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Summary 

Marine prokaryotes have evolved a broad repertoire of defence systems to protect their 

genomes from lateral gene transfer including innate or acquired immune systems and 

infection-induced programmed cell suicide and dormancy. Here we report on the analysis 

of multiple defence systems present in the genome of the strain Cycloclasticus sp. 78-ME 25 

isolated from petroleum deposits of the tanker “Amoco Milford Haven”. Cycloclasticus are 

ubiquitous bacteria globally important in polyaromatic hydrocarbons degradation in 

marine environments. Two “defence islands” were identified in 78-ME genome: the first 

harbouring CRISPR-Cas with toxin-antitoxin system, while the second was composed by 

an array of genes for toxin-antitoxin and restriction-modification proteins. Among all 30 

identified spacers of CRISPR-Cas system only seven spacers match sequences of phages 

and plasmids. Furthermore, a conjugative plasmid p7ME01, which belongs to a new IncP-

1 ancestral archetype without any accessory mobile elements was found in 78-ME. Our 

results provide the context to the co-occurrence of diverse defence mechanisms in the 

genome of Cycloclasticus sp. 78-ME, which protect the genome of this highly specialized 35 

PAH-degrader. This study contributes to the further understanding of complex networks 

established in petroleum-based microbial communities. 
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Introduction 

Recent landmark studies of environmental DNA using next-generation sequencing showed that 40 

bacteriophages are by far the most abundant and genetically diverse biological entities in marine 

habitats (Edwards and Rohwer, 2005; Suttle, 2007; Kristensen et al., 2010). To withstand the 

constant exposure to marine viruses, microorganisms have evolved a broad repertoire of defence 

systems, sometimes at the expense of allocating substantial resources and genomic space (Labrie et 

al., 2010; Stern and Sorek, 2011; Makarova et al., 2011a). Although these multiple defence systems 45 

(MDS) are very diverse across different prokaryotic life forms, they can be attributed to one of the 

three general functional categories: (i) innate immunity systems that are based on self-nonself 

discrimination of foreign and host genomes, (ii) acquired immunity systems that are based on 

adaptive RNA-based immunity against foreign genetic elements, such as viruses and plasmids, and 

(iii) suicidal systems that cause programmed cell death or dormancy induced by infection, 50 

preventing its further spread (Iranzo et al., 2015). Innate immunity among other forms involve 

restriction-modification systems (RMS), which protect prokaryotic cells from heterologous DNA 

through cleavage of unmodified foreign DNA molecules by the restriction component of RMS, 

while a host DNA methylated by the modification component of RMS remains intact. Acquired 

(adapted) immunity is facilitated by the Clustered Regularly Interspaced Short Palindromic Repeats 55 

(CRISPR)-Cas systems. Usually this system relies on a CRISPR array, a segment of DNA 

containing series of short identical sequences (repeats) separated by unique sequences of about the 

same length (spacers), and CRISPR-associated cas genes that encode a multifunctional protein 

complex. CRISPR array is transcribed and processed into individual small CRISPR RNAs 

(crRNAs). Mature crRNAs in complex with Cas proteins are directed to foreign complementary 60 

nucleic acids and base pair with them, which results in target DNA or RNA degradation (Deveau et 

al., 2010). The suicidal systems, such as toxin-antitoxin systems (TAS), are widespread in bacteria 

and archaea and function through stress-induced cell suicide or dormancy (Makarova et al., 2009; 

Blower et al., 2011). The TAS are based on the “poison-antidote” principle and in most cases consist 
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of two genes, which encode, respectively, a toxin (either a protein perforating the cell membrane or 65 

an mRNA-cleaving endonuclease) and an antitoxin (either a small RNA that prevents toxin gene 

translation or a protein that forms an inactive complex with the toxin). Under normal conditions, 

the toxin is maintained in an inactive state via interaction with the antitoxin gene product. Various 

stresses, including viral infection, inactivate the antitoxin and thus unleash the toxin, which either 

kills the affected cells or induces their dormancy, restricting the impact of the infection (Buts et al., 70 

2005). Most of these defence mechanisms are widely distributed across the prokaryotic world, and 

genomes of free-living bacteria and archaea typically encode multiple defence systems of different 

classes, which form so-called genomic “defence islands” (DIs) (Makarova et al., 2011b).  

Here, we analysed multiple defence systems and conjugative IncP-1 plasmid present in the 

genome of obligate marine bacterium Cycloclasticus sp. 78-ME, isolated from petroleum deposits of 75 

the sunken tanker Amoco Milford Haven (Mediterranean Sea) (Messina et al., 2016).  

 
Results and discussion 
 
Biodegradation potential of Cycloclasticus sp. 78-ME  80 

Cycloclasticus sp. 78-ME is a Gram-negative, obligate aerobic, marine gammaproteobacterium 

isolated from the tar residues disposed on the seabed at the wreck site of the supertanker “Amoco 

Milford Haven” (08°42.086’E, 44°22.242’N, 78 m depth). This accident, which happened close to 

the Genoa-Voltri coastline (Mediterranean Sea) in April 1991, released to the sea approximately 

30,000 metric tons of heavy crude oil and was considered as one of the top-ten oil spills in the 85 

human history. A mixture of phenanthrene : pyrene was used in the enrichment experiments as 

the only carbon sources (Messina et al., 2016). In addition to phenanthrene and pyrene, strain 78-

ME was able to use naphthalene, methylnaphthalene, 2,6-dimethylnaphthalene, biphenyl, fluorene, 

acenaphthene, dibenzofuran, dibenzothiophene and anthracene as single carbon sources for 

growth. Currently, strain 78-ME is the second known Cycloclasticus strain capable to uptake 90 

pyrene, as the only carbon source (Lai et al., 2012a). Noteworthy, in the presence of various PAHs 
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with two-four condensed rings, Cycloclasticus sp. 78-ME is capable to transform benz[]pyrene 

(Fig. S1). Such striking PAH-degradation capabilities imply the presence of a very sophisticated 

enzymatic machinery. Indeed, genome analysis of strain 78-ME revealed the presence of 72 

different enzymes belonging to four classes of ring-cleavage dioxygenases (Table S1). Among 95 

them, 20 genes encoding -subunits of Rieske non-heme iron oxygenases with 2 of the 8 subunits 

belong to the biphenyl and are most closely related to naphthalene dioxygenases of Proteobacteria 

(cluster XXIV, Duarte et al. 2014).  

 

Analysis of two ”defence islands” in Cycloclasticus sp. 78-ME genome 100 

Genome innovation and evolution in prokaryotes is inter alia dependent on the acquisition of the 

DNA from external sources, the process generally termed ‘lateral gene transfer’ (Ochman et al., 

2000; Frost et al., 2005). Nevertheless, an acquisition of foreign genetic information does 

frequently lead to the disruption and inactivation of genetic determinants of the host organism at 

the insertion location. With a high probability this error-generation process can be lethal for 105 

organisms with minimized and streamlined genomes, such as that of Cycloclasticus sp. 78-ME. To 

protect the integrity of their genomes and withstand permanent extensive exposure to exogenous 

DNA, the prokaryotic organisms have evolved defence systems, which are typically clustered in 

the “defence islands” (DIs) (Makarova et al., 2011b; 2013). Several examples of DIs were found in 

the genome of Cycloclasticus sp. 78-ME.  110 

One of them contained CRISPR-Cas and TAS systems. The pair of genes (CYCME_2159 and 

CYCME_2160) was predicted as a toxin-antitoxin pair. This DI is located upstream of the cas 

operon of the type I-E CRISPR-Cas system and consists of two genes, the hipA (hip is for “high 

persistence”) encoding a toxin (the closest homologue is HipA protein from Syntrophus 

aciditrophicus, e-value 1e-140) and hipB encoding an antitoxin (the closest homologue is XRE 115 

family transcriptional regulator of zetaproteobacterium TAG-1, e-value 2e-24). The products of 

hipA and hipB genes are recognized as a major factor involved in persistence to a wide variety of 
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stresses (Wen et al., 2014), biofilm formation (Zhao et al., 2013) and survival during long-term 

stationary phase (Kawano and Mori, 2009).  

Another 28 kbp-long DI was predicted with IslandViewer3 software (Dhillon et al., 2015). It 120 

includes 26 ORFs, most of which are clearly mobilome genes such as integrases, plasmid-like 

integrated elements, and genes of defence systems, such as predicted TAS, RMS and genes 

encoding virulence proteins (Fig. 1). One of the ORFs of the 28 kbp-long genomic island 

(CYCME_2453) contains a nucletidyl-transferase domain DUF1814, which was shown to be a 

signature domain of a widespread superfamily of toxins of type II TAS with unknown mechanism 125 

of toxicity (Sberro et al., 2013). Interestingly, the DUF1814 domain was also documented in AbiG 

– a two-gene system involved in abortive infection, suggesting that it might be involved in anti-

phage defence (Makarova et al., 2011b; Sberro et al., 2013). CYCME_2454 located upstream of the 

toxin gene CYCME_2453 contains DUF2893 domain with unknown function, and the HHpred 

analysis (http://toolkit.tuebingen.mpg.de/hhpred#) revealed a helix-turn-helix domain. Based on 130 

its two-gene nature, CYCME_2453 and CYCME_2454 can be suggested as a novel pair of type II 

TAS (shown in yellow in Fig. 1). Among other defence-related ORFs were CYCME_2461, 

CYCME_2464 and CYCME_2465 (shown in red in Fig. 1) encoding HsdR, HsdS and HsdM, 

correspondently. All of them are well known components of RMS of type I. Some of the proteins 

encoded in this DI (shown in white in Fig. 1) have no homology to proteins with known functions 135 

or predicted conserved domains and thus could be suggested as a “dark matter” encoding yet 

unexplored defence (or defence-irrelevant) proteins (Makarova et al., 2014). 

 

Analysis of CRISPR-Cas system in Cycloclasticus sp. 78-ME genome 

CRISPR-Cas system is a prokaryotic adaptive immune system against foreign genetic elements 140 

such as viruses and plasmids (Makarova et al., 2006, Makarova et al., 2011a, Barrangou et al., 

2007). Consisting of stretches of interspaced repetitive DNA fragments and associated cas genes, 

CRISPR-Cas has been revealed as a unique defence system in prokaryotes, which recognizes 

fragments of nucleic acid of foreign origin, like phages and plasmids, and degrades it using a 
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CRISPR-associated protein complex (Deveau et al., 2010). A 15,500-bp long DNA fragment 145 

containing CRISPR-Cas system was found in Cycloclasticus sp. 78-ME using Pilercr v1.02 (Edgar, 

2007). Seven cas genes were detected: cas3, cse1, cse2, cse4/cas7, cas5, cse3, cas1, cas2, and the 

CRISPR-cassette made up by 116 spacers and 117 repeat sequences (5’-

GTGTTCCCCACAAGCGTGGGGATGAACCG-3’) (Fig. 2 and Table S2a). Noteworthy, this 

palindromic sequence was 97% identical to the repeat sequence detected in a CRISPR cassette of 150 

hydrogenotrophic methanogenic euryarchaeon Candidatus “Methanosphaerula palustris” E1-9cT 

(Cadillo-Quiroz et al., 2015). Following the current classification, CRISPR-Cas system of 78-ME 

was affiliated to I-E (E. coli) or CASS2 subtype, widespread in Proteobacteria (Makarova et al., 

2011a). Cas proteins showed 63-80% amino acid similarities to corresponding proteins detected in 

gammaproteobacteria Cronobacter sakazakii 701 (Cas2), Escherichia coli str. K-12 substr. MG1655 155 

(Cas1), Methylobacter tundripaludum SV96 (Cse3) and Methylomicrobium album BG8 (from Cas5 to 

Cas3). As postulated elsewhere (Barrangou et al., 2007; Garneau et al., 2010; Snyder et al., 2010; 

Anderson et al., 2011; Makarova et al., 2011a), during viral or plasmid infection new spacers can be 

acquired by active CRISPR-Cas systems in the CRISPR array, thus providing a genetic record of 

coevolution of host and its predators. To obtain information on the origin of foreign genetic 160 

elements used by Cycloclasticus sp. 78-ME for acquired immunity, sets of spacer sequences of 78-

ME were manually analysed as described in Supporting Information.  

Twenty-nine spacers matched environmental sequences from the blast-env db (maximum 2 

mismatches between a spacer and a protospacer allowed). Obtained environmental sequences were 

further analysed using BlastX algorithm (Table S2a and Table S2b), whereas 6 out of 29 165 

sequences had no homologs in NR database. The remaining 12 spacers have homologies in 

bacterial (eight spacers) or viral (four spacers) genomes. The fact that only four out of 116 spacers 

analysed have viral origin is in coincidence with the fact that the vast majority of marine phages 

remains unknown and underrepresented in nt, env_nt, and wgs databases (Kristensen et al., 2010). 

Two of these spacers (n° 8 and n° 108 that differ only in one nucleotide) matched a sequence 170 

encoding endolysin of uncultured Mediterranean phage uvMED, detected in metagenomic fosmid 
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library of the 0.2-5 µm-size plankton, collected from the deep chlorophyll maximum (DCM) 

(Mizuno et al., 2013). Noteworthy, many obligate marine hydrocarbonoclastic microorganisms, 

including PAH-degraders, were recently isolated as associated to microphytoplakton (Gutierrez et 

al., 2012; 2013). The spacer n° 45 matched a sequence encoding a portal protein of uncultured 175 

Mediterranean phage uvMED from the same library (Mizuno et al., 2013). The spacer n° 47 

(Table S2b) matched a bacteriophage head-to-tail joining protein  (pfam12236), previously 

detected in the genome of petroleum-degrading Thalassospira sp. HJ (Kiseleva et al., 2015). 

Additionally, four protospacers targeting by spacers of the 78-ME CRISPR-Cas system were 

detected in viral fraction of British Colombia Bay metagenomes (Angly et al., 2006), four were 180 

recovered from marine metagenome assembly TARA project_(111_DCM_0.22-3) (Karsenti et al., 

2011). 

CRISPR interference in type I-E systems requires a functional protospacer adjacent motif 

(PAM) AWG, located upstream of the protospacer sequence. As shown above, 12 spacers 

homologous to environmental database entries contained an AAG trinucleotide on their 5’ 185 

flanking region (Table S2b, Pam 5’ column). PAM seem to have a fundamental role in recognition 

of invading elements, triggering the operation of the CRISPR system, and new spacer uptake 

process (Mojica et al., 2009). So far many of these spacers should be “real” or active spacers 

utilizable for foreign elements recognition, probably appertaining to yet uncharacterized phages 

or plasmids.  190 

The consequences of a rapid evolution and niche-specificity of defence systems in prokaryotes 

are their frequently observed patchy phyletic distributions. In particular, bacterial or archaeal 

strains that are otherwise closely related often differ in the content of defence systems (Makarova 

et al., 2011a; 2011b; Iranzo et al., 2015). Corroborating with this statement, Cycloclasticus pugetii 

PS-1, isolated from coastal waters in Puget Sound (North Pacific Ocean; Dyksterhouse et al., 195 

1995), possesses CRISPR-Cas system totally different from that the strain 78-ME while sharing 

more than 98% average nucleotide identity with it (Supporting Information). A 14 kbp-long 

genome fragment is composed of 6 cas genes (cas1, cas3, csy1, csy2, csy3 and cas6f) and a CRISPR 
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array, and belongs to I-F (Ypest) or CASS3 subtype. Compared to 78-ME, the PS-1 CRISPR 

region is much shorter and is formed by 29 spacer sequences and 30 short palindromic repeats (5’-200 

GTTCACTGCCGCACAGGCAGCTTAGAAA-3’). This sequence is identical to repeat sequences 

detected in Photorhabdus temperata subsp. thracensis strain DSM 15199 (Kwak and Shin, 2015). All 

these elements have nothing in common with corresponding structures of 78-ME CRISPR-Cas 

system, suggesting that acquired immunity of two Cycloclasticus strains could have been adapted to 

yet unexplored pool of geographically-specific viruses and other mobile DNA elements. 205 

Noteworthy, using updated (at January 2016) env_nt database we found that the 78-ME CRISPR 

matched with environmental DNA sampled in the Bizerte lagoon located in Northern Tunisia 

(37°16'08.9"N, 9°53'20.1"E; Mediterranean Sea) (Bargiela et al., 2015). This site is a subject to 

petroleum pollution, determined by activity of adjacent oil refinery, and likely represents an 

optimal ecological niche for many obligate marine hydrocarbonoclastic microorganisms, including 210 

PAH-degrading Cycloclasticus. Interestingly, the obtained Bizerte environmental DNA (scaffolds 

AZII01000540-AZII01000544, see Fig. 2) contained portions of CRISPR arrays with repeat 

sequence identical to that of 78-ME, moreover, from 92 spacers found in these scaffolds 44 were 

identical to those present in 78-ME CRISPR array. Previously, we have reported on ubiquitous 

distribution in the Mediterranean Sea of Alteromonas macleodii AltDE (stands for “Deep Ecotype”) 215 

strains harbouring identical CRISPR-Cas systems (Smedile et al., 2013). In present case, the 

Cycloclasticus CRISPR-Cas systems of Mediterranean Sea seem also remarkably static. One of the 

possible explanations is that in spite of the postulated huge diversity of marine phages, petroleum-

contaminated water masses and sediments of Mediterranean Sea are characterized by a relative 

stability and uniformity of environmental parameters and are likely to sustain rather uniform viral 220 

communities. A further confirmation of these results is given by the analysis of the spacers 

detected in Bizerte environmental scaffolds different from Cycloclasticus 78-ME. Although they 

target organisms that are different from that seen for Cycloclasticus 78-ME CRISPR-Cas systems, 

the corresponding protospacer were detected in the same environments that hold 78-ME 
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protospacers (Table S2a). Thus, one could imagine that Mediterranean Cycloclasticus strains are 225 

only resistant to such niche-specific phages.  

 

Cycloclasticus sp. 78-ME harbors a conjugative plasmid of a new IncP-1 ancestral archetype without 

accessory mobile elements  

As recently reported (Messina et al., 2016), the genome of Cycloclasticus sp. 78-ME consists of two 230 

circular replicons: the 2,613,078 bp chromosome (G+C content of 41.84%) and the plasmid 

p7ME01 of 42,347 bp (G+C content of 53.28%). %). The type strain Cycloclasticus pugetii PS-1 has 

only the 2,383,924 bp chromosome. Since this is the first finding of a naturally-occurring plasmid 

in Cycloclasticus strains, we analysed this plasmid in more details. The complete sequence of 

p7ME01 revealed that its backbone is very similar to conjugative plasmids of the incompatibility 235 

group P-1 (IncP-1). This group of plasmids is an example of highly potent, self-transmissible 

DNA molecules with a complicated regulatory circuit, which utilize very efficient strategies for 

stable maintenance in almost all Gram-negative bacteria. In addition to their wide replication 

range they can even mobilize different “shuttle vectors” to Gram-positive bacteria, cyanobacteria, 

or even eukaryotic organisms such as yeasts (Sen et al., 2013). Recent studies have provided 240 

evidence that IncP-1 plasmid maintenance mechanisms have a lot in common with the systems for 

chromosome segregation in bacteria (Adamczyk and Jagura-Burdzy, 2003). All known plasmids of 

this group possess IncP-1-specific backbone modules for their replication, stable inheritance and 

conjugative transfer. Overwhelming majority of the IncP-1 plasmids has at least one accessory 

gene or mobile element encoding either degradation of xenobiotic compounds or resistance to 245 

antibiotics or heavy metals. These accessory elements have been postulated to be acquired during 

adaptive evolution of this group of plasmids (Heuer et al., 2004). Recently, ancestral IncP-1 

plasmids harbouring only backbone archetype and lacking any of these typical accessory genes 

was identified in various alpha- and gammaproteobacteria (Popowska and Krawczyk-Balska, 
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2013). 250 

Plasmid p7ME01 possesses a classical IncP-1 structure of backbone modules: two regions 

involved in plasmid conjugation (the tra and trb operons), a region carrying the genes for plasmid 

replication, and a region responsible for central control, stable inheritance and partitioning (Fig. 

3). The origins of vegetative replication (oriV) and plasmid transfer (oriT) are also present in 

p7ME01. Analysis of the oriV nucleotide sequences revealed conserved IncP-1 features in this 255 

region. Following the classification of Adamczyk and Jagura-Burdzy (2003), the DNA segment 

providing oriV activity in p7ME01 is approximately 650bp long and consists of nine 16-mers 

repeats called iterons, A+T-rich and G+C-rich regions. Iterons are organized in four groups: 

containing two, one, five, and one copy, respectively (Fig. 3). The biggest group of iterons n° 4 - 

n° 8 together with A+T-rich region form a cluster representing minimal replication origin 260 

activated by initiator protein TrfA. Annotation of the sequence data revealed that p7ME01 

contains 52 ORFs and their localizations and predicted functions are presented in Supporting 

Information (Table S3). Forty-five ORFs correspond to  well-conserved backbone modules (Fig. 

3). Using approach of Norberg et al. (2011), we compared the concatenated backbone regions A, B 

and C of p7ME01 with corresponding regions of 23 IncP-1 plasmids retrieved from GenBank 265 

through BLAST and literature searches. As supported by phylogenetic analysis of the IncP-1 

backbones, p7ME01 does belong to a novel clade, hereafter called  (from the Greek word 

“ or thalassa”, meaning “sea”) (del Castillo et al., 2013). Additionally to p7ME01, this 

novel IncP-1 clade currently consists of three other closely related plasmids (Fig. 4). 

Noteworthy, all of them were found in marine biofilm-forming gammaproteobacteria: Alcanivorax 270 

hongengensis A-11-3 (Lai and Shao, 2012b), Marinobacter adhaerens HP15 (Gärdes et al., 2010) and 

Methylophaga frappieri JAM7 (Auclair et al., 2010; Villeneuve et al., 2013). Besides the type of 

habitat and capability of biofilm-formation, these bacteria do not seem to have any significant 

common physiological features shared among themselves or with Cycloclasticus sp. 78-ME. None of 

the IncP-1 plasmids carried by these marine bacteria were studied in detail, and their “accessory 275 



 12 

regions” remain uncharacterized. As shown on Fig. 3, apart from the genes encoding proteins of 

backbone modules, p7ME01 plasmid harbours nine cryptic ORFs, located in two “accessory 

regions”: ORF1 and ORF2 are situated between oriV and klcA; ORF3-9 – between trbV and traC 

(Fig. 3 and Table S3). With exception of Marinobacter adhaerens plasmid pHP-42, neither of the 

ORFs located in the trbV-traC region of p7ME01 were present in any of IncP-1 conjugative 280 

plasmids. An average G + C content of this region (46.0%) is far below than that of the entire 

p7ME01 plasmid (53.3%), indicating its different origin from the rest of ORFs. Additionally, the 

trbV-traC region does not contain any insertion sequences and thus does not appear to be a mobile 

element. These findings suggested that restriction site-associated repeat sequences detected 

within the proximity of parA might play a role in the insertion event of ORF3-9 into p7ME01 285 

rather than in acquisition of mobile elements. 

As it is well established, vegetative replication of the IncP-1 plasmids is accompanied by 

either post-segregational killing (psk) or multimer resolution (mrs) systems providing a stable 

inheritance of plasmids in the host populations (Adamczyk and Jagura-Burdzy, 2003). While the 

psk systems are typically based on toxin-antitoxin mechanisms described above, the absence of the 290 

mrs systems caused catenation of circular molecules at each replication cycle leading to the so-

called “dimer catastrophy” (Summers et al., 1993). We inspected p7ME01 and other closely related 

IncP-1 plasmids for presence of these systems and could not identify any psk systems. In the 

absence of killing gene system, these plasmids seem to rely only on active partitioning as a stable 

inheritance function and thus, on the essential mrs system. Indeed, in the accessory region located 295 

between trb and tra operons we found two genes, which likely provide the mrs function (Fig. 3): 

the parA gene coding for an enzyme resolving plasmid multimers, and the yacC gene for an 

exonuclease, which likely converses concatenated plasmid dimers to the monomeric form.  

 

Proposed defensive role of p7ME01 in Cycloclasticus sp. 78-ME 300 
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Due to physiological constraints of Cycloclasticus sp. 78-ME and its inability to grow on common 

organic compounds-rich media, conventional conjugative transfer/mating experiments with this 

marine bacterium as a plasmid donor were hardly possible. Because of some similarities between 

the conjugation and competence-related DNA transfer machineries (Chen et al., 2005), we replaced 

conjugation experiment with the estimation of transformation rates of purified p7ME01 plasmid 305 

using naturally competent marine bacteria Photobacterium angustum ATCC 25915 as a recipient. 

The plasmid mobilisation rates were estimated to be 3.6  108 per µg plasmid, which is roughly 

equivalent to transformation efficiency of 1.5   10-4 . This indicates that within marine microbial 

communities, p7ME01 can be easily taken up by cells possessing a natural competence.  

The biological reason of such mobilization capability and ubiquitous distribution of p7ME01 310 

plasmid is still unclear. In general, the IncP-1 plasmids without any accessory mobile elements are 

rarely found in microbial communities and to our knowledge there are only four other such IncP-1 

plasmids known so far: pA1 (Harada et al., 2006), pBP136 (Kamachi et al., 2006), and 

abovementioned pHP-42 and an unnamed plasmid from Alcanivorax hondengensis A-11-3. Their 

existence may be inconsistent with the hypothesis that plasmids are maintained in bacterial 315 

communities because they confer one or several advantageous traits to their host, which are 

intrinsically unnecessary for usual growth and survival (Bergstrom et al., 2000). To analyse the 

relative costs of maintaining the p7ME01 plasmid, we estimated its copy number per single cell of 

Cycloclasticus sp. 78-ME. Using the qPCR approach with gyrA- and plasmid–specific primers 

(Table S4), we found that p7ME01 is a low-copy number plasmid, whose quantity does not exceed 320 

1.3 copies cell-1 (Fig. S2). Thus, the energy costs of p7ME01 maintaining seem to be very small, 

but they are nevertheless not zero, and it is still unclear how this plasmid persists in Cycloclasticus 

sp. 78-ME and other hosts. As we mentioned above, the most evident explanation is that 

inheritance capacity of p7ME01 is high enough to overcome their cost and occasional 

segregational loss, which allows them to persist stable in microbial populations. Thus, the 325 

p7ME01 plasmid could be maintained as a parasitic genetic element. Alternatively, p7ME01 may 
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provide some yet unknown advantage to the host. As it was suggested elsewhere (Ghigo, 2001), 

some of the IncP-1 plasmid backbone genes confer advantage to host organisms in biofilm 

development. Although further studies are needed to elucidate the role of IncP-1 plasmids in 

biofilm formation, it is worth to notice, that all currently known marine bacteria harbouring these 330 

plasmids were described as the active biofilm-forming organisms. Under second assumption, the 

cryptic gene products (ORF1-7) provide as yet unknown benefits to Cycloclasticus sp. 78-ME and 

therefore the p7ME01 plasmid is maintained in its population.  

Another possible hypothesis is that the p7ME01 plasmid can be maintained in cells as a part 

of defence system and is needed to suppress the incorporation of exogenous DNA, which may be 335 

beneficial for stability/integrity of the hosts’ genome. Studying the capacity of P. angustum to take 

up and mobilise exogenous DNA in form of linearized plasmids, we realized that natural 

competence of p7ME01-carrying cells, was completely inhibited (Table 1). Noteworthy, the 

plasmids we used through this study (pGEM and pTA) have replicons that are different from and 

therefore compatible with that of p7ME01. A similar phenomenon of plasmid-host interference 340 

was recently described for naturally competent Bacillus subtilis cells after their acquisition of large 

conjugative plasmid pLS20 (Singh et al., 2012). At present, we can only speculate about the 

biological function of the p7ME01-mediated inhibition of competence. As far as development of 

competence has been reported to be associated with fitness costs for the host (Haijema et al., 2001), 

the inhibition of this development is energetically favourable, especially in case with oligotrophic 345 

lifestyle of Cycloclasticus. Alternatively, the self-defence mechanisms, based on suppression of 

possible recombination between p7ME01 and exogenous DNA, may facilitate the plasmid 

integrity. This assumption is in the context with the present study, i.e. observed inhibition of 

competence may be beneficial for genetic stability of backbone plasmids and as a consequence, for 

the integrity of the host’s genome. Thus, the p7ME01 plasmid can be attributed to a factor of 350 

acquired immunity.  
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Conclusion 

Members of the genus Cycloclasticus are recognized as globally important polycyclic aromatic 

hydrocarbons (PAH)-degrading bacteria in marine ecosystems including shallow and deep-sea 355 

water and oceanic sediments (Yakimov et al., 2007; Staley, 2010). One of the remarkable features of 

all known Cycloclasticus strains is their highly specialized substrate specificity towards the PAH 

(Yakimov et al., 2007). All of them possess relatively small (about 2.6 Mb) and streamlined 

genomes, which are highly attenuated to basic physiological properties related to 

hydrocarbonoclastic lifestyle in oligotrophic marine environments. Four currently known genomes 360 

of Cycloclasticus strains isolated from different marine ecosystems all over the world, share more 

than 98 % of average nucleotide identity which suggests they all belong to the same species (Goris 

et al., 2007), and which appears to be a consequence of such “genome minimization and 

streamlining” (Lynch, 2006). Noteworthy, all Cycloclasticus genomes are significantly impoverished 

in either expansive “accessory genes” or “selfish” mobile genetic elements. This indirectly indicates 365 

the presence of efficient multiple defence systems which suppress the acquisition of exogenous DNA 

and thus may be beneficial for stability/integrity of such minimized and streamlined genome of 

Cycloclasticus sp. 78-ME. Two “defence islands” were identified in its genome: one contained 

CRISPR-Cas and toxin-antitoxin system, while the second was composed of an array of genes for 

toxin-antitoxin and restriction-modification proteins. Among 116 spacers of CRISPR-Cas system 370 

only seven spacers matched phages and plasmids. Additionally, we showed that Cycloclasticus sp. 78-

ME harbours a conjugative plasmid p7ME01 of a new IncP-1 ancestral archetype, which likely 

suppresses the acquisition of exogenous DNA by this organism. Based on this finding, we suggested 

that the adaptive immunity of Cycloclasticus sp. 78-ME is linked with the acquisition of this plasmid.  
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Table 1. Transformation efficiency for AmpR plasmids pTA and pGEM (pUC origin of replication, 

incompetence group A) in P. angustum wild type and P. angustum harboring p7ME01 plasmid. All 

transformations were done in triplicates. 
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Vectors Strains 
Tranformants, 

CFU µg-1 plasmid 

pTA 
P. angustum wild type 1.5 x 109 ± 2.0 x 106 

P.angustum::p7ME01 0*  

pGEM 
P. angustum wild type 8.7 x 109 ± 2.4 x 106 

P. angustum::p7ME01 0* 

 585 
* no transformants were observed. 
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Figure legends 590 

 

Figure 1. Genome organisation of 28 kb-long defense island in Cycloclasticus sp. 78-ME. Coding 

regions are shown by arrows indicating direction of transcription. Colors of the arrows represent 

different functional modules: toxin-antitoxin genes are shown in yellow; restriction-modification 

system genes are shown in red, integrases are shown in violet; ORFs encoding proteins with other 595 

functions are shown in grey, ORFs encoding proteins with no predicted function are shown in 

white. 

 

Figure 2. Structures of CRISPR-Cas systems identified in genomes of Cycloclasticus sp. 78-ME and 

Cycloclasticus pugetii PS-1. Partial CRISPR-Cas system found in Bizerte environmental DNA is 600 

depicted for comparison. See text for further details on associated protein and repeat regions 

found. 

 

Figure 3. Genetic map of plasmid p7ME01. Coding regions are shown by arrows indicating the 

direction of transcription. The positions of the origins of vegetative replication (oriV) and plasmid 605 

transfer (oriT) are marked with black-red circles. The region of oriV is shown in more details 

above the map of the plasmid and does not contain interrupting mobile elements. Positions of 

G/C- and A/T-rich regions and iterons are shown by yellow ellipses and red boxes, respectively. 

The height of each base in sequence logo of p7ME01 iterons represents its conservation. The 

different functional modules of the plasmid are represented in different colours. In addition, the 610 

positions of insertion of mobile genetic elements and phenotypic markers in IncP-1 plasmids are 

indicated by grey sectors placed outside the plasmid map. Three concatenated backbone regions 

A, B and C were used for phylogenetic and signature analyses (Norberg et al., 2011).  
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Figure 4. Phylogenetic analysis showing the relationship of p7ME01 with other incP-1 plasmids 615 

of the IncP-1plasmid backbone. Maximum Likelihood tree was inferred from concatenated 

backbone regions A, B and C of 23 IncP-1 plasmids belonging to all currently recognized clades 

(Norberg et al., 2011; del Castillo et al., 2013). Novel IncP-1 clade is shaded in grey. Five IncP-1 

plasmids without any accessory mobile elements known so far are highlighted in bold. Sequence of 

the uncharacterized plasmid MEALZ_p (FD082061) from Methylomicrobum alcaliphilum 20Z was 620 

used as an outgroup. The scale bar represents the probability of amino acid substitutions per site.  

 

 


