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Abstract

Two-stage anaerobic digestion (AD) batch tests were performed using the organic fraction of

municipal solid waste as substrate. Effects of different combination of initial pH (5.5, 7, and 9) and

food to microorganism (F/M) ratio (from 0.5 to 6 gVS/gVS) were investigated for hydrogen and

methane productions during the first and the second stage of AD, respectively.

Results showed that both initial pH and F/M ratio had an impact on hydrogen yield, hydrogen

production rate and duration of lag phase. The highest hydrogen yield of 29.8 mLH2/gVS was

obtained at initial pH of 5.5 and F/M ratio of 6. However, the highest hydrogen production rate (65

mLH2/gVS/d) was recorded at pH of 9 and F/M ratio of 6. Increasing the initial pH from 5.5 to 9, led

to shorter lag phases for all F/M ratios. Methane production from second phase was not significantly

influenced by the F/M ratios tested in the first digestion phase. When compared to single-phase AD,

two-stage AD tests resulted in enhanced methane production rates from 37.3 to 68.5 mLCH4/gVS/d,

reducing by half both the lag phase and the time required to reach maximum methane production.

Keywords: Organic waste; Dark fermentation; Anaerobic digestion; Hydrogen; Methane; Biogas
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1. Introduction

Two-stage anaerobic digestion process has recently been suggested as an option to maximize the

amount of energy recoverable from biodegradable organic waste in terms of hydrogen (H2) and

methane (CH4) [1–3]. H2 is a clean energy carrier and has a high-energy density. H2 has, in fact, the

highest calorific value among other fuels and its combustion does not lead to carbon emissions. H2

can be produced from cheap organic wastes and wastewaters in a process called dark fermentation

[3,4]. Biomethane can play a central role in the development of the circular economy principle. It is

a source of energy that can be used for power and heat production but also as a gaseous vehicle fuel,

it can replace natural gas and be fed into national gas grids or be used as a feedstock for producing

chemicals and materials [5].

Pre-treatments are often applied to enhance biogas productivity of substrates [6,7] and fermentation

step for H2 production itself could be seen as a pre-treatment to increase overall biodegradability.

During the fermentation stage of AD, organic substances are hydrolysed and converted to H2 and

volatile fatty acids (VFAs) by hydrogen producing bacteria. Optimisation of the H2 production phase

can lead to an improved hydrolysis and therefore higher energetic exploitation of waste materials.

The advantages traditionally indicated for two-stage digestion systems, if compared to single stage

AD, are shorter substrate retention time, enhanced solids degradation efficiencies [8–10], enhanced

hydrolysis with a subsequently higher CH4 production [11–13] and potentially higher organic loading

rates [14]. Despite these advantages, the higher complexity of two stage digestion plants, if compared

to single digestion, limited the diffusion of this option to less than 10% of current digestion capacity

[15].

The possibility of simultaneous H2 and CH4 productions from the same feedstock, rather renovates

the interest of this kind of plant configuration and this option is currently receiving growing interest

with several investigations at lab and pilot scale level [16–18]. Besides reaching higher energy yields,

two-stage AD promotes a stronger bio-stabilisation of the treated organic waste [19,20] and could
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also lead to the production of metabolites to be used as renewable and biodegradable substitutes for

petrochemical products [21,22].

The main variables influencing both single and two-stage AD performances are substrate C/N ratio,

reactors retention time, inoculum, pH, and food to microorganism ratio (F/M). Optimal substrate C/N

ratio for single stage AD was found to be between 15 and 30 while substrates with C/N ratios lower

than 10 should be treated only in a two-stage AD process [23]. Substrate retention time is generally

short during the H2 production phase (20 hours to 4 days) to avoid the risk of methanogenic activity

even though excessively short retention times may be detrimental for substrates characterised by slow

hydrolysis rates [24,25]. In contrast, a longer retention time is needed for CH4 production (20-30

days) in order to reach complete substrate degradation and enhanced digestate stabilization [26,27].

Pure or mixed microflora cultures can be used for H2 production from single or two-stage digestion.

Generally, H2 yields are higher when pure cultures are specifically chosen accordingly to the

fermented substrate while mixed cultures could show better adaptability towards environmental

stress, nutrients availability and process conditions [28,29].

Notwithstanding, there is still the need to define optimal operational parameters and procedures to

promote the successful succession of the two phases without compromising operational condition for

the methanogenic stage. In particular, there is a considerable lack of comprehensive studies relating

to the effects produced by initial operational parameters of fermentation on the second phase of the

process.

Data on H2 and CH4 production yields reported in scientific studies on two-stage AD process are

illustrated in Table 1. Results indicate that generally there is a good energy recovery potential from

the treatment of organic waste suggesting that efforts in assessing and proving the advantages of

different operational conditions as well as of the energy recovery potential can stimulate the

application of two-stage AD and diffuse the production of renewable H2 and CH4 from organic

residues.
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The aim of this study was to investigate the effect of F/M ratio and initial pH on hydrogen and

methane productions in a two-stage anaerobic digestion process using organic fraction of municipal

solid waste (OFMSW) as substrate.

2. Materials and Methods

2.1 Substrate and inoculum

OFMSW samples were collected from the waste receiving area of an anaerobic digestion plant

treating organic waste located in Padova, Italy. The OFMSW delivered at the plant is source

segregated at household level and the collection area involves a population of about 130,000

inhabitants. Samples were properly sorted and stored before use [30]. Samples were chopped with a

food grinder and diluted with water at a ratio 1:2 (kg/L) prior to use as substrate lab scale tests.

Granular sludge collected from a full-scale Upflow Anaerobic Sludge Blanket (UASB) digester of a

brewery located in Padova, was used as inoculum (mixed culture). OFMWS and sludge samples were

characterized for the following parameters: Total Solids (TS), Volatile Solids (VS), Total Carbon

(TC), Total Kjeldahl Nitrogen (TKN), and Chemical Oxygen Demand (COD) (Table 2).

2.2 Two-stage digestion batch tests

Experimental design was planned in order to study the combination effects of each investigated initial

pH and F/M ratio on two-stage AD process (Table 3). The following conditions F/M and pH were

tested during the first stage of digestion for H2 production. F/M ratios were 0.5, 1, 2, 4, and 6

gVS/gVS. Initial pH values were 5.5, 7, and 9.

Two-stage digestion batch tests were carried out using 1L glass bottles sealed with a silicon plug and

a working volume of 500 mL. Different F/M ratios were achieved changing the amount of inoculum

in each test while substrate concentration was kept constant at 5gVS/L. MES (C6H13NO4S) was used

to obtain an initial pH of 5.5, while (sodium carbonate, Na2CO3) was used to reach an initial pH value

of 9. No buffer was used for the initial tests at neutral pH (7.0).
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For first AD stage (fermentation tests), the inoculum was thermally pre-treated for 4 hours at 100 °C

to inhibit methanogenic archaea and to enhance the activity of hydrogen producing bacteria in the

mixed culture [31]. For the second AD stage, the same amount of sludge was added in each bottle in

order to obtain the same F/M ratio which was determined by dividing the original F by the new M.

To promote CH4 production during the second AD stage (methane production), F/M ratio was fixed

at 0.5 gVS/gVS, while initial pH was set at 8.5 by dosing Na2CO3.

A single-stage AD test (methane production only), characterized by a F/M ratio equal to 0.5 and a pH

of 8.5, was run in parallel in order to compare methane production yields with hydrogen and methane

yields obtained through the two-step process.

The bottles were flushed with N2 gas for 3 minutes to ensure anaerobic conditions and incubated at a

temperature of 35±1ºC. Incubation lasted 45 days for two-stage AD tests and 60 days for single-stage

ones. All tests were performed in duplicate.

2.3 Analytical Methods

TS, VS, COD, TKN and alkalinity were analysed according to standard methods [32]. TC and DC

were analysed by a TOC analyser (TOC-V CSN, Shimadzu). The volume of biogas produced during

two-phase digestion tests was measured by means of the water displacement method [33]. H2, CO2,

and CH4 concentrations in biogas were measured by a gas chromatograph (HP5890) equipped with

thermal conductivity detector (TCD), HP-MOLSIV and HP-PLOT U columns, and nitrogen as carrier

gas.

H2 and CH4 volumes produced in the time interval between each measurement [t – (t-1)] were

calculated using a model taking into consideration the gas concentration at time t and time t-1,

together with the total volume of biogas produced at time t, the concentration of specific gas at times

t and t-1, and the volume of head space of reactors [34]. The following equation was applied:

VC,t = CC,t* VG,t+ VH * ( CC,t– CC,t-1) (1)
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Where VC,t – hydrogen or methane volume produced in the interval between t and t - 1; CC,t, CC,t-1 –

hydrogen or methane concentrations measured at times t and t-1; VG,t – volume of gas produced

between time t and t-1; VH – volume of the headspace of reactors.

To compare the results obtained from the batch tests, data were interpolated on the basis of the

Gompertz model [35]. The Gompertz mathematical expression is described in Equation (2):
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Where P (t) is the cumulated H2 or CH4 production at time t; Pmax is the maximum H2 or CH4

production; R is the maximum production rate; and λ is the lag phase. The results related to production 

rate (R) and duration of the lag phase (λ) were applied to compare the different investigated operative 

conditions.

Data on H2 and CH4 productions are expressed at a temperature of 0°C and pressure of 1 atm (Normal

conditions).

3. Results and Discussion

3.1. Effect of F/M ratio and initial pH during the first AD stage – fermentation.

Hydrogen production yields obtained during the first stage (fermentation) are shown in Table 4.

Hydrogen yields were slightly lower than the values reported in the literature for similar substrates

(Table 1). This could be due either to a decreased hydrolytic activity after the long anaerobic sludge

pre-treatment or to the specific substrate composition used in this study. A decreased hydrolytic

activity could be a side effect of the heating process at 100 °C for 4 hours. Shah et al. [36] assessed

the viability of isolates from granular sludge after a pre-treatment similar to the one applied in this

study (2h and 4h at 100 °C) and observed that isolates still active after the heat shock exhibited a

broad range of hydrolytic activities. It is, therefore, presumable that the slightly lower H2 yields
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compared to those from similar studies could be due to the specific OFMSW composition. It was

observed that yields of H2 production from OFMSW collected in different seasons varied during the

year due to changes in the OFMSW composition [30]. Various studies also confirmed that

carbohydrate content of organic wastes directly affects H2 production suggesting that a lack of

fractions rich in sugars or starch could reduce the H2 productions via biological fermentation

[3,37,38].

In general, two days were enough to complete hydrogen production but a total of four days was waited

to ascertain the plateau and no methane production was observed during the fermentation tests,

indicating that the sludge pre-treatment was effective in inhibiting methanogens. Moreover, none of

the conditions tested during first phase, in terms of F/M ratios and pH, favoured the reactivation of

methanogens even after the fermentation stopped (data not shown).

Results of the data modelling with Gompertz equation (2) are reported in Table 4 and plots of H2

yields vs. F/M ratios and of lag phase duration (λ) vs. initial pH are shown in Fig. 1a and Fig. 1b,

respectively. The additional parameter, t95, defined as the time required for H2 production to attain

95% of the total cumulative yield [24], was also calculated and reported in Table 4. The highest H2

yield of 29.8 mLH2/gVS was recorded from test E, characterised by a F/M ratio of 6 and an initial pH

of 5.5. This test was also characterised by a lag phase of 14.9 h and a maximum production rate of

40.3 mLH2/gVS/d. The lowest H2 yield was recorded from test F, characterised by a F/M ratio of 0.5

and an initial pH of 7.0 (Table 1). The H2 production rate for this test was also the lowest (12.9

mLH2/gVS/d). Whilst the low yield and production rate, the lag phase for this test was shorter than

that for test E.

In general, high H2 yields were observed from tests with F/M ratios of 4 and 6 gVS/gVS (Fig. 1a)

and short lag phases were observed for tests with an initial pH of 7 or 9 (Fig. 1b). Production rates

(R) seemed not to be influenced neither by F/M ratio nor by initial pH, even though faster production

rates (R) are generally associated with higher production yields (Pmax).
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In the present study, different F/M ratios were obtained by changing the sludge concentration in the

reactors while substrate concentration was kept constant. Despite the presumable larger presence of

hydrogen producing bacteria at lower F/M ratios, this condition did not lead to higher H2 yields. A

larger variability in bacterial populations present in the mixed microflora with low F/M ratios could

have introduced also non-hydrogen forming bacteria competing for the same substrates or hydrogen

consuming bacteria and this could have had a measurable impact on hydrogen yields. The higher F/M

ratios, on the contrary, were obtained by lower biomass concentrations and this condition could have

reduced the possibility of non-hydrogen forming bacteria or hydrogen consuming bacteria to have an

effect on hydrogen yields. Alibardi et al. [31] indicated that long heat pre-treatments strongly

influence microbial viability, with reductions of order of magnitudes of active bacteria levels. Despite

this effect, high bacterial concentrations could allow niches of non-hydrogen forming or hydrogen

consuming bacteria to grow sufficiently to produce an effect on hydrogen yield. On the contrary,

when biomass concentrations are kept low, these niches are not able to influence overall hydrogen

productions that are only defined by the activity of fast growing hydrogen producing bacteria. F/M

ratio has therefore a direct effect on microbial activities of different populations present in the mixed

microflora and to maximise H2 production, small concentrations are sufficient to obtain efficient

hydrogen conversions [31]. Pan et al. [39] investigated how F/M ratio affects H2 production from

food waste under mesophilic and thermophilic conditions but with no pre-treatment to enhance

hydrogen production. Differently from the approach in the present research study, a constant biomass

concentration was used by Pan et al. [39] while substrate concentration was changed. Optimal F/M

ratios of 6 and 7 were identified under mesophilic and thermophilic conditions, respectively. Low

F/M ratios (< 3) led to high methane productions and at high F/M ratios (> 7) low H2 yields were

observed. These results confirm how an optimal balance between biomass and substrate

concentrations needs to be identified to enhance hydrogen production and avoid the activity of other

bacterial species not contributing or negatively affective hydrogen fermentation.
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Initial pH and F/M ratio also influenced hydrogen production rate (R) and lag phase duration (λ) 

(Table 4). When initial pH was increased from 5.5 to 9, a shorter lag phase was observed for all F/M

ratios (Fig. 1b). The longest lag phase (14.9 h - Test E) was observed with F/M ratio and initial pH

of 6 and 5.5, respectively. The shortest lag phase (4.8 h - Test O) corresponded to F/M ratio and initial

pH of 2 and 7, respectively. These results suggest that a neutral to basic pH could speed up the activity

of hydrogen forming bacteria after the heat pre-treatment while an initial acid condition imposes a

longer acclimating phase before hydrogen production starts. These results are in accordance with

Chen et al., [35] who reported longer lag phases when mixed microflora inoculum was cultivated at

pH of 5 (compared to pH 6 and 7) after an enrichment phase at both acid or basic conditions.

Similarly, Ferchichi et al. [40] reported a significantly long lag phase of 43.26 h with an initial pH of

5 and a short lag phase of 3.06 h when the pH was 8, using cheese whey as substrate. The initial low

pH conditions can result in the protonation of weak acids contained in cheese whey, which may pass

freely through the cell's membrane into its cytoplasm causing its consequent acidification [41]. This

internal condition could result in loss of activity by the glycolytic enzymes and structural damage of

the cell membrane that can lead to prolonged re-activation phases after external stresses to the

inoculum and, consequently, longer lag phases [40]. The low pH values set by using MES in this

study, could have led to a similar effect and produced the observed delay (Table 4).

Operational pH is also one of the key factors in dark fermentative H2 production. It may affect

hydrogenase activity and metabolic pathways towards different by-products generation [42]. In all

tests, pH decreased to values between 5.5 and 6 at the end of the fermentation (Table 4). These results

indicate that, despite the different pH set at the beginning of the tests, the fermentation products

established an acid environment even at high initial pH conditions (pH 9). Optimal initial pH of 5.5-

6.0 has been reported by many studies for mesophilic dark fermentation [3,40,43–45]. Low pH (4.5-

6) leads to a higher concentration of acetic and butyric acids which are soluble metabolites whose

production pathways are accompanied by H2 production [46]. Moreover, the activities of H2

consuming microorganisms like methanogens, homoacetogens, and propionic acid bacteria decrease
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at low pH conditions [42,47]. This study also demonstrated that high initial pH speeded up the

inoculum reactivation with short lag phases. It is, therefore, presumable that an optimal combination

of initial pH and operational pH during the fermentation process, could enhance the overall hydrogen

production by combining short lag phases with high hydrogen yields. Further studies are anyway

required to confirm or rebut this hypothesis.

3.2 Effect of F/M ratio and initial pH during the second AD stage – methane production.

Methane production yields during the second AD stage are reported in Table 5. The highest methane

production of 620 mLCH4/gVS was obtained from test F, while the lowest was measured from test D

(463 mLCH4/gVS). The average methane production of 544 mLCH4/gVS was obtained from all the

tests at various F/M ratios and initial pH conditions. The maximum methane production from test R,

carried out in a single digestion phase for methane production, resulted 633 mLCH4/gVS. The lower

methane yields obtained from the double digestion process could be explained by the fact that

hydrogen was produced in the first digestion phase. A portion of the total electrons released by the

biodegradation process was already passed to H2 and therefore a reduction of the total methane

production from the second phase could be expected. Notwithstanding, the additional amounts of

methane producible according to stoichiometry ( 4H2 + CO2 → CH4 + 2H2O) are only 7.45 and 1.75

mLCH4/gVS from the maximum and minimum H2 production yields, respectively.

The outputs from the second digestion phase (Tests A to Q) and the single digestion process (Test R)

displayed a similar pattern although the lag phase for single phase digestion was longer and time

required to reach maximum methane production was almost doubled (Table 6). Indeed, for two-stage

AD, hydrolysis and acidogenesis occur during the first stage resulting in enhanced VFAs production

which can be converted to CH4 rapidly during the second stage [12,13,48]. The optimal conditions

for hydrolytic bacteria and methanogenic archaea may be different and splitting the process into two

phases, provides the opportunity for the specific optimization of each phase. Differently, single-stage

AD, for which hydrolysis is the rate limiting process, combines hydrolysis, acidogenesis and
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methanogenesis with a consequently longer lag phase than that of the second stage of a two-stage

AD.

Average maximum methane productions (Fig. 2) decreased in line with an increase of the F/M ratio

(applied in the first stage) up to 4. However, an opposite trend was observed when passing from a

F/M ratio of 4 to 6, displaying a pattern similar to that observed for H2 production during the first AD

stage (Fig. 1).

Comparing trends in Fig. 1a and Fig. 2, it can be highlighted that lower hydrogen productions are

associated with higher methane yields for all F/M ratios. In particular, test F, characterised by a F/M

ratio of 0.5 and pH of 7, produced the lowest amount of hydrogen (7 mLH2/gVS) and the highest

amount of methane (619 mLCH4/gVS). In accordance with Schievano et al. [49], single-stage

Biochemical Methane Potential (BMP) outputs featured higher methane yields than those achieved

from a two-stage AD process, although with a longer lag phase and lower maximum production rate.

The slightly lower CH4 yields obtained for two-stage AD could be likely due to the previous recovery

of H2 which is also a substrate for methane production. In fact, in a single-stage AD, CH4 could be

obtained both from VFAs conversion by acetoclastic methanogens and by H2 and CO2 conversion by

hydrogenotrophic methanogenic archaea. In contrast to our results, Voelklein et al. [48] reported a

23% increase in methane production from a two-stage AD of restaurant food waste rather than a

single-stage process. Likewise, Liu et al. [13] recovered 21% more methane from two-stage AD tests

performed on mixed organic waste.

The final pH of two-stage AD process ranged between 7.5 and 8, while for single stage AD process

final pH resulted 7.0 (Table 5). For both the methane production phase of the two-stage AD and for

single AD, initial pH was set at a value of 8.5. The slightly lower final pH observed for single AD

could suggest that a higher buffer capacity is required for systems where all phases of digestion are

carried out in one single reactor. On the contrary, for two-stage AD a lower buffer capacity is required

as acidic fermentation residues from first stage are rapidly converted to CH4. Notwithstanding, the

results suggest that process condition and fermentation activity during first stage have an impact on
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second stage performance. Tests performed at F/M ratios of 4 and 6 (D, E, I, L, P and Q) were in fact

always related to the lowest final pH value, and therefore a higher buffer capacity, probably because

of the higher biological metabolites production favoured by high F/M ratios [50].

The first AD stage, aimed at hydrogen production, may also be viewed as an effective pre-treatment

for the subsequent production of methane, providing a VFA-rich substrate ready to be digested by

methanogenic archaea. The average CH4 yield from two-stage AD (544 mLCH4/gVS) was lower than

the one from single-stage AD (633 mLCH4/gVS) (Table 5 and Table 6). However, if similar

conditions were considered (F/M= 0.5), approximately equal yields were obtained from single-stage

and two-stage AD (626.1 and 619 mLCH4/gVS, respectively). Methane production rate (R) doubled

(Table 6), whilst both lag phase and time required to reach the maximum methane production were

reduced by half when passing from single-stage to two-stage AD process. These findings are in

accordance with Leite et al. [51] who achieved a 15% increase of produced energy from single-stage

to two-stage AD system. In fact, when splitting the AD process into two-stages, the first stage may

be regarded as a pre-treatment to increase the methane production rate and to shorten the lag phase,

as confirmed by the results reported in the present paper. The faster production rate, accompanied by

a shorter lag phase, proves a significant overall benefit of two-stage over single-stage AD. It is

important to highlight that the maximum methane productions during the two-stage processes were

reached after 20 days of incubation; on the contrary, for the single-stage test, the maximum methane

production (626.1 mLCH4/gVS) was reached after about 40 days. By comparing the potential energy

output of the two processes, it is possible to highlight how a double phase digestion process could be

energetically more favourable if compared to a single-phase digestion when the time for digestion

(i.e. digester volume or solid retention time) is fixed at 22 days. In the single-stage AD test the

cumulative methane production registered after 22 days of incubation was 366.2 mLCH4/gVS.

Considering a period of 2 and 20 days for hydrogen and methane productions, respectively, for a two-

stage digestion, and of 22 days in the case of the single-stage process, the potential energy output for

produced fuel gases is reported in Fig. 3. These choices were made on the basis of the average time
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required to reach maximum hydrogen and methane productions in the two-stage process. According

to Fig. 3, all two-stage tests were energetically more favourable than single-stage tests. These results

confirm that the implementation of a two-stage digestion processes for sequential H2 and CH4

production from OFMSW could enhance methanogenic phase performances and increase the overall

potential energy production thank to faster digestion processes.

4. Conclusion

The present study investigated the effects of two parameters, initial pH and food to microorganism

ratio, on hydrogen and methane productions obtained from the organic fraction of municipal solid

waste in a two-stage AD process. Data analysis revealed how a variation in initial pH value influenced

substrate degradation kinetics and total hydrogen production. Kinetics were favoured by initial

alkaline conditions (pH = 9) linked to faster production rates and shorter lag phase. High F/M ratios

were found to facilitate hydrogen production, with the most favourable condition being identified at

a F/M ratio of 6. Peak methane production (619 mLCH4/gVS) recorded during the second AD stage

of BMP test characterized by a F/M ratio of 0.5 and an initial pH of 7, was close to the value of 633

mLCH4/gVS obtained during the single-stage process. There was no evident relationship between

initial pH values during fermentation and methane production, probably due to pH adjustment

performed on completion of fermentation tests, while an increase in F/M ratio from 0.5 to 4 resulted

in a slight decrease in methane production. The fermentation phase, in addition to promoting

hydrogen recovery, represents an efficient means of pre-treatment aimed at enhancing subsequent

methane production. In comparison with the single-stage AD process, a two-stage process elicits

faster methane production, a shorter lag phase, and a better energetic exploitation of OFMWS, as

demonstrated by the achieved energy output.
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Fig. 1. Distribution of maximum hydrogen (H2) production (Pmax) over F/M ratio (a) and lag phase

(λ) over initial pH (b).
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Fig. 2. Distribution of maximum methane (CH4) production (Pmax) obtained from the second phase

over F/M ratios tested during the first phase.
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Fig. 3. Potential energy output from single-stage and two-stage tests after 22 days of digestion (2 days

first stage, 20 days second stage). H2 energy density = 120 MJ/kg – CH4 energy density = 50 MJ/kg.

(Single-stage AD yielded 366.2 mLCH4/gVS after 22 days of digestion).
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Table 1. Comparison of hydrogen and methane production yields in a two-stage AD process using

different organic substrates.

Substrate

Hydrogen potential

production

(mLH2/gVS)

Methane potential

production

(mLCH4/gVS)

Reference

Dairy processing waste 40.15 34.2 [52]

Kitchen waste 36 135 [53]

OFMSW 43 500 [13]

OFMSW 90 560 [54]

Potato residues 31 387 [55]

Steam-peeling potato waste 134* 183* [56]

Common wheat waste 47* 202* [56]

Vinegar residue 53.2 192 [57]

* mL/gCOD
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Table 2. Average substrate and inoculum characteristics.

Parameter OFMSW Granular sludge

TS (%) 75 15

VS (%TS) 90 53

TC (%TS) 50.2 29.6

TKN (gN/kgTS) 8.7 43

C/N (gC/gN) 58 7

COD (gO2/kgTS) 300 693
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Table 3. Initial operational conditions of two-stage and single stage batch tests.

Run

First stage, fermentation Second stage, methanization

F/M

(gVS/gVS)
Initial pH

F/M

(gVS/gVS)
Initial pH

A 0.5 5.5 0.5 8.5

B 1.0 5.5 0.5 8.5

C 2.0 5.5 0.5 8.5

D 4.0 5.5 0.5 8.5

E 6.0 5.5 0.5 8.5

F 0.5 7.0 0.5 8.5

G 1.0 7.0 0.5 8.5

H 2.0 7.0 0.5 8.5

I 4.0 7.0 0.5 8.5

L 6.0 7.0 0.5 8.5

M 0.5 9.0 0.5 8.5

N 1.0 9.0 0.5 8.5

O 2.0 9.0 0.5 8.5

P 4.0 9.0 0.5 8.5

Q 6.0 9.0 0.5 8.5

Single stage, methane production

F/M (gVS/gVS) Initial pH

R 0.5 8.5
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Table 4. Hydrogen production yields (average values), final pH at the end of the first stage of AD

batch tests and results of the data modelling with Gompertz equation (2).

Run

First stage, fermentation Modelling results

Hydrogen
production

(mLH2/gVS)
Final pH

R
(mLH2/gVS/d)

λ (h) Pmax

(mLH2/g
VS)

t95 (d)

A 18.0 6.0 55.5 14.2 18.0 1.1

B 13.0 6.0 20.6 11.2 13.0 1.4

C 14.2 6.0 25.3 11.5 14.2 1.3

D 16.4 6.0 19.4 10.2 16.4 1.7

E 29.8 5.5 40.3 14.9 29.8 1.7

F 7.0 6.0 12.9 9.0 7.0 1.2

G 15.9 5.0 50.0 9.6 15.9 0.9

H 10.2 5.0 18.0 5.3 10.2 1.0

I 28.2 5.0 54.2 7.2 28.8 1.1

L 17.5 5.0 64.8 7.2 17.5 0.7

M 7.9 6.5 27.3 8.5 7.9 0.8

N 14.9 5.5 55.3 8.1 14.9 0.7

O 24.0 5.0 60.0 4.8 24.0 0.8

P 24.3 5.0 64.8 6.0 24.3 0.8

Q 23.6 5.0 65.0 5.9 23.6 0.8
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Table 5. Methane production yields, final pH at the end of the second stage of AD batch tests and

results of the data modelling with Gompertz equation (2).

Run

Second stage, methane

production
Modelling results

Methane
production

(mLCH4/gVS)
Final pH

R
(mLCH4/gVS/d)

λ (d) Pmax

(mLCH4/g
VS)

t95 (d)

A 527 8 101.4 7.9 517 15.3

B 550 8 76.4 5.4 549 15.9

C 499 7.5 68.0 5.4 493 16.0

D 489 7.5 52.8 5.0 463 17.8

E 582 7.5 62.5 5.1 562 18.2

F 619 8 67.4 4.9 620 18.3

G 590 8 62.1 4.8 600 18.9

H 532 8 56.6 4.7 541 18.7

I 474 7.5 50.1 4.2 482 18.3

L 523 7.5 53.1 4.2 534 18.9

M 606 8 94.9 6.8 614 16.2

N 566 8 73.2 5.9 573 17.3

O 554 8 75.2 5.8 553 16.5

P 532 7.5 67.8 5.9 529 17.3

Q 529 7.5 66.6 5.6 529 17.2

Single stage, methane

production

Modelling results

Methane
production

(mLCH4/gVS)
Final pH

R

(mLCH4/gVS/d)

λ (d) Pmax

(mLCH4/g

VS)

t95 (d)

R 626.1 7.0 37.3 12.0 633 36.8
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Table 6. Comparison of Gompertz equation modelling results from single-stage and two-stage AD

processes (average values between all tests). R ‐ methane production rate, λ ‐ lag phase, and tmax -

time needed for maximum methane production.

Pmax

(mLCH4/gVS)

R

(mLCH4/gVS/d)
λ (d) t max (d)

Single-stage AD 633 37.3 12.0 40

Two-stage AD 544 68.5 5.4 20


