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ABSTRACT 

The effects of mean curvature on the propagation of turbulent premixed flames have been 

investigated using three-dimensional Direct Numerical Simulations (DNS) with single 

step Arrhenius type chemistry in the thin reaction zones regime. A number of spherical 

flame kernels with different initial radius have been studied under identical conditions of 

turbulence and thermo-chemistry. A statistically planar turbulent back-to-back flame has 

been simulated as a special case of a spherical kernel in the limit of infinite kernel radius. 

Statistical analysis in terms of standard and joint probability density functions (pdfs) 

clearly indicates that the mean curvature of the flame kernel configuration has a major 

influence on the propagation behaviour of the flame. For the planar flame configuration 

the density-weighted displacement speed is found to be fairly constant throughout the 

flame brush, in good agreement with previous DNS results. By contrast, for the flame 

kernel configuration the density-weighted displacement speed is found to vary strongly 

through the flame brush, changing from values on the order of the corresponding laminar 

flame speed near the fresh gas side to considerably smaller values near the burned gas 

side. The joint pdfs of displacement speed and its components with curvature are 

extensively studied, allowing for an explanation of the observed phenomena in terms of 

local flame geometry and its interaction with the turbulent flow field.  
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I. INTRODUCTION 

Turbulent premixed combustion has wide applications in a variety of engineering devices 

including gas turbines and spark ignition engines. Since the majority of combustion 

systems operate in a turbulent flow environment, it is necessary to consider the 

turbulence and its interaction with the flame. Using Direct Numerical Simulations (DNS), 

it is possible to simulate a turbulent flame without the need for modelling of the flow 

field. Thereby useful information can be extracted to support combustion modelling 

based on Reynolds Averaged Navier Stokes equations (RANS) and Large Eddy 

Simulation (LES)1. Ideally, combustion DNS should address the three-dimensional nature 

of the turbulence together with detailed chemistry, but this remains extremely expensive 

even with present day computational resources. As a consequence, most combustion DNS 

has been carried out either in two dimensions with detailed chemistry2-4 or in three 

dimensions with simplified chemistry.5-9 As an alternative, reduced chemical mechanisms 

have recently been used in simulations of flame development in 3D,10-13 and comparisons 

of 2D versus 3D simulation results have recently been made for spherical flame 

kernels.10,13 Since the flame-turbulence interaction is the principal interest of this work, 

and since 2D turbulence is physically different from 3D turbulence, the focus of this work 

is on 3D turbulence with simplified chemistry.  

 

Displacement speed is a central quantity for the understanding and modelling of turbulent 

premixed flames, and it appears in the governing equations for common model 

formulations such as the Flame Surface Density (FSD) approach14 and the G-equation 

approach.15  In many practical combustion problems the smallest scales of turbulence can 
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enter into the flame structure and cause unsteady fluctuations in the preheat zone ahead of 

the thin reaction layer. Peters15 named this regime of premixed turbulent combustion the 

‘thin reaction zones regime’.  In this particular parameter range, dS  is strongly dependent 

on the local flame curvature.  

 

Many previous DNS studies have been concerned with statistically planar flames which 

by definition have zero mean curvature.2-7 By contrast, the flame kernel is an example of 

a turbulent flame that has significant mean curvature. Previous work on flame kernels has 

focussed on ignition16 and the evaluation of flame surface properties such as FSD, flame 

curvature and the flame normal vector.8,9,11,12 A qualitative comparison between flame 

kernel DNS data and experimental results has also been made in recent studies.17,18 

 

For statistically planar flames, the behaviour of the displacement speed in response to 

flame curvature has been extensively studied2-4.  By contrast, displacement speed 

behaviour in the presence of intrinsic mean flame curvature has rarely been addressed. 

Recently, van Oijen et al.13 examined stretch effects on the local burning rate and 

assessed different possible flamelet models with respect to DNS data. It was pointed out 

that burning rate models involving Markstein numbers and designed for small stretch 

rates may not produce the correct propagation behaviour in the presence of large 

curvature stretch, such as that induced by spherical flame kernels. 

 

As far as the authors are aware, the effect of initial flame kernel radius on the subsequent 

flame propagation has not been studied to date using DNS. To investigate this effect in 
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detail, several DNS of flame kernels with different initial radius have been carried out. At 

the same time, as a limiting case, a statistically planar turbulent back-to-back flame has 

been simulated. Significant differences have been found in the statistical behaviour of the 

displacement speed. The purpose of this study is twofold: 

1. To study the difference in both local and mean displacement speed behaviour in 

response to mean flame curvature.  

2. To identify the physical mechanisms responsible for the observed behaviour 

3. To identify the implications for flamelet based turbulent combustion modelling, 

especially in the thin reaction zones regime.15  

The rest of the paper is organised as follows. The necessary mathematical background 

and numerical implementation are presented in Section II. This is followed in Section III 

by the presentation and discussion of the results. The main findings are summarised in the 

fourth and final section of the paper. 

 

II. MATHEMATICAL BACKGROUNDAND NUMERICAL IMPLEMENTATION 

Assuming single-step Arrhenius reaction kinetics it is possible to account for the 

chemical state of the system in terms of a reaction progress variable c defined as  
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where PY  is the product mass fraction and subscripts 0 and ∞ are used to denote 
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where ρ  is the density, ju  is the fluid velocity component in the jth direction, D is the 

species diffusivity and w&  is the reaction rate. In kinematic form2 eq.2 may be written for 

a given progress variable isosurface ∗= cc  as: 
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where dS  is the displacement speed of the ∗= cc  isosurface. Comparing eq.2 and eq.3 the 

displacement speed is given by: 
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As can be seen from eq.4, the displacement speed is a result of the interaction between 

reaction and diffusion within the flame, and dS  is the speed at which the flame moves 

relative to the flow in the direction of the local flame normal vector. The ith component of 

the local flame normal is given as: 
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The progress variable gradient magnitude c∇  which appears eqs.3, 4 and 5 is an 

important quantity and will be referred to as the Surface Density Function (SDF) 

following Kollmann and Chen.19 The mean curvature on a ∗= cc  isosurface can be 

expressed as: 
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In the present convention, the local flame normal vector points towards the reactants and 

positive mean curvature is defined as convex towards the reactants.  
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Local turbulence plays an important role in determining dS .  Under the influence of 

turbulence, the flame becomes stretched and curved and the resulting local geometry 

effects come into dS  through the diffusion term ).( cD∇∇ ρ  and the SDF c∇ .  The 

effects of mean curvature on the displacement speed represent the main area of interest in 

the present study.  It is helpful to split the diffusion term into normal and tangential 

components 3,7: 

                                    cNDcNDNcD ∇∇−∇∇=∇∇
rrr

.).(.).( ρρρ                       (7) 

Similarly the displacement speed dS  can be decomposed into a reaction component rS ,  

a normal diffusion component nS and a tangential diffusion component tS  

                                                    tnrd SSSS ++=                                             (8i) 

where rS , nS  and tS  are given by: 
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It is clear from eq. 8ii that the tangential diffusion component tS  is directly proportional 

to the negative of mean curvature.  It is worth noting that the SDF c∇  occurs in the 

denominator of the expressions for both the normal diffusion component Sn and the 

reaction component Sr, resulting in significant potential for the SDF to influence the 

displacement speed statistics.7 

 

DNS has been carried out using a three-dimensional finite-difference code called 

SENGA20 which solves the compressible Navier-Stokes equations augmented by a 

transport equation for the reaction progress variable.  All first and second order 
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derivatives are evaluated using tenth order explicit central differencing in the interior of 

the domain, with gradual reduction to 2nd order one-sided differencing as the outlet 

boundaries are approached.  Time stepping is carried out using a low storage 3rd order 

Runge Kutta scheme21.  A pseudo spectral method22 is used to initialise the velocity field 

by generating a good approximation to homogeneous isotropic incompressible 

turbulence. Boundary conditions are specified using the Navier Stokes Characteristic 

Boundary Condition (NSCBC) formulation as suggested by Poinsot and Lele.23 For the 

flame kernel configuration, either a standard non-reflecting outflow or a partially 

reflecting inflow condition is used for all faces of the cubic domain depending on the 

local sign of the velocity normal to the boundary.  For the planar flame configuration, the 

same boundary condition is applied to two opposite faces of the cubic domain, while 

periodic boundary conditions are applied to the transverse faces.  

 

In all cases the premixed flame is initialised using a pre-computed laminar flame solution 

with identical thermochemical parameters. In order to ensure adequate resolution, about 

10 grid points are used to resolve the laminar thermal flame thickness thδ  given by: 
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where n is the normal direction of flame propagation, T̂  is the dimensional temperature, 

and 0T  and adT  are the fresh gas and adiabatic flame temperatures respectively. For the 

sake of simplicity, the specific heats PC , viscosity µ , thermal conductivity λ  and 

density weighted mass diffusivity Dρ  are assumed to be constant and independent of 
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temperature. The Lewis number is unity for all cases.  The turbulence Reynolds number 

is defined as µρ /Re 0 tt lu′= , and the nominal Reynolds number used to non-

dimensionalise the momentum equations is defined as µρ /Re 0 LSLSL
= , where 0ρ  is the 

fresh gas density, u′ is the turbulent velocity fluctuation magnitude, tl  is the integral 

length scale of the turbulence, LS  is the unstrained laminar flame speed and L is a 

reference length scale with thL δ10≈ , where thδ  is the laminar thermal flame thickness. 

The last two ( LS  and L) are taken as the reference velocity and length scales respectively 

and are used to normalise other relevant quantities. The mesh size for all cases is 

230230230 ××  giving 32Re =t and 25Re =
LS , and the computational domain is chosen 

to be a cube of side L4.2  which allows ample space for the flame kernel to grow.  A list 

of all numerical and physical parameters is given in Table I. 

 

III. RESULTS & DISCUSSION 

For the values of turbulent Reynolds number )(Re t , length scale ratio )/( 11 LL δ  and 

velocity scale ratio )/( LSu′  used in the present study (see Table I), the turbulent 

combustion in all cases occurs within the thin reaction zones regime.15  In Table I, Case 

A indicates a pair of planar back-to-back flames which corresponds to a flame kernel 

with infinite radius. For the purpose of this study, results corresponding to cases A, C and 

F will mainly be presented. Similar qualitative trends are observed for the other cases. 

Statistical information has been obtained at a simulation time of three initial eddy 

turnover times ( uLf ′= /110τ ) which corresponds to about 1.2 chemical times cτ . 
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Here cτ = LZ S/δ , where dZ sD /+=δ  and where +D and ds are the diffusivity and burning 

velocity evaluated at the reaction zone.15 

 

Contours of reaction progress variable in the x-z plane at the location y = 0.5 are 

presented in Figs. 1a-c for the cases A, C and F respectively. Note that in case A (Fig. 1a) 

the boundaries are periodic in the y and z directions. It is evident in all three cases that the 

preheat zone )5.0( <c is highly deformed and the contours are not parallel. However, in 

the reaction zone )9.07.0( << c the contours do remain parallel. This is typical of the thin 

reaction zones regime where turbulent eddies enter into the preheat zone and causes 

significant fluctuations.15 Fig. 1 shows furthermore that the progress variable contours are 

increasingly positively curved for the flames with smaller radius.  

 

In order to understand the flame propagation it is helpful to look at the reaction-diffusion 

balance across the flame brush (see eq. 4). The mean behaviour of the reaction rate w&  

and the molecular diffusion rate )).(( cD∇∇ ρ across the flame brush for cases A, C and F 

is presented in Fig. 2a-c respectively. For the purpose of subsequent analysis, the 

components of the local molecular diffusion rate in the flame normal 

direction )).(.( cNDN ∇∇
rr

ρ  and in the flame tangential direction )).(( cND ∇∇−
r

ρ  are also 

shown in Fig. 2. It is important to note that these quantities are plotted as a conditional 

average on a given c isosurface, in the manner previously used by Boger et al.24 and 

Chakraborty and Cant.7 The profile of mean reaction rate in all three cases increases 

sharply towards the burned gas side of the flame and attains a maximum value at 

roughly 8.0=c . The mean values of both ).( cD∇∇ ρ  and ).(. cNDN ∇∇
rr

ρ  are positive 
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towards the fresh gas side with a local maximum some way ahead of the middle of the 

flame, and both are negative towards the burned gas side with a local minimum close to 

the maximum reaction rate location. The quantitative behaviour of the molecular 

diffusion rate and its components is different for different flame radii although the 

qualitative behaviour remains the same. The planar flame (case A, Fig. 2a) corresponds to 

infinite flame radius (i.e. zero mean curvature) which leads to a negligible contribution 

from the tangential component )).(( cND ∇∇−
r

ρ , and hence the mean values of 

).( cD∇∇ ρ  and ).(. cNDN ∇∇
rr

ρ  remain very close to each other throughout the flame (see 

eq.7). With decreasing flame radius the mean curvature of the flame kernel becomes 

increasingly positive and therefore the mean contribution of )).(( cND ∇∇−
r

ρ  becomes 

increasingly negative throughout the flame, as is evident from Figs. 2b and c. As a result 

of this, the difference between the mean values of ).( cD∇∇ ρ  and ).(. cNDN ∇∇
rr

ρ  

increases with decreasing kernel radius.  

 

The density weighted displacement speed quantities dSρ  and )( nr SS +ρ  are central to 

the understanding and flamelet based modelling of turbulent premixed combustion.  In 

the context of RANS, surface averaged values of dSρ  and )( nr SS +ρ  on a specified 

*cc =  isosurface are given by:25 
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where angled brackets indicate an ensemble averaging operation. Often 
SdSρ  is 

approximated as LS0ρ , and the validity of this assumption will be discussed in the context 

of Figs. 3 and 4.  

 

Profiles of the mean reaction-diffusion imbalance ).( cDw ∇∇+ ρ& and the mean reaction-

normal diffusion imbalance ).(. cNDNw ∇∇+
rr

& ρ  are presented in Figs. 3a-c for cases A, C 

and F respectively along with the corresponding mean profile of the SDF in the form 

cSL ∇0ρ  (see eq. 4).  In all cases, the mean profile of cSL ∇0ρ is skewed towards the 

burned gas side of the flame with a maximum close to 65.0≈c , similar to previous 

experimental26-28 and DNS studies.7,24,25,29 It is evident that in the planar case (case A) the 

mean values of ).( cDw ∇∇+ ρ&  and ).(. cNDNw ∇∇+
rr

& ρ  are very close to each other, and 

that both quantities have a similar behavioural trend and a similar order of magnitude to 

cSL ∇0ρ . From eq.10 and Fig.3a this indicates that for the planar flame 

LSnrSd SSSS 0)( ρρρ ≈+≈  throughout the flame brush, almost irrespective of the 

choice of isosurface ∗c . For the spherical flame kernels (see Figs. 3b and 3c) the situation 

is different. The mean value of ).(. cNDNw ∇∇+
rr

& ρ  for the kernel cases is greater than 

).( cDw ∇∇+ ρ&  with an increasing difference for smaller kernel radius owing to the higher 

negative contribution of the tangential component )).(( cND ∇∇−
r

ρ  (see Fig. 2 and eq.7). 

Figs. 3b-c show that for the kernel cases the mean values of both ).(. cNDNw ∇∇+
rr

& ρ  and 

)( cDw ∇∇+ ρ& are smaller than the mean value of cSL ∇0ρ  across the flame brush which 

indicates (eq.10) that 
Snr SS )( +ρ  and 

SdSρ  are each smaller than LS0ρ . This shows 
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clearly that the presence of initial mean curvature has a significant effect on the 

behaviour of the surface averaged density weighted displacement speed. 

 

The mean profiles of displacement speed and its components Ld SS / , Lnr SSS /)( +  and 

Lt SS / , as well as the density-weighted quantities Ld SS 0/ ρρ and Lnr SSS 0/)( ρρ + , are  

shown in Fig. 4a-c for cases A, C and F respectively.  For the planar flame (case A) it is 

evident that the mean variations of Ld SS /  and Lnr SSS /)( +  are almost identical owing 

to the negligible mean value of the tangential component LmLt SDSS /2/ κ−= . However 

the mean value of Ld SS /  decreases with decreasing kernel radius due to the increasing 

negative mean value of Lt SS / , as evident from Fig. 4 and the previous discussion of Figs 

2 and 3. Furthermore, it can be seen from Fig. 4a that for the planar flame the mean 

variation of Ld SS 0/ ρρ  is almost identical to that of Lnr SSS 0/)( ρρ + , and the mean 

values remain close to unity throughout the flame brush. On the other hand for the flame 

kernels (cases C and F) the mean values of Ld SS 0/ ρρ  decrease from a peak around unity 

on the fresh gas side to considerably smaller values on the burned gas side, whereas the 

mean value of Lnr SSS 0/)( ρρ +  remains closer to unity but settles to a smaller value. 

The mean value of Ld SS 0/ ρρ  towards the burned gas side is the lowest for the case with 

the smallest kernel radius (case F, Fig. 4c).   

 

These findings have major implications for turbulent premixed flame modelling, in which 

a common assumption is that  

                                                           LSd SS 0ρρ =                                            (11) 



 14

It is evident from the above results that indeed this assumption is valid for statistically 

planar flames because of the negligible contribution from the tangential diffusion 

component of displacement speed. However eq. 11 may be rendered invalid in a 

configuration other than a planar flame where the contribution of 
StSρ  is not 

negligible.  Also, although the mean value of )( nr SS +ρ  remains of the order of LS0ρ  in 

all cases, the surface averaged value 
Snr SS )( +ρ  decreases from LS0ρ  with decreasing 

kernel radius. This, along with the definition of 
Snr SS )( +ρ  in eq. 10ii, indicates that 

curvature effects on the SDF and )( nr SS +ρ  are responsible for this behaviour.  This 

issue will be revisited in detail below. 

 

The pdfs of normalised displacement speed )/( Ld SS  across the flame brush are 

presented in Figs. 5.  In all cases the most probable value of displacement speed is on the 

order of LS .  For the planar case (Fig. 5a) the displacement speed pdf broadens and the 

peak value decreases towards the burned gas side. The tendency of the pdf to broaden is 

greatest in the planar flame case and least in the smallest kernel case (Fig. 5c). This 

indicates that the variance of dS  is highest in the planar case and decreases with 

decreasing kernel radius. It can also be seen that the probability of finding high positive 

values of dS  is highest in the planar flame case and lowest in the smallest kernel case. 

The displacement speed pdfs are consistent with previous planar flame DNS studies3,7,30  

and the experimental flame kernel investigations of Renou et al..31 Comparing Figs. 5a-c 

it can be seen that the probability of finding a negative value of displacement speed 

increases with decreasing flame kernel radius. Moreover, the mean value of dS  decreases 
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with decreasing kernel radius, consistent with Figs. 4a-c. The increased probability of 

negative dS  with decreasing kernel radius has serious consequences for ignition in a 

turbulent flow. If the kernel radius is smaller than a critical radius the flame will tend to 

propagate in the opposite direction to the local flame normal, which will lead to shrinkage 

of the burned gas kernel and once the reaction zone is lost the flame will quench. On the 

other hand if the flame radius is larger than the critical radius the mean displacement 

speed will be positive and the kernel will be able to grow, leading to self-sustained 

combustion. This observation is consistent with the behaviour of flame kernel 

propagation near the critical radius as observed by Baum and Poinsot16 based on two-

dimensional DNS with simplified chemistry.  

 

In view of these results, it is instructive to investigate the pdfs of the individual 

components of displacement speed for the different kernel radius cases. The pdfs of the 

components of displacement speed ( rS , nS  and tS ) for the 8.0=c  isosurface - close to 

the location of maximum reaction rate - are presented in Fig. 6.  The pdfs of the reaction 

component rS  (Fig 6a) show a sharp peak at a high positive value, and the form of the 

pdfs is similar for all three radii.  Figure 6b shows the corresponding pdfs of the normal 

diffusion component nS , which is sharply peaked at a high negative value in all three 

cases, consistent with the mean behaviour of the normal molecular diffusion component 

).(. cNDN ∇∇
rr

ρ  as presented in Fig. 2. Again the form of the pdf is similar for all three 

radii. Figure 6c shows the pdfs of tS  which are markedly different for the three cases. 

Here, the probability of finding a negative value of tS  is lowest in the planar flame case 
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and highest in the smallest kernel case, as expected (see eq.8ii). All of these results are 

qualitatively consistent with previous DNS studies.3,7   

 

The joint pdfs of displacement speed and curvature are presented in Figs. 7a-c for cases 

A, C and F respectively. In all three cases the correlation between dS  and curvature is 

negative which is consistent with previous DNS studies with global Lewis number close 

to unity.7,29 According to linearised theory the curvature response of displacement speed 

can be expressed in terms of the Markstein diffusivity )( MD  as: 

                                                    mMLd DSS κρρ −= /0                                      (12) 

 Two-dimensional DNS with detailed chemistry2-4 has suggested that the above 

expression may also be used in the thin reaction zones regime without significant loss of 

accuracy for small values of curvature-induced stretch. The Markstein diffusivity MD  as 

defined by eq.12 has been evaluated from the DNS results using linear regression 

analysis and values are presented in Table II.  It is evident that MD  is positive in all of 

the cases considered here and that the magnitude of MD decreases with decreasing kernel 

radius. In order to explain this behaviour it is useful to examine the curvature response of 

the individual components of displacement speed.  

 

The tangential diffusion component of displacement speed tS  is proportional to the 

negative of local mean curvature (eq. 8ii), and for unity Lewis number flames the 

diffusivity D  does not vary appreciably on a given c isosurface. Thus tS  and curvature 

are deterministically related with a correlation coefficient of –1. For adiabatic low Mach 
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number flames at unity Lewis number (as in the present case) the reaction rate w&  and 

density ρ  remain almost constant on a given c isosurface due to the almost uniform 

temperature. Therefore the curvature response of rS  is entirely governed by the variation 

of SDF with respect to curvature. Since the reciprocal of SDF can be taken as a measure 

of local flame thickness, the curvature response of the normal diffusion component of 

displacement speed nS  is governed by the correlation between SDF and curvature, as 

long as density weighted mass diffusivity Dρ  variation is not significant on the given 

isosurface. 

 

The joint pdfs of SDF and curvature for cases A, C and F are presented in Fig. 8. In the 

planar flame case (Fig. 8a) it is evident that there are two branches, one showing a 

negative correlation for positive values of curvature and the other showing a positive 

correlation for high negative curvatures. The negatively correlating branch becomes 

stronger with decreasing kernel radius while the positively correlating branch gradually 

disappears (see Figs. 8b and c) since, for smaller kernels, the probability of finding 

negative curvature decreases with kernel radius.  

 

In order to explain the above behaviour it is helpful to examine the joint pdfs of 

tangential strain rate and curvature and of dilatation and curvature. Dilatation and 

tangential strain rate are related according to the expression 

                                                             nT aau +=∇
r.                                           (12i) 

where na  and Ta  are the normal and tangential strain rates given by: 
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It is evident from Fig.9 that for all three cases shown, tangential strain rate and curvature 

are negatively correlated, which is in agreement with previous DNS7,29,32 and 

experimental studies.31 The corresponding joint pdfs between dilatation and curvature are 

presented in Fig.10, and in all cases dilatation and curvature are seen to be negatively 

correlated, since negatively (positively) curved regions give rise to a greater (smaller) 

value of dilatation compared to a planar flame sheet because of focussing (defocussing) 

of heat. The dilatation-curvature correlation shows evidence of non-linearity, with 

different slopes for positive and negative curvatures. 

 

The pdfs of normal strain rate for cases A, C and F are presented in Figs. 11a-c. It is 

evident that the probability of finding a locally compressive (i.e., negative) normal strain 

rate overwhelms the probability of finding an extensive normal strain rate for all c 

isosurfaces, implying that 0. <−∇= Tn aua r  in the mean. This indicates that the flame is 

aligning itself with the most compressive normal strain rate, which is consistent with 

previous incompressible two- and three-dimensional DNS studies.5, 33 Under the action of 

compressive normal straining the isoscalar lines move closer together leading to a higher 

value of SDF, and vice versa.  The SDF-curvature joint pdf (Fig. 8) is therefore governed 

by the relative strength of the dilatation-curvature and tangential strain rate-curvature 

correlations (eq. 12i). Due to the respective negative correlations, small values of both 

dilatation and tangential strain rate are associated with positive curvatures. Over most of 

the flame, the tangential strain rate exceeds the local dilatation, as can be observed from 
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the normal strain rate pdfs (Fig.11) where the probability of finding negative values of na  

is greater than the probability of finding positive values. This is further substantiated by 

the correlation coefficients between c∇  and tangential strain rate Ta  presented in 

column 2 of Table III. As a result of this, flame thickening takes place in regions of 

positive curvature which leads to the observed negatively-correlating branch of the joint 

pdfs of SDF and curvature (Fig. 8), consistent with the findings of Chakraborty and 

Cant.29 In negatively curved regions of the flame, dilatation may overcome the tangential 

strain rate due to local focussing of heat, leading to an extensive normal strain rate. This 

in turn gives rise to a secondary thickening effect in regions of highly negative curvature 

as demonstrated by Chakraborty and Cant29 in the case of statistically planar flames. 

However the probability of finding highly negative curvature decreases with decreasing 

flame kernel radius, and so the secondary thickening effect gradually disappears with 

decreasing kernel radius.  The correlation coefficients between c∇  and curvature are 

presented in column 3 of Table III, and indicate an increase in the strength of the negative 

correlation with decreasing mean kernel radius. 

 

The joint pdfs of the reaction component of displacement speed rS  and curvature for 

cases A, C and F are presented in Fig. 12. These pdfs reflect the effects of the curvature 

dependence of SDF (see eq.8ii and Figs. 8a-c). For the planar case the joint pdf shows 

two branches with the positively correlating branch being slightly stronger. With 

decreasing kernel radius the negatively correlating branch disappears and the correlation 

between rS  and curvature becomes increasingly positive (see Figs. 12b and c).  This 

effect is due to the disappearance of the positively correlating branch in the SDF-



 20

curvature correlation. A similar trend is observed for all cases, as evident from the 

correlation coefficients shown in column 4 of Table III.  

 

The corresponding joint pdfs of the normal diffusion component of displacement speed 

nS  and curvature are presented in Fig. 13. For the planar flame (case A, Fig.13a) the joint 

pdf  shows two branches, consistent with the joint pdf of SDF and curvature for the same 

case (see Fig. 8a). By contrast, in the case of kernels the negatively correlating branch 

becomes increasingly weak with the decrease in kernel radius (see Figs. 8b and c). As a 

result, the correlation between nS  and curvature becomes increasingly positive with the 

decrease in mean kernel radius. The above behaviour can be explained in the light of the 

SDF-curvature correlation in the following manner.  A decrease in flame thickness 

induces a high scalar gradient which acts to increase the magnitude of the normal 

diffusion rate ).(. cNDN ∇∇
rr

ρ . In the reaction zone (close to 8.0=c ) the normal diffusion 

rate is predominantly negative, and so it becomes more negative with increasing SDF. 

Therefore a net negative correlation between SDF and curvature in the kernel cases leads 

to a net positive correlation between nS  and curvature with increasing strength with 

decreasing kernel radius. The correlation coefficients between nS  and curvature are 

presented in column 5 of Table III.  The joint pdfs of rS  and nS  with curvature are in 

agreement with previous DNS studies for planar flames.3,7,34  

 

For the sake of completeness and for the purposes of modelling the joint pdfs of the 

combined reaction and normal diffusion components of displacement speed and curvature 
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are shown in Fig. 14. As kernel radius decreases, )( nr SS +  becomes increasingly 

positively correlated with curvature.  This is not surprising since both rS  and nS  become 

increasingly positively correlated with curvature, A similar trend is observed in column 6 

of Table III where the correlation coefficients between )( nr SS +  and curvature are 

presented for different kernel sizes. For the planar flame )( nr SS +  and curvature are 

weakly correlated which is consistent with Figs. 12a and 13a.   

 

In the flame kernel cases )( nr SS +  is positively correlated with curvature because of the 

negative correlation between SDF and curvature, which results in a negative correlation 

between )( nr SS +  and SDF.  For this negative correlation, the definition of covariance 

between )( nr SS +  and c∇  suggests cSScSS nrnr ∇+<∇+ )()( ρρ  in the 

kernel cases. On the other hand, for statistically planar flames a weak correlation between 

)( nr SS +  and SDF leads to cSScSS nrnr ∇+≈∇+ )()( ρρ . This explains the 

equality between the mean values of ).(. cNDNw ∇∇+
rr

& ρ  and cSL ∇0ρ  in the planar 

flame case and the difference between these quantities in the kernel cases as observed in 

Fig. 3. 

 

The net correlation between )( nr SS +  and curvature for the kernel cases is important for 

the modelling of turbulent flame propagation. The total stretch rate induced by flame 

curvature is given by: 

                                             24.)(. mnrd DNSSNS κ−∇+=∇
rr

                                  (13) 
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where the first term on the right hand side represents the stretch associated with quasi-

laminar propagation and the last term represents the stretch originating purely due to the 

geometrical curvature of the flame. As a result of the correlation between )( nr SS +  and 

curvature, the contribution to flame stretch associated with NSS nr

r
.)( ∇+  becomes a 

non-linear function of curvature subject to a correlation between )( nr SS +  and curvature. 

The effect is not appreciable for the planar case but when the flame has an inherent mean 

curvature (in the present case, a mean positive curvature) the effect cannot be ignored. 

This indicates the need to account for the curvature dependence in )( nr SS +  for flame 

propagation modelling, even in the thin reaction zones regime. It should be noted that an 

increase in the turbulence intensity may lead to a decreasing correlation between 

)( nr SS +  and curvature, however under those circumstances the flame may be 

approaching the broken reaction zones regime.15 In the present study the turbulence 

intensity is not varied, and clearly this is an avenue for further investigation.  

 

IV CONCLUSIONS 

DNS has been carried out in three dimensions for turbulent flame kernels of different 

initial radius. A pair of back-to-back statistically planar flames was considered as a 

special case of a flame kernel with infinite radius. It has been observed that the mean 

positive curvature in the flame kernel cases significantly affects the mean behaviour of 

displacement speed dS , mainly through the tangential diffusion component tS . Based on 

the mean behaviour of dS  it can be inferred that the assumption Lsd SS 0ρρ =  is only 

valid when the flame is statistically planar. The pdfs of displacement speed show a 
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significant increase in the probability of finding negative values of dS  with decreasing 

kernel radius, which indicates that a minimum kernel size is required to sustain 

combustion. This is in accordance with the findings of previous ignition studies.16 The 

curvature dependence of dS  and its various components ( rS , nS and tS ) has been studied 

in terms of their joint pdfs with curvature. The local displacement speed is shown to be 

negatively correlated with curvature. However, the correlation is shown to be non-linear 

in nature as a result of non-linear curvature response of )( nr SS + . Furthermore, it was 

observed that the curvature response of rS  and nS  is essentially determined by the nature 

of the curvature dependence of the SDF c∇ . For the kernel cases, rS  and nS  are 

correlated with curvature with increasing positive correlation strength for decreasing 

kernel radius, whereas in statistically planar flames both rS  and nS  are only weakly 

correlated with curvature. As a result of this correlation the Markstein diffusivity MD  

based on displacement speed is shown to decrease with decreasing kernel radius.  The 

behaviour of rS  and nS  in the case of statistically planar flames is consistent with 

previous DNS studies.2,3,7,34 The strong curvature dependence of both rS  and nS  in the 

kernel cases indicates a need for modelling of  the contribution of  )( nr SS +  to 

displacement speed.  

 

The above analysis does not address the influence of differential diffusion and detailed 

chemistry, nor does it deal with the effects of high frequency turbulent straining and 

flame quenching at very small kernel radius.  Some of these issues will be addressed in 

detail in future work.  
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TABLES 

     Case (Grid size) thor δ/  

A (2303) ∞  

B (2303) 2.91 

C (2303) 2.49 

D (2303) 2.10 

E (2303) 1.74 

F (2303) 1.42 

 

Cases A-F 

 
Pr =0.7; Le =1.0;β =6.0; τ =3.0; 0/ aSMa L= =0.014159; 

vp CC /=γ =1.4; LSu /′ =7.5; LL δ/11 =1.7; tRe =32 
 

 

Table I: Parameters of the DNS database. The initial kernel radius 0r   is defined as 
the radius of the region in which c=1.0. 

 
 
 

Case DDM /  

A 1.00 
B 0.67 
C 0.62 
D 0.64 
E 0.54 
F 0.46 

 

Table II: Markstein diffusivity ( MD ) normalized by the mean value of diffusivity 
(D) on the 8.0=c isosurface. 
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1 2 3 4 5 6 

Case Corr. 
c∇ - Ta  

Corr. 
c∇ - mκ  

Corr. 
rS - mκ  

Corr. 
nS - mκ  

Corr.  
)( nr SS + - mκ  

A 0.47 -0.15 0.10 -0.21 0.095 
B 0.72 -0.66 0.66 0.02 0.45 
C 0.68 -0.69 0.63 0.15 0.52 
D 0.82 -0.72 0.77 0.29 0.62 
E 0.81 -0.80 0.83 0.46 0.70 
F 0.64 -0.80 0.79 0.45 0.76 

 
Table III: Correlation coefficients obtained for all DNS cases from the joint pdfs of: 
(column 2) c∇  and Ta ;  (column 3) c∇  and mκ ;  (column 4) rS  and mκ ;  (column 
5) rS  and (column 6) )( nr SS + and mκ . 
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FIGURE CAPTIONS 

Figure 1: Contours of reaction progress variable in the x-z plane at y = 0.5. (a) Case A 

( =∝thor δ/ ); (b) Case C ( 49.2/ =thor δ ); (c) Case F ( 42.1/ =thor δ ). 

Figure 2: Variation of reaction rate and molecular diffusion rate terms in the reaction 

progress variable transport equation (see eqs. 2 and 5). Reaction rate = w& , molecular 

diffusion rate = ).( cD∇∇ ρ , normal diffusion term = ).(. cNDN ∇∇
rr

ρ , tangential diffusion 

term = ).( cND ∇∇−
r

ρ . All the terms are ensemble averaged over c isosurfaces. (a) Case 

A ( =∝thor δ/ ); (b) Case C ( 49.2/ =thor δ ); (c) Case F ( 42.1/ =thor δ ). 

Figure 3: Variation of combined reaction rate and molecular diffusion rate 

)).(( cDw ∇∇+ ρ& ; combined reaction rate and normal component of molecular diffusion 

rate )).(.( cNDNw ∇∇+
rr

& ρ ; cSL ∇0ρ  plotted across the flame brush. All the terms are 

ensemble averaged over c isosurfaces. (a) Case A ( =∝thor δ/ ); (b) Case C 

( 49.2/ =thor δ ); (c) Case F ( 42.1/ =thor δ ). 

Figure 4: The variation of (density weighted) mean values of displacement speed 

components LtLnrLd SSSSSSS /,/)(,/ + , Lnr SSS 0/)( ρρ +  and Ld SS 0/ ρρ across the 

flame brush. (a) Case A ( =∝thor δ/ ); (b) Case C ( 49.2/ =thor δ ); (c) Case F 

( 42.1/ =thor δ ). 

Figure 5: Pdfs of normalised displacement speed )/( Ld SS on isosurfaces of progress 

variable. The value of progress variable runs from c = 0.1 to 0.9 in steps of 0.2. (a) Case 

A ( =∝thor δ/ ); (b) Case C ( 49.2/ =thor δ ); (c) Case F ( 42.1/ =thor δ ). 
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Figure 6: Pdfs of normalised components of displacement speed on isosurfaces of 

progress variable for cases A, C and F. (a) Pdf of reaction component rS ; (b) Pdf of 

normal diffusion component nS ; (c) Pdf of tangential diffusion component tS .   

Displacement speed components are normalised with respect to unstrained laminar flame 

speed LS . 

Figure 7: Joint pdf of dS  and mean curvature on the isosurface at c = 0.8. (a) Case A 

( =∝thor δ/ ); (b) Case C ( 49.2/ =thor δ ); (c) Case F ( 42.1/ =thor δ ). Note that dS  is 

normalised using the unstrained laminar flame speed LS  and mean curvature is 

normalised with respect to reference length scale. 

Figure 8: Joint pdf of SDF and mean curvature on the isosurface at c = 0.8. (a) Case A 

( =∝thor δ/ ); (b) Case C ( 49.2/ =thor δ ); (c) Case F ( 42.1/ =thor δ ). Both SDF and 

mean curvature are normalised with respect to reference length scale. 

Figure 9: Joint pdf of tangential strain rate )( Ta and mean curvature on the isosurface at c 

= 0.8. (a) Case A ( =∝thor δ/ ); (b) Case C ( 49.2/ =thor δ ); (c) Case F ( 42.1/ =thor δ ). 

Note that both quantities are normalised with respect to reference velocity and length 

scales. 

Figure 10: Joint pdf of dilatation ).( ur∇ and mean curvature on the isosurface at c = 0.8. (a) 

Case A ( =∝thor δ/ ); (b) Case C ( 49.2/ =thor δ ); (c) Case F ( 42.1/ =thor δ ). The 

quantities are normalised with respect to reference velocity and length scales. 

Figure 11: Pdfs of normal strain rate )/( jijin xuNNa ∂∂= on isosurfaces of progress 

variable. The value of progress variable runs from c = 0.1 to 0.9 in steps of 0.2. (a) Case 

A ( =∝thor δ/ ); (b) Case C ( 49.2/ =thor δ ); (c) Case F ( 42.1/ =thor δ ). Normal strain 
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rate is normalised with respect to appropriate combination of reference velocity and 

length scales. 

Figure 12: Joint pdf of the reaction component of displacement speed rS  and mean 

curvature on the isosurface at c = 0.8. (a) Case A ( =∝thor δ/ ); (b) Case C 

( 49.2/ =thor δ ); (c) Case F ( 42.1/ =thor δ ). 

Figure 13: Joint pdf of the normal diffusion component of displacement speed nS  and 

mean curvature on the isosurface at c = 0.8. (a) Case A ( =∝thor δ/ ); (b) Case C 

( 49.2/ =thor δ ); (c) Case F ( 42.1/ =thor δ ). 

Figure 14: Joint pdf of the combined reaction and normal diffusion component of 

displacement speed nr SS +  and mean curvature on the isosurface at c = 0.8. (a) Case A 

( =∝thor δ/ ); (b) Case C ( 49.2/ =thor δ ); (c) Case F ( 42.1/ =thor δ ). 
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