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A B S T R A C T

Big science and ambitious industrial projects continually push technical requirements forward beyond the grasp
of conventional engineering techniques. An example of these are the extremely tight micrometric assembly and
alignment tolerances required in the field of celestial telescopes, particle accelerators, and the aerospace in-
dustry. Achieving such extreme requirements for large assemblies is limited, largely by the capability of the
metrology used, namely, its uncertainty in relation to the alignment tolerance required. The current work de-
scribed here was done as part of Maria Curie European research project held at CERN, Geneva. This related to
future accelerators requiring the spatial alignment of several thousand, metre-plus large assemblies to a common
datum within a targeted combined standard uncertainty (u y( )c

tg ) of 12 μm. The current work has found several
gaps in knowledge limiting such a capability. Among these was the lack of uncertainty statements for the thermal
error compensation applied to correct for the assembly's dimensional instability, post metrology and during
assembly and alignment. A novel methodology was developed by which a mixture of probabilistic modelling and
high precision traceable reference measurements were used to quantify the uncertainty of the various thermal
expansion models used namely: Empirical, Finite Element Method (FEM) models and FEM metamodels. Results
have shown that the suggested methodology can accurately predict the uncertainty of the thermal deformation
predictions made and thus compensations. The analysis of the results further showed how using this method a
‘digital twin’ of the engineering structure can be calibrated with known uncertainty of the thermal deformation
behaviour predictions in the micrometric range. Namely, the Empirical, FEM and FEM metamodels combined
standard uncertainties ( u y( )c ) of prediction were validated to be of maximum: 8.7 μm, 11.28 μm and 12.24 μm
for the studied magnet assemblies.

1. Introduction

Large-scale scientific and industrial research projects require state
of the art engineering to fulfil the desired requirements. In such pro-
jects, micrometre accuracy of assembly and alignment of large com-
ponents can be critical. Alignment of large structures is defined as the
procedure where large components or assemblies are dimensionally
arranged into a superstructure to deliver certain desired functions at a
given tolerance. This process can be performed actively by the use of
actuators and guidance systems [1] or passively by reliance on well-
designed kinematic features and tight manufacturing tolerances [2].
“Large” can be defined as any component or assembly that is challen-
ging to measure to a low uncertainty by industrial high-performance
Coordinate Measurement Machines (CMMs) or as defined by Ref. [3]
larger than 1m. In the alignment of subassemblies into a

superstructure, one needs to know the location of the subassembly
feature of interest with respect to its' global reference for alignment. For
the alignment of particle accelerators, the feature of importance is the
magnetic axis, or as defined in Refs. [4,5] location within each focusing
magnet aperture at which the magnetic field is minimum or null. The
global reference for alignment is most commonly a network of stable
stretched wires or lasers [5–7]. In particle accelerators, magnets are
used as electromagnetic lenses, directing and focusing the accelerated
particles to the desired experimental stage. Small misalignments of the
focusing magnets electromagnetic axis can lead to significant errors
over the large machine size and cause downgraded collisions and de-
tection rates in the experiment detectors [8] (Fig. 1).

The motivation of this work comes from the tight requirements
concerning the alignment of components in the Compact Linear
Collider study (CLIC) [9] for the future 40 km range linear accelerator.
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The alignment tolerance of each magnetic axis of CLIC components
should be within a 12 μm (1 σ) cylindrical uncertainty zone with respect
to a global reference. The global reference is provided by a series of
overlapping stretched wires, each one of 200m length [7] (Fig. 1).

To achieve global alignment of all active magnetic components, a
multiple step procedure of pre-alignment measurements and active
positioning with the help of ultra-precision actuators is envisaged
[7,10]. In this procedure, the ultra-precision actuators are to be used for
positioning the subassemblies and their magnetic axis to their desired
aligned location with respect to a stretched wire used as a global re-
ference as shown in (Fig. 2).

In this figure a heavily simplified sketch of the smallest CLIC ‘T1’
series assembly as shown further in (Fig. 3). The largest magnet as-
sembly model ‘T4’ has identical geometry as T1 but with length near to
2m instead of the 629mm shown in (Fig. 3).

In advance of the active alignment procedure, calibration (pre-
alignment) measurements would be required as input information for
the actuation system. Pre-alignment measurements quantify the spatial
location of each focusing magnet's electromagnetic axis (Fig. 2 (A))
with respect to each assembly's local coordinate frame. The spatial lo-
cation of each magnet electromagnetic axis is defined/realized by best

fitting a thin stretched wire to its location via a magnetic measurement
system [4,11]. Following the magnet axis defining thin wire is mea-
sured with respect to the local for each assembly coordinate frame
defined by multiple (more than three) spherical measurement targets
called fiducials (Fig. 2 (B)). All those procedures are done in the same
place and time - by high-performance multisensory CMM system using a
mixture of non-contact and tactile measurement probes. The sphere
fiducials defining each assembly coordinate frame (Fig. 2 (B)) are ri-
gidly fixed to each assembly and linked by a kinematic coupling to the
removable Wire Positioning System (WPS). The WPS is a high precision
non-contact sensor [12,13] measuring the absolute spatial location of
fiducials/assembly with respect to the global tunnel reference – a
stretched wire (different than the one used of the magnet axis mea-
surement). The sensors provide absolute 2 D coordinates of a stretched
wire canter with respect to its own mounting base. It operates on ca-
pacitive-based principle and was developed and calibrated bespoke for
wire-based alignment in accelerators. It has an evaluated standard
measurement uncertainty of below 1 μm [13,14]. In this way, the
complete metrology frame is measured/closed and the spatial location
of each magnet axis is known with respect to the global alignment re-
ference – the tunnel stretched wire. Following the pre-alignment

Fig. 1. Top: CLIC 40 km + concept impression, Jura mountains, Genevois. Bottom: a) Beam bunches collide due to successful alignment of accelerator active
components. b) Beam bunches missing collision due to unsuccessful alignment of accelerator components.

Fig. 2. Simplified cross-section sketch of magnet assembly with a quadrupole focusing magnet axis - A and assembly local coordinate frame defined by network of
spherical fiducials – B.
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procedures performed in a metrology laboratory, assemblies are en-
visaged to be transported and installed in the accelerator tunnel. Once
installed they will be actively aligned and stabilized during accelerator
machine operation with the help of 5° of freedom ultra-precision ac-
tuators [9] (Figs. 2 and 3).

The largest and most critical contributor to the alignment un-
certainty budget is linked to the pre-alignment measurements. The
spatial location of each magnetic axis (A Fig. 2) with respect to the local
coordinate frame of each assembly (B Fig. 2) has to be known during
accelerator operation to a targeted standard uncertainty (u y( )c

tg ) of
12 μm (Fig. 4). The required combined magnetic, non-contact and
tactile measurements are at the limit of today's’ three-dimensional
metrology performances for 2m size assemblies. Moreover, tempera-
tures of the assemblies during alignment and operation can vary sig-
nificantly from that experienced during metrology. This temperature
variation can cause large thermal deformations that need to be com-
pensated, and the uncertainty of the compensation accounted for in the
alignment budget. The measurement performance required for this
procedure and the required knowledge of the geometrical state of the
assemblies during accelerator machine operation makes this task ex-
tremely challenging.

In Particle Accelerator Components' Metrology and Alignment to the
Nanometre-scale (PACMAN) program [6] held at CERN, strategies were
studied on how this targeted uncertainty could be realistically achieved.
This included the evaluation of the task-specific uncertainty for the
metrology procedures performed in a controlled laboratory environ-
ment and simulating and measuring the expected thermal effects during
accelerator operation conditions. For this purpose we developed and
integrated magnetic, electric axis metrology and geometrical survey in

one place and time - the measurement environment of a high accuracy
CMMs (Coordinate Measurement Machine) (Fig. 5, a)).

The pre-alignment measurements were performed with temperature
stability of± 0.1 °C (ISO 14644-1 Class 1 metrology thermal environ-
ment) with a magnet powered at the minimum current required for
magnetic axis measurement (4 A was chosen as detailed in Ref. [11] as
the minimum amperage required for axis measurement). This low
current level was employed to verify the optimum performance of our
metrology system under stable temperature conditions with minimal
thermal effects (and consequently dimensional instabilities). Magnetic
water cooling was not employed during measurement in order to
minimize potential vibrations or thermal loads induced by the fluid
flow. The full task-specific uncertainty evaluation for this pre-alignment
experiment (including any biases due to amperage current heating) was
estimated to be in the order of 7 μm (1s) and complete method and
procedure communicated in Ref. [15]. Although pre-alignment mea-
surements were within the desired budget at the tightly controlled
thermal conditions in the laboratory [15], these would not hold during
the alignment procedure inside the accelerator tunnel under opera-
tional conditions. Alignment (and thus metrology data) would be
needed when the measurand/assembly is fully operational and subject
to; a high coil current, water cooling in operation and influence from
surrounding tunnel air streams. This change in thermal conditions
would create an expected internal thermal field gradient of 10 °C or
more for the assembly components temperature compared to that ex-
perienced during metrology.

The change of the assembly's thermal profile during accelerator
operation would create a shift of the magnetic axis with respect to the
sphere fiducials spatial location, as initially measured at pre-alignment.
This change can be defined as the Total Thermal Deformation (TTD) of
assembly metrology frame. Any such TTD of the metrology frame
should be quantified, corrected and the uncertainty of this correction
UTTD added to the bench measurements uncertainty UBench measurments

[μm] budget Eq. (1).

−
⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

= ⎡
⎣⎢

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
+

⎯ →⎯⎯⎯⎯⎯ ⎤
⎦⎥

±

−

Pre Alignment Bench measurments TTD U pre

alignment

where

− = +U pre alignment U UBench measurments TTD
2 2 (1)

In the PACMAN project, the uncertainty of alignment measurements
within the laboratory (UBench measurments) were evaluated to be in the order

Fig. 3. CLIC T1 Module prototype CAD, Left: Side view, Right: Front view.

Fig. 4. The pre-alignment metrology defined as: spatial location (with un-
certainty) of the magnetic axis (defined by minimum two 3D coordinates P1-
P2) with respect to each assembly local coordinate frame (defined by minimum
3 fiducial spheres at the centre of one them).
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of 6.91 μm–7.96 μm (1s) (depending on the size of assembly measured
and CMM system used) [15]. This represented over 50% of the available
12 μm u y( )c

tg budget, leaving between 8.9 μm and 9.8 μm (1s) budget for
the uncertainty (UTTD) of applying a compensation for the TTD [15].

The total thermal drift could not be measured directly by the
PACMAN integrated metrology system at the time of the campaign. The
reason was that the bespoke non-contact wire axis measurement CMM
head was in development and not available during the campaign. Thus
the thermal drift was defined as the sum of the magnet axis and fiducial
drifts to a common frame of reference to which both could be measured
via alternative systems as detailed in Ref. [14]. The post metrology shift
of the assembly fiducials and magnetic axis can be determined in-
dependently with respect to a common stable frame of reference, this
being the magnet to 5 dof actuators mount base. In the current studies,
this is referred/translated as the granite CMM table on which the
simplified assembly is mounted via metrological cube as shown in
Fig. 8. Thus, the TTD will be equal to the sum of the spatial shift of the
fiducials [Total Fiducial Thermal Error (TFTE)] and spatial shift of the
magnetic axis [Total Magnetic Axis Thermal Error (TMATE)] (2) with
respect to the common reference fixed on the granite base. This being a
coordinate system defined by four 1 cm (diameter) metrology spheres
rigidly embedded on the granite base.

⎯ →⎯⎯⎯⎯⎯
=

⎯ →⎯⎯⎯⎯⎯⎯⎯
+

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
TTD TFTE TMATE (2)

where

⎯ →⎯⎯⎯⎯⎯⎯⎯
=

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
±TFTE NDE UNDE( )fiducials fiducials (3)

and

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
=

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
±TMATE NDE UNDE( )magnetic axis magnetic axis (4)

where NDE=nominal differential expansion and UNDE=uncertainty
of NDE.

⎯ →⎯⎯⎯⎯⎯
=

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
+

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
± =TTD NDE NDE U U f

UNDE UNDE

[ where

( ,

fiduciasls magnetic axis TTD TTD

fiducials magnetic axis (5)

The UTTD can be determined by either the analytical law of propa-
gation of uncertainties or by Monte Carlo method (GUM Supplement 1
[16]) applied to the vector equation describing TTD in the local frame
of reference. The TTD has to be measured or predicted and compen-
sated for in each of the 20 000 envisaged magnet assemblies in the CLIC
machine, with targeted uncertainty ofUTTD

tg ≤ 8.9 μm (1s). This targeted
prediction uncertainty with a traceability to the SI realisation of the
unit of metre [17]. By traceable it means with an established and
documented unbroken chain of calibrations with respect to SI unit de-
finition, which all contribute to the measurement or prediction un-
certainty [18]. Validating the feasibility of such an endeavour would fill
one of the major technological gaps in the CLIC study. Direct online
alignment measurements of magnet axis and fiducials during

accelerator machine operation might not be an economically viable
solution for 20 000 assemblies. Simulations and mathematical model-
ling, as studied in the state-of-art (summarised in Ref. [14]), do not
provide valid statements of uncertainty, thus preventing their direct
application to this scenario. These challenges acted as the main moti-
vation for the authors.

In the current work, we proposed a method by which a valid
statement of uncertainty (U )TTD for applying a mathematical compen-
sation model for the TTD can be evaluated. This was done by quanti-
fying and distinguishing between bias ε[ ] and the variability [V(x)1/2]
of the mathematical models used for the deformation prediction. We
performed and validated the method by proving we can successfully
evaluate the uncertainty of three different types of thermal deformation
prediction models used in CLIC context for the TTD prediction: an
empirical, FEM and FEM meta-models (also known as surrogate FEM
models). Our experience in validating this method for uncertainty es-
timation of thermal deformation model predictions can be considered
significant and transferable to areas in precision engineering where the
knowledge of modelling and prediction uncertainty can be critical.

2. Thermal effects modelling and associated uncertainty

Dimensions are inherently linked to the temperature at which they
are measured. Measurements of an assemblies dimension taken at dif-
ferent thermal conditions have an error proportional to the expansion
or contraction of the materials used for the assembly components and
the nature of the assembly fixture and mechanical constraint [19–21].
The dimensional deformation of the alignment targets of interest can be
defined as Nominal Differential Expansion NDE( ). The uncertainty of
the knowledge of NDE or any compensation applied for its correction in
alignment metrology can be defined as UNDE. Nominal expansion of
solids and assemblies can be generalised in the following steps as dis-
cussed in Refs. [14,22–25] (Fig. 6).

The change in heat transfer conditions through an assembly body,
or between the assembly the environment (including internal heat
sources) can cause changes in the thermal field of the measurand. The
change in the thermal field state is related to internal material stresses
that cause dimensional deformation among the body or bodies of the
measurand assembly. Any change of the heat transfer state acting on an
assembly will create changes in the thermal field within its components
thus causing them (and ultimately the assembly) to vary from its
nominal dimensions, as defined during metrology. The thermal and
dimensional changes from nominal conditions can be classified in three
general ways: Uniform temperature changes other than that during

Fig. 5. a) Pre-alignment metrology completed in laboratory environment, b) Active alignment of components in tunnel i.e. operational environment.

Fig. 6. Relationship between heat transfer and deformation.
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metrology; static temperature gradients deviating from metrology environ-
ment temperatures and dynamic thermal variation/gradients [19]. In this
work, a concentration on static temperature gradients deviating from me-
trology environment temperatures is made as most likely in the CLIC
project context.

Change in thermal conditions via heat transfer (Convection,
Conduction, Radiation) during machine operation after metrology
would cause a change in the heat transfer state ΔQstate and thus a
change in the thermal field (

⎯ →⎯⎯⎯⎯⎯⎯⎯
ΔTfield ) of the assembly components Eq.

(6):

⎯ →⎯⎯⎯⎯⎯⎯⎯
= =ΔT f ΔQ f ΔConduction ΔConvection ΔRadiation( ) ( , , )field state (6)

Change in the thermal field would cause internal strain and thus
expansion in the various components of the assembly constrained in a
way dictated by the mechanical assembly design and constraints. The
combined effect of all assembly components nominal expansions NE( )i
(as guided by the assembly mechanical constraints) would define the
final shift of the metrology frame. The metrology frame deformation
can be defined as the deformation of an alignment feature (fiducial, or
magnetic axis) B with respect to the magnet axis A. In the case of
magnets, A can be the magnetic axis (Fig. 2 (A)) and B can represents
an alignment fiducial mounted on the assembly (Fig. 2 (B)). Any shift of
the location of A with respect to B would be due to the combined
function of all dimensional deformations attributed to the assembly
components defined as

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
−NDEA B – (Nominal Differential Expansion of A

with respect to B) Eq. (7):
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⎛
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= = =

NDE f NDE f ΔL

L
f α ΔT)A B

i

n

i
i

n
i

i i

n

L field
1 1 1

i i
(7)

Thus to understand, quantify and model this process, the change in
thermal state, heat transfer condition ΔQstate, materials expansion
coefficients αL i and/or nominal expansion

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
−NDEA B of metrology

frame have firstly to be experimentally evaluated [21].
The change of the thermal field (

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯
ΔT )fieldi within an assembly com-

ponent can be quantified by mixture a of heat loads measurements and
modelling applying the equations of heat transfer. Simplified schematic
of the assumed heat transfer analysis mechanism for solid assemblies
can be seen in (Fig. 7).

There would be a i) number of components that would in total ex-
perience positive change of increase of heat loads/Inputs (ΔQini) and
thus surface area temperature (ΔTface ini). There would be b i) number
of components that would experience a general decrease of heat flow
(ΔQouti) and thus surface temperature. There would be c i) number of
inter-component interfaces for which there will be internal heat transfer
(ΔQtransi) and thus internal assembly faces change in temperature
variation (Fig. 7). If all boundary changes (internal and external) of
heat transfer are measured or calculated (refered as TLi, with a state-
ment of uncertainty- UTLi), the knowledge can be used to calculate the
change in the assembly components thermal field. This in consequence
can be used to calculate any change in internal stresses and thus di-
mensions of the assembly as function of the current mechanical con-
straints.

Currently, the best official reference defining such deformation
evaluation procedures is an existing ISO technical report ISO/TR 16015
[21]. This work illustrates the significance of monitoring the thermal
effects on measurand pieces and the importance of evaluation and
correction of any such systematic error are addressed. In this work, the
measurand is considered as a single component and not as a complex
assembly. ISO/TR 16015 [21] addresses the combined use of experi-
mental deformation evaluation and basic arithmetic calculations to
quantify the thermal effects as a worst case scenario during metrology.
However, it does not discuss the implication of computational predic-
tion models based on online thermal load measurements. It concludes
that such techniques would be too complex and lacking a statement of
uncertainty. However, in the case of CLIC, the measurands are hundreds
of complex assemblies, dimensionally deforming during machine op-
eration, upon which direct deformation measurement might be un-
economical and unfeasible. Thus knowing if mathematical compensa-
tions (based on heat load measurements as input to the models) are
possible with a known and traceable uncertainty (in the μm range)
would fill an important gap of knowledge.

Prediction for Nominal Differential Expansion (NDE) can be done
via three different families of models: Analytical, Numerical or Empirical
(based on virtual or experimental data). The literature review per-
formed related to these family of models has not found a validated
application with an accurate and traceable statement of uncertainty for
the compensations made [5,26–29]. However, several state-of-the can

Fig. 7. Thermal loads boundary and internal conditions of assembly.
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be seen working in a similar direction, acknowledging the common
challenge of thermal deformation and metrology of large assemblies.
Research done [27] for the Light Controlled Factory EU project [30] has
shown how online thermal measurements can be mixed with FEM for
compensation thermal deformation. However, a lack of uncertainty
evaluation of the FEM modelling has been observed. In the same work,
it was discussed as a possible line for future research. Work performed
for Herschel-Space observatory [26] and research at the National In-
stitute of Standards and Technology USA (NIST) for virtual FEM Me-
trology [29] have shown the potential of Probabilistic FEM for quan-
tification of model outputs sensitivity to the uncertainty of input
parameters. However, the approach has not been observed applied and
validated for real assemblies deformation prediction with associated
uncertainty.

Studying the literature, gaps of knowledge and work on the
PACMAN project has defined the following hypothesis which is further
studied and verified by the current work:

Thermal deformations can be predicted accurately by models with
known uncertainty of the prediction that being a function of measured model
bias ε[ ] and estimated model variability [ V(x)1/2] - a function of model
input parameter standard uncertainties.

Due to the high assembly complexity of CLIC (Fig. 3) assembly
modules, it was decided to design and manufacture and assemble ad-
ditional simplified prototype that can still serve as proof of concept
(Fig. 8) but with lower complexity.

The simplified assembly was formed by striping all necessary aux-
iliary equipment and leaving only essential for the studies magnet Steel
yokes, Aluminium ‘alignment arms’ [referred also as ‘Beam
(Aluminium)’ in Fig. 2] and Copper coils. The complete assembly was
supported on the metrology granite CMM table via granite cube elim-
inating any possible influences due to the 5 dof high precision align-
ment system. In the current paper modelling and experimental studies
are related only on the ‘simplified’ magnet prototype Fig. 8 having di-
mensions of its metrology frame similar to ‘T1’ (Fig. 3).

The simplified prototype was studied both inside CERN accelerator
tunnel laboratory (Fig. 9 A)) and inside Leitz Infinity CMM system at
CERN Metrology Laboratory (Fig. 9 B)). Thermal Load Sensors (TLS)
were installed among and around the magnet assembly. By thermal
load sensors, we imply a combination of heat-flux chip, surface and air
mounted temperature sensors [31–33]. A combination of those were
installed on each of the assembly sub-components faces – side, top
bottom. TLS were installed as well on the granite mount cube, granite
mount base and water thermal control system Inlet and outlet.

As an alternative to the CMM measurement, a WPS system [12,13]
with stretched carbon fibre wire (stable location reference) was utilized
as an alternative independent system that can measure the NDE be-
tween a stretched wire and a sensor in the micron level uncertainty.
Reference precision spheres fiducials were permanently glued to the

surface of the quadruple magnet, alignment arms, granite cube and
granite mount base. Each sphere was measured, and it's centre defined
by the CMM used for the NDE evaluation. The spheres used were 6mm
diameter stainless steel ball bearings of Class 3 (ISO-3290) with a
maximum out of roundness error of 1 μm. They were permanently glued
compressing them toward the metal face with a thin layer of Araldite®

epoxy glue with CTE of 90× − −K10 6 1.
Following the initial location measurements, the thermal loads on

the assembly were varied via a combination of water chiller thermal
control system [34] and air fan as shown in Fig. 9. The temperature
state of the assembly was thermally stabilized at various steady states
differing from the state at which the initial alignment measurements
were taken in the range of± 10 °C (mean temperature of the magnet
faces). A vibrating stretched wire magnetic measurement system
[35–37] was used to best-fit the wire at the magnet axis correspondent
for each studied thermal equilibrium state away from the initial
alignment one. The absolute location of the reference stretched wire
was measured at each such instance from a separate set of WPS sensors
mounted directly on the assembly Fig. 9. The data from the tunnel
experiments (Fig. 9 A)) was used for the creation of Empirical (3.1),
PFEM (3.2) and Meta-model based on PFEM (3.3). The experiments
were then repeated within the metrology laboratory where WPS system
was used for bias 3 estimation of the prediction models and the CMM
system was used as independent means for validation of the model's
prediction (Fig. 9 B)). The WPS system was decided as an adequate
device for measurement of model bias due to its low and traceable to
the metre measurement uncertainty [12].

3. Methodology proposed

Every measurement (or prediction) error can be split in two main
general categories, systematic and random. Measurand uncertainty as
defined by the Guide to the Expression of Uncertainties GUM [16,38] is
a function of the complete measurement (or modelling in the current
case) process variability being combined with the systematic unknown/
uncorrected but accounted for errors. The standard relies on the fact
that all understood systematic errors are quantified and corrected, and
if not corrected they are accounted for in the standard uncertainties
part of the budget. If we accept that the prediction of Nominal Differ-
ential Expansion (

⎯ →⎯⎯⎯⎯⎯
NDE ) by the use of a model (Empirical, FEM or FEM

Meta-model) is a form of ‘virtual measurement’, we can estimate its
uncertainty by following GUM (Supplement 1) methodology [16]
quantifying its prediction standard deviation [V(x)1/2] and its bias from
the true values (Fig. 10).

Following the suggested method, a probabilistic version of the
prediction model (being Empirical, FEM or a FEM based Meta-model) is
performed by propagating the uncertainty in each of the model control
parameters to its final output following Monte-Carlo based sampling.

Fig. 8. Simplified prototype for studies, Left: Front view, Right: Side view.
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For the empirical model a direct Monte-Carlo on a regression model
(based on Thermal Loads TLi and drift measurements −NDEA Bi) was
performed for the variability study. For the FEM and it's meta-models
‘Design of Experiments’ [39], ‘Latin Hyper Cube’ [40–42] and other
efficient sampling and ‘design space’ studying techniques combined
with High-Performance Computing grids [43] were applied. The
variability of the output of such a probabilistic model could be accepted
as the model uncertainty according to GUM Supplement 1 standard.
This as long as the model is ‘perfect’, with zero bias and mean-variance
from the true value. However, no matter how precise models are they
would always include bias from reality which has to be quantified and
added to the uncertainty statement. To quantify a measurement or
model bias, a reference to a true or so-called ‘conventional true value’

must exist. For thermal deformation, the true value can be accepted as
the real deformation of an assembly of interest. Thus an reference ca-
libration experiment with sufficiently small, known and tracable
statement of uncertainty must be performed. Thus comparing the real
measured deformation to the one predicted by the ‘virtual model’. Fi-
nally, the uncertainty of the prediction model can be defined as a
function of the measured Bias and the modelled Variability (Eq. (8)).

= +U f Bias Variability( )NDEmodel (8)

This methodology is further expanded for Empirical, FEM and FEM
meta-models in following paragraphs 3.1, 3.2 and 3.3.

Fig. 9. A) Experimental setup for gathering data of Nominal Differential Expansion of Magnet axis with respect to alignment reference (used for empirical regression
model creation) B) Experimental setup for CMM validation measurements of model predictions.
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3.1. Estimation of the empirical model's prediction uncertainty

The uncertainty of any empirical model prediction is assumed to be
related to the extrinsic uncertainty of the experimental measurements
used for its creation −U U,NDE i TLA B i and the bias (εemp) of its perfor-
mance representing the true value. The complete process is visually
represented in (Fig. 11).

The prediction uncertainty of the empirical model was defined as
the empirical model variability [ =v f P TL β( ( ), ˆ)T

i ] directly summed to
its uncorrected bias εi (Eq. (9)). This direct bias adding concept was first
defined as the ‘SUMU method’ in Ref. [44] and in this work applied in
the field of uncertainty propagation for empirical models.

= = +−U f v ε f P TL β ε( , ) ( ( ), ˆ)NDE TL emp
T

i emp( )ˆA B i (9)

where P TL( )T
i is the polynomial basis function (of the thermal loads in

this case),

= … … … …P TL TL TL TL TL TL TL TL TL TL TL TL TL( ) [1 ]T
i 1 2 3 1

2
2
2

3
2

1 2 1 3 2 3

(10)

and β̂ is a vector containing the unknown regression coefficients. These
coefficients were estimated from the measured sample set of −NDEA Bi
and TLi. By using matrix notation, the resulting vector of estimated
regression coefficient was as defined in Eq. (11).

=
⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯− −β P P P NDEˆ ( )T T A Bi

1 (11)

Where ?? is the matrix containing the basis polynomials for the
evaluated thermal samples/measurements TLi and

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
−NDEA Bi is the

vector of the measured/evaluated experimentally drifts.
In Eq. (9) εemp the bias between the true value and the predicted one

by the empirical model. This can be estimated by high accuracy

Fig. 10. Deformation model uncertainty estimated by a mixture of probabilistic modelling for model standard deviation estimation and comparison to real assembly
thermal behaviour for model bias estimation.

Fig. 11. Flowchart expressing the uncertainty of empirical model prediction as sum of its prediction variability and bias flowchart.
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measurment with known and tracable statement of uncertainty pro-
viding the reference to a true value. In the current campaign, the re-
gression model was created by measurements made with a WPS high
precision metrology system [12,13], at various thermal gradients
within CERN underground tunnel laboratory (Fig. 9 A)). The empirical
model bias was then evaluated by the same WPS measurement system
but within CERN Metrology laboratory at similar but not identical
steady state thermal conditions – (not exact airstream and temperature
condition and chiller set temperatures - Fig. 9 B)). The WPS measure-
ments were with pre-establish uncertainty −UNDEA Bwps. Thus, the bias
error was estimated with respect to the worst possible case
( ±− −NDE UA B NDEA Bwps) adding the (1σ) uncertainty toward the valida-
tion measurment. The bias was defined as the maximum measured
difference between the mean of the empirical model prediction PDF and
the validation measurment with it's added uncertainty (Eq. (12)).

= ± −− − − −( )NDE U με max { }{ }emp
NE

A B NDE NDE NDEˆ ˆ PDFi A Bwps A Bi A Bi (12)

The variability =v f P TL β( ( ) ˆ)T
i of the Empirical model, was esti-

mated via Monte-Carlo method by propagating the uncertainty of
P TL( )T

i and β as a function of the measurement uncertainties used for
their definition via the regression analysis:

= = −( ) ( )U f U U f U Uand ,P TL TL β TL NDE( ) ˆT
i i i A Bi 13)

The −U U,TL NDEi A Bi were experimentally evaluated [14] for the sen-
sorial systems used. From their PDFs, random sampling (300 000
iterations) was performed and the sampled values were propagated
through the complete regression model for the evaluation of P TL β( ), ˆT

i
and thus the regression model iteratively. Thus the empirical model
output −NDÊA Bi was described by the realisations PDF (Fig. 11) with
mean - − −μ NDE NDE{ ˆ }{ ˆ }PDFA Bi A Bi

representing the most likely value and a
variability - − −S NDE NDE{ ˆ }{ ˆ }PDFA Bi A Bi represented by the standard deviation
of the prediction. The nominal deformation prediction variability
(scaled by the coverage factor k =1,2 or 3) summed with the mea-
sured (during model validation) bias εi provided the statement of un-
certainty for the Empirical model for this particular assembly and
thermal load ranges (Eq. (14)).

= ∗ + +− −( )U k S ε ε{ }NDE NDE emp empˆ ˆ PDFA Bi A Bi (14)

3.2. Estimation of FEM models prediction uncertainty

The procedure for evaluation of FEM predictions ( −NDÊ )A B i and
uncertainty ( −UNDÊA Bi

) was defined following the same methodology:
the mixed approach of Probabilistic FEM (for model variability esti-
mation) and model bias evaluation (by experimentation). The FEM
based error compensation approach is more flexible than the Empirical
modelling as, once validated, it can be used to predict nominal ex-
pansion with associated uncertainty for condition ranges outside the

ones performed experimentally. A visual summary of the method can be
seen in Fig. 12.

The initial step was the creation of a thermo-mechanical FEM
model. The model was created in ANSYS FEM software using the 3D
manufacturing models of the components. Mechanical constraints were
set exactly as those for the real assembly. The boundary conditions –
thermal loads (TLi), material expansion coefficients (αLi), internal and
external for the assembly heat transfer coefficients (HTCˆ i ) were set to
those measured during alignment calibration experiments. The next
step was to parametrise the FEM model and to link ANSYS and Dynardo
[43,45] statistical software, thus, performing probabilistic FEM mod-
elling. In this way, the input parameters were defined as Probability
Density Functions (PDF) which quantify the uncertainty in their
knowledge. These PDFs were iteratively sampled and propagated
through the FEM model acting as a ‘virtual experiments’ similar to
state-of-the-art work presented in Refs. [39,46]. This step was achieved
by applying the Latin Hyper Cube technique in order to reduce the
sample size for the computationally expensive FEM model. Only a few
hundred (∼250) FEM model iterations were required [47] for
achieving a probabilistically significant result for the

− −NDE NDE{ ˆ } { ˆ }PDFA B A Bi i via this approach. High Performance Com-
puting (HPC) was used for performing the iterations in parallel on se-
parate cores, processors and servers as suggested by Ref. [43] in order
to reduce and optimise computation time and costs. The output from
the numerous iterative FEM simulations (‘virtual experiments’) formed
a PDF with associated mean ( − −μ NDE NDE{ ˆ }{ ˆ }PDFA Bi A Bi

) and variability
( − −S )NDE NDE{ ˆ }{ ˆ }PDFA Bi A Bi . The mean of the output PDF was accepted as the
most likely nominal expansion prediction according to the model.
Following this, the bias of the Probabilistic FEM model was evaluated
by comparing its mean to the traceable to the metre accurate mea-
surements of deformation performed by 2x independent systems – a
CMM and a WPS (each with known uncertainty −U )NDE cmm or wpsA B . The
validation measurements were acting as a reference to the real Nominal
Differential Expansion (NDE). The bias error was estimated with respect
to the worst possible case which is the direct sum of the NDE measured
and its measurment uncertainty +− −

NDE U( )A B NDEA B
cmm or wps (Eq. (15)).

= ± −− − − −( )NDE U με max { }{ }NE
A B NDE NDE NDEFEM ˆ ˆ PDFi A B

cmm or wps
A Bi A Bi (15)

The final prediction uncertainty of the Probabilistic FEM was eval-
uated following the ‘SUMU method’ for summation of uncorrected bias
as first defined in Ref. [44] (Eq. (16) and Fig. 12).

= ∗ +− − −( )U k S ε{ }{ }NDE NDE NDEˆ ˆ ˆ femPDFA Bi A Bi A Bi (16)

An alternative to this approach would be to account for the mea-
surement bias within the probabilistic (Mote-Carlo) variability study by
considering the output results a bi-modal distributed variable with
peaks at + or – the bias value. In the current paper however the ‘SUMU
method’ was used.

Fig. 12. Uncertainty propagation of a FEM model as sum of its prediction variability and bias flowchart.

I. Doytchinov, et al. Precision Engineering 59 (2019) 134–149

142



With the current procedure, predictions with associated uncertainty
were performed in non-real-time. Even a highly optimized HPC system
failed to provide even near-real-time computing due to the required
several hundred computationally intensive FEM iterations. Thus, such
studies could be used only a priori to any actual effect for studying the
expected performance with known uncertainty. As near or real-time
compensation results in uncertainty statements (based on Probabilistic
FEM) were required, an additional sub modelling procedure (meta-
modelling [48]) was prepared in advance, creating a simplified analy-
tical model based on the FEM studies. This procedure is detailed in the
next section.

3.3. Estimation of the FEM meta-models prediction uncertainty

The concept behind meta-modelling is to use the FEM instead of the
real assembly as the transfer function for the propagation of input
parameters (thermal heat transfer loads) to output responses (Nominal
Differential Expansions). Thus, the measured thermal loads (TLi) and
the output results −NDE( ˆ )A B i of the FEM were used to create an analy-
tical ‘meta-model’ by applying regression analysis. In this way, the
empirical model is solely based on ‘virtual experiments’ being the FEM
simulation rather than real experiments. This provided an analytical
equation (the meta-model of the FEM) that predicts Nominal
Differential Expansion −NDE( ˆ )A B i as function of measured (TLi). The
uncertainty of the meta-model was propagated following the same
procedure designed for the empirical model's uncertainty analysis.
Thus, the meta-model uncertainty was devised to be a function of the
thermal load measurements PDF described by their uncertainty's (UTLi)
and the Probabilistic FEM model prediction PDF (described by its
modelled uncertainty −U( )NDÊA Bi

) as shown in Fig. 13.
Those were propagated via the Monte-Carlo method though a re-

gression analysis procedure in the same way as for the empirical
measurement models 3.1. The output of the probabilistic propagation is
an output PDF of the meta-model with associated mean

(
− −

μ NDE NDE{ ˆ̂ }{ ˆ̂ }PDFA Bi A Bi
) and variability ( ⎟

⎞
⎠

− −
S NDE NDE{ ˆ̂ }{ ˆ̂ }PDFA Bi A Bi

. The mean

of the PDF prediction for the meta model was then validated against the
calibration prediction made by the Probabilistic FEM (with uncertainty

−UNDÊA Bi
). This was used as a virtual reference defining the best

knowledge of the assembly expansion. The bias error was estimated
with respect to the worst possible case, which is the direct sum of the

validation PFEM prediction and its' evaluated uncertainty
+− −NDE U( ˆ ˆ )A B NDEi A Bi , (Eq. (17)).

⎡
⎣⎢

⎛

⎝
⎜

⎞

⎠
⎟= + −− −− ]NDE U NDEε max ˆ ˆ ˆ̂

NE
A B NDE A Bmeta model i A Bi i

(17)

The final prediction uncertainty of the meta-model was finally es-
timated as a function of its propagated variability (

− −
S NDE NDE{ ˆ̂ }{ ˆ̂ }PDFA B A B

)
and evaluated bias (εmeta model) (Eq. (18) and Fig. 13).

= ∗ +
− − −( )U k S εNDE NDE NDEˆ̂ { ˆ̂ }{ ˆ̂ } meta modelPDFA Bi A Bi A Bi (18)

3.4. Validation procedure for prediction of model uncertainty accuracy

The final step for Empirical, FEM, and Metamodels was a validation
of their predictions and statements of uncertainty. This was done fol-
lowing suggestions from Ref. [49] by comparing the model's outputs
( Ymodel applied) and their predicted uncertainty zones (Umodel applied)
against real experimental data (Yval) measured with low uncertainty

Fig. 13. Uncertainty propagation of a Meta-Model being a sum of its prediction variability and the validated bias flowchart.

Fig. 14. Combining Uncertainty regions of the model applied and of the vali-
dation measurement [42].
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Uval as shown in Eq. (19) and Fig. 14.

=
−

+
≤En

Ymodel applied Yval
Uval Umodel applied

1 Yes(pass) or No(fail)?
2 2 (19)

where Ymodel applied is the prediction of a model (PFEM, empirical or
meta-model) calibrated with known bias estimated experimentally by
WPS system and Yval is high precision independent from the bias ca-
libration reference measurement of the thermal deformation (made via
Leitz Infinity CMM [50,51]). By this (Eq. (19)), if the result is less than
1, it can be considered that the validation measurement was within the
predicted uncertainty region and thus the uncertainty region of the
model is being predicted correctly (Fig. 14). If the test (Eq. (19)) is not
passed, then the method fails to predicts accurately the uncertainty
region.

4. Results

In this section, the results from two empirical models (for magnetic
axis 4.1 and fiducials 4.2) and two FEM based models (probabilistic
FEM and FEM meta-model both for fiducials) of thermal deformation/
shift effects are outlined.

4.1. Uncertainty of empirical model prediction for magnet axis thermal shift

In Table 1 the input measurement uncertainties for the probabilistic
analysis of the empirical model (as related to ‘WPS bridge front’ in
Fig. 9, B) Z direction) and the output results for the model prediction
variability SẐ and bias εZ are shown. The final combined uncertainty for

the empirical prediction UẐ is also shown. From all the experimental
data available, a probabilistic correlation analysis of input versus
output responses was performed to estimate the most influential
thermal loads for the magnetic axis shift prediction. For the current
study, the mean value of the magnet yoke temperature was the most
influential for the magnet axis shift behaviour [14]. Thus, an assump-
tion was made to base the magnetic axis empirical model on the mean
of all magnet yoke installed sensors referred to as ‘thermal load mea-
surement’ in the figures below.

Where the total prediction UẐ uncertainty was calculated via the
Root Sum of the Squares The uncertainty summation (RSSU) method
(considering the bias and variability as uncorrelated entities) is defined
in Ref. [44]. Only Z direction results are shown as most representative
for the largest uncertainty at 1s for the empirical model. In Fig. 15 one
can observe the predicted behaviour of the magnetic axis thermal shift
as a function to the mean magnet yoke temperature. The prediction is
shown with its' 1s predicted uncertainty envelope. Reference mea-
surements (with their uncertainties in 1s) of the real axis location are
also shown in In Fig. 15.

4.2. Uncertainty of empirical model prediction for fiducials thermal shift

In Table 2 input (parameters uncertainties) and output (variability
and bias) parameters results can be seen for the studied fiducial thermal
shifts empirical model. The final combined prediction uncertainty for
the empirical model in Y and Z coordinates: UŶ and UẐ is also shown.
The uncertainty of the independent CMM validation measurement and
the validation test coefficient are also outlined.

In Fig. 16 the CMM validation measurements and the WPS

Table 1
Magnet axis location shift and temperature measurement uncertainties VS empirical model variability, bias and standard combined prediction uncertainty.

Calibration measurements uncertainties 1s; Rectangular shape Empirical model shift prediction

U
magnet axis shiftmeasurment
/μm

U
thermal load measurment
/°C

S ZNDEˆ /μm εNDEˆ Z/μm UNDEZˆ 1s/μm

3.56; a=6.17 0.182; a= 0.32 3.08 6.49 9.57

Fig. 15. Magnet axis location empirical model shift prediction and associated 1σ uncertainty of the prediction VS validation measurement samples and their 1s
standard uncertainty.
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calibration measurements are shown with respect to the model, and it's
standard uncertainty regions are represented.

4.3. Uncertainty of FEM and FEM-based metamodels prediction for
fiducials location shift

The thermal load measurements from various heat-flux, thermal
probes and thermal radiation camera sensors were taken and used as
input to a FEM model. Images of the experimental setup and a visua-
lization of a single stress calculation of the corresponding FEM can be
seen in Fig. 17.

In Fig. 18 the same data is represented visually showing the Prob-
abilistic FEM prediction as the mean of its PDF and its estimated un-
certainty (1σ). These are compared against validation measurements
made from two independent metrology tools – CMM and WPS stretched
wire systems.

An analytical metamodel based on FEM prediction was created, and
its uncertainty was studied following the procedure and method de-
fined. Results can be seen summarised in Table 5.

5. Discussion

The studies and results for the thermal errors size the expected
uncertainty with which they can be compensated have shown the im-
portance of addressing thermal effects in a detailed manner. Frequently
missed in uncertainty budget for alignment measurements, thermal
errors and the uncertainty of any compensations applied can be critical
for high precision alignment. The results showed that thermal effects
post-metrology could shift the magnetic axis location by dozens of μm
and alignment features by hundreds of μm and more. Thus, for high
precision applications, not only accurate alignment metrology is im-
portant but also precision compensation for any post-metrology thermal
effects. Although thermal compensation by the use of models has been
performed on many occasions in state-of-the-art works
[22,23,28,52–54], no statements of uncertainty validated and traceable
to the metre standard have been found.

In the current work, following the hypothesis suggested, a successful
evaluation of the prediction model's uncertainty was made. This was
done by a combination of their evaluated Bias and Variability of pre-
diction as defined in 3. The hypothesis suggested in this paper was
validated for Empirical Table 2, Probabilistic FEM Table 4 and Meta-
models Table 5. Validation was agreed as independent CMM mea-
surements were overlapping sufficiently with the predicted standard
uncertainty regions for the three types of models. An outline of the
evaluated models variability's, biases and combined prediction un-
certainty for the different thermal error compensation models can be
seen in Fig. 19.

It is important to outline that in the current studies; model bias is a
predominant component of the prediction uncertainty. An exception to
that observation is the Probabilistic FEM (PFEM) model and results for
Y direction of fiducials thermal shift (Fig. 19). In this particular model,
the shift in Z direction had a systematically larger bias error (Fig. 18).
The larger bias errors can be explained by complexity in modelling
accurately the thermal deformations for such assemblies' structures.
This is believed to be due to inaccuracies in modelling the assembly
interfaces behaviour and mechanical constraints. For these, a number of
assumptions and simplifications were made in order to reduce the
computational cost, such as bonded instead of frictional bolted con-
tacts. For the empirical models, the large bias errors observed can be
explained due to the difference between the thermal conditions at ca-
libration and those when the model was applied. The further thermal
conditions during machine operation deviate from those at model ca-
libration, the larger would be the bias error of such a model. In our
experiments, such deviations did exist as the thermal loads at the tunnel
and metrology laboratory were not recreated identically. This is an
expected limitation of empirical models.Ta
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Ẑ

2.
04

7.
89

9.
93

2.
05

0.
58

I. Doytchinov, et al. Precision Engineering 59 (2019) 134–149

145



For conditions that are not economical or technically feasible to be
studied experimentally in detail or for those that deviate from the ex-
isting data, numerical modelling is expected to be applied. As studied,
accurately calibrated probabilistic FEM or Metamodel can be used with
similar uncertainty of prediction ranges (Fig. 19). This statement is
highly dependent on how well the FEM model and it's input parameters

are calibrated and represents reality (size of the bias error). Applying
Probabilistic FEM, one can not only learn the variability of the pre-
dictions but also evaluate which are the most sensitive parameters to
the output variability via correlation-based analysis techniques [14,42].
For example, a small increase in the uncertainty of the CTE coefficients
of the materials used could have a large impact on the variability of

Table 3
FEM Models significant Input parameters and their associated standard measurement uncertainties. In Table 4 the corresponding results of studding Probabilistic
FEM model uncertainty can be seen for two fiducials part of the studied magnet assembly.

Input Parameter Class Mean Values ranges for class S (standard measurement uncertainties)/1s PDF shape

CTE coefficients of materials/
(μm/m °C)

From 6.9 (Granite base) to 24.2 (Aluminium WPS
arm)

From 1.05 (Granite) to 0.44 (Steel of magnet Yokes) Rectangular shape

Convection coefficients (forced
convection)
/(W/m2 °C)

10.67 (furthest away from air flow facing wall on
WPS arms) to 35.33 (closest to air flow facing
directly face of WPS arms)

From 0.65 to 2.11 (calibration certificate accuracy=6%
of Heat – Flux sensors reading value)

Rectangular shape

Emissivity coefficients/ε 0.172 (Aluminium WPS arms) to 0.275 (Steel of
Magnet)

0.0078 to 0.07 (experimentally) Rectangular shape

Temperatures measured/°C 21.23 (Granite Base); 33.16 (Magnet inner faces at
coils)

0.05 (direct measurement at granite base) to 1.62
(extrapolation between magnet outer faces and coils
measured temperatures)

Rectangular shape and
Triangular biased

Fig. 16. Fiducials location shift empirical model prediction, associated standard uncertainty of the prediction VS measurement validation samples and their standard
uncertainty.

Fig. 17. a) Magnet assembly and WPS system integrated in CMM for thermal shift/deformation experiments; b) Total structural deformation FEM model single
solution visual representation. A summary of the FEM model critical input parameters and their evaluated uncertainty can be seen in Table 3.
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deformation/shift in location prediction and thus it's uncertainty
[14,42]. In the same way, our studies revealed the importance of ac-
curately knowing the heat transfer coefficients (such as air convection)
for the various surfaces, which leads us to the additional use of heat flux
sensors [14]. Such parameter probabilistic sensitivity studies can show
the engineers which model parameters are most critical for the final
prediction and, thus, worth resources for precise calibration.

It is important to note that without actual physical reference mea-
surements, the bias error of a model cannot be determined and thus the
true model prediction uncertainty neither. However, performing cali-
bration measurements in a manner traceable to the metre can help to
calibrate a Probabilistic FEM and FEM Meta-models to values close to
the empirical counterparts.

This would imply that if once a numerical model is calibrated with
minimized and known bias errors, it can be applied to any desired
conditions with a known uncertainty statement. Thus, with a minimum
number of experimental measurements, the designer can use the nu-
merical based models to predict and compensate deformation beha-
viour for a wide band of conditions that might not be economically
viable to be tested and represented by empirical measures. Moreover,
one will be able to do this with a known and valid statement of

uncertainty as shown in Table 2 Table 4 Table 5.
An additional property linked to empirical and metamodels being

fitted to measurements or virtual measurements (FEM) is the ‘variance
bias trade-off error’ [55–57]. The more complex function is used in
order to fit best to the experimental data (with more control para-
meters), the larger would be the prediction variance [V(x)] and varia-
bility [V(x)1/2] due to the more influential parameters contributing with
their possible variance). The simpler a model is (two parameter poly-
nomial), the less the variance error would be, but it would fit more
poorly to the data and thus having a larger bias. This property can be
used to make decisions on how complex empirical or metamodels
should be, with respect to the measured bias errors.

For the Probabilistic FEM, the bias errors were one of our major
limitations. For further improvement more effort on modelling the in-
itial conditions, mechanical constraints represented by the model must
be made. If all known and unknown bias errors are corrected, or taken
as standard uncertainty contributors then the GUM Supplement 1 [16]
scheme would apply completely (zero variance and bias of the mean),
and the probabilistic model output variability would represent their
ultimate standard uncertainties (a function of their calibration mea-
surements uncertainties).

Uncertainty of model input parameters can have a big effect on
prediction accuracy, furthermore, achieving near zero bias of models
might not always be economically or technically possible. Thus, it is
critical and important, as shown in the current work to distinguish and
evaluate both model variability and bias. If this is done correctly, ac-
curate statements of the prediction uncertainties can be made.

6. Conclusions and future work

In this work, a hypothesis and methodology were proposed as an

Fig. 18. A comparison between predicted (by Probabilistic FEM) fiducial shift with 1σ of prediction VS measured shift (by CMM and WPS) with 1s standard
measurement uncertainties.

Table 4
Fiducials location shift probabilistic FEM parameters, associated uncertainty and validation parameters.

Magnet Assembly FEM

Fiducials shift direction Model Variability S 1s/
μm

Model Bias/
μm

Error (w.r.t CMM validation
reading)/μm

Uncertainty 1s UNDEassemblyˆ /μm Validation (Test < 1=PASS)

Y (back) 6.29 3.36 3.47 9.65 0.18
Z (back) 1.12 1.22 3.8 2.34 0.62
Y (front) 6.29 4.84 3.46 11.13 0.15
Z (front) 1.12 10.16 11.04 11.28 0.48

Table 5
Fiducials location shift metamodel parameters, associated uncertainty and va-
lidation parameter.

Magnet Assembly Meta Model FEM

Shift direction Model
Variability S
1σ/μm

Model
Bias/μm

Uncertainty 1s
U NDEassemblyˆ̂ /μm

Validation Test
< 1=PASS

Y (back) 0.7 11.54 12.24 0.42
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answer to the challenges in the CLIC project [9,58] of knowing the
uncertainties due to thermal errors and their compensation made by
models. It was shown that it is possible to deliver an accurate prediction
of thermal shift with a valid statement of uncertainty. This was
achieved by the mixture of: probabilistic modelling [16] for the eva-
luation of model variability and traceable measurements for the eva-
luation of model biases.

The proposed methodology was validated for our case study with
respect to thermo-mechanical predictions. However, the idea could find
practical applications in other fields of engineering and science where
having an accurate uncertainty statement of model predictions is im-
portant. This could answer the need in industries such as aerospace and
big science projects where uncertainty in predictions can have a high
legal and financial impact. A direct example is a trend in state-of-the-art
of having “digital twins” [59] models of critical systems. In parallel to
system exploitation, a digital representative model is kept and fed with
real-time data from the conditions under which the critical systems are
subjected. Such models can be used to predict possible future behaviour
(failure modes) or used as feedback to next-generation system design.
The novel application of Machine Learning (gaussian models and Deep
Neural Networks) for the creation of meta-models from FEM/CFD can
be a fascinating and promising new line of research as shown in Refs.
[60,61]. Such line could enable the creation of real-time high-fidelity
digital twins (with known uncertainty) even for complex transient be-
haviour. Having accurate uncertainty statements of such predictions
could help engineers in taking critical decisions. Thus, we believe that
there is potential for this methodology to be further studied and vali-
dated in a wide band of possible application cases.
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