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Abstract 

Developing materials, interfaces and devices with improved stability remains one of the key 

challenges in the field of photoelectrochemical water splitting.  As a barrier to corrosion, 

molybdenum disulfide is a particularly attractive protection layer for photocathodes due to its 

inherent stability in acid, the low permeability of its basal planes, and the excellent hydrogen 

evolution reaction (HER) activity the MoS2 edge. Here, we demonstrate a stable silicon 

photocathode containing a protecting layer consisting of molybdenum disulfide, molybdenum 

silicide, and silicon oxide which operates continuously for two months. We make comparisons 

between this system and another molybdenum sulfide – silicon photocathode embodiment, 

taking both systems to catastrophic failure during photoelectrochemical stability measurements 

and exploring mechanisms of degradation. X-ray photoelectron spectroscopy and transmission 

electron microscopy provide key insights into the origins of stability.    
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Introduction 

Hydrogen is an important industrial chemical for ammonia synthesis and petroleum refining 

with annual production of over 65 million tons.1  Sustainably produced hydrogen also offers a 

renewable alternative to fossil fuel based energy as an energy carrier for the transportation 

sector. Currently, 96 % of our hydrogen is produced from fossil fuels (mostly by steam methane 

reformation of natural gas) with CO2 as a by-product. Photoelectrochemical (PEC) water 

splitting is an attractive and promising alternative route for the conversion of sunlight into 

hydrogen without direct production of CO2.
2  However, for PEC to become economically 

viable, the efficiency and durability of electrodes must be improved.3   

Silicon is a promising candidate material for use in PEC water splitting systems due to its 

excellent electronic properties, appropriate band gap of 1.1 eV, which is suitable for the small 

band gap electrode in a dual absorber device, and band alignment to drive the hydrogen 

evolution reaction (HER).4  However, bare silicon surfaces exhibit slow kinetics for hydrogen 

evolution and corrode readily in aqueous electrolytes, necessitating the use of strategies which 

speed the HER and slow corrosion.  To date, several methods have been employed to stabilize 

semiconductor surfaces against corrosion including, thin film protection layers which can also 

enhance HER catalysis,5 the replacement of aqueous electrolyte with non-corrosive non-

aqueous redox systems,6,7 and surface functionalization with organic molecules that prevent 

corrosion8.  The simplest and most effective strategy to date is the use of conductive and 

electrochemically stable thin films that act as a physical barrier to corrosion.5  Numerous 

protecting and catalytically active materials have been employed with varying degrees of 

success including Pt,9 metal oxides,10–12 phosphides,13,14 sulfides,15,16 and silicides9. 

One such material that has shown excellent stability as a protection layer for PEC water 

splitting photocathodes is molybdenum disulfide (MoS2).  MoS2 is known for its exceptional 

stability , HER activity in acid, and its low permeability, making it an excellent candidate as a 

protective catalyst for PEC applications.17  Indeed, MoS2 protection layers have been utilized 

to extend the durability of gallium indium phosphide photocathodes for over 60 hrs18 and 

silicon photocathodes for over 100 hours.15,16   

Metal silicides, which are typically formed by sputtering a metal directly onto silicon, are 

also interesting candidates for protection layers on silicon due to their inherent stabilities,19 and 

the excellent interface between the silicon absorber and silicide layer.  Silicides of platinum, 

for instance, have been investigated as protection layers for water splitting photoelectrodes 
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with excellent results; specifically, sputtered platinum silicide thin films show stable activity 

under continuous operation for 58 days (a total of 20 000 C.cm-2 was passed) in 1 M 

hydrochloric acid.9 There have also been reports utilizing platinum, molybdenum, and tungsten 

silicides for the photoelectrochemical oxidation of iodide.20  The longest lived photoanode for 

the photo-oxidation of iodide is a tungsten coated p+n-Si photoanodes that remained active for 

over 187 days of continuous illumination (>216 000 C.cm-2).20  Interestingly, such silicide 

protection layers developed 20 years ago remain some of the longest lived photoelectrodes 

reported to date.   

In this study, we investigate the photoelectrochemical activity and stability of two similar, 

but distinct protection schemes for silicon photocathodes, Scheme 1a and Scheme 1b. The first 

protection scheme (Si-2IL-MoS2) has two interlayers (IL) between the surface MoS2 and 

silicon composed of molybdenum silicide and molybdenum metal. The second protection 

scheme investigated has three IL (Si-3IL-MoS2) identified as molybdenum oxide, molybdenum 

silicide and silicon dioxide.  The photocathodes are amongst the most stable precious metal 

free electrodes prepared to date, with over 1538 h of continuous and stable 

photoelectrochemical hydrogen evolution,21 and over 64 000 C cm-2 of charge passed for the 

Si-3IL-MoS2 protection scheme. These non-precious metal photoelectrodes also show an 

excellent onset potential, reaching 0.5 mA cm-2 at +0.31 V vs. RHE. This serves as a promising 

protection scheme for active and stable photoelectrochemical water splitting.  

 

Scheme 1.  Schematics detailing the catalyst and protection layers at the silicon interface in the 

synthesised (a) Si-2IL-MoS2 and (b) Si-3IL-MoS2 photocathodes. 
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Results and Discussions 

The Si-2IL-MoS2 photocathode.  The Si-2IL-MoS2 photocathode was prepared following 

the method published in ref 15 and detailed in Scheme 1a.  The protection scheme composition 

was confirmed (ref 15) by cross-sectional TEM and found to contain two interlayers (IL) 

between a surface MoS2 and the silicon substrate.  The uppermost IL was a Mo metal layer.  

The second IL was identified as amorphous MoxSi.   

 

Figure 1.  Photoelectrochemical stability measurements for the Si-2IL-MoS2 photocathodes; Cyclic 

voltammograms, (a) were taken every 24 hours, here we show the CV taken on day 1 (black) and the 

last day of testing prior to failure (red).  (b) Chronoampherometry measurements at E = 0 V vs. RHE.   

 

To probe the stability and performance of the prepared photocathodes, the photoelectrodes 

were continuously illuminated under approximately AM1.5 until catastrophic failure (as 

measured by loss in photocurrent).  The current density was measured throughout testing while 

holding the electrode at 0 V vs. RHE. A cyclic voltammogram was recorded once every 24 h 

to access changes in the electrodes current-voltage characteristics.  The onset potential of the 

Si-2IL-MoS2 photocathode was recorded at +0.28 V vs. RHE (defined as the potential required 

to reach 0.5 mA.cm-2), in line with our previous work on similarly prepared photoelectrodes 

(Fig. 1 a).15 Three repeat electrodes were prepared and their initial photoelectrochemical 

performance is compared in Fig. S2a.  The stability measurements were conducted for 100 h 

previously.15  Here, we extend the stability and find the photocathode to be stable for 24 days 

(606 h) of continuous illumination (Fig. 1 b).  The average photocurrent was 15.7 mA cm-2 

with > 34 000 C cm-2 charge passed prior to failure.   
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Over the duration of the PEC stability measurements the light limiting saturation 

photocurrent of the Si-2IL-MoS2 photocathode increased (Fig. 1) from approximately -16.5 

mA cm-2 to -19.0 mA cm-2 (at -0.3 V vs. RHE).  We speculate that this is due to a combination 

of the dissolution of molybdenum, and/or roughening of the electrode surface over the 25 days 

of continuous testing, leading to a thinning of the protection/catalytic layers resulting in a 

reduction of the parasitic light absorption.  In addition to the increased photocurrent at around 

-0.3 V vs. RHE a slight increase in the onset potential was also measured for the photocathode.  

Specifically, the Si-2IL-MoS2 photocathode increased from +0.28 V to +0.33 V vs. RHE.  

Increases in photoelectrode performance over the course of stability measurements have 

previously been observed for other MoS2 protected photocathodes and have been ascribed to 

the gradual exposure of additional MoS2 edge sites,15,18 which are known to be the active sites 

for HER.22 However, increasing the number of catalytic sites of the MoS2 catalyst should only 

increase reaction kinetics leading to an increase in the slope of the current-voltage curve and, 

perhaps its saturation photocurrent value.  Therefore, we ascribe the change in onset potential 

to a surface chemical composition modification such as the exposure of underlying layers, such 

as molybdenum or molybdenum silicide.  On the 25th day of testing, failure of the Si-2IL-MoS2 

photocathode occurs during a chronoamperometry hold whereby the current drops from -16.4 

mA cm-2 to -1.9 mA cm-2 over approximately 4.5 h.  Complete failure (a reduction in 

photocurrent to < -0.1 mA cm-2) occurs over a 24 h period.   

Despite the overall excellent photoelectrochemical stability of the photocathode, some 

fluctuation in the photocurrent onset, saturation density and chronoampherometry was 

observed over the course of the stability tests (Fig. 1).  The fluctuations in current density can 

be attributed to two distinct phenomena.  Firstly, the smaller amplitude (up to 1 mA cm-2), 

higher frequency noise which is attributed to the accumulation and removal of H2 bubbles at 

the electrode surface.  The second distinct noise in the data consists of significantly larger 

spikes in the current density (1 – 8 mA cm-2) that occur approximately every 24 h which we 

speculate could be due to formation of MoO3 which is unstable at cathodic potentials in 0.5M 

sulfuric acid and/or contamination.  Detailed discussion and explanation for the fluctuations is 

provided in the supporting information. 

XPS characterisation was performed before and after photoelectrochemical experiments to 

identify the composition and chemical state of the two photocathodes (Fig. 2.).  Peak fitting 

shows that the Mo 3d region contains peaks associated with Mo (228.2 and 231.6 eV) and Mo4+ 

(229.0 and 232.2 eV) only in addition to the S 2s region (226.2 eV).  Quantification of the Mo 
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3d region reveals 20 % of the molybdenum is metallic, and 80 % is Mo (+4).  In the silicon 2p 

region, no signal (within the detection limits) is detected.  A doublet is observed in the sulfur 

2p region at approximately 163 eV.  Post catastrophic failure, both elemental (or zero valent) 

molybdenum and sulfur are below the detection limits for the XPS.  Silver contamination was 

detected at the surface of the failed electrode.  Evidently, the protection layer has been 

completely removed from the surface leading to catastrophic failure of the device.   

 

Figure 2.  XPS data and fittings of the Si-2IL-MoS2 photocathode for the (a) Mo 3d, (b) Si 2p and (c) 

S 2p regions.  The as prepared photocathode spectra are shown in the upper plots, and post 

photoelectrochemical testing in the lower plots.   

   

The Si-3IL-MoS2 Photocathode.  The synthesis of the Si-3IL-MoS2 photocathode is presented 

in Scheme 1b.  In brief, p-type silicon was n+ doped, cleaned and coated with a 3.6 nm layer of 

molybdenum by sputtering.  The electrodes were subsequently annealed in a H2 atmosphere at 

550 °C (2 h), followed by a second anneal step in 10 % H2S in H2 at 250 °C (1 h).   

Cross sectional transmission electron microscope (TEM) images of the as prepared sample 

is shown in Fig. 3. evidencing the formation of a ~3.7 nm silicon oxide (SiO2) layer directly 

above the silicon, and a ~10 nm layer of molybdenum/molybdenum oxide (Mo/MoOx) above 

the SiO2.  There is also evidence of an additional thin (1 – 2 nm) layer between the MoOx and 
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SiO2 which is likely molybdenum silicide (MoSix).  Platinum is the uppermost layer, deposited 

during cross sectional TEM preparation as a protection layer for the FIB ion beam milling.   

 

 

Figure 3.  Transmission electron microgram (TEM) of the as prepared molybdenum protected Si-3IL-

MoS2 photocathode.  Platinum is deposited during cross sectional TEM preparation as a 

protection layer for the FIB ion beam milling so is not present during the 

photoelectrochemical measurements.   

 

The overall thickness of the Si-3IL-MoS2 protection scheme (~14 nm) is greater than the Si-

2IL-MoS2 protection scheme.  This is due to a thicker MoOx layer, in combination with an 

additional layer of SiO2.  Interestingly, the distinct basal plane d spacing (0.62 nm) of MoS2 

are absent in the Si-3IL-MoS2 TEM (Fig. 3) indicating a non-continuous film of MoS2. The Si-

3IL-MoS2 photocathode synthesis requires a pre-reduction in a hydrogen atmosphere, which 

has been shown to limit the growth of MoS2,
23 however, XPS (Fig. 4) verifies the growth of 

MoS2 at the surface of the photocathode.   
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Figure 4.  XPS data and fittings of the Si-3IL-MoS2 photocathode for the (a) Mo 3d, (b) Si 2p and (c) 

S 2p regions.  The as prepared photocathode spectra are shown in the upper plots, and post 

photoelectrochemical testing in the lower plots.   

 

 

Figure 5.  Photoelectrochemical stability measurements for the Si-3IL-MoS2 photocathodes; Cyclic 

voltammograms, (a) were taken every 24 hours, here we show the CV taken on day 1 (black) and the 

last day of testing prior to failure (red).  (b) Chronoampherometry measurements at E = 0 V vs. RHE.   

 



9 
 

The cyclic voltammograms (Fig. 5 a) reveal an excellent onset potential of +0.31 V (defined 

here as the potential required to achieve -0.5  mA cm-2)17 and achieves -10 mA cm-2 at +0.09 

V vs. RHE on both day 1 and day 62.  Similar photoelectrochemical performance was recorded 

for repeat samples as shown in Fig. S2b.  The electrodes were found to be active with an 

average saturation photocurrent density of 11.1 mA cm-2 for over 64 days (1538 h) under 

continuous illumination and PEC testing (Fig. 5 b), equivalent to 320 calendar days of H2 

production under AM 1.5, sunny conditions with a solar capacity factor of 20 %.1,24  Bubble 

formation at the electrode surface was observed throughout the testing period passing > 64 000 

C cm-2 prior to failure which is equivalent to 0.66 g of H2 cm-2 (7.39 L of H2 at STP).  We 

observe similar noise/fluctuations in the chronoampherometry measurements as in that 

recorded for the Si-2IL-MoS2 photocathode (see supporting information for detailed 

explanations).  For the Si-3IL-MoS2 photocathode, the photocurrent increased from -15.3 mA 

cm-2 to -18.5 mA cm-2 over the course of the durability measurement.  Analogous to the Si-

2IL-MoS2 photocathode, we speculate that this is due to a combination of the dissolution of 

molybdenum, and/or roughening of the electrode surface over the 64 days of continuous testing 

leading to a thinning of the protection/catalytic layers resulting in a reduction of the parasitic 

light absorption.   

XPS characterisation was performed before and after photoelectrochemical experiments to 

identify the composition and chemical state of the Si-3IL-MoS2 photocathode (Fig. 4.).  XPS 

peak fitting of the freshly prepared photocathode shows that the Mo 3d region contains peaks 

associated with metallic Mo (228.0 and 231.2 eV) Mo4+ (228.9 and 232.1 eV) and Mo6+ (232.6 

and 235.8 eV) in addition to the S 2s peak (226 eV).  Quantification of the relative areas of 

each molybdenum oxidation states reveal the electrode contains 55% Mo and/or MoSix, 35% 

MoS2 and/or MoO2, 10% MoO3. The “as prepared” photocathode silicon 2p signal has a rather 

high silicon oxide signal.  This can be accredited to the formation of a silicon oxide layer, 

which is approximately 3.7 nm thick according to the cross sectional TEM (Fig. 3).25  Sulfur 

species are also detected by XPS in the “as prepared” electrode.  Prior to PEC testing the XPS 

peaks at 226 eV and 162 eV were assigned to S2- 2s and 2p3/2 respectively.15   

The failure of the Si-3IL-MoS2 photocathode occurs after 1538 h of continuous PEC testing.  

The failure is catastrophic and occurs during a chronoampherometry measurement where the 

photocurrent drops abruptly from ~10 mA cm-2 to -0.2 mA cm-2 over 5 h.  After the failure, 

XPS characterisation reveals a drastic transformation in the chemical oxidation states of the 

elements present at the surface of the photocathode.  Similarly to the Si-2IL-MoS2 electrode, 
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silver contamination was detected at the surface of the failed electrode.  Significantly, the 

proportion of oxidized molybdenum (Mo (+6)) increased from 10 % to 75 %.  Post failure, S2- 

can still be observed in the sulfur 2p region indicating that some MoS2 likely is still present.  

However, the decrease in 2 Mo4+ relative to Mo6+ indicates that some of the MoO2 and MoS2 

has been removed from the electrode surface. The presence of an additional S 2p doublet at 

~168.6 eV post failure can be assigned as the oxidized sulfur species SO4
2- which is attributed 

to the usage of sulfuric acid as electrolyte throughout the PEC testing.  The Si 2p signal post-

failure consists of both oxidised SiO2 (103.2 eV) and either elemental or silicide Si (99.8 eV), 

difficult to discern due to the small (0.2 eV) difference between the their binding energies.  The 

XPS signal for Si/MoSix is significantly enhanced post PEC testing suggesting that the 

molybdenum based protection layer is damaged, and thinner/discontinuous in places. 

To further probe the failure mechanism of the Si-3IL-MoS2 photocathode, scanning electron 

microscopy (SEM) and cross sectional TEM were used.  SEM reveals a highly-roughened 

surface with both pits (10 – 40 nm) and agglomerates (up to 100 nm) scattered across the 

surface (Fig. 6 a).  The cross sectional TEM images of the same sample (Fig. 6 b and Fig. S1) 

reveal significant roughening across the surface with pits up to 30 nm deep, as well as the 

addition of particles (10 – 20 nm).  Behind the cavity, silicon lattice planes remain visible 

suggesting the cavity is only a few nm wide.  Scanning TEM energy dispersive x-ray 

spectroscopy (STEM-EDS) elemental maps (Fig. 6.c-f) show that the pits extend through the 

protective molybdenum based layers, into the silicon and that silicon is etched away.  The 

particles that decorate the surface were found to contain predominantly molybdenum, and in 

some cases silver (contaminant).  Discussion regarding the origin of the contaminant is 

provided in the supporting information.  In light of the cross sectional TEM (Fig. 6 b) whereby 

large pits and a broken protection layer is observed we speculate that such morphological 

changes are likely the eventual cause of electrode failure.  Given that these failures occur during 

chronoampherometry testing we conclude that failure is not as a direct consequence of the 

cyclic voltammetry sweeps. 
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Figure 6.  (A) Scanning electron micrograph (SEM) and (B) cross-sectional transmission electron 

micrograph (TEM) of the Si-3IL-MoS2 photocathode post failure.  Both pits and agglomerates are 

clearly visible at the surface of the electrode.  STEMEDS mapping of silicon (C), oxygen (D) and 

molybdenum (E) of the sample after failure (64 days of testing).  (F) The STEM micrograph of the 

same region is also shown. 

 

Table 1 summarises the photoelectrochemical properties and durability of the two protection 

schemes investigated in this work.  We speculate that the overall thickness of the Si-3IL-MoS2 

protection scheme, relative to that of the Si-2IL-MoS2, in combination with both the ~3.7 nm 

SiO2 and 1 – 2 nm MoSix layers provide additional chemical stability and thus contribute to the 

longevity of the devices enhancing the lifetime both with regards to time and total charge 

passed.  We highlight the importance of future studies in this field that can uncover the specific 

role of individual layers (both chemical composition and thickness).  Through a series of 

systematically designed and synthesised silicon photocathodes we plan to uncover the specific 

role of the individual layers (MoOx/SiO2/MoSix) in future experiments.  Impurities at the 
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electrode surface are one of the many possible contributing factors to the failure of 

photoelectrodes.  Impurities can be introduced into the system during various stages of the 

synthesis/testing, e.g. sputter deposition, annealing in the tube furnace, from electrolyte, water 

and the reference electrode.  Furthermore, prior to deployment of industrial scale 

photoelectrochemical plants investigation of such sources and roles of impurities on device 

performance and stability will be of great importance. 

 

Table 1.  Summary of photoelectrochemical performance of the two photocathodes.  

Photocathode Onset 

Potential (V 

vs. RHE) 

Photocurrent 

Saturation (mA 

cm-2) 

Stability  

(h) 

Charge 

passed (C 

cm-2) 

Volume 

of H2 

(STP L) 

Si-2IL-MoS2 +0.28 16.5 – 19.0 606 >34 000 3.98 

Si-3IL-MoS2 +0.31 15.3 – 18.5 1638 >64 000 7.39 

 

 

Conclusion 

In conclusion, we report over 1500 h stability and over 64 000 C cm-2 charge passed for a 

precious metal free molybdenum sulfide catalysed and molybdenum silicide protected silicon 

photocathode.  Based on the high activity and durability of the molybdenum disulfide catalyst, 

we maintain an excellent onset potential for >62 days of continuous hydrogen production.  Our 

investigation of two similar, but distinct protection schemes on silicon photocathodes provide 

evidence that molybdenum disulfide coupled to molybdenum oxide, molybdenum silicide 

layers and silicon dioxide creates an extremely effective barrier to corrosion.  Catastrophic 

electrode failure reveals that some molybdenum remains present though over 75 % of the 

molybdenum is oxidised.  Microscopy of the electrode post-mortem unveils a surface 

exhibiting pits and agglomerates/particles. Our findings demonstrate significant photoelectrode 

longevity and provide insights into degradation mechanisms that can enable strategies for 

future synthesis of highly durable PEC water splitting electrodes.  
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Methods 

Synthesis of n+p-Si-Mo.  For both photocathode syntheses, p-type (0.1-0.9 ohm) wafers 

(WRS) were cleaned (standard SC1 (5:1:1 H2O:H2O2:NH4OH at 50 °C for 10 minutes), HF for 

30 s, and then SC2 (H2O:H2O2:HCl at 50 °C for 10 minutes) etches) and doped with POCl3 in 

a tube furnace at 900 °C for 10 mins.  Following a further standard wafer clean (SC1 and SC2) 

and SiO2 BOE etch, molybdenum metal (3.6 nm) was then sputtered onto the wafer with <10 

min between the SiO2 etch and pump down in the sputtering system, thus minimising the re-

growth of native SiO2.  Post Mo sputtering, the sample was cleaved into approximately 0.2 cm2 

sized pieces which were subsequently treated as described below.     

Synthesis of the Si-2IL-MoS2 Photocathode.  The Si-2IL-MoS2 photocathode was prepared 

following the method published in Ref 15 and detailed in Scheme 1a.  In brief, the n+p-Si-Mo 

wafer was sulfidized in an H2S environment at 250 °C for 45 mins.     

Synthesis of the Si-3IL-MoS2 Photocathode.  The synthesis of the Si-3IL-MoS2 photocathode 

is presented in Scheme 1b.  In brief, the prepared n+p-Si-Mo were annealed in a H2 atmosphere 

at 550 °C (ramp rate 5 degree/min, 2 h dwell), followed by a second anneal step in 10 % H2S 

in H2 at 250 °C (ramp rate 5 degree/min, 1 h dwell).  99.999 % UHP (ultra high purity) 

hydrogen gas was used for all the syntheses plumbed into the tube furnace using swage lock 

stainless steel pipping.   

Electrode Mounting.  Electrical back contacts were made to the photocathode by diamond 

scribing InGa eutectic onto the surface, followed by a thin layer of carbon paint (Ted Pella, 

DAG-T-502) and finally, an insulated conductive wire. The back side of the electrode was fully 

encapsulated/isolated from electrolyte with two layers of Loctite® E-120 hydrosol epoxy.  A 

third layer of Loctite® EA 9462 epoxy was subsequently applied and left for 24 h drying prior 

to PEC testing.  The total illuminated electrode surface area was 0.24 cm2.  

Photoelectrochemical Measurements.  To probe the stability of the prepared photocathodes, 

the electrodes were continuously illuminated under approximately AM1.5 until catastrophic 

failure (as measured by a loss in photocurrent).  The current density was continuously measured 

while holding the electrode at 0 V vs. RHE, with the exception of a cyclic voltammogram 

recorded once every 24 h.  Photoelectrochemical (PEC) testing was conducted in custom 

designed H-cells with a quartz window and in a three electrode configuration.  All cell 

components (cell, gas dispersion tube, magnetic stir bar, quartz windows etc) were cleaned 

with aqua regia prior to PEC measurements.  0.5 M sulfuric acid electrolyte (99.9% purity, 
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Sigma Aldrich) with an H2 purge and continuous stirring was used throughout all testing.  A 

mercury/mercury sulfate reference electrode was used as a reference electrode and an iridium 

wire as a counter electrode which was separated from the photocathode electrode by a Nafion 

membrane.  The reference electrode was calibrated with two Pt wires in H2SO4 before and after 

PEC testing to confirm stability over the 64 days of stability testing.  The sample was illumined 

with an Abet Solar Simulator (model number 11002) xenon lamp.  The incident illumination 

was calibrated to match AM1.5 solar spectrum.  Given the longevity of the PEC testing (64 

days), the light source was calibrated both before and after PEC testing using an Ocean Optics 

Jaz EL 200-XR1 spectrometer and the CV data adjusted for the measured loss in solar intensity.   

Physical Characterisation.  XPS analysis was performed with a Phi Versaprobe 1.  SEM 

microscopy was made with FEI Magellan 400 XHR Scanning Electron Microscope (SEM).  

Two thin lamella samples were prepared using focused ion beam (FIB, FEI Helios nanolab 

600i) lift-out technique to perform cross-section TEM imaging.  Samples were thinned by 

30kV Ga ion beam and final cleaning process was done at 3kV accelerating voltage to polish 

of ion beam induced amorphous materials. Surface roughness and elemental distribution was 

analysed by high resolution TEM images and scanning TEM energy dispersive x-ray 

spectroscopy (STEM-EDS) operated at 80kV (TEM, FEI Titan environmental TEM 80-300). 

 

Supporting Information 

Additional discussion regarding the stability data, as well as HRTEM of the failed Si-3IL-MoS2 

is provided in the supporting information.   This material is available free of charge via the 

Internet at http://pubs.acs.org.   
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