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Abstract 

Recently, automatic age progression has gained popularity due to its numerous 

applications. Among these is the frequent search for missing people, in the UK 

alone up to 300,000 people are reported missing every year. Although many 

algorithms have been proposed, most of the methods are affected by image noise, 

illumination variations, and facial expressions. Furthermore, most of the algorithms 

use a pattern caricaturing approach which infers ages by manipulating the target 

image and a template face formed by averaging faces at the intended age. To this 

end, this thesis investigates the problem with a view to tackling the most prominent 

issues associated with the existing algorithms. Initially using active appearance 

models (AAM), facial features are extracted and mapped to people’s ages, 

afterward a formula is derived which allows the convenient generation of age 

progressed images irrespective of whether the intended age exists in the training 

database or not. In order to handle image noise as well as varying facial 

expressions, a nonlinear appearance model called kernel appearance model (KAM) 

is derived. To illustrate the real application of automatic age progression, both AAM 

and KAM based algorithms are then used to synthesise faces of two popular long 

missing British and Irish kids; Ben Needham and Mary Boyle. However, both 

statistical techniques exhibit image rendering artefacts such as low-resolution 

output and the generation of inconsistent skin tone. To circumvent this problem, a 

hybrid texture enhancement pipeline is developed. To further ensure that the 

progressed images preserve people’s identities while at the same time attaining the 

intended age, rigorous human and machine based tests are conducted; part of this 

tests resulted to the development of a robust age estimation algorithm. Eventually, 

the results of the rigorous assessment reveal that the hybrid technique is able to 

handle all existing problems of age progression with minimal error.   
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1 Introduction 

1.1 Background 

The human face is like a window to the soul, carrying a vast amount of 

information which we humans have a remarkable ability to extract, identify and 

interpret.  It is no surprise that faces are used as cues for recognising identities 

[1], emotions [2], gender [3], kinship [4], ethnicity [5] and developmental 

disorders [6] to mention but a few. It has been well documented that, facial 

structures and appearances change considerably as people age, which can 

make recognising individuals difficult over long periods. In particular, the shape 

of the face changes substantially from birth to adulthood. During adulthood, 

while the shape remains relatively constant, there are changes in musculature 

and skin tautness which affect the facial ‘texture’ [7]. As a result of these 

observed changes, automatic facial ageing has been studied for over a decade. 

Research on facial ageing focuses on two main subjects; age progression and 

estimation. Age progression entails the re-rendering of the face image with 

natural ageing effect. Its most significant applications include the search for 

missing people and the identification of fugitives. Furthermore, facial image 

correction via age progression can be used to enhance face recognition 

algorithms. Age estimation on the other hand automatically labels specific age 

or age group of individuals from their facial image [7].  Age estimation can be 

used in the automatic retrieval of images. It can also be deployed as a filter for 

searching through a face recognition engine. Its other areas of application 

include access control and human-computer interaction. 

Similar to other branches of automatic facial analysis, age progression and 

estimation are obstructed by a number of factors such as facial expressions, 
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illumination variation and pose variation to mention but a few. Thus, several 

techniques have been documented in the literature to circumvent these 

problems, however, the problem is still not considered solved [8]. This is due to 

lack of standardized age progression performance evaluation metric. 

Furthermore, researchers use different datasets thus obstructing replication of 

experiments and comprehensive comparison.  

In light of these adverse factors, this work approaches the problems of age 

estimation and synthesis by building upon existing methods, proposing 

improvements and developing novel algorithms. Specifically, in this thesis, 

models of age progression that are robust to insufficient training data, image 

noise, illumination variation, the negative effects of facial expressions and poor 

image resolution are built.  To evaluate the performance of the proposed 

models, advanced face representation techniques for age estimation are 

investigated and deployed. After rigorous experimental evaluation of the age 

progression models, best performing techniques are deployed in an attempt to 

solve real life problem of identifying missing persons. 

In summary, work done in this thesis starts off with facial age synthesis using 

Active Appearance Models (AAMs), then due to obvious problems associated 

with the linear model, a nonlinear appearance model termed Kernel 

Appearance Model (KAM) is proposed and used for synthesis. To achieve 

further improvements, a nonparametric procedure is introduced and 

incorporated to the KAM. The latter part of this thesis explores the development 

of an automatic age estimation algorithm that can be used to evaluate the 

performance of the proposed synthesis algorithms. Precisely, two age 

estimation approaches are considered in succession; age estimation via 

supervised appearance models (sAM), and then using ConvNets. 
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It is worth mentioning that, this report interpolates ideas from six articles 

published by the author. Chapter 3 uses material from [9] and [10]. Chapter 4 is 

based on [11], chapter 5  emanates from [12], chapter 6 is based on [13] and 

finally, chapter 7 is built on [14]. 

1.2 Thesis Statement 

This thesis addresses the research questions outlined in Table 1.1. 

Table 1.1: Research Questions. 

Research Question Motivation 

1. Is there an effective way of 

achieving automatic age 

progression using 

statistical models? 

 

Lanitis et al. [15] demonstrated that an 

ageing function can be defined that relates 

ages to face parameters retrieved using 

AAMs. However, this was not implemented 

explicitly. 

 

2. Can nonlinearity be used 

to tackle noise that hinders 

the performance of AAMs? 

3. Can age progression that 

is robust to facial 

expression be achieved? 

 

 

 

 

In a comprehensive review, Gao et al. [16] 

discuss the factors that affect the 

performance of AAMs amongst which is 

noise in the data. Furthermore, preliminary 

experiments conducted in this thesis also 

show that noise and facial expressions 

affect the reconstruction ability of AAMs.  

When searching for missing people, the 

image at hand can be noisy and be 

displaying facial expression. An ideal 
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Research Question Motivation 

algorithm should render images that are 

robust to these factors. 

 

4. Is there a way of 

enhancing the texture 

quality of age progressed 

images? 

Statistical models produce faded 

unrealistic images [17]. Low resolution 

faded images lack fine grained texture 

details such as wrinkles that act as age 

indicators. Is there a way of augmenting 

facial texture? 

 

5. Is it possible to develop an 

automatic age estimator 

that is able to predict ages 

with minimal errors, 

despite relatively small 

training data size? 

Ideally, age progression algorithm should 

exhibit two capabilities:  preserve the 

identity of the subject and render the 

expected age. The former can be 

evaluated by measuring image similarities 

(i.e. between real and synthesised 

images). On the other hand, a non-

subjective way of assessing an algorithm's 

ability to render faces that meet the target 

age is through the use of automatic age 

estimation. Can an effective age estimator 

for evaluating age progression 

performance be built?  
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1.3 Thesis Contribution 

The contributions made to the field of knowledge are two fold; those related to 

age progression and others associated with automatic of age estimation. 

 

 

• Age Progression 

o The classical work of Lanitis et al. [15] is improved by deriving a 

linear formula for computing facial attributes, thereby giving the 

ability to synthesise faces even when the training data is 

insufficient. 

o A novel nonlinear model for face abstraction is developed, this is 

termed Kernel Appearance Model (KAM). It is further shown that 

the KAM is robust to noise, illumination and facial expressions. 

o  Finally, a non-parametric framework for image texture 

enhancement is proposed. 

 

 

• Age Estimation 

o An appearance model that preserves facial features that retain the 

most significant ageing information is proposed, the model is 

termed a Supervised Appearance Model (sAM). 

o Using a pre-trained convolutional neural network (ConvNet/CNN), 

for face representation is also investigated. Hence, based on 

these features a robust age estimation algorithm that outperform 

state-of-the-art algorithms is developed. 
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1.4 Outline of Thesis 

Chapter 2 reviews existing works on automatic age progression and estimation, 

concentrating on those closely related to this work.  

Chapter 3 describes an initial work on age progression. Firstly, improvement to 

the work of Lanitis et al. [15] is proposed.  Thus AAM features coupled with 

ordinary least squares regression algorithm are utilised for rendering images at 

different ages.  Thereafter, the method is extended by introducing more 

sophisticated regression models. It is observed that the better the regression 

technique, the lesser is the face reconstruction error. Using the algorithm the 

best performing algorithm, the progression model is then used in a real life 

problem, i.e. to synthesise the face of Ben Needham [18]. 

Chapter 4 introduces a kernel appearance model (KAM) which captures 

nonlinear shape and texture variations. Facial features extracted using the KAM 

are then used to synthesise faces. It is observed that KAM’s nonlinear 

transformation effectively handles noise and facial expression variations. The 

KAM age progressor is then used to synthesise the face of Mary Boyle [19]. 

Chapter 5 entails the development of texture enhancement pipeline. In order to 

tackle the problem of low resolution, the chapter details a procedure for 

augmenting age progressed image output with a fine-grained skin-texture detail.    

Chapter 6 reports the work done on age estimation. A supervised appearance 

model (sAM) is derived and used to capture facial ageing features. Next, age 

estimation is performed via regression.  

Chapter 7 introduces an alternative technique for age estimation. To enhance 

the performance of the age estimator discussed in chapter 6, CNNs are 

investigated. Precisely, a pre-trained ConvNet is used to extract features, 

thereafter, age estimation is conducted via a regression model. Next, thorough 
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performance evaluation of the age progression models is conducted using the 

age estimator.  

Chapter 8 presents conclusion and future direction of this work. 
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2 Literature Review 

In this chapter existing approaches to age progression is reviewed. Our primary 

focus is on statistical-model-based approaches, next to the reviews on existing 

works on age estimation.  

 

2.1 Age Progression 

Age progression also called age synthesis, involves the automatic 

reconstruction of a human face with natural ageing effects [7]. This area of 

automatic facial analysis has been active due to its real-life applications, which 

include identification of fugitives and the search for missing people.  

The earliest method used for age progression is the forensic artist’s approach. 

Here the subject’s image, in combination with images of his/her relatives, as 

well as additional information such as life style, is used to render the picture as 

an artistic hand sketch. Alternatively, a computer based graphic drawing 

approach guided by the knowledge of the forensic artist can be applied [20]. 

Police departments around the world, still predominantly use the former. While 

the method has been successful in the past, it requires remarkable talent and 

years of experience. Normally the forensic artist undergoes thorough training 

and requires a good knowledge of interviewing procedures, behavioural 

science, cognitive psychology and craniofacial anthropometry [20]. 

In Computer Vision, automatic age progression has been approached through 

the use of geometric, texture-specific and appearance based methods [7], [8]. 

 

2.1.1 Geometric Models 

Studies on human perception have shown that geometric transformations of the 

human head, in other words, changes in the shape of the human skull, 
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significantly affect how facial age is perceived [21]. Pittenger and Shaw [22] 

studied the perception of facial ageing by using spatial and coordinate 

transformations to build a facial profile growth model. Particularly, they 

compared the effects of affine shear and cardioidal strain transformations on the 

perception of ageing on profile face images. It was discovered that shear had 

less effect on the overall shape as well as the perceived age and on the other 

hand, the cardioidal strain had more significant effect on the perceived age. 

This concept was then modified by Todd et al. [23], by assuming the structure of 

the head conforms to hydrostatic pressure gradient, thereby giving rise to a 

revised cardioidal growth model that affects the size of the human head in a 

manner that is more in line with the effects of actual growth. Subsequently, 3D 

facial growth models were developed by extending the revised cardioidal strain 

model [24]. 

In Computer Vision, geometric models represent the face shape using ratios 

and geometric units. The face is animated using interpolation and displacement 

of vertices. D’arcy Thompson is considered one of the pioneers in the area of 

geometric based face modelling. The theory of transformation described in his 

book “on growth and form” [25] states that differences in related species can be 

represented geometrically [26]. Geometric face models have been used in 

caricaturing [27] and cartoon faces [28]. Furthermore, they have been used by a 

number of researchers to model variations in young faces, for example, the 

works of [29] and [30]. An obvious setback of this approach is the fact that it 

does not take into account the facial texture such as skin tautness as well as 

wrinkles [7]. 
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2.1.2 Texture Models 

Texture related models focus on extracting and manipulating fine grained face 

details such as the facial skin, creases, and wrinkles to render photorealistic 

aged-faces [7], [31]. This approach has been explored using various techniques 

such as the transfer of wrinkles from old faces onto young faces [32]; by 

substituting high frequency components of the first image with those of a 

second image. Mukaida & Ando [33] proposed a method that utilised adaptive 

thresholding to extract wrinkles from facial images, the resulting binary features 

were then used to independently progress ages. The construction of 3D 

wrinkles has also been reported in the literature [34]–[36]. However, wrinkles, 

creases, and other skin deformations are not found in young people. Hence, 

this approach is not suitable for age reversing. 

 

2.1.3 Appearance Based Approach 

Appearance based techniques use both shape and texture information to model 

the face. One of the earliest attempts is that of Burt and Perette [37] who used 

facial composites to simulate ageing. Precisely, their approach entails 

computing averages of face shapes and colour information for different age 

groups. Subsequently, the difference between the target age group and the 

current age group is computed, scaled and added to the subject’s image. Over 

the years Burt and Perette’s technique has undergone a number of 

improvements. Since the prototyping technique results in a low-resolution 

images, Tiddeman et al. [38], proposed using wavelets to enhance facial 

texture. Fu and Zheng [39] proposed a prototyping framework to transfer 

different views in the 2D domain, thus they were able to render both frontal and 

semi-frontal images. Kemelmacher-Shlizerman et al. [40] extended Burt & 
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Perett’s work, for unconstrained images. Their improvements include the 

formation of a large database, implementation of a robust face alignment 

procedure, as well as a technique for compensating illumination variations; a 

relighted average face is used in place of the normal average face. One 

challenging problem of this prototyping approach is the fact that the ageing 

effect applied to different people is the same provided they belong to same age 

group. Additionally, the averaging procedure results in low-resolution output. 

Furthermore, face expression is not completely normalised hence ageing a 

photo that exhibits facial expression results in an output with magnified 

expression; this usually distorts the output image. Recently, Wang et al. [41] 

proposed the use of recurrent neural networks (RNN) to enhance the 

prototyping method by preserving a person's identity. Using intermediate 

transition states, the RNN was used to smoothly transform the face across 

different ages. Unfortunately, RNNs require hundreds of thousands of images 

for training. Additionally, the method still suffers from averaging effects, thus, its 

output is still having low resolution. Besides, it is also not robust to facial 

expressions. 

 

A more mathematical method has been taken by Scandrett et al. [42]. This work 

proposed, two principal component analysis (PCA) based linear equations to 

describe the face shape and texture, this they termed aging axis. Utilizing the 

two equations, age progression of the shape and texture were then conducted 

independently. Geng et al. [43], proposed a technique that finds missing faces 

in an ageing pattern via solving an expectation minimization algorithm, this they 

termed AGES. Both methods discussed above, are not robust to facial 

expression, they also produce low resolution images. Suo et al. represented 
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faces in an age group using hierarchical And-Or graphs. Unlike other 

researchers, their graph based Markov model also captured details of the 

forehead as well as the hair for age estimation and progression. However, this 

technique is only effective on adult faces. Markov model age progressor was 

again proposed in [44] to generate adult and young faces. It’s obvious setback 

is that the technique suffers from ghosting; an image rendering artefact where 

warping failure results in distorted, blurry output that is unnatural [45]. Usually, 

ghosting produces disfigured faces that are hard to recognise.  

 

Lanitis et al. [15] achieved age progression using AAM [46]. Facial features 

were extracted using AAMs, afterward, an ageing function that relates ages to 

the raw AAM features was defined. Using regression, ages were estimated and 

additionally, age progression was realised by computing a new set of AAM 

features. To be precise, a number of AAM vectors were generated for each age 

in the training data. Next, the features were stored in a lookup table. In cases 

where there were several subjects having the same age, the average vector 

corresponding to that age was computed and stored. To synthesise a new face, 

features of the current and projected ages were retrieved from the lookup table 

and then their difference was added to the individual's original AAM parameters. 

The technique suffers from a number of limitations. It works by adding or 

subtracting average AAM features, which is actually not far from the prototyping 

methods discussed earlier. Adding or subtracting “averages” partially masks the 

identity of the subject, it also results in low resolution images and ghosting. 

Secondly, being dependent on the lookup table, one cannot synthesise an age 

that is not in the training set. Lanitis’ approach has been utilised by several 

researchers including [10], [36] and [37]. The idea of using AAMs has also been 
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extended to 3D by a number researchers [49]–[51]; this involves the use of the 

Morphable model [52]. 

Other researchers treated the problem as that of occlusion removal [53] or 

missing data recovery [48]. In general, all the methods discussed above are 

affected by peculiar problems which include, varying facial expressions, image 

noise, and low resolution.  

 

To this end, this study aims to solve this problem by first revisiting the classical 

approach of Lanitis et al. [6] and improving it by explicitly solving for an ageing 

function that extrapolates faces even if the projected age is not available in the 

training set, thereby tackling the problems associated with lookup table. Other 

improvements include the development of an appearance model that is robust 

to image noise and facial expression. Lastly, a texture enhancement framework 

is proposed, in order to compensate for low image resolution. 

 

2.2 Age Estimation 

Over the last two decades, age estimation has been studied extensively, due to 

its numerous real-world applications, which include: 

• Age-Based Access Control: Cigarette vending machines are a 

convenient means of purchasing tobacco. However, the benefit 

comes with a great setback; the underage can also buy tobacco 

without restriction. To this end, age estimation systems [54] play 

significant role. This same principle of access control has a wide 

range of applications, including but not limited to stopping adults from 

getting onto roller coasters and denying children access to adult 

movies or websites. 
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•  Information Retrieval: The internet, having billions of images, is 

considered as the world’s largest image database [55]. Despite the 

abundance of resources, searching the internet for images is not an 

easy task. Image retrieval plays significant role on social media 

websites for a number of applications such as, tagging people, album 

formation and friend suggestions. With the aid of an efficient age 

estimation algorithm, image retrieval can be made even more 

intelligent by narrowing picture selection to specific age groups [8], 

[56]. 

• Demographic studies: Age estimation applications can be utilised as 

vital tools for demographic studies [57]. The accuracy of demographic 

study relies on information such as gender, ethnicity and most 

importantly age. Age estimators can provide a means of 

understanding the dynamics of the population. 

• Evaluation of Age Progression Systems: The precision of age 

synthesis algorithm is usually evaluated based on two factors; the 

degree to which it retains the identity of the subject and its ability to 

render a face that fits the projected age [7], [8]. While, the former, can 

be evaluated using a suitable image similarity measure, the most 

appropriate way of evaluating the latter is via age estimation. 

Furthermore, since most age progression algorithms are data driven, 

an accurate age predicting algorithm can be used to crawl for images 

with a view to enhancing the performance of the progression 

algorithm. Thus, age estimation directly affects age progression. 
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Similar to face detection and recognition, facial age estimation is obstructed by 

several factors such as head pose variation, occlusion, facial expressions, 

illumination variation and clutter background, to mention but a few. Yet, it is also 

challenged by other internal and external factors including gender, genes, 

health and lifestyle [58]. Hence, several approaches have been documented in 

the literature. Traditionally, age estimation has been achieved via a vital two-

step procedure, consisting of feature extraction and pattern learning [6].  

 

2.2.1 Feature Extraction 

As an initial mechanism, feature extraction is the process of parameterizing the 

face with a view to defining an efficient descriptor. Several researchers focused 

on this concept, thereby devising numerous feature extraction methods.  

 

Two broad categories of feature extraction explored by researchers in the 

literature are local and holistic techniques [59]. Local also known as part-based, 

or the analytic approach concentrates on salient parts of the face such as the 

facial anthropometry and wrinkles. Using local features, the earliest work on age 

estimation can be traced back to Kwon & Lobo [60]. By representing the face as 

ratios of distances, they classified the 2D images into three age groups; babies, 

young adults, and senior adults. To be precise, the computed ratios were used 

to discriminate infants from adults. Thereafter, they utilized facial wrinkles 

represented as snakelets to further separate the adults into young and seniors. 

Several other approaches have extended this basic idea, using Sobel edge 

detection with region tagging [61], Gabor filters and local binary patterns (LBP) 

[62] and Robinson Compass Masks [63] to define wrinkle and texture features. 

More detailed craniofacial growth models have also been developed to define 
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the ratios between facial features [29]. A drawback of local features is that they 

are not suited for specific age estimation because geometric features only 

describe shape changes, which are predominant in childhood, and local 

textures are limited to wrinkles, which manifest in adulthood. 

Holistic, also known as global methods, consider the entire face when extracting 

features. Subspace learning techniques have been used extensively in the 

literature, these include PCA, neighborhood preserving projections (NPP), 

locality preserving projection (LPP), orthogonal LPP [64], [65], locality sensitive 

discriminant analysis (LSDA) and marginal fisher analysis (MFA) [66]. The 

active appearance model (AAM) [46], a statistical feature extraction method that 

captures both shape and texture variation, has been the most widely used 

technique [8]. Lanitis et al. [15] were the first to perform specific age estimation 

using the AAMs. Recently Biologically inspired features (BIF) [67] have been 

used by several researchers [68], [69] with promising results [70]. For 

comprehensive reviews, the reader should refer to [7], [8], [71].  

 

Recent advances in Convolutional Neural Networks (CNNs), has resulted in a 

major paradigm shift. Using CNNs, features are automatically learned, 

facilitating the building of systems that learn from end to end. Hence, 

researchers have attempted to solve the problem of age estimation using 

CNNs. One of the earliest works is that of Wang et al. [72], where they used a 5 

layered CNN to extract facial features. Their experiment on the two FGNET-AD 

[15] and Morph [73] databases yielded good results. However, they were unable 

to outperform state of the art algorithms. This could be due to the shallow 

nature of the architecture. Levi and Hassner [74] proposed a six layered CNN 

for age group classification. Niu et al. [75], used a four layered CNN to treat the 
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problem as an ordinal regression problem. Yi et al. [76], segmented the face 

into patches that were fed into a multi scale 3 layered sub-networks, afterward 

the outputs of the sub-networks were aggregated using a final layer. A similar 

approach was used by [77], however, instead of using 23 patches, they down 

sampled it to 8 patches per face. Liu et al. [78] fused regression and 

classification via a 22 layer deep CNN in order to perform apparent age 

estimation. All these have had little improvements on previous algorithms. 

 

Unfortunately, training CNNs require an enormous amount of training data, 

often in millions. Additionally, stochastic gradient descent methods (SGD) used 

for training are difficult to tune and parallelize [79]. It also requires huge 

computational resources. With the exception of [72], all other researchers 

mentioned above that used CNNs, failed to compare their results to the 

FGNET-AD database; probably due its relatively small size. 

 

2.2.2 Pattern Learning 

The second step to achieving age estimation is pattern learning, which is the 

automatic mapping of facial features to target ages. Generally, researchers 

approach age-learning either as a regression task, or multi-class classification 

problem [7], [8], [80]. Following the latter approach, conventional classification 

algorithms such as support vector machines (SVM) [68] and relevance vector 

machine (RVM) [81] have been employed. 

 

Estimation via the use of regression was first presented in [15] using a quadratic 

function (QF). Lanitis et al. [47] compared the QF to three traditional classifiers, 

shortest distance classifiers, Multi-layer perceptron (MLP) and the Kohonen Self 
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Organizing Maps. They reported that MLP and QF had the best performance. 

Geng et al. [43] described AGES a method that learns the ageing pattern of 

individuals and uses AAM for feature extraction. Multiple linear regression was 

proposed by Fu et al. [64]. Using Gaussian mixture models (GMM), Yan et al. 

proposed patch kernel regression [82]. For a comparison of some recent 

regression algorithms, the reader is referred to the work of Fern´andez et al. 

[71]. 

Towards this end, this work is aimed at investigating robust age estimation 

algorithm that seamlessly fits into the age progression framework and at the 

same time thrive on both small and huge datasets. 
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3 Face Synthesis using Active Appearance Models 

Here age progression is achieved by using AAMs to describe the human face, 

thereafter, the extracted features are fed into various linear regression models. 

A thorough evaluation of these different approaches is then conducted. 

 

3.1 Introduction 

This chapter describes the first contribution of this dissertation, which is to 

improve the classical method of [15]. As discussed earlier, Lanitis et al. [15] 

used grayscale AAM to extract facial features, then a lookup table was formed 

where average features for each age were saved. To progress an image, the 

individual appearance features were manipulated by leveraging the parameters 

of the current and progressed age from the lookup table. Detail of their 

procedure is shown in Figure 3.1. This technique relies on the lookup table, thus 

it only render’s ages that are contained therein. 

 

 

Figure 3.1: Lanitis et al.’s Face Synthesis Procedure. 
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Besides reliance on ages contained in the lookup database, the method also 

suffers from a number of setbacks including but not limited to ghosting, low 

resolution, and intolerance to noise. Hence, an improvement is proposed in this 

chapter, using AAM features, a technique that does not rely on a lookup table is 

devised. 

 

The rest of the chapter describes the development of a colour-based AAM for 

face feature extraction, thereafter, a simple algebraic procedure for progressing 

ages is derived; a linear function is used to map ages to corresponding face 

features. Subsequently, the inverse of the function is used to achieve age 

progression. It may perhaps be observed that the concept of using an ageing 

function was mentioned by [15] as well as other researchers that used their 

approach, however it was only implied as they did not explicitly derive the 

inverse of the function. In a later part of the chapter, two implementations of the 

ageing function are presented to illustrate its ability to generalise to different 

linear mappings. It is further shown that the proposed technique can be applied 

in real life cases to aid the search for missing people. It is worth mentioning that 

a colour based variant of the conventional AAM is considered only when the 

photograph to progress is a colour image. Otherwise, a grayscale AAM is 

utilised.  

 

3.2 Data 

Since AAM is a data driven model, an initial step to building the model is to 

collect images. Hence, two categories of data were formed: 
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Colour Image dataset: a database of 1002 high quality colour photographs 

was made. These were acquired from four sources; 149 images were extracted 

from Politecnico di Torino’s “HQFaces” siblings facial images database [83], 

where the subjects’ ages varied between 13 and 50 years, these images have 

been photographed under controlled lighting condition. Next, all eighty images 

contained in the Dartmouth Children's Faces Database [84] were obtained, here 

frontal images that were photographed under one lighting condition and 

displayed a neutral facial expression were used. The age range for Dartmouth’s 

collection is from 6 to 16 years and a 1:1 gender ratio.  

 

Ninety-six images were taken from FGNET aging database (AD) [85]. This is 

made of 1002 face-pictures of 82 people, with each subject having multiple 

images. Their ages are distributed in the range of 0 and 69. This dataset has 

varying picture qualities; from grey scale to colour images, having diverse 

illumination, sharpness, and resolution. Furthermore, the subjects display 

varying facial expressions and head pose. The remaining 677 images were 

carefully selected from the Internet; these subjects are mainly well-known 

people, with ages ranging from 1 to 70 years. In total, the database has a male 

to female ratio of 4:3.  

 

Grayscale Images dataset: For instances where the image to be progressed is 

in grayscale format,  and for testing, comparison and validation purposes, all 

1002 images contained in FGNET-AD database are used to build the AAM.  

With a view to reducing computational cost, all images have been cropped to a 

size of  340 × 340 pixels.  
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3.3 Colour-based AAM 

AAM is a statistical model that captures shape and texture variability from a 

training dataset. The parameterised model is formed by using PCA to combine 

shape and texture variations, which can then be used to describe images. The 

model which was first proposed by Tim Cootes and his team [86] was based on 

grayscale images. Since both grayscale and colour images are considered in 

this thesis, the development of a colour-based AAM is hereby presented; this 

entails the development of shape and texture models and combining them in a 

single framework. 

 

3.3.1 Shape Model 

This models the variability of face shapes using PCA. Shapes, which are 

represented by a set of 𝑛 landmarks defined in two-dimensional space ℝ2, are 

first aligned to remove translation, scale, and rotational variations. Then their 

variation is captured and abstracted into a single parameter, this process is 

explained in detail below. 

 

3.3.1.1 Image Data Annotation 

Facial image annotation with landmarks is the first step in the development of a 

statistical shape model. Annotation involves labelling structures of interest 

within images. This is achieved by the use of 𝑛 fiducial points, usually placed at 

object boundaries and key locations in order to mark particular features of the 

face which are not affected by rotational, scaling and translational changes; for 

example, the tip of the nose and the corners of the mouth. 
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Thus, each shape in the training set can be represented by a 2 dimensional 

vector 𝐱, representing the x and y coordinates of each landmark (𝑥𝑖, 𝑦𝑖), 

 

 𝐱 =  (𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑦1, 𝑦2, . . . , 𝑦𝑛)𝑇 . (3.1) 

   

With the aim of describing the face shape accurately, 79 landmarks (shown in 

Figure 3.2) were manually placed consistently throughout the training data i.e. n 

=79. These 79 landmarks represent the most optimum points used in [88]. 

While many algorithms for automatic annotation have been proposed in the 

literature, they are not free from defects, thus hardly giving 100% correct 

annotation across several images. To reduce variations and to ensure data 

purity, manual annotation was utilised in this work.  

 

 

Figure 3.2: Annotation of 79 landmarks to define face shape. 
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3.3.1.2 Shapes Alignment 

In order to capture only the shape variations from the training images, there is a 

need to remove translation, scale, and rotational variations. This can be 

achieved by using the Generalised Procrustes Analysis [89]. This refers to a set 

of least-squares tools used to estimate and conduct similarity transformations of 

point coordinates matrices between two shapes until an optimum agreement is 

achieved [90].  

 

In order to perform the transformation between two shapes 𝑥1 and 𝑥2, scale, 

rotation, and translation are applied to 𝐱1 so that it aligns with 𝐱2 while 

minimising the Procrustes distance (PD) given by, 

 

 𝑃𝐷 = √∑[(𝑥𝑗1 − 𝑥𝑗2)
2
+ (𝑦𝑗1 − 𝑦𝑗2)

2
]

𝑛

𝑗=1

 (3.2) 

 

where 𝑥𝑖𝑗 represents the x-coordinates of the 𝑗𝑡ℎ landmark on the 𝑖𝑡ℎ  face and 

𝑦𝑖𝑗 refers to the corresponding y-coordinates. The procedure can be 

summarised using Algorithm 3.1. 

 

Algorithm 3.1 Procrustes Analysis 

[1] Compute the centroid of each shape 

[2] Align both shapes to the origin 

[3] Re-scale each shape to have equal size 

[4] Arrange the two shapes at their centroids w.r.t. position by translation 

[5] Align the two shapes w.r.t. orientation by rotation 

 



 

25 

 

Generalised Procrustes Analysis (GPA) is an extension of Procrustes analysis, 

to k  number of shapes, hence it is used to align k sets of shapes to a target 

shape, this can be summarised using Algorithm 3.2.  

 

Algorithm 3.2 Generalised Procrustes Analysis 

[1] Assume one of the shapes to be the mean shape �̅� 

[2] Align all the shapes to the approximate mean shape using Procrustes 

analysis 

[3] Compute a new approximate mean �̅�𝑛𝑒𝑤 

[4] Repeat (2) and (3) until convergence i.e. �̅�  ≈  �̅�𝑛𝑒𝑤 

 

The significance of this alignment procedure is realised by comparing the 

unaligned and aligned face shapes shown in Figures 3,3 and 3.4. 

 

 

Figure 3.3: Unaligned shapes; each point represents a landmark for a given 
personal feature. 
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Figure 3.4: Training data shapes aligned using GPA. 

 

3.3.1.3 PCA Modelling of Shapes 

Having aligned the 2-dimensional shape vectors 𝐱𝑖 using GPA, now the 

statistical shape model can be built using PCA as described by Algorithm 3.3. 

 

Algorithm 3.3 Principal Component Analysis of Shapes 

[1] Find the mean shape �̅� of the training data  

[2] Align the shapes using GPA 

[3] Compute the mean shape �̅� of the training data and subtract it from each 

shape 

[4] Compute covariance matrix 𝐶𝑥   of the centralised data 

[5] Use eigen decomposition to project the shapes to a new basis. 

 

Shape vectors of the training data can now be represented using a set of 

mutually orthogonal axes obtained using the Algorithm 3.3  above. Thus, the 
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statistical shape model represents each face shape using a linear equation 

given by,  

 𝐱 = �̅� + 𝑷𝑘𝒃𝑘 (3.3) 

 

where 𝑷𝑘 is a matrix of eigenvectors, and 𝒃𝑘 the shape parameters. 

 

3.3.2 Texture Model 

Here, texture is defined as the image pixel intensities. Hence, the model 

captures the variability of image pixels; which can be achieved using the 

EigenFaces approach [91]. However, the drawback of Turk & Pentland’s 

method is the lack of pixel to pixel correspondence across the training set, 

which is due to person to person shape variations. With a view of tackling the 

stated problem, all face images can first be warped to a mean shape, thus 

“shape-free patches” are created [46]. To reduce global illumination variations, 

image pixel intensities are normalised by aligning them as closely as possible to 

the mean texture of the training data. In order to model colour texture, RGB 

channels are extracted and converted to an uncorrelated colour space so that 

they can be modelled independently using PCA. These steps are explained in 

detail below. 

 

3.3.2.1 Image Warping 

Image warping is a geometric transformation which maps positions in one 

image plane to positions in another image plane [92]. This is used to deform the 

training images to a standard shape (i.e. the mean shape), that way, pixel to 

pixel correspondence is achieved between faces. 
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There are many approaches to warping, the choice of a particular warping 

technique is a compromise between achieving a good match and one that 

distorts the image smoothly [93]. However, the most commonly used warping 

technique in the literature is the piecewise affine warping [94]. Thus, using the 

piece-wise affine warping technique, all the training images can be warped to 

the mean shape, thereby resulting in the shape-free patches as shown in Figure 

3.5. 

 

  

  

Figure 3.5: Examples of warped images, original images shown (on top) and the 
corresponding warped images shown below 

 

3.3.2.2 RGB Colour Transformation 

Due to the strong cross correlation that exists between RGB colour channels, 

modelling colour-based AAM with RGB images introduces redundancies 
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thereby affecting performance. To be precise, the correlation between R and G 

channels is ~ 0.98, between G and B channels ~ 0.94 and between B and R 

channels is ~ 0.78 for natural images [94]. While other colour spaces such as 

CIELAB have been considered in the past, the I1I2I3 colour space [95] has 

been most successful. This is because it uses Karhunen-Loeve Transform 

(KLT) to decorrelate the RGB channels. The transformation is given by, 

 

 𝐼1 =  (𝑅 + 𝐺 + 𝐵) 3⁄  (3.4) 

 𝐼2 =  (𝑅 − 𝐵) 2⁄  (3.5) 

 𝐼3 = (2𝐺 − 𝑅 − 𝐵)/4 (3.6) 

 

The above-stated colour transformation was applied to the training dataset, 

sample image produced by each of the new channels is shown in Figure 3.6. 

   

Figure 3.6:  RGB colour decomposition into I1I2I3 removes inter-channel 
correlation, it also separates chromaticity and intensity 

 

3.3.2.3 Illumination Normalization 

Illumination normalization is of utmost importance in computer vision. Research 

has shown that differences caused by lighting variation can be more significant 

than the inherent person to person difference contained within images [96].  In 
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the literature, global lighting effects are normalised by applying a scaling 𝛼 and 

an offset 𝛽 to a texture vector  𝐠 [46]. The normalised texture is given by, 

 𝐠𝑛𝑜𝑟𝑚 = 
(𝐠 −  𝛽)

𝛼
 (3.7) 

 

It is worth mentioning that these scaling and offset parameters are chosen in 

order to match the texture 𝐠 to the normalised mean texture �̅�.  Suppose �̅� is the 

mean of the normalised data, offset to zero mean and scaled to unit variance, 

the values of 𝛼 and 𝛽 for 𝑛 training data are given by, 

 

 𝛼 =  𝐠𝑛𝑜𝑟𝑚 ⋅  𝐠 ̅, 𝛽 = 𝐠𝑛𝑜𝑟𝑚 𝑛⁄  (3.8) 

 

In this work, the global illumination normalization defined above (3.8) is applied 

to each 𝐼1, 𝐼2, 𝐼3 sub vector independently.  

 

3.3.2.4 PCA Modelling of Texture 

The statistical texture model is constructed by applying PCA to the data 

retrieved from each of the normalised 𝐼1, 𝐼2, and 𝐼3 channels. As usual, this 

involves, the Eigen decomposition of the covariance matrix. The texture of each 

image can then be approximated using three linear equations expressed as, 

 

 𝐠𝑖1 = �̅�𝑖1 + 𝑷𝑖1𝒃𝑖1 (3.9) 

 𝐠𝑖2 = �̅�𝑖2 + 𝑷𝑖2𝒃𝑖2 (3.10) 

 𝐠𝑖3 = �̅�𝑖3 + 𝑷𝑖3𝒃𝑖3 (3.11) 
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where 𝑷𝑖1,  𝑷𝑖2 and 𝑷𝑖3 are the orthogonal modes of variations, and 𝒃𝑖1, 𝒃𝑖2 and 

𝒃𝑖3 the texture parameters for 𝐼1, 𝐼2 and 𝐼3 colour channels respectively. 

 

3.3.3 Appearance Model 

The appearance model combines the shape and three texture models. 

However, since the shape and three colour models can be described using their 

respective model parameters 𝒃𝑘, 𝒃𝑖1, 𝒃𝑖2 and 𝒃𝑖3, then, the appearance model 

can simply be built by concatenating the four variation descriptors into a single 

matrix given by, 

 

 𝒃𝑐𝑜𝑚 = [

𝑾𝑘𝒃𝑘

𝒃𝑖1

𝒃𝑖2

𝒃𝑖3

] =  

[
 
 
 
 
𝑾𝑘𝑷𝑘

𝑇(𝐱 − �̅�)

𝑷𝑖1
𝑇 (𝐠𝑖1 − �̅�𝑖1)

𝑷𝑖2
𝑇 (𝐠𝑖2 − �̅�𝑖2)

𝑷𝑖3
𝑇 (𝐠𝑖3 − �̅�𝑖3)]

 
 
 
 

, (3.12) 

 

where 𝑾𝑘 is a diagonal matrix of weights used to compensate for the difference 

in the magnitude of the units of shape and texture models. PCA is then applied 

to the new vector 𝒃𝑐𝑜𝑚 to remove any correlation that may exist between the 

shape and textures. This results in an appearance model given by, 

 

 𝒃𝑐𝑜𝑚 = 𝑷𝑐𝑜𝑚𝒄 (3.13) 

 

𝑷𝑐𝑜𝑚 is a matrix of eigenvectors and 𝒄 the appearance parameter that controls 

all 4 models (shape and colour channels). 𝑷𝑐𝑜𝑚 can be further expressed as 

composed of 4 modes of direction that are associated with the two models, 

hence can be expressed as,  
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 𝑷𝑐𝑜𝑚 = 

[
 
 
 
𝑷𝑐𝑜𝑚_𝑥

𝑷𝑐𝑜𝑚_𝑖1

𝑷𝑐𝑜𝑚_𝑖2

𝑷𝑐𝑜𝑚_𝑖3]
 
 
 

 (3.14) 

Just as demonstrated in [46], the linear nature of the appearance model makes 

it possible to express the shape and textures in terms of 𝒄. Hence, equations 

(3.12) and (3.13) can be used to rewrite (3.3), (3.9), (3.10) and (3.11) as, 

 

 𝐱 = �̅� + 𝑷𝑘𝑾𝑘
−1𝑷𝑐𝑜𝑚_𝑥𝒄 (3.15) 

 𝐠𝑖1 = �̅�𝑖1 + 𝑷𝑖1𝑷𝑐𝑜𝑚_𝑖1𝒄 (3.16) 

 𝐠𝑖2 = �̅�𝑖2 + 𝑷𝑖2𝑷𝑐𝑜𝑚_𝑖2𝒄 (3.17) 

 𝐠𝑖3 = �̅�𝑖3 + 𝑷𝑖3𝑷𝑐𝑜𝑚_𝑖3𝒄 (3.18) 

   

3.3.3.1 Selection of Weights 

When combining the shape parameter 𝑏𝑘 and the 3 texture parameters 𝑏𝑖1, 𝑏𝑖2 

and 𝑏𝑖3 in  (3.12) discussed in the section above, there is the need to 

compensate for the difference in units. Since the shape parameters were 

obtained from 2-dimensional distance coordinates, and the texture parameters 

computed from image pixels, there is, therefore, a need to make the models 

compatible. Here, the approach of [46] is adopted by applying a diagonal matrix 

𝑊, defined as the root mean square (RMS) change in texture per unit change in 

shape. Given by, 

 

 𝑾 = 𝑟𝑰 (3.19) 

 

where 𝑟2 is a ratio of sum of image intensity variations to the total shape 

variations and 𝑰 is the identity matrix. Thus 𝑾 can be computed using, 
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 𝑾 = {
∑ 𝜆𝑛

𝑗=1 𝑔𝑗

∑ 𝜆𝑛
𝑗=1 𝑠𝑗

⁄ }

1/2

𝑰 (3.20) 

 

where 𝜆𝑔 and 𝜆𝑠 represent the eigenvalues of the texture and shape models 

respectively. 

 

Since in this work three texture parameters are modelled independently, the 

mean of the sum of the pixel variations is used, 

 

 𝑾𝑘 = {
(
1
3

∑ ∑ 𝜆𝑛
𝑗=1 𝑔𝑖𝑗

3
𝑖=1 )

(∑ 𝜆𝑛
𝑗=1 𝑠𝑗

)
⁄ }

1/2

𝑰 (3.21) 

   

3.4 Age Progression Model 

Several pieces of research [97], [98] have shown that the appearance of the 

face consistently changes with age and that is one of the obvious reasons why 

humans are able to estimate people’s age by merely looking at their face, this is 

of course due to changes in the face shape as well as texture (skin, wrinkles, 

and colouration) [7]. Since AAM models both shape and texture variations, it is 

presumed that AAM face features capture ageing variations [15]. Consequently, 

it would not be a surprise to find a correlation between AAM parameters 

(obtained from (3.13)) and individual ages. In that case, an ageing function can 

be defined relating ages to vectors of AAM parameters. 

 

 𝑎𝑔𝑒 = 𝑓(𝒄) (3.22) 
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In data analysis, one important question is the determination of a model to 

define the relationship that exists between variables [99]. Interestingly, the 

statistical relationship between a scalar dependent and set of independent 

continuous variables can be defined using a regression model [100]. While 

there are many types of regression models, ranging from linear to nonlinear 

variants, there is no overall best model [101]. However, as a rule of thumb, it is 

usually best to start off with a simple and interpretable model [101].   

 

Thus, the ageing function that defines a relationship between age and face 

features is represented via a linear model. Due to its simplicity and 

interpretability, as will be demonstrated shortly, a linear model gives the ease of 

inversion and eventual attainment of an age progression framework. Hence the 

relationship between face features and individual ages can be expressed as, 

 

 𝑎𝑔𝑒 =  𝛼 + 𝜷𝑇𝒄 (3.23) 

subject to 𝑎𝑔𝑒𝑖 = 𝑓(𝑐𝑖)  

where 𝛼 is an offset and 𝜷 is a vector of regression coefficients and 𝒄 are the 

face features, and 𝑖 is the index of individual whose face is to be progressed. 

Consequently, new face (AAM) features can be generated by inverting the 

ageing function by, 

 

 𝒄 = 𝑓−1(𝑎𝑔𝑒) (3.24) 

 

The equation (3.24) above gives us the ability to construct a new face, by 

inputting a target age. To achieve a specific solution, the inverse of equation 
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(3.23) can be computed. Assuming a zero offset, the equation can be written 

as, 

 

 𝑎𝑔𝑒 =  𝜷𝑇𝒄 (3.25) 

 

The computation of the inverse, then implies finding the inverse of the vector of 

coefficients  𝜷. Since 𝜷 is not a square matrix, a possible solution to the inverse 

problem can be achieved using the Moore-Penrose pseudoinverse [102]. Thus, 

new face features can be approximated using, 

 

 �̂� =  𝜷†𝑎𝑔𝑒 (3.26) 

 

Since equation (3.26) is a projection, it then follows that the appearance 

parameter �̂� for a certain age will be the same for all individuals at the same 

age. However, in linear algebra, given a transformation T (e.g. projection) of two 

vectors (𝑐1 and 𝑐2)  that result in same output vector, there actually exists a 

difference between the two, at a direction which is perpendicular to the two 

vectors. Hence given, 

 

 

𝑇𝑐1 = 𝑐𝑝 

𝑇𝑐2 = 𝑐𝑝 

 

(3.27) 

Subtracting the two equations above gives us, 

 

 𝑇(𝑐1 − 𝑐2) = 0 (3.28) 
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Thus there is a nonzero vector 𝑇(𝑐1 − 𝑐2) whose image is zero. This implies that 

the two projections differ by an orthogonal element in the null space. It can then 

be presumed that each person’s AAM parameter contains two orthogonal 

components; the age-component (𝑐𝑎𝑔𝑒) that is computed as a projection using 

(3.26) and an identity-component (𝑐𝑖𝑑) differs from individual to individual. It is 

also obvious that ageing component is orthogonal to the identity component.  

Interestingly, AAM parameters are inherently orthogonal as a result of the PCA 

conducted in equation (3.13).  Intuitively, the parsimonious elements in 𝒄 used 

to fit the regressor in (3.25) form the ageing-component and the remaining 

orthogonal elements form the identity part. Hence the appearance parameter for 

each individual can be expressed as,  

 

 𝒄𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 𝒄𝑎𝑔𝑒 + 𝒄𝑖𝑑 (3.29) 

   

In order to compute the AAM parameters for a new age 𝒄𝑛𝑒𝑤, equation (3.29) is 

first used to retrieve the identity component 𝒄𝑖𝑑  for the person, then using 

equation (3.26), the age component for the new age can be computed. The sum 

of these two components gives us 𝒄𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑛𝑒𝑤 i.e. the AAM parameter for that 

individual at a new age. The procedure for age progression has been 

summarised in Algorithm 3.4 and Figure 3.7 below. 
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Algorithm 3.4 Age Progression 

[1] Given the raw AAM parameters 𝒄𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑛𝑜𝑤  at a current age 

[2] Compute the age component 𝒄𝑎𝑔𝑒_𝑛𝑜𝑤 at current age, using equation 

(3.29)   

[3] Calculate the person’s identity features 𝒄𝑖𝑑 = 𝒄𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑛𝑜𝑤 − 𝒄𝑎𝑔𝑒_𝑛𝑜𝑤 

[4] Compute the age component 𝒄𝑎𝑔𝑒_𝑛𝑒𝑤 for the new age using procedure 

[2]  

[5] Sum the results in [3] and [4] to get the raw AAM parameters at new age 

 𝒄𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑛𝑒𝑤 = 𝒄𝑎𝑔𝑒_𝑛𝑒𝑤 + 𝒄𝑖𝑑 

[6] Reconstruct the face using equations (3.15) to (3.18) 

In practice 𝒄𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑛𝑒𝑤 minimises ∥ 𝒄𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑛𝑜𝑤
− 𝒄𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑛𝑒𝑤

∥2 

 

An obvious advantage of the new method is the ability to compute AAM 

parameters for any age, including those that are not in the training set. Its ability 

to interpolate ages eliminates the dependency on the lookup table. 

Furthermore, the AAM parameters can now be computed even for non-integer 

ages.  
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3.5 Generalisation of Ageing Model 

Considering the framework described in the previous section, it is quite obvious 

that the regression model is at the heart of its success. Having initially, chosen 

a simple ordinary least squares (OLS) model, research has shown that despite 

its simplicity, interpretability, and popularity the model has a number of pitfalls 

[103]. These include its sensitivity to outliers and the effect of too many 

features, especially in cases where the number of observations is 𝑛 equals to 

the number of features 𝑝. Worst is even the case when 𝑛 <  𝑝 because the 

algorithm completely fails [103]. As a matter of fact, OLS work well only when 

three conditions are met; the number of features are very few, collinearity is 

minimum and the relationship between predictor and dependent variables is 

fully understood [104]. Since the number of features at hand are relatively high 

and the relationship that exists between the age and facial features is not fully 

understood, it’s presumed that OLS is not the ideal regressor to deploy. Thus, 

the framework can be extended by using a linear model that is robust to the 

dimensionality of the features, and that is not sensitive to the underlying 

relationship between the variables. An ideal linear model that meets such 

criteria is partial least squares regression (PLS) model.  

 

PLS a simultaneous dimensionality reduction and regression technique which is 

well suited for regression when 𝑛 <  𝑝 (i.e. ill-posed) can be embedded into the 

framework with a view to enhancing the rendering ability of the age progressor.  

 

PLS  regression was introduced by Herman Wold [105], [106], and has been an 

alternative to OLS regression [107], it improves OLS in two major ways; 

increased prediction accuracy and enhanced data representation. The statistical 
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method creates latent features via a linear combination of the predictor (𝑿) and 

response (𝒀) variables.  

 

Let 𝒙 ∈  ℝ𝑚 i.e. 𝑿 = {𝒙𝑖} be an 𝑛 × 𝑝 matrix of predictor variables (i.e. having 𝑛 

observations and 𝑝 features) and 𝒀 be an 𝑛 × 𝑚 matrix of response variables. 

PLS decomposes the two matrices into, 

 

 

𝑿 = 𝒁𝑷𝑇 + 𝑬 

𝒀 = 𝑼𝑸𝑇 + 𝑭 

(3.30) 

 

𝒁 and 𝑼  are 𝑛 × 𝑘 matrix of linear latent (scores) having a reduced dimension, 

thus 𝑘 ≪ 𝑝. 𝑷 and 𝑸 are loadings, 𝑬 and 𝑭 are matrices of residuals. The 

scores 𝒁 can be computed directly from the feature set 𝑿 via, 

 

 𝒁 = 𝑿𝑹  (3.31) 

 

where the matrix of weights 𝑹 = {𝒓1, 𝒓2, … 𝒓𝑘} is computed by solving an 

optimization problem. The estimate of 𝒌th direction vector is formulated as, 

 

 
�̂�𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒓 𝒓

𝑇𝑿𝑇𝒀𝒀𝑇𝑿𝒓  

such that 𝒓𝑇𝒓 = 1 and 𝒓𝑇𝑿𝑇𝑿𝒓𝑖 = 0 

(3.32) 

 

for 𝑖 = 1…𝑘 − 1 

 

Thus PLS captures the directions of highest variance in 𝑿 as well as the 

direction that relates 𝑿 and 𝒀 [108]. While many methods for computing PLS 
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have been proposed in the literature, in this work, the SIMPLS algorithm 

proposed by Sijmen De Jong  [109] is utilised; thus taking advantage of the 

method’s speed. After computing the latent scores 𝒁, PLS regression coefficient 

is defined as, 

 

 𝒀 = 𝑿𝛽𝑃𝐿𝑆 +  𝑭 (3.33) 

 

In this work, 𝒀 corresponds to a vector of ages while 𝑿 represents the facial 

features. Since PLS takes the relationship that exists between the predictor and 

response variables it is believed that the age-component defined using the 

model will be more parsimonious and will be the best representative of the age, 

thus giving an efficient means of separating the age-components from the rest 

of the facial features that represent identity. 

 

Despite the shrinkage ability and efficiency of PLS regression in problems with 

a large number of variables, the fact that it is a linear combination of all 

variables, makes it include information of both relevant and irrelevant (noisy) 

data. Recently, Chun and Keles [110] proposed sparse PLS (sPLS) regression, 

in order to integrate sparsity into the conventional PLS dimension reduction 

procedure there by ensuring the selection of only relevant variables. Their 

findings showed sPLS to be more efficient than PLS especially when the 

number of variables is very large as compared to a small sample size [111]. 

Adopting the idea of [111] thus provides an even further extension to the age 

progression model. 
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In order to realize sPLS regression, LASSO [112] 𝐿1 regularization is imposed 

into the linear formulation of the PLS. This is done by using a tuning parameter 

𝜂 chosen within the range 0 ≤  𝜂 ≤ 1. In this thesis, CRAN 'spls' Package 

Version 2.2-1 [113] was used for the implementation of sparse partial least 

squares regression. 

 

3.6 Experiments 

3.6.1 Data Usage Protocol 

 

In all the experiments conducted in this chapter and the chapters that follow, 

data used for training the model is same as those described in section 3.2. For 

testing the progression techniques, images of  all 82 subjects of the FGNET-AD 

are utilised. The database contains images of subjects in chronological order, 

hence the image to be progressed and the image of the subject at the 

progressed age are both available. To evaluate progression to adult age, as 

well age reversals, 50% of images chosen are from young to adult, and the 

other half of the test images are for reversing adult faces to a younger age. As 

shown in Figure 3.8, the selected test images exhibit varying head pose, facial 

expression, as well as photo quality. This choice was made to fully evaluate the 

robustness of the algorithms to varying obstructing factors. To furthermore 

ensure unbiased judgement of the accuracy of algorithms, images used for 

testing are excluded at the time of training. 
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Figure 3.8: Sample images of 82 subjects used for performance evaluation. 
Images show varying pose, facial expression and photo-quality. 

 

3.6.2 Performance Evaluation 

Performance assessment is of the utmost importance in facial analysis as it 

helps to identify gaps as well as to benchmark progress in the field. An effective 

means of assessing the facial age progression should have two main priorities: 

evaluating the ability to synthesise images that fit the intended age, and 

checking the ability to retain the identity of the subject in age altered images. 

There are two categories of performance evaluation techniques; machine based 

and human based methods [7], [114]; both methods are used in this work.  

 

Here, the machine based test, also known as an objective test is conducted 

using Euclidean Distance (ED). To evaluate the ability of the algorithm to retain 

identity, distance 𝐸𝑠𝑦𝑛 between the generated image at age 𝑡𝑛𝑜𝑤 and the 

original image at age 𝑡𝑜𝑙𝑑 is computed as, 
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 𝐸𝑠𝑦𝑛 = √∑ (𝑐𝑆𝑦𝑛 − 𝑐𝑜𝑙𝑑
𝑁
𝑖=1 )2. (3.34) 

 

where 𝑐𝑆𝑦𝑛 is appearance feature of the synthesised image, 𝑐𝑜𝑙𝑑 and 𝑐𝑛𝑜𝑤 are 

the vectors of facial features for the real image at ages 𝑡𝑜𝑙𝑑 and 𝑡𝑛𝑜𝑤. Next, the 

distance 𝐸𝑟𝑒𝑎𝑙 between the real images at ages 𝑡𝑜𝑙𝑑 and age 𝑡𝑛𝑜𝑤 is computed.  

 

 𝐸𝑟𝑒𝑎𝑙 = √∑(𝑐𝑛𝑜𝑤 − 𝑐𝑜𝑙𝑑

𝑁

𝑖=1

)2 (3.35) 

 

Finally these two distances are compared by computing the absolute value of 

their difference (𝐸𝑑𝑖𝑓) given by,  

 

 𝐸𝑑𝑖𝑓 = 𝑎𝑏𝑠(𝐸𝑟𝑒𝑎𝑙 − 𝐸𝑠𝑦𝑛). (3.40) 

 

The above absolute distance is scaled to have values between 0 to 1. With 0 

indicated exact match (i.e. 100% retained identity) and 1 indicating complete 

nonsimilarity. In other words, the closer a synthesised image resembles the 

subject’s identity, the closer is distance  𝐸𝑑𝑖𝑓 to 0. Subsequently, 𝐸𝑑𝑖𝑓 is 

expressed as a similarity score in percentage, such that a score of 100% 

denotes perfect match and 0%, on the other hand, refers to no match. The 

percentage score is given by, 

 

 𝑆𝑐 =  
1

1 + 𝐸𝑑𝑖𝑓
 × 100%. (3.41) 
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After computation of the scores for a single test image, the overall performance 

of an algorithm is evaluated by computing the average scores over all 82 test 

images. 

Human based tests, also known as subjective tests, are conducted by asking 29 

human observers to perform two tasks listed below. The human observers were 

all students of University of Bradford of caucasian origin, having male to female 

ratio of 19:10 with ages ranging from 19 to 35. 

 

i. Look at the synthesised image and give one of four verdicts; “Yes : it 

meets the intended age”, “Below: it looks younger than the intended 

age”, “Above:  it appears older than the progressed age” or “Undecided”.  

ii. Look at the synthesised image and give a score between 0 and 10 to 

indicate how closely it resembles the test image. A score of zero 

signifies no resemblance and 10 refers to a perfect match. Finally, all the 

scores are averaged to give a single value between 0 and 10 that 

describes how best an algorithm preserve’s people’s identity. 

 

Summarily the human based test answers two questions, the ability of an 

algorithm to render well-aged images and its ability to retain identity. 

 

Finally, the results of both machine and human tests are average over the total 

number of 82 subjects.  

 

3.6.3 Results 

Three sets of experiment were conducted using the proposed age progression 

framework. First using OLS regression and subsequently utilising  PLS and 
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sPLS algorithms respectively. In the course of AAM training, the PCA that binds 

shape and texture models gives rise to 𝑛 − 1 non zero orthogonal projections, 

hence resulting in 𝑛 − 1 features.  

 

For all three age progression variants, the number of features utilised as ageing 

components were chosen via cross-validation, i.e. by considering the root mean 

square errors (RMSE) of regression as the number of features varied.  Figure 

3.9 show’s that the OLS regressor requires 152 components to achieve 

minimum RMSE. In Figure 3.10, it is quite obvious that for PLS, the optimum 

RMSE is achieved with just 40 components. Meanwhile, tunning the sparsity 

parameter of the sPLS algorithm gives the best performance when 𝜂 = 0.7 (see 

Figure 3.11).  

 

 

Figure 3.9: Mean square error of OLS regression per number of features. 
Smallest error is achieved when the number of features is 152. 
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Figure 3.10: Mean square error of PLS regression per number of features. The 
optimum number of features is 40. 

 

 

Figure 3.11: Mean square error of sPLS regression at various regularisation 
values. Optimum performance is achieved when 𝜂 = 0.7. 
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Next, age progression tests were conducted using the 82-subjects’ evaluation 

data. Samples of the age progression results are shown in figure 3.12. Farthest 

to the left are the test images,  adjacent to the test images are the subjects’ 

ground truth images at projected age, next synthesis results generated using 

OLS, PLS, sPLS and Lanitis method are placed in arranged in that order. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.12: Sample of age synthesis results. Images on the farthest left are the 
test images. 

 

Observing sample of the generated images presented in Figure 3.12 above, it 

can be seen that the algorithms perform best when deployed on frontal, neutral 

face images. In 3.12 (a) facial expression hinders the reconstruction accuracy, 
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especially around the mouth region. While In Figure 3.12(c), the probe image is 

noisy and distorted, the proposed techniques clearly, outperform Lanitis’s 

method which suffers from ghosting effect. Furthermore, results in Figure 

3.12(d) reveal the problem of facial hair, especially when rendering young 

faces.  

 

To fully explore the performance of the algorithms, extensive machine 

(objective) and human (subjective) evaluations were conducted. The mean 

scores for the objective tests presented in Table 3.1 show that all three 

proposed techniques have better identity retention ability as compared to the 

method in [15].  

Table 3.1: Mean scores of objective test (AAM based models). 

Technique Mean Scores (%) 

Lanitis [15] method 69.82 

OLS approach 71.86 

PLS approach 73.16 

sPLS approach 74.36 

 

To gain more insight into the algorithms’ performance, frequency of the scores 

were plotted using histograms.  
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(a) 

 

 

(b) 
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(c) 

 

(d) 

Figure 3.13: Histogram of objective test scores (AAM based models) (a) Lanitis’ 
method (b OLS approach (c) PLS method (d) sPLS technique. 
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Figure 3.13 (a), (b), (c) and (d) corroborate the results presented Table 3.1. To 

further check if the improvements are statistically different, two-sample 

Kolmogorov-Smirnov (KS) test was used to compare the mean scores. It was 

observed that at 5% significance level, the sPLS based algorithm showed 

significant improvement over the method of Lanitis (D=0.2105, p=0.0450) as 

well as the OLS (D=0.2083, p=0.0491) technique. However no significant 

difference was observed when OLS (D=0.0950, p=0.914) and PLS (D=0.1345, 

p=0.424) methods were compared to each other and to the method of Lanitis. 

The sPLS algorithm obviously performs best hence having the ability to retain 

the subject’s identity. This also indicates sPLS exhibits lesser reconstruction 

error as compared to the rest. 

 

Table 3.2: Mean scores of subjective test (AAM based model). 

Technique Mean Scores  

Lanitis [15] method 6.1707     

OLS approach 6.4146     

PLS approach 6.6585     

sPLS approach 6.7805 

 

 

In Table 3.2, the mean scores of human evaluations show sPLS-based 

rendering to have better identity preservation capability, it also shows that the 

proposed methods surpass the classical technique used of  [15]. Here also two-

sample KS test revealed significant difference between the proposed sPLS 

algorithm (D=0.2095, p=0.0483) and that of Lanitis' method.  Although the mean 
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socres of the OLS (D=0.1090, p=0.6813) and PLS (D=0.1829, p=0.1142) 

methods apparently showed improvement, the non parametric KS test did not 

reveal difference at 5% significance level. Bargraphs shown in Figure 3.14 

further give an in-depth view of subjective assessment. Due construction 

artefacts, some images generated using Lanitis method appear completely 

distorted hence it is no surprise that they were scored very low by the human 

observers, a particular case is that of the image shown in Figure 3.12(c). As can 

be expected, the bar graphs also show more high score bins as the regression 

algorithms get more sophisticated.  

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 3.14: Bar graphs of subject identity scores (AAM based models) (a) 
Lanitis (b) OLS (c) PLS (d) sPLS. 

Human-based age attainment test (see Figure 3.15) further confirm’s the first 

findings, 48.8% of sPLS generated faces were perceived to have the expected 

age, followed closely by 47.6% for PLS, next 43.9% for OLS-faces and finally 

41.5% of those generated using Lanitis method.  
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3.15: Bar graph representation of subjective age attainment (perception) 
test for AAM based model (a) Lanitis’s method (b) OLS approach (c) PLS 

method (d) sPLS technique. 
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To sum it up, Lanitis method performed below the proposed techniques mainly 

due to reconstruction errors that occur as a result of direct subtraction and 

addition of values from the lookup table. The proposed techniques which use 

predictive models to render faces have better results. The results further show 

that predictability of the regression model has significant effect on the synthesis 

output, hence sPLS regression which has the least prediction error stands out 

amongst the rest.    

 

In summary, both human and machine based tests presented above, indicate 

the ability of the proposed methods to preserve the subject’s identity. However, 

the rendering ability of the algorithms depends on the image quality. It has been 

observed that facial expressions, poor picture quality, image noise, as well as 

facial hair hinder the performance of the techniques. Furthermore, despite 

achieving relatively good construction output on most of the 82 test cases, the 

ages of a substantial number of the test images were perceived to be below the 

intended age; this can be attributed to the averaging effect of PCA which results 

in faded facial texture. In some other cases, the progressed faces looked older 

than expected due facial hair artifacts that appear on children’s faces.  

 

Having achieved best performance using the sPLS-based progression 

algorithm, it is then ideal to use the proposed ageing framework in a real life 

application. With the aim of aiding in the search for missing people, the 

algorithm was then used to synthesise images of Ben Needham [18]. 
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3.6.4 Application 

The case of Ben Needham is claimed to be one of the longest missing person’s 

case in British history. Born in Sheffield, on 29th of October 1989, Ben 

Needham disappeared while on holiday with his parents in the Greek island of 

Kos on 24th July 1991 [18].  To date, despite numerous false sightings over the 

years, no trace of the British toddler has ever been found. 

 

In this study, sPLS ageing framework was used to progress the image of Ben 

Needham to the ages of 6, 14 and 22 years as shown in Figure 3.16(a). By 

compositing, external features such as hair and ears were then incorporated 

into the generated images as shown in Figure 3.16(b). Subsequently, the 

synthesised images were compared to the existing Police generated images as 

shown in Figure 3.16(c). 
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(a) 

 

(b) 

 

Figure 3.16: Age progressed images of Ben Needham (a) sPLS-based 
rendering (b) External features incorporated to improve visualisation (c) Current 

Police generated images. 
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Due to variations in hair style and occluded ears, the AAM based model does 

not consider hair and ears. However, these external facial features have been 

incorporated into Ben Needham's images as a form of cosmetic to enhance 

visualisation. However, this compositing approach is highly subjective and might 

alter the visual look of the real results. In order to fully incorporate these 

external features into the proposed ageing framework, it will be necessary to 

thoroughly study and develop further automated methods that can incorporate 

such external facial features in the future. Visual comparisons were made to the 

Police generated images to highlight their difference to those generated using 

the proposed method, hopefully, these new sets of images may help in the 

search and identification of the missing toddler. Furthermore, this illustrates the 

applicability of the age progression work to real life cases. 

 

3.7 Summary 

In this chapter, a mathematical procedure for progressing facial images was 

presented. Development of the age progression framework entailed the building 

of an AAM to extract facial features, after which various linear regression 

algorithms were used to achieve synthesis. Careful experiments conducted in 

this chapter have shown that the proposed method performs excellently when 

used to age neutral, frontal, good quality face images. However, in real world 

scenarios, one does not always get ideal images that exhibit neutral facial 

expression, sometimes the pictures happen to be noisy with poor photo quality. 

Unfortunately, experiments showed that the proposed method is not robust to 

noisy images, nor is it resilient to varying facial expression. Furthermore, 

synthesised images have hair artefacts and often produce aged faces that lack 

facal skin texture detail. Thus, in this work, the aforementioned pitfalls shall be 



 

63 

 

tackled by first exploring a facial representation technique that handles noise 

and varying facial expressions. Thereafter, a way of handling texture artefacts 

will be investigated and addressed.   
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4 Face Synthesis using Nonlinear Appearance Model 

In this chapter a kernel appearance model (KAM) which captures nonlinear 

shape and texture variations is derived. Facial features are then extracted using 

the KAM, thereafter, face synthesis is achieved via regression. A thorough 

evaluation of the proposed algorithm is also conducted. 

 

4.1 Introduction 

Although many algorithms have been proposed for age progression [115], one 

of the most widely used techniques for features extraction is the AAM that was 

presented in the previous chapter. Whilst AAM’s proven ability to model 

deformable objects, they suffer from some disadvantages [116]. Among these is 

the fact that principal component analysis, which is at the core of the model, 

assumes both shape and texture exhibit linear variation. This is not always the 

case as this approach is sub-optimal when objects lie on a nonlinear manifold in 

parameter space. Obviously, one cannot proclaim that the conventional PCA 

detects all structure in a given data set. Most importantly, it cannot tackle higher 

order noise in data [117], just as was observed in the previous chapter.  Hence, 

PCA is not always robust to noise. Furthermore, the AAM based age progressor 

as observed is affected by facial expressions; as the face is aged, the 

expression gets exaggerated thereby distorting the perceived age. To this end, 

age progression framework that utilizes image de-noising and expression 

normalizing capabilities of kernel principal component analysis (kernel PCA also 

KPCA) is proposed.  

 

In this chapter, kernel PCA a nonlinear form of PCA that explores higher order 

correlations between input variables is used to build a model that captures the 
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shape and texture variations of the human face. The extracted facial features 

are then used to perform age progression via a regression procedure, even 

though computation done in kernel space requires a pre-image calculation to 

generate a facial image. In a similar manner to the previous chapter, 

performance of the framework is evaluated through rigorous tests. 

 

In a nutshell, this chapter presents an approach to age progression which 

improves the framework of chapter 3 by embedding kernel PCA into the model, 

in order to tackle the problems of image noise, lightening variations, as well as 

the effect of facial expressions.  

 

4.2 Kernel Machines 

Due to their computational efficiency, kernel machines have gained popularity in 

the last two decades [118], as such, they have been applied to statistical 

learning theory, signal processing and machine learning in general. The kernel 

trick, first proposed by Aizeman et al. [119], is a key concept in the development 

of kernel machines, which has led to the development of nonlinear variants of 

linear statistical algorithms. This approach is used to map data from the original 

input space 𝛸 to a higher dimensional (nonlinear) Hilbert space ℋ given by 

𝜙:𝛸 ⟶ ℋ. Interestingly, this mapping to a higher dimension is computed from 

the dot product of the data [118]. This technique known as the kernel trick does 

not require explicit calculation. Rather it is achieved by replacing the inner 

product operator with a symmetric Hermitian “Kernel” function.  

 

One common application of kernel machines is the kernel PCA that was 

proposed by Schölkopf et al. [120]. Using kernel methods, [120] generalised 
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PCA into a higher order correlation between input variables. KPCA entails a 

nonlinear mapping 𝜙 of data from an input space 𝐱  into a feature space 𝐹 and 

then the computation of conventional PCA in the 𝐹 space. As stated earlier, the 

transformation from 𝐱 to a higher dimension is realized using the kernel trick 

[119]. 

 

Consider an intricate data which is intended to be project into a higher 

dimensional space, with a view to exploring its higher order structure. The 

mapping to higher dimension can be expressed as, 

 

 𝐱 →  𝜙(𝐱) (4.1) 

 

where 𝜙 is the nonlinear mapping function. A kernel 𝑲 gives us the ability to 

map 𝐱 to 𝜙 by computation of the dot products expressed as,  

 

 𝜅(𝐱𝑖, 𝐱𝑗) =  𝜙(𝐱𝑖)𝜙(𝐱𝑗)
𝑇
,    (4.2) 

where 𝐱𝑖 and 𝐱𝑗 refer to the ith and jth elements of 𝐱 and 𝑇 is the transpose 

operator. 

In essence, the mapping creates nonlinear combinations of the input feature. 

The generalisation of PCA to higher dimensional space [121] involves the 

computation of the covariance matrix via the kernel trick, 

 

 
1

𝑁
∑𝜙(𝐱𝑗)𝜙(𝐱𝑗)

𝑇
𝑁

𝑗=1

 (4.3) 

 

and subsequently solving the eigenvalue problem, 
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 𝑲𝛂 =  𝑁𝜆𝜶,     (4.4) 

 

where 𝜶 = [𝜶1, … 𝜶𝑁] are set of eigenvectors of 𝑲, for 𝜆 ≥ 0 the set of first 𝑘 

eigenvectors of 𝑲 can be normalised such that 𝑽𝑘. 𝑽𝑘 = 1  

 

For the purpose of principal components 𝛽𝑘 extraction, the eigenvectors 𝑽𝑘 are 

projected onto the data in 𝐹. Assuming 𝐱 is a test data with image 𝜙(𝐱), its 

projection is given by, 

 

 

𝛽𝑘 =  𝜙(𝐱)𝑇. 𝑽𝑘 = ∑ 𝛼𝑖
𝑘. (𝜙(𝐱). 𝜙(𝐱𝑖)

𝑇𝑁
𝑖=1 )     

= ∑ 𝛼𝑖
𝑘. 𝜅(𝐱, 𝐱𝑖

𝑁
𝑖=1 ). 

(4.5) 

 

To ensure the mapped data 𝜙(𝐱) has a zero mean, centring can be achieved by 

replacing 𝑲 with a gram matrix �̃�, 

 

 �̃� = 𝑲 − 𝟏𝑁𝑲 − 𝑲𝟏𝑁 + 𝟏𝑁𝑲𝟏𝑁  (4.6) 

 

where 𝟏𝑁 = 𝑰𝑁 − 𝑱𝑁, 𝑰𝑁 is the identity matrix and 𝑱𝑁 is an 𝑁 × 𝑁 matrix whose 

elements are all 1s. 

 

KPCA has been used in a variety of computer vision applications and in most 

cases has proven to outperform the conventional PCA [122]. Furthermore, 

several research works have shown the power of Kernel PCA in conducting 

image denoising [117], [118], [123], illumination normalization, occlusion 

recovery, as well as facial expression normalization [124]; this is usually 
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achieved by computing an inverse map from the higher dimensional space back 

to the input space.  

 

In this chapter, the problem of age progression is addressed by developing an 

appearance model based on KPCA, thereby, taking benefit from higher 

dimensional projections. Consequently, this approach will give us the ability to 

achieve image denoising and expression correction, i.e. by solving the KPCA-

preImage problem [125]. It shall be shown that this new technique termed 

Kernel Appearance Model (KAM) is better suited for the problem of age 

progression than the conventional AAM.  

 

4.3 Kernel Appearance Model (KAM) 

The proposed KAM captures nonlinear shape and texture variability from the 

training dataset. In a similar manner to the linear model presented in chapter 3, 

face shapes are represented by a set of annotated landmarks given by a 2-

dimensional vector expressed using (3.1). As usual, all 2-dimensional vectors 

representing the face shape are aligned using GPA. Next, a nonlinear shape 

model is built by performing KPCA; 𝐱 is mapped to the higher dimensional 

feature space using a kernel method 𝑲𝑥.  

 

The mapped data is then centralised using (4.6), subsequently, eigen-

decomposition is performed using, 

 �̃�𝑥𝛂𝑥 =  𝑁𝜆𝑥𝜶𝑥,  (4.7) 

 

where 𝜶𝑥 is the set of eigenvectors and 𝜆𝑥 their corresponding eigenvalues. 

Consequently, the shape of each face in the training set can be defined by the 
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projection operation defined in equation (4.5), thus shape parameters obtained 

through the nonlinear model can be expressed as, 

 

 𝝆𝑥 = ∑𝛼𝑥𝑖
𝑘 .

𝑁

𝑖=1

 𝜅(𝐱, 𝐱𝑖) .   (4.8) 

 

To build a nonlinear texture model, all face images are affine warped to a 

template shape, this is done to remove unnecessary face size variations just as 

described in chapter 3. Then, illumination effects are normalised by applying a 

scaling and an offset to the image pixels 𝐠 using equations (3.7) and (3.8). 

Subsequently, KPCA is used to model the nonlinear variations of 𝐠, this 

involves repeating the procedure that was used to model the nonlinear shape 

variations. Hence, the texture of each face in the training set can be defined by 

𝝆𝑔 obtained via, 

 �̃�𝑔𝛂𝑔 =  𝑁𝜆𝑔𝜶𝑔,  (4.9) 

 𝝆𝑔 = ∑𝛼𝑔𝑖
𝑘 .

𝑁

𝑖=1

 𝜅(𝒈, 𝒈𝑖),  (4.10) 

 

Next, a combined appearance model is built by capturing both shape and 

texture information, 

 𝝆𝑎 = (𝝑𝝆𝑥 ,  𝝆𝑔)
𝑇
.  (4.11) 

 

where 𝝑 =  ∑ 𝜆𝑔 ∑𝜆𝑥⁄  is a diagonal matrix of weights used to compensate for 

the difference in magnitude between the units of shape and texture models. 

Thereafter, conventional PCA is used to reduce the dimension of the combined 
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model. Hence, a single model which defines the nonlinear shape and texture 

variations is formed via, 

 

 𝝆𝑎 = 𝑷𝒇 .  (4.12) 

 

The parameter 𝒇 now captures both variations, thus it can be used to 

manipulate the appearance of an individual face in the higher dimensional 

space. 𝑷 is a matrix of eigenvectors associated with both shape and texture. 

Interestingly, the linear nature of equation (4.12) makes it possible to use 𝒇 for 

reconstructing the shape and texture variations, 

 

 𝝆𝑥 = 𝝑−1𝑷𝑘𝑥𝒇, 𝝆𝑔 = 𝑷𝑘𝑔𝒇 ,  (4.13) 

 

where 𝑷𝑘𝑥 and 𝑷𝑘𝑔 are orthogonal modes of variation associated with the shape 

and texture, 𝑷 =  (𝑷𝑘𝑥 , 𝑷𝑘𝑔)
𝑇
. 

 

Equation (4.12) is the core of the KAM model and it represents the nonlinear 

variant of the AAM defined by equation (3.13). The parameter 𝒇 encodes the 

shape and texture of the face, thereby giving us an avenue to defining non-

linear shape and texture variation. It can, therefore be used to extract facial 

features which are then used for age progression. The age progression 

framework described in the next section leverages the nonlinear characteristics 

of the face feature 𝒇.  
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4.4 Nonlinear Framework for Age Progression 

Having built the KAM, it now represents a nonlinear variant of AAM that can be 

integrated into the age progression framework in a similar passion to that 

described in 3.4. This involves defining an ageing function 𝑎𝑔𝑒 = 𝑔(𝒇) that 

maps the nonlinear face features to the individual age. Using same rationale 

described in previous 3.4, a linear equation can be used to describe this 

mapping. Since this linear mapping is implemented in a higher (nonlinear) 

dimensional space, it is in fact not linear, rather it efficiently captures nonlinear 

variations, that will have been missed by the simplistic AAM approach. The 

expression is given by,  

 

 𝑎𝑔𝑒 =  𝜹𝑇𝒇 (4.14) 

         subject to 𝑎𝑔𝑒𝑖 = 𝑔(𝒇𝑖) 

 

where 𝜹 is a vector of regression coefficients in the 𝐹 feature space and 𝑖 is the 

index of individual whose face is to be progressed.  

 

Inverting equation (4.14) is a key part of the age progression framework, hence 

the procedure described in 3.4 is repeated. At current age 𝑡𝑛𝑜𝑤, an individual’s 

face features are decomposed into age and identity components, 

 

 𝒇𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑛𝑜𝑤 = �̂�𝑎𝑔𝑒_𝑛𝑜𝑤 + 𝒇𝑖𝑑, (4.15) 

 

Moore-Penrose pseudoinverse † is then used to compute the age component 

�̂�𝑎𝑔𝑒_𝑛𝑒𝑤 for the new age, 
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 �̂�𝑎𝑔𝑒_𝑛𝑒𝑤 =  𝜹†𝑎𝑔𝑒𝑡𝑛𝑒𝑤. (4.16) 

 

Subsequently, new age progressed face features are computed by aggregating 

the new age and identity components, 

 

 𝒇𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑛𝑒𝑤 = �̂�𝑎𝑔𝑒_𝑛𝑒𝑤 + 𝒇𝑖𝑑 .  (4.17) 

 

After successful computation of a new appearance parameter 𝒇𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑛𝑒𝑤, 

the corresponding face shape and texture can be extracted using equation 

(4.13); the nonlinear shape and texture parameters at the new age ρx_new and 

𝝆𝑔_𝑛𝑒𝑤.  

 

Since the extracted facial features are in higher dimensional space, a new face 

cannot be reconstructed until after finding a reverse map. That is the 

computation of aged shape and texture parameters 𝐱𝑛𝑒𝑤 and 𝒈𝑛𝑒𝑤 in the input 

space.  

 

The problem of mapping back to initial input space is indeed an ill posed one 

known as the KPCA preImage problem [118], [126]. It is ill posed due to the size 

and dimension of the 𝐹 space.  Also, a reverse map may not exist, and even 

when it does exist, it may not be unique. To be precise, only a few features in F  

have a preimage in 𝐱 [118]. The preImage problem hence involves procedures 

for finding an approximate inverse map of the feature space in the 𝐱 space as 

shown in Figure 4.1. 
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Figure 4.1 The pre-image (inverse) mapping 

 

Given a projection 𝛽𝑘, in 𝐹 space, its reconstruction in the feature space can be 

achieved via a projection operator 𝑃𝑛 given by, 

 

 𝑃𝑛𝜙(𝐱) =  ∑ 𝛽𝑘. 𝑽
𝑘

𝑛

𝑘=1

 ,  (4.18) 

 

where 𝑽𝑘 is a matrix of normalised eigenvectors of kernel 𝑲. When the vector 

𝑃𝑛𝜙(𝐱) has no pre-image 𝐱′ in the input space, solving the preImage problem 

will be that of approximating 𝐱′ via minimising, 

 

 𝜌(𝐱′) = ∥ 𝜙(𝐱′) − 𝑃𝑛𝜙(𝐱) ∥2  (4.19) 

where ∥ ∥2 is the L2-norm. 

By discarding terms that are independent of 𝐱′, this results to, 

 

 𝜌(𝐱′) = ∥ 𝜙(𝐱′) ∥2 − 2(𝜙(𝐱′). 𝑃𝑛𝜙(𝐱)). (4.20) 

 

Using the kernel trick and substituting (4.18) into (4.20), one gets, 
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 𝜌(𝐱′) =  𝜅(𝐱′, 𝐱′)  − 2 ∑ 𝛽𝑘 ∑𝛼𝑖
𝑘. 𝜅(𝐱′, 𝐱𝑖)

𝑙

𝑖=1

𝑛

𝑘=1

 (4.21) 

 

This can be simplified as,  

 

 𝜌(𝐱′) =  𝜅(𝐱′, 𝐱′) − 2∑𝛾𝑖. 𝜅(𝐱′, 𝐱𝑖),

𝑙

𝑖=1

  (4.22) 

where 𝛾𝑖 = ∑ 𝛽𝑘
𝑛
𝑘=1 𝛼𝑖

𝑘. 

 

Several methods have been proposed for solving the optimization problem in 

[123] Honeine and Richard used a linear algorithm that learns the inverse map 

from the training set. Kwok and Tsang [125] proposed using multidimensional 

scaling (MDS) to embed 𝑃𝑛𝜙(𝐱)  in the lower dimension 𝐱; the algorithm seeks 

to minimise the pairwise distances in input and feature space. However, the 

most popular approach is the fixed point iteration method proposed by Mika et 

al. [117], which is guaranteed to produce a pre-image that lies within the span of 

the training data. However, the method in [117] suffers from a number of 

drawbacks which include; sensitivity to initialization, local minima, and 

numerical instability. To overcome the first setback, re-initialization with different 

values has been proposed in [127], furthermore, these same authors tackled 

the problem of instability via the use of input space regularization to stop the 

denominator of the iteration rule from going to zero. The reformulation proposed 

in [127] is given by, 

 

 𝜌(𝐱′) = ∥ 𝜙(𝐱′) − 𝑃𝑛𝜙(𝐱) ∥2 +  𝜁 ∥ 𝐱′ − 𝐱𝑜 ∥,  (4.23) 
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where 𝜁 is a non-negative regularization parameter, 𝐱𝑜 is an input space value 

used for the regularization. 

 

With a view to enhancing image reconstruction, centring of the weighting 

coefficient  𝛾𝑖 has also been suggested in the literature [125], [127], [128]. So 

that, 

 

 �̃�𝑖 = 𝛾𝑖 + (
1

𝑁
)(1 − ∑𝛾𝑗

𝑁

𝑗=1

).  (4.24) 

where 𝑁 is the total number of observations. 

In this work, the pre-images of 𝝆𝑥_𝑛𝑒𝑤 and 𝝆𝑔_𝑛𝑒𝑤 are computed by incorporating 

(4.24) into the optimization problem of (4.23). Finally, after computing the pre-

images of ρx_new and 𝝆𝑔_𝑛𝑒𝑤, the resulting progressed face is rendered by 

warping the new texture 𝒈𝑛𝑒𝑤 to the new shape 𝐱𝑛𝑒𝑤. In essence, the 

computation of the inverse map using a technique that minimises the distance 

from training space results in facial expression normalisation. More so, the 

higher order projection effectively separates noise from the signal. The 

nonlinear age progression framework can be summarised pictorially using 

Figure 4.2.  
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4.5 Experiments 

All experiments conducted with a view to evaluating the KAM age progressor 

follow same dataset usage protocol outlined in 3.6.1. Furthermore, the 

performance evaluation technique is also as outlined in 3.6.2; both human and 

machine based evaluation procedures are deployed. 

 

4.5.1 Choice of Kernels 

Kernels used in machine learning literature have been categorised into two 

broad classes; isotropic and projective kernels [118]. Isotropic also known as 

radial kernels are functions of distances; the most popular of this kind is the 

Gaussian kernel. On the other hand, projective kernels are functions of inner 

dot products. Here Gaussian, Sigmoid and Log kernels are considered. 

Gaussian kernels have been the de facto in computer vision; the other two 

functions are examined as a form of comparison.  Specifically, Sigmoid is 

included due to its origin from neural networks [129]. Log kernels, which were 

derived from power kernels, are included as they have been shown to 

outperform Gaussian kernels when applied to the problem of image recognition 

[130]. The equations for the kernels and their pre-image rule computed using 

equations (4.23) and (4.24) are presented in Tables Table 4.1 and Table 4.2 

respectively. 

 

 

 

 

 

 



 

78 

 

Table 4.1: Reproducing kernels used for KAM age progression experiments. 

Kernels Type Expression Parameter 

Condition 

Gaussian Radial 
exp (

−∥ 𝑥𝑖 − 𝑥𝑗 ∥2

2𝜎2
) 

𝜎 > 0 

 

Sigmoid Projective 𝑡𝑎𝑛ℎ(𝑎(𝑥𝑖
𝑇 ⋅ 𝑥𝑗) + 𝑟) 𝑎 > 0, 𝑟 < 0  

Log Radial −log (∥ 𝑥𝑖 − 𝑥𝑗 ∥𝛽 + 1) 0 <  𝛽 ≤ 2 

 

Table 4.2: Kernel pre-image iteration rules. 

Kernels Gradient of the Optimization Equation 

Gaussian 1

𝜎2
∑ 𝛾𝑖exp (

−∥ 𝑥∗ − 𝑥𝑖 ∥2

2𝜎2

𝑙

𝑖=1
)(𝑥∗ − 𝑥𝑖) +  𝜁(𝑥∗ − 𝑥𝑜)  

Sigmoid 
𝑎𝑥∗(1 − tan2ℎ(𝑎𝑥∗

𝑇𝑥∗ + 𝑟)) − ∑ 𝛾𝑖𝑎(1 − tan2ℎ(𝑎𝑥∗
𝑇𝑥𝑖 + 𝑟))𝑥𝑖

𝑙

𝑖=1

+  𝜁(𝑥∗ − 𝑥𝑜) 

Log 
∑ 𝛾𝑖

𝛽

(∥ 𝑥∗ − 𝑥𝑖 ∥𝛽+ 1)

𝑙

𝑖=1
(𝑥∗ − 𝑥𝑖)

𝛽−1 +  𝜁(𝑥∗ − 𝑥𝑜) 

 

 

4.5.2 Parameter Selection 

While, there exist several methods for selecting an optimal kernel for supervised 

learning problems [131], [132], the lack of proper evaluation criteria makes 

parameters selection in unsupervised learning problematic. As a consequence, 

the choice of kernel parameters will be in accordance with techniques that have 

been used in the literature.  
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To ensure a gaussian kernel width 𝜎 remains small enough while capturing 

optimum neighbourhood information of each image pixel, the width 𝜎 is selected 

using the formula defined in [133], expressed as, 

 

 
5

𝑙
∑𝑑𝑖

𝑁𝑁

𝑙

𝑖=1

 (4.25) 

 

where 𝑑𝑖
𝑁𝑁 is the distance between image pixel x𝑖 to its nearest neighbour, and 𝑙 

is a total number of pixels. For the Sigmoid kernel, the optimum value of the 

gradient 𝛼 has been shown in [129] to be 1 𝑁⁄  where 𝑁 is the data dimension. 

To meet the condition of positive-definiteness [129], throughout the experiments 

the value of the negative intercept is fixed to be 𝑟 =  −1. In the literature, it has 

been shown that the degree of a log kernel must lie within the range of 0 <

 𝛽 ≤ 2, in this work a value of 𝛽 = 2 is used as it guarantees a differentiable 

cost function during the pre-image computation.  

 

In order to ensure convergence of pre-image objective functions, the initial 

iteration parameter 𝐱𝑜 is always set to the mean (
1

𝑁
∑𝐱) of training data [133], 

on the other hand, the non-negative regularization parameter is set to a 

minimum value of 𝜁 = 0.0001 [127]. 

 

4.5.3 Results 

Various experiments were conducted just as outlined in 3.6.3. Here, KAM was 

built using all three kernels mentioned above. To achieve age progression, the 

linear regressor defined in (4.14) was utilised. For all three KAMs, the number 
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of features plugged into the regression model was chosen by considering the 

dimension that resulted to the least MSE as shown in Figure 4.3. Interestingly, it 

was observed that all three KAMs required 100 features to achieve optimum 

MSE; this was attained via cross validation.  

 

(a) 

 

(b) 
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(c) 

Figure 4.3: Mean square error per number of features (a) Gaussian kernel KAM 
(b) Log kernel KAM(c) Sigmoid kernel KAM. 

 

The 82-subjects’ test data was then used to perform age progression. In Figure 

4.4, a sample of the age synthesis results show the test image at the farthest 

left, next to it is the ground truth picture of the subject at intended age, and then 

follows the synthesis results generated using Gaussian (KAM-G), Log (KAM-L) 

and Sigmoid (KAM-S) kernels. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 4.4: Sample of KAM age synthesis results. Images on the farthest left 
are the test images. 
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From the results above, it is quite obvious that the KAM framework handles 

noise and facial expression with a certain degree of visual accuracy. 

Furthermore, it can be observed that the distance based kernels produce better 

images than the projective (Sigmoid) kernel; this can be attributed to the ability 

of distance kernels to encode spatial relation of image pixels. Observing Figures 

4.4 (a) and (e), it is also obvious that the KAM technique also suffers from facial 

hair artefacts, as well as the low texture resolution phenomenon. 

 

In order to evaluate performance of the proposed algorithm, and to compare the 

efficacy of the three kernels, both objective and subjective evaluations were 

conducted. Mean scores for the objective tests (see  

 

Table 4.3) show the superiority of the KAM age progression framework; having 

average identity scores of between 77% and 79%, all three kernels outperform 

the AAM based model presented in chapter 3. To further check if the 

improvements are statistically different, again two-sample KS test was used to 

compare the mean scores. It was observed that at 5% significance level, the 

KAM-G (D=0.225, p=0.0305) based algorithm showed significant improvement 

over the sPLS algorithm that proved to be the best of the AAM methods. 

However no significant difference was observed when compared to the other 

two kernel techniques, also KAM-S (D=0.1585, p=0.2325) and KAM-L 

(D=0.1951, p=0.065) did not show significant statistical improvement over the 

sPLS method.The results clearly show the superiority of the Gaussian kernel 

function. This can be better visualised by observing the histograms shown in 

Figure 4.5. 
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Table 4.3: Mean scores of objective test (KAM based models). 

Technique Mean Scores (%) 

KAM-S 77.03% 

KAM-L 78.19% 

KAM-G 79.34% 

 

 

(a) 
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(b) 

 

(c) 

Figure 4.5: Histogram of objective test scores (KAM based models) (a) KAM-S 
(b) KAM-L (c) KAM-G. 
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Subjective test conducted to identify  human perception of how well the 

algorithm retains identity further shows the excellence of the proposed 

algorithm. As a matter of fact, the mean scores of the subjective test presented 

in Table 4.4 results corroborate the findings of the objective test.  

 

Table 4.4: Mean scores of subjective test (KAM based model). 

Technique Mean Scores  

KAM-S 7.2195     

KAM-L 7.3171     

KAM-G 7.4512 

 

Among the three kernel methods, images generated using KAM-G had the 

highest mean score, followed by KAM-L, and then KAM-S. When compared to 

the result of the model presented in the previous chapter, the mean score of 

KAM-S, despite being considerably lower than the other two kernel methods, 

outperforms the best AAM-based algorithm. However two-sample KS test did 

not reveal statistical difference between KAM-S (D=0.1741, p=0.124), KAM-L 

(D=0.1907, p=0.076) and the sPLS technique. This indicates that although the 

mean scores shows improvement, statistically study of the distribution does not 

reveal massive improvement. As for KAM-G (D=0.2305, p=0.027) scores, when 

compared to sPLS scores via the KS test a significant improvement is 

observed. To gain more insight into the overall performance of the models, bar 

graphs have been used to plot the response of human observers. One can 

clearly see that the KAM-G has more bins closer towards the best score (i.e. 

10), while the other two implementations have more bins down the scale. 
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(a) 

 

(b) 
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(c) 

Figure 4.6: Bar graphs of subject identity scores (KAM based models). 

 

However, the subjective age attainment test (see Figure 4.7), despite being 

better than what was reported for the AAM framework,  shows that a fair bit of 

the KAM synthesised images are perceived to look either younger or older than 

the age. Specifically between 56% and ≈59% of the images were perceived to 

attain the intended age. Others were either thought to look younger, older or in 

rare cases no judgement was made. It is believed that most images were 

perceived to look younger than expected due to the low-resolution phenomenon 

of PCA, on the other hand, older looking faces were obtained due to the facial 

hair artefacts that appear on young faces. 

 



 

89 

 

 

(a) 

 

(b) 
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(c) 

Figure 4.7: Bar graph representation of subjective age attainment (perception) 
test for nonlinear models (a) KAM-S (b) KAM-L (C) KAM-G. 

The proposed KAM based framework shows promising results and clearly, 

outperforms the AAM based approach.  However, the method still has a few 

setbacks.  Faces that are progressed backward at times show signs of stubble 

(Figure 4.3b) due to facial hair artefact, and most obviously adult generated 

faces lack sufficient amount of texture detail such as wrinkles, thus the 

perceived age at times seems below the intended age.  

 

4.5.4 Application 

Having investigated, and observed the performance of the proposed approach, 

the best performing implementation of the nonlinear ageing framework (i.e. 

KAM-G) was used in progressing image in a real world missing person 

scenario. Here experiments were conducted using the images of Mary Boyle 
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[19]. In Ireland, the case of Mary Boyle is considered one of the longest missing 

persons’ case. The six-year-old Irish girl went missing from her grandparent’s 

farm near Ballyshannon, County Donegal, Ireland in March of 1977. The Police 

have since closed the case, however, the fact that no trace has been found has 

left her family most especially her twin sister (Ann Doherty) asking questions, 

and hoping she will be found someday.  

 

Figure 4.8: Picture of Mary Boyle at 6years. Image downloaded from 
https://www.irishtimes.com in January 2016. 

 

Motivated by the fact that Mary’s picture that is readily available (see Figure 4.8) 

is of poor quality and having facial expression, the proposed nonlinear 

framework with the Gaussian kernel is used to progress her face from 6 to 45 

years. Thereafter, the progressed image is then compared to that of Ann at the 
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same age. It is hoped that this real application helps the police and the general 

public in the search for missing people. 

 

 

Figure 4.9 Age progressed image of Mary Boyle. 

 

4.6 Summary 

In this chapter, a nonlinear variant of the active appearance model (AAM) was 

proposed. Dubbed “KAM”, the model takes advantage of kernel machines and 

their ability to explore higher order correlations between input variables. Due to 

the image pre-processing ability of the KPCA preImage computation, age 

progression achieved via the nonlinear framework generates realistic images 

despite the effects of image noise, lightening variations, and facial expressions.  

 

However, despite handling noise and varying facial expressions, the model 

suffers from hair artefacts and low resolution of the output image. These 

problems clearly affect both AAM and KAM frameworks, and it is not a surprise, 

as they rely on PCA and KPCA which are subspace learning techniques. Our 

findings show that subspace learning techniques have an averaging effect, thus 
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when used for image reconstruction, the generated images seem faded i.e. 

having low resolution, and some other times carry irrelevant texture details such 

as hair across ages. Thus, adult faces rendered using these age progression 

techniques lack sufficient texture information such as wrinkles. Furthermore, the 

averaging footprint at times transfers irrelevant texture details such as hair 

across ages, as a result some young faces that were rendered using the 

framework appear to have stubbles.  

 

Towards, this end, there is the need to investigate a suitable technique of 

augmenting this texture deficit and defects, a method that will handle the 

problem of low resolutions as well as hair artefacts.  
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5 Texture Enhancement via an Example Based 

Approach 

This chapter describes the development of a nonparametric pipeline used to 

enhance the texture quality of face images. Hence the pipeline improves low-

resolution output of the KAM-based age progression framework. 

 

5.1 Introduction    

Both age progression techniques presented in earlier chapters of this thesis 

have been data driven, hence, learning patterns from the training data.  

Consequently, the algorithms represent information statistically via linear and 

nonlinear variants of principal component analysis (PCA).  However, PCA, 

which is a vital part of these models, has an unfortunate drawback of averaging 

out texture details, therefore working as a low pass filter, and as such many of 

the face skin deformations and minor details become faded, resulting in a 

younger looking and faded out facial image. Furthermore, this averaging 

phenomenon also results to artefacts and ghosting at the time of image 

reconstruction. Interestingly, recent work in 2D [134] and 3D [135] animation 

has shown that patches of the human face are somewhat similar when 

compared remotely. Thus, researchers have proposed generating novel faces 

by compositing small face patches, usually from large image databases.  

 

With the abundance of images on the Internet, it is then possible for us to use 

this patch-based synthesis approach to replace regions of blurred images with 

similar patches that have finer and detailed quality. Additionally, this same 
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approach can be used to augment other artefacts such as stubble and ghosting 

of eye colours. 

Following these ideas, in this chapter, a method of hybridising parametric 

(statistical) and nonparametric procedures for age progression is proposed. 

Precisely, the method leverage’s the robust facial reconstruction ability of KAM, 

while at the same time compensating texture information by forming composites 

with the aid of an Age-wise Example-based Texture Synthesis technique 

(AETS) to enhance the texture details. 

 

5.2 Texture enhancement pipeline 

To address the issue of low texture resolution and at the same correct facial 

artefacts, a number of procedures are therefore coupled into a pipeline (see 

Figure 5.1) to achieve AETS. The pipeline entails, the construction of a low-

quality age progressed image using a statistical model, here, the statistical 

method of choice is the KAM-G age progression framework that was presented 

in the previous chapter. Secondly, both age-progressed and the original 

individual’s image are segmented into uniform overlapping patches. Thereafter, 

based on the segmentation model, age-wise patch library (database) of finely 

grained textures is formed from hundreds of images collected over the Internet.  

Finally, an appropriate template matching algorithm is deployed to select and 

replace patches of the KAM-G synthesised facial image with enhanced textures 

retrieved from the database whilst ensuring patch consistency, as well as 

resemblance to the original image. 
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5.2.1 Segmentation 

As an initial step the original (𝐹𝑖𝑛𝑖𝑡) and KAM-G progressed (𝐹𝑎𝑔𝑒𝑑) images are 

affine warped to a template shape, this is done as a form of pre-processing to 

ensure patch to patch correspondence. Since enhancing the age-progressed 

image is the ultimate goal of the procedure, then, its shape is an ideal template. 

Hence, one only has to warp the original image 𝐹𝑖𝑛𝑖𝑡 to the template shape i.e. 

the shape of 𝐹𝑎𝑔𝑒𝑑. Next, each image is segmented into an array of 72 

overlapping patches arranged as a regular grid having  9 × 8 dimensions (see 

Figure 5.2). To be precise, the width of the overlap region is one-fifth that of the 

patch. The rationale, behind this segmentation procedure, is to reduce the face 

into small sections for the purpose of comparison, and the overlap ensures 

smooth transition and stitching of textures when rendering the composite face.  

 

 

Figure 5.2: Image segmentation pattern. 
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5.2.2 Database Formation 

Using images collected over the Internet, age-wise patch databases for 9 age 

groups were formed. The age groups are, 0-2, 3-7, 8-13, 14-21, 22-28, 29-36, 

37-45, 46-58, and 59 -70 years. Next, all the images are converted to patches 

following the segmentation procedure that was utilised for the original and 

synthesised faces. In a nutshell, they are affine warped to the shape of image 

𝐹𝑎𝑔𝑒𝑑 and cut into 72 overlapping patches. 

5.2.3 Template Matching 

After the successful creation of 9 patch libraries i.e. one for each age group, 

there follows a systematic patch selection procedure. Given a synthesised 

image 𝐹𝑎𝑔𝑒𝑑 at age 𝑎𝑛𝑒𝑤, the patch library to use for swapping textures is the 

one whose age group corresponds to that of 𝐹𝑎𝑔𝑒𝑑. The patch swapping 

procedure is achieved by performing three region matching comparisons:  

 

 Comparison between a patch in the library 𝑝𝑘 and corresponding patch 

𝑝𝑘′ on the KAM-G synthesised face 𝐹𝑎𝑔𝑒𝑑  

 Comparison between overlap region of the patch 𝑝𝑘 to the overlap region 

of the patch above it 𝑝𝑖′ and to its left 𝑝𝑗′ both on the face 𝐹𝑎𝑔𝑒𝑑 

 Comparison between a patch from the library 𝑝𝑘 and corresponding 

patch 𝑝𝑘
′′ on the original face 𝐹𝑖𝑛𝑖𝑡  

 

The rationale behind the above three comparisons is to ensure that the patch to 

be copied best matches the patch to be replaced on 𝐹𝑎𝑔𝑒𝑑. It also guarantees 

that the patch overlays smoothly, matching the patch above and below it on the 

synthesised face 𝐹𝑎𝑔𝑒𝑑. Furthermore, the last comparison helps to recover 
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features of the original face that the statistical model missed at the time of initial 

face synthesis, thus it acts as a constraint that minimises the distance between 

the synthesised composite and the original face.  

 

Image texture comparison requires some form of measurement and has been a 

well-studied problem in computer vision. As a matter of fact, there is a huge 

literature devoted to this problem, some past [136] and recent researchers [137] 

have even made attempts to compare some of the most popular techniques. In 

general, there is a need to have a trade-off between the error rate of the 

algorithm and its computational speed. As such one of the most popular 

similarity measures is the Euclidean Distance (ED) due to its simplicity and 

computational speed. Unfortunately, ED which is simply the straight line 

distance between two points does not take into account the spatial relationship 

of image pixels, hence it is quite sensitive to small deformations (rotation, 

translation, and scaling), noise, and change in illumination [138]. In this regard, 

an improved variant of ED is used here, that is the Image Euclidean Distance 

(IMED) [139], a distance measure which takes into account the pixel's spatial 

relationship, hence relatively insensitive to spatial deformations. 

 

IMED is computed by embedding a positive definite matrix 𝐺 into the traditional 

Euclidean Distance (ED). The matrix 𝐺 which is usually a Gaussian function 

defines the distance between the 𝑖th and 𝑗th pixels. Since the function is 

continuous and monotonically decreasing as the distance between pixels 

increases, it then follows that smaller deformation causes smaller changes in 

the distance. The distance can be expressed as, 
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𝐼𝑀𝐸𝐷 = (𝒙1 − 𝒙2)
𝑇𝐺(𝒙1 − 𝒙2) 

𝐺 =  ∑ ∑ 𝑔𝑖𝑗
𝑀𝑁
𝑗=1

𝑀𝑁
𝑖=1 , 𝑔𝑖𝑗 = 

1

2𝜋𝜎2  exp (−
(𝑑𝑖𝑗

𝑠 )

2𝜎2   ) 

(5.1) 

 

where 𝒙1 and 𝒙2 are vectorised forms of the images to be compared, 𝜎 is the 

width of the Gaussian function, and 𝑑𝑖𝑗
𝑠  is the spatial pixel distance between 𝑖th 

and 𝑗th pixels, so if 𝑃𝑖 is at location (𝑚, 𝑛) and  𝑃𝑗 is at location (𝑚′, 𝑛′) their 

distance is given by, 

 

 𝑑𝑖𝑗
𝑠 = ((𝑚 − 𝑚′)2 + (𝑛 − 𝑛′)2))

1
2⁄  (5.2) 

 

After successful selection of image patches, corresponding regions of the age-

progressed face are replaced. Finally, texture normalisation of the resulting 

composite face is performed to discard illumination variations.  

 

5.3 Experiments 

5.3.1 Database 

In order to implement the proposed AETS pipeline, the nine agewise patch 

libraries were populated using a total of 3000 images. All the photographs are 

high-quality colour images that were collected over the Internet, with a gender 

to male ratio of 50:50. To be precise, each age-group patch database has up to 

300 images. All subjects are Caucasian, displaying varying facial expressions 

and head poses. The picture qualities also show illumination, sharpness, and 

resolution variations.  
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5.3.2 Implementation of the proposed approach 

As stated earlier, the KAM-G proposed in chapter 4 was used to generate the 

statistical age-progressed image. In order to form the array of corresponding 

patches, the original image, KAM-G age-progressed image, as well as all 

photographs that were added to the patch libraries were first cropped to a size 

of  340 × 340 pixels, then following the proposed segmentation procedure, they 

were all sliced into the 9 × 8 grid array with each patch having a size of 25 ×  20 

pixels as shown in Figure 5.3. Thus the vertical and horizontal overlays have 

dimensions of 5 ×  20 and 25 ×  4 pixels respectively.  

 

 

Figure 5.3: Grid of 9 x 8 patches. 

To conduct the patch selection, the 3 region comparison steps were performed 

on grayscale versions of the images. Using a heuristic, weighted distances were 

computed. As shown in Table 5.1 the weights indicate how each of the 

distances contributes to the final patch selection metric which given by, 

 

 𝜕𝑎𝑙𝑙 =  𝛼𝜕𝑝𝑎𝑡𝑐ℎ +  𝛽𝜕𝑜𝑣𝑒𝑟𝑙𝑎𝑦 +  𝛾𝜕𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 (5.3) 
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where 𝛼, 𝛽, and 𝛾 are the weights defined in Table 5.1, 𝜕𝑝𝑎𝑡𝑐ℎ, 𝜕𝑜𝑣𝑒𝑟𝑙𝑎𝑦, and 

𝜕𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 are the results of the different patch distances also defined in Table 

5.1. 

 

Weights were chosen such that, much relevance is given to how closely the 

faded patch resembles the new patch to be copied, next relevance is given to 

the similarity of overlay regions since they ensure the smooth transition of 

image regions. Finally, to ensure identity retention, consideration is given to the 

similarity of the patch to be copied to the original image; this is given a small 

weight to avoid complete distortion of the KAM-G output. As a matter of fact, the 

computed weighted distance 𝜕𝑎𝑙𝑙 is scaled to a value within the range of 0 and 

1, with zero indicating the best match and one referring to total mismatch. 

 

Table 5.1: Weights assigned to region similarities using a heuristic. 

Weight Notation Comparison 

0.5 𝜕𝑝𝑎𝑡𝑐ℎ Between region 𝑝𝑘 in the library and corresponding 𝑝𝑘′ 

on the aged face 𝐹𝑎𝑔𝑒𝑑 

0.3 𝜕𝑜𝑣𝑒𝑟𝑙𝑎𝑦 Between overlay regions of patch 𝑝𝑘 and the overlay 

regions above and to left of 𝑝𝑘′ on the aged face 𝐹𝑎𝑔𝑒𝑑 

0.2 𝜕𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 Between patch 𝑝𝑘 and corresponding patch 𝑝𝑘
′′ on the 

original face 𝐹𝑖𝑛𝑖𝑡 

 

 

In other to compute the distance metric, IMED’s the width of the Gaussian 

function was computed using equation (4.25), so that 𝜎 remains small enough 
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while capturing optimum neighbourhood information of each image pixels. It 

was observed that, as 𝜎 tends towards zero, IMED turns to the traditional 

Euclidean Distance. On the other hand, as the value of  𝜎 becomes 

substantially large, the images become completely blurred.  

 

To cut down computational cost by reducing the number of patch to patch 

comparisons, a symmetry constraint was enforced such that only patches for 

one-half of the face are searched, afterwards the same patch for the other half 

were automatically copied; this way one is sure that generated pairs of eyes, 

nostrils, and lips are consistent. Symmetry constraint is depicted in Figure 5.4 

using different colours to represent patches that were copied in a particular 

instance of the conducted experiments. In the example shown in Figure 5.4, the 

face was formed from 23 unique patches learned from the database. As stated 

earlier, the symmetry constraint ensures one half of the generated face is 

identical to the second half of the face. 

 

Figure 5.4: Colours to indicate origins of patches with symmetry constraint. 
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After successful patch selection, next, the chosen patches are stitched as 

shown in Figure 5.5, to form a composite face with enhanced textures. Finally, 

gradient and other illumination variations are eliminated using Poisson Image 

Editing [140] as shown in Figure 5.6. 

 

 

Figure 5.5: Sample of composite face formed from patches. 

 

Figure 5.6: Illumination-normalised texture enhanced output. 
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5.3.3 Results 

Samples of generated results are shown in Figure 5.7. Original faces are on the 

farthest left, next to which are those generated using the statistical model (KAM-

G) and on the farthest right are the texture enhanced outputs. As can be 

observed the outputs of the hybrid procedure have more detailed texture 

information, furthermore, they are free from artefacts such as ghosting and 

stubbles that appear on young and feminine faces. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.7: Sample of age progression using hybrid technique. 
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Next, both machine and human based tests were conducted to evaluate the 

ability of the rendered output to retain identity and to ascertain the intended age. 

Having achieved a mean objective score of 84.36%, this method obviously 

outperforms both KAM and AAM approaches to age progression; for a 

comparison, the mean scores of the objective tests have been presented in 

Table 5.2. Histogram shown in Figure 5.8 has been used to further explore the 

overall performance of the test, as can be seen over 60% of the test images 

had scores between 80%  and 100% this indicates that most of the images 

retained identity of the subject with a high degree of accuracy. Additionally, KS 

test showed that the test scores were significantly better than the results of 

KAM (D=0.2327, p=0.0202) and AAM (D=0.3501, p=0.0001) based techniques. 

 

Table 5.2: Comparison of mean scores (objective test). 

Technique Mean Scores (%) 

AAM based implementations 

Lanitis [15] method 69.82 

OLS approach 71.86 

PLS approach 73.16 

sPLS approach 74.36 

KAM based implementations 

KAM-S 77.03% 

KAM-L 78.19% 

KAM-G 79.34% 

Proposed model 

Hybrid 84.36% 



 

108 

 

 

 

Figure 5.8: Histogram of objective test scores (Hybrid technique). 

The bar graph in Figure 5.9 indicates that most of the progressed images were 

perceived by human observers to greatly resemble the test subjects.  

 

Figure 5.9: Bar graphs of subject identity scores (Hybrid technique). 
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Table 5.3: Mean scores of subjective test (Hybrid technique). 

Technique Mean Scores 

AAM based implementations 

Lanitis [15] method 6.1707 

OLS approach 6.4146 

PLS approach 6.6585 

sPLS approach 6.7805 

KAM based implementations 

KAM-S 7.2195 

KAM-L 7.3171 

KAM-G 7.4512 

Texture Enhanced model 

Hybrid 8.1463 

 

 

The mean score of human identity ratings presented in Table 5.3 further shows 

the hybrid technique’s superiority. Evidently, the texture enhanced technique 

surpasses the KAM method, which in turn surpasses the AAM approach.  
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Figure 5.10: Bar graph representation of subjective age attainment test for 
hybrid technique. 

 

Thus, this hybrid approach presents a way of getting the advantages of both 

parametric and nonparametric synthesis techniques. An obvious advantage of 

the hybrid technique is its ability to provide better texture. The fact that the 

pipeline considers both synthesised and original faces during patch selection 

makes it possible to better preserve unique features such as the eye and lip 

colour which easily get tempered by the averaging effects of PCA and KPCA. 

 

5.4 Summary 

A hybrid technique for augmenting problems associated with statistical models 

was presented in this chapter. When utilised for automatic facial age 

progression, the method provides promising results. Coupled with the findings 

of previous chapters, this hybridisation has provided a means of solving some 
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of the long-standing problems associated with age progression. It is now 

possible to project faces to varying ages without having to solely rely on a 

lookup table, facial expressions, and noise effects have also been tackled. 

Finally, faces with enhanced texture detail that are free from defective artefacts 

can be rendered, thus achieving realistic automatic facial age synthesis.  

 

The remaining part of this thesis will be focussed on developing a suitable age 

estimation algorithm which will then be used to objectively evaluate the ability of 

the proposed age progression frameworks in rendering the intended age. It is 

worth mentioning that until this point, only the perception of human observers 

has been used to evaluate the ability of the techniques to progress the face to 

the intended age.  
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6 Age Estimation using Supervised Appearnace 

Models 

Here, a Supervised Appearance Model (sAM) is derived and used to capture 

facial ageing features. Next, automatic age estimation is performed via 

regression.  

 

6.1 Introduction 

In previous chapters of this thesis, techniques for age progression were 

proposed with the sole goal of addressing three major problems; challenge of 

working with noisy images, the effect of facial expression on rendering, and the 

problem of low resolution output. As this research traversed from AAM 

methods, to KAM as well as hybrid techniques, results of several experiments 

have  revealed consistent increment in the rendering capability of the 

algorithms. However, just as stated in [8], the key issue in automatic age 

synthesis is the generation of accurate predictions. Although the proposed 

techniques have been evaluated using rigorous procedures, one assessment is 

obviously missing; no objective test has been conducted to evaluate the ability 

of the algorithms to attain the intended age. Precisely, the machine based  ED 

score test only evaluates the ability of the age synthesis methods to preserve 

identity. Although human based age attainment test has been conducted, the 

fact that this test is subjective makes it necessary to conduct an equivalent 

machine based assessment. A simple yet veracious way of conducting this 

assessment is to use automatic age estimation; given an age progressed 

image, an automatic age estimator can be used to find the precision of the 

progression technique. Ideally, it is expected that the estimated age will be 
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equivalent to the intended age. Hence, the remaining part of this thesis is 

focused on the exploring an optimal automatic age estimation algorithm, so that 

it can be used as an evaluation tool.   

 

6.2 Age estimation problem 

Just as previously mentioned, work done on age estimation tends to follow a 

two-stage process; feature extraction and pattern learning. To start with, in this 

chapter, feature extraction is conducted by employing a statistical model due to 

its ability to capture both shape and texture details of the face. It may be noted 

that both statistical models considered in this thesis have been driven by PCA 

(linear and nonlinear), however, due to the unsupervised nature of PCA, it only 

captures characteristics of the predictor variables(face data). Hence, both PCA 

and KPCA do not give importance to how each face feature may be related to 

the class label (age). Nonetheless, in a typical problem of estimation/prediction, 

there is a need to explore attribute of the predictor variable that is best related 

to the response variable. Thus, to perform feature extraction for age estimation, 

a variant of the conventional statistical model is proposed; a model that 

improves on both AAM and KAM by embedding PLS in place of PCA/KPCA.  

 

As discussed in chapter 3, PLS is a dimensionality reduction technique which 

maximizes the covariance between the predictor and the response variables, 

thereby generating scores that have both reduced dimension and superior 

predictive power. Here, the proposed model termed supervised appearance 

model (sAM) will then be used for feature extraction with a view to achieving 

age estimation. In the latter part of this chapter, the proposed age estimation 



 

114 

 

technique is evaluated by comparing to state-of-the-art algorithms, for this 

purpose the FGNET-AD benchmark database is utilised. 

 

6.3 Partial Least Squares Regression (PLS) 

As a recap to our previous introduction of PLS, the technique generalizes and 

combines features from multilinear regression and PCA [141], thus it has been 

used for both regression and dimensionality reduction in the literature [142]. The 

technique is very useful when there is a need to predict a dependent variable 

from a large set of predictors. Although similar to PCA, it is much more powerful 

in regression and classification applications, because it searches for 

components (latent vectors) that capture directions of highest variance in 𝑋 as 

well as the direction that best relates 𝑿 and 𝒀 (i.e. covariance between 𝑿 and 

𝒀). Hence it performs simultaneous decomposition of 𝑿 and 𝒀 while PCA only 

finds the direction of highest variance in 𝑿, so the principal components (PCs) 

only describe 𝑿; however, nothing guarantees that these PCs which explain 𝑿 

optimally, will be appropriate predictors of 𝒀.  

 

To sum up it can be said, PCA performs dimensionality reduction in an 

unsupervised manner, while PLS does so in a supervised manner. Hence, it 

intuitively performs better in prediction applications such as that of age 

estimation.  

 

The formulation of PLS involves the decomposition of 𝑿 and 𝒀 variables using 

(3.30). Mathematically, it is possible to reconstruct the original data 𝑿 from the 

latent score 𝒁 defined in equation (3.31), by inverting 𝑹 the matrix of weights 

{𝒓1, 𝒓2, … 𝒓𝑘},  
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 𝑿 = 𝒁𝑹−1,  or 𝑿 = 𝒁𝑻 where 𝑻 = 𝑹−1 (6.1) 

 

Here the inverse of weight 𝑻 is referred to as the projection matrix. 

 

Suppose there is a mean centred training set 𝑿𝑡𝑟 consisting of observations 

whose class labels are known and denoted by  𝒀𝑡𝑟. Given a test set 𝑿𝑡𝑠 whose 

class label has to be predicted, PLS can be used for dimensionality reduction by 

projecting the test data onto the weight matrix 𝑹. Hence the latent scores matrix 

𝒁𝑡𝑠 for the test data is computed as shown below, 

 

 

𝒁𝑡𝑟 = 𝑿𝑡𝑟𝑹 

𝒁𝑡𝑠 = 𝑿𝑡𝑠𝑹 
(6.2) 

 

The equation (6.2) above provides a convenient means of using PLS for 

supervised dimensionality reduction. Thus, shall be utilised in building the sAM. 

 

6.4 Supervised Appearance Model (sAM) 

Just like the KAM and conventional AAM, the proposed sAM is built to capture 

both shape and texture variability from the training dataset. This can be realised 

by forming a parameterised model using PLS dimensionality reduction to 

capture the variations as well as combine them in a single model. 

 

As an initial procedure, the shape of each face in the training database is 

represented by a set of two-dimensional landmark’s vector 𝐱, representing the x 

and y coordinates of the fiducial points defined in equation (3.1).  
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Following the procedure mentioned previously, rotational, translational and 

scaling variations are eliminated from the landmarks data by aligning all the 

shapes using GAP.  

 

Thereafter, a supervised shape model is built by performing PLS dimensionality 

reduction described in equation (6.1). Here, the predictor variable is the matrix 

of face shapes 𝑿 = {𝐱𝑖} for each individual face used to train the model. The 

response variable 𝒀 is a 1 × 𝑛 vector containing ages of 𝑛 persons used to train 

the model. Using the latent scores 𝒁 = {𝒛1, 𝒛2, … 𝒛𝑛}𝑇 computed via PLS, each 

face shape can then be represented by a linear equation given by, 

 

 𝐱 − �̅� = 𝒛x𝑻x (6.3) 

 

For convinience, the equation (6.3) above, can be written as, 

 

 𝐱 =  �̅�  + 𝒛x𝑻x  (6.4) 

 

where �̅� is the mean shape,  𝒛x is a vector of latent scores representing that 

particular shape, and 𝑻x the projection matrix computed from all the training 

shapes. 

 

Next, to build the supervised texture model, all face images are affine warped to 

the mean shape  �̅�. Illumination discrepancies are then normalised by applying 

a scaling and an offset to the warped images in the same way as that of chapter 

3. Finally, each matrix of image pixel intensities (textures) is converted to vector 
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𝐠. By applying PLS to the matrix 𝑮 = {𝐠𝒊}, the texture of each image can be 

represented in a supervised manner via, 

 

 𝐠 =  �̅�  +  𝒛𝑔𝑻𝑔 (6.5) 

 

where �̅� is the mean texture,  𝒛𝑔 is a vector of latent scores representing the 

texture of a particular face, and 𝑻𝑔 the projection matrix of textures. 

 

From equations (6.4) and (6.5) above, it is then possible to summarise both 

face shape and texture using the latent vectors 𝒛x and 𝒛𝑔. Consequently, a 

combined appearance model of shape and texture can be derived by 

concatenating the two vectors. 

 

 𝒛𝑐 = (𝒛x 𝒛𝑔)𝑇 (6.6) 

 

To further eliminate correlation that may exist between shape and texture, PLS 

is used to reduce the dimension of 𝒛𝑐. Thus, the sAM can be represented by a 

linear equation, 

 

 𝒛𝑐 =  𝒍𝑻𝑐  , 𝑻𝑐 = (𝑻𝑐𝑥 𝑻𝑐𝑔)𝑇 (6.7) 

 

here, 𝒍 is a vector of latent scores representing both shape and texture, and 𝑻𝑐 

is the projection matrix of the combined model. It is worth noting that as 

expressed in (6.7), 𝑻𝑐 has two components related to the shape and textures 

respectively. Since both 𝒛x and 𝒛𝑔 have zero mean, then 𝒛𝑐 also has zero 

mean.  
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Similar to the conventional AAM, the linear nature of the supervised model 

makes it possible to express both shape and texture in terms of the parameter 

𝒍. 

 𝐱 =  �̅�  +  𝒍𝑻𝑐𝑥𝑻x, 𝒈 =  �̅�  +   𝒍𝑻𝑐𝑔𝑻𝑔 (6.8) 

 

Equation (6.8) above, describes the supervised appearance model (sAM), a 

variant of the statistical models discussed in chapters 3 and 4. Since the 

parameter 𝒍 summarises both shape and texture information, it gives us a 

convenient supervised way of representing faces with a view to solving the 

problem of age estimation.    

 

6.5 Pattern Learning 

The sAM contains both shape and texture components and has been derived to 

encode age related information via the PLS which performs simultaneous 

dimensionality reduction of both face and age details. Thus, it is used to extract 

face features 𝒍, thereafter, an ageing pattern is learnt using a regression 

approach. Here regression is achieved using simple models with a view to 

exploring the power of the feature extraction technique (i.e. sAM). Hence, 

ordinary linear (OLS) and quadratic function (QF) are used, 

 

 𝑎𝑔𝑒 =  𝛼 + 𝜷𝑇𝒍 (6.9) 

 𝑎𝑔𝑒 =  𝛼 + 𝜷1
𝑇𝒍 + 𝜷2

𝑇𝒍2 (6.10) 

 

where 𝛼 is the intercept, 𝜷, 𝜷1 and 𝜷2 are vectors of regression coefficients.  
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6.6 Experiments 

The effectiveness of the proposed feature extraction technique is evaluated by 

comparing the results of age estimation conducted using sAM features, to those 

performed using AAM and the KAM. As stated in the previous section, 

estimation is evaluated by incorporating the sAM features to two simple 

traditional regression algorithms; linear and quadratic functions. Furthermore, 

results of the sAM-based age estimator are compared to other state-of-the-art 

algorithms. To ensure consistency and fairness of comparison all experiments 

are conducted using the FGNET-AD [85]. 

 

6.6.1 Performance Evaluation Metric 

To evaluate the accuracy of age estimations, leave one person out (LOPO) 

cross validation method [43] is utilised for all our experiments. LOPO entails 

using the image of 1 person as test set while an estimation model is built using 

images of all the other subjects contained in the database. So, by the end of 82 

folds, each subject in the FGNET-AD will have been used for testing. This 

approach mimics a real life scenario where the classifier is tested on an image 

that has not been seen before. In addition, the LOPO approach unlike other 

cross validation techniques ensures consistency of results and ease of 

comparative evaluation of different algorithms. 

 

The performance measures used for age estimation are Mean Absolute Error 

(MAE) and Cumulative Score (CS), given by, 

 

 
𝑀𝐴𝐸 = ∑ | 𝑦 − 𝑦′ |/𝑁𝑁

𝑖=1 , 

𝐶𝑆(𝑚) = 𝑁𝑒𝑟𝑟𝑜𝑟  ≤  𝑘 / 𝑁  ×   100% 

(6.11) 
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where 𝑦 is the ground truth age, and 𝑦′  is the estimated age, 𝑁 the number of 

test images, and 𝑁𝑒𝑟𝑟𝑜𝑟  ≤  𝑘  denotes the number of images on which the system 

makes the absolute error not higher than 𝑘 years.  

 

6.6.2 Implementation 

In order to extract features via the sAM, equations (6.4) and (6.5) were used to 

compute the latent parameters of shape 𝒛x and texture 𝒛𝑔, each of these two 

was represented using just 8 components chosen via cross-validation (see 

Figure 6.1). Next, the supervised shape and texture models are combined using 

equation (6.6) to form an 𝑛 ×  16 matrix, where 𝑛 refers to the number of 

observations, for the FGNET-AD  𝑛 =  1002. Finally, the second PLS is 

performed using (6.7). Eventually, the face 𝒍 is represented using 13 

components; again the optimum number of components is decided via cross-

validation as shown in Figure 6.1 (c). The shapes of the first two graphs shown 

in Figure 6.1 (a and b) reveal that using the supervised model, very few PLS 

components were required to represent the shape and texture of the human 

face, specifically all the variations are accounted for by as small as 8 shape and 

texture components. The curve in Figure 6.1c reveals that when combined into 

a single model, the 16 features representing shape and texture of the face can 

further be reduced to just 13 optimal features. 
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(a) 

 

 

(b) 
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(c) 

Figure 6.1: Mean square error per number of features (a) supervised shape 
model (b) supervised texture model (c) supervised appearance model. 

 

To achieve age estimation, two regression algorithms described in equations 

(6.9) and (6.10) were utilised. For the quadratic function, the number of squared 

terms were computed in a sparse manner; as a form of regularization, only few 

predictor variables were squared. Hence, instead of computing the second 

order terms of all 13 components, only the 2nd order terms of the first 7 

independent variables (𝑙1
2, 𝑙2

2, … 𝑙7
2) were used, once again this choice is made 

by cross-validation i.e. comparison results of different combinations as shown in 

Figure 6.2.  
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Figure 6.2: Choice of squared terms for QF. 

 

6.6.3 Results 

To fully evaluate the sAM based age estimator, three sets of experiments were 

conducted. First, the two regression techniques sAM fed to OLS regressor 

(sAM-1), and sAM feature with sparse quadratic regressor (sAM-2) were 

compared to estimations conducted using AAM and KAM algorithms that were 

presented in earlier parts of this thesis. MAE and CS results presented in Table 

6.1 obviously shows the superiority of sAM as compared to features extracted 

using the other statistical methods. This proves the ability of PLS encoding to 

preserve face features that are best related to the age information.  
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Table 6.1: Comparison of sAM to AAM and KAM estimations. 

Feature MAE CS < 10 

AAM-OLS 10.01 55.88% 

AAM-PLS 7.14 77.82% 

AAM-sPLS 6.97 78.94% 

KAM_S 6.93 79.67% 

KAM_L 6.77 80.67% 

KAM_G 6.75 80.74% 

sAM-1 5.92 83.03% 

sAM-2 5.49 85.34% 

 

Next, a second experiment was conducted to compare, sAM-2 results to those 

of published works, where researchers used the conventional statistical model 

(AAM) for their feature extraction, coupled with variety of regression models for 

estimation. Despite, the sophistication of their regression techniques, the simple 

yet powerful sAM-2 method clearly gives promising results (see  

Table 6.2). This further highlights the superiority of PLS over PCA 

dimensionality reduction; it also shows the significance of feature extraction in 

age estimation tasks.  
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Table 6.2: Comparison of sAM to research works that used statistical models. 

Feature Algorithm MAE CS < 10 

AAM WAS[47] 8.06 ≈77% 

AAM QF [15] 7.57 ≈78% 

AAM SVM [43] 7.25 ≈76% 

AAM AGES [43] 6.77 ≈81% 

AAM AGES LDA [43] 6.22 ≈82% 

AAM RUN1[143] 5.78 ≈84% 

AAM MLP [47] 10.39 ≈60% 

AAM IIS-LLD [144] 5.77 NA 

AAM OLS [9] 10. 01 55.88% 

Proposed sAM-2 5.49 85.34% 

 

 

Finally, a third comparison was made between sAM-2 and other techniques that 

did not use statistical models. Purposely BIF and CNN results are compared 

since they have been reported to be the state-of-the-art in recent times.  
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Table 6.3: Comparison of sAM to other state-of-the-art techniques. 

Method MAE 

sAM-2 5.49 

BIF[68] 4.77 

C & H BIF [145] 4.60 

OHR [146] 4.48 

LSR [147] 4.38 

CNN [72] 4.22 

BI. AAM [148] 4.18 

EBIF [69] 3.17 

 

Obviously, results of Table 6.3 show that the statistical model performs below 

other more recent algorithms. Thus, notwithstanding, its superior predict 

performance as compared to AAM and KAM, the sAM age estimation cannot be 

regarded as the gold standard for evaluating our age progressor. Hence, there 

is a need to investigate further, with a view to achieving an algorithm that 

minimises the estimation error even further. 

 

6.7 Summary 

In this chapter, a supervised appearance model (sAM) which improves on the 

traditional AAM was proposed. When used for facial feature extraction, the 

model describes the face with very few components. For instance, it required 

only 13 components to effectively represent FGNET-AD faces as opposed to 

AAM and KAM which require a large number of parameters. When used for age 
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estimation, the sAM based estimator achieved 5.49 mean absolute error which 

is better than most algorithms that used AAM for feature extraction. This proves 

the predictive power and superior dimensionality reduction ability of the sAM. 

Additionally, sAM provides an avenue for face reconstruction, thus, in the future, 

researchers can investigate using sAM for automatic facial age progression.  

 

However, the supervised statistical model performs below more sophisticated 

state-of-the-art algorithms. Hence, if used for evaluating the performance of age 

progression methods, it might introduce much bias. Hence, there is a need to 

explore further with a view to getting an age estimation algorithm that has lower 

estimation error. Another obvious finding is that the deep neural networks 

despite their staggering performance in other computer vision applications fall 

below the enhanced BIF [69] when used for age estimation. It is presumed the 

problem encountered by the deep network (CNN) is the small size of the 

training dataset. To this end, ways of optimising CNN is investigated, especially 

for small datasets such as the FGNET. 
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7 Age Estimation using Deep Learning 

In this chapter, more accurate age estimation is achieved by facial feature 

extraction using the learned weights of a pre-trained convolutional neural 

network. Thereafter, the proposed algorithm is used to evaluate the 

performance of the age progression frameworks that were proposed in earlier 

parts of this thesis. 

 

7.1 Introduction 

In recent years, convolutional neural networks (ConvNets or CNNs) have had a 

great impact on computer vision and machine learning fields due to their ability 

to learn complex features using nonlinear multi-layered architectures [79]. 

Although originating in the early 1990s, ConvNets were forsaken by the 

research community due to the assumption that feature extraction using 

gradient descent will always over fit as a result of local minima [79]. However, 

its remarkable success in the ImageNet competition of 2012 [149] altered the 

negativity associated with them. Today, state-of-the-art deep models are used 

in almost all computer vision applications including, but not limited to, detection 

[150], recognition [151], classification [152], and information retrieval [153],  

researchers have also attempted to solve the problem of age estimation using 

CNNs [74]. However, CNNs used in [74], were unable to outperform state-of-

the-art algorithms when evaluated on the FGNET-AD.  

 

Actually, age estimation using biologically inspired features (BIF) [69] have 

maintained state of the art results since 2010. The method involves convolving 

an input image with a bank of multi-orientation and multi-scale Gabor filters. 

After which a pooling operation is used to downscale the huge feature 
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dimension [154]. Although deep neural networks have become the de-facto 

standard models for image understanding, the failure of [74] to outperform [69] 

on FGNET-AD can be attributed to the small size of the dataset, as well as 

shallow nature of the architecture proposed in [74]. Thus, it is no surprise that 

most recent researchers [75], [77], [78] that followed on, failed to experiment 

and evaluate their CNN models using the FGNET-AD database. Moreover, all 

these researchers built their CNN models from the scratch, thus utilising huge 

datasets and deploying huge computational power.  

 

Interestingly, research has shown that ConvNets efficiently learn generic image 

features [79], [155]. Thus, these features can be used directly with simple 

classifiers to solve computer vision problems. This approach known as off-the-

shelf feature extraction has been used by several researchers [155]–[157] to 

achieve promising results on computer vision tasks. As a matter of fact, 

researchers advise that, rather than training CNNs from scratch, transfer 

learning should be the first approach to solving a computer vision task [157]. 

Likewise, some studies suggest that, for a dataset with a small number of 

images, the off-the-shelf feature extraction technique outperforms training a 

network from scratch [158].  

 

However, despite numerous works conducted using off-the-shelf features, focus 

has been concentrated only on object classification, detection, segmentation, 

and instance retrieval. Thus, the technique has not been exhaustively applied to 

the problem of age estimation. As a result of this fact, this chapter attempts to 

bridge the gap by using very deep off-the-shelf CNN features to build an 

automatic age estimator that transcends on both small and huge datasets, 
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thereby presenting an avenue for comparing to previous algorithms that were 

tested on FGNET-AD. By avoiding to build a new model from scratch, transfer 

learning (off-the-shelf features) will be used to extract ageing features. Then, a 

suitable dimensionality reduction algorithm will be used to reduce the size of the 

extracted features, afterwards age-pattern learning will be conducted using a 

suitable regression algorithm. Using FGNET-AD, a thorough evaluation of the 

proposed age estimation technique shall be conducted. Furthermore, the 

algorithm is compared to the works of other researchers by testing it using the 

Morph album II dataset; this is because recent researchers that use CNNs, 

mostly utilised Morph album II for performance evaluation. Finally, the age 

estimation model is deployed as an evaluation tool to assess how best the age 

progression algorithms proposed in this thesis attain the intended age.  

 

It is worth noting that, in addition to the initial goal of developing a suitable age 

estimator that can be used to evaluate a progression performance, this chapter 

also answers the question of whether there is a need to build new CNN models 

for every task at hand, or to transfer learned features especially when there is 

limited labelled data. Furthermore, this chapter also explores, analyses and 

evaluates which layer of the existing pre-trained model is most suitable to use 

for feature extraction.  

 

7.2 Convolutional neural network (ConvNet/CNN) 

7.2.1 Background 

Supervised learning is the most common form of machine learning. In order to 

appreciate the concept, consider the problem of building a system that can 

classify banknotes as real or counterfeit. One will collect a large dataset of 
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images (real and fake notes), then at training time, the machine is shown a 

photograph and its category, the machine then produces an output in the form 

of two scores one for each category. Ideally, the output from the machine is 

assumed to be good if it gives the best score to the target category, however, 

one can be almost sure the machine can’t produce such output prior to training. 

Fortunately, one can track the performance of the machine at the time of 

training, by computing a cost function that measures the difference (error) 

between the machine’s output and that of the target scores. In order to reduce 

the error, the machine then perturbs its internal adjustable parameters, normally 

these parameters called weights define a mapping of the input to output.  This 

training procedure of showing an image, estimating its scores, comparing to the 

target, and adjusting the weights goes on iteratively until a zero error, or very 

minimal acceptable error is achieved. Once training has been accomplished, 

the weights of the machine now have intelligent values which can be used to 

map a new (unseen) image of the banknote to a category with minimal error. In 

fact, the above scenario explains the basic working of a feed forward neural 

network.  

 

 

Figure 7.1: Feed forward artificial neural network. 
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A neural network like the one shown in Figure 7.1 can perform the stated 

cognitive task of classifying banknotes, only if trained to do so. In the example 

of Figure 7.1, the network has 2 inputs, 2 hidden layers with 4 neurons and 2 

outputs, so it has (22 + 22 + 22)  =  12 connections; consequently, each 

connection has a weight. As described in the example above, training involves 

iterative tweaking of the weights based on the output error. It is also obvious 

that every neuron from layer 𝑙 is connected to the output of every neuron from 

layer 𝑙 − 1, this is the key attribute of a fully connected neural network (NN), and 

it is called a feed-forward NN since the output of a layer becomes the input of 

the next layer.   Passing an input and getting the predicted output is called the 

forward pass. This involves computing the total net input to each hidden layer 

neuron, pass the result through a non-linear (activation) function, then repeat 

the process with the next layer neurons. Various activation functions have been 

used in the literature [79], today, the rectified linear unit (ReLU) is the most 

popular activation function, which is simply ramp function 𝑓(𝑧) =  max(𝑧, 0). 

During the backward pass, weights are tuned to minimise the error; this is 

achieved by a technique known as back propagation [159]. The procedure 

computes the partial derivative of the error with respect to weights, achieved by 

working backward. This computation then indicates by what amount the error 

decreases or reduces as a result of small change in the weights. Subsequently, 

the weights are adjusted in opposite direction of the computed gradient. After 

adjustment of the weights, the output error changes, thus before the next 

iteration, the partial derivatives have to be recomputed once again. Due to a 

huge number of parameters involved in a neural network, the algorithm often 

over-fit [160]; a phenomenon in which the model performs excellently on 

training dataset (classification with minimum error), but fails to generalise on a 
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new unseen dataset. Methods for avoiding over-fitting include large training 

dataset, stopping the training as soon as performance on a validation set starts 

to get worse, regularization, and dropout [160]. 

 

A Convolutional Neural Network (CNN) is a type of artificial neural network that 

takes into consideration the spatial structure of the input data. To ensure shift 

and distortion invariance, CNNs combine three architectural ideas: shared 

weights, local receptive fields, and spatial or temporal subsampling [161]. 

Weight sharing refers to the procedure of applying repetitive (shared) tiles of 

neurons across space. This results in lesser parameters to optimize, and 

consequently, increase in learning efficiency. As it is impractical to connect 

neurons to all neurons in the previous volume, especially in large dimensional 

data (for instance images), local receptive field ensures the connection of 

neurons to only local regions in the input volume. Subsampling and local 

averaging enhance the efficiency of the algorithm by decreasing the resolution 

of the feature map, and therefore, decreasing the sensitivity of the output to 

shifts and distortions. In general, CNNs take the shape of a 3D structure tensor, 

having 𝑊 × 𝐻 × 𝐷 dimensions where 𝑊 (width) and  𝐻 (height) are spatial 

dimensions whereas 𝐷 is the feature dimension. Specifically, the structure of 

CNNs makes them most appropriate for image, speech and time series tasks 

[161]. More specifically, the algorithm earned its name due to the convolution 

operation that is used to apply a set of weights to the input.  

Just like the feed forward neural network, CNN can be defined as a function 𝑞 

composed of a sequence of simpler functions 𝑝 [162]. Given by, 
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 𝑞 = 𝑝𝑙  ∘  𝑝𝑙−1 ∘ ∙∙∙ ∘  𝑝1  (7.1) 

where each function 𝑝 defines a mapping of input 𝑥𝑙−1 of the previous layer to 

its output 𝑥𝑙 expressed as, 

 𝑥𝑙 = 𝑓(∑𝑤𝑙𝑥𝑙−1  + 𝑏)  (7.2) 

where 𝑓 is an activation function, 𝑤𝑙 are weights and 𝑏 is the bias. 

CNNs were first discovered in the 1990s [161], unfortunately, despite their 

breakthrough in document recognition [163], [164], they were forsaken by 

researchers due to the assumption that neural networks will always overfit or 

get trapped in local minima [165]. However, research [165] has shown that local 

minima is not necessarily that much of a problem; the difference in performance 

is only slightly affected when the local minima is minimally non-optimal. 

Moreover, a conventional method of avoiding local minima is by perturbing the 

stability of the algorithm, so that it suddenly hops out of the local optimum. 

Varying the learning rate by gradually and repeatedly increasing and decreasing 

it reduces the stability of the algorithm [166], thus giving the algorithm the ability 

to jump out of a local optimum. Additionally, the stochastic gradient descent 

(SGD) [167] optimization algorithm also introduces some sort of noise or 

randomness which helps the algorithm to escape from local minima. In essence 

obvious difference between ConvNets of today and those of the 90s include;  

availability of extremely large datasets such as the ImageNet [168],  faster 

computation realised by parallel processing ability of GPUs, advanced 

techniques for initialising weights at the start of training [169], and the use of 

simple and easy to differentiate activation functions  [170]. 
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7.2.2 Architecture of a ConvNet 

The structure of a typical ConvNet is comprised of multiple layers (see Figure 

7.2), which fall into three broad categories, convolution layer (CONV), 

subsampling layer (POOL), and a fully connected layer (FC). Furthermore, the 

activation function can also be considered as a layer in the architecture. 

Usually, a combination of the aforementioned, layers are arranged in a specific 

manner with the sole goal of transforming the input of the networks into a useful 

representation that gives an output.  

 

 

Figure 7.2: Structure of a typical ConvNet. 

CONV Layer: This is the fundamental building block of ConvNet, as stated 

earlier it derives its name from the mathematical (convolution) operation 

performed. This layer computes a dot product between the weights of neurons 

and a small region of the input volume. The neurons are arranged as a stack of 

2-dimensional filters/kernels that extend the depth of the input volume, hence 
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they are 3D structured. During the forward pass, each kernel is convolved 

across the width and height of the input volume to produce a 2D feature map 

(as shown in Figure 7.3). Thus, these feature maps are the outputs of the 

convolution operation at each spatial operation. In comparison to the feed 

forward NN, here filters represent neurons which activate when they come 

across visual features such as edges. As discussed earlier, ConvNets use local 

connectivity to reduce complexity, hence each neuron is connected to a local 

region whose spatial dimension is defined by the filter size known as the 

receptive field of the neuron, and its depth is always equal to the depth of the 

input volume.  

 

Figure 7.3: Convolution operation. 

Hence, for a 256 × 256 × 3 input image, if the receptive field is 3 × 3, then each 

neuron in the CONV layer will have a total of 3 × 3 × 3 =  27 connections, and 

1 bias parameter. Obviously, the connectivity is spatially local but full along the 

input depth. Subsequently, the size of the feature map (i.e. output) is computed 

using three hyper-parameters, depth, zero padding, and stride. Depth refers to 
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the number of filters deployed. The more the number of filters, the more the 

information retrieved since each filter learns to look for a specific feature. Stride 

defines a pattern used to slide the filter across the input, 𝑆 =  1 means the filter 

will be moved one pixel at a time across the input. Zero padding defines the 

number of zero pixels placed around the input volume in order to preserve the 

spatial size of the output volumes. One can compute the spatial size of the 

output using, 

 𝑂 = {
𝐼 − 𝐹 + 2𝑃

𝑆
} + 1 (7.3) 

where 𝐼 is the spatial size of the input, 𝐹 the filter size, 𝑃 number of zero 

paddings and 𝑆 the stride. Hence, if applied to input images of size [224 ×

224 × 3] and assuming; neurons having receptive field of 3 × 3 size, depth 𝐾 =

64, a single stride 𝑆 = 1, and zero padding 𝑃 = 1, then one gets  
224 −3+2

1
+ 1 =

224. This means that the output volume of this particular CONV layer will have 

a size [224 × 224 × 64]. Consequently, there will be 224 × 224 × 64 =  3211264 

neurons each having 3 × 3 × 3 =  27 weights and 1 bias. Interestingly, rather 

than having 3211264 ×  27 weights and 3211264 biases, the concept of weight 

sharing makes all the neurons on one slice to share the same weight and bias. 

Hence, the number of weights and biases drastically reduces to 1728 and 64 

respectively. 

 

Activation Layer: In neural networks, activation function plays a significant role 

of introducing nonlinearity to the output of a neuron. Introducing this nonlinearity 

makes the neural network a universal function approximator, thereby, giving it 
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the ability to understand various types of relationships. The most effective and 

commonly used activation function for ConvNets is the rectified linear unit 

(RELU) [171]; this involves element-wise application of a zero thresholding 

function 𝑓(𝑥) = max (0, 𝑥) where 𝑥 is the input of the neuron. Compared to other 

activation functions, ConvNets with ReLUs train several times faster [149]. The 

activation layer does not introduce additional parameters to its input, it also 

does not change the dimension of the input. In the architecture, activation layers 

are placed after every CONV layer. Additionally, networks with more than one 

FC layer also deploy it with the exception of the last fully connected layer.    

 

POOL Layer: Pooling layers are usually inserted between successive CONV 

layers. Their main function is to consistently reduce the number of parameters 

and consequently decrease computation complexity of the network by reducing 

the spatial size of the feature maps. Hence they summarise the output of 

neighbouring neurons [149]. For every 2D slice of the feature map, the most 

common type of pooling operation called MAX-POOLING usually takes the 

maximum of each 2 x 2 region, thus discarding 75% of the activations as shown 

in Figure 7.4.  

 

Figure 7.4: Max-pool with 2 × 2 filter having stride of 2. 
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In a nutshell, pooling operation does not introduce new parameters; rather it 

leads to shrinkage of the first and second dimensions of the feature map. The 

operation takes two parameters, stride S and spatial dimension F. Hence the 

pooling operation reduces a feature map from 𝑊1 × 𝐻1 ×  𝐷 to 𝑊2 × 𝐻2 × 𝐷 

dimension. Here 𝑊2 and 𝐻2 are computed via, 

 𝑊2 =
𝑊1−𝐹

𝑆
+ 1,  𝐻2 =

𝐻1−𝐹

𝑆
+ 1, (7.4) 

Interestingly, this operation introduces translational invariance with respect to 

elastic distortions [172]. 

 

Fully Connected (FC) Layer: Fully Connected layer has neurons that have full 

connection to the previous layer’s activation, unlike the CONV and POOL 

layers, FC have a 2D dimension. They are typically configured to output the 

networks predicted label/classes hence FC is usually the last layer of the 

network. In the work that won the 2012 ImageNet Large Scale Visual 

Recognition Competition (ILSVRC) [150], 3 FC layers were used, and since 

then this has been the rule of thumb among most researchers. Intuitively, 

flattening the 3D feature maps at the end of the computation gives us an 

avenue for interpreting the learned spatial invariant features. 
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7.2.3 ConvNet Layer Pattern 

The most popular arrangement used by researchers [149], [173], [174] starts 

with the image-input layer, and ends with an FC (decision) layer, in between 

these two are repeated stacks of CONV-RELU layers followed by POOL layers, 

then a few FC-RELU layers. This layer pattern can be described mathematically 

as, 

𝐼𝑁𝑃𝑈𝑇 ⟹  𝑁{𝑀(𝐶𝑂𝑁𝑉 ⟹  𝑅𝐸𝐿𝑈)  ⟹  𝑃𝑂𝑂𝐿}  ⟹  𝐾(𝐹𝐶 ⟹  𝑅𝐸𝐿𝑈) ⟹  𝐹𝐶 

Usually, the number of CONV-RELU layers that appear before POOL are within 

the range 0 < 𝑁 < 4, and the combinations variables 𝑀 and 𝐾 are usually 

greater than 1. A typical example is the popular VGG16 model [173] shown in 

Figure 7.5 below. 
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Figure 7.5: Typical ConvNet Layer Pattern. 

 

7.2.4 Methods of Training ConvNets 

Generally, there are three ways of deploying ConvNets; training a network from 

scratch, fine tuning an existing model, or using off-the-shelf CNN features [157].  

The latter two approaches are referred to as transfer learning [175]. Since 
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training ConvNets from scratch, using the back-propagation algorithm involves 

the automatic learning of millions of parameters, this approach requires an 

enormous amount of data, often in millions [162]. More so, this data-hungry 

nature of ConvNets consequently demands large computational power. 

Furthermore, the procedure involves the adjustment of several hyper 

parameters. Thus, people rarely train an entire network from scratch.  

 

Fine tuning involves transferring the weights of the first 𝑛 layers learned from a 

base network to a target network [176], and then continuing the 

backpropagation using the new dataset. Hence, the target network is trained 

using the new dataset for a specific task, usually different from that of the base 

network. Fine tuning is recommended when the new dataset is moderately large 

(tens to hundreds of thousands) and very different from the base network’s 

dataset. Using the weights of the old network to initialise helps the back-

propagation algorithm, and so leading to relatively fast automatic learning of 

more specific features. 

 

In situations where the dataset is quite small (few hundreds), even fine tuning 

the weights results to over-fitting. However, since ConvNets efficiently learn 

generic image features [79], [157], it is then possible to directly use a trained 

network as a fixed feature extractor. Hence, features from new data are 

extracted by projecting them on to activations of a specific layer of the pre-

trained network. Thereafter, the learned representations are fed into simple 

classifiers to solve the task at hand. This approach known as off-the-shelf 
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feature extraction has been used by several researchers [155]–[157] to achieve 

promising results.  

7.3 Our Approach 

In this chapter, off-the-shelf ConvNet features are utilised. This is due to the 

relatively small size of the FGNET-AD. More precisely, the VGG-Face model [1] 

is utilised, due to its depth, reported excellence, and the similarity of the data it 

was trained on, to the data used in this research (i.e. images of the human 

face).  

 

7.3.1 VGG-Face Model 

VGG-Face [1] developed at Oxford University's Visual Geometry Group (VGG), 

is the application of the very deep ConvNet architecture VGG-16 [173]. It is a 

publicly available model that was trained using 2.6 million face images of 2622 

unique subjects. The model is configured to take a fixed sized [224 × 224 × 3] 

RGB image as an input; as a form of pre-processing, all the images used are 

center-normalised. The network is made of a stack of 13 convolutional layers 

with filters having a uniform receptive field of size 3 × 3 and a fixed convolution 

stride of 1 pixel. As shown in Figure 7.6 groups of these convolution layers are 

followed by five max-pooling layers. Finally, the CONV layers are then followed 

by three fully connected layers; FC6, FC7, and FC8. The first two have 4096 

channels, while FC8 has 2622 channels which are used to classify the 2622 

identities. In addition to center normalisation, the model’s implementation also 

incorporates 2D alignment. Parkhi et. al [1] have shown that the model 

outperforms Google's FaceNet [177] and Sun et. al's DeepID [178] when tested 

on YouTubeFaces[179]. 
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Figure 7.6: Architecture of the VGG-Face model. 

7.4 Feature Extraction and Pattern Learning 

For face representation weights from different layers of the VGG-Face model 

are used to extract deep features. Dimensions of the resulting features are then 

reduced before using regression for age estimation.  

 

7.4.1 Feature Extraction 

Given an input image 𝑿0 represented as a tensor 𝑿0 ∈  ℝ𝐻 × 𝑊 ×𝐷 where 𝐻 is the 

image height, 𝑊 is the width and 𝐷 the colour channels, and a pre-trained 𝐿 

layered ConvNet expressed as a series of functions 𝑞𝐿  = 𝑝1  → 𝑝2 → ⋯𝑝𝐿. In 

order to fully investigate and evaluate which layer yields the best age descriptor, 

the activation of five layers; the last two convolution layers (conv5_2, conv5_3), 

the last max-pool layer (pool5) and first two fully connected layers FC6 and FC7 

of the VGG-Face model are used as separate feature channels. The choice of 

layers has been restricted to the top 5 layers, because going further down yields 

extremely huge dimensions that will result in no significant gain even after 

reducing the dimension. 
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7.4.2 Dimensionality Reduction and Regression 

Due to large dimensions of the extracted features, ranging from 4096 in FC7 to 

100352 in conv5_2, there is a need to reduce the feature size thus removing 

redundant information. Moreover, it is a well-known fact that, for 𝑛 observations 

and 𝑝 features, the regression estimate is actually not well-defined in a situation 

where 𝑝 >  𝑛.  

 

In the past, researchers used PCA for dimensionality reduction. However, due 

to obvious problems of PCA that were mentioned in earlier chapters, partial 

least squares regression (PLS) is used to simultaneously reduce the dimension 

and regress. Hence, the relationship between the extracted features 𝑿 and the 

vector of ages 𝒀 is formulated as, 

 𝒀 = 𝑿𝛽𝑃𝐿𝑆 +  𝒃. (7.5) 

where 𝒃 is the intercept. 

 

7.5 Experiments I: Age Estimation Evaluation (a) 

Here, the performance of the age estimation procedure is evaluated using the 

same metrics outlined in 6.6.1. As an initial evaluation, features extracted using 

different layers of the VVG-Face model are compared in order to identify which 

weights of the deep network carry the most optimal ageing information. Next, 

the performance of the proposed algorithm is compared to state-of-the-art 

methods. To enhance the specificity of the technique, all images are first 

cropped to a size of 224 × 224, then a data pre-processing step is deployed; 
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this will be discussed shortly. Finally, the extracted features are fed into a PLS-

age-learner to achieve age prediction.  

 

7.5.1 Image Pre-processing 

For this experiment, all the test images were aligned using landmark 

annotations provided with the FGNET-AD dataset. Furthermore, their 

backgrounds were removed to increase image purity (refer to Figure 7.7). 

Thereafter, data augmentation was conducted; this is a popular technique used 

to increase data size during the training phase. As a result of augmentation, 

each image was responsible for the generation of 7 additional images achieved 

via random cropping and warping to the mean shape, as shown in Figure 7.7. 

 

 

Figure 7.7: Image Pre-processing pipeline. 

 

7.5.2 Performance Evaluation 

Utilizing the procedure described in the section above, five sets of estimations 

were conducted. Each estimation was performed by extracting features using 

one of the five layers of the VGG-Face model; conv5_2, conv5_3, pool5, FC6, 

or FC7 layers, after which they were fed into equation (7.5).  In all the 
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experiments, the numbers of PLS latent variables were chosen via cross 

validation.  

 

To evaluate the performance of the estimation procedure, two metrics, the 

Mean Absolute Error (MAE) and Cumulative Score (CS), were used. 

Comparison of the performance of the five ConvNet features represented in  

Table 7.1 shows that conv5_2 activations give the most minimal estimation 

error. It is also obvious that the performance degrades as one moves higher 

along the hierarchy. This suggests that generic features learnt from 

intermediate layer activations carry more ageing information than the latter 

layers that are more specific to the problem of face identification. The 

dimensionality reduction capability of PLS is also remarkable, as it reduced 

thousands of features to just a few (18) latent-variables.  

 

Table 7.1: Evaluation of features extracted from different ConvNet layers. 

Layer Latent Variables MAE CS <10 years 

conv5_2 18 2.70 100% 

conv5_3 18 2.83 99.01% 

pool5 18 2.97 98.05% 

FC6 18 3.89 96.31% 

FC7 18 5.51 84.21% 
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Next, the performance of the best performing ConvNet feature was compared to 

state-of-the-art algorithms. MAEs and CS presented in Table 7.2, further shows 

the excellence of the proposed method. This proves that carefully choosing the 

activations of pre-trained ConvNets, coupled with an effective regression 

algorithm, one achieves superior results despite the size of the dataset. To that 

effect, the proposed method has surpassed all state-of-the-art results with a 

clear gap. 

Table 7.2: Comparison of our best result to state-of-the-art algorithms on 
FGNET-AD. 

Method MAE 

BIF[68] 4.77 

C & H BIF [180] 4.60 

OHR [146] 4.48 

LSR [147] 4.38 

CNN [72] 4.22 

BI. AAM [148] 4.18 

EBIF [69] 3.17 

sAM 5.49 

Proposed 2.70 

 

7.6 Experiments I: Age Estimation Evaluation (b) 

Since some of the recent works on estimation use Morph album II [73] rather 

than FGNET-AD, it is then ideal to evaluate the proposed algorithm using the 

Morph II dataset. 
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7.6.1 About the Dataset 

Morph Album II is the largest publicly available longitudinal face database, 

consisting of 55,134 images of 13,000 individuals. The age distribution lies 

between 16 - 77 years, with a median age of 33 years. Each subject has up to 4 

images which were collected within a period of 4 years. The database contains 

people from different ethnicities, with various head poses and facial 

expressions. Furthermore, the image quality has varying scale, rotation, and 

translation as well as illumination.  

 

Due to the size of the Morph dataset, LOPO evaluation approach is not ideal. 

Hence data splitting protocol proposed and used by [5] is adopted. The protocol 

entails splitting the dataset into three (3) non-overlapping partitions; S1, S2, and 

S3 (Others). Then, the algorithm is trained and tested twice. Firstly, S1 is used 

for training after which test is conducted on a combination of S2 and S3 

partitions. In a second run, S2 is used for training, while reserving S1 and S3 for 

testing. Finally, results of the two tests are averaged. The rationale for splitting 

is to reduce the effect of different ethnicities on the algorithm; partition S1 has 

Caucasian subjects, while S2 contains African American subjects, since it’s 

presumed these two races age in a different manner, and the fact that there are 

sufficient images for both races in the dataset makes it possible to train two 

models. After  Guo & Mu [5] proposed the S1, S2, and S3 protocol, researchers 

have regarded it as a benchmark for evaluation on the Morph II dataset. 
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7.6.2 Image Pre-processing 

Automatic image alignment was deployed via Zhu and Ramanan's [181] 

algorithm, hence faces were detected, annotated and aligned on the fly. Due to 

the huge size of the dataset, data augmentation was not applied, additionally, 

the background removal step was omitted. Here, the intent is to fully investigate 

how well the ConvNet feature coupled with PLS estimation procedures fare in 

the absence of extensive preprocessing.  

 

7.6.3 Performance Evaluation 

In this second experiment, two sets of tests were conducted, by utilising aligned 

and unaligned images, denoted as wAlg and woAlg respectively.  Besides the 

above mentioned preprocessing omissions, all other steps used in the first 

experiment for feature extraction and estimation were repeated. Eventually, 

various estimations were conducted using the same five ConvNet activations. 

Comparison of the estimation results presented in Table 7.3 and Table 7.4 

 corroborate findings of the first experiment; once again  conv5_2 activations 

give superior performance. The results also show that image alignment 

increases the performance of the technique. 
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Table 7.3: Evaluation on Morph II 𝑤𝑜𝐴𝑙𝑔. 

Layer Tr. Set Latent 

Vars. 

MAE Avg. MAE CS < 10 years 

conv5_2 
S1 

S2 

17 

17 

3.93 

3.91 
3.92 96.71% 

conv5_3 
S1 

S2 

17 

17 

3.95 

3.93 
3.94 96.61% 

pool5 
S1 

S2 

17 

17 

4.06 

4.03 
4.05 96.06% 

FC6 
S1 

S2 

24 

24 

4.33 

4.29 
4.31 94.32% 

FC7 
S1 

S2 

24 

24 

4.50 

4.51 
4.51 93.26% 
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Table 7.4: Evaluation on Morph II 𝑤𝐴𝑙𝑔. 

Layer Tr. Set Latent 

Vars. 

MAE Avg. MAE CS < 10 years 

conv5_2 
S1 

S2 

17 

17 

3.84 

3.82 
3.83 96.82% 

conv5_3 
S1 

S2 

17 

17 

3.87 

3.86 
3.87 96.75% 

pool5 
S1 

S2 

17 

17 

4.01 

3.97 
3.99 96.18% 

FC6 
S1 

S2 

24 

24 

4.27 

4.25 
4.26 94.43% 

FC7 
S1 

S2 

24 

24 

4.45 

4.45 
4.45 93.40% 

 

Finally, comparison to state-of-the-art algorithms (presented inTable 7.5) further 

shows the excellence of the proposed method. As can be seen, the best 

performing activation considering image alignment, outperforms most of the 

state-of-the-art algorithms. 
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Table 7.5: Comparison to state-of-the-art algorithms on Morph II database. 

Layer Tr. Set MAE Avg. MAE 

FMBS [182] 
S1 

S2 

3.96 

4.01 
3.99 

KCCA [5] 
S1 

S2 

4.00 

3.95 
3.98 

KPLS [142] 
S1 

S2 

4.21 

4.15 
4.18 

3-step [183] 
S1 

S2 

4.44 

4.46 
4.45 

BIF [68] 
S1 

S2 

5.06 

5.12 
5.09 

Proposed 
S1 

S2 

3.80 

3.76 
3.83 

 

 

In general, both experiments conducted on FGNET-AD and Morph II datasets 

prove the power of ConvNet features and their efficiency especially after 

conducting meticulous pre-processing steps such as alignment, background 

removal, and augmentation. Our findings further show that using an appropriate 

regression algorithm, the extracted features have the potential of out performing 

even end-to-end learned networks. Having achieved minimum estimation 

errors, the proposed age estimation procedure can then be used as an 

automatic tool for assessing the performance of age progression techniques, 

i.e. their ability to generate faces that attain the intended age.  
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7.7 Experiment II : Age Progression Evaluation 

In this section, a ConvNet-based age estimator is used to develop a metric for 

evaluating the performance of age synthesis algorithms. It is worth mentioning 

that the metric presented in this section complements other performance 

measures that were used in chapters 3, 4 and 5. It acts as a machine based 

evaluation of how well the generated faces meet the intended age.  

 

7.7.1 Evaluation Procedure 

Given an image 𝐼, progressing it to a new age yields a synthetic image 𝐼′, the 

ability of the algorithm to render well-aged face 𝐼′ that attains the expected age 

can be measured by comparing it to the ground truth image of the same 

subject 𝐼′′ at that same age. Precisely, the age attainment test can be done by 

measuring how much the estimated ages of 𝐼′ and 𝐼′′ differ. Hence, assuming 

the estimated age of ground truth image 𝐼′′ to be 𝑦 and the estimated age of the 

synthesised face 𝐼′ to be 𝑦′ MAE and CS can then be used to measure the 

performance progression algorithms. The proposed procedure is illustrated 

pictorially in Figure 7.8. 
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Figure 7.8: Machine-Based Age Attainment Test. 

 

7.7.2 Results 

In line with previous age progression assessments, FGNET-AD was used for 

the age attainment test. Here, the test was conducted on all 8 age progression 

algorithms; Lanitis, AAM-OLS, AAM-PLS, AAM-sPLS, KAM-G, KAM-L, KAM-S 

and Hybrid techniques. For each of the 82 unique subjects contained in the 

database, two images were selected, an image to progress and a ground truth 

image at the progressed age to compare to. Just as stated earlier, out of 82 

images rendered, 50% of the progressions were from adult to young faces and 

the remaining 50% for the vice versa. Table 7.6 presents the computed MAEs 

and CSs for experiments conducted on the 8 algorithms.  
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Table 7.6: Comparison of Age Attainment Test (MAEs & CS). 

Algorithm MAE CS < 10 years 

Hybrid 4.91 88.90 

KAM-G 6.07 80.02 

KAM-L 6.13 79.50 

KAM-S 6.22 79.01 

AAM-sPLS 6.54 76.03 

AAM-PLS 6.61 75.25 

AAM-OLS 7.54 74.31 

Lanitis 7.23 73.40 

 

From the results shown in above, the hybrid algorithm having an MAE of  4.91 

years clearly has the least estimation error which indicates its ability to achieve 

the intended age. It can further be observed that the hybrid technique is 

seconded by the KAM-G method with MAE of 6.07 years, and the least 

performance was recorded by AAM and Lanitis algorithms.  

 

7.8 Summary 

In this chapter, facial feature extraction using weights of pre-trained ConvNet 

was extensively explored. Using activations from different layers of the VGG-

Face model, experiments were conducted on both FGNET-AD and Morph 

Album II databases. With the simultaneous dimensionality reduction capability 

of PLS, it has been demonstrated that promising results can be achieved 

without having to train a ConvNet from scratch, specifically for age estimation. 

Having achieved excellent age estimation with minimal prediction errors, the 
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estimator was then used to conduct machined based evaluation of age 

progression algorithms that were proposed in earlier chapters of this thesis. The 

results obtained clearly show the superiority of the hybrid age synthesis 

technique, this was then followed by the KAM based methods. These results 

corroborate the findings of the earlier chapters of this thesis.  
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8 Conclusion and Future Work 

This thesis has described the development of automatic age progression 

framework that is robust to noise, illumination variation as well as varying facial 

expressions. Algorithms introduced between chapters 3 to 7 of this work have 

successfully answered all the research questions outlined at the beginning of 

the thesis. This chapter summarises the main achievements of the research. 

Furthermore, it also highlights directions for future research. 

 

8.1 Conclusion 

In this work, problems of automatic facial age synthesis and estimation were 

addressed. Specifically, ways of tackling problems associated with existing age 

progression techniques were investigated and implemented. Evaluation of the 

algorithms proposed across chapters 3 to 7 show progressive improvement on 

existing techniques. Particularly, realistic 2D face images were aesthetically 

synthesised at different ages. This incorporated methods of handling image 

noise, varying facial expressions, poor texture quality as well as reconstruction 

artefacts. With a view to fully evaluating the proposed synthesis algorithms, 

robust age estimation procedure that outperformed state-of-the-art algorithms 

was also implemented and utilised as an assessment tool. 

 

In chapter 3, a mathematical procedure for progressing facial images was 

presented. As an initial part of the procedure, conventional AAM was used for 

facial feature extraction. Then, using various linear regression models, the 

formula which computes inverse mapping of the relationship between ages and 

face images was used to render realistic face images. Extensive evaluation of 

the method’s ability to preserve the identity of the subject while attaining the 
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intended age showed promising results when used to age neutral, frontal, good 

quality face images. To that effect, the algorithm was used to progress the 

image of Ben Needham, a British toddler that mysteriously went missing over 

two decades ago. However, our findings also showed that like other existing 

face synthesis algorithms, the proposed method was not robust to image noise 

and the effect of varying facial expression. 

 

In chapter 4, a nonlinear variant of the AAM was proposed. Termed kernel 

appearance model (KAM), the algorithm which takes advantage of nonlinear 

principal component analysis was used to implement a face synthesis 

framework that performed image denoising as well as facial expression 

normalisation. A thorough evaluation of the technique using various kernel 

functions showed that the Gaussian radial basis function is best suited for the 

task. Furthermore, results of performance evaluations showed significant 

improvement over the AAM-based algorithm that was proposed in chapter 3. 

Also to illustrate the real application of facial age synthesis, the nonlinear age 

synthesiser was used to progress images of Mary Boyle; an Irish toddler that 

went missing over 3 decades ago. However, it was observed that despite 

handling noise and varying facial expressions, the KAM-based framework like 

its linear counterpart, generated images which had low texture quality, thus 

lacking valuable age related traits such as wrinkles and muscular tautness. It 

was further observed that both statistical ageing models at times suffered from 

reconstruction artefacts, such as inconsistent eye colouration and facial hair 

that appeared on toddler and feminine faces. 
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In chapter 5, a hybrid technique for augmenting problems associated with 

statistical models was implemented. The approach which builds upon images 

that were generated using the KAM framework deployed tiny skin patches 

retrieved from a large pool of images to boost the low resolution of age-

progressed pictures. Furthermore, it was observed that the technique effectively 

corrected unrealistic facial artefacts. Extensive machine and human based 

evaluations of the ability of the algorithm to retain the people’s identity showed 

that the method surpassed the previous techniques. Furthermore, our findings 

showed that human observers perceived most of the images rendered to have 

aged well as intended.  

In general it will have been interesting to observe statistically, if rendering 

images at specific ages actually affected the performance of the algorithms. 

Unfortunately, due to relative small size of the FGNET database, this was not 

investigated. 

 

In chapters 6 and 7 automatic age estimation was explored, so it can be 

employed as a tool to objectively quantifying the ability of the age progression 

algorithms to attain the intended age. Specifically, chapter 6 entailed the 

development of a supervised appearance model (sAM) which improved on both 

AAM and KAM especially when used in the context of prediction and 

classification. Utilising the excellent characteristics of PLS, the sAM captures 

shape and texture variations in a supervised manner. Hence age estimation 

conducted using sAM features had better estimation accuracy as compared to 

the two unsupervised models. However, when compared to other non-statistical 

algorithms the performance of the sAM-based age estimator lagged behind, 

hence, making it unsuitable for use as an age progression evaluation tool.  
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In chapter 7, age estimation via transfer learning was explored. Utilising 

activations of various layers of a pre-trained deep neural network, five sets of 

facial features were extracted and fed into a partial least squares regressor. 

After rigorous evaluation, it was observed that activations of the second to the 

last convolution layer of the VGG-Face neural network model carried the most 

ageing information. Thus, it achieved the least estimation error. Astonishingly, 

the proposed technique consistently outperformed state-of-the-art algorithms. 

Our findings showed that using off-the-shelf ConvNet features, age estimation 

results even outperforms CNNs that were trained from scratch for that particular 

task of age estimation. It can be deduced that the reason for the superiority of 

our approach is that learning is conducted twice; first unsupervised via the 

neural network and second in a supervised manner by the regression algorithm. 

This suggests that rather than conducting complex hand-engineered image 

representation or taking the route to development of a new neural network, 

deep features obtained from already pre-trained ConvNets should be the 

primary candidate for face representation in age estimation tasks. After 

implementing an efficient age estimator, the tool was then used to evaluate the 

age-attainment accuracy of the age progression algorithms that were proposed 

in chapters 3, 4 and 5. Our findings showed that the hybrid technique of chapter 

5 achieved best result. This clearly corroborates other machine (identity) and 

human (identity and age attainment) based tests that were conducted in earlier 

parts of the thesis. 

To sum up, this thesis addressed four main issues that affect existing age 

progression algorithms; complete reliance on training dataset, the effect of 

noise, distortion due to facial expression amplification, and face rendering 
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artefacts. Furthermore, rigorous evaluation techniques have been proposed, 

and it will be ideal for researchers in the future to use them. Additionally, the 

age estimation algorithm proposed in this thesis can be used in other areas of 

application such as security access control. 

 

8.2 Future Work 

Despite achievements of this work, it does leave room for future improvements. 

Hence, several future directions are available:  

 

Face Synthesis via sAM: The sAM proposed in chapter 6 has been observed 

to outperform the AAM and KAM when used for estimation. It will be interesting 

to investigate ways of utilising the model for face synthesis. Since the PLS 

algorithm which is at the core of the model retains much age related 

information, it is hoped that age progression conducted using the model will 

give promising results. 

 

Age Synthesis from Facial Profile View: To date, all face synthesis 

researches have been focussed on frontal or semi frontal images, however, in 

reality, images obtained in unconstrained environments are not always frontal. 

For instance, the only available image of a missing person can be a picture of 

his facial profile (side-view). Hence, a challenging problem worth exploring in 

the future is face synthesis from extreme viewing angle. Normally this can take 

one of two routes; automatic conversion of facial profiles to frontal images, or 

the generation novel images that are themselves side-views. Furthermore, this 

can lead to the development of age estimation algorithms for profile faces; to 
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the best of my knowledge, the first to attempt towards age estimation from the 

side-view of face images is that published as part of this research [184].  

 

Face synthesis robust to all external factors: Although this thesis has gone a 

long way to tackle most of the factors challenging facial reconstruction, there 

still exist number factors that are not considered by the age progression 

frameworks presented. These include gender, ethnicity, diet, and life style. For 

instance, it has been well documented that gender and ethnicity affect ageing. 

To the best of our knowledge, no age progression research has been reported 

that utilised African faces. In the future, the formation of a database of African 

faces can be pursued. Thereafter algorithms proposed in this thesis can be 

evaluated on those African faces. More generally, a future problem worth 

investigating is how to incorporate all the aforementioned factors into the 

automatic age progression framework.  
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