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ABSTRACT
This paper presents a novel closed-form covariance model using covariance matrix decomposition
for both continuous-time and discrete-time stochastic systems which are subjected to Gaussian
noises. Different from the existing covariance models, it has been shown that the order of the pre-
sented model can be reduced to the order of original systems and the parameters of the model can
be obtained by Kronecker product and Hadamard product which imply a uniform expression. Fur-
thermore, the associated controller design can be simplified due to the use of the reduced-order
structure of themodel. Based on thismodel, the state and output covariance assignment algorithms
have been developed with parametric state and output feedback, where the computational com-
plexity is reduced and the extended free parameters of parametric feedback supply flexibility to the
optimization. As an extension, the reduced-order closed-form covariance model for stochastic sys-
tems with parameter uncertainties is also presented in this paper. A simulated example is included
to show the effectiveness of the proposed control algorithm, where encouraging results have been
obtained.
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1. Introduction

Covariance analysis permeates almost all of system the-
ory (Hotz and Skelton, 1987). Based on the covariance
analysis, the couplings among random signals can be
described. Therefore, the associated covariance control
problem became one of the most significant research
problems for multi-variable stochastic systems with the
development of the stochastic control theory. Since
the identification theory, Kalman filtering theory and
model reduction theory are widely used in practice, the
covariance estimation and control are significant to all
of these research areas and applications (Åström and
Eykhoff, 1971; Gelb, 1974; Rissanen and Kailath, 1972),
while the covariance is an ideal tool to analyse the per-
formance of the stochastic systems for bothmean-square
analysis and probabilistic decoupling analysis (Zhang,
Zhou, Wang, and Chai, 2015).

During the past two decades, the covariance control
theory (Hotz and Skelton, 1987) has made great pro-
gresses. Themain result of this theory is based on the Lya-
punov equation, and several conditions and controllers
(Collins and Skelton, 1987; Grigoriadis and Skelton, 1997;
Yasuda, Skelton, and Grigoriadis, 1993; Yaz and Skel-
ton, 1991) have been proposed to control the covariance

CONTACT Qichun Zhang qichun.zhang@manchester.ac.uk

of the stochastic systems using the determined control
signals. However, all of the controllersmentionedhaveno
closed-form. Since the closed-formmodel of state covari-
ance (Khaloozadeh and Baromand, 2007) presented in
2007, Baromand and Khaloozadeh designed different
controllers and models (Baromand and Khaloozadeh,
2010; Baromand and Labibi, 2012) to solve state covari-
ance assignment (SCA) problem. All these literatures
focus on the states of the stochastic systems rather
than outputs of the stochastic systems and also the
closed-form covariance model increases the dimension
of the system variables from n-dimensional vector to
n(n − 1)/2-dimensional vector.

There are two unsolved problems remained so far
using the closed-form model for covariance assignment
problem. Firstly, the order of the controller must bemore
than theorder of original systemswhich leads to thehigh-
order controller, in addition, the computational complex-
ity increaseswith it. For applications, the order of the con-
troller is limited unfortunately, for example, the controller
of the Hubble Space Telescope cannot be high order due
to the limited space and computational complexity (Zhu,
Grigoriadis, and Skelton, 1995). Secondly, the states can-
not bemeasured in practice, thus how a controller can be

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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designed using outputs of the stochastic control systems
directly is still a challenging issue.

To solve these problems, this paper presents a novel
reduced-order closed-form output covariance model for
both continuous-time and discrete-time linear stochas-
tic systems. With the proposed model, the order of the
controller can be reduced comparing with the conven-
tional covariance models and the computational com-
plexity can be reduced. Moreover, the parameters of
the proposed model are obtained using the Kronecker
product operator and the Hadamard product operator
directly. Based on this novel model, the state and out-
put covariance control problems are simple to be solved
with any state and output feedback control methods.
To justify the feasibility and efficiency of the proposed
model, the state andoutput covariance assignment prob-
lems are consideredusingparametric approaches (Konig-
orski, 2012; Roppenecker, 1986),which can supply flexibil-
ity to optimize covariance controllers. Themain contribu-
tions of the work are characterized as follows: (1) using
the eigen-decomposition approach, Kronecker product
and Hadamard product, a novel reduced-order closed-
form covariance control model has been presented; (2)
based on this model, two parametric control algorithms
are proposed for state and output covariance assignment
problems; and (3) the extension of the presented model
is developed for the stochastic systems with parameter
uncertainties.

This paper is organized as follows: in Section 2,
the reduced-order closed-form covariance model is pre-
sented. Section 3 presents two parametric feedback algo-
rithms by the state and the output of stochastic systems.
The numerical examples as simulations are given to illus-
trate thedesignproduced and theusageof thepresented
model in Section 4. Finally, the reduced-order close-form
covariance model is extended to stochastic systems with
parameter uncertainties and conclusions are drawn in
Sections 5 and 6, respectively. Meanwhile, the following
notations will be used throughout this paper.Rn denotes
the vector-valued n-dimensional real space. Px denotes
the covariance matrix of variable x.�x and Vx are the real
eigenvalue diagonal matrix and associated orthogonal
matrix of Px , respectively. Xcov denotes the coefficient of
the covariance model. U and Q are the covariance matri-
ces of control input u and random noise w, respectively.

2. Reduced-order closed-form covariance
model

In this section, a novel closed-form covariance model
is presented using eigen-decomposition for continuous-
time linear stochastic systems and discrete-time linear
stochastic systems.

2.1. Discrete-time reduced-order covariancemodel

Consider the discrete-time linear stochastic systems sub-
jected to Gaussian noises, which are represented as
follows:

x(k + 1) = Ax(k) + Bu(k) + Dw(k),

y(k) = Cx(k),
(1)

where x ∈ Rn and y ∈ Rm denote the state vector and
output vector of the systems. u ∈ Rs is the control input
vector andw ∈ Rp is the Gaussian noise vector. A,B,D and
C are real constantmatriceswith appropriate dimensions.

Assume that the Gaussian noise vector satisfies:
H1 : E{w(k)} = 0, E{x(0)wT(k)} = 0,

E{w(i)wT(j)} = Qδ(i − j), (2)

where δ(·) is the Dirac delta function.
Similar to the assumption of the noise, Baromand and

Khaloozadeh (2010) assume that the control signal is
restricted as

E{u(k)} = 0,

E{x(0)uT(k)} = 0, E{w(i)uT(j)} = 0,

E{u(i)uT(j)} = U(i)δ(i − j),

(3)

where U(i) � E{u(i)uT(i)}.
Once the mean value of the control signal vector is

restricted to zero, we have

lim
k→∞

E{x(k)} = 0, lim
k→∞

E{y(k)} = 0. (4)

Based on the definition of the covariance matrix, the
state and output covariancematrices of the given system
are given by

Px(k) � E{x(k)xT(k)},
Py(k) � E{y(k)yT(k)}.

(5)

The covariance matrices can be restated using the
system model and the associated dynamic Lyapunov
equation is given by

Px(k + 1) = APx(k)A
T + BU(k)BT + DQDT,

Py(k) = CPx(k)C
T.

(6)

In Baromand and Khaloozadeh (2010) and Baromand
and Labibi (2012), the covariance matrices are trans-
formed to vectors using vectorization, which increases
the order of the transformed model. To overcome this
shortcoming, the eigen-decomposition is used to reduce
the order of the model.
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The covariance matrices are rewritten as follows:

Px(k) = Vx�x(k)V
T
x ,

Py(k) = Vy�y(k)V
T
y ,

U(k) = Vu�u(k)V
T
u ,

Q = Vq�qV
T
q ,

(7)

where �x , �y , �u and �q are real diagonal matrices. Vx ,
Vy , Vu and Vq are associated orthogonal matrices. All of
the matrices are with the same dimensions as the associ-
ated vectors.

The new formula of the dynamic Lyapunov equation
can be obtained as follows:

�x(k + 1) = A��x(k)A
T
� + B��u(k)B

T
� + D��qD

T
�,

�y(k) = C��x(k)C
T
�, (8)

where A� = VT
x AVx , B� = VT

x BVu,D� = VT
x DVq and C� =

VT
y CVx .
Notice that for matrices G, F and F̄ with compatible

dimensions, we have

vec(FGF̄T) = (F̄ ⊗ F)vec(G), (9)

where vec(·) is the vectorization operator and⊗ denotes
Kronecker product (Liu and Trenkler, 2008).

Based on Equation (9), the dynamic Lyapunov
equation can be transformed as follows:

vec(�x(k + 1)) = Ā�vec(�x(k)) + B̄�vec(�u(k))

+ D̄�vec(�q(k)),

vec(�y(k)) = C̄�(�x(k)), (10)

where Ā� = A� ⊗ A�, B̄� = B� ⊗ B�, D̄� = D� ⊗ D�

and C̄� = C� ⊗ C�.
Since the matrices�x and�y are diagonal, the associ-

atedvectors of�x and�y arewithn(n − 1)andm(m − 1)
zero elements, respectively. Thus, the elimination matri-
ces Ln and Lm can be defined by

Lp : jth element = 1 in ith row, j = i + p(i − 1), (11)

where i = 1, . . . , p, p=n,m.
Pre-multiplying vec(�x(k + 1)) and vec(�y(k)) by Ln

and Lm, the standard state-space model with uniform
parameter expression can be given by

λx(k + 1) = Acovλx(k) + Bcovλu(k) + Dcovλq,

λy(k) = Ccovλx(k),
(12)

where λx , λy , λu and λq denote eigenvalue vectors. The
coefficient matrices can be calculated using Hadamard
product (Liu and Trenkler, 2008) as follows:

Acov = A�
◦A�,

Bcov = B�
◦B�,

Dcov = D�
◦D�,

Ccov = C�
◦C�.

(13)

Remark 2.1: It has been shown that Equation (12) sat-
isfies the dynamic Lyapunov equation when the time
trends to be infinite and the order of the model equals
to the original systemmodel.

2.2. Continuous-time reduced-order covariance
model

Similar to the case of discrete-time system, the model for
continuous-time systems is presented briefly.

Consider the continuous-time linear stochastic system
subjected to Gaussian noise

dx = (Ax + Bu)dt + Ddβt ,

dy = Cx dt,
(14)

where x ∈ Rn and y ∈ Rm denote state vector and output
vector of the systems. u ∈ Rs is the control input vector
and βt is the p-dimensional Wiener process. A,B,D and C
are real constant matrices with appropriate dimensions.

Notice that the Wiener process is used to represent
the integral of a Gaussian white noise process and it
yields

dβt

dt
= w, (15)

wherew is a standard Gaussian white noise.
Therefore, the system can be rewritten as follows:

dx = (Ax + Bu + Dw)dt,

dy = Cx dt.
(16)

Compared with the assumption for the discrete-time
system, the following assumption is given. H2 : E{w(t)} =
0, E{x(0)wT(t)} = 0,

E{w(t)wT(τ )} = Qδ(t − τ), (17)

where δ(·) is the Dirac delta function.
Also, all the discrete-time variables defined above can

be redefined as continuous-time variables by replacing k
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to t, and the covariance matrix for continuous-time sys-
tem satisfies the following dynamic Lyapunov function:

Ṗx(t) = APx(t) + Px(t)A
T + BU(t)BT + DQDT,

Py(t) = CPx(t)C
T.

(18)

Using the similar approach, the eigenvalue matrix
equation is given by

�̇x(t) = A��x(t) + �x(t)A
T
� + B��u(t)B

T
� + D��qD

T
�,

�y(t) = C��x(t)C
T
�, (19)

where A� = VT
x AVx , B� = VT

x BVu,D� = VT
x DVq and C� =

VT
y CVx .
Notice that for matrices F and G with compatible

dimensions, we have

vec(FG) = (I ⊗ F)vec(G) = (GT ⊗ I)vec(F), (20)

where I denotes identity matrix.
Then, Equation (18) can be restated by vectorization as

follows:

vec(�̇x) = (I ⊗ A� + A� ⊗ I)vec(�x) + B̄�vec(�u)

+ D̄�vec(�q),

vec(�y) = C̄�(�x). (21)

Finally, using the eliminationmatrix (11), Equation (19)
canbe further expressed as a standard state-spacemodel:

λ̇x(t) = Acovλx(t) + Bcovλu(t) + Dcovλq,

λy(t) = Ccovλx(t),
(22)

where Bcov, Dcov and Ccov can be obtained using
Equation (13). Reserve the diagonal elements ofA� which
forms a diagonal matrix Adiag, then Acov = 2Adiag.

Remark 2.2: For continuous-time linear stochastic sys-
tems, the output covariance assignment problem can be
solved simply based on the proposed model following
theapproach similar todiscrete-time linear stochastic sys-
tems. The design procedure and the illustrative example
are certainly omitted here.

Remark 2.3: The novel model presented in this section
can be considered as the coordinate transformation of
the original dynamic Lyapunov equation associated with
the covariance matrix.

3. Parametric covariance assignment
algorithms

Based on the reduced-order closed-form covariance
model, the parametric state and output feedback control

algorithms are developed to assign the covariance values.
To simplify the contents of the paper, the control algo-
rithms are proposed using a discrete-time model; on the
other hand, the similar algorithms using a continuous-
time model are omitted. The control objective of covari-
ance assignment problem can be formulated as follows:

lim
k→∞

P(k) = Rcov, (23)

where Rcov denotes any pre-selected reference covari-
ance matrix and P(k) is the state or output covariance
matrix.

H3 : In this section, assume that the reduced-order
closed-form covariance model is controllable.

3.1. State covariance controller design

For the SCA, the reference covariance matrix can be
rewritten using eigen-decomposition as

R = Vr�rV
T
r . (24)

Since the diagonal matrix �r can be arranged as vec-
tor λr , the covariance assignment problem transfers to
state tracking problem using the presented reduced-
order covariance model if we set Vx = Vr .

To track the desired state covariance vector, the inte-
grator should be considered in the control scheme. The
error vector ex(k + 1) = ex(k) + λr − λx is treated as the
extended state and substitutes the error into the closed-
loop system.

Then, the closed-loop system in the state-space form
can be obtained as follows:[
ex(k + 1)
λx(k + 1)

]
= Ā

[
ex(k)
λx(k)

]
+ B̄λu(k) +

[
0

Dcov

]
λq +

[
λr

0

]
,

(25)
where

Ā =
[
I −I
0 Acov

]
, B̄ =

[
0

Bcov

]
.

For this control system with error vector, a full-
state feedback can be designed using a parametric
state-feedback approach, which is presented by Roppe-
necker (1986)

λu(k) = K

[
ex(k)
λx(k)

]
(26)

and the feedback gain can be obtained by

K = [W1f1, . . .Wnfn]

× [(λ∗
1I − Ā1)

−1
B̄1f1, . . . , (λ∗

nI − Ān)
−1

B̄nfn]−1, (27)

where the modified parameter vectors are denoted by
f1, . . . , fn as free parameters.
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In the case of a common open-loop and closed-loop
eigenvalue, other parameters in Equation (27) can be
determined as follows:

Āi = Ā + v0j w
0
j
T
,

Wi = I −
ekw0

j
T
B̄

w0
j
T
bk

,

B̄i = B̄Wi + v0j e
T
k ,

(28)

where v0j and w0
j (j = 1, . . . , n) denote the open-loop

eigenvectors and eigenrowsof themodel (25). Ā and B̄ are
given by model (25). bk is the kth column of the matrix B̄.
ek is a unit vector where the kth element is 1. In the other
case, there is no common eigenvalue, w0T

j bk = 0, so that
the parameters of Equation (27) can be selected by

Āi = Ā,

Wi = I,

B̄i = B̄.

(29)

To reverse the transformation, �u can be obtained by
λu and the actual control signal for original model can be
given by

u(k) = [Vu�u(k)V
T
u ]

1/2ξ(k), (30)

where ξ(k) denotes the standard Gaussian white noise.

Remark 3.1: The actual control law is nonlinear though
the original systemmodel is linear.

Controller designing procedure can be summarized as
Algorithm I:

Step1. Choose the reference covariancematrix and cal-
culating the eigenvalues and eigenvectors of the desired
covariance matrix.

Step 2. Transform the stochastic systems from the
original model to reduced-order closed-form covariance
model.

Step 3. Transform the closed-form model to reference
tracking model by adding the error vector.

Step 4. Choose poles and free parameters for closed-
loop covariance control model and design the state
covariance controller via parametric feedback
approaches.

Step 5. Calculate the control signal for original systems
using control law of covariance model.

Step 6. Substitute the control signal into the original
systems.

3.2. Output covariance controller design

The output feedback is widely used when the system
state cannot bemeasured. Similar to the state covariance

controller design, the error vector ey(k + 1) = ey(k) +
λr − λy should be introduced to these control systems,
and the new state-spacemodel with output equation can
be described by

[
ey(k + 1)
λx(k + 1)

]
= F

[
ey(k)
λx(k)

]
+ B̄λu(k) +

[
0

Dcov

]
λq +

[
λr

0

]
,

[
ey(k)
λy(k)

]
= C̄

[
ey(k)
λx(k)

]
, (31)

where

F =
[
I −Ccov
0 Acov

]
, C̄ =

[
I 0
0 Ccov

]
.

For this extended system, assume that the following
conditions hold.

H4 : (Kimura’s condition, Konigorski, 2012) m + s ≥
n + 1.

The output feedback control law can be designed by
a parametric output feedback approach, which is pre-
sented by Konigorski (2012)

λu(k) = G

[
ey(k)
λy(k)

]
(32)

and the feedback gain G can be obtained by

G = K0 + K2U
′
1 + U2K3U

′
1, (33)

where K0, K2,U′
1,U2 can be calculated by kernel space and

K3 can be calculated by exterior algebra (see Konigorski,
2012 for calculation).

Once the control input λu is obtained, the actual con-
trol law can also be calculated by Equation (30).

The procedure of the controller design can be summa-
rized as Algorithm II:

Step1. Choose the reference covariancematrix and cal-
culating the eigenvalues and eigenvectors of the desired
covariance matrix.

Step 2. Transform the stochastic systems from the
original model to reduced-order closed-form covariance
model.

Step 3. Transform the closed-form model to reference
tracking model by adding the error vector.

Step 4. Choose poles and free parameters for closed-
loop covariance control model and design the output
covariance controller via parametric feedback
approaches.

Step 5. Calculate the control signal for original systems
using control law of covariance model.

Step 6. Substitute the control signal into the original
systems.
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4. A numerical example

To verify this new model and the control algorithms pro-
posed in this paper, one numerical example is presented
in this section.

The original model can be shown as follows:

A =
[−0.5 −0.3
0.1 −0.2

]
, B =

[
2 0.3
0.1 4

]
,

C =
[
0.7 0.1
0.2 0.8

]
, D =

[
0.1 0
0 0.1

]
.

The covariance matrix of disturbance white noises is
[
0.2 0.1
0.1 0.2

]
.

To assign the covariance matrix, we choose the refer-
ence covariance matrix as

[
0.2 0.1
0.1 0.3

]
.

4.1. Case for state covariance

From the reference covariance matrix, the reference
signal for covariance matrix eigenvalue model can be
obtained as follows:

λr =
[
0.1382
0.3618

]
,

Vr = Vx = Vu = Vq =
[−0.8507 0.5257
0.5257 0.8507

]
.

Simply, the reduced-order covariance model can be
described as follows:

Acov =
[
0.1073 0.1436
0.0004 0.1387

]
,

Bcov =
[
5.6354 0.4970
0.8190 13.1486

]
,

Dcov =
[
0.1 0
0 0.1

]
.

Based on this model and parametric state-feedback
approach, the state covariance can track the given ref-
erence matrix by transformation and choosing different
free parameter matrices

λ∗ = {0.1 0.5 0.3 0.2},

F1 =
[−3 −2 −1
1 2

]
,

F2 =
[−3 −2 −1
1 −1 2

]
.

The state covariance feedback gain can be obtained as
follows:

K1x =
[ −0.007 −0.0054 −0.0671 0.0083
−0.0013 −0.0055 −0.0125 −0.0328

]
,

K2x =
[−0.0044 0.0013 −0.0427 0.0313
−0.0035 −0.0112 −0.0331 −0.0522

]
.

The results have been shown below. In Figures 1 and
2, the state covariance curves have been given using dif-
ferent feedback gains K1 and K2. Both the control laws can
assign the covariance to the reference covariance matrix;
however, different free parameters of the controller lead
to different performance. Figures 3 and 4 show the curves
of the eigenvalues of the state covariance matrix, that is,
the state vector of the reduced-order closed-form covari-
ancemodel. From the curves, it has been shown that K1 is
better than K2 for this example.

4.2. Case for output covariance

As the above-mentioned approach, the eigenvectors can
be chosen in the same way as

Vr = Vy = Vx = Vu = Vq =
[−0.8507 0.5257
0.5257 0.8507

]

Figure 1. State covariance using K1.

Figure 2. State covariance using K2.
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Figure 3. Eigenvalues of the state covariance matrix using K1.

Figure 4. Eigenvalues of the state covariance matrix using K2.

and then we have

Ccov =
[
0.3522 0.0008
0.0052 0.8218

]
.

Based on this model and parametric output feedback
approach, the output covariance can track the given ref-
erencematrix by transformation and choosing alternative
free parameter matrix

q =
[
1 −1 2
1 1

]
, z = 1, K3 = 5.

Finally, the feedback gain can be calculated as follows:

Ky =
[−1.9180 1.3353 −2.8218 3.3578
−0.2034 0.1415 −0.3448 0.3850

]
.

To avoid repeating the results which is similar to the
state covariance controller design, the curves for output
covariance controller have been omitted.

Remark 4.1: From the results of the simulation, differ-
ent free parameters associated with the feedback gain
bring different performance to the covariance model. It
means that optimal free parameters can be obtained for
a given performance criterion, such as minimum sensitiv-
ity and minimum control energy . The control algorithms

presented in this paper can be extended simply which is
helpful to apply in practice.

5. The reduced-order closed-form covariance
model for stochastic systems with parameter
uncertainties

In this section, thepresentednovel reduced-order closed-
formmodel is extended for continuous-timeanddiscrete-
time stochastic systems with parameter uncertainties.

5.1. Discrete-time covariancemodel for stochastic
systemswith parameter uncertainties

Consider the discrete-time linear stochastic systems sub-
jected to Gaussian noises, which are represented as
follows:

x(k + 1) = (A + �A)x(k) + (B + �B)u(k)

+ (D + �D)w(k),

y(k) = (C + �C)x(k), (34)

where x ∈ Rn and y ∈ Rm denote state vector and output
vector of the systems, respectively. u ∈ Rs is the control
input vector and w ∈ Rp is the Gaussian noise vector.
A,B,D and C are real constant matrices with appropriate
dimensions. �A, �B, �D and �C are parameter uncer-
tainties associated with A,B,D and C.

Using the similar operation, the reduced-order closed-
form covariance model can be expressed as

λx(k + 1) = (Acov + �Acov)λx(k) + (Bcov + �Bcov)λu(k)

+ (Dcov + �Dcov)λq,

y(k) = (C + �C)x(k). (35)

The parameter matrices can be obtained by
Equation (13) and following equations:

�Acov = �A�
◦�A� + 2(A�

◦�A�),

�Bcov = �B�
◦�B� + 2(B�

◦�A�),

�Dcov = �D�
◦�D� + 2(D�

◦�A�),

�Ccov = �C�
◦�C� + 2(C�

◦�A�), (36)

where �A� = VT
x�AVx , �B� = VT

x�BVu, �D� =
VT
x�DVq and �C� = VT

y�CVx .

5.2. Continuous-time covariancemodel for
stochastic systemswith parameter
uncertainties

Consider the continuous-time stochastic systems with
parameter uncertainties, which are subjected to Gaussian
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noise

dx = (D + �D)dβt + ((A + �A)x

+ (B + �B)u)dt,

dy = (C + �C)x dt, (37)

where x ∈ Rn and y ∈ Rm denote state vector and output
vector of the systems, respectively. u ∈ Rs is the control
input vector and βt is the p-dimensional Wiener process.
A,B,D and C are real constant matrices with appropriate
dimensions. �A, �B, �D and �C are parameter uncer-
tainties.

Thus, the reduced-order closed-form covariance
model can be expressed as

λ̇x(t) = (Acov + �Acov)λx(t) + (Bcov + �Bcov)λu(t)

+ (Dcov + �Dcov)λq,

λy(t) = (Ccov + �Ccov)λx(t), (38)

where Bcov, Dcov and Ccov can be obtained using
Equation (13). Reserve the diagonal elements ofA� which
forms a diagonal matrix Adiag, then Acov = 2Adiag. �Bcov,
�Dcov and�Ccov can be obtained by Equation (36). Simi-
larly, �Acov = 2�Adiag.

Remark 5.1: Due to the fact that the covariance model
and original system model are the same in form, the
robust control algorithms can be applied to solve the
covariance control problem. Moreover, this model can
be reduced as models (12) and (38) if the parameter
uncertainties are zeros, which implies that the covariance
model with parameter uncertainties can be considered as
an extension to models (12) and (38).

6. Conclusions

For continuous-time and discrete-time stochastic sys-
tems subjected to Gaussian white noises, a novel model
for state and output covariance assignment problems has
been proposed using eigen-decomposition in this paper
which are named the reduced-order closed-form covari-
ance model. The coefficient matrices of this presented
model can be obtained by uniform formulas which imply
the uniform expression. Based on this model, two nonlin-
ear control laws have been formulated following two pre-
sented control algorithms by parametric state-feedback
approach and parametric output feedback approach,
where the free parameters can be further used to opti-
mize other control criterion.

Moreover, the presented model is also extended to
stochastic systems with parameter uncertainties. With
the numerical example, it has been shown that the
covariance assignment problem can be solved effectively

using the presented reduced-order closed-form covari-
ance control model. Based upon this novel model, some
further advanced topics can be investigated as future
works, for example, the proposed control algorithm
can be extended using the non-fragile state estima-
tion (Hou, Dong, Wang, Ren, and Alsaadi, 2016; Yang,
Dong, Wang, Ren, and Alsaadi, 2016; Yu, Dong, Wang,
Ren, and Alsaadi, 2015), while the robustness of the
control algorithm for covariance assignment problem is
enhanced.
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