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ABSTRACT 24 

The internal transcribed spacer (ITS) region is the accepted DNA barcode of fungi. Its 25 

use has led to a step-change in the assessment and characterisation of fungal communities 26 

from environmental samples by precluding the need to isolate, culture, and identify 27 

individuals. However, certain functionally important groups, such as the arbuscular 28 

mycorrhizas (Glomeromycetes), are better characterised by alternative markers such as 29 

the 18S rRNA region. Previous use of an ITS primer set in a nationwide metabarcoding 30 

soil biodiversity survey revealed that fungal richness declined along a gradient of 31 

productivity and management intensity. Here, we wanted to discern whether this trend 32 

was also present in data generated from universal 18S primers. Furthermore, we wanted 33 

to extend this comparison to include measures of functional diversity and establish trends 34 

with soil types and soil organic matter (SOM) content. Over the 413 individual sites 35 

examined (arable, grassland, woodland, moorland, heathland), we found congruent trends 36 

of total fungal richness and β-diversity across land uses, SOM class and soil type with 37 

both ITS and 18S primer sets. A total of 24 fungal classes were shared between datasets, 38 

in addition to 15 unique to ITS1 and 12 unique to 18S. However, using FUNGUILD, 39 

divergent trends of functional group richness became apparent, especially for 40 

symbiotrophic fungi, likely driven by an increased detection rate of Glomeromycetes in 41 

the 18S dataset. The disparate trends were also apparent when richness and β-diversity 42 

were compared to soil properties. Additionally, we found SOM class to be a more 43 

meaningful variable than soil type biodiversity for predicting biodiversity analyses 44 

because organic matter was calculated for each sample whereas soil type was assigned 45 

from a national soil map. We advocate that a combination of fungal primers should be 46 



used in large-scale soil biodiversity surveys to capture important groups that can be 47 

underrepresented by universal barcodes. Utilising such an approach can prevent the 48 

oversight of ubiquitous but poorly described species as well as critically important 49 

functional groups. 50 

 51 

INTRODUCTION 52 

 Soil fungi are the dominant eukaryotic component of soil communities and are 53 

known to perform crucial ecosystem functions (Peay et al., 2008). Characterising the 54 

diversity of fungi within the landscape and their response to anthropogenic perturbation 55 

therefore represents an important topic within ecology. High-throughput sequencing has 56 

allowed the rapid estimation and identification of fungi by overcoming historical 57 

limitations of culture isolation and classifying fruiting bodies (Tedersoo et al., 2015). 58 

Using these DNA-based approaches it has been estimated that global fungal diversity in 59 

soil ranges from 3.5 – 5 million species. Yet at the beginning of the present decade, only 60 

around one-tenth of fungal diversity was thought to have been described (Rosling et al., 61 

2011). In terms of ecosystem function, the majority of fungi are important in organic 62 

matter turnover and nutrient recycling as they facilitate the conversion of complex 63 

organic polymers into forms more readily accessible to other organisms (Peay et al., 64 

2008; Nguyen et al., 2016). Consequently, they play a crucial role in regulating both 65 

below- and above-ground productivity (Peay et al., 2008). Many soil fungi also form 66 

important interactions with plants. Some form mutualistic relationships, best exemplified 67 

by the wide range of mycorrhizas (Wang and Qui, 2006; Smith and Read, 2008; Nguyen 68 

et al., 2016), whereas others are pathogens, responsible for numerous plant and animal 69 



diseases within agriculture and forestry (Fisher et al., 2012; Nguyen et al., 2016). 70 

Depending on environmental conditions or life stage, fungi are capable of taking on some 71 

or all of these roles (i.e. saprotroph, symbiotroph, pathotroph) (Fisher et al., 2012).  72 

Despite the recognition that fungi are extremely important in soil ecosystems, 73 

characterising fungal communities has remained a challenge, exemplified by the 74 

numerous studies on soil bacteria in comparison to fungi. 75 

 Fungal barcode sequences are found within the ubiquitous, multicopy ribosomal 76 

RNA gene. Within this, the internal transcribed spacer (ITS) region has been accepted as 77 

a universal barcode for fungi (Schoch et al., 2012). Recent development of ITS-based 78 

databases such as UNITE (Kõjlalg et al., 2013) and Warcup (Deshpande et al., 2016) 79 

have overcome limitations in collecting and assigning taxonomic identities to unknown 80 

sequences, though database selection may introduce bias into results (Tedersoo et al., 81 

2015; Xue et al., 2019). Yet ITS barcodes exhibit some limitations when dealing with 82 

unknown or environmental samples. Generally, the ITS region cannot be aligned above 83 

the family-level (Cavender-Bares et al., 2009), making phylogenies based on ITS 84 

sequence data unreliable. Importantly, the ITS region has proven unreliable at 85 

distinguishing certain fungal groups at the species-level, such as Glomeromycetes 86 

(Stockinger et al., 2010). Such inconsistencies mean that ITS primers may not accurately 87 

detect target organisms. For instance, Berruti et al. (2017), found that ITS primers 88 

underestimated Glomeromycetes in bulk soil. Such uncertainty may confound 89 

experimental results and lead to erroneous conclusions. 90 

 Despite the widespread use of ITS barcodes, other markers may better capture the 91 

diversity of some fungal taxa. Primers targeting the small and large subunits as well as 92 



the ITS regions of the rRNA gene have all been applied to fungi (Tedersoo et al., 2015; 93 

Xue et al., 2019). For example, early diverging lineages such as Chytridiomycota 94 

(Schoch et al., 2012; Tedersoo et al., 2015) and Glomeromycetes (Tedersoo, et al., 2015) 95 

are poorly represented in ITS sequencing. Additionally, advancements in classification 96 

have highlighted the shortcomings of environmental DNA barcoding. For example, the 97 

Archaeorhizomycetes are a poorly understood but ubiquitous class of soil fungi and their 98 

previously unidentifiable sequences have been major components of past soil biodiversity 99 

assessments (Anderson et al., 2003; Rosling, et al., 2011). Overlooking these lineages 100 

may potentially lead to erroneous assumptions of biological and functional diversity in 101 

soils.  102 

Underrepresentation of Glomeromycetes in particular exemplifies this issue. 103 

Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with more than 80% 104 

of vascular plant families and have been categorised into the monophyletic 105 

Glomeromycetes (Schüβler et al., 2001). Unlike most fungi, the ITS region has 106 

consistently demonstrated poor resolution in some closely related AMF species 107 

(Stockinger et al., 2010) as it is too hyper-variable (Thiéry et al., 2016). As mentioned 108 

previously, the ITS region underestimates Glomeromycetes in bulk soil (Berruti et al., 109 

2017). Instead, the 18S region is more commonly used for barcoding AMF, especially in 110 

ecological studies (Öpik et al., 2014). Therefore it is important to recognise biases 111 

inherent even in supposedly universal barcodes. 112 

We previously undertook a nation-wide assessment of soil biodiversity across 113 

Wales, representing a breadth of heterogeneous land uses, which included agricultural 114 

land, grasslands, woodlands, and upland bogs. In this case, fungal richness and β-115 



diversity were assessed using soil environmental DNA, utilising ITS1 primers (George et 116 

al., 2019). Yet, from the earliest stages of experimental design, we were cognisant that 117 

the ITS1 universal primer choice may not account for numerous functionally important 118 

fungal groups, particularly AMF. Thus, the primary objective of the present study was to 119 

assess whether observed fungal biodiversity (richness and β-diversity) across contrasting 120 

land uses from the ITS1 dataset would differ when compared to a dataset derived from an 121 

alternative choice of primer and database. We therefore sought to assess if primer choice 122 

influenced fungal biodiversity across land use, soil type, and soil organic matter (SOM) 123 

class. Our next aim was to critically evaluate the influence of climatic and edaphic factors 124 

(e.g. soil pH, total carbon (C), nitrogen (N), phosphorus (P)) on fungal diversity arising 125 

from the use of the two different primer sets. Our final aim was to look for differences in 126 

coverage of taxonomic and functional diversity between the two primer sets across the 127 

broad range of land uses and soil types evaluated.  128 

 129 

MATERIALS AND METHODS 130 

Study Design 131 

 Data were collected as part of the Glastir Monitoring & Evaluation Programme 132 

(GMEP). The GMEP initiative was established by Welsh Government to monitor their 133 

most recent agri-environment scheme, Glastir, which involved 4,911 landowners over an 134 

area of 3,263 km2 (Fig. 1). Through the GMEP framework, survey teams collected 135 

samples in 2013 and 2014 between April and October in each year (Emmett and the 136 

GMEP Team, 2017). Sampling protocols were based on those of the UK-wide ecosystem 137 

monitoring programme, Countryside Survey (Emmett et al., 2010). The survey design 138 



randomly located 300, 1 km squares across 26 land classes in Wales which survey teams 139 

sampled with 5 plots in each square. A subset of samples were then randomly chosen 140 

from squares with a maximum of 3 selected in an individual square. A total of 437 141 

samples were collected for biodiversity analyses.  142 

At each sampling location, 2 cores were collected. One was a 15 cm deep by 4 cm 143 

diameter core from which measurements of soil physical and chemical properties were 144 

taken, including total C (%), N (%), P (mg/kg), organic matter (% loss-on-ignition), pH 145 

(measured in 0.01 M CaCl2), mean soil water repellency (water drop penetration time in 146 

seconds), bulk density (g/cm3), volume of rocks (cm3), volumetric water content (m3/m3), 147 

as well as percentage sand and clay. For complete details on chemical analyses 148 

methodology, see Emmett et al. (2010). Soil texture data were measured by laser 149 

granulometry with a LS320 13 analyser (Beckman-Coulter) as described in George et al. 150 

(2019). The cut-off points for clay, silt, and sand were: 2.2 μm, 63 μm and 2000 μm 151 

respectively. Clay and sand percentages were selected for subsequent analyses and 152 

normalised using Aitchison’s log10-ratio transformation. Further geographic data 153 

including grid eastings, northings, and elevation were also collected. Mean temperature 154 

(°C) on date of sample collection and annual precipitation (mL) data were extracted from 155 

the Climate Hydrology and Ecology research Support System dataset (Robinson et al., 156 

2017). Environmental variables were normalised (by log10 or square root transformation) 157 

where appropriate (see Table 1). 158 

Each sampling site was assigned to a land use category, soil type, and SOM class 159 

(based on percentage organic matter). The land use classification used in this study was 160 

originally developed for the UK Countryside Survey in 1990 (Bunce et al., 1999). 161 



Briefly, vegetation was recorded by surveyors and used to classify each site into one of 162 

the 8 Aggregate Vegetation Classes (AVCs) as described in Bunce et al. (1999; for 163 

further details please see Supplementary Material).  The AVCs have been shown to 164 

follow a gradient of soil nutrient content from which productivity and management 165 

intensity can also be inferred (see Supplementary Material and Bunce et al., 1999). There 166 

were 7 AVCs identified in the present study. The AVCs in descending order of 167 

productivity are: Crops/weeds (including arable land), Fertile grassland, Infertile 168 

grassland, Lowland woodland, Upland woodland, Moorland grass-mosaic, Heath/bog 169 

(Supplementary Table 1). Soil type based on the predominant major soil group 170 

classification was extracted from the National Soil Map (Supplementary Material; Avery, 171 

1980). Additionally, we classified soils on a per sample basis by organic matter content. 172 

Each sample was grouped into one of four organic matter classes based on percent loss-173 

on-ignition (LOI) following the protocols of the 2007 Countryside Survey (Emmett et al., 174 

2010): mineral (0-8% LOI), humus-mineral (8-30% LOI), organo-mineral (30-60% LOI), 175 

and organic (60-100% LOI). Mean values for each environmental variable were recorded 176 

for each land use, soil organic matter class, and soil type.  177 

DNA Extraction 178 

 Soils used in DNA extraction were collected from 15 cm deep by 8 cm diameter 179 

cores. Soil samples were transported in refrigerated boxes; samples were received at 180 

Environment Centre Wales, Bangor within an average of 48 h post-extraction and frozen 181 

at -80 °C upon arrival. Soils were then thawed and homogenised as they passed through a 182 

sterilised 2 mm stainless steel sieve after which they were returned to a -80 °C freezer 183 

until DNA extraction. Sieves were sterilised between samples by rinsing with tap water at 184 



high pressure and an application of Vircon® laboratory disinfectant followed by UV-185 

treating each side for 5 minutes. DNA was extracted by mechanical lysis from 0.25 g of 186 

soil per sample using a PowerLyzer PowerSoil DNA Isolation Kit (MO-BIO Inc.). Soils 187 

were pre-treated with 750 L of a suspension of CaCO3 (1 M) following Sagova-188 

Mareckova et al. (2008) to improve PCR performances, especially for acidic soils. 189 

Extracted DNA was stored at -20 °C until amplicon library preparation began. The 190 

extractions and homogenisation steps were performed in triplicate. To check for 191 

contamination in sieves, 3 negative control DNA extractions were completed as well as 2 192 

negative control kit extractions using the same technique but without the CaCO3 pre-193 

treatment. Aliquots of the resultant DNA were used to create amplicon libraries for 194 

sequencing with each primer set.  195 

 196 

Primer Selection and PCR Protocols for Library Preparation 197 

Amplicon libraries were created using primers for the ITS1 (ITS5/5.8S_fungi) 198 

area to specifically target fungi (Epp et al., 2012) and the V4 region of the 18S gene 199 

(TAReuk454FWD1/TAReukREV3) (Behnke et al., 2011) targeting a wide range of, but 200 

not all, eukaryotic organisms, including fungi. A two-step PCR following protocols 201 

devised in conjunction with the Liverpool Centre for Genome Research was used as 202 

described in George et al. (2019). Amplification of amplicon libraries was run in 203 

triplicate on DNA Engine Tetrad® 2 Peltier Thermal Cycler (BIO-RAD Laboratories Inc.) 204 

and thermocycling parameters for both PCR protocols started with 98 °C for 30 s and 205 

terminated with 72 °C for 10 min for final extension and held at 4 °C for a final 10 min. 206 

For the ITS1 locus, there were 15 cycles of 98 °C for 10 s; 58 °C for 30 s; 72 °C for 30 s. 207 



For the 18S locus there were 15 cycles at 98 °C for 10 s; 50 °C for 30 s; 72 °C for 30 s. 208 

Twelve μL of each first-round PCR product were mixed with 0.1 μL of exonuclease I, 0.2 209 

of μL thermosensitive alkaline phosphatase, and 0.7 μL of water and cleaned in the 210 

thermocycler with a programme of 37 °C for 15 min and 74 °C for 15 min and held at 4 211 

°C. Addition of Illumina Nextera XT 384-way indexing primers to the cleaned first round 212 

PCR products were amplified following a single protocol which started with initial 213 

denaturation at 98 °C for 3 min; 15 cycles of 95 °C for 30 s; 55°C for 30 s; 72 °C for 30 214 

s; final extension at 72 °C for 5 min and held at 4 °C. Twenty-five μL of second-round 215 

PCR products were purified with an equal amount of AMPure XP beads (Beckman 216 

Coulter). Library preparation for the 2013 samples was conducted at Bangor University. 217 

Illumina sequencing for both years and library preparation for 2014 samples were 218 

conducted at the Liverpool Centre for Genome Research. 219 

 220 

Bioinformatics 221 

Bioinformatics analyses were performed on the Supercomputing Wales cluster as 222 

previously described in George et al. (2019). A total of 104,276,828, and 98,999,009 raw 223 

reads were recovered from the ITS1 and 18S sequences, respectively. Illumina adapters 224 

were trimmed from sequences using Cutadapt (Martin, 2011) with 10% level mismatch 225 

for removal. Sequences were then de-multiplexed, filtered, quality-checked, and clustered 226 

using a combination of USEARCH v. 7.0 (Edgar, 2010) and VSEARCH v. 2.3.2 (Rognes 227 

et al., 2016). Open-reference clustering (97% sequence similarity) of operational 228 

taxonomic units (OTUs) was performed using VSEARCH; all other steps were conducted 229 

with USEARCH. Sequences with a maximum error greater than 1 and shorter than 200 230 



bp were removed following the merging of forward and reverse reads for ITS1 231 

sequences. A cut-off of 250 bp was used for 18S sequences, according to higher quality 232 

scores. There were 7,242,508 (ITS1) and 9,163,754 (18S) cleaned reads following these 233 

steps. Sequences were sorted and those that only appeared once in each dataset were 234 

removed.  235 

Remaining sequences were matched first against the UNITE 7.2 (Kõljalg et al., 236 

2013) and SILVA 128 (Quast et al., 2013) databases for the ITS1 and 18S sequences, 237 

respectively. Ten per cent of sequences that failed to match were clustered de novo and 238 

used as a new reference database for failed sequences. Sequences that failed to match 239 

with the de novo database were subsequently also clustered de novo. All clusters were 240 

collated and chimeras were removed using the uchime_ref command in VSEARCH. 241 

Chimera-free clusters and taxonomy assignment summarised in an OTU table with 242 

QIIME v. 1.9.1 (Caporaso et al., 2010) using RDP (Wang et al., 2007) methodology with 243 

the UNITE database for ITS1 data. Taxonomy was assigned to the 18S OTU table using 244 

BLAST (Altschul et al., 1990) against the SILVA database and OTUs appearing only 245 

once or in only 1 sample were removed from each OTU table. Based on DNA quality and 246 

read counts, 413 samples were used for analyses of the ITS1 data and 422 for 18S data 247 

(from the total of 438). 248 

A Newick tree was constructed for the 18S tables using 80% identity thresholds 249 

and was paired with the 18S OTU table as part of analyses using the R package phyloseq 250 

(McMurdie and Holmes, 2013). Non-fungi OTUs were removed from both OTU tables. 251 

Read counts from each group were rarefied 100 times using phyloseq (as justified by 252 

Weiss et al. (2017)) and the resulting mean richness was calculated for each sample. The 253 



ITS1 table was rarefied at a depth of 4,000 reads whereas the 18S table was rarefied to 254 

10,000 reads. A subset of the 18S data was rarefied to 400 reads across 398 samples to 255 

analyse Glomeromycetes OTUs separately. Samples with observed lower read counts 256 

were removed before rarefaction. To assess functional diversity, both OTU tables were 257 

processed using FUNGUILD (Nguyen et al., 2016) and the resulting matched OTU tables 258 

were used to investigate functional roles based on trophic mode. Sequences have been 259 

uploaded to The European Nucleotide Archive and can be accessed with the following 260 

primary accession codes after the end of the data embargo: PRJEB28028 (ITS1), and 261 

PRJEB28067 (18S). 262 

 263 

Statistical Analysis 264 

All statistical analyses were run using R v. 3.3.3 (R Core Team, 2017) following 265 

rarefaction. For each data set, NMDS ordinations using Bray-Curtis dissimilarity were 266 

created with the vegan package (Oksanen et al., 2016) to assess β-diversity. 267 

Environmental data was fitted linearly onto each ordination of AVCs using the envfit 268 

function. NMDS scores were plotted against these values for each variable to determine 269 

the direction of associations. Differences in β-diversity amongst AVCs were calculated 270 

with PERMANOVA and homogeneity of dispersion was also assessed.  271 

 Linear mixed models were constructed using package nlme (Pinheiro et al., 2016) 272 

to show the differences in α-diversity amongst AVCs, soil types, and LOI classification, 273 

for both ITS1 and 18S fungal data sets. Sample year as fixed factors; sample square 274 

identity was the random factor. This methodology was also used for the subsets of data 275 

that matched to the FUNGUILD database. For each model, significant differences were 276 



assessed by ANOVA and pairwise differences were identified using Tukey’s post-hoc 277 

tests from the multcomp package (Hothorn et al., 2008).   278 

 Partial least squares regressions from the pls package (Mevik et al., 2016) were 279 

used with the variable importance in projection (VIP) approach (Chong and Jun, 2005) to 280 

sort the original explanatory variables by order of importance to identify the most 281 

important environmental variables for richness. Such analysis is ideal for data where 282 

there are many more explanatory variables than sample numbers or where extreme 283 

multicollinearity is present (Lallias et al., 2015; George et al., 2019). Variables with VIP 284 

values > 1 were considered most important. Relationships between important variables 285 

and richness values for each group of organisms were investigated by linear regression. 286 

Richness was normalised before regression when necessary.  287 

 288 

RESULTS 289 

Soil Properties 290 

 Soil properties displayed a range of changes across land uses (Table 1). Notably, 291 

total C (F6, 427 = 89.13 p < 0.001), total N (F6, 427 = 61.03, p < 0.001), C:N ratio (F6, 427 = 292 

94.41, p < 0.001), organic matter content (F6, 428 = 107.02, p < 0.001), elevation (F6, 429 = 293 

78.42, p < 0.001), and mean annual precipitation (F6, 429 = 72.6, p < 0.001), and moisture 294 

(F6, 427 = 33.74, p < 0.001) increased with declining land use productivity. We also 295 

observed a reduction in pH (F6, 428 = 69.56, p < 0.001), bulk density (F6, 428 = 79.87, p < 296 

0.001), and clay content (F6, 344 = 19.54, p < 0.001) across the land use productivity 297 

gradient. Trends in other variables such as soil water repellency (F6, 428 = 22.08, p < 298 

0.001), total P (F6, 424 = 7.1, p < 0.001), sand content (F6, 344 = 5.71, p < 0.001), stone 299 



content (F6, 427 = 10.4, p < 0.001), and temperature at time of sampling (F6, 429 = 4.4, p < 300 

0.001), though significant, were less clear across land uses however. These findings were 301 

also apparent when samples were grouped from low-to-high organic matter content by 302 

organic matter class (Supplementary Table 2). Overall, no clear trends were evident 303 

across the different soil types (Supplementary Table 3).  304 

 305 

Sequencing Data 306 

 A total of 7,582 and 4,408 fungal OTUs were recovered using the ITS1 and 18S 307 

primer sets, respectively. Of these, 5,666 were assigned an identifier at the class-level in 308 

the ITS1 dataset while 4,367 were assigned an identifier in the 18S dataset. There were 309 

15 classes that were only found in the ITS1 dataset and 12 unique to the 18S data. 310 

Endogonomycetes was the most abundant class found only in the ITS dataset (19 OTUs), 311 

whereas Laboulbeniomycetes (17 OTUs) was the most abundant fungal class unique to 312 

the 18S data. A total of 24 classes were present in both ITS1 and 18S data (Fig. 2A).  313 

As reported in George et al. (2019), Agaricomycetes were the most abundant class 314 

of fungi in the ITS1 dataset overall. There were also a large proportion of 315 

Sordariomycetes (Fig. 2B). Archaeorhizomycetes was the most abundant class in the 18S 316 

dataset (Fig. 2C). Proportionate abundances of Sordariomycetes and Agaricomycetes 317 

followed contrasting trends, with the dominance of the former replaced by the latter in 318 

lower productivity AVCs in the ITS1 data, as described previously (Fig. 3A). Although 319 

Agaricomycetes and Sordariomycetes comprised smaller fractions of the 18S dataset 320 

(Fig. 2C), this trend was still apparent (Fig. 3B). Additionally, the Archaeorhiozmycetes 321 

from 18S data generally followed the same trend as the Sordariomycetes (Fig. 3B). The 322 



preceding trends observed across land uses are also evident across organic matter classes 323 

(Fig. S1) but are not as clear across soil types (Fig. S2).  324 

When a class was present in both datasets, it was usually much more prevalent in 325 

one than the other (Supplementary Table 4). For example, there were 1858 326 

Agaricomycetes and 915 Sordariomycetes OTUs in the ITS1, yet these numbers dropped 327 

to 646 and 417 OTUs in the 18S dataset. Similarly, Glomeromycetes accounted for 162 328 

of the OTUs in the 18S data, but only 6 OTUs in the ITS1 dataset. Abundances of classes 329 

unique to the ITS1 and 18S datasets can be found in Supplementary Table 5 and 330 

Supplementary Table 6, respectively. 331 

 332 

Fungal Richness and β-Diversity from ITS1 and 18S Data 333 

 We found that fungal richness followed the same trends across land use, 334 

irrespective of primer set. As previously demonstrated in George et al. (2019), fungal 335 

OTU richness from ITS1 metabarcoding significantly declined (F6, 258 = 39.87, p < 0.001; 336 

Fig. 4A) from high to low productivity/management intensity. Richness in Fertile 337 

grasslands was significantly greater than all other AVCs (p < 0.001) except Crops/weeds. 338 

In the 18S dataset, richness was also significantly higher (F6,267 = 82.73, p < 0.001) in 339 

more productive/managed land uses and declined along this gradient. However, richness 340 

in grasslands was highest in this dataset (Fig. 4B). For complete pairwise differences 341 

between land uses see Supplementary Material. 342 

 The trend of declining richness with productivity was also apparent when samples 343 

were categorised by organic matter content (Fig. 5). In both datasets, richness was 344 

significantly greater (F3, 259 = 48.13, p < 0.001; F3, 269 = 46.71, p < 0.001; for ITS1 and 345 



18S, respectively) in mineral and humus-mineral than all other classifications (ITS1, Fig. 346 

5A; 18S, Fig. 5B). There was no consistent pattern of richness when soils were 347 

categorised by soil type (Fig. S3). Again pairwise differences between organic matter 348 

classes and soil types are described in the Supplementary Material. 349 

 Community composition based on non-metric multidimensional scaling of Bray-350 

Curtis distances also showed consistent trends between the datasets. Plots demonstrate 351 

tight clustering of Crops/weeds, and grassland AVCs in both ITS1 (Fig. 6A) and 18S 352 

(Fig. 6B) compared to the wide dispersal of other AVCs. Such results are supported by 353 

PERMANOVAs, which show significant differences (F6, 406 = 10.74, p = 0.001; F6, 415 = 354 

15.65, p = 0.001); however, analyses of dispersion were also significant (F6, 406 = 41.30, 355 

p = 0.001; F6, 415 = 10.69, p = 0.001) as a result of the large disparity in replicates 356 

between land uses. 357 

When these results are visualised by organic matter classification, the tight 358 

clusters are populated by mineral and humus-mineral samples, whereas organo-mineral 359 

and organic samples are more common in the widely dispersed areas of the plots (Fig. S4 360 

and Fig. S5). Soil types are more widely dispersed but Brown and Surface-water gley 361 

soils are more common in the tightly grouped area (Fig. S6 and Fig. S7). Again, 362 

significant results were observed for both PERMANOVA and dispersion of variance 363 

across organic matter classes and soil types in both datasets.  364 

 365 

Relationships Between Soil Properties and Fungal Biodiversity 366 

 Fungal richness showed similar relationships to soil properties in both datasets. 367 

Across samples, PLS and VIP analyses highlighted strong correlations between fungal 368 



richness and soil properties. There were significant, positive relationships of richness 369 

with pH and bulk density; and significant, negative correlations between richness and 370 

C:N ratio, organic matter, elevation, and mean annual precipitation (Table 2). Although 371 

these results followed the same trend in ITS1 and 18S data, however, their relative 372 

rankings varied. For example, fungal richness from ITS1 data was most strongly 373 

correlated with bulk density and organic matter, while richness from 18S data was more 374 

strongly correlated to C:N ratio and elevation in addition to bulk density (Table 2). 375 

Furthermore, there were some relationships unique to each dataset. Significant negative 376 

relationships were observed between richness and soil water repellency. Similarly, 377 

richness derived from 18S data was negatively related to total C and sand content of soil 378 

but also positively related to clay content. 379 

 We found pH was the best predictor of β-diversity from linear fitting for fungi no 380 

matter what gene region is amplified (Table 3 and Table 4). All fitted variables were 381 

significantly correlated to β-diversity, though most of these only weakly. It is likely that 382 

they did not strongly influence the fungal communities. Variables followed similar 383 

rankings in both the ITS1 and 18S data. Elevation, annual precipitation, soil moisture, 384 

C:N ratio, organic matter, and bulk density all had R2 values greater than 0.35, but their 385 

relative order differed between datasets (Table 3 and Table 4). 386 

 387 

Effect of Land Use on Functional Diversity 388 

 There was a distinct difference in trophic modes of OTUs that were successfully 389 

matched to the FUNGUILD database between ITS1 and 18S datasets. In total, 3,402 and 390 

1,783 OTUs from the ITS1 and 18S datasets respectively were matched to the 391 



FUNGUILD database.  Overall, saprotrophs were the most abundant trophic mode in 392 

both datasets (Fig. 6); however, pathotrophs ranked second in ITS1 (Fig. 6A) data while 393 

the pathotroph-saprotroph-symbiotroph multi-trophic group was second-most abundant in 394 

18S data (Fig. 6B). Across land uses, proportions of pathotrophs and pathotroph-395 

saprotroph-symbiotrophs fell with declining productivity (Fig. 7). In matches from the 396 

ITS1 data, pathotroph-saprotrophs increased across the productivity gradient (Fig. 7A), as 397 

did saprotrophs in the 18S data (Fig. 7B). The aforementioned trend in proportional 398 

abundance of pathotrophs and pathotroph-saprotroph-symbiotrophs was also present 399 

across organic matter classes (Fig. S8). Symbiotrophs appeared to follow an opposite 400 

trend, increasing as productivity fell. Interestingly, this was the case for saprotrophs in 401 

the 18S (Fig. S8B) but not the ITS1 (Fig. S8A) dataset. Proportional abundances of 402 

fungal OTUs grouped by trophic modes did not follow a discernable pattern across 403 

changing soil types (Fig. S9). For simplicity, we focused further analyses only on the 404 

broadly defined saprotroph, pathotroph, and symbiotroph groups, ignoring all 405 

combination groups; pairwise differences for all of the following comparisons are 406 

described in the Supplementary Material. 407 

 Across land uses, significant differences were observed in the richness of 408 

saprotrophic fungi in both the ITS1 (F6,258 = 25.14, p < 0.001) and 18S (F6, 267 = 31.10, p 409 

< 0.001) data; however, there were differences between datasets (Fig. 8). In the ITS1 410 

dataset, richness followed the same trend as overall fungal richness, with the highest and 411 

lowest values in the Crops/weeds and Heath/bog AVCs respectively (Fig. 8A). Although 412 

this pattern was preserved in the 18S data (Fig. 8B), richness of saprotrophs was much 413 

more even across AVCs in this case. Indeed, rather than the linear decline of richness 414 



along the productivity gradient, there appeared to be 3 distinct levels in the data affiliated 415 

with (i) grassland/agricultural sites, (ii) woodlands, and (iii) bogs.  416 

The same pattern was also apparent across organic matter classifications in both 417 

datasets (ITS1: F3, 260 = 32.86, p < 0.001; 18S: F3, 269 = 41.13, p < 0.001; Fig. 9). In the 418 

ITS1 dataset, each class was significantly different from the others (Fig. 9A). In the 18S 419 

data, saprotroph richness was significantly higher in mineral and humus-mineral soils 420 

than organo-mineral and organic soils (all p < 0.001 except mineral – organo-mineral p = 421 

0.02) (Fig. 9B). Again, the overarching trend of fungal richness was not apparent when 422 

samples were grouped by soil type. Although there were significant differences across 423 

soil types in both the ITS1 (F5, 259 = 9.7, p < 0.001) and 18S (F5, 268 = 10.73, p < 0.001) 424 

datasets, these differences did demonstrate consistent patterns across soil types (Fig. 425 

S10).  426 

In the case of pathotrophic fungi, richness also followed a similar trend to the 427 

saprotrophs across both datasets. In the ITS1 data, significantly (F6, 258 = 26.11, p < 428 

0.001) greater richness values were observed in Crops/weeds and grassland samples (Fig. 429 

8A). Richness of pathotrophs was significantly highest in Crops/weeds sites. Again, this 430 

trend was present, though not as clear, in the 18S dataset (Fig. 8B). Significant 431 

differences (F6, 267 = 52.26, p < 0.001) were observed between AVCs, with the highest 432 

richness of pathotrophs occurring in the Fertile grassland and Crop/weeds land uses.  433 

Across organic matter classes, significant differences were also observed in 434 

pathotroph richness in the ITS1 (F3, 250 = 24.91, p < 0.001) and 18S (F3, 269 = 30.49, p < 435 

0.001) datasets. However, in this case the trends were more apparent in the 18S data than 436 

the ITS1 data (Fig. 9). Pathotroph richness was highest in mineral soils and lowest in 437 



organic soils when compared to all other classes in the ITS1 data (Fig. 9A). However, all 438 

organic matter classifications were statistically different from each other in the 18S data 439 

(Fig. 9B), in descending order from mineral to peat soils. Again, trends were less clear 440 

across soil types (Fig. S10). Significant differences were observed in the ITS1 data (F5, 441 

259 = 6.93, p < 0.001) with the lowest pathotroph richness found in peat soils (Fig. S10A). 442 

In the 18S data, differences between pathotrophic fungi across soil types were more 443 

similar to those observed in other groups (Fig. S10B). Pathotroph richness was 444 

significantly (F5, 268 = 13.6, p < 0.001) different across soil types with the highest values 445 

found in brown soils and the lowest in peats. 446 

 The previously described trend of declining richness across the land use 447 

productivity gradient (i.e. Fig. 4) was not apparent when considering symbiotrophs. 448 

Furthermore, although significant differences were apparent in both the ITS1 (F6, 258 = 449 

14.88, p < 0.001) and 18S (F6, 267 = 55.13, p < 0.001) datasets they were by no means 450 

identical (Fig. 8). Symbiotroph richness was highest in Lowland wood sites followed by 451 

Upland wood. This trend was not apparent in the 18S dataset, however (Fig. 8B). Here 452 

richness of symbiotrophs was greatest in grassland AVCs and lowest in Heath/bog sites 453 

much like the overarching trend of total fungal OTU richness.  454 

 When samples were grouped by organic matter class, further discrepancies 455 

became apparent between the datasets. Whereas the previously described trend of 456 

decreasing richness with increasing organic matter content held true in the 18S data (F3, 457 

269 = 36.28, p < 0.001; Fig. 9B), no significant differences were observed in the ITS1 458 

dataset (F3, 260 = 1.88, p = 0.13; Fig 9A). In the 18S data, richness of symbiotrophs was 459 

greater in mineral and humus-mineral soils when compared to organo-mineral (p = 0.002, 460 



p = 0.04, respectively) and organic (p < 0.001) soils (Fig. 9B). There were also no 461 

significant differences (F5, 259 = 1.43, p = 0.21) in symbiotroph richness across soil types 462 

in ITS1 data (Fig. S10A), though there were in 18S data (F5, 259 = 12.52, p < 0.001; Fig. 463 

S10B). As described previously, richness was lowest in peat soils and highest in brown 464 

soils.  465 

 We suspected that the differences in functional diversity observed between 466 

datasets might be a result of differential coverage of important groups. We were able to 467 

confirm this when we analysed the richness of OTUs identified as Glomeromycetes 468 

present in the 18S dataset (Fig. 10). All of the 162 Glomeromycetes OTUs were assigned 469 

as highly-probable symbiotrophs through FUNGUILD. Across land uses, richness of 470 

Glomeromycetes followed similar trends to those of symbiotrophs and saprotrophs from 471 

18S data. There were significant (F6, 244 = 33.47, p < 0.001) differences across land uses, 472 

though they appeared, like the saprotroph richness to be tiered between grasslands, 473 

woods, and bogs (Fig. 10A). Richness of Glomeromycetes was higher in grasslands than 474 

all other AVCs except Crops/weeds and lowest in Heath/bog sites. Again, when grouped 475 

by organic matter class (Fig. 10B) and soil type (Fig. 10C), Glomeromycetes richness 476 

followed the same trend as saprotrophs and symbiotrophs from the 18S dataset. Richness 477 

was significantly (F3, 246 = 37.65, p < 0.001) greater in mineral and humus-mineral soils 478 

than all others. Across soil types, richness of Glomeromycetes was significantly (F5, 245 = 479 

8.65, p < 0.001) lower in peat soils when compared to most other soil types. 480 

 481 

Relationships Between Soil Properties and Fungal Functional Diversity 482 



 Across all samples, PLS and VIP analyses highlighted strong correlations 483 

between fungal richness and soil properties by trophic groups. Richness of pathotrophs 484 

showed similar relationships to soil properties in both datasets. There were significant, 485 

positive relationships of richness with pH and bulk density; and significant negative 486 

correlations between richness and total C, C:N ratio, organic matter, elevation, and mean 487 

annual precipitation (Table 5). As with the total fungal data, the relative rankings of the 488 

strength of relationships between pathotroph and each property varied between datasets. 489 

Organic matter was most strongly correlated with pathotroph richness from ITS1 data 490 

whereas pH was most strongly correlated with pathotroph richness in the 18S data (Table 491 

5). Also soil moisture content was also negatively correlated with pathotroph richness in 492 

the ITS1 dataset only.  493 

Organic matter, elevation (both negative), pH, and bulk density (both positive) all 494 

showed significant relationships with saprotroph richness in both datasets (Table 5). The 495 

correlations between richness of saprotrophs and both bulk density and pH were the 496 

strongest observed in the ITS1 data. There were also negative correlations between 497 

saprotroph richness and total C, mean annual precipitation, soil moisture, soil water 498 

repellency, and mite abundance in the ITS1 data. However, it again should be noted that 499 

the correlation with mites was extremely weak. C:N ratio was strongly and positively 500 

correlated with saprotroph richness in the 18S data. Similarly, richness from 18S data 501 

was negatively related to total C and sand content of soil but also positively related to 502 

clay content. In addition, there was a significant, positive, but weak correlation between 503 

sand content and saprotroph richness. 504 



In both datasets, symbiotroph richness was significantly correlated with pH and 505 

C:N ratio (Table 5). Interestingly, the relationships were positive in the case of C:N ratio 506 

and negative for pH in ITS1 data but the opposite was apparent in the 18S data. There 507 

were also many more relationships unique to each dataset. Weak but significant positive 508 

relationships were observed between symbiotroph richness and rock volume, Collembola 509 

abundance, and temperature as well as a negative correlation to soil moisture. In the 18S 510 

data, stronger relationships were observed between symbiotroph richness and bulk 511 

density (positive) and elevation (negative). Furthermore a weakly negative correlation 512 

was observed with sand content in addition to weak positive correlations with clay 513 

content and total P. 514 

 515 

DISCUSSION 516 

Primer Choice and the Total Fungal Community 517 

 We observed congruent patterns in total fungal OTU richness across land uses, 518 

organic matter classes and soil type when measured with either ITS1 or 18S primer sets. 519 

Richness was greater in arable and grassland land uses, which are highly productive, 520 

intensively managed and declined in the less productive, largely unmanaged bogs. 521 

Although these findings had been previously known from the ITS1 dataset (George et al., 522 

2019), it is important to note that the trend was also present in the fungal OTUs identified 523 

from 18S sequencing. A similar trend was observed across organic matter classes. Here, 524 

fungal richness fell as organic matter increased. Fungal α-diversity is known to be greater 525 

in arable soils than in grasslands or forests (Szoboszlay et al., 2016). Potential 526 

mechanisms for this include: (i) increased nutrient availability due to fertiliser input 527 



(Szoboszlay et al., 2016), and (ii) beneficial disturbance from tillage and other standard 528 

agricultural practices. The latter is consistent with the intermediate disturbance 529 

hypothesis whereby high levels of diversity are maintained by consistent interruption of 530 

successional processes (Connell, 1978).  531 

Soils rich in organic matter, especially peats, found in upland moors, bogs, and 532 

other wetlands across harbour distinct fungal communities from neighbouring habitats 533 

(Anderson et al., 2003). Fungi dominate microbial communities in bogs (Thormann and 534 

Rice, 2007) although their proportional abundance drops sharply below the first 5 cm of 535 

bog habitats (Potter et al., 2017). Yet, richness in bogs is consistently low, perhaps due to 536 

environmental pressures such as high acidity, highly recalcitrant SOM, low nutrients and 537 

oxygen levels (Rousk et al., 2010; Tedersoo et al., 2010) or reduced competition within 538 

the fungal community.  539 

In comparison to AVC and SOM levels, differences in fungal communities were 540 

not as clear across soil types as defined by the National Soil Map (Avery, 1980), which is 541 

inline with previous work on microbial activity across the UK (Jones et al., 2014). 542 

Richness was highest in brown soils and was lowest in peats. Brown soils commonly 543 

support grassland communities across Wales (Avery, 1980; Rudeforth et al., 1984). 544 

Nearly half of the Fertile and Infertile grasslands surveyed in GMEP were categorised as 545 

brown soils. The absence of other major trends besides these may be due to the use of the 546 

dominant soil type and lack of resolution for the soil classification. The soils map used in 547 

this study simply does not provide enough resolution (1:63, 360; Avery, 1980) for soil 548 

type to be an effective category. Furthermore, this system heavily uses subsoil properties 549 

to determine soil type (Avery, 1980), while our work only involved the upper 15 cm. 550 



However, it is our opinion that the use of organic matter classification is more effective 551 

and simple metric that can be easily implemented in large-scale studies in lieu of fine-552 

scale maps. 553 

Results of PLS analyses demonstrates that soil properties and associated 554 

environmental factors influencing fungal richness are consistent across ITS1 and 18S 555 

datasets. Major drivers included pH, bulk density, C:N ratio, organic matter, elevation, 556 

and mean annual temperature (Table 2). Such results from 18S data are consistent with 557 

previous findings from the ITS1 data (George et al., 2019). However, there were certain 558 

properties that were significant in only one of the datasets and the relative importance of 559 

these properties does vary between the two datasets. There are several possible 560 

explanations for this. Firstly, 9 more samples were used in the 18S dataset (n = 422) than 561 

the ITS1 data (n = 413), which may have introduced the discrepancy in relative 562 

importance of the data. However, it is much more likely that a differential coverage of 563 

fungal groups between the two datasets caused these discrepancies.   564 

Community composition showed consistent clustering across land uses, organic 565 

matter classes, and soil types in both data sets. As in George et al. (2019), communities 566 

were most similar in the grassland and arable sites and more spread out across woodlands 567 

and upland habitats. This was likely driven by environmental factors across Wales. In 568 

both datasets, pH was the most important environmental variable influencing community 569 

composition and although the remaining properties followed similar patterns, their 570 

relative importance again differed in the dataset. The importance of pH, elevation, C:N 571 

ratio, and precipitation in determining fungal community composition fits well in the 572 

wider context of soil fungi biogeography. Tederoo et al. (2014) previously highlighted 573 



the importance of these variables in the distribution of fungi at the global scale. 574 

Furthermore, the strong positive correlation with C:N ratio is indicative of the expected 575 

fungal dominance (de Vries et al., 2006) of nutrient-poor, acidic soils (Bloem et al., 576 

1997). 577 

 578 

Primer Choice and Fungal Functional Diversity 579 

Differences between richness of trophic modes of fungi, used here as a proxy for 580 

functional diversity, showed some discrepancies across land uses and soil classification 581 

between data sets. Saprotrophs made up the largest proportion of the 3 functional groups 582 

studied and generally exhibited the same trends as total richness across soils and land 583 

uses. This was also the case for pathotrophs. Indeed, correlations between environmental 584 

variables with pathotroph and saprotroph richness were largely consistent across datasets. 585 

However, we observed divergent trends in symbiotroph richness across land uses and 586 

soils. Symbiotroph richness was highest in woodlands in the ITS1 dataset whereas it was 587 

highest in grasslands according to the 18S data (Fig. 7A and 7B). A similar increase in 588 

richness within grasslands in the 18S data is repeated when Glomeromycetes were 589 

considered on their own (Fig. 9); AMF are the predominant mycorrhizal fungi in 590 

grassland systems (Smith and Read, 2008). The symbiotroph peak in the ITS1 data may 591 

be explained by an increase in coverage of ectomycorrhizas which are the most common 592 

group to associate with trees and shrubs (Smith and Read, 2008). Despite these 593 

differences, both datasets suggest that symbiotroph richness was low in arable land, 594 

which is in line with previous findings demonstrating high susceptibility of mycorrhizal 595 

fungi to disturbance, for example tillage (Schnoor et al., 2011; Säle et al., 2015), and the 596 



addition of fertilizers, which decreases the receptiveness of many agricultural plants to 597 

mycorrhizal infection (Smith and Read, 2008). 598 

 The divergent trend in symbiotroph richness and discrepancies in relationships 599 

between functional groups and environmental variables likely stem from primer biases. 600 

Primer biases have been well recognised as a confounding factor in categorising 601 

communities from environmental DNA (Cai et al., 2013; Elbrecht and Leese, 2015; 602 

Tedersoo et al., 2015). Tedersoo et al. (2015) assessed the effectiveness of fungal 603 

barcodes from the ITS, 18S, and 28S rDNA regions and found that primer choice did not 604 

affect richness or β-diversity results of soil fungi communities from Papua New Guinea, 605 

although fewer OTUs were recovered by 18S primers than ITS primers. In silico analyses 606 

suggests such findings are the result of lumping of sequences in the 18S that may 607 

predominantly affect rare sequences, thereby strengthening community matrices. 608 

Similarly, results were similar enough for all primers to be suitable for analyses at the 609 

class-level (Tedersoo et al., 2015). Although the 18S primers used here were designed to 610 

cover the breadth of eukaryotes and may lack specificity to fungi (Behnke et al., 2011), 611 

our results show strong congruence to the ITS1 data across total richness and indeed most 612 

functional groups.  613 

Unlike Tedersoo et al. (2015) we observed considerable differences in the 614 

proportions of fungal classes between the ITS1 and 18S data sets. We suspect that such 615 

differences stem from the need to use appropriate databases to assign taxonomy to OTUs 616 

to each dataset (Xue et al., 2019). Perhaps only 30%-35% of Glomeromycetes are present 617 

in 18S and ITS databases, respectively (Hart et al., 2015), and although sequences are 618 

continuously being uploaded to such repositories, it is likely the majority of AMF are not 619 



identifiable from environmental samples (but see Öpik et al., 2014). Similarly we suspect 620 

that, although not studied in detail, primer choice may lead to biases in other groups. 621 

Archaeorhizomycetes accounted for nearly 25% of the 18S sequences but less than 1% 622 

from the ITS1 data (Fig. 1B). Primer bias has been recognised for Archaeorhizomycetes 623 

even before the class’ formal description; approximately 19% of 18S sequences collected 624 

from Anderson et al. (2003), have been matched to Archaeorhizomycetes, whereas none 625 

were recovered from the same samples using ITS primers. Despite its recent description, 626 

Archaeorhizomycetes are ubiquitous components of soil communities. Strong 627 

associations have been observed with trees, yet precise functional roles of these fungi 628 

have yet to be determined (Rosling et al., 2011). Subsequently, such biases likely account 629 

for divergent relationships between functional group richness and environmental 630 

properties.  631 

 632 

Conclusions 633 

 Our comparison of the use of ITS1 and 18S primers and their respective databases 634 

in a nationwide metabarcoding survey of fungi yielded 3 major findings. First, the 635 

congruent findings of total richness and β-diversity across land use and their relationships 636 

to environmental variables confirmed our previous research (George et al., 2019). 637 

Second, soil organic matter was found to be a more sensitive metric than soil type in our 638 

survey design. Third, biases from the combination of primer and database choice became 639 

apparent for certain classes of fungi, including Glomeromycetes and 640 

Archaeorhizomycetes, which strongly influenced functional group richness across land 641 

uses as well as their relationships with environmental variables. It is therefore important 642 



to recognise the sensitivity of metabarcoding to primer choice, even when using universal 643 

primers. Without simultaneous analyses of environmental DNA using both primers and 644 

databases, the presence of AM fungi as well as the newly characterised 645 

Archaeorhizomycetes would have been overlooked and unquantified in this survey. 646 

Furthermore, since the majority of soil biodiversity is undescribed (Ramirez et al., 2015), 647 

utilising multiple primers will elucidate a more complete picture of belowground 648 

biodiversity by revealing shortcomings in existing probes and revealing the presence of 649 

as yet undescribed organisms. We therefore advocate that future nation-wide surveys 650 

included both a sample-based metric of soil type (i.e. organic matter classification) and 651 

multiple primers for fungal biodiversity. Such measures should not be arduous to 652 

implement, especially if researchers can identify specific fungal groups of particular 653 

interest to accommodate. 654 

 655 

AUTHOR CONTRIBUTIONS 656 

P.B.L.G., D.L.J., D.A.R. and S.C. conceived this project. Bioinformatics and statistical 657 

analyses were led by P.B.L.G. with assistance from S.C. and R.I.G. P.B.L.G. wrote the 658 

first draft of the manuscript and S.C., D.A.R., and D.L.J. contributed to subsequent 659 

revisions. All authors read and approved the final draft of the manuscript.   660 

 661 

FUNDING 662 

This project was supported as part of the Welsh Government funded Glastir Monitoring 663 

& Evaluation Programme (Contract reference: C147/2010/11) and by the UK Natural 664 

Environment Research Council (NERC) through the RC/Centre for Ecology & 665 



Hydrology (CEH Project:  NEC04782). PBLG was supported by a Soils Training and 666 

Research Studentship (STARS) grant from the Biotechnology and Biological Sciences 667 

Research Council and NERC [Grant number NE/M009106/1]. STARS is a consortium 668 

consisting of Bangor University, British Geological Survey, Centre for Ecology and 669 

Hydrology, Cranfield University, James Hutton Institute, Lancaster University, 670 

Rothamsted Research and the University of Nottingham. 671 

ACKNOWLEDGEMENTS 672 

This research was supported under the Glastir Monitoring & Evaluation Programme 673 

(Contract reference: C147/2010/11) and by the UK Natural Environment Research 674 

Council (NERC) through the RC/Centre for Ecology & Hydrology (CEH Project:  675 

NEC04782). We thank the GMEP Team for their contribution in collecting the data and 676 

the laboratory staff of Environment Centre Wales, especially Delphine Lallias, for sample 677 

processing and DNA extraction. Thanks also to Fiona M. Seaton for assistance with 678 

statistical analyses. We thank Supercomputing Wales for support and training on their 679 

system for bioinformatics analyses. We thank John G. Kenny and Richard M. Eccles for 680 

generating sequence data at the Centre for Genomic Research, University of Liverpool. 681 

SUPPLEMENTARY MATERIAL 682 

The Supplementary Material for this article can be access online at: [] 683 

DATA AVAILABILITY 684 

Data associated with this paper will be publically published in the National Environment 685 

Research Council (NERC) Environmental Information Data Centre (EIDC). Data are also 686 

available from the authors upon reasonable request with permission from the Welsh 687 

Government. Sequences with limited sample metadata have been uploaded to the 688 



European Nucleotide Archive and can be accessed with the following primary accession 689 

codes after the end of data embargo: PRJEB28028 (ITS1), and PRJEB28067 (18S).  690 

REFERENCES 691 

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local 692 
alignment search tool. J. Mol. Biol. 215, 403-410. doi: 10.1016/S0022-693 
2836(05)80360-2 694 

Anderson, I. C., Campbell, C. D., and Prosser, J. I. (2003). Diversity of fungi in organic 695 
soils under a moorland – Scots pine (Pinus sylvestris L). Environ. Microbiol. 5, 1121-696 
1132. doi: 10.1046/j.1462-2920.2003.005522.x 697 

Avery, .W. (1980). Soil classifications for England and Wales (Higher Categories). Soil 698 
Survey Technical Monograph No 14. Harpenden, UK. 699 

Behnke, A., Engel, M., Christen, R., Nebel, M., Klein, R. R., and Stoeck, T. (2011). 700 
Depicting more accurate pictures of protistan community complexity using 701 
pyrosequencing of hypervariable SSU rRNA gene regions. Environ. Microbiol. 13, 702 
340-349. doi: 10.1111/j.1462-2920.2010.02332.x 703 

Berruti, A., Desirò, A., Visentin, S., Zecca, O., Bonfante, P. (2017). ITS fungal barcoding 704 
primers versus 18S AMF-specific primers reveal similar AMF-based diversity patterns 705 
in roots and soils of three mountain vineyards. Environ. Microbiol. Rep. 9, 658-667. 706 

Bloem, J., de Ruiter, P. C., and Bouwman, L. A. (1997). “Soil food webs and nutrient 707 
cycling in agroecosystems,” in Modern soil microbiology, eds. van Elsas, J. D., 708 
Jansson, J. K., and Trevors, J. T. (Boca Raton, FL: CRC Press), 245–278. 709 

Bunce, R. G. H., Carr, C. J., Gillespie, M. K., Howard, D. C., Scott, W. A., Smart, S. M., 710 
Van de Poll, H. M., and Watkins, J. W. (1999). Vegetation of the British countryside – 711 
the countryside vegetation system. (Department of the Environment, Transport and the 712 
Regions, London). 713 

Cai, L., Ye, L., Tong, A. H. Y., Lok, S., and Zhang, T. (2013). Biased diversity metrics 714 
revealed by bacterial 16S phylotags derived from different primer sets. PLoS ONE 8, 715 
e53649. doi: 10.1371/journal.pone.0053649 716 

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. 717 
K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., 718 
Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. 719 
D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., 720 
Wildmann, J., Yaysunenko, T., Zaneveld, J., and Knight, R. (2010). QIIME allows 721 
analysis of high-throughput community sequencing data. Nat. Methods 7, 335-336. 722 
doi: 10.1038/nmeth.f.303 723 

Cavender-Bares, J., Kozak, K, H,, Fine, P. V. A., Kembel, S. W. (2009) The merging of 724 
community ecology and phylogenetic biology. Ecol. Lett. 12, 693-715. doi: 725 
10.1111/j.1461-02548.2009.01314.x 726 

Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science 199, 1302-727 
1310. doi: 10.1126/science.199.4335.1302 728 

Chong, I.-G., and Jun, C.-H. (2005). Performance of some variable selection methods 729 
when multicollinearity is present. Chemometr. Intell. Lab. Syst. 78, 103-112. doi: 730 
10.1016/j.chemolab.2004.12.011  731 



Deshpande, V., Wang, Q., Greenfield, P., Charleston, M., Porras-Alfaro, A., Kuske, C. 732 
R., Cole, J. R., Midgley, D. J., and Tran-Dinh, N. (2016). Fungal identification using a 733 
Bayesian classifier and the Warcup training set of internal transcribed spacer 734 
sequences. Mycologia 108, 1-5. doi: 10.3852/14-293. 735 

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. 736 
Bioinformatics 10, 2460-2461. doi: 10.1093/bioinformatics/btq461 737 

Elbrecht, V., and Leese, F. (2015). Can DNA-based ecosystem assessments quantify 738 
species abundance? Testing primer bias and biomass-sequence relationships with an 739 
innovative metabarcoding protocol. PLoS ONE 10, e0130324. doi: 740 
10.1371/journal.pone.0130324 741 

Emmett, B. A. & the GMEP Team. (2017). Glastir Monitoring & Evaluation Programme. 742 
Final Report to Welsh Government (Contract reference: C147/2010/11. NERC/Centre 743 
for Ecology & Hydrology (CEH Project: NEC04780/NEC05371/NEC05782). 744 

Emmett, B. A., Reynolds, B., Chamberlain, P. M., Rowe, E., Spurgeon, D., Brittain, S. 745 
A., Frogbrook, Z., Hughes, S., Lawlor, A. J., Poskitt, J., Potter, E., Robinson, D. A., 746 
Scott, A., Wood, C., and Woods, C. (2010). Countryside Survey: Soils Report from 747 
2007. NERC/Centre for Ecology and Hydrology (CS Technical Report No. 9/07, CEH 748 
Project Number: C03259). 749 

Epp, L. S., Boessenkool, S., Bellemain, E. P., Haile, J., Esposito, A., Riaz, T., Erséus, C., 750 
Gusarov, V. I., Edwards, M. E., Johnsen, A., Stenøien, H. K., Hassel, K., Kauserud, 751 
H., Yoccoz, N. G., Bråthen, K. A., Willerslev, E., Taberlet, P., Coissac, E., and 752 
Brochmann, C. (2012). New environmental metabarcodes for analysing soil DNA: 753 
potential for studying past and present ecosystems. Mol. Ecol. 8, 1821-1833. doi: 754 
10.1111/j.1365-294X.2012.05537.x 755 

Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. 756 
L., and Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem 757 
health. Nature 484, 186-194. doi: 10.1038/nature10947 758 

George, P. B. L., Lallias, D., Creer, S., Seaton, F. M., Kenny, J. G., Eccles, R. M., 759 
Griffiths, R. I., Lebron, I., Emmett, B. A., Robinson, D. A., and Jones, D. L. (2019). 760 
Divergent national-scale trends of microbial and animal biodiversity revealed across 761 
diverse temperate soil ecosystems. Nat. Commun. 10, 1107. doi:10.1038/s41467-019-762 
09031-1 763 

Hart, M. M., Aleklett, K., Chagnon, P.-L., Egan, C., Ghignone, S., Helgasson, T., 764 
Lekberg, Y., Öpik, M., Pickles, B. J., and Waller, L. (2015). Navigating the labyrinth: 765 
a guide to sequence-based, community ecology of arbuscular mycorrhizal fungi. New 766 
Phytol. 207, 235-247. doi: 10.1111/nph.13340 767 

Hothorn, T., Bretz, F., and Westfall, P. (2008). Simultaneous inference in general 768 
Parametric Models. Biometrical J. 50, 346-363. doi: 10.1002/bimj.200810425 769 

Jones, D. L., Simfukwe, P., Hill, P. W., Mills, R. T. E., Emmett, B. A. Evaluation of 770 
dissolved organic carbon as a soil quality indicator in national monitoring schemes. 771 
PLoS One 9(3):e90882. doi: 10.1371/journal.pone.0090882 772 

Kõljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F. S., Bahram, M., 773 
Bates, S. T., Burns, T. D., Bengtsson-Palme, J., Callaghan, T. M., Douglas, B., 774 
Drenkhan, T., Eberhardt, U., Dueñas, M., Grebenc, T., Griffith, G. W., Hartmann, M., 775 
Kirk, P. M., Kohout, P., Larsson, E., Lindahl, B. D., Lücking, R., Martín, M. P., 776 
Matheny, P. B., Nguyen, N. H., Niskanen, T., Oja, J., Peay, K. G., Peintner, U., 777 



Peterson, M., Põldmaa, K., Saag, L., Saar, I., Senés, C., Smith, M. E., Suija, A., 778 
Taylor, D. L., Telleria, M. T., Weiss, M., and Larsson, K.-H. (2013). Towards a 779 
unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271-780 
5277. doi: 10.1111/mec.12481 781 

Lallias, D., Hiddink, J., G., Fonseca, V. G., Gaspar, J. M., Sung, W., Neill, S. P., Barnes, 782 
N., Ferrero, T., Hall, N., Lambshead, P. J. D., Packer, M., Thomas, W. K., and Creer, 783 
S. (2015). Environmental metabarcoding reveals heterogeneous drivers of microbial 784 
eukaryote diversity in contrasting estuarine ecosystems. ISME J. 9, 1208-1221. doi: 785 
10.1038/ismej.2014.213 786 

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput 787 
sequencing reads. EMBnet.journal. 2011. Date of access 04/07/2017. EMBnet 17, 10-788 
12. doi: 10.14806/ej.17.1.200 789 

McMurdie, P. J., and Holmes, S. (2013). phyloseq: an R package for reproducible 790 
interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. 791 
doi: 10.1371/journal.pone.0061217 792 

Mevik, B-H., Wehrens, R., Liland, K. H., and Hiemstra, P. (2016). pls: Partial Least 793 
Squares and Principal Component Regression. R package version 2.6-0. 794 
https://CRAN.R-project.org/package=pls 795 

Nguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., Schilling, J. 796 
S., and Kennedy, P. G. (2016). FUNGuild: an open annotation tool for parsing fungal 797 
community datasets by ecological guild. Fungal Ecol. 20, 241-248. doi: 798 
10.1016/j.funeco.2015.06.006 799 

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., 800 
Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Henry, M., Stevens, H., 801 
Szoecs, E., and, Wagner, H. (2016). Vegan: community ecology package. R package 802 
version 2.4-0. https://CRAN.R-project.org/package1⁄4vegan. 803 

Öpik, M., Davison, J., Moora, M., and Zobel, M. (2014). DNA-based detection and 804 
identification of Glomeromycota: the virtual taxonomy of environmental sequences1. 805 
Botany 92, 135-147. doi: 10.1139/cjb-2013-0110 806 

Peay, K. G., Kennedy, G., and Bruns, T. D. (2008). Fungal community ecology: a hybrid 807 
beast with a molecular master. BioScience 58, 799-810. doi: 10.1641/B580907 808 

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., EISPAK authors, Heisterkamp, S., Van 809 
Willigen, B., and  R Core Team (2016). nlme: Lineral and Nonlinear Mixed Effects 810 
Models. R package version 3.1e138. https://CRAN.R-project.org/package1/4nlme 811 

Potter, C., Freeman, C., Golyshin, P. N., Ackermann, G., Fenner, N., McDonald, J. E., 812 
Ehbair, A., Jones, T. G., Murphy, L. M., and Creer, S. (2017). Subtle shifts in 813 
microbial communities occur alongside the release of carbon induced by drought and 814 
rewetting in contrasting peatland ecosystems. Sci. Rep.-UK 7, 11314. doi: 815 
10.1038/s41598-017-11546 816 

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and 817 
Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved 818 
data processing and web-based tools. Nucl. Acids Res. 41 (D1), D590-D596. doi: 819 
10.1093/nar/gks1219 820 

R Core Team (2017). R: A language and environment for statistical computing. R 821 
Foundation for Statistical Computing, Vienna, Austria (2017). https://www.R-822 
project.org/. 823 

https://cran.r-project.org/package=pls
https://cran.r-project.org/package1/4nlme
https://www.r-project.org/
https://www.r-project.org/


Ramirez, K. S., Leff, J. W., Barberán, A., Bates, S. T., Betley, J., Crowther, T. W., Kelly, 824 
E. F., Oldfield, E. E., Shaw, E. A., Steenbock, C., Bradford, M. A., Wall, D. H., 825 
Fierer, N. (2015). Biogeographic patterns in below-ground diversity in New York 826 
City’s Central Park are similar to those observed globally. Proc. R. Soc. B. 281, 827 
20141988. doi: 10.1098/rspb.2014.1988  828 

Robinson, E. L., Blyth, E., Clark, D. B., Comyn-Platt, E., Finch, J., and Rudd, A. C. 829 
(2017). Climate hydrology and ecology research support system meteorology dataset 830 
for Great Britain (1961-2015) [CHESS-met] v1.2. NERC Environmental Information 831 
Data Centre. 832 

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: a 833 
versatile open source tool for metagenomics. PeerJ 4, e2584. doi: 10.7717/peerj.2584 834 

Rosling, A., Cox, F., Cruz-Martinez, K., Ihrmark, K., Grelet, G.-A., Lindahl, B. D., 835 
Menkis, A., and James, T. Y. (2011). Archaeorhizomycetes: unearthing an ancient 836 
class of ubiquitous soil fungi. Science 333, 876-879. doi: 10.1126/science.1206958  837 

Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., 838 
Knight, R., and Fierer, N. (2010). Soil bacterial and fungal communities across a pH 839 
gradient in an arable soil. ISME J. 4, 1340-1351. doi: 10.1038/ismej.2010.58 840 

Rudeforth, C. C., Hartnup, R., Lea, J. W., Thompson, T. R. E., and Wright, P. S. (1984). 841 
Soils and their use in Wales. Harpenden: Lawes Agricultural Trust (Soil Survey of 842 
England and Wales). 843 

Sagova-Mareckova, M., Cermak, L., Novotna, J., Plhackova, K, Forstova, J., and 844 
Kopecky, J. (2008). Innovative methods for soil DNA purification tested in soils with 845 
widely differing characteristics. Appl. Environ. Microb. 74, 2902-2907. doi: 846 
10.1128/AEM.02161-07 847 

Säle, V., Aguilera, P., Laczko, E., Mäder, P., Berner, A., Zihlmann, U., van der Heijden, 848 
M. G. A., and Oehl, F. (2015). Impact of conservation tillage and organic farming on 849 
the diversity of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 84, 38-52. 850 
doi:10.1016/j.soilbio.2015.02.005 851 

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., 852 
Chen, W., and the Fungal Barcoding Consortium, (2012). Nuclear ribosomal internal 853 
transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. P. Natl. 854 
Acad. Sci. USA. 109, 6241-6246. doi: 10.1073/pnas.1117018109 855 

Schnoor, T. K., Lekberg, Y., Rosendahl, S., and Olsson, P. A. (2011) Mechanical soil 856 
disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-857 
natural grassland. Mycorrhia 21, 211-220. doi: 10.1007/s00572-010-0325-3 858 

Schüβler, A., Schwarzott, D., and Walker, C. (2001). A new fungal phylum, the 859 
Glomeromycota: phylogeny and evolution. Mycol. Res. 105, 1413-1421. doi: 860 
10.1017/S0953756201005196 861 

Smith, S. E., and Read, D. J. (2008). Mycorrhizal Symbiosis 3rd ed. London: Academic 862 
Press. 863 

Stockinger, H., Krüger, M., and Schüβler, A. (2010). DNA barcoding of arbuscular 864 
mycorrhizal fungi. New Phytol. 187, 461-474. doi: 10.111/j.1469-8137.2010.03262.x 865 

Szoboszlay, M., Dohrmann, A. B., Poeplau, C., Don, A., and Tebbe, C. C. (2017). Impact 866 
of land-use change and soil organic carbon quality on microbial diversity in soils 867 
across Europe. FEMS Microbiol. Ecol. 93, fix146. doi: 10.1093/femsec/fix146 868 



Tedersoo, L., Anslan, S., Bahram, M., Pólme, S., Riit, T., Liiv, I., Kõljalg, U., Kisand, 869 
V., Nilsson, R. H., Hildebrand, F., Bork, P., and Abarenkov, K. (2015). Shotgun 870 
metagenomes and multiple primer pair-barcode combinations of amplicons reveal 871 
biases in metabarcoing analyses of fungi. MycoKeys 10, 1-43. doi: 872 
10.3897/mycokeys.104852 873 

Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., Ruiz, 874 
L. V., Vasco-Palacios, A. M., Thu, P. Q., Suija, A., Smith, M. E., Sharp, C., Saluveer, 875 
E., Saitta, Al., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Põldmaa, K., 876 
Piepenbring, M., Phosri, C., Peterson, M., Parts, K., Pärtel, K., Otsing, E., Nouhra, E., 877 
Njouonkou, A. L., Nilsson, R. H., Morgado, L. N., Mayor, J., May, T. W., Majuakim, 878 
L., Lodge, D. J., Lee, S. S., Larsson, K.-H., Kohout, P., Hosaka, K., Hiiesahu, I., 879 
Henkel, T. W., Harend, H., Guo, L., Greslebin, A., Grelet, G., Geml, J., Gates, G., 880 
Dunstan, W., Dunk, C., Drenkhan, R., Dearnaley, J., de Kesel, A., Dang, T., Chen, X., 881 
Buegger, F., Brearley, F. Q., Bonito, G., Anslan, S., Abell, S., and Abarenkov, K. 882 
(2014). Global diversity and geography of soil fungi. Science 346(6213): 1256688. 883 
doi: 10.1126/science.1256688 884 

Thiéry, O., Vasar, M., Jairus, T., Davison, J., Roux, C., Kivistik, P.-A., Metspalu, A., 885 
Milani, L., Saks, Ü., Moora, M., Zobel, M., and Öpik, M. Sequence variation in 886 
nuclear ribosomal small subunit, internal transcribed spacer and large subunit regions 887 
of Rhizophagus irregularis and Gigaspora margarita is high and isolate-dependent. 888 
Mol. Ecol. 25, 2816-2832. doi: 10.1111/mec.13655 889 

Thormann, M. N., and Rice, A. V. (2007). Fungi from peatlands. Fungal Divers. 24, 241-890 
299. 891 

de Vries, F. T., Hoffland, E., van Eekeren, N., Brussard, L., and Bloem, J. (2006). 892 
Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. 893 
Biochem. 38, 2092-2103. doi: 10.1016/j.soilbio.2006.01.008 894 

Wang, B., and Qui, Y.-L. (2006). Phylogeneitc distribution and evolution of mycorrhizas 895 
in land plants. Mycorrhiza 16, 299-363. doi: 10.1007/s00572-005-0033-6 896 

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naïve Bayesian classifier 897 
for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. 898 
Environ. Microb. 73, 5261-5267. doi: 10.1128/AEM.00062-07 899 

Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., Lozupone, C., 900 
Zaneveld, J. R., Vázquez-Baeza, Y., Birmingham, A., Hyde, E. R., and Knight, R. 901 
(2017). Normailzation and microbial differential abundance strategies depend upon 902 
data characteristics. Microbiome 5, 1-18. doi: 10.1186/s40168-017-0237-y 903 

Xue, C., Hao, Y., Pu, X., Penton, C. R., Wang, Q., Zhao, M., Zhang, B., Ran, W., Huang, 904 
Q., Shen, Q., and Tiedje, J. M. (2019). Effect of LSU and ITS genetic markers and 905 
reference databases on analyses of fungal communities. Biol. Fert. Soils 55, 79-88. 906 
doi: 10.1007/s00374-018-1331-4 907 

Yuste, J. C., Peñuelas, J., Estiarte, M., Garcia-Mas, J., Mattana, S., Ogaya, R., Pujol, M., 908 
and Sardans, J. (2011). Drought-resistant fungi control soil organic matter 909 
decomposition and its response to temperature. Glob. Change Biol. 17, 1475-1486. doi 910 
10.1111/j.1365-2486.2010.02300.x 911 

 912 
Captions 913 



Fig. 1. Map of sites selected for GMEP monitoring. To protect landowner anonymity, 914 

each triangle gives an approximate location of every 1 km2 plot from which samples were 915 

taken 916 

 917 

Fig. 2. Composition of fungal classes from ITS1 and 18S datasets. A) Venn diagram 918 

denoting total number of shared and unique classes in each data set, following exclusion 919 

of unknown sequences. Sankey diagrams of proportional abundances of fungal OTUs 920 

from all samples from B) ITS1 data and C) 18S data. Arms denote proportions of OTUs 921 

of the most populous classes. 922 

 923 

Fig. 3. Proportionate abundances of fungal OTUs for A) ITS1 and B) 18S data across 924 

Aggregate Vegetation Class. Aggregate Vegetation Classes are ordered from most 925 

(Crops/weeds) to least (Heath/bog) productive.  926 

 927 

Fig. 4. Boxplots of fungal OTU richness for A) ITS1 and B) 18S datasets plotted against 928 

Aggregate Vegetation Class. Aggregate Vegetation Classes are ordered from most 929 

(Crops/weeds) to least (Heath/bog) productive. Boxes cover the first and third quartiles 930 

and horizontal lines denote the median. Black dots represent outliers beyond the 931 

whiskers, which cover 1.5X the interquartile range. Notches indicate confidence interval 932 

around the median. Overlapping notches are a proxy for non-significant differences 933 

between medians. Black dots are outliers.  934 

 935 



Fig. 5. Boxplots of fungal OTU richness for A) ITS1 and B) 18S datasets plotted against 936 

organic matter class. Organic matter classes are listed in order of increasing percent 937 

organic matter. Boxes cover the first and third quartiles and horizontal lines denote the 938 

median. Black dots represent outliers beyond the whiskers, which cover 1.5X the 939 

interquartile range. Notches indicate confidence interval around the median. Overlapping 940 

notches are a proxy for non-significant differences between medians. Black dots are 941 

outliers.  942 

 943 

Fig. 6. Non-metric dimensional scaling ordinations of fungal community composition 944 

across GMEP sites. Samples are coloured by Aggregate Vegetation Class. Data from 945 

ITS1 (stress = 0.13) is shown in A); Data from 18S (stress = 0.11) is shown in B).  946 

 947 

Fig. 7. Proportionate abundances of fungal OTUs matched to FUNGuild trophic groups 948 

for A) ITS1 and B) 18S data across Aggregate Vegetation Classes. Aggregate Vegetation 949 

Classes are ordered from most (Crops/weeds) to least (Heath/bog) productive. 950 

Abbreviations for multi-trophic mode groups are as follows: Path.-Sap. (Pathotroph-951 

Saprotroph); Path.-Sap.-Sym. (Pathotroph-Saprotroph-Symbiotroph); Path.-Sym. 952 

(Pathotroph-Symbiotroph); Sap.-Path.-Sym (Saprotroph-Pathotroph-Symbiotroph); Sap.-953 

Sym. (Saprotroph-Symbiotroph). 954 

 955 

Fig. 8. Boxplots of richness of fungal OTUs matched to the pathotrophic, saprotroph, and 956 

symbiotroph trophic modes in FUNGuild for A) ITS1 and B) 18S datasets plotted against 957 

Aggregate Vegetation Class. Aggregate Vegetation Classes are ordered from most 958 



(Crops/weeds) to least (Heath/bog) productive. Boxes cover the first and third quartiles 959 

and horizontal lines denote the median. Black dots represent outliers beyond the 960 

whiskers, which cover 1.5X the interquartile range. Notches indicate confidence interval 961 

around the median. Overlapping notches are a proxy for non-significant differences 962 

between medians. Black dots are outliers.  963 

 964 

Fig. 9. Boxplots of richness of fungal OTUs matched to the pathotrophic, saprotroph, and 965 

symbiotroph trophic modes in FUNGuild for A) ITS1 and B) 18S datasets plotted against 966 

organic matter class. Organic matter classes are listed in order of increasing percent 967 

organic matter. Boxes cover the first and third quartiles and horizontal lines denote the 968 

median. Black dots represent outliers beyond the whiskers, which cover 1.5X the 969 

interquartile range. Notches indicate confidence interval around the median. Overlapping 970 

notches are a proxy for non-significant differences between medians. Black dots are 971 

outliers.  972 

 973 

Fig. 10. Boxplots of richness of Glomeromycetes OTUs plotted against A) Aggregate 974 

Vegetation Class; B) organic matter class; C) soil type. Aggregate Vegetation Classes are 975 

ordered from most (Crops/weeds) to least (Heath/bog) productive. Organic matter classes 976 

are listed in order of increasing percent organic matter. Soils are listed in increasing order 977 

of moisture retention. Boxes cover the first and third quartiles and horizontal lines denote 978 

the median. Black dots represent outliers beyond the whiskers, which cover 1.5X the 979 

interquartile range. Notches indicate confidence interval around the median. Overlapping 980 



notches are a proxy for non-significant differences between medians. Black dots are 981 

outliers.  982 

 983 

 984 



Table 1. Mean values (± SE) of soil physical and chemical variables for each Aggregate Vegetation Class. Following normalisation 985 
on selected variables (see below), ANOVAs and Tukey’s post-hoc tests were performed.  986 
Environmental 

variable 

Crops/weeds Fertile grassland Infertile grassland Lowland wood Upland wood Moorland grass-

mosaic 

Heath/bog 

Total C (%)L 3.87 ( 0.83)d 4.75 ( 0.2)d 5.85 ( 0.33)d 5.78 ( 1.07)d 9.7 ( 2.25)c 12.19 ( 2.07)b 23.57 ( 1.88)a 

Total N (%)L 0.32 ( 0.05)d 0.45 ( 0.02)d 0.49 ( 0.02)d 0.4 ( 0.06)d 0.58 ( 0.1)c 0.83 ( 0.11)b 1.05 ( 0.09)a 

C:N ratioS 11.44 ( 0.81)cd 10.49 ( 0.13)d 11.62 ( 0.27)cd 13.92 ( 0.75)bc 15.86 ( 0.7)b 14.41 ( 0.42)b 20.65 ( 0.94)a 

Total P (mg/kg)S 1103.44 ( 145.47)ab 1194.9 ( 45.53)a 1045.5 ( 43.3)ab 601.68 ( 77.68)c 762.45 ( 61.95)bc 930.49 ( 57.5)ab 769.63 ( 50.04)ab 

Organic matter 

(% LOI)L 

7.53 ( 1.62)d 9.39 ( 0.34)d 11.25 ( 0.55)d 

 

10.71 ( 1.7)d 18.79 ( 4.16)c 22.99 ( 3.72)b 39.26 ( 3.6)a 

pH (CaCl2) 4.73 ( 0.26)b 5.2 ( 0.08)a 4.73 ( 0.05)b 4.31 ( 0.26)b 3.57 ( 0.1)cd 3.85 ( 0.09)c 3.84 ( 0.1)d 

Soil water 

repellency* 
4077.56 ( 

3990.72)abc 

264.01 ( 73.28)c 781.68 ( 137.58)b 2975.47 ( 

2108.12)abc 

1965.87 ( 698.61)a 4186.13 ( 798.48)a 3186.4 ( 812.15)a 

Volumetric water 

content (m3/m3) 
0.23 ( 0.03)bc 0.35 ( 0.01)b 0.34 ( 0.01)b 0.22 ( 0.02)c 0.36 ( 0.03)b 0.46 ( 0.02)a 0.52 ( 0.02)a 

Rock volume (mL) 3.95 ( 1.11)abc 5.25 ( 0.45)b 5.44 ( 0.42)b 9.13 ( 2.49)a 4.41 ( 0.57)ab 3.25 ( 0.39)c 1.87 ( 0.21)c 

Bulk density 

(g/cm3) 
1.03 ( 0.09)a 0.9 ( 0.02)a 0.8 ( 0.02)b 0.71 ( 0.08)b 0.56 ( 0.04)c 0.5 ( 0.04)c 0.47 ( 0.03)d 

Clay content (%)A 22.25 ( 1.85)ab 25.46 ( 0.65)a 23.18 ( 0.64)ab 17.47 ( 1.34)ab 17.82 ( 1.82)ab 18.12 ( 1.27)c 11.76 ( 2.24)d 

Sand content (%)A 30.97 ( 4.66)ad 24.88 ( 1.25)d 29.21 ( 1.44)bd 42.99 ( 4.01)ac 40.23 ( 4.15)abc 29.5 ( 3.0)b 45.15 ( 7.61)a 

Elevation (m) 88.71 ( 47.69)cd 109.38 ( 8.62)d 167.28 ( 8.65)c 119.06 ( 16.38)cd 297.83 ( 20.62)b 406.63 ( 19.22)a 380.55 ( 19.7)a 

Mean annual 

precipitation (mL) 
968.44 ( 69.01)c 1078.19 ( 24.71)c 1177.05 ( 18.91)c 1100.12 ( 52.28)c 1405.33 ( 65.35)b 2027.23 ( 74.39)a 1771.2 ( 58.19)a 

Temperature (°C) 12.64 ( 1.18)ab 12.09 ( 0.41)b 13.44 ( 0.29)a 15.80 ( 0.87)a 14.53 ( 0.53)a 14.51 ( 0.36)a 13.87 ( 0.29)a 

        

Note: A denotes Aitchison’s log10-ratio transformation; L denotes log10-transformation; square-root-transformation; *Soil water 987 
repellency was derived from median water drop penetration times (s) and log10 transformed 988 
 989 



Table 2. Results of partial least squares regressions for fungal richness against 

environmental variables. Positive relationships are underlined; negative relationships are 

written in italics. *** indicates P < 0.001, ** 0.001 > P < 0.01, * 0.01 > P < 0.05, blank 

indicates P > 0.05.  

Soil and environmental variables Fungi (ITS) Fungi (18S) 

Total CL 0.44 1.03 (R2 = 0.38***) 
Total NL 0.93 0.56 
C:N ratioS 1.64 (R2 = 0.28***) 1.71 (R2 = 0.41***) 
Total PS 0.70 0.87 
Organic matter (% LOI)L 1.13 (R2 = 0.29***) 1.17 (R2 = 0.38***) 
pH (CaCl2) 1.52 (R2 = 0.23***) 1.55 (R2 = 0.37***) 
Soil water repellencyL 1.23 (R2 = 0.13***) 0.82 
Volumetric water content (m3/m3) 0.60 0.70 
Rock volume (mL) 0.64 0.43 
Bulk density (g/cm3) 1.41 (R2 = 0.29***) 1.33 (R2 = 0.41***) 
Clay content (%)A 0.84 1.19 (R2 = 0.11***) 
Sand content (%)A 0.6 1.11 (R2 = 0.1***) 
Elevation (m) 1.68 (R2 = 0.22***) 1.83 (R2 = 0.41***) 
Mean annual precipitation (mL) 1.44 (R2 = 0.18***) 1.52 (R2 = 0.27***) 
Temperature (°C) 0.56 0.52 

Note: A denotes Aitchison’s log10-ratio transformation; L denotes log10-
transformation; S denotes square-root-transformation. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Summary of relationships amongst environmental factors and fungal 

communities based on ITS data. +/- signify the direction of association between each 

variable and respective NMDS axes. 

Variable   Correlation 

 R2 Axis1 Axis2 

pH (CaCl2) 0.6*** - + 

C:N ratioS 0.47*** + - 

Elevation (m) 0.41*** + - 

Volumetric water content (m3/m3) 0.41*** + - 

Mean annual precipitation (mL) 0.39*** + - 

Bulk density (g/cm3) 0.38*** - + 

Organic matter (% LOI)L 0.37*** + - 

Total CL 0.31*** + - 

Clay content (%)A 0.28*** - + 

Soil water repellencyL 0.24*** + - 

Total N (%)L  0.21*** + - 

Sand content (%)A 0.19*** + + 

Total P (mg/kg)S 0.11*** - - 

Rock volume (mL) 0.07*** - + 

Temperature (°C) 0.04*** - + 

Note: A denotes Aitchison’s log10-ratio transformation; L denotes log10-transformation; S 

denotes square-root-transformation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4. Summary of relationships amongst environmental factors and fungal 

communities based on 18S data. +/- signify the direction of association between each 

variable and respective NMDS axes. 

Variable  Correlation 

 R2 Axis1 Axis2 

pH (CaCl2) 0.61*** - + 

Elevation (m) 0.50*** + - 

Mean annual precipitation (mL) 0.46*** + - 

Volumetric water content (m3/m3) 0.45*** + - 

C:N ratioS 0.43*** + + 

Organic matter (% LOI)L 0.43*** + + 

Bulk density (g/cm3) 0.39*** - - 

Total CL 0.34*** + + 

Clay content (%)A 0.30*** - + 

Total N (%)L  0.28*** + - 

Soil water repellencyL 0.21*** + - 

Sand content (%)A 0.14*** + + 

Total P (mg/kg)S 0.10*** - - 

Rock volume (mL) 0.06*** - + 

Temperature (°C) 0.05*** - + 

Note: A denotes Aitchison’s log10-ratio transformation; L denotes log10-transformation; S 

denotes square-root-transformation 

 



Table 5. Results of partial least squares regressions for richness of OTUs classified by trophic mode from FUNGUILD analyses 

against environmental variables. Positive relationships are underlined; negative relationships are written in italics. *** indicates P < 

0.001, ** 0.001 > P < 0.01, * 0.01 > P < 0.05, blank indicates P > 0.05.  

Soil and environmental 
variables 

Saprotrophs (ITS) Saprotrophs (18S) Pathotrophs (ITS) Pathotrophs (18S) Symbiotrophs (ITS) Symbiotrophs 
(18S) 

Total C (%)L 1.1 (R2 = 0.24***) 0.89 1.07 (R2 = 0.17***) 1.0 (R2 = 0.25***) 0.24 0.99 
Total N (%)L 0.99 0.10 0.82 0.64 1.17 (R2 = 0.02**) 0.10 
C :N ratioS 0.95 2.31 (R2 = 0.28***) 1.22 (R2 = 0.16***) 1.41 (R2 = 0.25***) 1.69 (R2 = 0.01*) 2.47 (R2 = 0.34***) 
Total P (mg/kg)S 0.07 0.86 0.75 0.75 1.38 1.31 (R2 = 0.02*) 

Organic matter (% LOI)L 1.36 (R2 = 0.28***) 1.02 (R2 = 0.24***) 1.38 (R2 = 0.21***) 1.16 (R2 = 0.28***) 0.37 0.92 
pH (CaCl2) 1.34 (R2 = 0.21***) 1.27 (R2 = 0.14***) 1.4 (R2 = 0.16***) 1.98 (R2 = 0.4***) 2.35 (R2 = 0.05***) 1.45 (R2 = 0.2***) 
Soil water repellencyL 1.28 (R2 = 0.15***) 0.36 0.84 0.98 0.3 0.62 
Volumetric water content 
(m3/m3) 

1.46 (R2 = 0.22***) 0.56 1.38 (R2 = 0.17***) 0.99 1.42 (R2 = 0.05***) 0.40 

Rock volume (mL) 0.68 0.06 0.8 0.59 1.09 (R2 = 0.02**) 0.10 
Bulk density (g/cm3) 1.42 (R2 = 0.28***) 1.23 (R2 = 0.2***) 1.71 (R2 = 0.12***) 1.29 (R2 = 0.27***) 0.51 1.48 (R2 = 0.26***) 
Clay content (%)A 0.71 0.74 0.90 1.17 (R2 = 0.1***) 0.49 1.05 (R2 = 0.03**) 
Sand content (%)A 0.18 1.71 (R2 = 0.05***) 0.05 0.32 0.21 1.63 (R2 = 0.08***) 
Elevation (m) 1.58 (R2 = 0.25***) 1.13 (R2 = 0.13***) 1.6 (R2 = 0.19***) 1.98 (R2 = 0.39***) 0.37 1.07 (R2 = 0.17***) 
Mean annual precipitation 
(mL) 

1.45 (R2 = 0.23***) 0.81 1.38 (R2 = 0.16***) 1.49 (R2 = 0.24***) 0.00 0.69 

Temperature (°C) 0.09 0.49 0.21 0.43 1.17 (R2 = 0.01*) 0.53 

Note: A denotes Aitchison’s log10-ratio transformation; L denotes log10-transformation; S denotes square-root-transformation 
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