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A B S T R A C T

A CMSX-4 3-point bend specimen was statically loaded under hot corrosion conditions and SEM, (S)TEM and
EDX techniques were used to analyse the cracking generated. Sulphur, chlorine, sodium and oxygen were found
at the crack tip, and an influence of loading on the corrosion mechanism’s preference to interact with either the γ
or γʹ was observed. The microscopy analysis is in support of the corrosive mechanism being a combined stress
and electrochemical corrosion linked with low temperature hot corrosion, where crack propagation occurs as a
result of localised corrosion enhanced material degradation. High magnification EDX mapping identified W as
segregating to the γʹ at room temperature.

1. Introduction

Gas turbine (GT) systems are used for a range of applications in the
aerospace and power generation sectors. In addition to economic
pressures to improve the efficiencies of GT systems, emissions legisla-
tion and incentives are further driving the industry to develop more
efficient designs [1–3]. In response to these drivers, GT manufacturers
are looking for ways to increase the turbine inlet temperatures to im-
prove the thermodynamic efficiency of the turbine system [4]. One of
the key limiting factors in achieving this is the turbine blade’s material
capabilities at high temperature e.g. its corrosion resistance and per-
formance. In order to optimise the capabilities of materials and com-
ponents, accurate lifing techniques are required which account for the
service conditions the component is subjected to.

However, it has been observed in recent studies that static tensile
loading combined with conditions consistent with those required for
low temperature hot corrosion (LTHC), can lead to crack initiation and
propagation not predicted by conventional fatigue or corrosion lifing
models [5–7]. These findings are indicative of LTHC stress corrosion
cracking (SCC) mechanism, which requires a corrosive salt deposit such
as Na2SO4, a gaseous environment containing SOx (SO2 / SO3) and a
tensile loading condition. The mechanism was generated in a single
crystal (SC) superalloy, and required both stress and hot corrosion
conditions to be simultaneously present. Cracking occurred below the
expected fatigue stress intensity threshold (KTH) and without fatigue
cycles, and propagated on preferential orthogonal {001} planes.

A better understanding this cracking behaviour is particularly im-
portant in lower temperature regions of GT blades which are suscep-
tible to LTHC operating between 500–700 °C, and are additionally
under tensile loading. Such conditions are often present in the under
platform regions of 1st stage GT blades. 1st stage turbine blades are
commonly manufactured using single crystal (SC) Ni-based superalloy
systems due to their good high temperature mechanical and oxidation
properties [8,9].

1.1. Stress corrosion cracking mechanisms

Previous research into environmental cracking behaviour of super-
alloys has largely focused on two general approaches to quantify and
explain the effects of combined loading and LTHC. In the first, the effect
of LTHC on increasing the rate of fatigue crack propagation, is quan-
tified through consideration of the loading cycles to specimen failure,
where a specific mechanistic explanation was not proposed [6,10–12].
The second approach is based on a mechanism of stress concentration
generated by LTHC pitting, this pitting is identified as a fatigue crack
nucleation accelerator [13–15]. Both these approaches would require
further development to include time dependant crack propagation re-
sulting from a LTHC SCC mechanism.

Due to the limited published work available on LTHC SCC, a wider
review of SCC cracking mechanisms has been conducted. In general
terms SCC can be described as the interaction between mechanical load
and corrosion of a material, specifically resulting in crack initiation and
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propagation [16]. There are three corrosion mechanisms commonly
attributed with SCC in both ferritic and nickel-based alloys, these are
described below.

Firstly, SCC can be generated with electrochemical corrosion con-
ditions; this has been studied in ferritic and nickel-based alloys, where
corrosion was controlled through application of an electrochemical
potential [17,18]. Specimens were submerged in a liquid electrolyte
and an electrical potential applied across them. A mechanism has been
proposed where corrosion is generated locally at the anodic region as a
result of the presence of acidic metal ions [19]. Due to the localised
nature of electrochemical corrosion, when combined with stress it is
well documented as generating the initiation and propagation of SCC
cracking [20–22].

A second, process by which SCC commonly occurs, is by stress as-
sisted grain boundary oxidation (SAGBO) in polycrystalline materials
[23–25]. It has been hypothesised that SAGBO occurs due to the for-
mation of niobium oxides on grain boundaries in Ni-based superalloys
[26]. Whilst not directly applicable to SC alloys, SAGBO is an example
of stress assisting oxidation in crystalline materials, and it has ad-
ditionally been found that Cl and S containing vapours can further
accelerate gas phase induced SAGBO in Ni-based superalloys [27,28].

Thirdly, SCC can be generated by the active element, hydrogen; this
is referred to as hydrogen embrittlement and has been reported in Ni-
based alloys at temperatures between 250–430 °C [29,30]. Whilst there
is no definitive mechanism for hydrogen embrittlement, it is generally
considered to occur as a result of absorption or diffusion of cathodic H+

hydrogen, achieved through a partial pressure of hydrogen generating a
concentration gradient causing adsorption to occur [31,32].

Several mechanisms for hydrogen embrittlement have been pro-
posed, these were summarised by Lynch [33], with the overall me-
chanism being referred to as adsorption induced dislocation emissions
(AIDE). AIDE occurs as a result of both adsorbed hydrogen enhancing
de-cohesion and weakening of interatomic bonds (HEDE), and hy-
drogen enhancing local plasticity (HELP) [34]. Hydrogen diffusion has
been studied and measured in SC nickel FCC systems [35,36].

1.2. Oxidation and corrosion of superalloys

Superalloy systems are designed to form protective oxide scales
which inhibit and prevent the continued oxidation of the substrate
alloy. Two of the most beneficial oxides formers for superalloys to form,
are chromia (chromium oxide) and alumina (aluminium oxide). It has
been found that chromia formers often perform better for lower tem-
peratures up to 700 °C and alumina at higher temperatures above
900 °C [37].

Corrosion mechanisms such as chloridation (the formation of metal
chlorides) [38], and sulphidation (the formation of metal sulphides)
[39,40], can facilitate/accelerate the dissolution of protective oxide
scales and cause accelerated corrosion and oxidation of the alloy sub-
strate. However, these mechanisms require the presents of Cl/S species,
such species can be fluxed onto the material from a gaseous species,
through solid particle deposition or both as described by F. S. Pettit and
G. H. Meier [41].

LTHC is a corrosion mechanism known to effect GTs, particularly
the combustion and turbine components. This mechanisms occurs as a
result of the deposition of corrosive species, it is historically reported to
occur between 600 °C – 800 °C [42–44]. However, recent studies have
generated LTHC in CMSX-4 at temperatures as low as 575 °C [45], and
stress has been credited as further lowering the temperature required
for LTHC to propagate [6]. LTHC is dependent on both a deposit flux of
salt species and a gas flow containing SOx, particularly SO3 which are
required to form and maintain the liquid mixture on the material sur-
face.

It is generally thought that LTHC corrosion occurs through the
formation of a liquid deposit, which results in the dissolution of the
protective oxide scale, through acidic fluxing where dissolved SOx is the

oxidising agent. It is further believed that this occurs due to an elec-
trochemical mechanism, where corrosive oxyanion fused salts such as
Na2SO4 are ionically conducting, establishing an electrochemical cir-
cuit [46,47]. The salt species can be acidic when high in SO3, dissolving
oxides as a cationic species, or basic when low in SO3 as an anionic
species [48].

2. Experimental methods

A three point bend jig was designed for use within a hot corrosion
furnace (Fig. 1a), the three point bend jig applied a constant displace-
ment condition to a specimen (Fig. 1b). Three point bend specimens
were machined with the cube planes ([001] symmetrical set) aligned as
shown in Fig. 1, while the secondary orientation was not controlled. To
calculate the displacement required to meet the initial load condition,
BSI standard calculations were used [49], these were further validated
with finite element (FE) analysis, the results of which have been pre-
viously published [5].

LTHC conditions representative of under platform turbine condi-
tions were generated at a temperature of 550 °C using a deposit recoat
methodology [50]. The deposit used was 80/20mol% Na/K sulphate,
which was deposited every 100 h of testing to maintain a flux of 5 μg/
cm2/h. A test gas of air/300 ppm SOx was used and the test specimen
was exposed for 200 h in total made up by two 100 h cycles.

To compare corrosion effects under both tension and compression,
both the opposing tensile and compressively loaded sides of the speci-
mens were coated with salt deposit equally. The remaining sides were
masked off using aluminium foil in order to prevent their exposure to
LTHC and more accurately control corrosion in the areas being studied.

TEM/STEM images were taken with a JEOL 2100 F microscope,
fitted with an aberration corrector and operating at 200kv. EDX ana-
lysis was carried out using an EDAX Optima 60 windowless SDD de-
tector, and the analytical data was analysed using EDAX TEAM soft-
ware.

Fig. 1. (a) Specimen and jig mounting geometry (b) Three point bend test jig.
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3. Results and discussion

Cracking was observed exclusively on the specimen surface exposed
to tensile loading. SEM imaging of the cracked cross section of the
specimen is presented in Fig. 2. Crack propagation on the cube planes
can be seen, with corrosion preferentially interacting with the γʹ pre-
cipitates around the crack tip region. Comparison of corrosion occur-
ring under tensile load (Fig. 3) with that occurring on the same spe-
cimen under compressive load (Fig. 4), shows a preference for corrosion
to attack the γʹ precipitates under tension and γ channels under com-
pression. This implies there could be a stress related effect is influencing
the preference of the corrosion to attack either γʹ/γ.

High magnification TEM imaging of the γ/γʹ interface confirmed

crystallographic coherence between the two phases (Fig. 5) at room
temperature. Imaging of the crack tip (Fig. 6) showed cracks cutting
through γʹ precipitates and propagating on the cube planes. Ahead of
the crack tip, localised {111} slip traces/stacking faults were visible in
γʹ. These crystal defects were local to the crack tip, however, and do not
appear to have influenced the propagation path of the crack in previous
crack growth, as remnants of other faults were not found along the path
of the crack.

A fracture ahead of the crack tip was also visible (Fig. 6a), this is
most likely associated with an out of plane crack not fully visible in the
TEM lamella. EDX mapping conducted in the STEM at the crack tip
(Fig. 7) shows the presence of Na, and small concentrations of S in-
dicating the corrosive atmosphere had penetrated to the crack tip. It can
also be noted that the corrosive atmosphere at the crack tip appears to
facilitate oxidation with oxide growth at the crack tip visible. No evi-
dence of diffusion or absorption of corrosive elements can be seen
ahead of the crack tip in the EDX mapping that was conducted, nor does
the crack appear to interact with the crystallographic slip defects visible
ahead of the crack tip. It is therefore suggested that corrosion enhanced
de-cohesion or corrosion enabled reduction in fracture energy locally at
the crack tip, is the more likely mechanism resulting in crack ad-
vancement and propagation.

Fig. 2. (a) General crystallographic alignment for SEM/TEM images presented
(b) Back scattered SEM image showing< 100> crack propagation with pre-
ferential gamma-prime corrosion attack.

Fig. 3. Back scattered SEM image showing corrosion attack under tensile load
with preferential gamma-prime attack.

Fig. 4. Back scattered SEM image showing corrosion attack under compressive
load with preferential gamma attack.

Fig. 5. Dark-field TEM image of gamma/gamma-prime interface showing good
lattice coherence between the phases.
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Fig. 7 appears to show strong segregation of elements between the γ
and γʹ phases, with a higher concentration of Cr, Co and Mo in the γ
channels, and a higher concentration of Ni, Al, Si, Ti and Ta in the γʹ
precipitates. However, elemental maps such as these need to be ana-
lysed with care, since overlapping peaks in the EDX spectra can lead to
anomalous results in the elemental maps, if not taken into account.
Overlapping or adjacent peaks for O and Cr, Si and W, S and Mo, and Ni
and Ta, for example, should all be borne in mind. All the segregation
effects noted above do seem to accord with previously published EPMA,
STEM and APT results on this alloy. The exceptions are W, Ta and Al,
which show segregation gradients towards the γʹ/ γ interfaces, but
within the γʹ precipitates. For SC superalloys, such as CMSX-4, the γʹ
phase contains Ti, Al and Ta; whilst the γ typically contains Mo, Co, Cr
and Re [51,52]. However, W and Ir (if present) are reported to be
nearly equally distributed between the γ/ γ’ phases with Ni having a
slight tendency to enrich the γ’ [53].

The starting point for any discussion about segregation between the
γ and γʹ phases is the Ni-Al phase diagram [54]. This shows that al-
though Al is soluble in a Ni matrix, the solubility decreases markedly as
the temperature is reduced. However, even at 400 °C, a Ni solid solution
can absorb about 8 at% of Al before the ordered γʹ phase is formed. To a
first approximation, this can be understood when the sizes of the re-
spective elements are considered. Table 1 lists the Goldschmidt radii of

the most common elements in CMSX-4 [55]. In particular the table
shows that Al is much larger than Ni; hence as the composition of the
alloy becomes richer in Al, the ordered γʹ phase is preferred, since this
keeps the Al atoms as far apart as possible in a face centred cubic lat-
tice. The sizes of Cr and Co are also similar to that of Ni and as such they
tend to sit on the Ni sites in the γ or γʹ phases. In the specific case of
CMSX-4, they tend to segregate primarily to the γ phase. On the other
hand, the refractory elements such as Mo, W and Ta have much larger
radii than Ni and hence might be expected to substitute for Al in the γʹ
structure. Indeed Ta, with a similar radius to Al does indeed segregate
strongly to the aluminium sites in the γʹ structure [56]. The situation for
Mo and W is less clear cut, with Mo reported to segregate to the γ phase
in a Ni-Al-Mo ternary alloy [57]. First-principles calculations by the
same authors, however, do suggest that when Mo is present in the γʹ
structure, it would substitute preferentially on the Al sub-lattice.

The partitioning between γ and γʹ is often described by a parti-
tioning ratio Ki

γʹ/γ, which is defined as the ratio of the concentration of
element i in the γʹ precipitate to its concentration in the γmatrix. Hence
in the case of Ta, for example, KTa

γʹ/γ> >1. The partitioning of W is
more complex. In a quaternary Ni-Al-Cr-W alloy, for example, it has
been reported [58] that there was twice as much W found in the γʹ
phase as the γ phase. However, Amouyal et al [59] showed that par-
titioning of W is strongly influenced by the presence of Ta in a Ni based

Fig. 6. (a) STEM image of the crack tip showing defect contrast (b) High angle annular dark field STEM image of crack tip (c) Higher magnification STEM image from
the location shown in image (a) ahead of the crack tip, showing stacking defects or slip traces in the gamma-prime on {111} planes.
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superalloy. Hence, for example, in a ternary Ni-Al-W alloy, W segre-
gates to the γʹ phase with KW

γʹ/γ = 1.4 but in a multicomponent alloy
containing 1 at% Ta the W segregates to γ with KTa

γʹ/γ = 0.92. Ta is
such a strong γʹ segregant that its presence leads to site competition
between the Ta and W. Indeed, Thermo-Calc calculations by Amouyal
et al [60] suggest that the value of KW

γʹ/γ decreases with increasing Ta
concentration with a cross-over (KW

γʹ/γ>1 to KW
γʹ/γ<1) for a Ta

concentration of 2 at% at 800 °C. In an alloy such as CMSX-4, which
contains additions of Mo and Re as well as W and Ta, all the interactions
between the different components may need to be considered. How-
ever, our results would appear to show that the W/Ta and W/Al in-
teractions are the most dominant. Ta does segregate very strongly to the
γʹ phase in CMSX-4 but there also appears to be an inverse correlation
between the Ta concentration and the concentration of W near the
edges of the γʹ precipitates. The W concentration is similar at the centre
of the γ and γʹ regions, but the W signal rises strongly within the γʹ as
the edges of the precipitates are approached. It then falls sharply at the
γ/γʹ interface. The Ta and Al concentrations are very high at the centre
of the γʹ precipitates but drop near the edges of the γʹ as the W signal
increases, as shown in the line profiles in Fig. 8. The distance over
which these changes are observed is several nm – too wide for beam
broadening or instrumental broadening effects due to the proximity of
the interface – and are not mirrored in the Cr or Re profile, for example.

Hence there must be another explanation for the change in W segre-
gation near the edges of the γʹ regions. Since the change extends over
several nm, it is unlikely to be due to electronic structure changes as-
sociated with the γ/γʹ interface, which are usually confined to first or
second nearest neighbours [60]. A more likely explanation is the in-
fluence of strain on the segregation profile. It has been shown, for ex-
ample, that variations in Mo concentration can have a major influence
on lattice misfit and creep resistance of multicomponent alloys, al-
though there was no evidence of Mo segregation at the γ/ γʹ interface
[61,62].

It has been reported that the misfit parameter, δ, given by δ=2(a γʹ-
a γ)/ (a γʹ+ a γ), where a γʹ and a γ are the lattice parameters of the γʹ
phase and the γ matrix respectively [63], should have a positive value
at both low and high temperatures, but decrease in magnitude at high
temperatures, to achieve optimum creep performance [64]. In order to
minimise any major interface strain, the segregation of W from the γ
matrix into the γʹ zone may occur, either during high temperature heat
treatment – a steady state condition – or in a more transitory way, as
the sample is cooled. Given the low diffusivity of W in a Ni matrix
compared to other substitutional elements [65], the former explanation
seems more likely. The presence of a W gradient within the γʹ phase
prior to testing at 550 °C would appear to reinforce that view.

Further EDX mapping of the fracture feature visible ahead of the
crack tip in Fig. 6 is presented in Fig. 9. It can be concluded that the
feature has been exposed to the corrosive environment as it contains
environmental contaminants Na, O and S. This supports the hypothesis
that the feature is a section of an out of plane crack rather that an
internal defect. The feature also contains a small amount of Cl, the
presence of which is most likely explained by contamination in the Na/
K sulphate compound used for the deposit during testing. However, its
presence at the crack tip suggests that chlorides could be significant in
regards to load and LTHC interaction mechanisms, and further chloride
based salts should be considered in future research.

Due to the static loading condition, it is clear that crack advance-
ment is enabled by the local environment and conditions at the crack
tip under combined loading and LTHC.

Stress/strain effects on the electrochemical potential or mechanical-

Fig. 7. STEM EDX mapping showing elemental segragation between the bulk γʹ/ γ and the crack tip post-exposure.

Table 1
Goldschmidt atomic radii (in nm) of
the main elements in CMSX-4 [61].

Ni 0.125

Al 0.143
Co 0.126
Cr 0.128
Ta 0.147
W 0.141
Re 0.138
Ti 0.147
Mo 0.140
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Fig. 8. Line profiles for Al, Ta, W, Cr and Re across a ϒʹ/ϒ/ϒʹ interface showing the build-up of W near the edge of the ϒʹ particles and the corresponding reduction in
Ta and Al.

Fig. 9. STEM EDX mapping of feature ahead of the crack tip containing environmental elements, determined to be related to an out of plane crack.
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chemical interactions have been observed and reported in crystalline
materials [66,67], where it was demonstrated that increased tensile
deformation can result in an increase in the anodic potential of the
material and result in accelerated corrosion rates.

Following the deduction that an electrochemical corrosion me-
chanism is plausible at the crack tip, mechanical-chemical effects in the
γ/ γʹ microstructure provide an explanation for the strain influenced
preference of corrosion attack of the phases independently. Where the
local strain conditions of the phases affects their anodic potential to a
differing extent. Further experimental studies of stress effects on the
preferential LTHC attack of the SC γ/ γʹ microstructure would help to
further evidence this explanation.

A schematic of the proposed localised electrochemical hot corrosion
cracking mechanism at the crack tip is presented in Fig. 10. The me-
chanism is comparable with other similar and more widely understood
forms of electrochemical SCC [68][19], and draws on understanding
gained from literature on the electrochemical nature of LTHC. The
proposed LTHC cracking mechanism is evidenced by the finding of Na
in the crack, determined through EDX analysis. The presence of Na in
the crack is suggestive to there being a liquid melt likely containing
Na2SO4 present under higher temperature LTHC test conditions. This is
because the Na was likely to have been in liquid solution in order to
have been able to migrate from the specimen surface to the crack tip at
the test temperature of 550 °C. This is consistent with the expected
chemistries of the liquid deposits formed in LTHC. The presence of a
liquid electrolyte within a crack which was generated without any fa-
tigue cycling, is strong evidence of an electrochemical SCC mechanism.

4. Conclusions

A form of high temperature hot corrosion SCC has been studied in a
SC superalloy. Crack initiation and advancement was dependant on the

simultaneous occurrence of LTHC and loading. The presence of Na
within the crack, suggests that liquid electrolyte containing Na2SO4 is
present at higher temperatures under LTHC conditions. A LTHC
cracking mechanism has been proposed which was informed by both
the experimental work and analysis presented, and review of relevant
literature.

It is proposed that deformation of the γ/ γʹ could result in me-
chanical-chemical interactions effecting the chemical potential of the
microstructural phases and resulting in preferential corrosion attack
under different loading conditions, as were observed under compres-
sion and tension experimentally.

Detailed EDX mapping found that tungsten segregated close to the
γ/ γʹ interface, but was concentrated in the γʹ in this alloy contrary to
common historical understanding, an explanation of W occupying Ta or
Al sites on the edges of the γʹ has been discussed. The impact of W and
elemental segregation within the microstructure of SC superalloys, on
the performance and specifically the corrosion performance of super-
alloys is not well understood and has therefore not been discussed.
However elemental segregation within SC superalloys continues to be
an important area of research for their continued development.
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