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Vision-based object stabilisation is an exciting and challenging area of research, and 

is one that promises great technical advancements in the field of computer vision. As 

humans, we are capable of a tremendous array of skilful interactions, particularly 

when balancing unstable objects that have complex, non-linear dynamics. These 

complex dynamics impose a difficult control problem, since the object must be 

stabilised through collaboration between applied forces and vision-based feedback. 

To coordinate our actions and facilitate delivery of precise amounts of muscle torque, 

we primarily use our eyes to provide feedback in a closed-loop control scheme. This 

ability to control an inherently unstable object by vision-only feedback demonstrates 

an exceptionally high degree of voluntary motor skill. Despite the pervasiveness of 

vision-based stabilisation in humans and animals, relatively little is known about the 

neural strategies used to achieve this task.   

 

In the last few decades, with advancements in technology, we have tried to impart the 

skill of vision-based object stabilisation to machines, with varying degrees of success. 

Within the context of this research, we continue this pursuit by employing the classic 

Cart Inverted Pendulum; an inherently unstable, non-linear system to investigate 

dynamic object balancing by vision-only feedback. The Inverted Pendulum is 

considered to be one of the most fundamental benchmark systems in control theory; 

as a platform, it provides us with a strong, well established test bed for this research. 
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We seek to discover what strategies are used to stabilise the Cart Inverted Pendulum, 

and to determine if these strategies can be deployed in Real-Time, using cost-

effective solutions. The thesis confronts, and overcomes the problems imposed by 

low-bandwidth USB cameras; such as poor colour-balance, image noise and low 

frame rates etc., to successfully achieve vision-based stabilisation. 

 

The thesis presents a comprehensive vision-based control system that is capable of 

balancing an inverted pendulum with a resting oscillation of approximately ±1º. We 

employ a novel, segment-based location and tracking algorithm, which was found to 

have excellent noise immunity and enhanced robustness. We successfully 

demonstrate the resilience of the tracking and pose estimation algorithm against 

visual disturbances in Real-Time, and with minimal recovery delay. The algorithm 

was evaluated against peer reviewed research; in terms of processing time, amplitude 

of oscillation, measurement accuracy and resting oscillation. For each key 

performance indicator, our system was found to be superior in many cases to that 

found in the literature. 

 

The thesis also delivers a complete test software environment, where vision-based 

algorithms can be evaluated. This environment includes a flexible tracking model 

generator to allow customisation of visual markers used by the system. We conclude 

by successfully performing off-line optimization of our method by means of Artificial 

Neural Networks, to achieve a significant improvement in angle measurement 

accuracy. 
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Chapter 1 

General Introduction 

 

“The heights by great men reached and kept were not attained by sudden flight, but they, while their 

companions slept, were toiling upwards in the night.” 

 

Henry Wadsworth Longfellow, “The Ladder of St. Augustine” (1850) 

 

 

Humans and animals are capable of a tremendous array of skilful interactions, all of 

which are the result of internal and external forces acting on the body’s 

musculoskeletal structure. It has been long understood that the somatic nervous 

system generates internal, voluntary forces through stimulation of muscles, in a 

process called motor control (Ghez and Krakauer, 2000). External forces are outside 

influences that act on the body, such as gravity, acceleration and friction, etc.  

 

To coordinate these interactions and ensure delivery of the correct muscle torque, we 

primarily use our eyes to provide vision-based feedback in a closed-loop control 

scheme. While performing these interactions, we often encounter highly unstable 

objects that have non-linear dynamics. These complex dynamics impose a difficult 

control problem, since the object must be stabilised through the interaction between 

applied forces and vision-based feedback. An example would be a wait-person 

balancing a tray of drinks; navigating around a busy room, while trying not to spill 

the contents. This seemingly trivial task requires precise, Real-Time control, and is 

one that demonstrates an extremely high degree of voluntary motor skill.  
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1.1 Motivation  

 

Dynamic object balancing is one of the most complex physical interactions that we 

perform as humans; however, we know relatively little about the neural strategies 

used to achieve stabilisation using vision-only feedback (Burdet et al., 2013), (Milner 

et al., 2006). This knowledge gap has resulted in a number of on-going investigations 

within the fields of Control Engineering and Robotics research, where such a skill is 

highly desirable. 

 

For decades, the problem of balancing an Inverted Pendulum has been widely used as 

a benchmark for testing the efficacy of various control schemes (Kurdekar and 

Borkar, 2013). The Inverted Pendulum represents the basis of many complex 

systems, and it is deemed to be one of the most important test beds in the fields of 

Control Engineering and Robotics research (Boubaker, 2014). Using the Inverted 

Pendulum as a test platform, we explore the following questions and use them to 

form the basis of our research:  

 

 In a closed-loop control scheme, what strategies are used to balance an 

unstable object using vision-based feedback? And how are these strategies 

implemented in the real-world (i.e. outside of simulation)? Can these 

strategies be used to stabilise an Inverted Pendulum? 
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 Visual feedback stabilisation is state-of-the-art in the field of Control 

Engineering, and as a consequence, expensive control systems are widely 

accepted (Chavez-Romero, 2015). Can we develop a cost-effective system 

using off-the-shelf (OTS) components or 3D printable parts?  

 

 The answer to the previous question will depend on the performance of the 

cost-effective solution. Our final questions are: How well do these strategies 

perform as compared to other visual feedback approaches? What methods are 

used to evaluate vision-based Inverted Pendulum systems and can we achieve 

improved performance with a cost-effective solution?  

 

In the context of this research, we employ the classic Cart Inverted Pendulum to 

investigate vision-based dynamic object balancing, to address the aforementioned 

questions. Essentially, the Cart Inverted Pendulum comprises of an unrestricted cart 

and a weighted pole. The pole is fixed on a pivot, which can rotate in a single 

dimension. The cart is driven by force in such a way as to keep the pole in an upright 

position at all times (Ponce et al., 2014). Although this is a simple system from a 

construction point of view, it has three interesting properties that make it attractive to 

control engineers and robotics researchers:  

 

1. It is highly unstable – The inverted position is the point of unstable 

equilibrium, as can be seen from pole-zero plots (Bernard, 1987). 
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2. It is highly non-linear – The dynamic equations consist of non-linear 

terms. 

 

3. It is underactuated – The system has two degrees of freedom (2-DOF) but 

only one actuator. This property helps to make the system cost-effective, 

but the control problem becomes more challenging. 

 

To achieve stabilisation, the cart position must be tightly regulated by applying 

frequent corrective forces via the motor, thus balancing the pole and maintaining its 

upright position. This task is known as the stabilisation problem, and is the most 

widely explored challenge posed by the Inverted Pendulum. 

 

One significant aspect of the Inverted Pendulum is that it represents the basis of many 

complex systems; such as Motion Gait Modelling, Satellite Attitude Control, Rocket 

Stabilisation and Multi-Rotor Vehicle Dynamics, as described by Boubaker (2014), a 

prominent scholar in this field.  

 

Some real-world examples of Inverted Pendulum systems are illustrated in 

Figure.1.1:  
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Figure.1.1 – Real-world examples of Inverted Pendulum systems. Clockwise from the top: 

Satellite attitude control, rocket stabilisation, multi-rotor vehicle dynamics and robot 

walking. 

 

1.2 Aim and Objectives 

 

The aim of this research is to build a comprehensive and effective method of dynamic 

object balancing by means of vision-only feedback, and to optimise the method by 

using Artificial Neural-Networks. The algorithms outlined in the proposed method 

must allow for Real-Time operation, even in the presence of visual disturbances. To 

achieve this aim, the following core objectives were pursued: 

 

1. Gain a comprehensive understanding of the classic Cart Inverted Pendulum; 

its dynamics, and the traditional methods used to achieve stabilisation. 
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2. Review the state-of-the-art in vision-based Inverted Pendulum control; 

covering hybrid (sensor fusion), vision-only, and “intelligent” approaches. 

 

3. Develop a high-performance; cost-effective test bed to allow algorithms to be 

applied to the Cart Inverted Pendulum stabilisation problem.  

 

4. Perform data harvesting to establish a baseline to which our method can be 

evaluated. 

 

5. Formulate a novel, vision-based control algorithm for pose (position and 

orientation) estimation and apply it to the Cart Inverted Pendulum 

stabilisation problem. 

 

6. Explore the use of Artificial Neural Networks for optimisation and 

demonstrate their merit in our application.  

 

The scope of this research is limited to the Cart Inverted Pendulum stabilisation 

problem only. The position control and swing-up problems (Durand, 2013), (Merakeb 

et al., 2013), (Lam, 2004) are not addressed in this work.  

 

1.3 Main Challenges 

 

In this research, we focus on the most challenging control task posed by the Cart 

Inverted Pendulum, which is known as the stabilisation problem (Durand, 2013). We 

compound this challenge by seeking to balance the Inverted Pendulum using vision-

only feedback, which is both complex and computationally demanding. The inherent 
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instability of the system poses a significant challenge; a robust, Real-Time controller 

is required to achieve stabilisation. The main difficulties that were encountered 

during this research are summarised in the following subsections: 

 

1.3.1 Observing Bandwidth Constraints  

 

One of the main challenges encountered in this research was the strict bandwidth 

constraints of the system, which required negotiation in order to achieve Real-Time 

performance. In this context, bandwidth refers to the time available to conduct image 

acquisition, image processing and control signal output. In vision-based control, 

many tasks are required to be performed, including filtering, feature detection, 

correlation, etc. The fusion of complex vision processing tasks within closed-loop 

control dictates the complexity of the controller. A flexible algorithm was therefore 

required that allowed the compromise between speed and estimation error. 

Understanding this compromise was central to our research. High-speed image 

acquisition, efficient processing tasks and high-speed communications were all key 

bandwidth challenges. 

 

1.3.2 Achieving Robust Vision-Based Pose Estimation 

 

Achieving robust, vision-based, pose estimation is extremely challenging; it is, 

however, widely accepted that many classical vision processing tasks can be solved 

effectively, particularly in the automotive domain (Fu et al., 2015). In some cases, the 

solution requires ideal image sequences, high bandwidth and even a hybrid approach. 

Images acquired by low-cost USB cameras, in poor lighting conditions are less than 

ideal for the task. Inferior colour balance, sensor noise, and other artefacts render 
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classical image processing methods inadequate in this context. As a consequence, 

more robust methods for pose estimation needed to be developed. 

 

1.3.3 Developing a Cost-Effective Test Bed 

 

A high-performance test bed can be achieved by employing expensive hardware 

resources. We considered that an essential requirement should be a low barrier to 

entry, with regards to cost. This was mainly to encourage the number of researchers 

that could reproduce our work. The test bed should, therefore, make efficient use of 

OTS components. One of the main challenges of this research was achieving high-

performance operation, while observing tight cost constraints. In this context we 

define high-performance as a level that is equivalent to or better than that achieved by 

expensive commercial solutions aimed at research. 

 

1.4 Prototype System Overview 

 

The prototype Cart Inverted Pendulum system that was developed during the course 

of this research is illustrated in Figure.1.2. A permanent magnet D.C. (PMDC) motor 

was used in conjunction with stainless steel rods and bushings to form the basis of the 

linear sliding cart mechanism. A third stainless steel rod was used to form the 

pendulum shaft. This rod was attached by a coupling arrangement to a linear 

potentiometer, which was used as a conventional means of measuring angular 

displacement and angular velocity during testing. The control interface was realised 

using a PIC32-Pinguino, a 32-Bit microcontroller based development board from 

OLIMEX Ltd (see Table.1.1 for the key specifications). 
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Figure.1.2 – An Overview of the Closed-Loop Cart Inverted Pendulum System. 

 

 

Parameter Value 

Max speed 80Mhz 

Flash memory 512KB 

RAM 32KB 

USB OTG/2.0 

A/D Channels/Resolution 16/10-Bits 

A/D Sample Rate 1MSPS 

PWM Channels/Resolution 5/8-Bits 

I/O Pins 64 

 

Table.1.1 – Main PIC32-Pinguino Specifications. 
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1.5 Approach 

 

A continuous sequence of still images is captured at the maximum frame rate of 30fps 

by the USB 2.0 camera, which is trained at the Cart Inverted Pendulum apparatus. 

The positioning of the camera is such that the entire pendulum (including the Cart 

and Pole) is encompassed by the 75º Field Of View (FOV) of the camera. Although 

the USB 2.0 camera meets the low-cost requirement, it presents several limitations. 

The shutter speed and gain controls are two such examples, which are automatic and 

offer no software access. These limitations result in occasionally blurred and 

saturated images that required accommodation by the system. 

 

 The USB camera offers a wide angle, manual focus lens, which was ideal for 

capturing images with the greatest depth range possible. This type of lens is essential 

when trying to obtain pendulum pose using a single camera system (Hespanha, 2000).  

A typical image from the camera is shown in Figure.1.3; the poor colour balance and 

irregular lighting conditions should be noted. 

 

 

 

Figure.1.3 – A typical image captured by the Inverted Pendulum camera – Note the poor 

colour balance and irregular lighting conditions. 
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A Laptop computer was used to perform image acquisition and execution of the 

vision-based control algorithms. The main specifications of the Laptop are given in 

Table.1.2 (this machine was used throughout unless otherwise stated). The algorithms 

were implemented in Microsoft Visual Basic .NET (VB.NET) 2008 using the 

EmguCV library (EmguCV, 2010), which is a VB.NET wrapper of the popular 

OpenCV library (Uke, 2013), (Bradski and Kaehler, 2008). 

 

The vision-based control algorithms were found to be computationally expensive and 

in order to achieve Real-Time performance, a multi-threaded architecture was used to 

share the load between several processors; this concept is discussed further in Chapter 

4. The vision-based tracking algorithm presented in Chapter 5 generates a suitably 

robust estimate of the pendulum’s pose. This estimate is pre-processed and passed to 

the motion control algorithm, which then computes the required motor speed and 

direction parameters (i.e. velocity). A bespoke communications protocol was 

developed to allow efficient transfer of data between the Laptop computer and the 

motor controller, via a USB 2.0 interface. 

 

Parameter Value 

Model Hewitt Packard (HP) Envy 

Cores/Threads 2/4 

Processor Type Intel® Core™  i7-6500U 

Processor Speed 2.6 GHz 

Memory 12.0 GB 

Graphics Card Intel® HD Graphics 520 

Operating System Windows 10™ Home Edition 

 

Table.1.2 – Main Laptop Computer Specifications. 
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1.6 Major Contributions 

 

The main contributions of this research are as follows: 

 

1. The development of a high-performance, cost-effective control system to 

facilitate research into vision-based control of the classic Cart Inverted 

Pendulum. As previously stated, in this context we define high-performance 

as a level which is equivalent to, or better than that achieved by commercial 

solutions aimed at research. This development was necessary as commercial 

Inverted Pendulum systems were prohibitively expensive. 

 

2. Experimentation using the developed control system to establish a baseline of 

a classical feedback approach. This work provided us with the required 

numerical data to perform analysis. 

 

3. The proposal of novel, Real-Time algorithms for pendulum localisation and 

pole angle estimation using vision-only feedback. These algorithms are an 

original contribution to knowledge. 

 

4. Application of the proposed algorithms for stabilising a real-world Inverted 

Pendulum using vision-only feedback and the appraisal thereof. This work is 

an original contribution to knowledge. 

 

5. A proposed enhancement to the vision-based control algorithm by means of 

Artificial Neural Networks. This work is an original contribution to 

knowledge. 
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1.7 Thesis Overview 

 

The vision-based control theory presented in this thesis is applied to the task of 

stabilising the classic Cart Inverted Pendulum, an inherently unstable, non-linear 

system. The test bed summarised in Section 1.4 was used throughout to undertake the 

investigations. 

 

Chapter 1 has provided a general introduction to the research area, including the 

motivation, aim and objectives, main challenges and significant contributions. 

Chapter 2 provides a theoretical foundation on which the solution is built; some of the 

more specific background knowledge (particularly on image processing) is presented 

within the relevant chapter. Chapter 3 delivers a literature review of research that is 

relevant to the work presented in this thesis. We adopt a broad approach to the 

literature survey in an effort to answer some of the fundamental questions posed in 

Section 1.1. Chapter 4 describes, in detail, the development of our test bed and 

provides technical justification for the main components used. Chapter 4 also presents 

a summary of the results gathered during the practical experimentation phase. These 

results were used to establish a baseline, to which we could compare our vision-based 

approach. Chapter 5 provides details of the Inverted Pendulum localisation algorithm, 

which uses our Multiple-Segments Moments Tracking (MSMT) method. Chapter 6 

optimises the solution presented in Chapter 5, using Artificial Neural Networks to 

perform off-line pendulum angle estimation. Chapter 7 summarises the contributions 

of the thesis and suggests areas that require further investigation.  
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Chapter 2 

Background 

 

2.1     The Cart Inverted Pendulum 

 

For decades, the problem of balancing an Inverted Pendulum has been widely used as 

a benchmark for testing the efficacy of various control schemes (Kurdekar and 

Borkar, 2013). The Inverted Pendulum represents the basis of many complex 

systems, and it is deemed to be one of the most important examples in the fields of 

control engineering and robotics research (Boubaker, 2014). Various Inverted 

Pendulum structures have been developed and controlled in the literature; however, 

owing to its physical suitability, we explore the classic Cart Inverted Pendulum. 

 

The Cart Inverted Pendulum consists of a pole of length l, weighted by a mass of m, 

balancing on a mobile cart. The cart is driven by an external force F, in such a way as 

to keep the pole in an upright position at all times. Typically, sensors are used to 

measure the angular displacement θ and the angular velocity 𝜔 of the pole. The input 

force F is a function of these parameters and is used to balance the pole by 

maintaining θ at zero; this balancing act is known as the stabilisation problem. Prior 

to designing a suitable controller, it is important to derive and understand the 

equations of motion for the Cart Inverted Pendulum.  
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2.1.1     Cart Inverted Pendulum Dynamic Equations 

 

In this section, the dynamic equations for the Cart Inverted Pendulum are derived 

from Newton’s second law of motion, and also by Lagrangian mechanics. The system 

has Two Degrees of Freedom, the linear motion of the cart in the X-axis and the 

rotational motion of the pendulum in the X-Y plane; thus, there will be two dynamic 

equations. A schematic representation of a typical Cart Inverted Pendulum is shown 

in Figure.2.1. The parameters that are relevant to the derivation of the dynamic 

equations are given in Table.2.1. 

 

 

Figure.2.1 – Schematic Representation of the Cart Inverted Pendulum. 

 

Symbol Quantity 

M Mass of the pole 

M Mass of the cart 

L Length of the pole 

G Acceleration due to gravity 

X X coordinate or position of the cart 

V Translational velocity of the cart 

A Translational acceleration of the cart 

N Horizontal relation force between the cart and the pole 

F External force applied on the cart 

Θ Vertical angle of the pole 

𝜔 Angular velocity of the pole 

Α Angular acceleration of the cart 

 

Table.2.1 – Physical Parameters of the Cart Inverted Pendulum. 
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A.    Newtonian Method 

 

The application of Newton’s second law of motion is one of the most fundamental 

methods used to derive the dynamic equations of a system (Bernard, 1987). 

Mathematically, this is expressed as follows: 

 

∑ 𝐹 = 𝑀𝑎                                                    (2.1) 

 

By applying equation (2.1) to the individual parts of the system, namely the cart and 

the pole, we get the corresponding equations: 

 

𝐹 + 𝑁 = 𝑀𝑎                                                                                                            (2.2) 

 

And: 

 

𝑁 = 𝑚𝜔2𝑙𝑠𝑖𝑛 𝜃 − 𝑚𝑎 − 𝑚𝛼𝑙𝑐𝑜𝑠 𝜃                                                                        (2.3)     

        

The horizontal relation force between the cart and the pole, N, must be eliminated; 

therefore, by simplifying equation (2.3) we obtain: 

 

𝐹 = (𝑚 + 𝑀)𝑎 − 𝑚𝜔2𝑙𝑠𝑖𝑛𝜃 + 𝑚𝛼𝑙𝑐𝑜𝑠𝜃                                                              (2.4) 

 

The total external torque acting on the mass (m) about the pivot point (between the 

cart and the pole) is 𝑚𝑔𝑙𝑠𝑖𝑛𝜃, and the moment of inertia of m about the same point 

is 𝑚𝑙2. By applying ∑ 𝜏 = 𝐼𝛼 about this point of contact, we obtain the following 

equations: 
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𝑚𝑔𝑙𝑠𝑖𝑛𝜃 = 𝑚𝑙2(𝛼 + 𝑎𝑐𝑜𝑠𝜃)                                                                                (2.5a) 

𝑚𝑔𝑠𝑖𝑛𝜃 = 𝑚𝛼𝑙 + 𝑚𝑎𝑙𝑐𝑜𝑠𝜃                                                                                  (2.5b) 

𝑔𝑠𝑖𝑛𝜃 −  𝛼𝑙 − 𝑎𝑐𝑜𝑠𝜃 = 0                                                                                      (2.5c) 

 

Equations (2.4) and (2.5c) are adequate to describe the dynamics of the Cart Inverted 

Pendulum, as only two equations are required to solve for the unknown parameters 𝒂 

and 𝜶. Also, the internal relation force, N, has been eliminated. 

 

B.     Lagrangian Method 

 

The Lagrangian approach is another popular method used to derive the dynamic 

equations of a system. This approach allows one to deal with scalar energy functions 

rather than vector forces and accelerations, as is the case with the Newtonian method; 

thereby reducing the opportunities for error. Also, in many complex cases, such as the 

Cart Inverted Pendulum, the Lagrangian approach is typically simpler than the 

Newtonian method (Bernard, 1987).  

 

The physical parameters used in the Lagrangian approach are identical to those used 

in the Newtonian method (see Table.2.1); excluding the horizontal relation force, 

which is not required in this approach. The initial step in deriving the equations of 

motion is to derive the Lagrangian 𝑳 ∶ 

 

𝐿 = 𝑇 − 𝑉                                                                                                                (2.6) 

 

Where the parameters T and V are the total Kinetic and potential energies of the 

system, respectively. We start by determining the total kinetic energy of the system at 
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a given time. The Cartesian coordinates of m at any given time would be (𝑥 +

𝑙𝑠𝑖𝑛𝜃) and (𝑙𝑐𝑜𝑠𝜃) respectively. The X and Y components of the velocity of m can be 

determined by means of differentiating the position coordinates of m. Therefore, 

𝑉𝑥 = (ẋ + 𝑙�̇�𝑐𝑜𝑠𝜃) and 𝑉𝑦 = (−𝑙�̇�𝑠𝑖𝑛𝜃). The total kinetic energy of the system, T, 

can therefore be written as: 

 

𝑇 = 
1

2
Mẋ2 +  

1

2
𝑚[(ẋ + 𝑙�̇�𝑐𝑜𝑠𝜃)2 + (−𝑙�̇�𝑠𝑖𝑛𝜃)2]                                                   (2.7) 

 

Using the cart as a ground level reference, and m to be the only mass above this 

reference point, then the total potential energy of the system, V, can be written as: 

 

𝑉 = 𝑚𝑔𝑙𝑐𝑜𝑠𝜃                                                                                                          (2.8) 

 

Equations 2.7 and 2.8 can be used to determine the Lagrangian:  

 

𝐿 =  
1

2
(𝑀 + 𝑚)ẋ2 + 𝑚𝑙ẋ�̇�𝑐𝑜𝑠𝜃 +  

1

2
𝑚𝑙2�̇�2 − 𝑚𝑔𝑙𝑐𝑜𝑠𝜃                                        (2.9) 

 

As previously mentioned, the Cart Inverted Pendulum has two degrees of freedom 

and the cart force, F, is the only external force applied that can change x or ẋ; no 

other external force or torque can affect θ directly. The equations of motion for the 

Cart Inverted Pendulum can, therefore, be derived by simplifying the following: 

 

𝑑

𝑑𝑡

𝜕𝐿

𝜕ẋ
−

𝜕𝐿

𝜕𝑥
= 𝐹  and   

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�
−

𝜕𝐿

𝜕𝜃
= 0                                                                      (2.10) 

 

The first equation of motion can be found by simplifying the following: 
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𝑑

𝑑𝑡

𝜕𝐿

𝜕ẋ
−

𝜕𝐿

𝜕𝑥
= 𝐹                                                                                                       (2.11) 

 

𝑑

𝑑𝑡
[(𝑀 + 𝑚)ẋ + 𝑚𝑙�̇�𝑐𝑜𝑠𝜃] = 𝐹                                                                              (2.12a) 

(𝑀 + 𝑚)�̈� + 𝑚𝑙�̈�𝑐𝑜𝑠𝜃 − 𝑚𝑙�̇�2𝑠𝑖𝑛𝜃 = 𝐹                                                                (2.12b) 

𝐹 = (𝑚 + 𝑀)𝑎 − 𝑚𝜔2𝑙𝑠𝑖𝑛 + 𝑚𝛼𝑙𝑐𝑜𝑠𝜃                                                                  (2.12c) 

 

The second equation of motion can be found by simplifying the following: 

 

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�
−

𝜕𝐿

𝜕𝜃
= 0                                                                                                        (2.13) 

 

𝑑

𝑑𝑡
[𝑚𝑙ẋ𝑐𝑜𝑠𝜃 + 𝑚𝑙2�̇�] − [−𝑚𝑙ẋ�̇�𝑠𝑖𝑛𝜃 + 𝑚𝑔𝑙𝑠𝑖𝑛𝜃] = 0                                            (2.14a) 

𝑚𝑙(�̈�𝑐𝑜𝑠𝜃 − ẋ�̇�𝑠𝑖𝑛𝜃 + 𝑙�̈� + ẋ�̇�𝑠𝑖𝑛𝜃 − 𝑔𝑠𝑖𝑛𝜃) = 0                                                 (2.14b) 

𝑔𝑠𝑖𝑛𝜃 −  𝛼𝑙 − 𝑎𝑐𝑜𝑠𝜃 = 0                                                                                       (2.14c) 

 

Equations 2.4 and 2.5c are the same as 2.12c and 2.14c respectively, thereby 

verifying the equations of motion for the Cart Inverted Pendulum system. These 

equations are not explicitly defined in terms of a and α, and hence need to be solved 

simultaneously. By solving we obtain: 

 

𝑎 =  
𝑚𝜔2𝑙𝑠𝑖𝑛𝜃−𝑚𝑔𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃+𝐹

𝑚𝑠𝑖𝑛2𝜃+𝑀
                                                                       (2.15)  

 

𝛼 =
(𝑚+𝑀)𝑔𝑠𝑖𝑛𝜃−𝑚𝜔2𝑙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃−𝐹𝑐𝑜𝑠𝜃

𝑀𝑙+𝑚𝑙𝑠𝑖𝑛2𝜃
                                                                      (2.16) 
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2.2    Proportional Integral Derivative Control 

 

In this section, we present the theoretical and analytical foundation for Proportional 

Integral Derivative (PID) control. PID control is undoubtedly the most commonly 

used method of applying feedback in natural and human-made systems (Åström, 

2002). This type of control is used to regulate the output of a system to that of a given 

set-point. The theoretical basis for the operation of these controllers was first 

described by Maxwell (1868); however, it was not until the early twenties that PID 

controllers were first developed using theoretical analysis (Minorsky, 1922). Since 

then, many examples can be found in the literature, where they have been used to 

solve a wide range of control problems, including the Inverted Pendulum stabilisation 

problem. 

 

2.2.1    Negative Feedback 

 

PID control is an application of negative feedback. The concept of negative feedback 

is a simple but powerful tool within control engineering. Negative feedback can 

reduce the effects of perturbations and can render a system insensitive to external 

variations, i.e. it can achieve stability. A block diagram of a negative feedback control 

loop is illustrated in Figure.2.2. The system has two main components, the process 

(system) and the controller. The process has a single input, which is the manipulated 

variable, also known as the control variable. It is denoted by the symbol u. The 

control variable influences the process by means of an actuator, which, in our case, is 

a D.C. motor. 
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Figure.2.2 – Block Representation of a Negative Feedback Control Loop. 

 

The process output, which is also known as the process variable, is denoted by the 

symbol y. This variable is measured directly (or indirectly) by a sensor to 

produce  𝒚𝒎. With regards to Figure.2.2, the actuator and the sensor are considered to 

be part of the block labelled “System”. The desired value of the process variable is 

known as the set-point or the reference value and is denoted by r. The control error e 

is the difference between the set-point and the process variable, i.e. 𝑒 = 𝑟 − 𝑦𝑚 

(Åström, 2002). Widespread application of the negative feedback principle has 

resulted in significant breakthroughs in the field of Control Engineering. 

 

If the system to be controlled exhibits an adequate output response with Proportional 

(P), Proportional-Integral (PI) or Proportional-Derivative (PD) only control, then 

there is little point implementing the full PID algorithm. When using P, PI or PD 

only control, the implementation of the algorithm will be kept to a minimum. We 

shall, therefore, discus the characteristics of each term individually.  
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2.2.2    Proportional Term 

 

The proportional term produces a system control variable that is directly 

proportionate to the error. Using the P term in isolation is the simplest form of 

intermediate value control; however, it gives rise to a fixed offset error, except when 

the system control input is at zero, and the system process value equals the desired 

set-point (Atmel, 2016). As depicted in Figure.2.3, a stationary error arises in the 

system process value directly after a change in the desired value.  

 

 

Figure.2.3 – Step Response of the P-only Controller. 

 

Care should be taken when employing P-only control. Since the control signal is 

directly proportional to the error, an excessively large gain (𝐾𝑝) gives rise to an 

unstable system. This can be seen in the following equation: 

 

𝑢 = 𝐾𝑝(𝑦𝑠𝑝 − 𝑦) = 𝐾𝑒                                                                                             (2.17) 
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2.2.3    Integral Term 

 

As previously mentioned, proportional only control has the disadvantage that the 

process variable often deviates from the set-point by a constant offset. The integral 

term contributes an additional amount to the system control input from the sum of the 

previous errors. The accumulation of the error will continue until the system process 

value equals the desired set-point, and therefore results in zero offset error. The most 

common use of the I term is in conjunction with the P term, to form a PI controller. 

Using the I term in isolation simply forms a low-pass filter, which gives rise to a 

slow-to-respond and often unstable system. Figure.2.4 shows the step responses of 

the I term and PI controller.  

 

 

Figure.2.4 – Step Response of the P term, I term and PI Controller. 

 

As depicted in Figure.2.4, the PI controller response has no fixed error and the I term 

response is extremely slow. The I term can be represented mathematically as follows: 

 

𝑢(𝑡) =  𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
                                                                                (2.18) 
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Where 𝐾𝑖 is the integral gain. Assuming that there is a steady state, with a constant 

error 𝑒0 and a constant control signal 𝑢0; then it follows from the above equation that: 

 

𝑢0 =  𝑘𝑖𝑒0𝑡                                                                                                         (2.19) 

 

Since 𝑢0 is a constant, it follows that 𝑒0 must be zero. This is also true for the PI 

controller: 

 

𝑢(𝑡) = 𝐾𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
                                                                                (2.20) 

 

This type of controller is extremely common and very capable. 

 

2.2.4    Derivative Term 

 

The derivative term contributes an additional amount from the rate of change of the 

error in the system. A rapid shift in error results in a significant contribution to the 

control input. This characteristic improves the response to a sudden change in the 

system state or reference value. The D term is typically used with P or PI to form a 

PD or PID controller respectively. An excessively large D term usually gives rise to 

an unstable system. Figure.2.5 depicts the P-only, PI and PID controller responses.  
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Figure.2.5 – Step Response of the P only, PI and PID Controller. 

 

The response of the PID controller is superior as compared to P, PI or PD only 

control. The PID controller can be expressed by the following equation: 

 

𝑢(𝑡) = 𝐾𝑝(𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝜏)𝑑𝜏 + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
)

𝑡

0
                                                           (2.21) 

 

Where the parameter u is the control signal and e is the system error. The control 

action is thus a sum of three terms, representing the past (by the integral), the present 

(by the proportional), and the future (by the derivative). This temporal relationship is 

illustrated in Figure.2.6. 

 

 

Figure.2.6 – Temporal Relationship between PID Terms. 
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The main parameters of the controller are the proportional gain (Kp), integral time 

(Ti), and derivative time (Td) (Åström, 2002). As we have seen in Figure.2.5, the PID 

controller offers the best system response and is therefore explored in our research. 

 

2.2.5    Integrator Windup 

 

Within a closed-loop control scheme, there are usually nonlinear phenomena that 

must be accommodated. These are typically limitations in the actuators; for example, 

a motor has limited rotational speed, and a valve can only be opened or closed, etc. 

For a system that operates over a wide range of conditions, it may be the case that the 

controller output reaches the actuator limits. When this occurs, the feedback loop is 

broken, and the system operates in open-loop mode; as the actuator will remain at its 

limit independent of the process output for as long as it remains saturated. The 

integral term will continue to accumulate since the error is typically zero. Both the 

integral term and the PID controller output could become very large. The control 

signal will inevitably remain saturated, even when the error changes. It may, 

therefore, take a considerable amount of time for the integrator and the controller 

output to return inside the saturation range. We refer to this situation as integrator 

windup. 

 

2.2.6    Controller Tuning 

 

The aim of controller tuning is to obtain the optimum parameters necessary to achieve 

a fast response time and good system stability. These two requirements are, however, 
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mutually exclusive; i.e. a quick response time yields poorer stability and vice versa. 

This concept is illustrated in Figure.2.7. 

 

 

Figure.2.7 – Mutually Exclusive PID Requirements. 

 

Ziegler and Nichols published a paper (Ziegler and Nicholas, 1942) describing 

techniques for PID controller tuning. Their concept was to tune a controller based on 

the following idea: perform an experiment, extract some simple features of process 

dynamics from the experimental data, and determine the controller parameters from 

them. The integral gain and derivative gain are both set to their lowest values, and the 

proportional gain is increased until the system begins to oscillate. The value of 𝐾𝑝 at 

the point of instability is called  𝐾𝑀𝐴𝑋 and the frequency of oscillation is  𝑓𝑂. The 

proportional gain is then reduced by a predetermined amount and the integral and 

derivative gains are set as a function of  𝑓𝑂. A flow chart of this procedure is given in 

Figure.2.8. We employ this well-established method to tune our PID controller. 
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Figure.2.8 – Ziegler-Nicholas Tuning Procedure. 

 

2.3    Artificial Neural-Networks 

 

Artificial Neural-Networks (ANNs) (Rosenblatt, 1958) and more specifically multi-

layer perceptrons (MLPs) (Rumelhart et al., 1986) have been studied for decades. 

They are designed to model biological networks such as the brain. Like the brain, 

these models can solve complex tasks such as classification, function approximation 

and optimisation. These models are composed of simple Processing Elements (PEs), 

which can exhibit extremely complex global behaviour, which is determined by the 

connections between PEs and other network parameters. These simple PEs and 

interconnecting weighted links (which are analogous to biological neurones and 

synapses respectively) have been shown to solve complex, non-linear problems. Each 

PE operates independently in parallel, summing all of its weighted inputs and 
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applying the result to an activation function. Mathematically a PE can be expressed as 

follows (Hassoun, 1995): 

 

𝑦(𝑥) = 𝑔(∑ 𝑊𝑖𝑋𝑖
𝑛
𝑖=0 )                                                                                  (2.22) 

 

Where x is a neurone with n inputs (x0 … xn), a single output (y(x)) and n link 

weights (w0 … wn), which determine the level of gain or attenuation to be applied to a 

particular input. g is an activation function that determines how strong the output 

should be, based on the sum of the weighted inputs. For many applications, the 

activation function takes the form of a sigmoid curve, defined as:  

 

𝑔(𝑥) =
1

1+𝑒−𝑠(𝑥+𝑡)                                                                                  (2.23) 

 

Where s is the steepness factor of the curve and t is a value which causes a shift away 

from zero. This type of function allows the output of the neurone to change 

continuously for any value between 0 and 1.  

 

2.3.1    Artificial Neural-Network Cost Function 

 

When executing an ANN, there will inevitably be some cost value associated with 

that execution. It is clear that equation (2.22) must be resolved for each neurone in the 

network, i.e. a multiplication and an addition per connection; also, we must resolve 

the activation function for each neurone. This gives the following time cost: 

 

𝑇 = 𝑐𝐴 + (𝑛 − 𝑛𝑖)𝐺                                                                                   (2.24) 
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Where c is the number of interconnections, 𝒏𝒊 is the number of inputs, n is the 

number of neurones, A is the cost of calculating the sum of the weighted input, G is 

the cost of the activation function, and T is the overall cost. Single layer networks are 

not very useful; PEs are usually arranged to form multi-layered networks, as shown in 

Figure.2.9. 

 

 

 Figure.2.9- Multi-Layer Perceptron (MLP) Model. 

 

When considering a fully interconnected, multi-layered network, equation (2.24) can 

be re-written as: 

 

𝑇 = (𝑙 − 1)(𝑛𝑖
2 + 𝑛𝑖)𝐴 + (𝑙 − 1)𝑛𝑙𝐺                                                                   (2.25) 

 

Where l is the number of layers and nl is the number of neurones in each layer. This 

computational cost equation can be used to make quantitative performance 

comparisons between ANNs and traditional computational methods. 
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2.3.2    Artificial Neural-Network Learning 

 

Before an ANN can be successfully applied, it must first learn to solve a given 

problem. There are several learning paradigms; each corresponds to a particular 

abstract learning task. 

 

 Supervised learning: where the algorithm generates a function that maps 

inputs to desired outputs.  

 

 Unsupervised learning: where the algorithm generates a set of input data 

since examples are not available. 

 

 Reinforcement learning: where the algorithm learns how to act given an 

observation of the real-world. Every action has some impact on the 

environment, and the environment provides feedback that guides the learning 

algorithm. 

 

A suitable training method for the applications proposed in this research is supervised 

learning since example training data will be available for the network. One of the 

most popular supervised learning algorithms used is the back-propagation algorithm. 

Essentially, an error is calculated and propagated back through the network while the 

weights are adjusted to reduce the mean square error (MSE). Firstly, the input is 

propagated through the network using equation (2.22). The error ek of a single output 

neurone k can be defined as: 

 



2 – Background 

32 

 

𝑒𝑘 = 𝑑𝑘 − 𝑦𝑘                                                                                                                                             (2.26) 

 

Where the parameter yk is the calculated output and dk is the desired output of the 

neurone k. This error value is used to calculate δk, which is used for adjusting the 

weights. δk is defined as: 

 

𝛿𝑘 = 𝑒𝑘𝑔′(𝑦𝑘)                                                                                                         

(2.27) 

 

Where the parameter g’ is derived from the activation function g(x). δj of previous 

layers can be defined as: 

 

𝛿𝑗 = 𝜂𝑔′(𝑦𝑗) ∑ 𝛿𝑘𝑤𝑗𝑘
𝐾
𝑘=0                                                                                  (2.28) 

 

Where the parameter K is the number of neurones in the layer and η is the learning 

rate, which determines how much the weight should be altered. ANNs are truly 

powerful tools for classification, function approximation and optimisation. In our 

research, we considered ANNs for control optimisation of our vision-based method. 
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Chapter 3 

Related Work 

 

In this chapter we present a survey of previous work relating to visual stabilisation of 

the Cart Inverted Pendulum, an application of Vision-based Control. Section 3.1 

opens with a historical overview of vision-based control, and outlines several key 

concepts within the field. As discussed in Chapter 1, low-cost USB cameras are 

subject to image imperfections, and any vision-based measurements utilising this 

technology may, as a result, contain significant errors. In this section, a method of 

achieving greater robustness is therefore discussed. In Section 3.2, we survey the 

strategies used to stabilise the Cart Inverted Pendulum using traditional feedback 

approaches. Finally, Section 3.3 concludes by exploring a range of methods used for 

vision-based stabilisation. This review goes some way to address some of the 

fundamental questions posed in Chapter 1. 

  

3.1     Vision-Based Control 

 

Vision-based control, also known as Visual Servoing (VS) (Hutchinson et al., 1996) 

is the use of visual information in the feedback loop of a control system (Zhang, 

2013). One of the earliest examples of VS can be found in the works of Shirai and 

Inoue (1973); where a control system was developed that could calculate the 

difference between the desired position of an object and its actual current position, by 

means of visual processing. The term “Visual Servoing” was formally introduced by 
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Hill and Park (1979) in their paper titled “Real Time Control of a Robot with a 

Mobile Camera”. The authors described VS with a “Unimate1”, an early industrial 

robot. Sanderson and Weiss (1980) made a distinction between the different types of 

VS, namely direct and indirect approaches. Essentially, with direct VS, a control 

signal is derived from the visual information and sent directly to the robotic actuator, 

while the indirect VS approach only generates a reference signal for control; a 

separate controller executes the motion based on the generated information. 

Hutchinson et al. (1996) and Chaumette (2014) provide a comprehensive study of VS 

by reviewing a broad range of applications. Chesi and Hashimoto (2010) and Azizian 

et al. (2014) provide thorough reviews of the developments in VS, some of which are 

still considered to be state-of-the-art. 

 

3.1.1    Position-Based Visual Servoing 

 

Position-Based Visual Servoing, also known as PBVS employs an estimated object 

pose as the main control objective (Weiss et al., 1987). When applied in a single 

camera environment, full knowledge of the intrinsic parameters of the camera (i.e. 

focal length, principal point, etc.) is essential, since PBVS operates in 3D Cartesian 

space. Visual processing errors have long been attributed to complex object form 

(DeMenthon and Davis, 1995) and oversimplification of the object model (Lowe, 

1992). PBVS offers several different solutions to address these errors. An early 

contemporary approach is to decouple the translational and rotational motions, which 

results in a straight line trajectory for the camera in Cartesian space (Chaumette and 

Hutchinson, 2006). This solution allows the camera to follow a deterministic 
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trajectory, which is the shortest path in Cartesian space. The principle limitation of 

this approach is the inability to control image features directly. It is possible that an 

object may leave the FOV, which will compromise the stability of the system. Much 

research has been directed at solving this problem. 

                                                                                                                                             

Historically, Wilson et al. (1996) used an Extended Kalman Filter (EKF) (Welsch & 

Bishop, 1995), (Chui and Chen, 2017) to estimate the state of the target system (i.e. 

pose). The filter was able to cope with the loss of image features. In their proposed 

method, features were represented by a covariance matrix, which was altered 

according to the presence and location of an object in the FOV. Essentially, the effect 

of a missing feature is removed from the pose estimation. An alternate approach was 

proposed in the work undertaken by Thuilot et al. (2002), who proposed a PBVS 

method to keep the object in the FOV by tracking an iteratively computed trajectory.  

 

3.1.2     Image-Based Visual Servoing 

 

Image-based visual Servoing, also known as IBVS, employs image measurements 

directly as a control objective (Weiss et al., 1987), (Thomas et al., 2014). The task is 

expressed as an error-function, which should be minimised, by applying a suitable 

control law. The primary advantage of this approach is that a 3D model is not 

required, and consequently, the image processing task is simplified. Conventional 

IBVS uses the error between corresponding image features that lie on a 2D Cartesian 

plane. In addition to 2D image features, other types of features have been studied and 

applied as visual measurements for feedback purposes. 
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The work presented by Thomas et al. (2014), Xie et al. (2016), Schramm et al. (2004) 

and Cervera et al. (2003) demonstrates IBVS with 3D image features. The authors 

factored 2D depth of image points into account while controlling the error. In their 

paper, Andreff et al. (2000) used 3D lines for Servoing. A control law was derived for 

multiple lines, which required the depth to be observed. The work presented by Tahri 

and Chaumette (2004) studied Moments as visual features, which derived the 

analytical form of the interaction matrix (i.e. the matrix that corresponds to camera 

and feature velocities). An extension to this non-parallel configuration was later 

proposed by the same authors (Tahri and Chaumette, 2005). Hajiloo et al. (2016) 

presented an IBVS controller for a 6-degrees-of freedom (DOF) robotic system based 

on the robust model predictive control (RMPC) method. The controller was designed 

to consider the visual Servoing system’s input and output constraints, such as 

physical limitations and visibility constraints. The proposed IBVS controller avoided 

the inverse of the image Jacobian matrix and hence could solve the intractable 

problems for the classical IBVS controller, such as large displacements between the 

initial and the desired positions of the camera. To verify the effectiveness of the 

proposed algorithm, the authors simulated Real-Time experimental results on a 6-

DOF robot manipulator with eye-in-hand configuration, which they presented and 

discussed. Bora1 et al. (2015) present a robust analysis of constrained IBVS based on 

Nonlinear Model Predictive Control (NMPC). They argued that real applications such 

an aerial or a fast underwater robotic system suffer from the presence of external 

disturbances. These kinds of disturbances, they conclude, are inevitable in physical 

systems; it is therefore of great interest to employ robust controllers. The authors 



3 – Related Work 

37 

 

suggest that rigorous robustness analysis should be conducted. In this, the IBVS 

system under the MPC framework is proven to be Input-to-State Stable (ISS) and 

permissible upper bounds of the disturbances are provided.  

 

3.1.3    Applications of Visual Servoing 

 

Visual feedback control loops have been introduced to expand the flexibility and 

accuracy of robotic systems. The aim of the VS approach is to control a mechanical 

platform by employing the information provided by a vision system. Applications of 

robotic equipment are both diverse and widespread. Such equipment is often used to 

supplant human operators, as improvements in speed, accuracy, and reliability make 

then ideal for repetitive manufacturing tasks. Robots can also be deployed in 

locations and situations where it is unsafe or unfeasible for humans to work, such as 

deep-sea diving or space exploration, etc.  

 

It is often necessary for robotic equipment to locate itself relative to surrounding 

objects. For example, in a production environment, components usually arrive in an 

uncontrolled manner, and their orientation must be determined accurately before 

further operations can proceed (Giordani et al., 2013), (Berger et al., 2000). While it 

is true that other technologies exist for determining component orientation, the 

simplicity and speed of a vision-based system make it an attractive choice. In addition 

to applications for fixed robots, the work undertaken in this research could cross over 

into the domain of mobile robotics. For example, the inspection of critical parts inside 

of a nuclear reactor could be safely accomplished by utilising a mobile robot 
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equipped with a camera (Gargade et al., 2013), (Kita et al., 1999). While such robots 

are currently guided by humans, a system that could control and automatically 

stabilise itself would significantly assist with the avoidance of human error.  

 

3.1.4     Vision-Based Object Tracking 

 

Object tracking is a significant area of research in its own right. It is concerned with 

tracking items that move in front of a camera (Wu et al., 2013), (Yilmaz et al., 2006), 

and is a vital component of vision-based control. Prior to being manipulating by 

robotic equipment using a vision-based system, an object must first be identified then 

tracked. Usually, tracking is performed by locating distinctive image features, which 

are easily identifiable and invariant to position, orientation and lighting changes. 

Distinctive features include histograms of pixel intensity or colours (Comaniciu et al., 

2000) and exemplar contours (Buyssens et al., 2015), (Toyama and Blake, 2001). 

One disadvantage of this kind of feature tracking is the higher computational cost 

associated, as detection of unique features has a tendency to be quite complex. This 

disadvantage affects the Real-Time performance that can be achieved. A more 

efficient approach is to use unique image markers within the scene, which 

significantly improves the robustness of the detection algorithm, and aids pose 

estimation. This unique marker approach is employed by our method, as it supports 

our requirement for robust operation; we discuss this further in Chapter 5. 
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Existing tracking methods can be split into two distinct groups: those that rely on 

predetermined models of the tracked scene, and those that learn the surroundings as 

the scene develops. Significant progress has been made in the latter method since the 

work of Se et al. (2001) and Davison (2003). Systems that have the ability to learn 

and create models automatically are progressive, as manual creation of models is 

time-consuming and restrictive. Methods such as these have an advantage when the 

scene is variable; however, static scenes allow the exploitation of prior knowledge to 

assist with tracking performance.  

 

3.1.5     Edge Detection 

 

Edge detection is a key component of vision-based object tracking and is the method 

used by the majority of tracking systems reviewed in the literature. It encompasses a 

variety of mathematical approaches aimed at identifying points within an image 

where the brightness changes suddenly; these points are usually organised into a set 

of curved line segments called edges. 

 

The work presented by Smith (1997) reviews many traditional methods used for edge 

detection within an image. Canny (1986) offers a classic paper on edge detection; in 

his work, object edges are modelled as intensity changes with additive white 

Gaussian noise (AWGN). Canny derived an optimal filter that maximised the product 

of a detection probability criterion and a localisation accuracy criterion; he 

demonstrated that his optimal filter could be approximated by the differential of a 

Gaussian, which in turn was approximated by the difference of two further Gaussians, 
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with a good degree of accuracy. Canny observed, however, that his filter was not 

applicable for locating boundaries between textures. The research presented by Rong 

et al. (2014) builds on the work of Canny by reducing the sensitivity to noise and 

thereby improving edge detection. Two adaptive threshold selection methods based 

on the mean of an image gradient magnitude and standard deviation were put forward 

for two kinds of (typical) images (one has reduced edge information, and the other 

has rich edge information) respectively. The improved Canny algorithm is much 

simpler and easy to realize. Experimental results show that the algorithm can preserve 

more useful edge information and is more robust to noise. 

 

3.1.6 Pose Estimation Filtering 

 

The Kalman filter (Kalman, 1960) is an algorithm that employs a series of 

measurements observed over time, which contain statistical noise and other 

inaccuracies to produce estimates of unknown variables (Brahim et al. 2015). These 

estimates are typically more precise than those based on a single measurements alone. 

Welch & Bishop (1995) describe the optimal method for parameter estimation using a 

Kalman Filter for linear equation models. It was shown to be effective for 

implementing a model, which assumed that camera velocity was constant. For 

examples where the equations are non-linear, the EKF linearizes the equations about 

the current state. EKF has been widely applied in visual tracking as a method of 

smoothing the output result and thereby providing robust pose estimations (Assa et 

al., 2014), (Armstrong & Zisserman, 1995). 
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An alternative to EKF is the Unscented Kalman Filter (UKF) (Gyorgy et al., 2014), 

(Haykin, 2001), which uses linearizing approximations that are usually greater in 

accuracy than the direct method used in EKF.  Both approaches are limited, however, 

to applications where the process noise is Gaussian. It is possible to use a Gaussian 

mixture model to represent the distribution in a multi-modal system more accurately. 

This approach was used to overcome ambiguities in the tracking of humanoids in 

work done by Cham & Rehg (1999). Rather than implementing computationally 

expensive Kalman filtering techniques, we explore the use of efficient, image based 

filters to achieve greater robustness; this is discussed in Chapter 4.  

 

3.2     Stabilising the Cart Inverted Pendulum 

 

The Linear Quadratic Regulator (LQR) (Terra et al., 2014) is an effective velocity 

control technique. In work presented by Chatterjee et al. (2002), stabilisation of the 

Cart Inverted Pendulum system was successfully carried out by linearization of the 

state model, and designing an LQR to control cart velocity. The effectiveness of 

Inverted Pendulum stabilisation under linear state feedback control has also been 

analysed by Henders and Soudack (1996). In their work, the authors concluded that 

the dynamic equations indicate the existence of stability regions in 4D state-space, 

and an algorithm was developed that transformed the 4D state-space to 3D space. 

Bettayeb et al. (2014) stabilised the Inverted Pendulum using fractional PI-state 

feedback, which allowed them to decompose the polynomial into a first order 

fractional polynomial and integer polynomial; this lead to excellent results in terms of 

stability, accuracy and robustness.  In work presented by Dunnigan (2001), a tutorial 
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was delivered, which introduced the concept of digital control system design by pole 

placement using state estimation. The work covered both deterministic and stochastic 

state estimation. A realisation of intermittent linear-quadratic pole-placement control 

was empirically demonstrated in the work of Gawthrop and Wang (2006); the authors 

reported that their approach achieved excellent performance when controlling an 

Inverted Pendulum. Das and Paul (2011) developed a successful, robust periodic 

controller with zero pole placement capability for an Inverted Pendulum control 

system. The authors demonstrated the superiority of their solution over linear time-

invariant (LTI) approaches. Dynamic H-Infinity compensation has been developed 

and applied to the Inverted Pendulum problem in work undertaken by Van der Linden 

and Lambrechts (1993). The authors considered dry friction and concluded that the 

controller did not perform satisfactory if it was not taken into account. A controller 

for stabilising the Inverted Pendulum and minimising the cart position was discussed 

by Lozano and Fantoni (2000). Their control strategy was based on manipulating the 

cart and pendulum system energy.  

 

An Energy-speed-gradient approach has been proposed and analysed by Shiriaev et 

al. (2001), where global stability is guaranteed. A feedback control law was presented 

for near global stabilisation of the Inverted Pendulum in the work of Angeli (2001), 

this also ensured asymptotic stability. The work delivered by Garcia et al. (2005) 

detailed the development of continuous time, sliding mode control and a discrete 

time, sliding mode controller for an Inverted Pendulum. The authors also claimed 

near global stabilisation. A hybrid controller for both swing-up and stabilisation has 
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been attempted in work presented by Srinivasan et al. (2009); the authors successfully 

applied input-output linearization, energy control and singular perturbation theory to 

achieve stabilisation. A combined controller was also designed by Zhao and Spong 

(2001), which again ensured global stabilisation. This approach employed a linear 

controller for stabilisation, a linear controller for cart position and a combination of 

several bang-bang controllers for a minimum swing-up time.  

 

There is an ever increasing trend towards the use of intelligent algorithms based on 

Fuzzy Logic, Genetic Algorithms and Artificial Neural Networks for Inverted 

Pendulum control and optimisation (Ponce et al., 2014). Shiung and Chen (1998) 

presented a fuzzy logic based adaptive sliding mode controller, which was capable of 

automatically correcting for plant non-linearity. Tang et al. (2016) described an 

approach to realise the stability control of the planar inverted pendulum system, 

which is a typical multi-variable and strong coupling system. A new fuzzy-evidential 

controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for 

each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller 

for the cart are designed. Subsequently, in order to coordinate two controllers of each 

axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential 

controller, the empirical knowledge for stabilization of the planar inverted pendulum 

system is expressed by fuzzy rules, while the coordinator of different control 

variables in each axis is built, incorporated with the dynamic basic probability 

assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator 

makes the output of the control variable smoother, and the control effect of the new 
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controller is improved compared with other work. The experiment in MATLAB 

showed the effectiveness and merit of the proposed method. An adaptive Lyapunov-

based Fuzzy Logic controller was described in the works of Wong et al. (1998); the 

design was verified for the Cart Inverted Pendulum by means of simulation. A Self-

organizing Fuzzy controller was designed in work undertaken by Young-Moon et al. 

(1995). This was also verified for an Inverted Pendulum system. Stability analysis for 

a Fuzzy Logic, model-based, non-linear controller using Genetic Algorithms was 

presented in work done by Lam et al. (2003); the authors used an arithmetic crossover 

and non-uniform mutation, based on Lyapunov’s stability theorem with a smaller 

number of Lyapunov conditions. They successfully applied this to the Inverted 

Pendulum stabilisation problem. The work undertaken by Tao et al. (2008) produced 

a controller that was able to ensure global stabilisation. The authors successfully 

balanced the Inverted Pendulum in zero gravity condition. In their paper, a two 

controller approach was suggested; a Fuzzy swing-up controller and a sliding position 

controller.  

 

The choice of parameter gain setting in the design of Fuzzy logic and PID controllers 

significantly affects their performance. The paper presented by Sung-Kwun et al. 

(2004) gives several methods for estimating gain parameters for an Inverted 

Pendulum using artificial intelligence. Actuator saturation and integrator windup 

(where applicable) is also of great importance in the design of Inverted Pendulum 

control systems; this problem has been addressed with the assistance of a Tagaki-

Sugeno (T-S) type, Fuzzy Logic based, gain scheduling algorithms presented by 
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Yong-Yan and Zongli (2003). The modelling ambiguity is considered as norm 

bounded uncertainty; the problem of defining the region of attraction for T-S Fuzzy 

Systems based on normal state feedback is defined with the help of Linear Matrix 

Inequalities (LMIs). The work undertaken by Lam et al. (2003) demonstrates a Fuzzy 

Logic controller based on Single Input Rule Modules (SIRMs) with dynamically 

connected inference modules. The SIRMs were switched dynamically between the 

modules, one for pendulum angle and the other for the position of the cart; the 

controller switching was biased towards the angular position. The work undertaken 

by Koo (2001) presents a Model Adaptive Reference Fuzzy Controller (MARFC). 

Where the Fuzzy Logic information base is modified according to the error generated 

from the reference model and the actual pendulum. 

 

In work undertaken by Chakraborty et al. (2013) the authors demonstrate the 

capability of genetic algorithms to solve complex and constrained optimisation 

problems by optimising the gain parameters of a PID controller. An Inverted 

Pendulum was used as a means to verify the reliability and robustness of their 

method. Genetic Algorithms were also applied to the Inverted Pendulum problem by 

Chen and Wong (2002), in a scheme to generate Fuzzy Logic controllers 

automatically. Each parameter of the Fuzzy Logic controller is tuned, with the 

assistance of a fitness function to guide the searching algorithm.  

 

In each example found in the literature, the application of intelligent algorithms for 

traditional controller optimisation reported positive results. This positive report was 
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inspirational in the course of our research and we decided to employ ANNs to 

optimise our vision-based method.  

 

3.3     Vision-Based Stabilisation of the Cart Inverted Pendulum 

 

As demonstrated in Section 3.2, various techniques have been proposed for 

controlling the Cart Inverted Pendulum using non-vision-based feedback approaches. 

A limited number of methods, however, have been reported that use visual 

information for pendulum control. Starting with one of the earliest pieces of work, 

Magana and Holzapfez (1998) successfully controlled the pendulum angle with a 

vision based Fuzzy Logic controller. They concluded that oscillation in the pendulum 

angle at rest was approximately ±2.7º. Quesada and Velasco (2006) studied vision-

based control of an Inverted Pendulum and applied full state feedback using a Digital 

Signal Processor (DSP). The total oscillation at rest was reported to be ±10º, which 

was an achievement given the restricted processing platform. A similar solution is 

provided by Tu and Ho (2010). They controlled a rotating pendulum using a system 

based on a Field Programmable Gate Array (FPGA) and a DSP, with visual feedback. 

The pendulum angle was successfully measured by attaching visual markers to detect 

the pole. Based on the results provided in their study, the pendulum angle was 

successfully controlled within ±1.5º. Wang et al. (2008) used a camera to measure the 

pendulum angle and employed an incremental encoder to monitor the cart position. 

Under stabilisation control, the pendulum angle and the cart position were reported to 

be oscillating at approximately ±10º and ±0.04m respectively.  
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 Wang (2010) presented a hybrid approach, fusing a Charge Coupled Device (CCD) 

camera and two encoders. He demonstrated a new modelling and trajectory tracking 

control system for a 2-DOF Inverted Pendulum, employing contactless feedback. His 

proposed modelling method transformed the 2-DOF problem into a 1-DOF one by 

choosing a new balancing plane for the pendulum at each camera sampling instant. 

For each plane, two feedback loops were considered; the first was an observation 

loop, processing the delayed and sampled angle information delivered by the vision 

system. The second, being a stabilisation loop, realised the Lyapunov function based 

control, to stabilise the pendulum system. The author used the results gained by 

simulation to demonstrate the performance of the proposed method. Performance 

issues were highlighted in the method, which was illustrated by experimental figures 

and videos. Results showed significant oscillations in the stabilisation control, which 

were attributed to inaccurate viscous friction identification between the cart and the 

pole. Stuflesser and Brandner (2008) proposed a purely vision-based control method 

using cascaded particle filters. Their approach was able to swing up and balance the 

pendulum, while avoiding the use of visual markers on any part of the system. Low-

cost components were used to realise the single camera tracking system; experimental 

results demonstrated that it was able to robustly control the pendulum in Real-Time 

using a standard desktop PC. Wenzel et al. (2000) presented a system that makes use 

of dedicated markers, which are detected in a sequence of camera images using a 

pattern matching algorithm. Martinez and Becerra (2006) employed optical flow as 

the primary source of information to train and consequently apply an adaptive 
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controller to the Inverted Pendulum problem; their work was based on simulations in 

a virtual reality environment.  

 

Kizir et al. (2012) successfully stabilised the Inverted Pendulum using visual 

feedback, without any markers. The authors reported that the pendulum angle and 

cart position were controlled with minimal oscillation ±0.2° and ±0.002m 

respectively. Their work was very impressive and set the standard for vision-based 

control of an Inverted Pendulum. Hladik (2016) examined the possibility of achieving 

fast, on-the-fly image processing and control of an unstable system (Inverted 

Pendulum) using a dedicated embedded smart camera, with an on-board Digital 

Signal processor. The author used a convolution based algorithm to detect the 

position of the pendulum and a Linear Quadratic (LQ) regulator to control its 

position. The author concluded that to successfully control the Inverted Pendulum 

using a camera based system, a high frame rate was required.  

3.4       Conclusion 
 

 

In this chapter we have explored previous work relating to visual stabilisation of the 

Cart Inverted Pendulum; an application of Vision-based Control. A broad review of 

historical research surrounding visual stabilisation outlined several key concepts 

within this field. 

 

Early examples of VS were introduced, notably the work of Shirai and Inoue (1973); 

which calculated the difference between the desired position of an object and its 

actual current position. 
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An evaluation of the strategies used to stabilise the Cart Inverted Pendulum were 

explored using traditional feedback approaches. A continuation into examining 

methods used for Vision-based stabilisation, addressed many of the questions posed 

in Chapter 1.  

 

A review of Position-Based Visual Servoing looked at the estimated object pose as 

the main control objective. This highlighted that when applied in a single camera 

environment, full knowledge of the intrinsic parameters of the camera (i.e. focal 

length, principal point, etc.) were essential. A consideration of contemporary 

approaches empathized the need to decouple the translational and rotational motions; 

which resulted in a straight line trajectory for the camera in Cartesian space. 

 

Applications of Visual Servoing were further reviewed, which examined visual 

feedback control loops; a method introduced to expand the flexibility and accuracy 

within the field of robotics. Vision-Based Object Tracking was identified as a 

significant area of research. This area, which is concerned with the tracking of objects 

moving in front of a camera, was found to be vital in Vision-based control. It was 

concluded, however, that higher computational costs are associated with detection of 

unique features. Markers were identified as a solution that can ease the computational 

burden. This was deemed to be the preferred method employed by the majority of 

tracking systems reviewed in the literature.     
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Pose Estimation Filtering was an important aspect to review. This proposed an 

algorithm that employed a series of measurements observed over time. This method 

contained statistical noise and other inaccuracies to produce estimates of unknown 

variables; which established that these estimates were typically more precise than 

those based on a single measurement alone.  

 

In examining an effective velocity control technique, a consideration of The Linear 

Quadratic Regulator (LQR) was observed. This highlighted the works of Chatterjee et 

al. (2002), who discussed how stabilisation of the Cart Inverted Pendulum system 

was successfully carried out by linearization of the state model, and designing an 

LQR to control cart velocity. Following a comprehensive review of Vision-based 

stabilisation of the Inverted Pendulum, various methods used for solving the problem 

were identified. The majority of solutions found in the literature were verified by 

means of simulation. We believe that further exploration is certainly possible in this 

field, particularly outside of simulation, by using a real-world Inverted Pendulum 

system. 
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Chapter 4 

Test System Development and Experimentation 

 

In this chapter, we discuss the development of our vision-based Cart Inverted 

Pendulum system, and the experimentation phase that followed.  We begin with an 

overview of the main system components and provide some technical justification for 

their use. We discuss the design of the PID controller for the stabilisation task, 

starting with the key specifications. We build on equation (2.21) presented in Chapter 

2, by expressing it in discrete form to allow it to be executed in the digital domain. 

We present our PID control algorithm, which is able to stabilise the Inverted 

Pendulum; and we tune it using the Zeigler-Nicholas method, as discussed in Chapter 

2. We then discuss the test software development, starting with the main 

specifications; we also give an overview of the Graphical User Interface. We 

conclude the chapter with a discussion of the experimentation phase and present a 

summary of the results.  

 

4.1    Main System Components 

 

A. Low-Cost USB Camera 

The Sony PlayStation® 3 (PS3) Eye was selected as the low-cost USB camera in our 

system. The camera has a maximum resolution of 640 x 480 pixels and can capture 

up to 60 Frames per second (FPS) at this resolution. It has a colour CMOS image 

sensor that enhances low-light operation. The camera has a two-setting, fixed focus 
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lens, which offers either 56º or 75º FOV, for different framing applications. The 

camera was placed at a fixed distance from the Inverted Pendulum to allow the FOV 

to cover the cart and pole with maximum resolution. This camera was chosen 

primarily because of its high frame rate ability, low-light performance and low 

purchase price. The PS3 Eye camera is shown in Figure.4.1. 

 

 

Figure.4.1 – Sony PlayStation® 3 Eye USB Camera. 

 

B. PIC32-Pinguino Development Board 

During the specification phase of the Inverted Pendulum control unit, several 

microcontroller development boards were considered. The PIC32-Pinguino board 

(see Figure.3.2) from OLIMEX Ltd was ultimately chosen, as it presented several key 

advantages over the other options: 

 

 It is a high performance, industrial grade, electronic hardware development 

platform with open-source architecture. These characteristics ensured a robust 
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solution and allow unrestricted access to the schematics and mechanical board 

files (See Appendix.1). 

 

 It is compatible with many well-established PIC microcontroller development 

environments such as MPLAB and MPLABX. The firmware could also be 

written in the ‘C’ programming language, which allowed rapid development. 

The Microchip PIC C32 compiler was employed, as it was readily available 

and was free for non-commercial use. 

 

 It is an extremely low-cost platform considering the rich feature set offered. 

The development board included all of the necessary ADC channels, PWM 

modules, USB port, and digital IO required for interfacing with the Cart 

Inverted Pendulum. 

 

 

Figure.4.2 – PIC32-Pinguino Development Board from OLIMEX Ltd. 



4 – Test System Development and Experimentation 

54 

 

The pin allocation for the PIC32-Pingunio board is shown in Table.4.1. This table is 

referenced in the following subsections. For full schematic and mechanical diagrams, 

the reader is referred to Appendix.1. 

 

PIN CON1 CON2 CON4 CON5 

1 RST A0 D0 D8 

2 3.3V A1 D1 D9 

3 5.0V A2 D2 D10 

4 GND A3 D3 D11 

5 GND A4 D4 D12 

6 VIN A5 D5 D13 

7 - - D6 GND 

8 - - D7 REF 

Table.4.1 – PIC32-Pinguino Pin Allocation Table. 

 

C.  Angular Displacement Sensor 

To measure the angular displacement θ and angular velocity 𝜔 of the pole a linear, 

circular potentiometer was used. A circular potentiometer is a resistor whose 

resistance changes with the movement of the rotating shaft. Mathematically, this 

relationship can be expressed as follows: 

 

𝑅𝑝(θ)=𝑘𝑝𝜃                                                                                                              (4.1) 

 



4 – Test System Development and Experimentation 

55 

 

Where 𝑹𝒑 is the potentiometer’s variable output resistance, 𝜽 is the angular position 

of the pole in degrees (or radians), and 𝒌𝒑 is the proportionality constant in 

ohms/degree. Figure.4.3 shows a typical potentiometer and associated schematic 

representation, as used in our Cart Inverted Pendulum platform.  

 

 
 

Figure.4.3 – Typical Potentiometer and Schematic Representation. 

 

From equation (4.1): 

 

𝑉0 = 
𝑅23

𝑅13
𝑉 =  

𝑅𝑝

𝑅13
𝑉 =  

𝐾𝑝𝜃

𝑅13
𝑉 =  �̅�𝑝𝜃,        �̅�𝑝 ≜

𝐾𝑝

𝑅13
𝑉                                               (4.2) 

 

Where 𝑹𝟐𝟑 is the resistance between terminals 2 and 3 (the potentiometer’s output 

resistance Rp) and 𝑹𝟏𝟑 is the resistance between terminals 1 and 3 (the 

potentiometer’s constant, permanent resistance), and Kp is the proportionality 

constant in volts/degree. From (4.2) it can be seen that if we know Kp, then we can 

determine the angular displacement by measuring the output voltage Vo. 
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The potentiometer’s output voltage (Vo) was applied to pin 2 (A1) of the PIC32-

Pinguino development board, to allow the ADC to make digital measurements of  𝜽. 

With a reference voltage of 3.3V and an ADC resolution of 10-bits, this gave 3mV 

per bit of resolution. A ratiometric arrangement was used with the potentiometer and 

the ADC; this gave 9mV per degree of rotation. We therefore achieved an angular 

resolution of 0.33º per bit, which was sufficient for our application. This angular 

resolution could be significantly improved by using an external ADC with a higher 

converter resolution. 

 

D. Direct Current Motor 

The direct current (D.C.) motor has become an important drive configuration for 

many application areas. A D.C. motor is used to develop torque on the pendulum cart 

via a 1:1 ratio belt drive mechanism. The motor is of the type “Permanent Magnet”, 

and the behaviour of this kind of machine is caused by the interaction between 

electrical and magnetic forces. The motor chosen for the project is 12V D.C. motor, 

which is similar to the one shown in Figure.4.4.  

 

  

Figure.4.4 – Typical D.C. Motor and Schematic Representation. 
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Mathematically, the D.C. motor can be expressed as a differential equation by 

applying Kirchhoff’s voltage law: 

 

𝑉𝑎 −  𝑉𝑅𝑎 − 𝑉𝐿𝑎 −  𝑉𝐶 = 0                                                                                       (4.3) 

 

Applying Ohm’s law, the voltage across the resistor can be expressed as: 

 

𝑉𝑅𝑎 = 𝑖𝑅𝑎                                                                                                                (4.4) 

 

Where 𝑖𝑅𝑎 is the armature current. The voltage across the inductor is proportional to 

the change of current through the coil with respect to time and this can be expressed 

as: 

 

𝑉𝐿𝑎 = 𝐿𝑎
𝑑

𝑑𝑡
𝑖𝑎                                                                                                           (4.5) 

 

Where 𝐿𝑎 is the inductance of the armature coil. Finally, the reverse electromotive 

force (EMF) can be express as: 

 

𝑉𝐶 =  𝐾𝑣𝜔𝑎                                                                                                              (4.6) 

 

Where 𝐾𝑣 is the velocity constant determined by the flux density of the permanent 

magnets, the reluctance of the iron core of the armature, and the number of turns on 

the armature winding. 𝜔𝑎 is the rotational velocity of the armature. By substituting 

equations 4.4, 4.5, and 4.6 into equation 4.3 we arrive at the following differential 

equation: 
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𝑉𝑎 −  𝑖𝑎𝑅𝑎 − 𝐿𝑎
𝑑

𝑑𝑡
𝑖𝑎 − 𝐾𝑣𝜔𝑎 = 0                                                                           (4.7) 

 

From equation 4.7 it can be seen that the rotational speed is directly proportional to 

the applied input voltage. Therefore, to control the speed of the cart along the 

pendulum track, we must modulate the voltage applied to the D.C. motor. 

 

E. Motor Driver and Pulse Width Modulation 

The coils of the D.C. motor are connected to the applied voltage source via an H-

Bridge driver. The H-Bridge is an electronic circuit that is used in control of 

relatively high current devices, particularly where the device polarity is required to be 

reversed, e.g. cart direction control. The H-Bridge driver that was used in this 

research is the L298N, which is a monolithic Integrated Circuit (IC). This modular 

part was chosen since it reduced the number of external components required, as 

shown in Figure.4.5. 

 

 

 

 

Figure.4.5 – Structure of an H-Bridge Driver Module. 
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With reference to the schematic diagram shown in Figure.4.5, to apply the voltage 

from Vbat directly across the motor, a pair of diagonally opposed transistors is 

required to be switched on. Depending on which pair of transistors is activated, the 

motor will rotate clockwise (CW) or counter-clockwise (CCW).  For example, when 

transistors ‘Q1’ and ‘Q4’ are enabled (and ‘Q3’ and ‘Q2’ are disabled) a positive 

voltage is applied to the motor. Conversely, when transistors ‘Q1’ and ‘Q4’ are 

disabled (and ‘Q3’ and ‘Q2’ are activated), the voltage is reversed to the motor, 

reversing the direction of movement. Transistors ‘Q1’ and ‘Q2’ (and ‘Q3’ and ‘Q4’) 

should never be activated simultaneously; this would lead to a short circuit condition, 

resulting in permanent damage to the driver. Diodes D1 to D4 offer back EMF 

protection for the transistors during switching of the motor due to its inductance. The 

following table (Table.4.2) summarises the operation: 

 

Q1 Q2 Q3 Q4 Operation 

1 0 0 1 CW 

0 1 1 0 CCW 

0 0 0 0 Freewheel 

0 1 0 1 Break 

Table.4.2– Summary of H-Bridge Driver Operation. 

 

The L298N driver is fitted with a sufficiently large heat-sink to dissipate the power 

generated by the driver IC. The greatest source dissipation inside the driver IC is the 

power dissipated in the FET ON resistance (RDS(ON)). The power dissipated in each 

transistor, which is attributed to RDS(ON) is given by the following expression: 
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𝑃𝑅𝐷𝑆 = (𝐻𝑆_𝑅𝐷𝑆(𝑂𝑁) 𝑥 (𝐼𝑂𝑈𝑇)) + (𝐿𝑆_𝑅𝐷𝑆(𝑂𝑁) 𝑥 (𝐼𝑂𝑈𝑇))                                                  (4.8) 

 

Where PRDS is the power dissipated in the output FETs, HS_RDS(ON) is the 

resistance of the high-side FET, LS_RDS(ON) is the resistance of the low side FET, 

and IOUT is the output current being applied to the motor.  

As shown in equation (4.6), the simplest method of controlling the rotation speed of 

the D.C. motor is to control the driving voltage; the greater the voltage applied, the 

greater the speed of the motor. Pulse Width Modulation (PWM) is a well-established 

method for controlling an output voltage with a variable equivalent signal in the 

digital domain. In PWM, the ratio of “on” time to “off” time (duty cycle) of a carrier 

signal determines the average voltage, and therefore the speed of the motor (see 

Figure.4.6). 

 

Figure.4.6 – PWM Voltage Control Waveform. 

The carrier frequency must be considerably higher than that which would affect the 

load; i.e. the waveform perceived by the load must be as smooth as possible. The 

main advantage of PWM is that power loss in the switching devices is kept to a 

minimum. When the switch is disabled, there is essentially zero current flow; and 
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when it is enabled, there is virtually no voltage drop across the switch. Power loss, 

being the product of voltage and current, is thus close to zero in both cases. 

Mathematically, PWM output can be expressed as follows: 

 

𝛿(𝑡) = 𝑠𝑖𝑔𝑛(𝑉𝑟(𝑡) − 𝑉𝑐(𝑡))                                                                                    (4.9) 

 

Where 𝑉𝑟 is the ramp waveform generator output, 𝑉𝑐 is the compensator output and 

sign is a sign function, which gives the binary output depending on the difference 

between 𝑉𝑟 and 𝑉𝐶. The PIC32-Pinguno development board was connected to the 

motor driver via two digital IO pins (D0 and D1); one pin was used to control the 

motor direction and the other pin for outputting the PWM signal, which controlled the 

motor speed. This action, in turn, controlled the direction and speed of the cart along 

the linear slide. 

 

F. Linear Slide Mechanism 

A linear slide is a bearing mechanism that is designed to provide motion in one or 

two dimensions. The Cart Inverted Pendulum is a linear slide that comprises of a 

380mm x 90mm chassis, which supports a mobile plastic cart on a bearing. Attached 

to the cart is a steel bar, which is connected to the angular displacement sensor via a 

coupling arrangement. This bar forms the actual pendulum pole. An element of 

friction was present in the mechanism due to the handcrafting of a number of 

mechanical supports. The cart bearing and the support rods were lubricated with 

Teflon based lubricant to ensure that the friction was kept to a minimum. The main 

components of the linear slide are shown in Figure.4.7. 
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Figure.4.7 – Linear Slide Rod and Bearings. 

 

4.2 Custom PID Controller  

To stabilise the Cart Inverted Pendulum using PID control, required a suitable 

controller that was programmed with the appropriate control law. We developed our 

controller using the Microchip MPLAB 8 IDE, using the principles discussed in 

Chapter 2. 

 

     4.2.1    Controller Specification 

The first phase of the PID controller development was to explicitly define a set of 

requirements for the behaviour of the system. These requirements are summarised as 

follows: 

 

A. Controller Input 

 

Along with the internal reference signal r(t), the PID controller shall accept a single 

input y(t), which is the angular displacement θ of the pendulum. This input shall be in 

the range of 0-3.3V, corresponding to minimum and maximum pendulum angles of 0-

360° respectively. As discussed in Chapter 2, the difference between the reference 

value and the set-point shall denote the error signal e(t) i.e. e(t) = r(t) – y(t).  
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B. Controller Output 

 

The PID controller shall provide a single PWM output u(t) that is capable of driving a 

D.C. motor, which is attached to the cart. This output shall be in the range of 0-12V, 

where 0V corresponds to a stationary state and 12V corresponds to full torque. The 

direction of the motor shall be controlled by a single digital output, where ‘0’ denotes 

CCW and ‘1’ denotes CW. 

 

C. Sampling Rate 

 

To achieve the necessary impulse response, the controller input signal y(t) shall be 

sampled at a frequency (Fs) of at least 1KHz. The input signal y(t) shall be filtered 

with an anti-aliasing filter prior to being sampled to avoid distortion. From the 

Nyquist-Shannon sampling theorem, the cut-off frequency of this filter shall be Fs/2 

or 500Hz. A simple first order RC filter shall be used to achieve this. 

D. PID Parameter Gains 

The units of P, I and D gains shall be given in integer notation, and shall be in the 

range of 0 and 1023. A value of 0 shall denote the lowest gain, and 1023 shall denote 

the highest value. 

4.2.2    Discrete PID Control Implementation 

 

The realisation of analogue PID control on a microcontroller-based platform is not 

feasible and dictates the move from a continuous time format of equation (2.22) (see 

Chapter 2) to a discrete time approximation. There are three parameters relating to the 
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error function, e(t), that must be approximated to implement the full PID control 

algorithm. Figure.4.8 shows the PID controller model, where KP, KI, and KD denote 

the gains of the proportional, integral, and derivative terms respectively.  

 

 

Figure.4.8 - PID Control System Model. 

 

The transfer function of the system shown in Figure.4.8 is given by: 

 

𝑢

𝑒
(𝑠) = 𝐻(𝑠) = 𝐾𝑝(1 +

1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠)                                                                        (4.10) 

 

This gives u with respect to e in the time domain: 

 

𝑢(𝑡) = 𝐾𝑝(𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝜏)𝑑𝜏 + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
)

𝑡

0
                                                           (4.11) 

 

Approximating the integral and the derivative terms gives the discrete form: 

 

𝑢(𝑛) = 𝐾𝑝𝑒(𝑛) + 𝐾𝑖 ∑ 𝑒(𝑘)𝑛
𝑘=0 + 𝐾𝑑(𝑒(𝑛) − 𝑒(𝑛 − 1))                                    (4.12) 

 

Where: 
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𝐾𝑖 =
𝐾𝑝𝑇

𝑇𝑖
              𝐾𝑑 =

𝐾𝑝𝑇𝑑

𝑇
                                                                                    (4.13) 

 

The controller was found to be improved by basing the derivative term on the process 

value only: 

 

𝑢(𝑛) = 𝐾𝑝𝑒(𝑛) + 𝐾𝑖 ∑ 𝑒(𝑘)𝑛
𝑘=0 + 𝐾𝑑(𝑦(𝑛) − 𝑦(𝑛 − 1))                                    (4.14) 

 

The equation given in (4.14) was implemented on our PIC32-Pinguino 

microcontroller development board. Our approach was to configure an 8-Bit timer 

counter to continuously overflow, which caused an interrupt service routine (ISR) to 

be called periodically. Each occurrence of the ISR forced a read of the pendulum 

angle and a ready flag to be set, which signalled the main routine to perform a PID 

update. The main routine executes equation (4.14) and outputs the control variable to 

the motor driver, thereby stabilising the Cart Inverted Pendulum. A flow-chart of our 

discrete PID control algorithm is shown in Figure.4.9. The reader is referred to 

Appendix.2 for the actual ‘C’ code listing. 
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Figure.4.9 – Our Discrete PID Control Algorithm. 
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4.2.3    Controller Tuning 

 

The constant gain values of the discrete PID controller play a vital role in the system 

output response and stability. Since a detailed mathematical description of the exact 

system is unavailable, experimental tuning of the PID parameters was therefore 

necessary. To find the constant gain values of our controller, the Zeigler-Nicholas 

tuning procedure was followed, as discussed in Chapter 2. This procedure was 

performed and the pendulum was tuned accordingly, prior to the data-harvesting 

phase. 

 

4.3 Test Software Development 

 

To facilitate testing of our vision-based control algorithms, a custom software 

environment was developed, using Microsoft VB .NET 2008 and the EmguCV image 

processing library. A Graphical User Interface (GUI) was designed to show Real-

Time system information, and to provide a framework for algorithm testing. 

 

4.3.1    Software Specifications 

 

The first step of the software development phase was to explicitly define a set of 

requirements for the behaviour of the tool. These requirements are summarised as 

follows: 
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A. The software shall capture images from the USB camera and make them 

available for processing by our algorithm. The images shall be available in 

Blue-Green-Red (BGR) and Hue-Saturated-Values (HSV) formats. The 

images shall be displayed for monitoring purposes. 

 

B. The software shall provide two customisable image filters, which shall be 

used for marker identification and tracking. These filters shall allow the HSV 

values to be set individually. The individually filtered images shall be 

displayed for monitoring purposes. 

 

C.  The software shall provide morphological filtering options such as erosion 

and dilation, and shall offer a minimum segment size option. 

 

D. The software shall provide a range of information charts, which shall include 

the parameters of pendulum angle, controller error and driver output. These 

parameters shall also be available in the form of a live on-screen-display 

(OSD). 

 

4.3.2    Graphical User Interface 

 

The Microsoft VB .NET environment allowed us to design our GUI to have of two 

main sections. The left-hand section showed image related windows and the right-

hand section showed pendulum related charts (see Figure.4.10). The GUI allowed us 

to dynamically switch between traditional PID control and vision-based control. The 

reader is referred to Appendix.3 for Form layouts and VB .NET code listings. 
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Figure.4.10 – Test Software Graphical User Interface – Main Window View. 

 

 

Regarding Figure.4.10, the main window shown on the left displays live images, 

which have been captured by the USB camera in BGR or HSV format. The user is 

given the opportunity to view the image filters, which are used for marker 

identification. The two image filters can be customised to create a model of the cart 

and pole markers, by using a segmentation technique (discussed in Chapter 5). The 

customisation panel is accessed via a separate tab, as shown in Figure.4.11.  

 

 

Figure.4.11 – Test Software Graphical User Interface – Marker Customisation View. 
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With regards to Figure.4.11, on the left-hand section of the GUI, each individual 

value of the HSV filter is customisable between 0-255. This allows maximum 

flexibility when creating a model of the cart and pole markers. The HSV colour space 

is discussed in Chapter 5. On the right-hand section of the GUI, a range of pendulum 

related parameter charts are provided. These charts are generated by the software to 

allow monitoring of the pole angle, system error and other physical parameters during 

testing. The image processing algorithm is executed on a separate thread to the main 

GUI. This method of concurrent programming is used to assist with the Real-Time 

performance of the system.  

 

4.3.3    OpenCV Image Library 

 

To perform the complex image processing tasks required by our vision-based control 

method, we used the Open Source Computer Vision Library (OpenCV) as the basis 

for our image processing code. OpenCV is a library of programming functions, which 

are designed for Real-Time computer vision applications; it offers in excess of 2000 

optimised algorithms (see Figure.4.12). It has a BSD license (free for commercial or 

research use), which is primarily why it was chosen for this research. The main 

advantages of OpenCV are: 

 

A. It has been optimised for Real-Time applications. 

B. It is independent of operating system and hardware platform. 

C. It offers both low and high-level APIs for image functions. 
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Figure.4.12 – Overview of OpenCV Functions (OpenCV Wiki, 2016). 

 

OpenCV was originally written in the ‘C’ programming language and has been 

developed to provide a complete C++ interface. Our chosen language suite, however, was 

VB .NET. A compatible encapsulation of the OpenCV library was therefore required. 

 

4.3.4    EmguCV Library 

 

As previously mentioned, OpenCV is a C/C++ library, which does not easily 

integrate into the .NET platform without extensive supplementary code. We therefore 

used the EmguCV cross-platform, .NET wrapper for OpenCV in our application. 

EmguCV has been written in C# and can be compiled in Mono. The main advantage 

is that it is able to run on any platform that is Mono compatible, including Linux, 

Solaris and Mac OS. An overview of the EmguCV library is given in Figure.4.13. 
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Figure.4.13 – Overview of EmguCV Library (Emgu.com, 2016). 

 

4.3.5    Morphological Image Restoration 

 

Morphological image restoration provides a means to reconstruct damaged regions of 

an image. Image morphology, in its most fundamental form, is constructed by 

operations on pixel sets.  Dilation and Erosion are the two most significant 

morphological operations in our research. The final state of any pixel in the output 

image is defined by applying a rule to the corresponding pixels and its neighbours in 

the input image. The segments are expanded in Dilation, which means that small 



4 – Test System Development and Experimentation 

73 

 

voids are filled, and disjointed objects are connected. Conversely, Erosion diminishes 

the segments by etching away their boundaries. The ability to select the proper 

structuring element and the required morphological operation is offered by the test 

software. 

 

4.4 Experimentation and Summary of Results 

 

This section presents a summary of the results obtained by experimenting with our 

Cart Inverted Pendulum system (shown in Figure.4.14) using traditional PID control. 

Only a summary of the results is provided, a detailed evaluation of the effects of each 

parameter would far exceed the scope of this thesis. 

 

  

Figure.4.14 – Bespoke Cart Inverted Pendulum System and Controller Unit. 

 

4.4.1 Test Setup and Approach 

 

All of the experiments were undertaken using the HP Envy Laptop discussed in 

Chapter 1. In order to evaluate the performance of the system, several experiments 

were conducted. The accuracy of the angle measurement was determined and the 
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resting oscillation was measured. Once the measurement accuracy and resting 

oscillation was established, we applied several external disturbances to the pole, as 

the pendulum was stabilised at its equilibrium. We observed the recovery time and 

the PID controller response by using the test software to plot the output of the angular 

sensor. 

 

4.4.2 Results Summary 

 

  

Figure.4.15 – Cart Inverted Pendulum Angle Measuremnt Tests. 

 

In the first phase of testing, we slowly increased the pendulum angle from zero (fully 

vertical) to ±60º, over a period of approximately 30s. The pendulum angle was 

measured with an inclinometer, and in each instance the angle was found to be 

correctly measured. The pendulum angle was measured equally, both sides of the 

vertical point, indicating that there was no asymmetry in the measurement system. 

The plots that were captured by the test software were monotonic and without 
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distortion or non-linearity (see Figure.4.15). The Inverted Pendulum angle was 

successfully measured with an accuracy of approximately 0.3º. 

 

 

Figure.4.16 – Cart Inverted Pendulum 

Resting Oscillation. 

 

Figure.4.17 – Cart Inverted Pendulum 

Disturbance Response. 

 

In the second phase of testing, we measured the amplitude of the resting oscillations 

by allowing the pendulum to idle at the unstable equilibrium. Under PID control, we 

observed resting oscillations of up to ±1º (see Figure.4.16). The average resting 

oscillation was determined to be approximately 0.3º (which was measured over a 

period of 60s). 

 

In the third phase of testing, we applied external disturbances to the pendulum pole 

while it was at its unstable equilibrium. The recovery time and controller response 

were monitored via the test software. The pendulum was seen to recover from 

disturbance angles of up to 25º. Figure.4.17 demonstrates the recovery profile of the 

pendulum when subjected to an 8º disturbance. The pendulum fully recovered within 

500ms to the upright position. The results showed that we successfully stabilised the 

Cart Inverted Pendulum using our bespoke controller unit. 
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Chapter 5 

Cart and Pole Localisation by Multiple-

Segments Moments Tracking 

 

In this chapter, we present the theoretical foundation and mathematical representation 

of our Multiple-Segments Moment Tracking (MSMT) algorithm for locating the Cart 

and Pole markers within an image. We begin by discussing the theory of moments 

and define them in discrete notation, which forms the basis of our detection and 

tracking method. We present a list of moment invariants, some of which are used in 

the practical implementation of the algorithm. We then briefly discuss the HSV 

colour space and present the mathematical representation of the chromatic 

components. We then discuss image thresholding and morphological filtering, both of 

which are vital to the robust detection of the Cart and Pole markers. We conclude the 

chapter by presenting our novel Cart and Pole tracking algorithm. 

 

5.1    Theory of Moments 

 

Moments describe numerical quantities at a known distance from a specified 

reference point. They are frequently used in statistics to describe the scattering of 

random variables; likewise, they are employed in mechanics to describe bodies by 

their distribution of mass. In its most elementary form, a moment is the product of the 

distance to a point, raised to a power, multiplied by a physical quantity, at that point. 

Usually, in applications such as the one presented in this research, the quantity is not 
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concentrated solely at a single point; therefore the moment is the integral of that 

quantity’s density over space. 

 

5.1.1    Two-Dimensional Cartesian Moment 

 

As previously mentioned, the quantity is not typically concentrated solely at a single 

point and the moment is the integral of the density over space. Our research focuses 

on images that operate in 2D Cartesian space (i.e. that have x and y-axis). The 2D 

Cartesian moment, 𝑚𝑝𝑞, of order p + q, of a density distribution function, f(x, y), is 

defined as (Hu, 1962):  

 

𝑚𝑝𝑞 ≡ ∫ ∫ 𝑥𝑝𝑦𝑝𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
∞

−∞

∞

−∞
                                                                         (5.1) 

 

The 2D moment for an (I by J) scalar (greyscale) image, g(x, y), is given by: 

 

𝑚𝑝𝑞 ≡ ∑ ∑ 𝑥𝑝𝑦𝑞𝑔(𝑥, 𝑦)𝐼−1
𝑥=0

𝐽−1
𝑦=0                                                                               (5.2) 

 

Since our approach deals with binary image objects the moment is given by: 

 

𝑚𝑝𝑞 ≡ ∑ 𝑥𝑝𝑦𝑞
𝐴                                                                                                        (5.3) 

 

Where the summation extends over all of the elements in A, i.e. all the “active” pixels 

within the image array. 
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A complete set of moments of the order n consists of all moments, 𝑚𝑝𝑞 , such that p 

+ q ≤ n and contains (n+1)(n+2) / 2 elements.  

 

5.1.2    Hu Moments for Marker Identification and Tracking 

 

Our approach is based on image moments for object identification and tracking. 

Image moments and moment invariants play a crucial role in object recognition and 

shape analysis. The use of moments for image analysis and pattern recognition was 

inspired by Hu (Hu, 1962). His Uniqueness Theorem presented, stated that if f(x, y) is 

piecewise continuous and has non-zero values in the finite region of the (x, y) plane, 

then the moments of all orders exist. It can, therefore, be shown that the moment set 

{𝑚𝑝𝑞} is uniquely determined by f(x, y) and conversely, f(x, y) is uniquely 

determined by {𝑚𝑝𝑞}. We propose to simultaneously segment the two uniquely 

coloured markers; the one on the Cart and the other on the Pole. This allows us to 

uniquely identify the Cart and Pole in every frame. Each image segment has a finite 

area and is piecewise continuous; therefore, moments of all orders exists and a 

moment set can be computed that will describe the information contained within the 

image segment. To describe all of the information continued within an image segment 

would require a potentially infinite number of moment values. Our approach is to 

select a meaningful subset of moment values that contain sufficient information to 

describe the markers within a given image. By maintaining the position of the unique 

markers in each frame, we achieve tracking of the Cart and Pole. 
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5.1.3    Fundamental Lower-Order Moments 

 

The lower-order moments represent several well-known (and for our research, 

essential) geometric properties of a distribution. To highlight these properties and 

demonstrate the applicability to object identification and tracking, one can regard the 

moment values of a function that is binary and continuous, i.e. our segmented Cart 

and Pole markers. The moment values for this distribution can be explained in terms 

of shape characteristics of the markers.  

 

A. Zero-Order Moments: Area 

 

The definition of the zero-order moment, {𝑚00}, of f(x, y) represents the mass of the 

given distribution function or image. When computed for our segmented marker, the 

zero moment represents the total object area.  𝑚00 is given by: 

  

𝑚00 ≡ ∬ 𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
∞

 −∞
                                                                                       (5.4) 

 

B. First-Order Moments: Centre of Mass 

 

The two first-order moments, {𝑚10, 𝑚01}, are used to locate the centre of mass (CM) 

of the Cart and Pole markers. The coordinates of the CM, (𝑥, 𝑦), is the intersection of 

the lines, x = 𝑥, and y =  𝑦, parallel to the x and y-axis respectively, where the first-

order moments are zero. Alternatively, x = 𝑥 and y = 𝑦 represent areas where all the 

mass may be concentrated, without change to the first-order moments about the x and 
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y-axes respectively. Regarding moment values, the coordinates of the CM are given 

by: 

 

𝑥 =  
𝑚10

𝑚00
   𝑦 =  

𝑚01

𝑚00
                                                                                                   (5.5) 

  

The CM describes a unique position that may be used as a reference point to describe 

the position of the markers within the image. If the marker segments are positioned 

such that the CM is coincident with the origin of the FOV, i.e. (𝑥 = 0) and 𝑦 = 0), 

then the moments computed for that marker is referred to as the central moment and 

is designated by µ𝑝𝑞 (Note that µ10 = µ01 = 0). Hu derived combinations of moments 

that are invariant with respect to scale, position and orientation, which are based on 

the theories of invariant algebra. Seven moment invariants were defined, which were 

calculated from the central moment. These are given by: 

 

µ00 = 𝑀00                                                                                                              (5.6a) 

µ01 = 0                                                                                                                   (5.6b) 

µ10 = 0                                                                                                                   (5.6c) 

µ11 = 𝑀11 − 𝑥𝑀01 = 𝑀11 − 𝑦𝑀10                                                                       (5.6d) 

µ20 = 𝑀20 − 𝑥𝑀10                                                                                                 (5.6e) 

µ02 = 𝑀02 − 𝑦𝑀01                                                                                                 (5.6f) 

µ21 = 𝑀21 − 2𝑥𝑀11 − 𝑦𝑀20 + 2𝑥
2

𝑀01                                                               (5.6g) 

µ12 = 𝑀12 − 2𝑦𝑀11 − 𝑥𝑀02 + 2𝑦
2

𝑀10                                                               (5.6h) 

µ30 = 𝑀30 − 3𝑥𝑀20 + 2𝑥
2

𝑀10                                                                             (5.6i) 

µ03 = 𝑀03 − 3𝑦𝑀02 + 2𝑦
2

𝑀01                                                                             (5.6j) 
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 It is on this principle that we build our localisation algorithms. The concept of 

MSMT is one in which the segmented marker moments are superimposed onto into 

one image, containing multiple moments, from which vital information about the Cart 

and Pole can be determined. For further information the reader is referred to Hu’s 

paper on Image moments (Hu, 1962). 

 

5.2    HSV Colour Space 

 

The Colour space is an abstract mathematical model, which describes the range of 

available colours as ordered lists. Due to some unique advantages within the field of 

computer vision and computer graphics (Ibraheem et. Al., 2012), the Hue, Saturation 

and Value (HSV) colour space was chosen for our image processing. HSV colour 

space is related to the group of perception-based colour spaces and is fundamentally 

based on the human perception of colour.  

 

Figure.5.1 illustrates the standard representation of the HSV colour space. Different 

shades and colours are defined and represented while moving anti clockwise from 0 

to 360 degrees, at which points the colour red can be found.  The Saturation (S) value 

defines the number of pixels available to represent a given colour. S increases 

towards the edge of a circular cross section of the cone and decreases towards the 

center.  The highest and lowest saturation of a colour is represented by 100% and 0% 

respectively. The Value (V) contains the information related to the brightness or 

darkness of a pixel. V increases when moving towards pixels with higher intensity 
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values and vice versa. The maximum and minimum intensity values of a colour are 

represented by 100% and 0%, respectively. 

 

 

Figure.5.1 – HSV Colour Space Representation. 

 

An image represented in the BGR colour space (as natively provide by our USB 

camera) can be converted to a HSV colour space image by applying the following 

equations: 

 

𝐻 = cos−1(
0.5(𝑅−𝐺)+(𝑅−𝐵)

√(𝑅−𝐺)2+(𝑅−𝐵)(𝐺−𝐵)
)                                                                              (5.7) 

𝑆 = 1 − (
3

𝑅+𝐺+𝐵
) min (𝑅, 𝐺, 𝐵)                                                                               (5.8) 

 

𝑉 = max (𝑅, 𝐺, 𝐵)                                                                                                   (5.9) 

 

There are intrinsic dependencies between the three HSV components. The H 

component will have no significance when the S or V values are represented by the 

lowest value, i.e. 0%. The colour will be shown as black if the V component is 

represented by the lowest value. A pure white colour is obtained when the V 



5 – Cart and Pole Localisation by Multiple-Segments Moments Tracking 

83 

 

component is represented by the highest value, i.e. 100%; and S component is 

represented by the lowest value, i.e. 0%. For further information on the HSV colour 

space the reader is referred to the work of Ibraheem et al. (2002). 

 

5.3    Segmentation by Thresholding 

 

As discussed in section 4.1, segmentation is required to isolate the Cart and Pole 

markers within an image. The term segmentation, when used in the context of image 

processing means: separating the image into background and object of interest. The 

object of interest, in this case, is the Cart and Pole markers. 

 

Image thresholding is one of the most effective and simplest segmentation techniques 

to implement (Sahoo et al., 1988). In this method, structures within the image (i.e. 

markers) are segmented by comparing their intensity value to one or more intensity 

thresholds. An image can be segmented into two regions by using only one threshold 

value; however, it is more common to segment an image into multiple regions using 

multiple thresholds (Sahoo et al., 1988). This multiple thresholding concept is 

adopted to generate the compound marker segments in our method. Figure.5.2 

illustrates the concept of thresholding and how it is determined by the histogram 

shape of an image. 
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Figure.5.2 – Thresholding Example. 

 

We apply a simple thresholding approach, where the image is searched pixel by pixel 

and the following mathematical rule is applied: 

 

If function f(x, y) > T then function f(x, y) = 0 else function f(x, y) = 255.                                      

 

This provides a binary image to which the theory of moments can be applied to 

determine information about the markers. Often, the image may contain unwanted or 

incomplete segments; it is, therefore, necessary to perform some morphological 

image restoration. 

 

5.4    Morphological Filtering 

 

Morphological operations are non-linear functions, which are used to describe the 

shape and structure of objects within an image (Meyer and Beucher, 1990). Cart and 

Pole marker segmentation is challenging due to the complex shape and structure of 
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the objects produced due to lighting changes. Morphological operations can be used 

in this case to regulate the shape of the marker objects. Some of the most commonly 

used morphological operations are; erosion, dilation, opening and closing operations, 

which are used to regulate the marker object. Pixel connectivity is determined based 

on neighbourhoods of several pixels known structure set. This function is applied to 

remove small particles from within the images. This procedure is required to prevent 

noise objects being considered as cart or pole markers.  

 

5.4.1    Erosion and Dilation 

 

Erosion is an operation which takes an average image A, and structuring element, S, 

to construct a new image B. The structuring element is simply a small image, 

typically a 3×3 set of pixels. The erosion, A ⊖ S, then, is the act of placing the centre 

of the structuring element on each pixel of the input image and determining if this 

local image is identical to the structure element. If so, a pixel is placed in that position 

of the output image. Mathematically, this can be expressed as follows: 

 

A⊖S={(x,y) | S(x,y)⊂A}                                                                                         (5.10) 

 

where S(x,y)={(x+i,y+j) | (i,j)∈S} is just the translation of S to position (x,y).  

Dilation is simply the opposite of erosion and is defined as follows: 

 

A⊕S=(Ac⊖Sc)                                                                                                     (5.11) 

 

As the name implies, this operation expands the object in the image, according to a 

structuring element. 
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5.5    Localisation and Tracking Algorithm 

Our novel identification and tracking algorithm is shown below, alongside EmguCV 

realisation of the key parts: 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Capture image from USB camera: 

Image at a resolution of 640 x 480 

Pixels. 

Convert image colour space: 

Image format is BGR therefore 

Convert to HSV. 

 

Equations 4.6 – 4.8 

Create multiple threshold (T) images 

and apply Morphological filtering:  
 

If f(x, y) > T then f(x, y) = 0 else f(x, y) = 255.                                      

 

Determine the Moments of the 

Multiple-Segment Markers: 

 

Equations 4.1 – 4.5j 

Locate the centre of the segments and 

derive the required parameters: 

 

Equation 4.4 

Apply Parameters: 

 

Use the parameters for display, plotting 

and control purposes. 

capWebcam.QueryFrame 

CvInvoke.CvtColor 

Invoke.InRange 

CvInvoke.Erode 

CvInvoke.Dilate 

CvInvoke.Moments 

 

CvInvoke.cvGetCentralMoment 

CvInvoke.cvGetSpatialMoment 
 

Angle (θ) :=  

Math.Atan((y1 - y2) / (x2 - x1)) * (180 / Math.PI) 
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5.6 Implementation and Results 

 

The Cart and Pole were fitted with two uniquely coloured markers. The marker 

colours were chosen by experimentation, based on two colours that were found to be 

individually identifiable with the least amount of image noise. In our experiments we 

chose blue and red, as they gave good results during testing. The software tool 

discussed in Chapter 4 was used to implement the algorithm presented in Section 4.4. 

The results are illustrated in the following subsections. 

 

5.6.1 Capture Image and Convert Colour Space 

 

Figure.5.3 shows an image captured by the USB camera and converted from BGR to 

HSV colour space. This was achieved by invoking the “capWebcam.QueryFrame” 

and “CvInvoke.CvtColor” functions in EmguCV. 

 

 

Figure.5.3 – Capture Image and Convert Colour Space (HSV Image). 
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5.6.2     Create Multiple-Segments and Apply Filters 

 

Figure.5.4 and 5.5 illustrates the result of applying thresholding to the image based on 

the unique markers. The result is two separate images, which contain a segmented 

marker; one for the Cart (Figure.5.4) and one for the Pole (Figure.5.5).  

 

 

Figure.5.4 – Segmented Image of the Cart Marker.  

 

 

Figure.5.5 – Segmented Image of the Pole Marker. 
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Morphological Dilation and Erosion was applied to both images and the original 

images were overwritten, with new filtered copies. This improved the reliability of 

the segmentation and ensured that false segments were removed. The Morphological 

structuring element for both Dilation and Erosion were determined experimentally. 

The individual images were then combined to give a composite, Multiple-Segments 

image as shown in Figure.5.6. This image was then used for further processing. 

 

 

Figure.5.6 – Composite Multiple-Segments Image. 
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5.6.3 Robustness to Visual Disturbances 

 

To demonstrate the robustness of the algorithm to visual disturbances, the pendulum 

was allowed to idle about the unstable equilibrium and different coloured objects 

were used to apply a disturbance to the Pole. The performance was excellent; the 

marker tracking algorithm rejected all non-marker coloured objects in the FOV of the 

camera (see Figure.5.7).  

 

 

Figure.5.7 – Application of Visual Disturbances. 

 

The disadvantage, however, was that if a marker coloured object was introduced 

within the FOV of the camera, then confusion would arise and the tracking system 

would fail. We called this the “Marker Coloured Disturbance” problem. 
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5.6.4   Vision-Based Measurement and Control 

 

In a similar approach to the PID controller testing that was performed in Chapter 4, 

the accuracy of the visual angle measurement system was established and the resting 

oscillation under vision based control was determined. In the first phase of testing, we 

slowly increased the pendulum angle from zero (fully vertical) to ±45º, over a period 

of approximately 30s. The pendulum angle was compared to the potentiometer 

measured angle; in each case the angles were found to measuring within 0.8º of each 

other (see Figure.5.8 to Figure.5.12). 

 

 

Figure.5.8 – Visual angle measurement test – Pendulum angle of 45º 

measured visually as 45.8º, 1.77% Error. 
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Figure.5.9 – Visual angle measurement test – Pendulum angle of -45º 

measured visually as -45.3, 0.67% Error. 

 

 

Figure.5.10 – Visual angle measurement test – Pendulum angle of 60º 

measured visually as 60.1º, 0.17% Error. 
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Figure.5.11 – Visual angle measurement test – Pendulum angle of -60º 

measured visually as -60.2º, 0.33% Error. 

 

In the second phase of testing, we measured the amplitude of the resting oscillations 

under vision-based control by allowing the pendulum to idle at the unstable 

equilibrium. We observed resting oscillations between 2.0º and 5.8º (see Figure.5.12). 

The pendulum was able to recover from small disturbances that were limited to ±10º. 

 

 

Figure.5.12 – Visual Control: Resting Oscillation Test.
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Chapter 6 

Pendulum Angle Estimation by Artificial 

Neural-Networks 

 

In the previous chapter, we demonstrated a computational method of pendulum angle 

estimation by using our MSMT method. In this chapter, we present an alternate 

technique for measuring the pendulum angle by means of Artificial Neural-Networks. 

We start by building on the foundation presented in Chapter 3, focusing on the Multi-

Layer Perceptron as a function approximation tool. We then design our Neural-

Network for pendulum angle estimation and train it using harvested data. We 

conclude the chapter by evaluating the performance of the Neural-Network solution 

and compare it to the MSMT method presented in the previous Chapter. 

 

6.1 Function Approximation 

 

Learning the unique mapping between the input and output space from a set of data is 

the primary concern in many real-world applications. Such a problem usually occurs 

when it is costly, either in terms of time or complexity to compute the true function, 

or when this function is unknown. In place of an explicit formula to denote the 

function f(x), only pairs of input-output data in the form of (x, f(x)) are available. If 

we let: 

 

𝑥𝑖 ∈ 𝑅𝑚, 𝑖 = 1, 2, … , 𝑁                                                                                            (6.1) 

and
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𝑑𝑖 ∈ 𝑅1, 𝑖 = 1, 2, … , 𝑁                                                                                             (6.2) 

 

where N is the number of input vectors with dimension m, and N real number outputs 

respectively. The goal is to determine the unknown function f(x):Rm→R1 that 

satisfies the interpolation where: 

 

𝑓(𝑥𝑖) =  𝑑𝑖, 𝑖 = 1, 2, … , 𝑁                                                                                      (6.3) 

 

The accuracy of the fitness of 𝑑𝑖 by the function f(x) is given by an error function. A 

commonly used error function is defined by: 

 

𝐸(𝑓) =  
1

2
∑ (𝑑𝑖 − 𝑦𝑖)

2𝑁
𝑖=1                                                                                          (6.4) 

 

Where 𝑦𝑖 is the actual response (f(x)). The main objective is to minimise the error 

function E(f) to enhance the accuracy of the estimation. This is the main objective of 

function approximation. 

 

6.2 Artificial Neural-Networks for Function Approximation 

 

As we briefly discussed in Chapter 2, ANNs have been shown to be particularly good 

at number of different tasks. They have been widely applied to solve many problems, 

including non-linear function approximation. An ANN is characterized by its 

architecture, learning algorithms and activation functions. The architecture describes 

the interconnections between the neurons. They typically consist of an input layer, an 

output layer and one or more hidden layers. Hornik (Hornik, 1989) and Cybenko 

(Cybenko, 1989) have shown that a three layer ANN is capable of approximating any 
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arbitrary, non-linear function f(x) with any desired degree of accuracy. Consequently, 

ANNs have been applied in various applications, especially in applications related to 

parameter estimation; this is primarily due to its ability to find the association 

between input-output data without the need for predetermined models. The most 

common ANN structure is the MLP (Rumelhart et al., 1986). Figure.6.1 illustrates the 

structure of a MLP. 

 

 

Figure.6.1 - Typical Multilayer Feed-Forward ANN. 

 

The output node, j, in the hidden layer is given by equation (2.22) in Chapter 2 and 

the output of the network is given by: 

 

𝑦 = ∑ (𝑤𝑜𝑖ℎ𝑖)
𝑘
𝑖=1                                                                                                       (6.5) 
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where 𝑤𝑗𝑖  are the weights connecting the input values to node j in the hidden layer, 

and 𝑤𝑜𝑖are the weights from the hidden layer to the output layer. Depending on the 

learning algorithm applied, the ANN can be categorized as one of the following:  

 

1. Fixed Weight ANNs: These do not need any form of learning.  

 

2. Unsupervised ANNs: These networks are trained (weights are adjusted) based 

on input data only. The networks learn to adapt using experience gained from 

previous inputs.  

 

3. Supervised ANNs: These are the most commonly applied ANNs. In these 

networks, the system employs both input and output data. The weights and 

biases are updated for every set of input/output data pair.  

 

Our MLP falls into the supervised learning category.  

 

The activation function relates the output of a neuron to its input, based on the 

neuron’s input activity level. Some of the commonly used activation functions 

include: the threshold, piece-wise linear, sigmoid, tangent hyperbolic, and the 

Gaussian function. The learning process of the MLP network involves using the 

input-output data to determine the weights and biases. One of the techniques used to 

obtain these parameters is the back-propagation algorithm (see Chapter 2). In this 

method, the weights and biases are adjusted iteratively to achieve a minimum MSE 

between the network output and target value. The ANN development process that we 

followed is shown in Figure.6.2.  
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Figure.6.2 – Neural-Network Development Process. 

 

 

Input-Output selection: This is the first step in any 

pattern recognition problem. It has a direct effect on 

the performance and size of the final ANN. 

Selection of ANN: Network type, how many hidden 

neurons, hidden layers, etc. 

 

Training data: Preparing the training data correctly is 

crucial to the performance; could introduce errors, etc. 

 

Training: Applying a learning algorithm to train the 

ANN. 

Testing: Testing the network. 

Deploy the ANN. 

 

Fit? 

No 

Yes 
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6.3     Development of the ANN for Pendulum Angle Estimation 

 

The purpose of our ANN is to estimate the angle of the pendulum by using the 

Cartesian Coordinates of the Cart and Pole marker segments (see Chapter 5). A three-

layer MLP was used for the purpose of pendulum angle estimation. We followed the 

development procedure outlined in Figure.6.2. 

 

1. Input-Output and Hidden Layer Selection 

The inputs that are required by our network are the four Cartesian Coordinates of the 

Cart and Pole markers, as described in Chapter 5. The output (𝜃) of the neural 

network model consists of a single neuron, which represents the pendulum angle for 

the specific Cartesian Coordinates. That is: 

 

𝜃 = 𝑓((𝑥1, 𝑦1), (𝑥2, 𝑦2))                                                                                        (6.6) 

 

In the input layer, the number of neurons is equal to the number of coordinates, i.e. 

four (X1, Y1; X2, Y2). The number of neurons in the hidden layer was determined 

experimentally, by studying the network behaviour during the training process; taking 

into consideration some factors like convergence rate, error criteria, etc. Different 

configurations were tested and the best configuration was selected based on the 

accuracy level required. The activation function used in this layer was the Sigmoid 

due to its efficiency in nonlinear approximation tasks. The output layer has only one 

neuron, which represents the pendulum angle.  
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2. Network Training 

 

The ANN was trained offline by using data that was harvested during the 

experimentation phase (Chapter 4). X1, Y1 and X2, Y2 coordinates were collated into 

training files, along with the actual pendulum angle measured by the potentiometer. 

These input-output groups were used to train the ANN using the Fast Artificial 

Neural Network (FANN) library (see Figure.6.3). Various training algorithms were 

tested and the RPROP (Riedmiller and Braun, 1993) was ultimately chosen as it gave 

the fastest convergence and lowest MSE. The initial weights were randomised with 

values between 0 and 1. The Cartesian inputs were normalised to have values 

between 0 and 1 (this sped up the convergence). The ANN was trained until the MSE 

was determined to be low enough for the network to be applied to solving the 

problem. 

 

 

Figure.6.3 – FANN Toolbox: Example Window. 
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3. Network Testing 

The ANN was initially tested by generating an artificial sinusoidal signal, which 

represented the smooth movement of the pendulum from left to right, about the 

vertical axis. The simulated Coordinates were fed to the network and the output angle 

was compared to the ideal input, and quantified for accuracy. A second test was 

performed, which applied previously “un-seen” segment coordinates to the network 

inputs and comparing the output result with the actual pendulum angles stored in the 

harvested data. 

 

6.4     Results 
 

During initial testing using the simulated coordinate data, the accuracy was 

determined and the ANN was found to perform extremely well. The results showed 

that the network was able to estimate the pendulum angle to within 0.4º of the actual 

angle (see Figure.6.4). This was significantly better than the MSMT method 

presented in Chapter 5. In the subsequent tests, using previously “un-seen” 

coordinates from the harvested data, the ANN was found to accurately estimate the 

pendulum angle with a similar degree of accuracy. 
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Figure.6.4 – Function Approximation Results. 

 

The use of the Artificial Neural-Networks to estimate pendulum angle from Cart and 

Pole segment coordinates is presented in this chapter. Results obtained with the help 

of a training data is given and compared to those obtained using the MSMT method. 

The results indicate that the proposed ANN approach significantly out performs the 

MSMT approach. 
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Chapter 7 

Conclusion and Further Work 

 

7.1    Summary 

 

Dynamic object balancing by means of visual feedback control is a complex and 

challenging task. Within the context of this research, we employed the classic Cart 

Inverted Pendulum, an inherently unstable, non-linear system to investigate vision-

based control. During our research, we encountered many solutions applied to solving 

the Inverted Pendulum stabilisation problem using traditional feedback techniques; 

however, due to the unique challenges presented, relatively few approaches have been 

reported that use visual feedback for control. Additionally, due to the high cost of 

commercial Inverted Pendulum systems, many of the solutions that were reported in 

the literature were validated by means of simulation.  

 

Our research confronted the problem of vision-based Inverted Pendulum control, 

which was made even more challenging by real-world implementation of a low-cost 

test system. Our test system employed a standard USB camera to capture images; this 

was particularly problematic as the camera was found to have poor colour-balance 

and significant pixel noise in low light conditions. Furthermore, the inherent 

instability of the Inverted Pendulum meant that external disturbances had significant, 

unpredictable, effects on its motion. This suggested the use of a segment-based 

location and tracking method, since image segments are particularly immune to noise. 
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We successfully addressed these challenges by developing novel techniques for pose 

estimation; and by applying them efficiently, we ensured Real-Time operation. The 

resulting system was able to achieve Real-Time visual stabilization of the Cart 

Inverted Pendulum, even in the presence of visual disturbances. 

  

7.2    Contributions 

 

The thesis has made the following contributions: 

 

i. A comprehensive test platform: One of our research questions was can we 

implement a real-world (i.e. outside of simulation), vision-based control system that 

is capable of balancing an unstable object? During the early stages, we discovered 

that the cost of commercial Inverted Pendulum systems was prohibitively high. A 

custom made test system was therefore developed in Chapter 4, which allowed us to 

evaluate our novel, vision-based control algorithms. The test system was made even 

more challenging by the use of low-cost components, to promote reproduction of our 

work and to stimulate further research. We successfully developed a low-cost system 

that was able to balance the Inverted Pendulum with a resting oscillation of ±1º. 

 

ii. Complete test software environment: We developed a complete graphical 

software environment using Microsoft Visual Basic .NET, in which our algorithms 

could be tested. This software allowed us to switch between traditional feedback 

control for data harvesting and vision-based control for algorithm testing. The 

software provided a multi-threaded architecture to assist with the Real-Time 
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requirements of the Inverted Pendulum system. A flexible tracking model generator 

was implemented to allow customization of the visual markers used by the system. 

This improved the robustness of the pose estimation. 

 

iii. Novel tracking and pose estimation algorithm: We proposed a novel 

tracking and pose estimation algorithm, which was able to locate the cart and the pole 

from an image stream using visual marker tracking. The robustness of the tracking 

and pose estimation against visual disturbances was successfully demonstrated. The 

algorithm was able to detect the position and angle of the pendulum in Real-Time, 

with minimum amount of error.  

 

iv. Novel application of our pose estimation algorithm: We successfully 

applied our pose estimation algorithm to the Inverted Pendulum stabilisation 

problem. We achieved pendulum oscillations of between 2° and 5°, which sits in the 

median of that reported in the literature using other methods. 

 

v. Novel ANN optimization method: We successfully optimized our method by 

means of Artificial Neural-Networks to achieve a significant improvement in the 

angle measurement accuracy.  
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7.3     Further Work 

 

Although the system presented in this thesis was shown to work reasonably well, 

there are some areas that require further investigation and improvement: 

 

i. The thesis has only addressed the Cart Inverted Pendulum stabilisation 

problem. The position control and swing-up problems have not been solved visually 

in this research. Solutions to these problems have been reported in the literature; 

however, they have been found to be lagging behind the stabilisation problem, in 

terms of attention. Researchers such as Wang et al. (2008) and Stuflesser and 

Brandner (2008) are reporting positive results. 

 

ii. Although our solution was shown to be robust to visual disturbances, due to 

the Real-Time requirement of the system, the amount of filtering that could be 

performed was limited. Further research is therefore possible into a more effective 

filtering to achieve greater robustness. The Kalman filter could be explored further 

and applied to smoothing the pose estimation (pose filtering). 

 

iii. The system presented in this research employed visual markers to aid with the 

identification and tracking of the cart and pole. Visual markers are a limitation and 

eliminating them would improve the robustness of the method. Also, this would 

eliminate the “marker colored disturbances” problem discussed in Chapter 4. 

Approaches along the lines of Stuflesser and Brandner (2008) are very promising. 
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iv. The Cart Inverted Pendulum system developed during this research is limited 

by mechanical friction, due to hand crafted parts. Further work is certainly possible to 

reduce this. A standard set of mechanical parts could be captured using Computer 

Aided Design (CAD), which could be made available for 3D printing. This would 

facilitate further research into the Inverted Pendulum and vision-based stabilisation. 
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Appendix 1 

PIC32-Pinguino Development Board 

Schematics and Board Outline 

 

 

 



 

 

 
 

Appendix.1.1 – PIC32-Pinguino Schematic Diagram. 



 

 

 
Appendix.1.2 – PIC32-Pinguino Schematic Diagram. 

 



 

 

 
Appendix.1.3 – H-Bridge Driver Module Schematic Diagram. 



 

 

 

 

 

 

 

 

 

 

 

Appendix 2 

Cart Inverted Pendulum 

Controller Firmware 

 

 

 

  

 

 

 

 

 

 



 

 

 
/************************************************************************ 
 * 

 *                Pendulum Firmware Version 1.0 

 * 
 ************************************************************************* 

 * FileName:        main.h 

 * Dependencies: None 
 * Processor:        PIC32MX 

 * Compiler:         C32  

 * Company:        Stephen Ingram - Ph.D Research 
 * 

 * Author              Date        Comment 

 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 * Stephen Ingram           Created. 

 *************************************************************************/ 

#define tris_self_power     TRISAbits.TRISA2     
#define self_power          1 

 

/** I N C L U D E S ******************************************************/ 
#include <plib.h> 

#include "./USB/usb.h" 

#include "./USB/usb_function_cdc.h" 
 

/** M A C R O S *********************************************************/ 

#define GetInstructionClock() 80000000 
 

/** G E N E R A L  D E F I N I T I O N S ********************************/  

#define TRUE    0x01 
#define FALSE    0x00 

 

#define IN    TRUE 
#define OUT    FALSE 

#define PI    3.14159265359 

#define ANGLE_PER_BIT  0.3515625 
#define CRITICAL_ANGLE  30.0 

#define START_ANGLE   5.0 

 
#define VREF    3.3 

#define RESOLUTION   1024 

 
#define DEFAULT_KP   400//350//70 

#define DEFAULT_KI   25//25//7 

#define DEFAULT_KD   1//1//5//1 
 

#define PID_LOOP_FREQ  200.0 // Hz 

 
#define MOTOR_MAX   30.0  //175.0 

#define MOTOR_MIN   -30.0  

 
#define DIR_OFF   0 

#define DIR_LEFT   1 
#define DIR_RIGHT   2 

 

#define INT_TIME_200US  0x1F40 

#define INT_TIME_500US  0x4E20   

#define INT_TIME_1MS   0x9C40 

 
/** I/O  D E F I N I T I O N S *****************************************/ 

#define LED1 LATFbits.LATF0 

#define LED2 LATDbits.LATD1 
#define DRV_EN LATDbits.LATD2 

#define DRV_IN1 LATDbits.LATD5 

#define DRV_IN2 LATDbits.LATD6 
#define BTN1 PORTDbits.RD0 

 

/** P R O T O T Y P E S ************************************************/ 
double CosineInterpolate(double y1,double y2,double mu); 

double LinearInterpolate(double y1,double y2, double mu); 

unsigned int Read_ADC(unsigned int PIN); 



 

 

void Set_Direction(unsigned char DIR); 

void Set_Power(unsigned char PWR); 
void Init_Controller(void); 

void Set_Constants(void); 

void Init_System(void); 
void MSG_Handler(void); 

void Send_Data(void); 

void Init_ADC(void); 
int main(void); 

void PID(void); 

 
/** G L O B A L  V A R I A B L E S**************************************/ 

unsigned char USB_In_Buffer[64]; 

unsigned char USB_Out_Buffer[64]; 
unsigned char strData[64]; 

unsigned char strExt[512]; 

 
/** G L O B A L  V A R I A B L E S  P I D*******************************/ 

volatile signed int SumE_Min, SumE_Max, SumE, integral_term, derivative_term; 

volatile signed short int en0, en1, en2, en3, off_set; 
volatile unsigned char Feedback_Mode = FALSE; 

volatile short int Camera_Angle; 

unsigned short int ki, kd, kp; 
volatile unsigned char do_PID; 

volatile short int Motor_Temp; 

volatile short int Set_Point; 
volatile signed short int Cn; 

volatile short int temp_int; 
unsigned char Sample_Rate; 

unsigned int Sample; 

unsigned int Ts; 
 

 

/******************************************************************* 
*                         Pendulum firmware V1.10 

******************************************************************** 

* FileName:        Main.c 

* Dependencies:    See INCLUDES section below 

* Processor:       PIC32MX 

* Compiler:        C32 1.12+ 
* Company:         Stephen Ingram - Ph.D Research 

* 

* Author           Date        Comment 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

* Stephen Ingram               Original. 

********************************************************************/ 
 

/** C O N F I G U R A T I O N  B I T S *****************************/  

#pragma config UPLLIDIV = DIV_2          // USB PLL Input Divider 
#pragma config FPLLIDIV = DIV_2           // PLL Input Divider 

#pragma config UPLLEN   = ON                 // USB PLL Enabled 

#pragma config FPLLODIV = DIV_1         // PLL Output Divider 
#pragma config FPLLMUL  = MUL_20     // PLL Multiplier 

#pragma config FWDTEN   = ON               // Watchdog Timer 

#pragma config WDTPS = PS4096           // Watchdog timer postscaler 
#pragma config POSCMOD  = HS             // Primary Oscillator 

#pragma config FSOSCEN  = OFF             // Secondary Oscillator Enable  

#pragma config FNOSC    = PRIPLL         // Oscillator Selection 
#pragma config CP       = ON                     // Code Protect - Read protect the code 

#pragma config BWP      = OFF                // Boot Flash Write Protect - Disabled 

#pragma config PWP      = OFF         // Program Flash WP Disabled 
#pragma config ICESEL   = ICS_PGx2        // ICE/ICD Comm Channel Select 

#pragma config FPBDIV   = DIV_8             // Peripheral Clock divisor 

 
/** I N C L U D E S  ***********************************************/ 

#include "Main.h" 

#include <math.h> 
 

/** G L O B A L  V A R I A B L E S***********************************/ 

volatile signed int last_real_angle = 0; 



 

 

volatile unsigned char last_dir = 0; 

volatile unsigned char current = 0; 
volatile signed int last_angle = 0; 

volatile signed int diff = 0; 

volatile double step = 0.0; 
unsigned char DTR_PRESENT; 

 

/** I N T E R R U P T  S E R V I C E  R O U T I N E S **************/ 
 

/******************** TMR1 Interrupt *******************************/ 

void __attribute((interrupt(ipl1), vector(_TIMER_2_VECTOR), nomips16)) _T2Interrupt(void) 
{ 

  // Clear the flag 

  IFS0CLR = _IFS0_T2IF_MASK; 
  

  // Read motor temperature 

  Motor_Temp = 100 * (Read_ADC(2) * (VREF / RESOLUTION)); 
 

  /* Select vision only feedback or potentiometer 

  if(Feedback_Mode == FALSE) 
  { 

   temp_int = (Read_ADC(1) - Set_Point);//(Read_ADC(1) - Set_Point);  

   Motor_Temp = (0.571231223 + (Cn * 0.94583474)); 
  } 

  else 

  { 
   temp_int = (Camera_Angle-512); 

  } 
  */ 

  

  /* Experiment with delays 
  if(Sample == 0) 

  { 

   // Toggle LED 
   LED2 ^= TRUE; 

   temp_int = (Read_ADC(1) - Set_Point);  

   step = (double)(temp_int - last_real_angle) / 10.0; 

   last_real_angle = temp_int; 

  } 

  else 
  { 

   // Interpolate the angle 

   temp_int = temp_int + (short int)(step + 0.5); 
  } 

 

  Sample++; 
  if(Sample == 10) 

  { 

   Sample = 0; 
  } 

  */ 

 
  temp_int = (Read_ADC(1) - Set_Point);  

  en0 = temp_int + off_set; // Store to error function asuming no over-flow 

   
  // Check pendulum within limits 

  if(flgRest == TRUE)  

  { 
//if(temp_int == abs((short int)(START_ANGLE / ANGLE_PER_BIT))) do_PID = 

TRUE; // Allowed to do PID function 

if(temp_int > (short int)(START_ANGLE / ANGLE_PER_BIT)) //Check if error is 
too large to start (positive) 

   {  

    do_PID = TRUE; // Allowed to do PID function 
   } 

if(temp_int < -(short int)(START_ANGLE / ANGLE_PER_BIT)) //Check if error 

is too large to start (negative) 
   {   

    do_PID = TRUE; // Allowed to do PID function 

   } 



 

 

  } 

   
  //do_PID = TRUE; // Allowed to do PID function 

 

  // Check for error in angle - pendulm limits 
  if(temp_int > (short int)(CRITICAL_ANGLE / ANGLE_PER_BIT))  

  {    

   Set_Power(0);   // Stop PWM 
   Set_Direction(FALSE);  

 

   en0 = en1 = en2 = en3 = off_set = FALSE;   // Clear all PID constants 
   Cn = integral_term = derivative_term = SumE = FALSE; 

   do_PID = FALSE;   // Stop doing PID 

   Ts = 0; 
  } 

  if(temp_int < -(short int)(CRITICAL_ANGLE / ANGLE_PER_BIT))  { 

   
    

   Set_Power(0);   // Stop PWM 

   Set_Direction(FALSE);  
 

   en0 = en1 = en2 = en3 = off_set = FALSE;   // Clear all PID constants 

   Cn = integral_term = derivative_term = SumE = FALSE; 
   do_PID = FALSE;   // Stop doing PID 

   Ts = 0; 

  } 
 

 // Perform CDC service 
    CDCTxService(); 

} 

 
/******************** General exception ****************************/ 

void _general_exception_handler(unsigned cause, unsigned status) 

{ 
 Nop(); 

 Nop(); 

} 

 

/** I N I T I A L I S A T I O N  ***********************************/ 

/******************************************************************* 
 * Function:        void Init_Controller(void) 

 * 

 * PreCondition:    None 
 * 

 * Input:           None 

 * 
 * Output:          None 

 * 

 * Side Effects:    None 
 * 

 * Overview:        Initialises the microcontroller IO pins. 

 * 
 * Note:            None 

 *******************************************************************/ 

void Init_Controller(void) 
{  

 // General TRIS 

 TRISFbits.TRISF0 = OUT; // LED1 
 TRISDbits.TRISD1 = OUT; // LED2 

 TRISDbits.TRISD2 = OUT; // DRV EN 

 TRISDbits.TRISD5 = OUT; // INP1 
 TRISDbits.TRISD6 = OUT; // INP2 

 TRISDbits.TRISD0 = IN; // BTN1 

 
 // All pins digital except AN1 - Potentiometer 

 AD1PCFG = 0xFFFD; 

} 
 

 

 



 

 

/******************************************************************* 

 * Function:        Init_ADC() 
 * 

 * PreCondition:    None 

 * 
 * Input:           None 

 * 

 * Output:          None 
 * 

 * Side Effects:    None 

 * 
 * Overview:        Read ADC 

 * 

 * Note:            None 
 *******************************************************************/ 

void Init_ADC(void) 

{ 
    AD1CON1CLR = 0x8000;    // disable ADC before configuration 

  

    AD1CON1 = 0x00E0;       // internal counter ends sampling and starts conversion (auto-convert), manual sample 
    AD1CON2 = 0;            // AD1CON2<15:13> set voltage reference to pins AVSS/AVDD 

    AD1CON3 = 0x0f01;       // TAD = 4*TPB, acquisition time = 15*TAD  

 AD1CON1SET = 0x8000;  // turn on the ADC 
} 

 

/********************************************************************* 
 * Function:        void Init_System(void) 

 * 
 * PreCondition:    None 

 * 

 * Input:           None 
 * 

 * Output:          None 

 * 
 * Side Effects:    None 

 * 

 * Overview:        Initialise the peripherals and system components 

 *         

 * 

 * Note:            None 
 *********************************************************************/ 

void Init_System(void) 

{  
 // Enable multi-vectored interrupts 

 INTEnableSystemMultiVectoredInt(); 

  
 // Enable all interrupts 

 INTEnableInterrupts();  

  
 // Enable optimal performance 

 SYSTEMConfigPerformance(80000000L); 

  
 // Set PBUS clock divider (set to give 40MHz) 

 mOSCSetPBDIV(OSC_PB_DIV_2);     

 
 // Init OC3 module 

 OpenOC3(OC_ON | OC_TIMER3_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0); 

 
 // Init Timer3 mode and period (PR3) (frequency of 1220Hz)  

 OpenTimer3(T3_ON | T3_PS_1_1 | T3_SOURCE_INT, 0x10);//0xFFFF); 

 
 // Setup ADC 

 Init_ADC(); 

  
 // Disable JTAG port, but first wait 50ms so if we want to reprogram the part with  

 // JTAG, we still have a tiny window before JTAG expires. 

 //DelayMs(50);    // Provide a 50ms delay 
 DDPCONbits.JTAGEN = FALSE; // Disable JTAG port 

  

 // Reset DTR present flag 



 

 

 DTR_PRESENT = FALSE; 

  
 USBDeviceInit(); //usb_device.c.  Initializes USB module SFRs and firmware 

  

 // Enable the WDT 
 WDTCONbits.ON = TRUE; 

 

 // Init PID 
 en0 = en1 = en2 = en3 = FALSE; 

 ki = kd = FALSE; 

 kp = off_set = FALSE; 
 Set_Point = 511; 

 Sample_Rate = 1; 

 temp_int = integral_term = derivative_term = FALSE; 
 SumE_Max = 30000; 

 SumE_Min = 1 - SumE_Max; 

 do_PID = TRUE;    // Allowed to do PID function 
 Ts = 0; 

 Sample = 0; 

 
 // Disable postscaler 

 T2CONbits.TCKPS = 7; 

  
 // Disable timer 

 TMR2 = FALSE; 

  
// Set default interrupt time - Equation is: Time_Required / (256 * 0.025 x 10-6)) because PS = 1:256. 

Was Time_Required / 0.025 x10-6 for PS = 1 
 switch(Sample_Rate) 

 { 

  case 0: PR2 = INT_TIME_1MS; 
   break; 

  case 1: PR2 = INT_TIME_500US; 

   break; 
  case 2: PR2 = INT_TIME_200US; 

   break; 

  default: PR2 = INT_TIME_1MS; 

   break; 

 } 

 
 //PR2 = 0x30D;  // 200Hz 

 //PR2 = 0xC80;  // 50Hz 

 //PR2 = 0x3D09; // 10 Hz 
 PR2 = ((1.0 / PID_LOOP_FREQ) /  (256 * 0.000000025)); 

  

 // Clear interrupt flags and set priority 
 IFS0bits.T2IF = FALSE; 

 IEC0bits.T2IE = FALSE; 

 IPC2bits.T2IP = 1; 
 IPC2bits.T2IS = 1; 

 

 // Enable timer   
 T2CONbits.ON = TRUE; 

 IEC0bits.T2IE = TRUE; 

 LED2 = FALSE; 
}  

 

 
 

 

 
 

 

 
 

 

 
 

 

 



 

 

/** M A I N  F U N C T I O N  **************************************/ 

/*************************************************************** 
 * Function:        void main(void) 

 * 

 * PreCondition:    None 
 * 

 * Input:           None 

 * 
 * Output:          int 

 * 

 * Side Effects:    None 
 * 

 * Overview:        Main program entry point. 

 * 
 * Note:            None 

 *******************************************************************/ 

int main(void) 
{    

    // Initialise the microcontroller 

 Init_Controller(); 
 

 // Initialise the overall system 

    Init_System(); 
 

 //Get PID coefficients ki, kp and kd 

 Set_Constants();       
         

 // Main program loop 
 while(TRUE) 

    { 

  // Stop motor!! 
  if(!BTN1)  

  { 

   Set_Power(0);    
   Set_Direction(FALSE); 

   do_PID = 0; 

  } 

 

     // Clear the WDT 

  ClrWdt(); 
    

  // USB attach function 

  #if defined(USB_INTERRUPT) 
  if(USBGetDeviceState() == DETACHED_STATE) 

  { 

   USBDeviceAttach(); 
  } 

  #endif  

        
  // PID routine          

  if(do_PID) 

  { 
   PID(); 

   Send_Data(); 

  } 
   

  // Handle USB messages 

  MSG_Handler(); 
 } 

} 

 
 

 

 
 

 

 
 

 

 



 

 

/******************************************************************* 

 * Function:        void Send_Data(void) 
 * 

 * PreCondition:    None 

 * 
 * Input:           None 

 * 

 * Output:          None 
 * 

 * Side Effects:    None 

 * 
 * Overview:        Sends inverted pendulum parameters to PC software  

 * 

 * Note:            None 
 *******************************************************************/ 

void Send_Data(void) 

{ 
 sprintf(strData,"%06d,%04d,%04d,%04d,%06d,%f,",Ts, temp_int, en0, Cn, Motor_Temp, step); 

 putsUSBUSART(strData);  

 Ts += 5; 
} 

 

/******************************************************************* 
 * Function:        void PID(void) 

 * 

 * PreCondition:    None 
 * 

 * Input:           None 
 * 

 * Output:          None 

 * 
 * Side Effects:    None 

 * 

 * Overview:        Main PID function. The from of the PID is: 
 *     C(n) = K(E(n) + (Ts/Ti)SumE + (Td/Ts)[E(n) - E(n-1)])  

 * 

 * Note:            None 

 *******************************************************************/ 

void PID(void)          

{ 
 unsigned int tmp_sample_rate = FALSE; 

 

 switch(Sample_Rate) 
 { 

  case 0: tmp_sample_rate = 1000; 

   break; 
  case 1: tmp_sample_rate = 2000; 

   break; 

  case 2: tmp_sample_rate = 5000; 
   break; 

  default: tmp_sample_rate = 1000; 

   break; 
 } 

 

 // Clear i and d terms 
 integral_term = derivative_term = FALSE; 

  

 // Calculate the integral term 
 SumE = SumE + en0;    // SumE is the summation of the error terms 

 if(SumE > SumE_Max){   // Test if the summation is too big 

  SumE = SumE_Max; 
 } 

 if(SumE < SumE_Min){   // Test if the summation is too small 

  SumE = SumE_Min; 
 }         

  // Integral term is (Ts/Ti)*SumE where Ti is Kp/Ki 

          
  // and Ts is the sampling period 

          

  // Actual equation used to calculate the integral term is  



 

 

          

  // Ki*SumE/(Kp*Fs*X) where X is an unknown scaling factor  
          

  // and Fs is the sampling frequency 

 integral_term = SumE / PID_LOOP_FREQ;  // Divide by the sampling frequency 
 integral_term = integral_term * ki;  // Multiply Ki 

 integral_term = integral_term / 16;  // combination of scaling factor and Kp 

 
 // Calculate the derivative term 

 derivative_term = en0 - en3; 

 if(derivative_term > 120){     // Test if too large 
  derivative_term = 120; 

 } 

 if(derivative_term < -120){     // test if too small 
  derivative_term = -120; 

 }          

  // Calculate derivative term using (Td/Ts)[E(n) - E(n-1)] 
          

  // Where Td is Kd/Kp 

          
  // Actual equation used is Kd(en0-en3)/(Kp*X*3*Ts) 

 derivative_term = derivative_term * kd; // Where X is an unknown scaling factor 

 derivative_term = derivative_term / 32;   // divide by 32 precalculated Kp*X*3*Ts 
 

 if(derivative_term > 120){      

  derivative_term = 120; 
 } 

 if(derivative_term < -120){ 
  derivative_term = -120; 

 } 

          
  // C(n) = K(E(n) + (Ts/Ti)SumE + (Td/Ts)[E(n) - E(n-1)]) 

 Cn = en0 + integral_term + derivative_term; // Sum the terms 

 Cn = (Cn * kp) / 1024;    // multiply by Kp then scale 
  

 if(Cn >= MOTOR_MAX)//1000       

 // Used to limit duty cycle not to have punch through 

 { 

  Cn = MOTOR_MAX; //1000 

 } 
    if(Cn <= MOTOR_MIN)//-1000 

 { 

  Cn = MOTOR_MIN;//-1000 
 }   

 if(Cn == 0) 

 {      // Set the speed of the PWM 
  Set_Power(0);    // Stop PWM 

  Set_Direction(FALSE); 

  off_set =0; 
 } 

 

 if(Cn > 0) 
 {        

  Set_Direction(DIR_RIGHT);    // Motor should go forward and set the duty cycle to Cn 

  Set_Power(abs(Cn));  // Used to stop the pendulum from continually going  
 } 

 else  

 {       
  Set_Direction(DIR_LEFT); // Motor should go backwards and set the duty cycle to Cn 

 

  Set_Power(abs(Cn));    // Used to stop the pendulum from continually going around in a circle 
 } 

 

 en3 = en2;  // Shift error signals 
 en2 = en1; 

 en1 = en0; 

 en0 = 0; 
 do_PID = FALSE; // Done 

} 

 



 

 

/******************************************************************* 

 * Function:        Set_Constants(void) 
 * 

 * PreCondition:    None 

 * 
 * Input:           None 

 * 

 * Output:          None 
 * 

 * Side Effects:    None 

 * 
 * Overview:        Sets the PID constants 

 * 

 * Note:            None 
 *******************************************************************/ 

void Set_Constants(void) 

{ 
 kp = DEFAULT_KP; // Set Proportional Constant 

 ki = DEFAULT_KI; // Set Integral Constant 

 kd = DEFAULT_KD; // Set Differential Constant 
} 

 

/******************************************************************* 
 * Function:        Set_Direction(unsigned char DIR) 

 * 

 * PreCondition:    None 
 * 

 * Input:           unsigned char DIR: LEFT, RIGHT, OFF 
 * 

 * Output:          None 

 * 
 * Side Effects:    None 

 * 

 * Overview:        Sets the motor direction 
 * 

 * Note:            None 

 *******************************************************************/ 

void Set_Direction(unsigned char DIR) 

{ 

 // Set the motor direction 
 if(DIR == DIR_LEFT) 

 { 

  // Set left direction 
  DRV_IN1 = TRUE; 

  DRV_IN2 = FALSE; 

 } 
 else if(DIR == DIR_RIGHT) 

 { 

  // Set righgt direction 
  DRV_IN1 = FALSE; 

  DRV_IN2 = TRUE; 

 } 
 else 

 { 

  // Set direction off 
  DRV_IN1 = FALSE; 

  DRV_IN2 = FALSE; 

 } 
} 

 

 
 

 

 
 

 

 
 

 

 



 

 

/******************************************************************* 

 * Function:        Set_Power(unsigned char PWR) 
 * 

 * PreCondition:    None 

 * 
 * Input:           unsigned char PWR:  +/-127, 0 = off 

 * 

 * Output:          None 
 * 

 * Side Effects:    None 

 * 
 * Overview:        Sets the motor power 

 * 

 * Note:            None 
 *******************************************************************/ 

void Set_Power(unsigned char PWR) 

{ 
 unsigned int tmp; 

 

 tmp = PR3; 
 

 tmp = (unsigned int) (tmp * (PWR / MOTOR_MAX));  

 // Set the motor power 
 SetDCOC3PWM(tmp); 

} 

 
/******************************************************************* 

 * Function:        unsigned int Read_ADC(unsigned int PIN); 
 * 

 * PreCondition:    adcConfigureMaual() has been called 

 * 
 * Input:           unsigned int PIN:  

 * 

 * Output:          None 
 * 

 * Side Effects:    None 

 * 

 * Overview:        Read ADC 

 * 

 * Note:            None 
 *******************************************************************/ 

unsigned int Read_ADC(unsigned int PIN) 

{ 
    AD1CHS = PIN << 16;         // AD1CHS<16:19> controls which analog pin goes to the ADC 

  

    AD1CON1bits.SAMP = 1;           // Begin sampling 
    while( AD1CON1bits.SAMP );      // wait until acquisition is done 

    while( ! AD1CON1bits.DONE );    // wait until conversion done 

  
    return ADC1BUF0;                // result stored in ADC1BUF0 

} 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 



 

 

/******************************************************************* 

 * Function:        void MSG_Handler(void) 
 * 

 * PreCondition:    None 

 * 
 * Input:           None 

 * 

 * Output:          None 
 * 

 * Side Effects:    None 

 * 
 * Overview:        Handles USB messages - for the console interface 

 * 

 * Note:            None 
 *******************************************************************/ 

void MSG_Handler(void) 

{     
 static unsigned char  flgWelcomeMsg = TRUE; 

 unsigned char x = 0, BytesRead = 0; 

 short temp_setting = 0; 
   

    // Exit if USB not configured or suspended 

    if((USBDeviceState < CONFIGURED_STATE)||(USBSuspendControl == TRUE)) return; 
     

    // If we are ready to send data 

    if(USBUSARTIsTxTrfReady()) 
    {  

     // If port is open for the first time 
     if((flgWelcomeMsg == TRUE) && (DTR_PRESENT == TRUE)) 

     { 

      // Send welcome message 
   putrsUSBUSART("\r\n------------------------------------\r\nStephen Ingram - 

Pendulum Controller \r\n\nConsole Interface\r\n\nFirmware Ver 1.10\r\n------------------------------------\r\n"); 

    
   // Clear flag so we only send welcome message once 

   flgWelcomeMsg = FALSE; 

    

   // Initialise counters 

   x = FALSE; 

  }  
  else if(DTR_PRESENT == FALSE) 

  { 

  flgWelcomeMsg = TRUE; // Set flag so we send start-up message when COM port opens 
  } 

 } 

 
    // Get number of bytes read (if any) 

    BytesRead = getsUSBUSART(USB_Out_Buffer,32); 

 
    // If one or more bytes have been received 

    if(BytesRead != FALSE) 

    { 
     for(x = 0; ((x < BytesRead) && (x < 32)); x++) 

     { 

      // If carriage return received 
      if(USB_Out_Buffer[x] == 0x0D) 

      { 

    // Get test value and use Motor_Temp variable for debugging purposes 
    //Motor_Temp = (((USB_Out_Buffer[0] - '0') * 1000) + 

((USB_Out_Buffer[1] - '0') * 100) + ((USB_Out_Buffer[2] - '0') * 10) + (USB_Out_Buffer[3] - '0')); 

   } 
  } 

 } 

       
 // Perform CDC service 

    CDCTxService(); 

} 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3 

Cart Inverted Pendulum 

Test Application 

 

 

 

 

 

 

 



 

 

 
 

Appendix.3.1  - Main GUI Form. 

 



 

 

 
 

Appendix.3.2  - Image Filter View. 

 



 

 

    ' Main image processing thread 

    Sub ProcessFrameAndUpdateGUI(ByVal sender As Object, ByVal arg As EventArgs) 
 

        ' Debug! 

        Dim sw As New Stopwatch 
 

        Try 

            ' Start stopwatch 
            sw.Start() 

 

            ' Capture the image - Takes a lot of time!!! 
            imgOriginal = capWebcam.QueryFrame 

 

            ' Flip image about the horizontal axis if option selected 
            If CheckBoxFHRZ.Checked = True Then CvInvoke.Flip(imgOriginal, imgOriginal, FlipType.Horizontal) 

 

            ' Create images 
            Dim hsv_img As New Mat(imgOriginal.Size, DepthType.Cv8U, 3) 

            Dim threshold_img1 As New Mat(imgOriginal.Size, DepthType.Cv8U, 1) 

            Dim threshold_img1a As New Mat(imgOriginal.Size, DepthType.Cv8U, 1) 
            Dim threshold_img2 As New Mat(imgOriginal.Size, DepthType.Cv8U, 1) 

 

            ' Convert the image to HSV 
            CvInvoke.CvtColor(imgOriginal, hsv_img, CvEnum.ColorConversion.Bgr2Hsv) 

 

            ' Threshold the image to isolate the two marker colors 
CvInvoke.InRange(hsv_img, New ScalarArray(New MCvScalar(TrackLowH1.Value, TrackLowS1.Value, 

TrackLowV1.Value)), New ScalarArray(New MCvScalar(TrackHighH1.Value, TrackHighS1.Value, 
TrackHighV1.Value)), threshold_img1) 

 

CvInvoke.InRange(hsv_img, New ScalarArray(New MCvScalar(TrackLowH2.Value, TrackLowS2.Value, 
TrackLowV2.Value)), New ScalarArray(New MCvScalar(TrackHighH2.Value, TrackHighS2.Value, 

TrackHighV2.Value)), threshold_img2) 

 
            ' Filter the threshold images if option selected 

If CheckFilterErode.Checked = True Then CvInvoke.Erode(threshold_img1, threshold_img1, structuringElement, New 

Point(-1, -1), 1, BorderType.Default, New MCvScalar(0, 0, 0)) 

 

If CheckFilterErode.Checked = True Then CvInvoke.Erode(threshold_img2, threshold_img2, structuringElement, New 

Point(-1, -1), 1, BorderType.Default, New MCvScalar(0, 0, 0)) 
 

If CheckFilterDilate.Checked = True Then CvInvoke.Dilate(threshold_img1, threshold_img1, structuringElement, New 

Point(-1, -1), 1, BorderType.Default, New MCvScalar(0, 0, 0)) 
 

If CheckFilterDilate.Checked = True Then CvInvoke.Dilate(threshold_img2, threshold_img2, structuringElement, New 

Point(-1, -1), 1, BorderType.Default, New MCvScalar(0, 0, 0)) 
 

            ' Determine the moments of the two marker objects 

            moments1 = CvInvoke.Moments(threshold_img1, 0) 
            moments2 = CvInvoke.Moments(threshold_img2, 0) 

 

            ' Calculate the area of the two marker objects 
            area1 = CvInvoke.cvGetCentralMoment(moments1, 0, 0) 

            area2 = CvInvoke.cvGetCentralMoment(moments2, 0, 0) 

 
            ' Check that area1 is above the minimum threshold 

            If (area1 > Convert.ToInt32(TextMinArea1.Text)) Then 

                'x and y coordinates of the center of the object is found by dividing the 1,0 and 0,1 moments by the area 
                x1 = Int(CvInvoke.cvGetSpatialMoment(moments1, 1, 0) / area1) 

                y1 = Int(CvInvoke.cvGetSpatialMoment(moments1, 0, 1) / area1) 

 
                'draw circle 

 If CheckBoxOSD.Checked = True Then CvInvoke.Circle(imgOriginal, New Point(x1, y1), CInt(1), New  

MCvScalar(0, 0, 255), 10) 
 

                'write x and y position 

If CheckBoxOSD.Checked = True Then CvInvoke.PutText(imgOriginal, x1.ToString + "," + y1.ToString, New 
System.Drawing.Point(x1, (y1 + 20)), FontFace.HersheyComplex, 1, New MCvScalar(255, 255, 255)) 

            End If 

 



 

 

   ' Check that area2 is above the minimum threshold 

   If (area2 > Convert.ToInt32(TextMinArea2.Text)) Then 
 

                'x and y coordinates of the center of the object is found by dividing the 1,0 and 0,1 moments by the area 

                x2 = Int(CvInvoke.cvGetSpatialMoment(moments2, 1, 0) / area2) 
                y2 = Int(CvInvoke.cvGetSpatialMoment(moments2, 0, 1) / area2) 

 

                'draw circle 
If CheckBoxOSD.Checked = True Then CvInvoke.Circle(imgOriginal, New Point(CInt(x2), CInt(y2)), CInt(1), New 

MCvScalar(255, 0, 0), 10) 

 
                'write x and y position 

 If CheckBoxOSD.Checked = True Then CvInvoke.PutText(imgOriginal, x2.ToString + "," + y2.ToString, New  

System.Drawing.Point(x2, (y2 + 20)), FontFace.HersheyComplex, 1, New MCvScalar(255, 255, 255)) 
 

If CheckBoxOSD.Checked = True Then CvInvoke.Line(imgOriginal, New System.Drawing.Point(x1, y1), New 

System.Drawing.Point(x2, y2), New MCvScalar(0, 255, 0), 4, LineType.AntiAlias, 0) 
 

                'draw reference line  

If CheckBoxOSD.Checked = True Then CvInvoke.Line(imgOriginal, New System.Drawing.Point(x1, y1), New 
System.Drawing.Point(640, y1), New MCvScalar(100, 100, 1000, 100), 4, LineType.AntiAlias, 0) 

 

                ' Convert to angle and write to image 
                angle = Math.Atan((y1 - y2) / (x2 - x1)) * (180 / Math.PI) 

 

                ' Translate angle to be same as rig 
                If angle > 0 Then 

                    angle = (90 - angle) 
                Else 

                    angle = (-90) - angle 

                End If 
  

               ' Invert displayed angle 

                angle = -1 * angle 
  

               ' Format the dispalyed angle 

                TextAngle.Text = angle.ToString("###.0").PadLeft(3) 

 

                ' Plot chart - Camera 

                'chtAngle.Series(1).Points.AddXY(varTime, Convert.ToDouble(TextAngle.Text)) 
 

                ' Plot other data 

                chtAngle.Series(0).Points.AddXY(varTime, Convert.ToDouble(ang)) 
 

                'chtError.Series(0).Points.AddXY(varTime, (Convert.ToInt16(strData(1)) * 0.352)) 

                'chtDrive.Series(0).Points.AddXY(varTime, ((Convert.ToInt16(strData(2)) / 175.0) * 100)) 
                'chtTemp.Series(0).Points.AddXY(varTime, Convert.ToInt16(strData(3))) 

 

If CheckBoxOSD.Checked = True Then CvInvoke.PutText(imgOriginal, angle.ToString("###.0").PadLeft(3), New 
System.Drawing.Point((x1 + 50), ((y2 + y1) / 2)), FontFace.HersheyComplex, 1, New MCvScalar(255, 255, 255)) 

 

                ' Determine feedback sensor 
                If RadioButtonCameraOnly.Checked Then 

                    FeedBackSensor = True 

                    Digital_Angle = Math.Round(((Convert.ToDouble(angle) / 0.3515625) + 512)).ToString.PadLeft(4, "0"c).ToString 
 

                    ' Update the pendulum angle 

                    sendSerialCommandFast("set_angle " & FeedBackSensor.ToString & Digital_Angle) 
                Else 

                    FeedBackSensor = 0 

                End If 
            End If 

 

            ' Stop stopwatch 
            sw.Stop() 

 

            '' Display the processing time 
            TextProcessingTime.Text = sw.ElapsedMilliseconds.ToString 

 

 



 

 

            ' Display and format appropriate image  

            If TabVision.SelectedTab.Name = "TabPageCalibrateTargets" Then 
                ' Show threshold images as we are on calibrate tab 

                ImageBoxTh1.Image = threshold_img1 

                ImageBoxTh2.Image = threshold_img2 
            Else 

                ' Show other images as we are on the live view tab 

                If RadioButtonBGR.Checked = True Then ibOriginal.Image = imgOriginal ' BGR format 
                If RadioButtonHSV.Checked = True Then ibOriginal.Image = hsv_img ' HSV format 

                If RadioButtonTH1.Checked = True Then ibOriginal.Image = threshold_img1 ' TH1 format 

                If RadioButtonTH2.Checked = True Then ibOriginal.Image = threshold_img2 ' TH2 format 
                If RadioButtonTH1TH2.Checked = True Then 

                    CvInvoke.Add(threshold_img1, threshold_img2, imgOriginal)  ' Combine two threshold images 

                    ibOriginal.Image = imgOriginal ' Display combined format 
                End If 

            End If 

        Catch ex As Exception 
            ' An exception occurred 

        End Try 

    End Sub 

 


