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Abstract 

Accurate estimation of vehicles’ energy consumption is a demanding task. It might not be so critical 

for conventional vehicles because of their high travel range however, this is something important for 

electric vehicles (EVs). On the other hand, EVs with less energy on board, need more accurate energy 

management systems. This study focuses on the development of an energy consumption estimation 

model to be used in an EV fleet management system (FMS). The proposed estimator consists of a 

vehicle model, a driver model, and terrain models. It is demonstrated that a combination of these three 

parts can provide an accurate estimation of EV energy consumption on a particular route. As part of 

this study, a commercially-available passenger car is modelled using MATLAB/Simulink. A number 

of specific routes are selected for EV road testing to be driven for simulation model verification. In the 

second part of this study, the impact of energy consumption estimation accuracy is investigated at a 

larger scale for a fleet of EVs. It is quantitatively demonstrated how much sensitive is the performance 

of a FMS to the accuracy of the energy estimator. Simulation results have shown that the total energy 

consumption of an EV fleet is decreased significantly by improving the estimation accuracy. It is also 

demonstrated how the uncertainties in EV energy consumption estimation limits the overall 

performance of a FMS. 

Keywords: fleet management system, electric vehicle, energy consumption estimation, modelling 

and simulation, experimental test. 
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1. Introduction 

The number of electric vehicles (EVs) is increasing quickly and with new regulations on 

clean and sustainable transportation systems, this trend would continue.  More use of EVs 

makes new opportunities and also new challenges. Private EV users have different expectations 

and usage patterns while they still have some kind of range anxiety. “Accurate” estimation of 

EVs range is a demanding task that depends on a number of uncertainties such as variations in 

weigh, road and weather conditions, driving and traffic conditions, and degradation or change 

in components, etc. In addition to private vehicles, fleets of taxis or commercial delivery vans 

and trucks can play a significant role in the transportation sector. Since the next generation of 

fleets are likely to be electrified, new strategies are needed for proper management of EV fleets 

energy demand and charging. Even for scheduling of the fleet, new algorithms are necessary 

in which the range of EVs and the charging time are considered. At the present time, a 

scheduling fleet management software does not have to consider range limits in conventional 

non-electric vehicles nor the fuelling time, as refuelling is quick, and easily managed by the 

driver. In addition, all the existing fleet management algorithms are not necessarily optimal in 

terms of energy consumption. An EV fleet can be used optimally in a way to minimise the total 

fleet energy consumption to do a certain task. Summarising the above discussion, an important 

part of an EV fleet management system (FMS) or a private EV trip planner is “energy 

consumption prediction” which is the topic of this research.  

Relevant literature can be categorized into two main groups: (i) studies which are focused 

on FMS and vehicle routing, and (ii) studies in which vehicle energy consumption is 

investigated.  

There are a number of studies in the literature where the vehicle routing problem (VRP) and 

trip-to-vehicle assignment problem are investigated for conventional vehicle fleets. The VRP 

that was originally introduced by Dantzig et al. (1959), is a more general form of the traveling 

salesman problem (TSP) adjusting for customers’ demands and vehicles’ capacities as 

discussed by Giglio et al. (2004). The TSP is a nondeterministic problem that is defined as a 

salesman who wants to visit a number of cities only once, starting from any of them but 

returning to the same point at the end (Lin, 1965). The goal is to find the shortest route among 

all possible routes. For many years, efforts have been done to solve TSP using a wide range of 

methods. The VRP is an extension of the TSP in which a vehicle should visit a number of 

destinations and then returns to the original location.  



 

 

Considering the vehicles routing and scheduling as the main function of a FMS, there are 

two possible scenarios here: off line and online routing and scheduling. The same classification 

is presented by Betz et al. (2016) using two other terminologies: static and dynamic scheduling. 

In off line (static) scheduling, all trips are identified and planed at the beginning of the day 

without any changes during the course of the trip, whereas in online (dynamic) scheduling, 

there is a flexibility to change the plan in real-time. This flexibility is quite useful when a 

breakdown or an accident happens. There are many FMS algorithms available in literature; for 

example, the algorithms developed to solve the standard TSP and its variations, including 

Genetic Algorithm (GA), Simulated Annealing (SA) (Kirkpatrick et al. 2007), Tabu Search 

(Cordeau et al. 2001) and Ant Colony Optimisation (ACO) algorithms (Narasimha et al. 2011). 

Although there are various studies in literature focusing on VRP and FMS for conventional 

vehicles (Bandeira et al. 2016), not enough work have been conducted specifically for EV 

fleets. In a study by Betz et al. (2016), a mixed fleet of conventional vehicles and EVs was 

investigated. As a result, a new model was proposed to analyse the financial and ecological 

effects of substituting conventional vehicles with EVs and to provide a personalized offer for 

the optimal fleet composition based on the number of trips and vehicle specifications. In a study 

by Hu et al. (2016), a review of the optimization and control techniques of smart EV fleet 

charging is presented and the services that can be provided by a fleet operator to other actors 

in a smart grid are discussed. In a study by Chao et al. (2013), differences of fleets of electric 

buses and conventional diesel buses are investigated. It is demonstrated that such differences 

creates the need for great changes in vehicle scheduling methods.  

One of the key elements in a FMS is to know the distance between each point in the target 

area where the fleet operates. Simply speaking, the vehicle routing algorithm should know the 

distance between point A and point B when dispatching the vehicle from A to B. This is even 

more critical when talking about a fleet of EVs since the range of an EV is much less than a 

conventional vehicle. To be more accurate, the “distance” should be replaced by “energy” that 

is needed to go from A to B. The energy consumption generally depends on three groups of 

parameters: 1) the vehicle specifications, 2) terrain characteristics and 3) driving style and 

traffic condition. In the next paragraphs, some earlier studies in which vehicle energy 

consumption has been investigated, are reviewed.  

As stated by Jayakumar et al. (2014), accurate estimation of vehicle energy consumption is 

a demanding task because of the effects of different factors such as driving style, wind speed, 



 

 

traffic condition and uncertainties in the vehicle model. In that work, the effect of temperature 

on aerodynamic drag, rolling resistance and mechanical system efficiencies were also 

investigated. In a study by Jimenez et al. (2015), EV energy consumption estimation is 

investigated with focus on driving style. A neural network was trained using driver and traffic 

data to estimate the energy consumption. According to the results presented by Jimenez et al. 

(2015), driving style and driver specifications can cause up to 25% difference in EV energy 

consumption. In a study by Vatanparvar et al. (2018), the effect of driving style on EV energy 

consumption was investigated. The driving behaviour was analysed using artificial neural 

networks and nonlinear auto-regressive methods to build a driving behaviour model.  

In a study by Trigui et al. (2017), EV energy consumption was estimated based on distance,  

vehicle mass and rolling resistance force. The vehicle mass and the rolling resistance 

coefficient were estimated in real-time based on longitudinal vehicle dynamics using a 

recursive least squares algorithm. For this purpose, the relationship between the electrical 

power and the actual mechanical power was formulated. A neural network structure was also 

developed to estimate vehicle mass and rolling resistance coefficient by Trigui et al. (2016). 

Vehicle mass estimation for EV energy estimation and trip planning is extended by Maalej et 

al. (2015). In a study by Adam et al. (2012), an algorithm for estimation of the energy 

consumption of an EV along a predefined route is proposed. A number of stopping points from 

a digital map is provided by the route course including longitude, latitude and altitude. An 

optimized spline is used to interpolate the two-dimensional coordinate and altitude. A 

prediction is performed by the algorithm that enables the driver to slow down at a specified 

distance before the speed limit signs and curves. In a study by Graser et al. (2015), digital 

elevation models (DEMs), as a source of information for elevation data, is used to estimate the 

energy consumption in an EV. That paper demonstrates that the standard of elevation data is 

crucial in energy estimation. In a study by Jo et al. (2013), energy management system of an 

EV is optimised by considering the road geometry information as the most important factor. In 

order to improve accuracy, GPS information and on-board vehicle sensors such as 

accelerometer, wheel speed sensor and gyro were unified by a fixed-interval optimal smoother.  

In this study, an energy consumption estimation model is developed to be used for 

management of EV fleets. An energy map-based FMS algorithm has not been developed before 

in the literature. The existing FMS algorithms work based on ‘distance’ between every two 

points, let say A to B. However, in this paper the idea of using the required ‘energy’ between 

A and B is investigated instead. The proposed energy map-based FMS not only considers the 



 

 

road distance but also other factors such as road grade, vehicle dynamics, and driver model to 

have a better estimation of the required energy when going from A to B. Such an energy model-

based FMS has not existed yet in the market and we believe the results of this study contribute 

to the development and application of such FMS for future generation of autonomous EV fleets.  

The second main contribution of this study is the analysis of energy estimation’s accuracy 

in a larger scale, i.e. a fleet of vehicles. This is very important to know how much the 

performance of a FMS is sensitive to energy consumption estimation accuracy. For this 

investigation, the proposed FMS algorithm is simulated repeatedly by considering different 

levels of uncertainty. The uncertainty is quantified in terms of the tolerance in energy 

estimation error in kWh. This study contains interesting results showing the influence of the 

level of energy estimation uncertainty on fleet’s performance.  

The estimation model is proposed for a typical EV in the market, i.e. Nissan LEAF. Real 

field tests have been conducted to evaluate performance of the proposed model. For this 

purpose, specific routes are considered and terrain specifications are extracted in the model as 

well. The simulation models are developed using MATLAB/Simulink based on real data of the 

vehicle, terrain and driver. The simulation results are then validated against the experimental 

field tests. Finally, a FMS algorithm is developed and simulated. In a case study, a fleet of EVs 

is simulated by considering the required energy which is needed to travel between points in a 

surrounded area. 

2. Mathematical Modelling for Energy Estimation 

Mathematical modelling for vehicle energy consumption estimation is a common technique 

in the literature that was originally developed for conventional vehicles and was used in a 

number of previous studies (Hayes et al. 2011, Delgado et al. 2012, Guzzella & Sciarretta 

2013). In this section, a mathematical model is constructed to simulate movement of a typical 

EV on a specific route. The main goal is to estimate the energy which is consumed for each 

journey before performing the journey itself. Such an energy consumption estimation model 

can be used in energy management systems of individual EV users or it might be used in larger 

scale for management of a fleet of EVs. This study is particularly focused on application of 

such an energy estimator in a FMS. The proposed mathematical model contains three main 

parts: 1) Terrain model, 2) Driver model, and 3) EV model. Combination of a map-based terrain 

model with the EV model is something new that is performed in this study specifically for 

energy consumption estimation in a FMS.  



 

 

2.1 Terrain model 

Terrain model means all the route specifications that affect vehicle energy consumption. 

This mainly includes fixed road features such as junctions, traffic lights, speed limits, road 

gradient (slope) and variable features such as traffic condition, weather condition, road surface 

condition, etc. In this study, only some of these effective factors are considered and the rest are 

left for future works. Two main components of the terrain model in this study are elevation and 

speed profiles over the route (the first block on top left in Figure 1). Both profiles were gathered 

using a GPS phone application which records and stores longitude, latitude, altitude, distance 

and velocity of the vehicle at the sampling rate of 1 Hz. The velocity profile reflects traffic 

condition and speed limits. In fact, a velocity profile is the result of many factors coming from 

the terrain specifications and also from the driving style (the driver model is discussed in the 

next part). The speed profile is directly obtained from the GPS app however, the road gradient 

should be calculated based on point-by-point GPS altitude data. To find the elevation between 

each two points, the difference between elevation (altitude) of the second point and the first 

point is divided by the change in horizontal distance between the two points. A positive 

gradient indicates uphill and a negative one represents a downhill.  

The other components of the terrain model are road surface condition, weather condition 

(rainy and/or windy), speed limits, traffic lights, junctions, distance, traffic condition, etc. 

Although, all of these factors are not investigated separately in this study, their effect on EV 

energy consumption is considered to some extent. For example, the rolling resistance 

coefficient in the model represents the road surface. Weather condition is recorded in all tests 

however, the effects of wind or rain are not modelled (this is discussed more in Section 3.4). 

The speed limits, traffic lights, junctions and traffic condition are considered when the speed 

profile is recorded. It is believed that all these effects are included in the speed profile as a 

result of terrain specification.  Finally, the travelled distance is also recorded by the GPS app 

and is considered in the model. 

2.2 Driver model 

In order to model a driver, a speed-tracking PID controller is used based on previous studies 

in literature (Song and Luo, 2014, Chen et al. 2013, Hayes et al. 2011). The driver model is 

aimed to follow a reference velocity profile that is driven by a human driver during the tests. 

In the simulation environment, the difference between the vehicle velocity and the reference 

velocity is called the tracking error, which is the input to the PID controller. The output of the 

PID controller is a command in response to the error value which can be either an acceleration 



 

 

or a brake command. The output command is normalized between 0 and 1 that means ‘released’ 

or ‘fully-pressed’ pedal status, respectively. In order to tune the PID controller gains, Ziegler-

Nichols technique is used; this involves increasing gains until the onset of instability is reached, 

then using the information derived from this to select parameters (Ziegler et al. 1942). The 

driver model is shown as a single block in Figure 1. The performance of the proposed controller 

and simulation results are discussed later in Section 3.4. 

Referring to the literature, driving style varies from person to person. This is important since 

it can affect EV’s energy consumption. Since, this topic has been investigated deeply in a 

number of previous studies in literature such as Vatanparvar et al. (2018) and Corti et al. (2013), 

it is not repeated here again. In this study, in order to minimise the effect of driving style 

variations on EV energy consumption, the same driver has performed all the experiments. In 

this way, a ‘consistent’ driving style was assured. The goal here is to prove the proposed energy 

estimation concept and the results are obtained for one driver however, the same approach and 

procedure can be repeated for any number of drivers. Regarding the implication aspects, at the 

time being, fleet operators can continuously monitor their drivers and consequently, it would 

be clear which driver is lower/higher than average in terms of energy consumption when 

travelling the same route for the same time. That sort of data can be used to extract a 

‘modification factor’ for each driver to generate a more realistic energy consumption value 

based on the average expected value (to be generated by the estimator).  

2.3 EV model 

This section focuses on the development of an EV model and its simulation under particular 

driving conditions (coming from the terrain and driver models). For this purpose, Nissan LEAF 

EV was selected as a popular vehicle with the most available data in literature. The model 2015 

was selected as it was available for experimental tests. MATLAB/Simulink environment is 

used to realize the EV model as shown in Figure 1. The numerical data of the Nissan LEAF 

2015 are listed in Table 1. Nissan LEAF 2015 has an 80 kW electric motor with maximum 

torque of 289 N.m. The required torque (𝑇𝑟𝑒𝑞) is determined with respect to the driver 

acceleration command (Acc):  𝑇𝑟𝑒𝑞 = 𝐴𝑐𝑐 . 𝑇𝑚.𝑚𝑎𝑥                                                      (1) 

where 𝑇𝑚.𝑚𝑎𝑥 is the maximum torque of the electric motor at a certain speed. In the drivetrain 

model, the required power is obtained from the required torque. The requested power (𝑃𝑟𝑒𝑞) is 

then sent to the battery model to see how much power is available:  



 

 

𝑃𝑟𝑒𝑞 =  𝑇𝑟𝑒𝑞  𝜔∗                                                         (2) 

where 𝜔∗ is the rotational velocity of the motor that is obtained by considering the vehicle 

speed and gear ratio 𝜔∗ = 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑒𝑑𝑅𝑤  𝐺.                                                        (3) 

Available battery power is derived by considering the maximum current and voltage drop 

before hitting the cut-off voltage. Eventually, the tractive force (𝐹t ) is updated based on the 

available torque (𝑇𝑎𝑣𝑙). 𝐹𝑡 = 𝜂𝑚. 𝜂𝑔𝑒𝑎𝑟 . 𝐺 .  𝑇𝑎𝑣𝑙𝑅𝑤 ,                                                     (4) 

where 𝜂𝑚 is the efficiency of the electric motor (that is assumed to be constant), 𝜂𝑔𝑒𝑎𝑟 is the 

efficiency of the gearbox, 𝑅𝑤 is the radius of the wheel, while gear ratio is shown as G. 

The battery pack model consists of smaller components called cell. The required power is 

scaled down to calculate power demand from a single cell, assuming identical cells in the pack. 

After calculating the available power in a single cell, the power is again scaled up. 

Specifications of Nissan LEAF battery pack are listed in Table 2.  

The vehicle speed is calculated by integrating the acceleration that is obtained as a result of 

the superposition of all forces applied to the vehicle including the traction force and all the 

opposing forces due to road gradient (𝐹𝑔), rolling resistance (𝐹𝑟𝑜𝑙𝑙), aerodynamic drag (𝐹𝑎𝑒𝑟𝑜) 

and brake. The total braking force is determined according to the driver’s deceleration 

command.  Brake system includes two parts: friction brake force (𝐹𝑏𝑓) and regenerative brake 

force (𝐹𝑏.𝑟𝑒𝑔). In the simulation model, the ratio of the total braking force X is provided by the 

regenerative braking system while (1 – X) ratio is provided by the friction braking system. The 

parameter X is not constant but it changes according to the velocity in a way to use more 

regenerative braking at high speeds (when more kinetic energy is available). 



 

 

 
Figure 1: Simulink model developed for energy estimation 

 

Table 1: Nissan LEAF 2015 model parameters 

Parameter Description Value Unit 𝑨𝒇 Vehicle frontal area 2.27 m2 𝑪𝒅 Drag coefficient 0.29 – 𝑪𝒓 Rolling resistant coefficient 0.008 – 

g Gravity 9.81 m/s2 

G Gear ratio 7.94 – 𝑴𝒗 Vehicle’s mass 1500 Kg 𝑹𝒘 Wheel’s radius 0.316 m 𝝆 Air density 1.225 kg/m3 𝜼𝒎 Inverter and electric 

motor’s efficiency 

0.88 – 𝜼𝒈𝒆𝒂𝒓 Gearbox efficiency 0.97 – 𝑭𝒃.𝒎𝒂𝒙 Maximum brake force 3500 N 𝜼𝒓𝒆𝒈𝒆𝒏 Regenerative efficiency 0.8 – 

 

 

 

 



 

 

 

Table 2: Nissan LEAF battery parameters 

Parameter Value 

Number of cells in series 98 

Number of parallel circuits 2 

Voltage of cell (V) 4.2 

Capacity of cell (Ah) 32.5 

Capacity of battery pack (KWh) 24 

Cell cut off voltage (V) 2.5 

 

3. Experimental Tests and Simulation Model Verification 

Experimental tests are conducted to validate the proposed energy estimation model 

constructed in Section 2. For this purpose, two Nissan LEAF EVs are tested on four routes. 

The test routes are selected to cover motorway, urban, rural and intercity areas. The vehicle 

movement and its energy consumption are recorded at a fixed sampling rate of 1 Hz.  

3.1 Test equipment 

The test equipment which is used in this study mainly contains the following items: 

 EV, i.e. Nissan LEAF 2015 

 GPS phone application to record EV position and velocity 

 Dash camera, 12-volt charger and a memory card to temporary record of EV 

dashboard information (mainly for recording battery SoC) 

 PC/laptop for data storage and analysis 

Besides being very popular and having most data available in literature, Nissan LEAF has 

this option to see the battery SoC value on the dashboard with the accuracy of 1% which makes 

this car suitable for our investigations. Two rented cars are used in experiments for data 

gathering. Because of the restrictions of rental cars such as limited access time and prohibition 

to change anything in the vehicle, test equipment is selected to be easily installed and able to 

record the required data on the vehicle’s dashboard. Figure 2 shows one of the Nissan LEAF 

vehicles that were used for the experiments in this study, and the information displayed on the 

vehicle’s dashboard. The GPS phone application is utilized to record the vehicle position, road 

elevation, travelled distance and velocity, using the sampling rate of 1 Hz in format of a .gpx 

file. A camera, GZDL Full HD 1080P Mini Dash Cam Car (shown in Figure 2), is used to 

record the vehicle’s dashboard information with the focus on battery SoC. The ScanDisk Ultra 



 

 

32GB micro SDHC memory card inside the camera was used to save the data for around seven 

hours continuously.  

 

Figure 2: Nissan LEAF 2015 that was used in experimental tests 

3.2 Driving route selection 

Four routes were considered for data acquisition including a variety of different sections of 

motorway, urban and rural roads. Another factor for route selection was the location of the 

depot of the rented EVs which was in Dunstable, a town in the UK. As a result, the following 

routes were selected by considering the range of EV: 

 Dunstable to Milton Keynes: The length of this route is 31.2 km, and it mainly 

contains high speed driving in motorway (M1) as shown in Figure 3-(a).  

 Milton Keynes to Cranfield: The length of this route is 8.26 km, and it mainly 

contains urban and rural areas as show in Figure 3-(b).   

 Cranfield to Milton Keynes: This route has exactly the same features as the second 

route, however the road elevation is the opposite (uphill and downhill).  

 Milton Keynes to Dunstable: The length of this route is 26.3 km. To include different 

types of roads, a completely different route was selected to return to Dunstable from 

Milton Keynes as shown in Figure 3-(c). This route includes motorway and urban 

driving. 

 



 

 

 

Figure 3: Test routes: (a) from Dunstable to Milton Keynes, (b) from Milton Keynes to Cranfield and 

return, (c) from Milton Keynes to Dunstable 

3.3 Test data 

The data recorded in our tests is determined by considering the final goal of this study which 

is the energy consumption estimation. So, every parameter that is effective on the vehicle 

energy consumption, should be considered and recorded. Some of these parameters are 

recorded at the beginning of each test manually. However, some other parameters need to be 

recorded during the test using the equipment.  

In this study, the following parameters were observed and recorded before each test: 

 Vehicle (Nissan LEAF 2015 EVs): The exact model of the car was checked and the 

corresponding data from the car manual such as vehicle’s weight, battery capacity, 

etc. were extracted. Vehicle’s weight of this model is around 1500 kg. Battery 

capacity of this model is 24 kWh that is used for energy consumption calculation. 

 Passenger and baggage: exact weight of the passengers and their baggage were 

recorded in each test that was around 140 kg in total. 

 Battery state-of-health (SoH): Information of the SoH is important since the battery 

capacity is used for the energy consumption calculation. In all the tests, battery SoH 

was assumed to be 100% (fresh battery). 

 Eco Mode: Nissan LEAF has an Eco Mode that can be set ON or OFF. When it is 

ON, the acceleration will be limited to save energy. In all the tests, the Eco Mode 

was OFF to allow a normal driving performance.  



 

 

 Regenerative braking/driving mode: Nissan LEAF has two different modes of 

driving, D and B modes. While both modes have regenerative braking, it is applied 

more in B mode. In all the tests, D mode was used. 

 Temperature control system: air-conditioning system or temperature control system 

was OFF during all the tests performed in this study. The reason for that was to avoid 

the complexities coming from energy consumption by this system. There are many 

studies in literature that had particularly investigated the energy consumption of a 

vehicle air-conditioning system.  

 Tyre pressure: since tyre pressure can affect vehicle energy consumption, this was 

checked before each test, to make sure that it is within the standard normal range. 

In addition to the above data, GPS App and the camera record other parameters such as date, 

time, vehicle’s position, road elevation, travelled distance, vehicle’s speed and the vehicle 

dashboard information like battery SoC. The battery SoC and other useful information are 

manually extracted from the camera videos after the test. It is important to synchronise the 

camera data and the GPS data for accurate analysis of energy consumption. To do this, the 

absolute time from the clock which is available in both camera and GPS is used.  

3.4 Data analysis and model validation 

In this section all tests results are presented and analysed. They are also compared with 

simulation results obtained from the model developed in Section 2.  

As mentioned in Subsection 3.2, four routes are considered in road testing. The EVs are 

rented in Dunstable so, the first test route is from Dunstable to Milton Keynes. Then there was 

a journey from Milton Keynes to Cranfield and return, and finally a trip from Milton Keynes 

back to Dunstable. Each complete test contains all the above mentioned routes in the same 

sequence. Four complete tests were carried out using two EVs (two tests for each vehicle) under 

the following conditions:  

 All tests were performed by the same driver.  

 All tests were performed on Sunday morning from 10.00 am to 12.00 pm.  

 All tests were started with the battery at a fully charge state (initial battery SoC was 

between 97% and 100%).  

 In all tests, the EV Eco mode was OFF to have a normal driving.  



 

 

 In all tests, the vehicle air conditioning system (temperature control system) was 

OFF in order to minimize the effect of ancillary power use in the car.  

Table 3 contains the main outcomes of each test including the duration of tests, travelled 

distance, initial and final battery SoC, and the changes in battery SoC that show how much 

energy is used in kWh. The energy consumption is calculated based on the battery’s nominal 

capacity which is assumed to be constant at 24 kWh. So, for example, 50% change in SoC is 

equivalent to 12 kWh energy consumption. In both EVs, the battery state-of-health (SoH) 

indicator on the dashboard was showing 100%, meaning that the original capacity (i.e. 24 kWh) 

is still available. We used that indicator as a reference battery SoH in our model. Every time 

we tested any of the EVs, that gauge was checked to confirm the battery health status. This is 

important because the battery nominal capacity is used in our energy consumption calculations.  

SoH of 100% means the battery is still fresh and the nominal battery capacity (published by 

the car manufacturer) can be used. In a case when SoH is less than 100%, that percentage of 

the nominal capacity should be used instead. 

As presented in Table 3, the whole journey starting from the charging point in Dunstable 

and returning to that point again, would consume different values of energy at different tests. 

The results are discussed in details in the followings. Actually, only two of those tests, i.e. EV 

1 – Test 2 and EV 2 – Test 2, are considered as ‘normal’ in which around 52% of the vehicle’s 

battery SoC is consumed (12.48 kWh).  

In EV 1 - Test 1, while the test duration is normal, the energy consumption is more than 

other tests. The reason for this is because of the windy and rainy weather condition. Wind 

causes more drag resistant force that increases energy consumption. On the other hand, rainy 

weather condition caused the vehicle screen wiper to work continuously for two hours during 

the test. As a result, 19% increase in energy consumption was observed in comparison to the 

expected ‘normal’ value (i.e. 12.48 kWh). Weather condition can also be considered as a 

modification factor in energy consumption estimation. Determination of the exact values due 

to rain or wind also is considered as future works.  

In EV 2 - Test 1, the energy consumption is 13.2 kWh that is a bit more than the expected 

‘normal’ value. The reason is because the vehicle was facing more traffic on that day, as also 

reflected in the journey time. The time of the whole test is 5060 sec for EV 2 - Test 1 that is 

longer than all other tests. The traffic was busier on Dunstable to Milton Keynes and return 

path rather than in Cranfield road. This increase in energy consumption is around 5.6% more 



 

 

comparing to the expected value, i.e. 12.48 kWh. This result can be considered as a 

modification factor (e.g. 5% added energy consumption due to traffic) in our estimations when 

traffic is predicted in that route. Nowadays, traffic data are available everywhere and 

technically it is not a challenging task to consider it for energy estimation before each journey 

in a fleet management system. Because of the limitations in doing more tests in this study, 

traffic condition was not investigated separately however, the results are showing reasonable 

increase in energy as expected.  

Table 3: Nissan LEAF road test data  

Test 
duration 

(sec) 

Travelled 

distance 

(km) 

Initial 

SoC 

Final 

SoC 

SoC 

change 

Equivalent 

energy 

consumption 

(kWh) 

EV1 - Test 1 4873 74.01 98% 36% 62% 14.88 

Dunstable to MK 1653 31.12 98% 76% 22% 5.28 

MK to Cranfield 741 8.35 76% 68% 8% 1.92 

Cranfield to MK 743 8.14 68% 61% 7% 1.68 

MK to Dunstable 1736 26.40 61% 36% 25% 6.00 

EV1 - Test 2 4782 73.87 100% 48% 52% 12.48 

Dunstable to MK 1616 31.09 100% 80% 20% 4.80 

MK to Cranfield 757 8.31 80% 74% 6% 1.44 

Cranfield to MK 723 8.16 74% 71% 3% 0.72 

MK to Dunstable 1686 26.31 71% 48% 23% 5.52 

EV2 - Test 1 5060 73.73 99% 44% 55% 13.20 

Dunstable to MK 1757 31.11 99% 79% 20% 4.80 

MK to Cranfield 726 8.24 79% 72% 7% 1.68 

Cranfield to MK 714 8.07 72% 65% 7% 1.68 

MK to Dunstable 1863 26.31 65% 44% 21% 5.04 

EV2 - Test 2 4774 73.12 97% 45% 52% 12.48 

Dunstable to MK 1760 31.11 97% 79% 18% 4.32 

MK to Cranfield 662 7.92 79% 71% 8% 1.92 

Cranfield to MK 739 8.14 71% 65% 6% 1.44 

MK to Dunstable 1613 25.95 65% 45% 20% 4.80 

 

Figure 4 shows EV velocity vs. travelled distance during all complete tests (including all 

routes, starting and ending at Dunstable). Although the velocity profiles are a bit different due 

to traffic condition variation, they are very similar regarding the maximum/minimum limits, 



 

 

accelerations, etc. These similarities come from the road specifications (speed limits, etc.) and 

driving style which both were almost constant.  

 

Figure 4: EV velocity vs. travelled distance during all complete tests 

Figure 5 demonstrates the EV battery SoC variation vs. travelled distance during all 

complete tests (including all routes, starting and ending at Dunstable). The difference between 

SoC variations is caused by different factors. First of all, the initial SoC values were not exactly 

the same, changing within the range of 97% - 100%. Secondly, energy consumption was 

affected by traffic condition and weather condition in two tests as discussed before.  

 
Figure 5: EV battery SoC vs. travelled distance during all complete tests 

Table 4 demonstrates some comparisons between the test and simulation results. The road 

test data are used for model validation here. The error is defined as the difference between the 

real measured energy consumption during the tests and the energy consumption estimation 

obtained using the proposed simulation model. A negative error value means that the energy is 

underestimated. As listed in the table, the error value is less than 2.25% in three cases however, 

it reaches 12.65% in EV 1 – Test 1. As mentioned above, the energy consumption during this 



 

 

test is more than other tests due to the windy and rainy weather condition. These two factors 

are not considered in the simulation, thus causing the higher estimation error. Except for that 

test, the model is working quite well in the other tests, i.e. prediction error less than 2.25%. 

Table 4: Nissan LEAF simulation results validation using test data 

Test 

Energy consumption 

in test 

(kWh) 

Energy consumption 

in simulation 

(kWh) 

Estimation 

error  

(%) 

EV1 - Test 1 14.88 13.00 -12.65 

EV1 - Test 2 12.48 12.76 2.25 

EV2 - Test 1 13.20 13.15 -0.41 

EV2 - Test 2 12.48 12.50 0.20 

    

In order to present the simulation results, EV1-Test 2 is selected as the test case. All the 

following results are presented for that particular test however, similar trends exist in other 

tests. For example, Figure 6 demonstrates EV battery SoC during EV1-Test 2, obtained from 

two different sources: 1) simulation model and 2) EV dashboard. As shown in the figure, there 

is a good match between the simulation and test results that validates the model.  

 
Figure 6: EV battery SoC during EV1-Test 2, obtained from simulation model and EV dashboard 

Figure 7 depicts EV velocity during EV1-Test 2, obtained from two different sources: 1) 

simulation model (using the proposed PID controller as the driver model) and 2) GPS data 

recorded during the test. The test contains all four routes, starting from Dunstable, going to 

Milton Keynes, then to Cranfield and return. There are two velocity profiles for each route: 1) 

one is the recorded velocity (using GPS) that is imported to the simulation environment as the 

reference velocity, and 2) EV velocity that is obtained from the simulation model using the 

driver model that follows the reference speed. 



 

 

Figure 8 is showing EV battery current and terminal voltage, respectively, during EV1-Test 

2. Both plots are obtained from the simulation model. Because these parameters were not 

directly measured during the tests, it is not possible to validate them directly. However, 

integration of the current (Coulomb counting) that gives the battery SoC, matches quite well 

the experimental data as shown in Figure 6. The maximum current is 180A that is correct since 

each parallel circuit in the pack can deliver up to 90A and there are two parallel circuits in it. 

Voltage of the battery pack also looks reasonable referring back to the number of cells in series 

(i.e. 96 cells). The voltage drop due to the discharge current, depends on the battery internal 

resistance that is the least at very high SoC and then it increases gradually. Referring back to 

Table 3, we know that the battery SoC has changed from 100% to 48% during that test.  

 
Figure 7: EV velocity during EV1-Test 2, obtained from simulation (using PID controller as the driver 

model) and GPS data 



 

 

 
Figure 8: EV battery current and voltage during EV1-Test 2, obtained from simulation model 

 

4. Fleet Management System for EVs 

This study focuses particularly on development of a FMS to be used for a fleet of 

commercial EVs to do delivery tasks in a certain area. Such a FMS problem had been addressed 

in literature before (see for instance Fotouhi et al. 2016) but without taking into account the 

concept of energy. In the proposed FMS in this study, the ‘energy’ required to travel from let 

say point A to point B is considered instead of the ‘distance’ between them. Actually, the 

concept of energy not only contains the effect of distance but also it includes other features of 

the route, vehicle and driver. The results from the previous sections where an EV energy 

consumption estimator was developed, is applied in this section. In fact, the energy 

consumption estimator contributes to the accuracy of EV range estimation by considering the 

features of route, vehicle and driver in a FMS. In order to verify performance of the proposed 

algorithm, a simulation case study is considered as explained next. 



 

 

4.1 Case study 

In this case study, a delivery vehicle routing problem is considered where a number of target 

locations are set to be reached by a fleet of EVs. The EVs should be managed in a way that 

they have enough charge to return to a charging depot after getting as many target points as 

possible. So the proposed FMS algorithm schedules and coordinates the trips of all EVs to 

cover all the target locations. The assumptions are: (i) the target locations are fixed and are 

available a day before, so this is not a real-time scheduling like taxi booking, and (ii) all EVs 

would return to the charging depot after finishing their tasks.   

In this case study, one hundred target points are distributed randomly in a squared area with 

dimension of (50 × 50) km2 as shown in Figure 9. The origin point (x=0, y=0) of Cartesian 

coordinate is considered to be in the left bottom corner. The depot is assumed to be at the centre 

of the area (x=25, y=25). The FMS problem is defined to get all the 100 points by using any 

number of EVs but trying to minimise the overall mileage of the fleet. To solve this problem, 

first we need to know the energy that is required to travel from each single point to another. 

The outcome of this analysis would be a 100 × 100 matrix in our case study (since we assumed 

to have 100 target points) including all energy values (in kWh) from each point to all other 

points: 𝑝𝑜𝑖𝑛𝑡1⋮100  1 ⋯ 100[ 0 ⋯⋮ ⋱ ⋮⋯ 0 ] .                                                       (5) 

Such a matrix can be completed and regularly updated using the proposed energy 

consumption estimator. Because here the FMS is not going to be designed for a specific city or 

area, the locations of the points are randomly distributed. The energy values are calculated 

based on the distance between each two points and also the gradient between them. The 

gradient represents the altitude difference or elevation between the two points. For the sake of 

simplicity, a constant gradient of 0.005 is considered in the area shown in Figure 9. The 

elevation of each point (z value) is proportional to the distance of that point to the origin (0,0). 

So, the lowest point (z=0) is the origin and the highest elevation at (50,50) is: 𝑧𝑚𝑎𝑥 = 0.005 × √(50 − 0)2 + (50 − 0)2 = 0.3536                       (6) 

For any other point (𝑥𝑖, 𝑦𝑖), the elevation (𝑧𝑖) is obtained as follows: 𝑧𝑖 = 0.005 × √𝑥2 + 𝑦2                                               (7) 



 

 

The gradient of 0.005 is a reasonable number since it also matches with the data obtained from 

the measurements presented before. The most elevation change happened in the route between 

Milton Keynes and Cranfield where the elevation changes around 40 m over 8 km distance as 

shown in Figure 10.  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 = 408000 = 51000                                        (8) 

Having the distance and elevation between all 100 points, the energy consumption values 

between each pair of points is calculated as presented in Table 5. 

The average energy consumption obtained in the field tests was 179 Wh per km. In order to 

get a better understanding about this number, we calculate the energy due to distance between 

the furthest pair of points (i.e. the origin and the point on right top corner):   𝐸𝑑−𝑚𝑎𝑥 = 0.179 × √502 + 502 = 12.66 𝑘𝑊ℎ                         (9) 

This energy is a bit more than a half of the Nissan LEAF battery pack’s capacity (i.e. 24 kWh). 

To consider the effect of gradient, a modification factor is added to the energy calculation 

based on a gradient factor (GF) and the difference in elevations between the two points. So, we 

have: 𝐸 = 𝐸𝑑 + 𝐸𝑔                                                        (10) 𝐸𝑑 = 0.179 × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒                                                (11) 𝐸𝑔 = 𝐺𝐹 × (𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛2 − 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛1)                                   (12) 

Choosing GF=10, the second term of energy (𝐸𝑔) would change between 0 and 3.536 kWh 

(i.e. 𝐺𝐹 × 𝑧𝑚𝑎𝑥) depending on the distance between the two points. So the dominant term in 

the energy consumption is 𝐸𝑑, however the smaller term due to gradient (𝐸𝑔) would be also 

considered.  

 



 

 

 

Figure 9: Random target locations and depot in the centre 

 
Figure 10: Variation of altitude vs. distance in route from MK to Cranfield 

 

Table 5: Energy matrix for a case study including 100 target points 

Point 

No. 
1 2 3 4 5 … 99 100 

1 0.0 7.4 5.9 4.4 1.4 … 10.5 8.1 

2 5.5 0.0 7.1 2.3 5.6 … 8.1 4.9 

3 8.4 11.4 0.0 10.1 6.1 … 6.5 6.7 

4 3.3 3.1 6.5 0.0 3.6 … 9.0 5.9 

5 2.3 8.3 4.5 5.6 0.0 … 9.5 7.6 

… … … … … … … … … 

99 10.5 10.0 4.1 10.2 8.7 … 0.0 3.4 

100 7.9 6.6 4.0 6.9 6.5 … 3.2 0.0 

 

 

 



 

 

4.2 Fleet management algorithm 

In this section, a FMS algorithm is developed to plan the trips of EVs to reach all target points. 

It is obvious that the number of EVs that are required to reach all the target points depends on 

the number of points, their locations and also the range of EVs in general. In the proposed FMS 

algorithm, there is no limitation for the maximum number of EVs; thus the vehicles are 

dispatched until all the tasks are completed. The proposed trip planning algorithm works based 

on the nearest neighbour algorithm. The first EV starts from the best initial point (which is 

determined in Step 2 in the algorithm), and then goes to the nearest point next to the first point, 

and so on. This process continues until the battery charge of the first EV is low, which means 

not enough to return to the depot. At this state, the first EV’s plan is completed. It then returns 

to the depot and the remaining points will be covered by other vehicles. The second EV starts 

from the best initial point among the remaining target points and its journey continues until the 

battery is low charged. More EVs will be dispatched if it is required until all the target points 

are covered. The proposed algorithm can be summarized as follows:  

Step 1: All EVs are fully charged at depot before starting the journeys, 

Step 2: A vector of target points and the best initial point are allocated to each EV based on the 

EV range and demanded energy calculations, 

Step 3: Route planning of EVs is performed according to the nearest-neighbour procedure 

explained by Fotouhi et al. (2016) until all the allocated target points are covered.  

One drawback of this algorithm is its dependency on the starting point. A solution to manage 

this limitation is to try all points as initial condition (100 points in this case) and the algorithm 

runs many times to find the best point to start. The best initial point is determined based on an 

objective function (𝑓): 𝑓(𝑋𝑏𝑒𝑠𝑡 𝑖𝑛𝑖𝑡) = 𝑀𝑖𝑛(𝑓(𝑋𝑖)),    𝑓𝑜𝑟 𝑖 = 1 ⋯ 𝑛                                (13) 

where 𝑋𝑏𝑒𝑠𝑡 𝑖𝑛𝑖𝑡 is the best initial point, 𝑋𝑖 is a target point, 𝑛 is the number of all target points 

(𝑛 = 100 in this case). The function 𝑓 is the total energy consumed by all EVs using the 

proposed FMS algorithm:  𝑓(𝑋𝑖) = ∑ 𝐸𝑗𝑁𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑗=1 , when starting from point 𝑖                      (14) 

where 𝐸𝑗 is the total energy consumed by the 𝑗𝑡ℎ EV, and 𝑁𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ is the number of EVs being 

dispatched.   



 

 

Since the algorithm is quite fast, running it many times does not create high computational 

cost. The time required to run the algorithm with 100 points is 0.28 seconds using a desktop 

PC with Intel(R) Core(TM) i7-4600U CPU 2.10GHz processor.  

It should be noted that the proposed nearest neighbour FMS algorithm gives a quick, but not 

the optimal solution. There is no analytical method to obtain the ‘optimal’ solution of such a 

problem rather than the direct search method that tries all possible scenarios. However, direct 

search is not applicable when the number of points is quite high. Other optimisation techniques 

can also be applied, however none of them guarantees the global optima. Investigation of 

different optimisation techniques to be used in the FMS algorithm is out of the scope of this 

study. Regardless of what the FMS algorithm is (Nearest Neighbour, ACO, etc.), we need an 

accurate estimation of the required energy to travel between two points for instance from point 

A to point B. This paper focuses on this estimation problem rather than the optimisation 

algorithm itself. Another assumption in this study is considering only one charging depot at the 

centre that can be extended in future studies. When more charging stations are used, optimal 

locating of the stations would be another research area as discussed by (Gimenez et al. 2016). 

In addition, refuelling time (as discussed by Jeong & Illades Boy, 2018) is not considered here 

since slow battery charging is used instead of fast charging or battery swapping.  

4.3 FMS simulation and analysis 

The proposed FMS is simulated for the case-study presented in Section 4.1. Figure 11 

demonstrates the FMS simulation results for a case which is NOT started from the best initial 

point (just starting from a random point). In this case, seven EVs are dispatched to cover the 

100 target points. As shown in the figure, all target points are finally reached by the FMS 

algorithm although this requires with more effort than needed. The total energy consumed by 

the fleet is  132 kWh in this case. If the FMS starts from the best initial point, only five EVs 

are needed to cover all the target points and the total fleet energy consumption is only 112 

kWh. The FMS simulation result using the best initial conditions is shown in Figure 12. 

Individual EVs’ energy consumptions are listed in Table 6 which demonstrates that the 

proposed FMS algorithm works properly. The result shows that each EV’s energy consumption 

is less than 24 kWh which was considered as the battery capacity. 

Referring back to the proposed EV energy consumption estimator, the importance of an 

accurate estimation is investigated at a larger scale here in a FMS. Such an estimator would 

use vehicle data, terrain data and driver data to generate an accurate EV energy consumption 



 

 

between each two points in FMS. Of course, the accuracy of any estimator is limited and some 

uncertainties are expected in this FMS calculation. The discussion here is to know how the 

uncertainties in the estimation would affect the overall FMS performance. For this 

investigation, the proposed FMS algorithm is run repeatedly by considering different levels of 

uncertainty. The uncertainty is quantified in terms of the tolerance in energy estimation in kWh. 

For example, if the uncertainty in energy estimation is around 1 kWh, the effective range of 

the EVs in the fleet is considered to be 23 kWh instead of 24 kWh. By this way, the FMS would 

overcome the uncertainty however, it is performing in a more conservative way. Similar 

simulation is done when the uncertainty is 2 kWh by considering 22 kWh energy for each EV 

in the fleet and so on. Table 7 contains interesting results showing the influence of the level of 

uncertainty (mainly due to lack of accuracy in energy estimation) on fleet’s performance. The 

results demonstrate how significant the role of an energy estimator is in an EV FMS. In average, 

every one percent improvement in the estimation accuracy can improve the overall fleet energy 

consumption around one percent. This can be quite a significant amount of energy in a large 

fleet. In our case study of a small fleet with less than 10 EVs, 1% improvement is equivalent 

to 1.1 kWh for each operation. This can be scaled-up when the number of EVs is increased 

from 10 to 10,000 for example, that leads to 1100 kWh per day (assuming one operation each 

day). 

 
Figure 11: FMS simulation results with random initial condition 



 

 

 

Figure 12: FMS simulation results with the best initial condition 

 

Table 6: EVs’ energy consumption in the FMS case-study using the best initial condition 

EV number EV energy consumption  

1 23 kWh 

2 24 kWh 

3 22 kWh 

4 23 kWh 

5 19 kWh 

Total  111 kWh 

 

Table 7: Overall fleet’s energy consumption as a function of estimation uncertainty 

Energy estimation 

uncertainty 

Number of EVs 

dispatched 

Overall fleet’s 
energy consumption  

Increase in overall 

fleet energy 

consumption 

0 5 111.03 kWh 0 % 

0.5/24 = 2.08 % 6 113.69 kWh 2.39 % 

1/24 = 4.16 % 6 113.69 kWh 2.39 % 

2/24 = 8.33 % 6 117.38 kWh 5.72 % 

5/24 = 20.83 % 8 132.71 kWh 19.53 % 

 

5. Conclusions 

In this study, a simulation model was developed for EV energy consumption estimation to 

be used in a FMS. The proposed estimator includes EV, driver and terrain models. The 

proposed estimator’s performance was validated against field test results on specific routes. 

Although the proposed estimator demonstrates a very good performance (an error less than 3% 

in energy consumption estimation except in the case of windy and rainy test condition), its 



 

 

limitations should also be considered to recognise the improvement directions. For example, 

in this study only a limited number of routes were tested. However, the same approach can be 

applied to other routes to cover all target points in an area where FMS operates. Another 

limiting assumption was the driver model. According to some literature, human drivers have 

different driving styles and consequently, various energy consumption values are expected 

when they drive the same route. In this study, one driver is used to eliminate the inconsistencies 

and errors due to driving style variation. A good reason for this simplification is the existing 

trend towards driverless cars that is expected to happen in the near future. A fleet of driverless 

cars can operate more consistently and consequently the energy consumption estimation would 

be possible using the proposed approach. Regarding the implication aspects for non-

autonomous vehicles, in current practice, fleet operators can continuously monitor their drivers 

and consequently, it would be clear which driver spends lower/higher than the average energy 

consumption when travelling the same route during the same time. That sort of data can be 

used to extract a ‘modification factor’ for each driver to generate a more realistic energy 

consumption value based on the average expected value (to be generated by the estimator). 

To extend this study for a practical application, two components should be added to the 

estimator: (i) weather condition, and (ii) traffic condition. The weather condition including 

wind and rain were not considered in the proposed model. The results demonstrated that the 

wind can cause more drag resistant force that increases energy consumption. On the other hand, 

rainy weather condition caused the vehicle screen wiper to work continuously. As a result, 19% 

increase in energy consumption was observed in windy and rainy weather compared to the 

average expected value during normal weather condition. Traffic condition was kept consistent 

by doing the tests always on the same day and during the same time, whereas in reality, traffic 

condition can change significantly. The good thing is that the traffic data is available online. 

So, to improve the result, online traffic data can be used in predictions by considering it as a 

modification factor in energy consumption estimation.  

Finally, it was demonstrated how the performance of a FMS can be improved using an 

accurate energy estimator. This is very important to know how much the performance of a FMS 

is sensitive to energy consumption estimation accuracy, which is another novelty of this study. 

The simulation results demonstrated a case-study in which the total energy consumption of an 

EV fleet was improved significantly by improving the estimation accuracy that was showing 

how the uncertainties in EV energy consumption estimation would limit the overall 

performance of a FMS. 
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