bound on the
neutrino mass increases by about a factor of two, see Tab. 6.4. The reduced sensitivity
is explainable from the two dimensional confidence regions of which Fig. 6.6 depicts one
example considering a fiducial model with ufid

γdm = 1.0×10−3, ffid
γdm = 0.5 andmfid

ν
= 0.06 eV.

As already suspected from the discussion of the matter power spectrum, the neutrino mass
estimate is degenerate with both parameters of the mixed dark matter model, fγdm and
uγdm. The example in Fig. 6.6 affirms that a large neutrino mass can be compensated
by a decrease in uγdm, and, in addition, the strong degeneracy between uγdm and fγdm is
inherited in the (mν , fγdm) plane.

6.5 Summary

We consider a scenario with two dark matter components, one of which is cold and
collisionless at all scales and times of interest and thus behaves like canonical cold dark
matter. The second component scatters elastically with photons. The CMB angular
spectra for such a mixed dark matter model are intermediate between the ΛCDM and
the fully interacting case, with the interpolation between both limits controlled by the
fraction of interacting dark matter, fγdm. In contrast, the matter power spectrum receives
an additional suppression at intermediate scales from the cancellation of perturbations
in both components. This effect is the more pronounced for a larger value of fγdm, and,
in some cases, can generate less power on intermediate scales than a purely interacting
scenario. A small abundance of interacting dark matter, on the other hand, has a very
similar impact on the matter power spectrum as massive neutrinos.

Limits on the mixed dark matter parameter space from CMB observations, using the
Planck 2015 data, leave the cross section to mass ratio uγdm unconstrained if less than 10%
of dark matter participates in the photon scattering. To assess the sensitivity of future
large-scale structure observations to the mixed dark matter scenario, we perform a Fisher
forecast for the upcoming DESI survey. It reveals a strong degeneracy between the two
parameters characterising the mixed dark matter scenario, uγdm and fγdm. Consequently,
the sensitivity to the interaction strength uγdm is considerably reduced for mixed dark
matter models in the comparison with a purely interacting scenario. Similarly, we diagnose
a degeneracy between the neutrino mass and both parameters of the mixed dark matter
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Figure 6.6: Two dimensional confidence contours in a scenario where mixed dark matter
and neutrino masses are to be determined simultaneously from DESI data. The fiducial
model is determined by ufid
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= 0.06 eV.

model. Thus, the mixed dark matter scenario could mislead the interpretation of large-
scale structure data and the reconstruction of neutrino masses from the matter power
spectrum. Upper limits on the neutrino mass scale, in particular, might overestimate its
impact on the matter power spectrum.



Chapter 7

Mixed damping in dark matter-neutrino
interactions

The preceding two chapters concerned various aspects of dark matter-photon scattering
in the early universe. Another intriguing possibility for dark matter interactions with
Standard Model radiation is to postulate a coupling to neutrinos. Within the Standard
Model, neutrinos are the least understood particles, and laboratory tests of such inter-
actions with dark matter are currently not feasible. In contrast, the high abundances of
neutrinos and dark matter in the early universe allows to assess a possible link between
them from cosmological observations [323].

For consistency with observations of the CMB and the universe’s large-scale structure,
dark matter has to decouple from neutrinos well before these become non-relativistic.
Still, there is a fundamental difference to dark matter-photon interactions, which always
suppresses dark matter perturbations by collisional damping. For dark matter-neutrino
scatterings there is an alternative damping mechanism, characterised by a period where

Γνdm−ν > H > Γν (7.0.1)

holds true. That is, dark matter, denoted here as νdm, is coupled to neutrinos while
the latter free stream. Besides dark matter scattering, Standard Model interactions with
electrons contribute to the neutrino interaction rate, i.e. Γν = Γν−e + Γν−νdm. For the
dark matter component we assume that it only interacts with neutrinos. The rate for dark
matter scattering off neutrinos and for the reverse process are not identical due to the
presence of the momentum conserving prefactor Rνdm in the dark matter equations (3.5.7).
Rather, the respective rates read

Γν−νdm = nνdm σνdm , (7.0.2a)

Γνdm−ν = 4 ρν
3 ρνdm

Γν−νdm . (7.0.2b)

In this alternative scenario, called mixed damping, dark matter is dragged along by the
relativistic, free streaming neutrinos, which thereby erase perturbations in the dark matter
component [292]. While, in the context of dark matter interactions with Standard Model
radiation, neutrinos are particularly relevant for mixed damping, it can also arise for dark
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matter-dark radiation interactions [347]. A similar effect, Silk damping [91], exists in the
evolution of the baryon-photon plasma, where photons decouple briefly before the end
of the baryon drag epoch [132, 298]. However, there are fundamental differences in the
decoupling histories of the baryon-photon plasma and of the coupled dark matter-neutrino
sector. As a consequence, mixed damping can last longer and affect a larger range of
modes than Silk damping. We discuss the differences in detail in Sec. 7.3.1.

Current constraints on dark matter-neutrino interactions touch on the region of param-
eter space where mixed damping is important for the suppression of structure. Thus, a
profound physical understanding of the mechanism is desirable. The Boltzmann hierarchy
of interacting neutrinos (3.5.5) in combination with the interacting dark matter equations
(3.5.7) automatically accounts for the mixed damping mechanism, but does not provide
an intuitive insight into the underlying physics. Also, in Sec. 4 we showed that Boltzmann
codes require modifications beyond the level of the multipole hierarchy in order to obtain
accurate results. In this chapter we focus on either aspect, the understanding the physical
mechanism for mixed damping and accurately describing it numerically.

We start by examining the parameter space over which mixed damping is relevant in
Sec. 7.1 and assess the accuracy of our numerical results, more precisely the impact of
the ultra-relativistic fluid approximation and the choice of initial conditions, in Sec. 7.2.
Section 7.3 is devoted to the derivation of an analytical approximation to the evolution of
dark matter perturbations in the mixed damping regime. Finally, in Sec. 7.4 we use this
analytical solution discuss the physical mechanism of mixed damping.

7.1 The parameter space for mixed damping

The rate for neutrino scatting with dark matter (7.0.2a) and hence the neutrino decoupling
time depend on the dark matter number density. In general, a further to be specified dark
matter production mechanism fixes the comoving dark matter number density, and at late
times ndm ∝ a−3. At early times, however, the dark matter density can be a more complex
function of the scale factor. So causes dark matter annihilation in the freeze out scenario
an exponential decrease of the dark matter density prior to chemical decoupling. Here, for
simplicity, we assume that the comoving dark matter density was fixed before neutrino
weak decoupling. As a result, the bounds quoted in the following have to be interpreted
with precaution for a thermal dark matter candidate with mass . O (MeV).

7.1.1 Minimum mixed damping scale

Only if dark matter stays coupled to neutrinos beyond neutrino-electron weak decoupling at
Tγ ∼ 1 MeV, a period where Eq. (7.0.1) is satisfied can exist and mixed damping is possible.
The requirement that dark matter does not decouple before amin = a (1 MeV) ' 2.35×10−10

immediate puts a lower bound to the dark matter-neutrino scattering cross section. With
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Figure 7.1: The evolution of the neutrino-dark matter scattering rate Γν−νdm (solid lines)
and the dark matter-neutrino scattering rate Γνdm−ν (dashed lines) in comparison to the
Hubble rate (black line). The green shaded region indicates the range of dark matter
decoupling for which mixed damping can occur.

the parameterisation of Eq. (3.5.10) and Eq. (3.5.11) the constraint is

umin
νdm,0 = 2π

√
Ωrh2

Ωνh2

(
100 km

Mpc s

)−1 100 GeV
σTm2

P
anνdm+2

min =


2.4× 10−14 if nνdm = 0

1.4× 10−33 if nνdm = 2

7.4× 10−53 if nνdm = 4

,

(7.1.1)
where Ωr = Ωγ + Ων. In Fig. 7.1 the left edge of the green shaded region indicates the
minimum scale factor for dark matter decoupling. Corresponding to this limit, only scales
above a minimum mass and length scale can be subject to mixed damping, namely

rmin = 0.11 kpc (7.1.2a)

Mmin = 0.2M� . (7.1.2b)

Smaller scales still experience a suppression of perturbations, but these cross the Hubble
radius at a time when neutrinos interact with electrons and then are subject to collisional
damping. In any case, the smallest, ultra faint dwarf galaxies discovered in the Milky Way
and Andromeda have stellar masses of at least 102M� [178,189]. Scales as small as rmin

are far below the experimental reach.

The requirement that dark matter decouples from neutrinos when these are collisionless
also puts an upper limit on the scales affected by mixed damping and provides a maximal
allowed value of the cross section to mass ratio uνdm. This bound depends on the decoupling
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history, and in particular on whether neutrinos decouple from electrons or from dark matter
first. We explore both possibilities in the following.

7.1.2 Maximum scale set by neutrino weak decoupling

Mixed damping is the sole process responsible for the suppression of dark matter pertur-
bations on scales larger than rmin if Standard Model interactions determine the time of
neutrino decoupling. In this case, the mixed damping condition (7.0.1) becomes

Γν−νdm < Γν−e < H < Γνdm−ν . (7.1.3)

The size of the Hubble radius at the time of dark matter decoupling sets the scale up to
which mixed damping can affect dark matter perturbations. It is the larger, the larger
the cross section to mass ratio parameter is. Still, requiring that neutrino decoupling is
set by weak interactions also restricts the time of dark matter decoupling. Momentum
conservation relates the respective interaction rates (7.0.2b), and for the largest allowed
dark matter interaction rate the dark matter decoupling condition (Γνdm−ν ' H) can be
recast as

4 ρν
3 ρdm

Γν−e ' H . (7.1.4)

Combined with the previous section’s discussion, there only exists a period over which
Eq. (7.1.3) can be satisfied if umin

νdm,0 < uνdm,0 < uwdec
νdm,0, and

uwdec
νdm,0 = 1.34×10−8×aνdm

min

(
h

0.678

)( Ωνdm
0.1186

)−1
=


1.3× 10−8 if nνdm = 0

7.4× 10−28 if nνdm = 2

4.1× 10−47 if nνdm = 4

. (7.1.5)

Then, the maximal length and mass scales which can be affected by mixed damping are

rwdec =


79 kpc if nνdm = 0

2.6 kpc if nνdm = 2

0.8 kpc if nνdm = 4

, Mwdec =


8× 107M� if nνdm = 0

3× 103M� if nνdm = 2

1× 102M� if nνdm = 4

.
(7.1.6)

In Fig. 7.1 we illustrate the time evolution of scattering rates for uνdm = uwdec
νdm . Neutrino

kinetic decoupling occurs at the left boundary of the green region, when Tγ ' 1 MeV. In
contrast, the dark matter scattering rate crosses the Hubble rate at a later time. On
scales which enter the Hubble radius between both events dark matter perturbations get
suppressed by mixed damping.

7.1.3 Maximum scale set by neutrino-dark matter decoupling

Mixed damping also plays an important role if the neutrino kinetic decoupling is determined
by the neutrino-dark matter interactions. This scenario applies to larger scales, which
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are more accessible by observations. To illustrate the situation, first consider a small
mode, which enters the Hubble radius while Γνdm−ν,Γν−νdm > H > Γν−e. Initially, this
mode experiences collisional damping but transitions to the mixed damping regime upon
neutrino decoupling. A larger mode, in contrast, enters the Hubble radius later, possibly
when neutrinos are free streaming. It then is subject to mixed damping only. However,
the transition from the collisional to the mixed damping regime can only occur if the ratio
of densities in Eq. (7.0.2b) is larger than unity by the time dark matter decouples from
the neutrino fluid. This condition, 4ρν (amd−max) = 3ρνdm (amd−max), puts an upper limit
on the dark matter decoupling time

amd−max = 1.9× 10−4
(

Ωνdmh
2

0.1186

)
. (7.1.7)

The largest scale which can in principle be affected by mixed damping enters the Hubble
radius at amd−max and is given by

rmd−max = 71.0 Mpc

(
0.1186

Ωνdmh2

)
√

1 + 0.068
(

Ωbh2

0.0223

) (
0.1186

Ωνdmh2

) . (7.1.8)

It corresponds to a mass scale of roughly Mmd−max = 6× 1016M�. Finally, the criterion
of dark matter decoupling before amd−max translates into an upper bound on the uνdm,

umd−max
νdm = 1.97× 10−2anνdm

md−max

( 0.1186
Ωνdmh2

)2
√

1 + 0.066
( Ωbh2

0.0223

)( 0.1186
Ωνdmh2

)

'


1.98× 10−2 if nνdm = 0

7.12× 10−10 if nνdm = 2

2.56× 10−17 if nνdm = 4

(7.1.9)

If the interaction strength parameter exceeds umd−max
νdm , dark matter always decouples from

neutrinos first, and the damping of fluctuations is purely collisional. The right boundary
of the green shaded region in Fig. 7.1 marks amd−max. Also shown is the time evolution
of scattering rates for uνdm = umd−max

νdm . In this limiting configuration, neutrinos and dark
matter decouple simultaneously, at amd−max precisely.

7.1.4 Comparison with observational constraints

Numerous cosmological observations are sensitive to the effects of dark matter-neutrino
scattering, amongst them the CMB temperature, polarisation and lensing spectra, the Ly-
α forest, galaxy surveys and CMB spectral distortions. We summarise the corresponding
limits and forecasts in Tab. 7.1. A recent study emphasised the difficulties of one-sided
constraints, obtained with a logarithmically flat prior, in the context of CMB limits on
dark matter-radiation interactions [314]. Those studies are inclined to produce artificially
tight bounds, and we therefore quote the prior adopted for uνdm explicitly.



148 Chapter 7. Mixed damping in dark matter-neutrino interactions

Planck 2013 temperature, WMAP
low-multipole polarisation, 68% C.L. [294]

uνdm ≤ 3.99× 10−2, nνdm = 0
uνdm,0 ≤ 0.54× 10−13, nνdm = 2

Planck 2013 temperature, WMAP
low-multipole polarisation, Lyman-α
(HIRES & MIKE), 68% C.L. [294]

uνdm ≤ 1.5× 10−7, nνdm = 0
uνdm,0 ≤ 1.5× 10−19, nνdm = 2

Planck 2013 temperature, WMAP
low-multipole polarisation, logarithmic flat
prior, 95% C.L. [295]

uνdm ≤ 9.0× 10−5, nνdm = 0
uνdm,0 ≤ 3.0× 10−14, nνdm = 2

Planck 2013 temperature, WMAP
low-multipole polarisation, logarithmic flat
prior, WiggleZ up to k = 0.2h/Mpc,
95% C.L. [295]

uνdm ≤ 3× 10−5, nνdm = 0
uνdm ≤ 1× 10−14, nνdm = 2

Planck 2015 lowTEB highTT, logarithmic
flat prior, 95% C.L. [277] uνdm = 4.5× 10−5, nνdm = 0

Planck 2015 lowTEB highTTTEEE lensing,
logarithmic flat prior, 95% C.L. [277] uνdm = 9.0× 10−5, nνdm = 0

Planck 2015 lowP highTTTEEE lensing,
Jeffrey’s prior, 95% C.L. [314]

uνdm ≤ 2.14× 10−4, nνdm = 0
uνdm ≤ 2.46× 10−13, nνdm = 2

CMB (COrE+) forecast, 95% C.L. limits [295] uνdm ≤ 4.5× 10−5, nνdm = 0
uνdm,0 ≤ 3.0× 10−15, nνdm = 2

Large-scale structure (DESI) forecast,
2.5σ detection [295]

uνdm = 10−5, nνdm = 0
uνdm,0 = 10−14, nνdm = 2

Spectral distortions (PRISM) forecast,
2σ detection [321]

uνdm = 7.2× 10−6, nνdm = 0
uνdm,0 = 3.8× 10−21, nνdm = 2

Table 7.1: Overview over existing (top) and forecasted (bottom) constraints on the dark
matter-neutrino scattering strength uνdm. The quoted prior models apply to uνdm.

A general trend of Tab. 7.1 is that constraints become tighter as observations concern
smaller scales. Indeed, because small modes gain causal contact earlier, they are sensitive
to smaller dark matter decoupling and smaller interaction rates. When judging the derived
limits, one further has to keep in mind that the ΛCDM parameters (1.3.2) can shift
in analyses of alternative cosmologies. However, in the case of dark matter-neutrino
interactions the impact is not large enough to alter the parameter ranges from the previous
section significantly. Importantly, already the bounds derived from large-scale CMB
observations, like the conservative bound using Planck 2015 data and a Jeffrey’s prior [314],
undercut the minimum required cross section for mixed damping, umd−max

νdm . Evidently,
cosmological constraints on dark matter-photon interactions derive from scales and epochs
where mixed damping matters to the suppression of perturbations. In this context, a
correct numerical modelling and a thorough physical understanding of the mechanism are
vital.
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7.2 Numerical accuracy in cosmologies with dark matter-
neutrino interactions

To predict the evolution of cosmological perturbations in the presence of dark matter-
neutrino interactions accurately, we modified the CLASS code, version 2.71. Our changes
include the interacting neutrino hierarchy (3.5.5), the modified dark matter evolution
equations (3.5.7) and the revised treatment of the initial conditions discussed in Sec. 4.4.
Further, the code not only accepts the interaction strength uγdm as additional input
parameter, but also the exponent of the cross-section’s temperature dependence, nνdm,
and the angular coefficients αl. Dark matter scattering terms are implemented for ultra-
relativistic neutrinos only, and in this chapter we consider three massless neutrino species,
which uniformly participate in the interactions. While this treatment is adequate to
study the physical processes behind mixed damping, it should be revised when parameter
constraints from observations are at concern.

Beyond the aforementioned modifications, dark matter-neutrino interactions also require
to reassess the applicability of the ultra-relativistic fluid approximation (UFA). Because
previous studies of the νdm scenario neither considered the initial conditions nor the UFA
treatment, we examine in this section how those changes impact theory predictions for the
CMB angular spectra and the matter power spectrum.

7.2.1 Ultra-relativistic fluid approximation

The late time evolution of neutrino perturbations in CLASS is addressed by the ultra-
relativistic fluid approximations [288], which explicitly assumes free streaming neutrinos.
This assumption can break down if neutrinos are coupled to dark matter. We therefore ad-
vocate in Sec. 4.3 to delay the onset of the ultra-relativistic fluid approximation sufficiently
to ensure neutrino decoupling. Here we assess the effect of such a delay on the numerical
results. Even though our primary concern is the mixed damping regime, where neutrinos
indeed are free streaming, this control is important. The preceding section showed that
there is a smooth transition from the mixed to the collisional damping regime, hence we
need to at least establish the scales up to which our results are reliable. Second, previous
constraints have been obtained either with a modified UFA truncation scheme (4.3.5) or
neglecting the effect of neutrino interactions on the ultra-relativistic fluid approximation
altogether, and we aim to estimate the impact this has on the results.

We consider two benchmark scenarios to investigate the effect of the UFA approach on
CMB constraints. These scenarios are loosely motivated by the limits quoted in Ref. [314].
Explicitly, we assume uνdm = 5.0× 10−4 for nνdm = 0 and uνdm,0 = 5× 10−13 for nνdm = 2.
Further, the angular coefficients are set to αl = 3/2 for l ≥ 2, and we fix the remaining
cosmological to their Planck best-fit value from the 2018 data release, given in Tab. 2.1.
For either benchmark case, we increase the trigger value of (kτ)ufa simultaneously with lmax

1Our modified code is publicly available from https://github.com/bufeo/class_v2.7_nuDM.git.

https://github.com/bufeo/class_v2.7_nuDM.git


150 Chapter 7. Mixed damping in dark matter-neutrino interactions

0 500 1000 1500 2000 2500
multipole l

−0.02

−0.01

0.00

0.01

0.02

0.03
l(
l
+

1)
/
2
π

∆
C
l

[ µ
K

2
]

TT

TE

EE

uνdm = 5× 10−4 , nνdm = 0

uνdm = 5× 10−13 , nνdm = 2

Figure 7.2: Differences between the lensed CMB spectra obtained for default UFA settings
and a delayed UFA approach with (kτ)ufa = lmax = 400.

and ensure that the resulting CMB spectra converge. In the following we always present
results obtained with (kτ)ufa = lmax = 400, in comparison the CLASS v2.7 default setting
(kτ)ufa = 30 and lmax = 17. Our results, the difference between the lensed CMB spectra
obtained with the default and the delayed UFA procedure, are shown in Fig. 7.2 for both
benchmark models. Considering l (l + 1) / (2π)Cl up to l = 2500 for the temperature and
the E-mode autocorrelation and their cross-correlation spectra, we find small differences of
at most 0.03µK, which clearly are below the experimental sensitivity. Hence we conclude
that the CMB constraints quoted in Tab. 7.1 are robust with respect to the treatment of
the ultra-relativistic fluid approximation.

The large scales probed by the CMB enter the horizon comparably late, when the impact of
dark matter scattering on the neutrino evolution is small. The situation is different in case
of the matter power spectrum, as the comparison of results with default and delayed UFA
settings in Fig. 7.3 reveals. There, we vary uνdm as indicated, choose nνdm = 0 and set the
remaining cosmological parameters to the Planck 2018 best-fit values. The morphology of
the matter power spectrum in cosmologies with dark matter-neutrino interactions is similar
to that of the dark matter-photon interacting scenario, discussed in Sec. 5.1.1. In either
case, there is no difference to the ΛCDM predictions on the largest scales, and a cut-off
occurs towards smaller scales, whose precise location is governed by the cross section to
mass ratio. Instead of the damped oscillations, succeeding the cut-off in the γdm-scenario,
the νdm power spectrum only oscillates once and after that decreases monotonically. The
default and delayed UFA results typically agree up to this bump, but on smaller scales
differences are evident. We also test the generalised UFA truncation equation (4.3.5),
employed by previous works, and find that it neither reproduces the delayed not the
default results of the standard truncation (4.3.5), if the respective trigger values are left to
their default values. Typically, the deviations emerge at the same wavenumbers and are
at the same level as those between the default and delayed UFA results of Fig. 7.3. For
a delayed UFA, on the other hand, the standard and the generalised truncation scheme
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Figure 7.3: The matter power spectrum for several dark matter-neutrino interacting
scenarios with nνdm = 0. Dashed curves show results obtained for default UFA settings,
solid lines those from the delayed UFA approach with (kτ)ufa = lmax = 400.

converge to the same result. This is not surprising as the respective expressions only differ
by a term proportional to the neutrino scattering rate κ′

νdm, which becomes negligible at
sufficiently late times. From these test we conclude that, to obtain precise predictions for
the matter power spectrum on small scales, it is indeed necessary to delay the onset of
the UFA regime. The more economical approach of including the interaction term to the
truncation equation (4.3.5) fails to reproduce the correct small scale behaviour.

Even though discrepancies appear at small scales in the matter power spectrum when the
UFA is not delayed, we do not expect these to affect constraints derived from large-scale
structure observations. For viable scattering rates, the default and delayed UFA results
do not diverge from each other until fluctuations in the interacting scenario are reduced
by several orders of magnitude with respect to the ΛCDM prediction. In this case, details
of the matter power spectrum’s exact shape typically get erased by non-linear structure
formation. Further, in predicting the abundance of dwarf galaxies, systematic uncertainties
from non-linear effects and baryonic processes most likely overpower the linear small-scale
differences.

To further illustrate the situation, we estimate the number of Milky Way satellites for
several interacting scenarios, in which the differences between default and delayed UFA
results appear on the dwarf galaxy scale. Our analysis, following closely Ref. [348], utilises
a modified Press-Schechter approach based on a sharp k-filter [349,350]. It is based on the
conditional halo mass function, which predicts the number subhalos Nsh per logarithmic
mass interval Msh as

dNsh
d lnMsh

= 1
Csim

1
6π2

(
Mhh
Msh

) P
(
R−1

sh

)
R3

sh
√

2π (Ssh − Shh)
. (7.2.1)

The subscript “hh” refers to properties of the host halo, and the coefficient Csim = 45
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uνdm default UFA delayed UFA
0 160 160

5.0× 10−7 8.5 8.5
1.0× 10−6 5.8 5.9
5.0× 10−6 0.72 0.74
1.0× 10−5 0.28 0.30
5.0× 10−5 0.055 0.058

Table 7.2: The number of Milky Way satellites, estimated from the linear matter power
spectrum with default and delayed UFA settings, for several scenarios with dark matter-
neutrino interactions, assuming nνdm = 0.

calibrates the expression to the results of n-body simulations. Further, P (k) denotes the
matter power spectrum, where a halo on the scale Ri is associated with the wavenumber
ki = 1/Ri for i = sh, hh. Further, the relation between a halo’s scale and mass is calibrated
to simulations by the coefficient csim = 2.5 and given by

Mi = 4π
3 Ωmρcrit (csimRi)3 . (7.2.2)

Its variance is
Si = 1

2π

∫ ki

0
dk k2 P (k) W 2 (k ,Mi) , (7.2.3)

where W (k ,M) denotes the sharp k-filter, i.e.

W (k ,Mi) =

1 if k < ki (Mi)

0 if k > ki (Mi)
(7.2.4)

Integrating the conditional halo mass function over the relevant mass range, we obtain an
estimate for the number of satellites in the Milky Way

Nsh =
∫ Mhh

Mmin

dNsh
d lnMsh

(d lnMsh) . (7.2.5)

Constraints derived from the observed number of Milky Way satellites suffer substantial
theory uncertainties, which are associated with the upper and the lower bound of this
integration. The mass of dwarf satellites has to be inferred from stellar kinematics and
is difficult to determine, simultaneously the mass of the Milky Way is not known very
precisely either [349]. In the present context, however, we aim to compare predictions
based on matter power spectra from a default and a delayed UFA approach, and do not
consider experimental results. Hence, the precise values adopted as integration limits are
not so crucial, and we use Msh ≥ 108M�/h and Mhh = 1.77× 1012M�/h from Ref. [348].

The predicted number of Milky Way satellites is summarised in Tab. 7.2. Evidently, the
small-scale differences in the linear matter power spectrum caused by the UFA procedure
only have a minor effect. Most importantly, the differences are well below the Poisson
scatter those observations are subject to. Thus, constraints derived from observations of
large-scale structure indeed remain valid, even when the linear matter power spectrum
was obtained by the default UFA procedure.
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7.2.2 Initial conditions for interacting neutrinos

If neutrinos interact with dark matter, the initial conditions for the integration of perturba-
tion have to me modified from the standard ΛCDM expressions (4.4.13). A characteristic
feature of the revised equations (4.4.15) is the equality of the metric perturbations, φ and
ψ, due to the absence of neutrino anisotropic stress. Because previous studies of dark
matter-neutrino interactions did not implement these changes, we here evaluate to what
extent they affect the CMB spectra and the matter power spectrum. To this end we
consider several benchmark scenarios with nνdm = 0 and varying interaction strength uνdm.
The angular coefficients are set to αl = 3/2 for l ≥ 2 and we fix the remaining cosmological
parameters to their Planck 2018 best-fit values, see Tab. 2.1.

The correct choice of initial conditions in the dark matter-neutrino interacting scenario is
mode dependent. Large modes, entering the Hubble radius after neutrino decoupling, are to
be evolved from default initial conditions. Small modes, in contrast, require the expressions
derived under the assumption of neutrino tight coupling. Therefore, our implementation
of the νdm-scenario introduces two new trigger parameters. If κ′

νdm/H < (κ′
νdm/H)

ν−ini
initially, default initial conditions are applied. Otherwise, the code imposes interacting
initial conditions and adjusts the initial time to an epoch where H/κ′

νdm > (H/κ′
νdm)

ν−ini
holds.

For the trigger values we adopt (H/κ′
νdm)

ν−ini = (κ′
νdm/H)

ν−ini = 0.01. To justify this
choice, we further test the stability of our results with respect variations in the triggers.
Dividing either of them by two, the CMB spectra remain stable on the sub-percent level for
uνdm = 10−4 and for uνdm = 10−5. Differences in the matter power spectrum are negligible
if uνdm = 10−4, and for uνdm = 10−5 they stay below the 10% level on scales larger than
50h/Mpc. In general, decreasing (κ′

νdm/H)
ν−ini affects the results more severely for smaller

uνdm. To fulfil the tight coupling trigger condition for small interactions strengths, the
integration has to start very early, and other numerical effects, indifferent to the initial
conditions, affect the result as well.

The comparison of CMB spectra, obtained for default and revised initial condition, reveals
differences in l (l + 1) /(2π)Cl below the µK2 level for multipoles up to 2500, uνdm =
10−4 and uνdm = 10−5. These differences are safely below the experimental sensitivity.
Regarding the matter power spectrum, we show several examples of the relative difference
between default and revised initial conditions in Fig. 7.4. These also illustrate some general
features of our procedure. Large scales enter the horizon when the trigger condition for
decoupled neutrinos is fulfilled, and discrepancies with the default approach are marginal.
The switch to tightly coupled initial conditions, marked by a sudden increase in the
relative difference, occurs at a larger wavenumber if the interaction strength parameter
is small. In the ensuing intermediate regime, the initial conditions are modified, but also
the earlier integration time affects the numerical stability. The latter effect seems to
dominate, and the relative difference plateaus. Because the integration starts earlier for
smaller interaction rates, the height of the plateau increases for smaller values of uνdm

but always remains below the percent level for the studied scenarios. Our procedure
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Figure 7.4: Comparison of the matter power spectra obtained with default initial con-
ditions and with the revised approach, which accounts for neutrino interactions. For
reference the upper panel shows the power spectra with revised initial conditions divided
by the ΛCDM prediction.

modifies the location of the bump in the matter power spectrum very slightly. In relative
differences this effect amplifies greatly and produces a spike. As one example, we show
the metric perturbations of a mode towards the end of the intermediate regime in Fig. 7.5.
When the default integration commences, the mode is neither in the decoupled nor in the
tightly coupled limit, a steep increase in ψ indicates the misalignment of the default initial
conditions. The integration starts much earlier for the revised treatment, however, in the
intermediate regime both solutions rapidly converge to a common evolution. Only the
smallest scales enter the Hubble radius when neutrinos are tightly coupled to dark matter.
These constitute the third regime in Fig. 7.4, where the differences increase. For the large
wavenumbers concerned, however, the matter power spectrum is already suppressed by
many orders of magnitude with respect to the ΛCDM prediction. Recalling the discussion
from Sec. 7.2.1, we do not expect that such differences in the linear matter power spectrum
affect cosmological observables.

7.3 Analytical mixed damping solution

In the mixed damping regime, free streaming neutrinos drag along dark matter and thereby
erase perturbations in the latter component. To get a more comprehensive understanding
of this mechanism, we turn now to the evolution of individual modes. Our discussion starts
with a brief summary of the ΛCDM evolution of neutrino and dark matter perturbations
and with a comparison between the decoupling histories of the baryon-photon plasma and
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Figure 7.5: Comparison of the evolution of metric perturbations starting from default
and revised initial condition. The considered mode has k = 20h/Mpc, and the dark
matter-neutrino interactions are characterised by uνdm = 10−5 and nνdm = 0.

the dark matter-neutrino sector. The differences noted are important for the derivation of
an analytical approximation to the evolution of dark matter perturbations, presented in
the following.

The scale factors of dark matter and neutrino decoupling relate as

aν,dec =
(
adm,dec
amd−max

) 1
n
νdm+1

aνdm,dec . (7.3.1)

Mixed damping requires aνdm,dec < amd−max, and for a fixed dark matter decoupling time,
neutrinos decouple earlier if nνdm is small. Correspondingly, the mixed damping regime
lasts longer, see also Fig. 7.1, and a larger range of modes is subject to mixed damping
only. Further, the numerical solution is more stable for small values of nνdm, because, for a
given decoupling time, the initial dark matter and the neutrino scattering rate are smaller,
and hence the system of differential equations is less stiff. We therefore concentrate on
nνdm = 0 for the present discussion, but the generalisation of our arguments to other
temperature dependencies of the cross section is straight forward.

7.3.1 Comparison with the ΛCDM evolution

The qualitative evolution of dark matter perturbations in the ΛCDM scenario is rather
straightforward. They are constant while outside causal contact and receive a boost upon
Hubble crossing, which sets them in a growing mode. The growth is proportional to log a
in the radiation-dominated epoch proceeds as δdm ∝ a during matter domination [132,298].
As an example, the evolution of four modes is shown in Fig. 7.6, where dashed pink
lines indicate dark matter in the collisionless ΛCDM scenario. Matter-radiation equality
occurs when τeq ∼ 115 Mpc, outside the illustrated range, such that only the logarithmic
behaviour can be observed. Neutrino perturbations receive the same initial boost from
gravitational infall as dark matter. Being relativistic, they then diffuse out of overdense
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regions, and the competition between gravitational forces and the neutrino pressure leads
to damped oscillations in δν, which can be clearly noticed in Fig. 7.6.

While the introduction of neutrino-dark matter interactions could render the dynamics
of this coupled sector very similar to that of the baryon-photon plasma, an important
difference arises due to the very different decoupling histories. The formation of neutral
hydrogen at the epoch of recombination implies a steep decrease in the free electron
fraction and hence in the photon-baryon scattering rate. Still, decoupling of baryons and
photons does not occur simultaneously but very closely. The Planck collaboration obtained
z∗ = 1090± 0.41 for the redshift of photon decoupling and zdrag = 1059.39± 0.46 for the
end of the baryon drag epoch [15]. The damping of baryon perturbations by photon free
streaming between those limits is very similar to the mixed damping mechanism. However,
the dark matter and the neutrino scattering rate evolve as power laws of the scale factor for
the entire relevant cosmological history. The difference between their respective decoupling
times can be considerably larger as for the baryon-photon plasma and amount to several
orders of magnitude. Correspondingly, mixed damping lasts longer than the Silk damping
of baryon fluctuations, affects a larger range of wavelengths, and, depending on a mode’s
size, is not preceded by acoustic oscillations of the combined plasma.

7.3.2 Dark matter evolution in the mixed damping regime

The basic premises of mixed damping allow for some simplifying assumptions, which we use
here to derive an analytical approximation for the evolution of dark matter perturbations.
Firstly, as discussed in Sec. Sec. 7.1.3, mixed damping can only occur if dark matter
decouples from neutrinos before matter-radiation equality. At these times, the metric
potentials are dominated by radiation perturbations and insensitive to alterations in the
dark matter evolution to good approximation. Secondly, neutrinos free stream and are
coupled to all other species only by gravitational interactions. Hence, in the mixed damping
regime neutrino perturbations are not affected by the modified dynamics of the dark matter
sector. With these two assumptions, the dark matter evolution (3.5.7) only depends on an
external source function, S (k , τ), and becomes

δ′′
νdm +

(1
τ

+ Cκ

τ3

)
δ′
νdm = S (k , τ) . (7.3.2)

During radiation domination, the reduced Hubble rate is H = τ−1 and for nνdm = 0 we
decompose the scattering rate as Rνdm κ

′
νdm = Cκ τ

−3, where Cκ is a constant. The source
function,

S (k , τ) = 3φ′′ + 3
τ
φ′ − k2ψ + Cκ

τ3
(
3φ′ − θν

)
, (7.3.3)

depends on the metric potentials and on the neutrino velocity divergence. We derive an
analytical expression for either of these quantities in the two ensuing subsections and here
simply anticipate the result. Neglecting the neutrino anisotropic stress implies φ = ψ, and
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Figure 7.6: Evolution of density perturbations in the ΛCDM scenario (dashed, pastel
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the metric perturbations deep in the radiation-dominated epoch are approximated by [21]

φ (k , τ) = 3φp (k)

sin
(
kτ/
√

3
)
−
(
kτ/
√

3
)

cos
(
kτ/
√

3
)

(
kτ/
√

3
)3

 , (7.3.4)

where φp is the primordial magnitude of the fluctuation, i.e. φ (k, τ → 0) = φp (k). For
the neutrino free streaming evolution we take [288]

θν (k , τ) = 3k
4 (δν,ini + 4ψini) j1 (kτ) + 6k

∫ τ

0
dτ ′ φ̇ j1

[
k
(
τ − τ ′

)]
. (7.3.5)

The two homogeneous solutions to Eq. (7.3.2) are h1 (τ) = const. = C1 and h2 (τ) =
C2 Ei

[
Cκ/

(
2τ2)], where Ei (x) represents the exponential integral function

Ei (τ) =
∫ ∞
−x

dt exp (t) /t . (7.3.6)

In general, the solution to a second order differential equation is given by a linear combina-
tion of the two homogeneous solutions, and a particular solution. The latter, constructed
with Green’s method, is given by the an integral over the source term weighted by Green’s
function

g (τ , η) = h1 (η) h2 (τ)− h1 (η) h2 (τ)
h′1 (η)h2 (η)− h1 (η)h′2 (η) . (7.3.7)

Thus, the full solution for the evolution of the dark matter density contrast (7.3.2) is

δνdm (k , τ) = C1 + C2 Ei
(
Cκ

2τ2

)
+
∫ τ

0
dη S (k , η) η2 e−

Cκ
2η2
[
Ei
(
Cκ

2η2

)
− Ei

(
Cκ

2τ2

)]
.

(7.3.8)
For small values of τ , when the mode is well outside the Hubble radius, δνdm is constant.
Hence the initial conditions dictate C2 = 0 and C1 = δνdm (k , 0). We evaluate the integral
numerically for several modes at consecutive conformal times. The results are indicated as
black crosses in Fig. 7.6. Notice that our analytical results capture the qualitative features
of the numerical solution rather well, even though our approximations are not perfect.
While the analytic form for the metric evolution follows the numerical results rather well,
its first and second derivatives are less accurate. We also find that our expression for the
neutrino velocity gets damped slightly slower than the numerical results suggest. Because
our main intention in deriving the analytical solution is to shed light on the underlying
physics, we keep the simple analytic forms given above and not attempt to improve the
accuracy using e.g. fitting formulae [132,298].

7.3.3 Metric perturbations in the radiation-dominated era

The source function (7.3.3), driving the evolution of dark matter perturbations in the
mixed damping regime, depends on the metric perturbations and their first and second
time derivatives. In our derivation of an analytical expression for space component of the
metric potentials, φ, we closely follow the arguments of Ref [21] but adapt the notation to
our conventions.
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Combining the time-time (3.2.17a) and the time-space (3.2.17b) component of the linearised
Einstein equations yields a geometric equation for φ

k2 φ = −4π a2

m2
P

[
(δρ)m + (δρ)r + 3H

k2

(
(θρ)m + 4

3 (θρ)r

)]
. (7.3.9)

The subscript “r” refers to radiation perturbations, to which neutrinos and photons con-
tribute according to their energy density, i.e. (δρ)r = δγργ + δνρν and (θρ)r = θγργ + θνρν.
Baryon and dark matter add in the same fashion to form the combined matter perturba-
tions, indicated by the subscript “m”. However, presuming the universe is dominated by
radiation, we neglect the latter in the following.

Early in the radiation-dominated epoch, the large Thomson scattering rate suppresses all
photon multipoles beyond velocity divergence and drives the photon-baryon slip to zero (c.f.
Sec. 4.2.1). Neutrino free streaming, in contrast, implies a non-zero neutrino anisotropic
stress. However, its effect on the metric perturbations is not too large and can be treated
perturbatively [298]. In this sense, our result, which neglects the impact of σν, represents
the zeroth-order solution. Then, the traceless component of the Einstein equations (3.2.17d)
implies ψ = φ and the evolution of radiation perturbations approximately is

δ′r = −2
3 θr + 4φ′ , (7.3.10a)

θ′r = k2

4 δr + k2φ . (7.3.10b)

The geometric metric equation (7.3.9) allows to eliminate the radiation density contrast
from either equation

− 4
k2τ

θ′r +
[

4
(kτ)2 + 4

3

]
θr =

[
4 + 2

3 (kτ)2
]
φ′ + 4

3k
2τφ , (7.3.11a)

θ′r = −1
6k

4τ2φ = 1
τ
θr + k2φ . (7.3.11b)

Further, θ′r can be removed from the first expression above by using the second one,

φ′ + 1
τ
φ = 2

(kτ)2 θr . (7.3.12)

Taking the derivative with respect to conformal time and removing the resulting occurrences
of photon perturbations with Eq. (7.3.11b) and Eq. (7.3.12) transforms this expression
into a second order differential equation for the metric potential

φ′′ + 4
τ
φ′ + k2

3 φ = 0 . (7.3.13)

The analytical solution for φ is recognised more easily after the replacement u = φτ , which
yields

u′′ + 2
τ
u′ +

(
k2

3 −
2
τ2

)
u = 0 . (7.3.14)

This is the spherical Bessel equation of order one in the variable kτ/
√

3. Of its two
solutions, the spherical Bessel function and the spherical Neumann function, only the
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former is finite at the origin. Thus, the evolution of the metric perturbations, in the limit
of radiation domination and vanishing anisotropic stress, is given by Eq. (7.3.4).

7.3.4 Neutrino free streaming solution

The second ingredient to evaluate the source function (7.3.3) in the mixed damping evo-
lution of dark matter perturbations is an expression for the velocity divergence of free
streaming neutrinos. Such an expression was obtained for the synchronous gauge in
Ref. [288]. Here, we translate the derivation to our choice of conformal Newtonian gauge.

The momentum-integrated Boltzmann equation of free streaming neutrinos (3.4.18) can
be recast as

d

dη

[
Fν (k, µ, τ) e−ikµ(τ−η)

]
= 4e−ikµ(τ−η) (φ′ − ikµψ) . (7.3.15)

Integrating both sides from η = 0 until the conformal time τ gives

Fν (k, µ, τ) = Fν,ini (k, µ) e−ikµτ + 4
∫ τ

0
dη e−ikµ(τ−η) (φ′ − ikµψ)

= (Fν,ini + 4ψini) e−ikµτ − 4ψ (τ) + 4
∫ τ

0
dη e−ikµ(τ−η) (ψ′ + φ′

)
, (7.3.16)

where the second line was obtained from integration by parts. Neglecting again terms
beyond the dipole (3.4.17), we write the initial conditions as

Fν,ini = Fν,ini,0 − 3iµFν,ini,1 = δν,ini −
4iµ
k
θν,ini , (7.3.17)

where the second equality follows from Eq. (3.4.21). To obtain equations for the individual
neutrino multipole moments, we expand the plane wave function in terms of spherical Bessel
functions jl and Legendre polynomials Pl according to Eq. (4.1.14). Following the same
steps which allowed to expand the neutrino evolution equations in terms of individual
multipoles in Sec. 3.4.2, we multiply Eq. (7.3.15) by the Legendre polynomial Pl and
integrate over the full solid angle, using the orthogonality relation (3.4.20). The angular
dependence in the initial conditions can be rewritten as a time derivative of exp (−ikµτ)
and is removed by integrating by parts. Eventually, we obtain

Fν,l (k, τ) = [δν,ini + 4ψini] jl (kτ) + 4
k
θν,ini j

′
l (kτ) + 4

∫ τ

0
dη jl [k (τ − η)]

(
ψ′ + φ′

)
.

(7.3.18)
The initial neutrino velocity divergence (4.4.13d) evaluated at τ = 0 is zero, and in the
limit of zero anisotropic stress the time and space component of the metric perturbations
equal each other. Finally, this gives Eq. (7.3.5).

7.4 Mixed damping in terms of the matter power spectrum

The matter power spectrum for several neutrino-dark matter interacting scenarios is shown
in Fig. 7.7. For the largest values of uνdm, perturbations on small scales are subject to a
mixture of collisional and mixed damping, but for larger wavenumbers or smaller scattering
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Figure 7.7: The matter power spectrum in presence of dark matter-neutrino interactions.
Depending on the size of a mode and the particular value of uνdm, the suppression with
respect to ΛCDM is caused by mixed damping only or a by combination of collisional and
mixed damping. Arrows in the same colours as the graphs indicate the former regime. For
the smallest scattering rates shown here these bounds lie outside the plotted range.

rates, all power suppression with respect to ΛCDM is caused by mixed damping. For each
scenario in Fig. 7.7, we indicate the transition between the two regimes regimes by coloured
arrows. In general, the matter power spectra show a common set of features, namely:

• At the largest scales, there is no difference with the ΛCDM prediction.

• Continuing to smaller wavenumbers, a steep decrease in power is followed by a bump
after which the matter power spectrum continues to decrease again.

• A small plateau is encountered in the subsequent damping tail, after it the pertur-
bations reduce further.

The ΛCDM-like behaviour on large scales arises because these enter the Hubble radius
after dark matter has decoupled and hence are not affected by neutrino interactions. An
estimate of the scale which enters the Hubble radius when Γdm−ν = H yields

kdm,dec = 2πH0
√

Ωr '
6.67× 103
√
uνdm

h/Mpc , (7.4.1)

for nνdm = 0, reproducing the onset of the damping rather well. The evolution of dark
matter perturbations in the ΛCDM scenario is approximated by [21]

δcdm (k, τ) = C1 −
∫ τ

0
dη η [ln (kη)− ln (kτ)] S (k, η)|κ′

νdm=0 . (7.4.2)

It is reassuring to note that the analytic solution (7.3.8) recovers the ΛCDM behaviour for
Cκ � τ2. In this limit, the exponential integral can be expanded as

Ei
(
Cκ

2τ2

)
= γE + ln (Cκ/2)− 2 ln (τ) +O

(
Cκ

2τ2

)
, (7.4.3)
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where γE is the Euler–Mascheroni constant, and the source function reduces to the ΛCDM
expression when the last term of Eq. (7.3.3) is neglected.

We show the time evolution of neutrino and dark matter perturbations for several modes
below the cut-off scale in Fig. 7.6, where we compare an interacting scenario with uνdm =
10−6 to the ΛCDM evolution. Note that indeed no differences between the neutrino
evolution in either case are noticeable. After horizon crossing in the radiation-dominated
era, the gravitational potentials decay, and damped oscillations decrease the magnitude
of θν. Hence the source function (7.3.3) becomes zero at late times, and the dark matter
evolution at τ > τlate can be further approximated by

δνdm (k , τ) = δνdm(k, τlate) + 2
(∫ τlate

0
dτ ′ S(k , τ ′) τ

′

2 e−
Cκ

2τ ′2

)
ln (τ) , (7.4.4)

where we used the decoupled limit of the exponential integral (7.4.3). The result indicates
that, after dark matter decoupling in the radiation-dominated era, the perturbation still
grows ∝ ln a. This is clearly noticeable for the largest mode in the top panel of Fig. 7.6,
which lies in a regime where the matter power spectrum is already suppressed but before
the bump. However, the presence of the neutrino velocity in the source function modifies
the proportionality constant in front of the logarithm as well as the value of δνdm(k, τlate)
in comparison to the ΛCDM result.

In the ΛCDM case, δcdm(k, τlate) and the integral in front of the logarithmic term in
Eq. (7.4.4) always evaluate to negative values. Consequently, the dark matter density
contrast evolves in the negative direction, as evident for all modes in Fig. 7.6. The
contribution of the neutrino velocity divergence to the source function can alter this
behaviour in interacting scenarios. As the analytical solution (7.3.5) implies, θν is larger
for larger k, and correspondingly its impact on the source function increases. This relation
is evident from Fig. 7.8, which compares the ΛCDM and the νdm source functions for the
three largest modes shown in Fig. 7.6. Figure 7.8 also reveals a sharp decrease at early
times in the interacting source functions. However, in the full expression for the density
contrast (7.3.8), this decrease is suppressed by the smallness of the exponential function
in the integral. Instead, the relevant feature of the interacting source functions is the
development of a positive peak, which grows with k. Eventually, it can turn the value
of δνdm (k, τlate) and the proportionality constant in front of the logarithm positive. The
second mode of Fig. 7.6 already lies in this latter regime. In terms of the matter power
spectrum, the transition is marked by a sharp dip.

As the wavenumber increases further, oscillations in the neutrino velocity become stronger
imprinted on the source functions, and, comparing the two larger modes in Fig. 7.8, lead
to the development of a second zero crossing. While its contribution to the integral of
Eq. (7.4.4) is not sufficient to turn the density contrast in the negative direction again, it
still causes a partial cancellation. The reduction of the coefficient for the logarithmic growth
is evident comparing the two centre panels of Fig. 7.6. Both modes grow logarithmically,
though the larger k = 40h/Mpc mode increases at an slower rate than that with k =
20h/Mpc. This cancellation is even more extreme in case of the largest mode in Fig. 7.6,
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Figure 7.8: External source function driving the evolution of dark matter perturbations
at early times according to Eqs. (7.3.2) and (7.3.3). The two cases illustrated are ΛCDM
(pastel, dashed lines) and an interacting scenario with uνdm = 10−6 (dark, solid lines).

whose late time evolution is almost flat. It is only upon matter-radiation equality at
τeq ∼ 140 Mpc, i.e. beyond the depicted range, that this mode starts growing significantly.

7.5 Summary

Mixed damping suppresses cosmological perturbations when a heavy species is coupled
to a relativistic fluid which itself is free streaming. The effect is particularly relevant for
interactions between dark matter and neutrinos but might also arise in scenarios with dark
radiative degrees of freedom. In the latter case, limits on the effective neutrino number
impose additional constraints on the mixed damping parameter space. Our study, however,
focuses on scattering between dark matter and neutrinos.

The parameter space for mixed damping is bound from above and below in terms of the
dark matter decoupling time, the interaction strength uγdm and the scales affected. The
lower limit on uνdm derives from the requirement that dark matter interactions remain
in equilibrium beyond electroweak decoupling and is observationally out of reach. The
upper bound originates because dark matter has to decouple before its energy density
roughly equals that of neutrinos, later, only the canonical collisional damping can occur.
Already to date, the sensitivity of CMB and large-scale structure observations exceeds the
lower bound. Mixed damping is particularly relevant at larger scales, where a suppression
of power with respect to the ΛCDM can be most robustly established. If future data
reveals a departure from ΛCDM expectations due to dark matter-neutrino interactions,
the discrepancy will be caused by mixed damping. Hence, precise numerical predictions
and a profound physical understanding of the effect are desirable.

The Boltzmann hierarchy of interacting neutrinos and the interacting dark matter evo-
lution equations automatically account for the mixed damping effect. However, several
subtleties have to be considered for their numerical solution. These are not limited to
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the mixed damping regime, but relevant in any case where additional couplings to oth-
erwise free streaming radiation are postulated. More precisely, the ultra-relativistic fluid
approximation has to be delayed sufficiently long for the radiative component to become
collisionless, and the initial conditions require modifications in the presence of additional
interactions. In the case of dark matter-neutrino interactions, we have verified that neither
of these modifications affects theory predictions at a level relevant to the observational
sensitivity. Thus, existing constraints on the dark matter-neutrino scattering, which did
not consider the alterations, remain robust.

To illuminate the physical process of mixed damping, we derive an analytical approximation
to the evolution of dark matter perturbations in this regime. The evolution of the dark
matter density contrast is driven by an external source function, which receives non-
standard contributions from the neutrino velocity divergence. The larger the scattering
rate and a mode’s wavenumber, the more distinctly reflect oscillations in θν in the source
function. The resulting cancellation in the time integration of the source function suppresses
the growth of δνdm in the radiation-dominated era. Eventually, this causes a decrease in
the matter power spectrum on all scales which enter the Hubble radius before dark matter
kinetically decouples from neutrinos.



Chapter 8

Conclusions

This thesis investigates the linear evolution of cosmological perturbations in extended
cosmologies where dark matter is not entirely collisionless. In particular, we study late
kinetic decoupling between dark matter and photons or neutrinos. One central aspect is
the accuracy of theory predictions and in particular the impact of dark matter interactions
on numerical approximation schemes. Further, we confront the scenarios with present and
future observations to assess their viability.

Dark matter-photon interactions necessitate modifications to the line of sight integration
and the tight coupling approximations. In particular for the latter we derive expressions
which differ from those employed in previous works [285]. Still, our study confirms the
robustness of these limits, as the discrepancies affect the CMB and the matter power
spectrum only below the experimental sensitivity. We further consider the sound speed
term, which arises for interacting dark matter, explicitly. Its impact on the CMB angular
spectra over the multipole range probed by Planck is negligible, given the dark matter
mass exceeds 10 keV, but the term can tighten large-scale structure limits for light dark
matter candidates below 1 GeV. To obtain updated limits on the parameter space of dark
matter-photon interactions, we consider the Planck 2015 data release [5] and perform a
Monte Carlo Markov chain analysis. Our constraint tightens by 20% with respect to those
based on the 2013 data [285] for the most conservative lowTEB + highTT baseline data
set and read σγdm ≤ 2.25× 10−6 σT (mγdm/GeV) at 95% confidence level. If further the
preliminary polarisation data and the lensing likelihoods are included, the limit tightens to
σγdm ≤ 1.49× 10−6 σT (mγdm/GeV). We find that dark matter interactions with photons
can alleviate a possible σ8 tension but do not help in resolving the H0 discrepancy.

We further extend dark matter-photon interactions to a mixed dark matter scenario in
which a collisional and a collisionless dark matter component contribute to the relic
abundance. If the fraction of interacting dark matter, fγdm, is large, perturbations in
the two component cancel each other effectively, and the matter power spectrum on
intermediate scales gets suppressed even below the level expected in the purely interacting
scenario. Even more importantly, a small abundance of interacting dark matter has a
very similar impact on the matter power spectrum as massive neutrinos. Confronting the
mixed dark matter scenario with Planck 2015 data, we find that the interaction strength
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parameter, uγdm, is almost unconstrained if less than 10% of dark matter resides in the
interacting component. We further perform a Fisher forecast for the DESI survey, which
reveals a strong degeneracy between uγdm and fγdm. As a result, the expected sensitivity to
the mixed dark matter scenario is significantly lower than in the case of a single, interacting
dark matter component. The possible existence of mixed dark matter also complicates
the determination of the neutrino mass scale, as both parameters of the model, uγdm and
fγdm, show a degeneracy with ∑mν.

In the context of dark matter-neutrino interactions, we highlight the need to delay the
ultra-relativistic fluid approximation sufficiently, until neutrinos have kinetically decoupled.
The neutrino scattering also modifies the initial conditions, and we explicitly derive and
implement the revised expressions. For either of those modifications, we find that their
impact on the CMB spectra is negligible. Differences in the matter perturbations are
confined to wavenumbers where the matter power spectrum is suppressed by several orders
of magnitude with respect to the ΛCDM case. Thus, neither discrepancy with previous
works affects observational limits from the CMB or large-scale structure observations.

In scenarios with dark matter-neutrino interactions, an alternative to the canonical colli-
sional damping mechanism exists, called mixed damping [292]. In this regime, neutrinos
are free streaming, but dark matter still feels their drag force, which prevents it from clus-
tering. Mixed damping is automatically accounted for by the coupled neutrino Boltzmann
hierarchy and the dark matter evolution equations, but these do not provide immediate in-
sight into the underlying physical mechanism. Yet, our exploration of the parameter space
shows that existing constraints already are sensitive to the mixed damping regime, future
surveys will explore it further. We derive an analytical approximation to the evolution of
dark matter perturbations in the mixed damping regime, which accomplishes to reproduce
all qualitative features of the numerical result. An external source function drives the
evolution of the dark matter density contrast and receives additional contributions from
the neutrino velocity divergence. Oscillations in the latter become imprinted upon the
source function more strongly as the interaction rate or the mode’s wavenumber increase
and lead to a partial cancellation that suppresses the growth of structure.

Already to date, cosmological observations allow for robust tests of the conditions in
the early universe. Various ambitious efforts are planned and proposed for the future,
such that the available data can be expected to improve even further. Amongst these
are large-scale structure surveys, such as DESI [331] or EUCLID [322], as well as CMB
experiments, like LiteBIRD [351] or CMB-S4 [352]. In context of the unknown nature of
dark matter, cosmological constraints are highly complementary to other experimental
efforts, like collider searches and direct detection. To fully exploit the experimental data,
accurate theory predictions, which carefully assess uncertainties and precisely state the
underlying assumptions, are vital. Up to date constraints, a profound understanding of
the physical mechanism and the awareness of possible degeneracies between scenarios help
to plan and analyse future observations. The thesis presented aims to contribute to those
theoretical challenges.
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