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ABSTRACT 

The increasing demand to obtain more accurate turbomachinery blading performance in 

the design and analysis process has led to the development of higher fidelity flow field 

models.  Despite extensive flow field information can be collected from three-

dimensional (3-D) Reynolds-averaged Navier-Stokes (RANS) numerical simulations; it 

comes at a high computational cost in terms of time and resources, particularly if a 

comprehensive design space is explored during optimization.  In contrast, through-flow 

methods such as streamline curvature (SLC), provide a flow solution in minutes whilst 

offering acceptable results.  Furthermore, if the SLC fidelity is improved, a more 

detailed component-blading study is expected. 

For this reason, a fully-detailed transonic flow framework was implemented and 

validated in an existing in-house two-dimensional (2-D) SLC compressor performance 

to improve the performance results fidelity in transonic conditions.  The improvements 

consist of two sections:  (1) blade-profile modelling; (2) flow field solution.  The blade-

profile modelling considers a 3-D blade-element-layout method to correctly model the 

sweep and lean angle, which determine the shock structure.   

The essential part of the transonic flow framework is its solution, formed of two parts:  

(1) a physics-based shock-wave model to predict its structure, and associated losses; (2) 

and a novel choking model to define the choke level for future spanwise mass flow 

redistribution.  To demonstrate the functionality of the full comprehensive transonic-

flow approach, the well-known NASA Rotor 67 compressor was used to prove that the 

inlet relative flow angle should be limited by the choking incidence at the required 

blade span locations.  A 3-D RANS numerical simulation for the NASA Rotor 67 

validated the transonic-flow model, showing minimum differences in the spanwise mass 

flow distribution for the choked off-design cases.  The current improvements 

implemented in the 2-D SLC compressor/fan performance simulator enhance the 

fidelity not only in analysis mode, but also in design optimisation applications. 

Keywords: Fan; Compressor; Blade; Streamline Curvature; Shock Waves; Shock 

Losses; Choking  
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NOMENCLATURE 

0-D Zero-Dimensional 

2-D Two-Dimensional 

3-D Three-Dimensional 

CFD Computational Fluid Dynamics 

IGV Inlet Guide Vane 

MCA Multiple-Circular Arc 

NACA National Advisory Committee for Aeronautics 

OGV Outlet Guide Vane 

RANS Reynolds-Averaged Navier-Stokes 

REE Radial Equilibrium Equation 

SLC Streamline Curvature 

SOCRATES Synthesis of Correlations for the Robust Assessment of 

Turbomachinery Engine Systems 

SWBLI Shock-Wave and Boundary-Layer Interaction 

 

Symbols 

Latin 

A Area, Contraction ratio 

a Speed of sound 

C  Turning Rate 

d Detachment distance 

E Error function 

h Hub, Distance between stagnation streamline position and bow-wave 

vertex 

k Blade angle 

L  Distance between sonic point of hyperbola index 

M Mach number 

m Mass 

N Number of integration points 

P Total pressure 

p Static pressure 

ps Pressure surface 

R Ray coordinate in conical system, Gas constant 

r Radial coordinate in cylindrical system 

S Blade profile path, Shock angle 

s Blade profile surface, Spacing or pitch 

sp Stacking points 

ss Suction surface 

T Temperature 

U Blade speed 

u Flow velocity 

V Relative velocity 

x Flow direction, Radial coordinate in Cartesian system 

y Tangential coordinate in Cartesian system 

z Axial coordinate in Cartesian and cylindrical system 

 

Greek 

Λ Mass flow choking coefficient 

Π Total pressure ratio 

Υ Hyperbola co-vertex 

Ψ Non-dimensional transition point handle 

𝛥𝑦 Increment in y direction 

𝛼 Absolute flow angle, Streamline cone angle  

𝛽 Flow angle 
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𝛾 Specific ratio 

𝛿 Deflection angle 

𝜖 Angle coordinate in conical system 

𝜂 Lean angle 

𝜄 Incidence 

𝜆 Sweep angle, Choking margin 

𝜇 Mach angle 

𝜈 Prandtl-Meyer angle 

𝜒 Hyperbola ratio 

𝜔 Rotational speed 

𝜛 Loss coefficient 

 

Subscripts 

0 Absolute 

1 Inlet state 

2 Outlet state 

A Point A on suction surface 

a Speed of sound 

B Intersection between stagnation streamline and bow-wave vertex 

bow Bow wave 

c Camberline, Centroid of mass 

C  Absolute velocity 

ch Choke  

d Immediately behind the bow shock 

E First-captured wave 

i Counter 

in Inlet  

LE Leading edge 

m Meridional 

max Maximum 

min Minimum 

n Any point 

ns Normal shock 

nst  Negative stall 

o Centre 

out Outlet 

ps Passage shock 

rel Relative 

s Sonic point 

SB Intersection between sonic line and blade-profile leading edge 

sh Total shock 

ss Suction surface 

st  Stall 

St Stream tube 

t Transition point 

uch unchoke 

 

Superscripts 

* Critical, Design 

. Flow rate 

-  Mass averaged 

~ Obtained from assumed value 

‘ Relative 
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1.0  INTRODUCTION 

Aircraft gas-turbine engine design and analysis is still a pleasant art to be further 

explored.  The demand of advanced-design transonic axial-flow fans or compressors in 

both, commercial and military aircraft engines has expanded.  Inasmuch as modern aero 

gas-turbine engines, especially turbofans, are required to be light and compact, 

transonic compressing systems fit the purpose due the high single-stage pressure ratio 

provided with isentropic efficiencies still well above 85%. 

Accurate and robust fan and compressor flow field prediction remains elusive [1].  Off-

design performance estimation still to be a challenge for conventional simulation tools, 

which show significant deviation against real behaviour [2].  Even though 

computational fluid dynamics (CFD) plays an essential role in the turbomachinery 

design than it does in any other fluid-related field [3], there are still limitations in 

turbulence and transition, particularly for off-design cases [1].  Turbomachinery CFD 

analysis is three dimensional (3-D) and numerically solve the viscosity effects at a small 

scale, however, it is not an exact science [4].  Additionally, CFD simulations come at 

high computational costs in terms of solution time and memory, complexity to obtain 

the required initial and boundary conditions, and lack of flexibility to incorporate or 

even modify any loss or deviation model [2,5–7]. 

Alternatively, through-flow methods provide fast and acceptable solution at low cost in 

terms of computational run-time and resources [2,6–8].  Since the development of 

turbomachinery through-flow codes in the late forties and fifties, streamline curvature 

(SLC) [9] and stream function or matrix methods [10] have evolved.  Among the 

through-flow techniques, SLC is the most typically used numerical method for 

turbomachinery design and analysis [1,3] representing the backbone for the design 

process [11] due to economical and practical reasons [12].  Flow in SLC is assumed to 

be two dimensional (2-D), compressible, inviscid, and steady.  In fact, a fully detailed 

analysis for an isolated gas-turbine engine component can be obtained through SLC 

methods.  In contrast to CFD, SLC is flexible to incorporate empiricism in the form of 

loss and deviation models.  Besides, SLC simulations require less time to set up the 

model and the initial and boundary conditions than in CFD.  If design optimisation is 

intended, SLC techniques are the most suitable to avoid the intolerably high 

computational times of CFD [12].  Furthermore, 2-D SLC component analyses can be 

coupled with a low-fidelity zero-dimensional (0-D) solver for the entire engine, known 

as component zooming [13–17].  Through this amalgamation, influence of high-fidelity 

analysed components is incorporated into the low-fidelity engine-cycle performance. 

Given the importance of the SLC methods, the fidelity of an existing in-house 2-D 

axial-flow fan/compressor simulation code, SOCRATES (Synthesis of correlations for 

the robust assessment of turbomachinery engine systems)  [2,5,18], was improved to 

have an enhanced handling of transonic flow in the analysis and design process.  

Transonic flow analysis in compressors and fans is complex due to the resulting highly 

three-dimensional (3-D) flow field, shock waves,  their interaction with the endwall and 

blade boundary layer (SWBLI), spanwise mixing, and tip clearance secondary flows 

[1].  In general, SLC computer programs lack of robustness to handle transonic and 

supersonic flows [11] and their use in transonic compressors has been limited [1].   

In recent years, emphasis has been placed to develop flow-physics-based models instead 

of fully and semi- empirical aerodynamic correlations in the SLC simulations [19].  For 

these reasons, a comprehensive transonic flow framework was devised, implemented, 

and validated in the 2-D SLC software.  The transonic flow framework consists of two 

sections: (1) blade-profile modelling; (2) flow field solution.  In the blade-profile 

modelling, a 3-D blade-element-layout method [20,21] was implemented to represent 

the sweep and lean angle, as they interact with the radially swept shock [22], affecting 

the radial equilibrium, and thence, redistributing the inlet and outlet velocities [23].   

The core of the transonic flow framework is its solution, formed of two parts:  (1) a 

physics-based shock-wave model to predict its structure [24–27], and associated losses 

[28–31]; (2) a novel choked-flow treatment model to estimate choking evolution. 
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2.0  METHODOLOGY 

To account for a higher-fidelity flow field prediction in transonic axial-flow 

compressors, a 2-D SLC code [2,5,18] was improved to include a 3-D blade-element-

layout method for sweep and lean angles, a shock-wave structure and loss model, and a 

novel choking-evolution model. 

2.1 3-D Blade-Element-Layout Method 

Compressor blade-profile section modelling was based on the constant-turning blade-

element-layout method defined by Crouse et al. (1969) [20].  Each blade-profile section 

is conveniently projected on a conical surface, which approximatse the axisymmetric 

stream surface.  Flow across the blades is influenced by several interacting forces; 

however, the driving factor for the local flow is the surface curvature, which can be 

represented by the rate of change-of-surface-angle with respect to the streamline.  The 

present blade-element-layout method maintains a constant rate of angle change with 

respect to the path distance at every defined arc segment of the camberline, suction 

surface and pressure surface.  This method is suitable to model multiple-circular-arc 

(MCA) –type blade profile, widely found in transonic compressors to regulate 

chordwise the flow turning to control the shock-wave at the throat area. 

The rate of change of blade angle 𝜅 with respect to the blade profile path 𝑆 is defined by 

a constant turning rate 𝐶, 

 𝑑𝑘

𝑑𝑆
= −𝐶 (1) 

Having the corresponding camberline blade angles 𝑘𝑐 at the leading edge, transition 

point, and trailing edge, and following Eq. 1, the camberline is laid out in the conical 

system obtaining the 𝑅-𝜖 coordinates.  Suction and pressure surface coordinates in the 

conical system are computed from the calculated camberline by adding the 

corresponding thicknesses normal to a tangent of the camberline and following Eq. 1. 

The 3-D blade shaping consists in sweeping and/or leaning each blade profile section by 

a constant or compound sweep 𝜆 or lean angle 𝜂 with respect of the stacking axis.  As 

the stacking axis passes through the stacking points 𝑠𝑝 which are located in the blade 

surface centre-of-areas, the stacking point coordinates are obtained in the conical 

coordinate system as 

 
𝑅𝑠𝑝 =

∫𝑅𝑑𝐴

∫𝑑𝐴
 (2) 

 
휀𝑠𝑝 =

∫ 휀𝑑𝐴

∫𝑑𝐴
 (3) 

Which can be solved through numerical integration. 

Having the 𝑅-𝜖 coordinates for the blade profile stacking points, a translation to 

cylindrical system is performed as follows.  The stacking point radial coordinate is 

simply a trigonometric function of the cone angle 𝛼, 

 𝑟𝑠𝑝 = 𝑅𝑠𝑝𝑠𝑖𝑛𝛼 (4) 

 𝑧𝑠𝑝 = 𝑅𝑠𝑝ℎ𝑐𝑜𝑠𝛼ℎ + (𝑟𝑠𝑝 − 𝑅𝑠𝑝ℎ𝑠𝑖𝑛𝛼ℎ) 𝑡𝑎𝑛𝜆 (5) 

Upon the stacking point displacement in the circumferential direction, the lean angle 

causes a tangential deflection , which is 

 

𝛿 = 𝑎𝑟𝑐𝑠𝑖𝑛 {
𝑟𝑠𝑝ℎ
𝑟𝑠𝑝

(
𝑡𝑎𝑛𝜂

1 + 𝑡𝑎𝑛2𝜂
[√(

𝑟𝑠𝑝

𝑟𝑠𝑝ℎ
)

2

(1 + 𝑡𝑎𝑛2𝜂) − 𝑡𝑎𝑛2𝜂 − 1]} (6) 

Hence, the stacking point -coordinate with the lean-angle tangential deflection is 

 
𝜃𝑠𝑝 = 𝜃𝑠𝑝ℎ =

휀𝑠𝑝ℎ
𝑠𝑖𝑛𝛼ℎ

+ 𝛿 (7) 
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Finally, the x-y-z blade coordinates for the blade elements can be computed with the 

following relationship between Cartesian and cylindrical system: 

 𝑥 = 𝑅𝑠𝑖𝑛𝛼cos(
휀

𝑠𝑖𝑛𝑎
+ 𝜃𝑠𝑝ℎ + 𝛿 −

휀𝑠𝑝

𝑠𝑖𝑛𝛼
− 𝜃𝑠𝑝ℎ) 

(8) 

 𝑦 = 𝑅𝑠𝑖𝑛𝛼 sin (
휀

𝑠𝑖𝑛𝑎
+ 𝜃𝑠𝑝ℎ + 𝛿 −

휀𝑠𝑝

𝑠𝑖𝑛𝛼
− 𝜃𝑠𝑝ℎ) 

(9) 

 𝑧 = 𝑧𝑠𝑝 − (𝑅𝑠𝑝 − 𝑅)𝑐𝑜𝑠𝛼 (10) 

 

2.2 Shock-wave Structure and Loss Model 

A physics-based shock- structure and loss model was developed and implemented into 

the 2-D SLC axial-flow fan/compressor performance simulation software [2,5,18].  The 

shock model works in two parts:  through the prediction of the bow wave structure 

[24,27] and loss [26], and the iterative solution of the passage shock location 

[1,28,29,31] and its corresponding losses [25]. 

2.2.1 Bow Wave 

The bow wave is a detached shock wave from the blade blunt leading edge.  The 

analytical bow-wave structure in terms of shape and location was based on the 

hyperbola approximation reported by Moeckel [24], as observed in Fig. 1. 

 

Figure 1  Hyperbolic representation for a bow shock in a blade cascade. 

This shock-structure model approach relies on 2 fundamental assumptions:  (1) The 

detached shock is assumed to be hyperbolic and asymptotic to the free-stream Mach 

wave.  (2) The sonic line that divides the pocket of subsonic flow and the outer 

supersonic flow is considered to be straight at an angle that depends on the inlet Mach 

number. 

The bow-wave hyperbolic approximation [24] calculates the parameters shown in Fig. 

2, required to obtain the relative total-pressure ratio behind the inlet and immediately 

behind the bow wave at the sonic point. Forasmuch as the detached shock is normal to 

the incoming flow, the hyperbola-shape bow wave is assumed to lie on a local frame of 

reference aligned to the flow.  In consequence, the overall shock-system model is 

rotated by an angle 𝛽1 around the hyperbola centre, which is the intersection point of its 

asymptotes.  Hence, the hyperbola centre and vertex are situated at 𝑦𝑜
′ = 0 and 𝑦𝑣

′ = 0, 

respectively, on the relative frame of reference.  For convenience all the shock structure 

calculations ae performed in a local coordinate system aligned with the inlet flow with 

𝑧′-axis origin at 𝑧𝑜
′ = 0. 
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Figure 2  Hyperbolic approximation for a bow wave ahead of a blade-profile leading edge. 

The central part of a detached shock gives a strong shock solution, while farther out the 

shock is considered to be weak.   The shock angle that corresponds for a detached wave 

at the central part of the hyperbola-shape bow wave is 

 

𝜍𝑑𝑒𝑡𝑎𝑐ℎ =
1

2
acos {

1

𝛾
[
𝛾 + 1

2
− cos 2𝜇

− √𝛾 + 1√(
𝛾 + 1

2
− cos 2𝜇)

2

+
𝛾(3 − 𝛾)

4
]} 

(11) 

For detached shock analysis, a wedge is assumed with origin at the hyperbola vertex 

and tangent to the blade-profile leading edge circle with radius 𝑟𝐿𝐸.  The wedge-half 

angle 𝛿 is the maximum deflection angle to detach the bow shock. Yet, to guarantee that 

the bow wave is fully detached, the wedge half-angle is assumed to be the detachment 

deflection plus one degree: 

 𝛿 = 𝛿𝑑𝑒𝑡𝑎𝑐ℎ + 1° (12) 

Where the maximum deflection angle for which an oblique shock becomes detached is 

 

𝛿𝑑𝑒𝑡𝑎𝑐ℎ = atan {tan 𝜍𝑑𝑒𝑡𝑎𝑐ℎ [
(𝛾 + 1)𝑀1

′2

2(𝑀1
′2 sin2 𝜍𝑑𝑒𝑡𝑎𝑐ℎ − 1)

− 1]}

−1

 (13) 

The intersection between the wedge and leading edge gives the sonic point 𝑆𝐵.  A 

normal line to the tangent at point 𝑆𝐵 forms the sonic line. The sonic line in set with the 

bow wave central part bounds the region to contain the subsonic flow, whereupon the 

sonic line represents the border for which the flow becomes sonic. 

The 𝑦′-axis distance between the bow-wave vertex and the point 𝑆𝐵 is calculated as 

 𝑦𝑆𝐵 = cos 𝛿 = cos(𝛿𝑑𝑒𝑡𝑎𝑐ℎ + 1°) (14) 

   

The intersection between the sonic line and the bow wave gives the sonic point 𝑆.  

Similarly as in the case of detached-wave strong portion, the shock angle at point S for 

which the downstream flow becomes sonic is determined by 

 

𝜍𝑠 = asin√
1

2𝛾
[
𝛾−3

2
sin2 𝜇 +

𝛾+1

2
+ √4𝛾 sin4 𝜇 + (

𝛾−3

2
sin2 𝜇 +

𝛾+1

2
)
2

]  (15) 

Therefore, the deflection angle at point S becomes 
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𝛿𝑠 = atan {tan 𝜍𝑠 [
(𝛾 + 1)𝑀1

′2

2(𝑀1
′2 sin2 𝜍𝑠 − 1)

− 1]}

−1

 (16) 

And the shock angle at the sonic line centroid of mass 𝑐 is computed as 

 

𝜍𝑐 = atan√
4(𝑀1

′2 − 1) atan2 𝜍𝑠 − 3

𝑀1
′2 − 1

 (17) 

The distance between the axial axis in the relative frame of reference and point 𝑆 is 

determined through the continuity relation for the flow that passes the sonic line.  

Inasmuch as the total temperature and total pressure are constant along every streamline 

downstream of the bow shock, the simplified version of the continuity can be written as 

 
𝑦𝑆 = 𝑦𝑆𝐵

1

1 − Π𝑑1
′
𝐶

−1
cos 𝜂 Α

 (18) 

Where Π𝑑1
′
𝐶
 is the relative total-pressure ratio between the inlet (state 1) and 

immediately behind the bow wave (state 𝑑) at the sonic point, given by [27] 

 

Π𝑑1
′
𝐶
=
𝑃𝑑
′

𝑃1
′ = [

(𝛾 + 1)𝑀1
′2 sin2 𝜍𝑐

(𝛾 − 1)𝑀1
′2 sin2 𝜍𝐶 + 2

]

𝛾
𝛾−1

[
(𝛾 + 1)

2𝛾𝑀1
′2 sin2 𝜍𝑐 − (𝛾 − 1)

]

1
𝛾−1

 (19) 

𝜂 is the angle between the sonic line and the 𝑦′-axis and is the arithmetic mean between 

the two line extremity angles:  the wedge half-angle or deflection angle to detach the 

shock and the deflection angle at the sonic point; this is 

 
𝜂 =

1

2
(𝛿 + 𝛿𝑠) = (𝛿𝑑𝑒𝑡𝑎𝑐ℎ + 1° + 𝛿𝑠) (20) 

And Α represents the area contraction ratio to isentropically decelerate the supersonic 

free stream to sonic conditions between the critical area and the actual area, 

 

Α =
𝐴∗

𝐴
= {

1

𝑀1
′ [

2

𝛾 + 1
(1 +

𝛾 − 1

2
𝑀1
′2)]

𝛾+1
2(𝛾−1)

}

−1

 (21) 

Whereupon, the bow-wave equation in the relative frame can be written as 

 𝑧𝑏𝑜𝑤
′2

𝑦𝑆
2 [(𝑀1

′2 − 1)
2
tan2 𝜍𝑆 − (𝑀1

′2 − 1)]

−
𝑦𝑏𝑜𝑤

′2

𝑦𝑆
2 tan 𝜇 [(𝑀1

′2 − 1)
2
tan2 𝜍𝑆 − (𝑀1

′2 − 1)]
= 1 

(22) 

As not all the blade span experiences inlet relative supersonic flow, the bow-wave 

model was properly setup to identify where bow-wave structures are needed as shown 

in Fig. 3. 

 

Figure 3  Bow-wave prediction in the meridional plane for the 2-D SLC compressor simulator. 

Naturally, as the inlet relative Mach number increases from the first streamline to have 

supersonic flow to the tip, the detachment distance reduces and the Mach angle lowers, 

yet increasing the obliquity of the bow wave, as seen in Fig. 4.  Hence, as the span is 
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reduced and 𝑀1
′ ≥ 1, the bow-wave structure in set with the Mach lines becomes wider 

and more open, tending to become normal. 

 

Figure 4  Bow-wave structures prediction in the blade-to-blade plane for the 2-D SLC compressor 

simulator. 

2.2.2 Bow-Wave Losses 

Along the bow wave the shock angle changes due to the hyperbola curvature.  Thus, the 

shock angle for a detached wave at any point 𝑛 in the 𝑦′-axis (perpendicular to the flow) 

is 

 

𝜍𝑛 = atan(
√𝑧𝑣

′ 2 + (𝑀1
′2 − 1)𝑦

(𝑀1
′2 − 1)𝑦

) 
(23) 

Therefore, the relative total-pressure recovery from Eq. 19 becomes Π𝑑1
′ , by substituting 

𝜍𝐶 for 𝜍𝑛. 

Eq. 23 demonstrates that every point on the bow wave produces a different relative 

total-pressure downstream of it.  Therefore, an integration of infinitesimal 𝑃𝑑
′ 𝑃1

′⁄  is 

required along the hyperbola, derived by Klapproth [32] and reported by Miller and 

Hartmann [27].  This formulation considers the distance in the distance ℎ in the 𝑦′-axis 

distance from the bow-wave vertex to the real stagnation streamline position.  

Nevertheless, beyond the stagnation streamline on the opposite side of the passage 

shock, the losses are significantly smaller than in the strongest bow-wave portion [33], 

hence ℎ = 0. In addition, the bow wave has its strongest part in its vertex, where the 

highest relative total-pressure decay is expected at 𝑦′ = 0.  For implementation 

purposes in a numerical code, the upper integration limit is defined as the sonic point 𝑠, 
as farther out beyond this point, the bow shock becomes weak, with negligible 

contribution to the overall bow-wave loss.  Therefore, the infinitesimal integration of 

𝑃𝑑
′ 𝑃1

′⁄  along the bow-wave is simplified to 

 

Π𝑏𝑜𝑤
′ = (

𝑃𝑑
′

𝑃1
′)
𝑏𝑜𝑤

= 1 −
∫ (1 −

𝑃𝑑
′

𝑃1
′) 𝑑𝑦

𝑆

0

∫ 𝑑𝑦
𝑠

0

 (24) 

 

2.2.3 Passage Shock Wave 

The passage shock is formed of two sections:  a portion of the bow wave that penetrates 

into the passage, and a strong normal shock that stands on the suction surface of the 

adjacent suction surface as noted in Fig. 5.  The point where the bow shock joins with 

the normal shock is the transition point 𝑡. 
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Figure 5  Transition point between the bow wave and the normal shock to form the passage 

shock.  a)  2-D SLC simulation.  B) 3-D CFD simulation. 

Transition point is obtained through an iterative approach to match the demanded outlet 

static pressure.  A non-dimensional distance 𝜓 on the blade chord, between 0 and 1, is 

assumed by the iterative scheme to obtain the transition point 𝑧𝑡
′.  A value of 𝜓 = 0 

accounts when 𝑧𝑡
′ = 𝑧𝑣

′ , for the case that the passage shock extends till the hyperbola 

vertex.  A value of 𝜓 = 1 represents the scenario when the normal shock stands on the 

adjacent blade trailing edge.  For an assumed 𝜓, the transition point 𝑧′-axis location 

becomes 

 𝑧𝑡
′ = Χ′ + 𝜓[Χ′ + d′ − 𝑠 sin 𝛽1 + c cos(𝛽1 − 𝜉) − 𝑧𝑣

′ ] (25) 

Thence, 𝜓 controls the transition-point displacement as a function of the off-design 

point as shown in Fig. 6 for highly-detached shock pattern and Fig. 7 for a more oblique 

bow-wave structure. 

 

Figure 6  Highly-detached bow-wave at 89.1% span from hub to tip  for the NASA Rotor 67 [34] 

and 100% of design speed, at near-stall off-design condition, �̇� = 29.21𝑘𝑔/𝑠, 𝑝𝑜𝑢𝑡 = 130𝑘𝑃𝑎 .  

a)  3-D CFD simulation.  b)  2-D SLC simulation. 
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Figure 7  Highly-oblique bow-wave at 68.7% span from hub to tip  for the NASA Rotor 67 [34] 

and 100% of design speed, at near-peak efficiency condition, �̇� = 33.6𝑘𝑔/𝑠, 𝑝𝑜𝑢𝑡 = 122𝑘𝑃𝑎 .  

a)  3-D CFD simulation.  b)  2-D SLC simulation. 

2.2.4 Passage-Shock Losses 

As discussed before, the passage shock is formed by a bow-wave portion and a normal 

shock.  Accordingly, the loss-integration procedure is divided for these two passage 

sections.  The passage shock extends on a domain of length 𝑠 cos 𝛽1, as is the d 

projected in the local frame of reference.  Likewise to the bow-wave losses, an 

integration of losses along the passage domain is done, for which the spacing between 

equidistant integration points in the local frame of reference is defined as 

 
∆𝑦 =

𝑠 cos 𝛽1
𝑁

 (26) 

The integration domain for the passage bow-wave portion extends from 𝑦𝑝𝑠
′
0
= 0 to  

𝑦𝑝𝑠
′ = 𝑦𝑡

′.   Every local radial coordinate is a summation of the previous point location 

and the spacing, specified as 

 
(𝑦𝑝𝑠

′
𝑖
)
𝑏𝑜𝑤

=∑(𝑦𝑝𝑠
′
𝑖−1
)
𝑏𝑜𝑤

+ ∆𝑦

𝑛

𝑖=1

 (27) 

Where 𝑛 represents the last bow-wave integration point for which 𝑦𝑝𝑠
′
𝑛
≤ 𝑦𝑝𝑠

′ .  For 

every 𝑦𝑝𝑠
′
𝑖
, the hyperbola axial coordinate is obtained though the bow-wave equation 

derived in Eq. 22.  The shock angle at every integration point on the hyperbola 

curvature can be obtained as in Eq. 23, giving 

 

𝜍𝑖 = atan

(

 
√Χ′2 + (𝑀1

′2 − 1)𝑦𝑝𝑠
′
𝑖

(𝑀1
′2 − 1)𝑦𝑝𝑠

′
𝑖

)

  (28) 

In terms of the passage normal-shock, the integration domain lengths from 𝑦𝑝𝑠
′ = 𝑦𝑡

′ to 

𝑦𝑝𝑠
′
𝑁
= 𝑠 cos 𝛽1.  Similar to Eq. 27, every integration point axial location is found in the 

local frame of reference as a summation of the precedent point location and the spacing, 

this is 

 

(𝑦𝑝𝑠
′
𝑖
)
𝑛𝑠
=∑(𝑦𝑝𝑠

′
𝑖−1
)
𝑛𝑠
+ ∆𝑦

𝑁

𝑖=𝑛

 (29) 

Because the normal shock is a straight line in the local frame of reference, all the 

integrations points have a local-axial coordinate equals to that from the transition point. 

Knowing the integration-point coordinates for both, bow-wave portion and normal 

shock, the relative Mach number and relative flow angle for the first-captured wave are 

calculated as a Prandtl-Meyer expansion from the upstream conditions at every 
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integration point [1,28,29,31,35,36].  The first-captured wave is the first expansion 

wave that the inlet flow encounters as it approaches towards the blade.  The first-

captured wave extends from a point 𝐴 on the adjacent blade suction surface to the 

intersecting point 𝐵 between the stagnation streamline and the bow shock, namely the 

hyperbola vertex [28]. 

As the first-captured wave impingement point on the adjacent suction surface is 

unknown, a secant iteration method was implemented to obtain an accurate solution for 

the relative Mach number and relative flow angle on the wave 𝐸.  The iterative 

approach assumes an axial location for the point 𝐴 in the global frame of reference.  

Given 𝑧𝐴, a cubic-spline interpolation on the adjacent blade suction surface coordinates 

resolves 𝑦𝐴.  Correspondingly, the blade suction surface angle 𝛽𝑆𝑆𝐴 at point 𝐴 is 

obtained from a cubic-spline interpolation on the suction surface angles previously 

obtained from the conical blade-element layout method [20,21,37]. For the 𝐵-point, its 

absolute coordinates are equal to those from the bow-wave vertex, 𝑧𝑣 and 𝑦𝑣.   

The Riemman’s equation between the upstream conditions and the right-running first-

captured wave 𝐸 is 

 𝛽1 + 𝜈1(𝑀1
′) = 𝛽𝐸 + 𝜈𝐸(𝑀𝐸

′ ) (30) 

The first-captured flow angle at point 𝐴 is equal to the wall suction surface angle 𝛽𝑆𝑆𝐴 

at that point.  Because the flow characteristics are conserved along a characteristic,  

 𝛽𝐸 = 𝛽𝑆𝑆𝐴 (31) 

Therefore, the first-captured wave Prandtl-Meyer angle is 

 𝜈𝐸(𝑀𝐸
′ ) = 𝛽1 + 𝜈1(𝑀1

′) − 𝛽𝑆𝑆𝐴 (32) 

Given the wave 𝐸 Prandtl-Meyer angle, the Mach number is computed through a secant 

iteration method. From an asummed Mach number, the Prandtl-Meyer angle is obtained 

using  the Prandtl-Meyer function.  Thus, the error function 𝐸 becomes 

 𝐸 = 𝜈𝐸(𝑀𝐸
′ ) − 𝜈(𝑀𝐸

′̃ ) (33) 

The same procedure repeats for a second assumed Mach number value.  Having two 

assumed Mach numbers and two error values respectively, a straight line equation 

approximates the next estimated Mach number with an error of 0.  The same scheme 

iteratively repeats until the error is less than a tolerance set of 1e-6 to find 𝑀𝐸
′ .  Given 

𝑀𝐸
′ , the Mach angle 𝜇𝐸 is 

 
𝜇𝐸 = asin(

1

𝑀𝐸
′ ) (34) 

The first-captured wave is a straight line having a constante slope Σ𝑎𝑏  at every point on 

the wave: 

 
Σ𝑎𝑏 =

𝑦𝐴 − 𝑦𝑝𝑠
′
𝑖

𝑧𝐴 − 𝑧𝑝𝑠
′
𝑖

 (35) 

Inasmuch as a characteristic slope angle is the difference or sum of its flow angle and 

Mach angle, the right-running firs-captured wave slope turns 

 
Σ𝑎𝑏 = tan(𝛽𝐸 + 𝜇𝐸) =

𝑦𝐴 − 𝑦𝑝𝑠
′
𝑖

̃

𝑧𝐴 − 𝑧𝑝𝑠
′
𝑖

 (36) 

Thus, 𝑦𝑝𝑠
′
𝑖

̃  is solved from Eq. 36).  As the overall estimation of the Prandtl-Meyer 

expansion is based on an assumed point-𝐴 axial location, the obtained 𝑦𝑝𝑠
′
𝑖
 from Eq. 36) 

should be equal to the  𝑦𝑝𝑠
′
𝑖
 given by the spacing in Eq. 27.  For this, the error function 

becomes 

 𝐸 = 𝑦𝑝𝑠
′
𝑖

̃ − 𝑦𝑝𝑠
′
𝑖
 (37) 

A secant iteration method is used to bring the error within a tolerance of 1e-6, and 

obtain well-estimated values for 𝑀𝐸
′  and 𝛽𝐸. 
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Thence, the shock angle for the passage bow-wave section at its corresponding 

integration points is given by 

 (𝜍𝑝𝑠𝑖)𝑏𝑜𝑤
= 𝜍𝑖 − 𝛽1 + 𝛽𝐸 (38) 

Upon the passage normal-shock, the shock angle is expressed as 

 (𝜍𝑝𝑠𝑖)𝑛𝑠
=
𝜋

2
− 𝛽1 + 𝛽𝐸 (39) 

Knowing the conditions upstream of the passage shock at state 𝐸, the pressure ratios 

and Mach numbers downstream at state 2 of it can be obtained for every passage-shock 

section.  The relative total-pressure recovery across the passage shock is determined by 

the corresponding shock angle [27] at every integration point as in Eq. 19, becoming 

 
Π𝑝𝑠
′
𝑖
= (

𝑃𝐸
′

𝑃2
′)
𝑖

= [
(𝛾 + 1)𝑀𝐸

′
𝑖

2
sin2 𝜍𝑝𝑠𝑖

(𝛾 − 1)𝑀𝐸
′
𝑖

2
sin2 𝜍𝑝𝑠𝑖 + 2

]

𝛾
𝛾−1

[
(𝛾 + 1)

2𝛾𝑀𝐸
′
𝑖

2
sin2 𝜍𝑝𝑠𝑖 −

(𝛾 − 1)
]

1
𝛾−1

 

(40) 

The computation of the mass-averaged value for Eq. 40 is performed to the integration 

of all the points across the defined domain [28,29,31,38], expressed as 

 

Π𝑝𝑠
′̅̅ ̅̅ ̅ = (

𝑃𝐸
′

𝑃2
′)

̅̅ ̅̅ ̅̅
=

∫ 𝑀𝐸
′
𝑖

𝑦𝑝𝑠
′
N

𝑦𝑝𝑠
′
0

(1 +
𝛾 − 1
2

𝑀𝐸
′
𝑖
)

−𝛾
𝛾−1

+
1
2
Π𝑝𝑠
′
𝑖
cos(

𝜋
2
− 𝜍𝑝𝑠𝑖)𝑑𝑠

∫ 𝑀𝐸
′
𝑖

𝑦𝑡
′

𝑦𝑝𝑠
′
0

(1 +
𝛾 − 1
2

𝑀𝐸
′
𝑖
)

−𝛾
𝛾−1

+
1
2
cos(

𝜋
2
− 𝜍𝑝𝑠𝑖)𝑑𝑠

 (41) 

 

2.2.5 Total-Shock Loss Coefficient 

The total-shock relative total-pressure loss due to the bow shock and passage shock is a 

product of their losses, expressed as 

 
Π𝑠ℎ
′ = (

𝑃𝐸
′

𝑃2
′)

̅̅ ̅̅ ̅̅
∗ (
𝑃𝑑
′

𝑃1
′)
𝑏𝑜𝑤

= Π𝑝𝑠
′̅̅ ̅̅ ̅ ∗ Π𝑏𝑜𝑤

′  (42) 

For which the mass-averaged total-shock loss-associated coefficient 𝜛𝑡𝑠 [25] is 

 
𝜛𝑠ℎ =

1 − Π𝑠ℎ
′

1 − (1 +
𝛾 − 1
2

𝑀1
′2)

𝛾
1−𝛾⁄

 (43) 

Despite passage bow-wave pressure losses were not considered for the overall total-

shock loss as their effect was considered in the continuity equation for the unique 

incidence calculation [39], Bloch et al. [28] included the bow-wave portion effect in the 

passage-shock model developed.  It was demonstrated that the bow-wave pressure 

deficit caused in the passage shock is small but significant.  Given Π𝑏𝑜𝑤
′  from Eq. 24, 

the passage bow-wave-associated loss coefficient is defined as 

 
𝜛𝑏𝑜𝑤 =

𝑃1
′ − 𝑃𝑑

′

𝑃1
′ − 𝑝1

 (44) 

Then, the passage-shock loss coefficient is expressed as 

 𝜛𝑝𝑠 = 𝜛𝑠ℎ −𝜛𝑏𝑜𝑤  (45) 

 

2.3 Choking Conditions 

When the outlet static pressure decreases, the inlet meridional velocity increases, 

resulting in a mass flow rise.  For the blade passage to accommodate more mass flow, 

the flow angle, and thus the incidence reduce.  Nevertheless, there is a minimum value 

for the incidence, as the flow reaches a maximum velocity within the passage, and no 

further flow acceleration can be accomplished. As no lower incidence value is possible, 

the inlet velocity triangle remains constant, fixing the mass flow.  This maximum mass 
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flow case is known as choke condition, corresponding to a minimum or choking 

incidence.  For this reason, a choking-evolution model was developed and implemented 

into the 2-D SLC axial-flow fan/compressor performance simulator [2,5,18] to identify 

the streamtube choking level. 

2.3.1 Choking Incidence 

As the inlet relative Mach number increases, the 𝜛 vs 𝑖 curve narrows, displacing to the 

right and upwards.  This curve translation means that the minimum-loss increases and 

its corresponding incidences are higher for an inlet relative Mach number increment.  

The curve narrowing is explained as the incidence working range reduces when the inlet 

relative Mach number is raised, shortening the low-loss working range.  The low-loss 

working range for choke operation is designated as [40] 

 𝑅𝑐ℎ = 𝛼
∗ − 𝛼𝑛𝑠𝑡 = 𝑖

∗ − 𝑖𝑐ℎ (46) 

Where 𝛼 is the angle for attack, and the subscripts ∗ and 𝑛𝑠𝑡 account for the design and 

negative-stall condition, respectively.  The corresponding angles of attack calculation is 

based in a systematic methodology for 2-D NACA 65-series cascade tests [41], 

described in Aungier [40] and implemented in the 2-D SLC code by Pachidis [2]. 

An equivalent stall low-loss working range can be also defined as (𝑖𝑠𝑡 − 𝑖
∗).  For low-

speed cascades both low-loss working ranges, choke and stall decrease at the same rate 

as the inlet relative Mach number increases [42].  In contrast, for high-speed blade 

profiles, the choke low-loss working range (𝑖∗ − 𝑖𝑐ℎ) reduces faster than (𝑖𝑠𝑡 − 𝑖
∗) as 

the 𝑀1
′  is increased.   Thus, the choking incidence 𝑖𝑐ℎ becomes a function of 𝑀1

′  and 𝑅𝑐, 
expressed as [40] 

 
𝑖𝑐ℎ =

𝑖∗ − 𝑅𝑐ℎ

1 + 0.5𝑀1
′3

 (47) 

Eq. 47 sets the lowest possible for the incidence for a cascade and no incidence value 

should be below it, as this is the operating condition where no further mass flow 

increase is possible. 

2.3.2 Choking Margin 

The choking incidence estimation allows the flow field calculation for the choke 

condition.  The inlet choking relative flow angle for a rotor becomes 

 𝛽1𝑐ℎ = 𝑖𝑐ℎ + 𝑘1 (48) 

Similarly, for a stator the choking absolute flow angle is, 

 𝛼1𝑐ℎ = 𝑖𝑐ℎ + 𝑘1 (49) 

Given 𝛽1𝑐ℎ or 𝛼1𝑐ℎ for the identified choked streamlines, an inverse design scheme is 

implemented to obtain the flow conditions that satisfy the choking incidence.  In choke 

condition, the inlet relative whirl velocity is conserved as the blade speed remains 

constant and the swirl or inlet absolute angle 𝛼1 condition does not change, keeping the 

inlet absolute whirl velocity unaffected.  In the particular case of no swirl (𝛼1 = 0), the 

inlet relative whirl velocity is equals to the blade speed at a given streamline radius.  

Therefore, inlet meridional relative velocity for a rotor in choke condition becomes 

 
𝑉1𝑐ℎ =

𝑉𝜃1
sin𝛽1𝑐ℎ

 (50) 

It follows, that the inlet meridional choking velocity is 

 
𝑉𝑚1𝑐ℎ

= √𝑉1𝑐ℎ
2 − 𝑉𝜃1

2 (51) 

Hence, the inlet meridional absolute choking velocity is expressed as 

 
𝐶1𝑐ℎ = √𝐶𝜃1

2 + 𝑉𝑚1𝑐ℎ
 (52) 

In the absence of a relative velocity triangle for a static components (stator, IGV, OGV), 

𝐶1𝑐ℎ is directly computed from the inlet absolute choking flow angle, 
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𝐶1𝑐ℎ =

𝐶𝜃1
sin𝛼1𝑐ℎ

 (53) 

Knowing 𝐶1𝑐ℎ, the inlet static temperature 𝑇1𝑐ℎ and inlet specific ratio 𝛾1𝑐ℎ for choking 

operations are calculated through a secant iteration method by comparing the calculated 

total temperature against the real total temperature through the adiabatic steady flow 

energy equation.  Having 𝑇1𝑐ℎ, the inlet meridional relative Mach number is obtained 

for the rotor, 

 
𝑀1
′
𝑐ℎ
=
𝑉1𝑐ℎ
𝑎1𝑐ℎ

=
𝑉1𝑐ℎ

√𝛾1𝑐ℎ𝑅𝑇1𝑐ℎ
 (54) 

For static components, the inlet meridional absolute Mach number becomes 

 
𝑀1𝑐ℎ =

𝐶1𝑐ℎ

√𝛾1𝑐ℎ𝑅𝑇1𝑐ℎ
 (55) 

Having the above calculated flow parameters for the choking operations, a comparison 

is needed to determine how far is the current flow field from the choke conditions.  

Such comparison is done through a choking margin ratio 𝜆 that satisfies mass flow 

continuity.  For this, the flow function as a unique function of a Mach number is 

 

𝐹(𝑀) =
𝛾

√𝛾 − 1
𝑀 [1 +

𝛾 − 1

2
𝑀2]

−(𝛾+1)
2(𝛾−1)

 (56) 

The flow function can be defined as well as the corrected mass flow per unit area, 

 
𝐹(𝑀) =

�̇�√𝐶𝑝𝑇0

𝐴𝑃0
 (57) 

Where 𝐴 is the blade-throat area given by 𝑠 cos 𝛽 

As mass flow continuity is satisfied between the upstream domain and a potentially 

choked blade inlet, it is valid to establish mass flow continuity between the current-flow 

and choke conditions, 

 �̇� = �̇�𝑐ℎ (58) 

Substituting Eq. 56 and Eq. 57 in Eq. 58, mass flow continuity in a rotor becomes 

 𝐹(𝑀1
′)𝑠 cos 𝛽1 𝑃01

√𝐶𝑝𝑇01
=
𝐹(𝑀1

′
𝑐ℎ
)𝑠 cos 𝛽1𝑐ℎ 𝑃01𝑐ℎ

√𝐶𝑝𝑐ℎ𝑇01𝑐ℎ

 
(59) 

In the case of static components, the mass flow continuity is expressed as 

 𝐹(𝑀1)𝑠 cos 𝛼1 𝑃01

√𝐶𝑝𝑇01
=
𝐹(𝑀1𝑐ℎ)𝑠 cos 𝛼1𝑐ℎ 𝑃01𝑐ℎ

√𝐶𝑝𝑐ℎ𝑇01𝑐ℎ

 
(60) 

Between the immediate upstream domain and the blade inlet angle, the inlet total-

temperature and inlet total-temperature are the same, and the specific heat ratio at 

constant pressure remains approximately constant, simplifying Eq. 60.  Whereupon, a 

ratio between the actual and choking conditions from the simplified version of Eq. 60 

defines the choking margin 𝜆 as follows 

Rotor 
𝜆 =

𝐹(𝑀1
′)

𝐹(𝑀1
′
𝑐ℎ
)

cos 𝛽1
cos 𝛽1𝑐ℎ

 (61) 

 

Stator, 

IGV,OGV 𝜆 =
𝐹(𝑀1)

𝐹(𝑀1𝑐ℎ)

cos 𝛼1
cos 𝛼1𝑐ℎ

 (62) 

It is evident from Eq. 61 and Eq. 62 that if the inlet flow angle is lower than the inlet 

choking flow angle, the choking margin is greater than one, resulting in a choked blade 

passage. 
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3.0  RESULTS & DISCUSSION 

3.1 Shock-Wave Structure 
To validate the shock-pattern model, a 2-D SLC run was performed for the NASA 

Rotor 67.  The validation of the shock data was done against charts as function of the 

inlet relative Mach number presented by Moeckel [24] and Miller and Hartmann [27]. 

A comparison of   𝜍𝑑𝑒𝑡𝑎𝑐ℎ , 𝜍𝑆,𝜍𝐶  against Moeckel’s [24] reported values as a function of 

𝑀1
′ , is displayed in Fig. 8 a), with a maximum difference of 0.12%.  Similarly, the ratio 

of Χ′/𝑦𝑆𝐵  and 𝑦𝑆/𝑦𝑆𝐵 or non-dimensional detachment distance and sonic point height as 

a function of 𝑀1
′  are compared in Fig. 8 b).  The 𝑦𝑆/𝑦𝑆𝐵 ratio is found to compare fairly 

reasonable with a maximum error of 0.35% for the highest Mach numbers and a 

maximum difference of 1.1% for the Χ′/𝑦𝑆𝐵  ratio, due to the two scattered points 

observed.  Apart from this marked difference, a maximum difference of 0.62% is found 

at the highest Mach number.  One can note that for high Mach numbers, the detachment 

distance and the height of the sonic point are too small, resulting in close bow waves to 

the leading edge.  As the inlet relative Mach number is decreased, the curves tend to 

infinity, leading in highly-detached bow waves. 

 

Figure 8  Bow-wave parameters comparison against chart presented by Moeckel [24] as a 

function of the inlet relative Mach number.  a)  Shock angles.  b)  Non-dimensional detachment 

distance and non-dimensional sonic point height. 

Local-axial distance 𝐿 between the sonic point and the bow-wave vertex is typically 

found as a ratio with respect of the point 𝑆𝐵, which is the point that forms the wedge 

tangency.  Fig. 9 shows the comparison of 𝐿/𝑦𝑆𝐵  as a function of the inlet Mach number 

against a corresponding chart obtained by Miller and Hartmann [27].  The 𝐿/𝑦𝑆𝐵  ratios 

estimated by the 2-D SLC fall around the curve, with a maximum difference of 1.7% 

and a minimum of 0.43%. 
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Figure 9 Comparison for the bow-wave non-dimensional distance from the wedge tangency point 

as a function of the inlet relative Mach number against chart presented by Miller and Hartmann 

[27]. 

3.2 Mass Flow Redistribution in Choking Conditions 
The choking prediction model implemented in the 2-D SLC model, obtains a choking 

incidence for the whole blade span, which is the minimum value that the incidence for a 

given inlet Mach number.  Fig. 10 shows the evolution of the current-flow and choking 

incidence values as a function of the outlet static pressure for the well-known NASA 

Rotor 67 [34].  It can be observed from left to right that the current-flow incidence is 

lower than the choking incidence limit at high-span locations.  When this is the case, 

choke condition should be established for those stream tubes.  As the back static 

pressure is increased, the blade span starts to unchoke. 

 

Figure 10  2-D SLC-estimated incidence and choking incidence evolution for the NASA Rotor 67 

speedline at 100% NRT. 

By compiling all the curves from Fig. 10 in Fig. 11, it is noted that the choking 

incidence limit does not significantly change across the off-design points, as it is more a 

function of the blade throat area and the inlet relative Mach number.  Conversely, the 

current incidence grows faster than the choking incidence with the outlet static pressure.  

It is evident that the incidences that are on the left-hand side of the choking curve need 

to be limited to adopt the choking incidence value.  Similarly, the compilation of inlet 

flow angle distributions from Fig. 12, results in an almost constant value for the inlet 

choking flow angle. 
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Figure 11  2-D SLC-estimated incidence and choking incidence for the NASA Rotor 67 at 100% 

NRT. 

 

Figure 12  2-D SLC-estimated inlet flow angle and inlet choking flow angle for the NASA Rotor 

67 at 100% NRT. 

4.0  CONCLUSIONS 

Modern aircraft gas turbine engines demand to be light and compact whilst being highly 

efficient.  Transonic axial-flow compressors respond to these needs due to the additional 

loading caused by the passage shocks at the expense of an over-all shock loss 

increment.  It has been acknowledged that 3-D CFD RANS tools are expensive and lack 

of flexibility.  In contrast, 2-D SLC tools provide fast and reasonably accurate solution.   

Transonic flow analysis is complex due to the shock structures involved and the 

associated phenomena.  When it comes to model transonic flow in 2-D SLC 

simulations, the aerodynamic performance solution can deviate from the actual 

conditions. For this reason, a 3-D blade-element-layout method, a shock- structure and 

loss model, and a novel choked mass flow redistribution scheme, were developed and 

implemented into an existing in-house 2-D SLC compressor performance code.   

The shock model works in two parts:  bow-wave structure and losses, and passage-

shock structure and losses.  The shock model was validated against NACA charts 

obtaining differences ~1%.  The choking scheme predicts the choking, establishing a 

choking margin to determine the status of the current flow conditions from the choke 

operations. Given this, it is envisaged to limit the streamtube mass flow through a 

numerical approach depending on the choking margin level and is then redistributed 

from the blade tip regions to the low-span locations.  The described improvements 

implemented in the 2-D SLC compressor performance simulator make the tool ready to 
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handle transonic flow with higher fidelity to be used not only in analysis mode, but also 

in paramount design optimisations. 
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