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Abstract: This paper investigates the stabilisation problem and consider transient optimisation for a class of the multi-input-
multi-output (MIMO) semi-linear stochastic systems. A control algorithm is presented via an m-block backstepping controller design
where the closed-loop system has been stabilized in a probabilistic sense and the transient performance is optimisable by optimised
by searching the design parameters under the given criterion. In particular, the transient randomness and the probabilistic decoupling
will be investigated as case studies. Note that the presented control algorithm can be potentially extended as a framework based on
the various performance criteria. To evaluate the effectiveness of this proposed control framework, a numerical example is given with
simulation results. In summary, the key contributions of this paper are stated as follows: (1) one block backstepping-based output
feedback control design is developed to stabilize the dynamic MIMO semi-linear stochastic systems using a linear estimator; (2) the
randomness and probabilistic couplings of the system outputs have been minimized based on the optimisation of the design parameters
of the controller; (3) a control framework with transient performance enhancement of multi-variable semi-linear stochastic systems has
been discussed.

Keywords: MIMO Stochastic systems, output feedback stabilisation, block backstepping, randomness attenuation, probabilistic
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1 Introduction

Since backstepping was first presented in 1995 [1], it has
been developed as an ideal approach to cover the non-
linearities of dynamic systems. Naturally, the backstepping
design can also be adopted for stochastic systems where the
system can be represented using the Itô process. In particu-
lar, Liu et al. investigated the decentralized control method
for SISO stochastic systems [2]. Wang et al. developed
an adaptive quantized controller via the backstepping and
small-gain approach [3]. Moreover, the unknown dead-zone
and unmodelled dynamics have been considered [4] using
adaptive neural network output feedback design. Xie et al.
presented a backstepping design for high-order stochastic
non-linear systems [5] while the time-varying systems were
investigated [6]. In addition, incremental stability has been
used [7] for backstepping design, and even the stochastic
system in non-strict feedback formats have been designed
based on backstepping approach [8], etc. Notice that almost
all the mentioned methods focused on the single system out-
put.

Motivated by the block backstepping design [9, 10] which
was introduced by Chang and Cheng et al., the multi-
variable stochastic systems can be investigated. In par-
ticular, Zhang et al. presented a block backstepping de-
sign for bilinear stochastic systems [11]. However, the tran-
sient performance was only optimised in the second mo-
ment sense using covariance. As a typical problem of multi-
variable systems, the couplings between the system out-
puts will strongly affect the system performance [12], there-
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fore the decoupling design would be a key component for
multi-variable system control. For stochastic systems, the
probabilistic decoupling [13] was firstly presented in 2015
while the joint probability density function and mutual in-
formation [14] were used to deal with the randomness of the
investigated systems. Notice that the probabilistic decou-
pling characterises the full properties of the random vari-
able which means that it contains more information than
controlling the covariance only [15]. Probabilistic decou-
pling has been used for neural system modelling where the
neural interactions among the axons have been described
by the coupling factors from the view of the probabilistic
sense [16, 17].

On the other hand, the randomness attenuation should
also be considered as a part of the transient performance
even though the stochastic system can be stabilized with
probability one. Various design approaches can achieve dif-
fering performance due to the effects of the random noise
and the nonlinearities. For a Gaussian distribution, the
variance control is widely used [15]. Note that the proba-
bility density function of the system outputs will not obey
the Gaussian distribution even if the system outputs are
described by the Itô stochastic differential equation. The
system output statistical properties cannot be adequately
reflected sufficiently if only the variance and covariance
are adopted. To characterise the randomness of the non-
Gaussian variables, the concept of the entropy has been
introduced into the stochastic control system in 2002 by
Wang and Yue [18, 19]. As an optimisation problem, the
randomness can be attenuated if the minimum entropy of
the system outputs has been achieved. Therefore, the tran-
sient performance of the system outputs can be enhanced
via minimising the entropy. In practice, entropy optimisa-
tion is widely used for network systems [20, 21], filter design
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[22, 23] and fault diagnosis [24, 25].
Since the semi-linear stochastic systems became a sig-

nificant research topic affecting many aspects of the
applications[26], Zhang et al. presented the output feedback
stabilisation algorithm for semi-linear stochastic systems
with randomness attenuation [27]. Following the discussion
above, this paper considers the semi-linear stochastic sys-
tems with a transient performance enhancement problem,
including output transient randomness attenuation and the
output decoupling in a probabilistic sense. Thus, this ex-
tension can be considered as a framework where the main
challenges are the Itô correction term and probability de-
coupling. Basically, there is no existing result for probabilis-
tic decoupling design for semi-linear stochastic systems.

In particular, output feedback stabilisation can be
achieved by block backstepping with design parameters. In
particular, the states of the system can be estimated us-
ing the full-state observer design while the new strict for-
mat can be delivered considering the estimation error as ex-
tended system states. Based on the new system description,
the backstepping design can be achieved. Notice that the
free parameters in the backstepping design can be further
optimised for various performance objectives. In this pa-
per, entropy and mutual information have been used as the
performance criteria where the output randomness can be
expressed by system outputs’ entropy and the minimum of
the mutual information can be considered as increasing the
independence of the system outputs. Basically, the analyt-
ical solutions for probability density functions, entropy and
mutual information are very difficult to obtain, the estima-
tion approach can be taken into account using the sampling
data. Particularly, we can take the sampling operation for
the transient response, then the kernel density estimation
(KDE)[28] can be adopted using the Gaussian kernels and
the collected data. Following this approach, the probability
density function of the system outputs can be approximated
by a sliding window. Once the probability density function
is obtained, the entropy and mutual information can be cal-
culated simply. To simplify the estimation, the entropy and
mutual information can be transformed using information
potentials of the system variables. Similarly, the informa-
tion potentials can also be approximated using the sampling
data via kernel density estimation (KDE). All the discus-
sions show that the presented framework is implementable
in practice since the data-based performance optimisation
is widely used in control applications such as the wind tur-
bine [29, 30], internet of things (IoT) [31], Robot-environment
interaction [32], teleoperated robots [33], etc.

To illustrate the structure of this paper, its contents have
been organised as follows: In Section 2, the preliminar-
ies have been indicated including the investigated system
model, control objective, the concept of stability in a prob-
abilistic sense, kernel density estimation, entropy and in-
formation potentials, etc. Based on m-block backstepping
design, the observer-based output feedback controller has
been proposed in Section 3 which consists of a linear esti-
mator, block backstepping and probabilistic stability anal-
ysis. After that the parametric optimization and controller
design procedure are given in Section 4 where the random-
ness attenuation and probabilistic decoupling are achieved
by searching optimal parameters. In order to validate the

advantages of the presented control algorithm, simulation
results are demonstrated in Section 5. In the end, the paper
is summarised and concludes in Section 6.

2 Preliminaries

2.1 Problem Description

Consider the following MIMO semi-linear stochastic sys-
tems in m blocks strict feedback format, the formulation of
the model is shown below:

dx̄i = (Aix̄i + x̄i+1) dt+G1 (x̄1) dβt, i = 1, · · · ,m− 1

dx̄m = (Amx̄m + ū) dt+Gm (x̄1) dβt

ȳ = x̄1 (1)

where βt ∈ Rs is the Wiener process, x̄i ∈ Rn is the state
for i-th block, Ai denotes the appropriate dimensional co-
efficient matrices, Gi : Rn → Rn are general non-linear
functions. ȳ and ū stand for the system output and the
control input, respectively. Denoting Ω as the sample space
of continuous functions, F as a filtration adapted to the
Wiener process βt, and P as the reference probability mea-
sure on Ω, then the triple (Ω,F ,P) is used to describe the
underlying probability space.

Due to the fact that the investigated block-based sys-
tem is described in strict-feedback form, the system out-
puts and the control inputs are of the equal dimension. As
introduced in Section 1, the control objective is to stabilize
the investigated stochastic system in a probabilistic sense
while enhancing the transient performance of the stochas-
tic outputs. To analyse the stability of the system, suppose
that the following assumption is satisfied for the non-linear
function Gi (·).
Assumption 1. There exists a positive real constant σi, such
that the non-linear function Gi (·) for i-th block of the inves-
tigated semi-linear stochastic system(1) meets the following
condition:

‖Gi (Xi)‖2 ≤ σi (2)

where ‖·‖2 stands for the matrix Euclidean norm.

Remark 1. Notice that we don’t impose restriction that the
Gi (0) = 0 which means that the outputs of the stochastic
system are bounded in a probabilistic sense only using As-
sumption 1.

2.2 Stability in a Probabilistic Sense

Consider the following stochastic non-linear system:

dx = p (x) dt+ q (x) dv (3)

where x ∈ Rn denotes the system state, v ∈ Rn denotes
an independent standard Wiener process, the underlying
probability space is the triple (Ω,F ,P), and p : Rn → Rn

and q : Rn → Rn×r are locally Lipschitzian and with the
following initial values

p (0) = 0, q (0) = 0 (4)

Definition 2.1. [34] The solution process {x (t) , t ≥ 0} of
the stochastic system (3) is said to be bounded in probabil-
ity if lim

t→∞
sup

0≤c≤∞
P {|x (t)| > c} = 0
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Definition 2.2. [11] For any given V (x) ∈ C 1,2, associated
with the stochastic differential equation (3), the differential
operator L can be defined as follows:

L V =
∂V

∂x
p (x) +

1

2
Tr

{
qT (x)

∂2V

∂x2
q (x)

}
(5)

Moreover, recalling the lemma [2] below for the sufficient
conditions of boundedness in the probabilistic sense.

Lemma 2.3. [2] Consider system (3) and suppose that
there exists a positive-define and radially unbounded func-
tion V (x) ∈ C 1,2,µ1 (·) , µ2 (·) ∈ K∞, positive-define and
radially unbounded function W (x) and constant γ̄ > 0 such
that

µ1 (|x|) ≤ V (x) ≤ µ2 (|x|)
L V (x) ≤ −W (x) + γ̄ (6)

then the solution process of the system (3) is bounded in the
probabilistic sense.

2.3 Entropy and Kernel Density Estima-
tion

The information theory [35] has been introduced, where
entropy can be used as a measure of the uncertainty of
the random variables. For various purposes, a lot of dif-
ferent definitions of the entropy have been presented such
as Shannon entropy, Rényi’s entropy and Hartley entropy,
etc. Without loss of the generality, the quadratic Rényi’s
entropy [36] has been adopted in this paper.

H2(ȳ) = − log

∫
γ2 (ȳ)dȳ (7)

where γ (·) denotes the joint probability density functions
(JPDF) of the system outputs while multidimensional ker-
nel density estimation (MKDE) [28] can be used to approx-
imate the JPDF of the random variables based on the col-
lected sampling data. Notice that entropy of the Gaussian
random variable is equal to its variance [37].

For system outputs ȳ ∈ Rn, denoting its sampling data as
{ȳk : k = 1, . . . , N}, the probability density function of the
system output ȳ can be obtained approximately as follows:

γ̂ (ȳ) =
1

N

N∑
k=1

GΣ (ȳ − ȳk) (8)

where GΣ (·) is the Gaussian function with the pre-specified
covariance matrix Σ. Particularly, it has been defined as
follows:

GΣ (x) = (2π)−
n
2 (det Σ)−

1
2 exp

(
−1

2
xT Σ−1x

)
(9)

Since the JPDF can be approximated vis data-based
MKDE, Eq.(7) can be further rewritten as follows:

H2 (ȳ) = − log V (ȳ) (10)

where V (·) is information potential [35]. Furthermore, it
can also be estimated using the sampling data as

V̂ (ȳ) =
1

N2

N∑
i,j=1

G√2Σ (ȳi − ȳj) (11)

2.4 Decoupling in probability sense

For a MIMO dynamic stochastic system, the couplings
among the system outputs are investigated by decoupling
control based on the deterministic system model, however
the analysis cannot reflect the full information of the ran-
domness of the system output. Motivated by this short-
coming, the probabilistic decoupling has been presented in
2015 [13]. In particular, the system outputs can be con-
sidered as stochastic processes in terms of time while the
couplings can be represented by the independence of the
random processes.

Using the probability density function (PDF) and joint
probability density function (JPDF), the following defini-
tion is obtained.

Definition 2.4. For a multivariate dynamic stochastic sys-
tem with n-dimensional system output, there exists a posi-
tive real stochastic coupling coefficient

CSC (y, t) =

∥∥∥∥∥γJ (y, t)−
n∏

i=1

γ (yi, t)

∥∥∥∥∥ (12)

to describe the probabilistic couplings of the system outputs
where γJ (y, t) denotes the JPDF of the multi-dimensional
system output y. Moreover, the outputs of the multivariate
dynamic stochastic systems are decoupled in the probabilis-
tic sense if

lim
t→∞

P {CSC (y, t) ≥ ε} = 0 (13)

for any small positive real constant ε > 0

Based on this definition, a weak solution can also be de-
fined by

Definition 2.5. A multiple input multiple output (MIMO)
stochastic system with n-dimensional output is said to be
decoupled in probability sense, if for any positive real con-
stant ε > 0 there exists a positve real constant δ such that
the system output yi satisfy the following condition when
k > δ. ∥∥∥∥∥γJ (y, t)−

n∏
i=1

γ (yi, t)

∥∥∥∥∥ < ε (14)

where ‖·‖ denotes the norm of the functions.

From the view of optimisation, the definition can be
transformed as a cost function directly as follows:

min
Ω

∥∥∥∥∥γJ (y, t)−
n∏

i=1

γ (yi, t)

∥∥∥∥∥ (15)

In other words, the coupling attenuation can be achieved
if the mentioned optimisation can be implemented while
the performance of the system has been enhanced from the
view of the system output randomness. Notice that the
probabilistic decoupling is an extension of the traditional
decoupling design, thus the benefits of the traditional de-
coupling design can be naturally inherited to the decoupling
in the probabilistic sense.
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3 Output Feedback Stabilisation

3.1 Linear estimator

To achieve the ouput feedback, at first, the linear esti-
mator can be designed as

dˆ̄xi =
(
Ai ˆ̄xi + ˆ̄xi+1 + Li

(
ȳ − ˆ̄x1

))
dt, i = 1, · · · ,m− 1

dˆ̄xm =
(
Am ˆ̄xm + ū+ Lm

(
ȳ − ˆ̄x1

))
dt (16)

where Li is the gain of estimator.
Defining the estimation error as ˜̄x = x̄− ˆ̄x which results

in

d˜̄x =


A1 − L1 I

−L2 A2

. . .

...
...

. . . I

−Lm 0 . . . Am

 ˜̄xdt+


G1 (ȳ)

G2 (ȳ)
...

Gm (ȳ)

 dβt
= A0 ˜̄xdt+G0 (ȳ) dβt (17)

Based upon the linear observer design method, A0 should
be adjusted to be Hurwitz, thus the investigated semi-linear
stochastic system model with linear estimator can be re-
written as follows:

d˜̄x = A0 ˜̄xdt+G0 (ȳ) dβt

dx̄1 =
(
A1x̄1 + ˜̄x2 + ˆ̄x2

)
dt+G1 (ȳ) dβt

dˆ̄xi =
(
Fi + ˆ̄xi+1

)
dt, i = 2, · · · ,m− 1

dˆ̄xm = (Fm + ū) dt

ȳ = x̄1 (18)

where Fi = Ai ˆ̄xi + Li

(
ȳ − ˆ̄x1

)
and i = 2, · · · ,m.

Remark 2. To estimate the states of the system, existing
observation methods can be used such as high-gain observer
[38] which results in the extensions from various complex
system descriptions.

3.2 Block backstepping controller

Notice that the semi-linear stochastic system with esti-
mator is still in the strict-feedback format, block backstep-
ping design can be used for stochastic system stabilization.

For i-th block of the investigated system(1), denote
ϕ̄i (ȳ, x̂i) as the virtual input. In particular, it can be re-
expressed with elements as

ϕ̄i (ȳ, x̂i) = [ϕi1 (ȳ, x̂i) , . . . , ϕin (ȳ, x̂i)]
T (19)

where x̂i = [x̄1, ˆ̄x2, . . . , ˆ̄xi] and i = 1, · · · ,m− 1.
In particular, the following equation can be obtained for

the first step following Itô’s lemma, Eq.(22).

dz̄1 = dˆ̄x2 − dϕ̄1 (ȳ)

=

(
F2 − Φ1

(
A1x̄1 + ˜̄x2 + ˆ̄x2

)
− 1

2
Π1 + ˆ̄x3

)
− Φ1G1 (ȳ) dβt (20)

where

Φ1 = [∇ȳϕ11 (ȳ) , . . . ,∇ȳϕ1n (ȳ)]T

Π1 =


Tr
{
GT

1 (x̄) (Hx̄ϕ11 (x̄1))G1 (x̄1)
}

...

Tr
{
GT

1 (x̄) (Hx̄ϕ1n (x̄1))G1 (x̄1)
}
 (21)

Based upon the equation above, the virtual input for the
next step can be obtained recursively and the error variables
can be formulated as follows:

z̄i = ˆ̄xi+1 − ϕ̄i (ȳ, x̂i) (22)

where

z̄i = [zi1, . . . , zin]T , i = 1, · · · ,m− 1

Based on Itô’s lemma, we have

dz̄i =

[(
Fi+1 + ˆ̄xi+2

)
− Φ1

(
F1 + ˆ̄x2

)
− 1

2
Π1

−
i∑

l=2

Φl

(
Fl + ˆ̄xl+1

)]
dt− Φ1G1 (ȳ) dβt

=
(
Ξi + ˆ̄xi+2

)
dt− Φ1G1 (ȳ) dβt (23)

while

Φl =
[
∇ˆ̄xl

ϕl1 (ȳ, x̂l) , . . . ,∇ˆ̄xl
ϕln (ȳ, x̂l)

]T
Ξi = Fi+1 − Φ1

(
F1 + ˆ̄x2

)
− 1

2
Π1 −

i∑
l=2

Φl

(
Fl + ˆ̄xl+1

)
(24)

To stabilize the closed-loop stochastic system, a Lya-
punov function candidate has been considered for backstep-
ping design.

V̄ =
1

2

n∑
k=1

ȳ2
k +

b

2

(
x̃T P̄ x̃

)2

+
1

4

m−1∑
i=1

n∑
l=1

z̄4
il (25)

where P stands for the positive definite matrix and A0
T P̄+

P̄A0 < 0.
Using the property of L V̄ and the presented Lyapunov

function candidate, we have

L V̄ = ȳT
(
A1ȳ + ˜̄x2 + ˆ̄x2

)
+

1

2
Tr
{
GT

1 (ȳ)G1 (ȳ)
}

+

m−1∑
i=1

ηi
(
Ξi + ˆ̄xi+2

)
+

3

2
Tr
{

ΓiΦ1G1 (ȳ) (Φ1G1 (ȳ))T
}

+ 2bTr
{
GT

0 (ȳ)
(

2P̄ x̃x̃T P̄ + x̃T P̄ x̃P̄
)
G0 (ȳ)

}
− bx̃T P̄ x̃‖x̃‖2 (26)

where

ηi =
[
z3
i1, . . . , z

3
in

]
Γi = diag

(
z2
i1, . . . , z

2
in

)
(27)

Moreover, a useful lemma is given here to deal with the
trace terms of L V̄ .



F. A. AUTHOR et al. / Preparation of Papers for International Journal of Automation and Computing 5

Lemma 3.1. Considering the square matrices A1, A2, B ∈
Rn×n are of n-dimension and D ∈ Rn×n is a diagonal ma-
trix, in particular, A1 = [ā11, . . . , ā1n]T , A2 = [ā21, . . . , ā2n]
and D = diag {d1, . . . , dn}, such that, Tr {DA1BA2} is
bounded.

Tr {DA1BA2} ≤
n∑

i=1

‖di‖ ‖ā1i‖ ‖ā2i‖ ‖B‖ (28)

Proof. Using the structure of the matrices which has been
mentioned above, we can have

Tr {DA1BA2}

= Tr



d1

. . .

dn



a11

...

a1n

B [ a21 · · · a2n

]
= Tr



d1

. . .

dn



a11Ba21 . . . a11Ba2n

...
. . .

...

a1nBa21 . . . a1nBa2n




=

n∑
i=1

dia1iBa2i

≤
n∑

i=1

‖dia1iBa2i‖ (29)

Using the norm operation, the following inequality can
be obtained

n∑
i=1

‖dia1iBa2i‖ ≤
n∑

i=1

‖di‖ ‖a1i‖ ‖a2i‖ ‖B‖ (30)

which completes the proof.

Using Lemma 3.1 repeatedly, the following inequalities
can be obtained to simplify the trace terms in Eq.(26) based
upon Young’s inequality.

Firstly,

Tr
{

ΓΦ1G1 (ȳ)GT
1 (ȳ) ΦT

1

}
≤

n∑
i=1

z2
1i

∥∥∥∇x̄ϕ
T
1i (ȳ)

∥∥∥
2
‖∇x̄ϕ1i (ȳ)‖2‖G1 (ȳ)‖2

∥∥∥GT
1 (ȳ)

∥∥∥
2

≤
n∑

i=1

ε2
1i

2
z4

1i

∥∥∥∇x̄ϕ
T
1i (ȳ)

∥∥∥2

+

n∑
i=1

1

2ε2
1i

‖G1 (ȳ)‖42

=

n∑
i=1

ε2
1i

2
z4

1i

∥∥∥∇x̄ϕ
T
1i (x̄1)

∥∥∥2

+

n∑
i=1

1

2ε2
1i

σ4
1 (31)

Next, the following inequalities are also obtained.

Tr
{
GT

1 (ȳ)G1 (ȳ)
}
≤ n‖G1 (ȳ)‖2 = nσ2

1 (32)

and

2bTr
{
GT

0 (ȳ)
(

2P̄ x̃x̃T P̄ + x̃T P̄ x̃P̄
)
G0 (ȳ)

}
= 4b

∥∥∥GT
0 (ȳ) P̄ x̃

∥∥∥2

F
+ 2bx̃T P̄ x̃T r

{
P̄G0 (ȳ)GT

0 (ȳ)
}

≤ 4b
√
s
∥∥∥GT

0 (ȳ)
∥∥∥2∥∥P̄∥∥2‖x̃‖2

+ 2b
∥∥∥Tr{P̄G0 (ȳ)GT

0 (ȳ)
}∥∥∥∥∥P̄∥∥ ‖x̃‖2

≤
(
ε̃2

1 + ε̃2
2

2

)
‖x̃‖4 +

8b2s

ε̃2
1

∥∥∥GT
0 (ȳ)

∥∥∥4∥∥P̄∥∥4

+
2b2

ε̃2
2

∥∥P̄∥∥2

(
nm∑
i=1

|pi|
∥∥∥GT

0 (ȳ)
∥∥∥2

)2

=

(
ε̃2

1 + ε̃2
2

2

)
‖x̃‖4 + c̃ (33)

where ε̃1, ε̃2, ε1i stand for specified real positive numbers
and ‖·‖F denotes the Frobenius norm.

Moreover, as c̃ ≥ 0, we have

c̃ =
8b2s

ε̃2
1

∥∥∥GT
0 (ȳ)

∥∥∥4∥∥P̄∥∥4
+

2b2

ε̃2
2

∥∥P̄∥∥2

(
nm∑
i=1

|pi|
∥∥∥GT

0 (ȳ)
∥∥∥2

)2

(34)

and

−bx̃T P̄ x̃‖x̃‖2 ≤ −bλmin

{
P̄
}
‖x̃‖4 (35)

Substituting Eq. (23)-Eq. (26) to L V̄ , Eq. (26) can be
rewritten as a result. Particularly, the following inequal-
ity can be further given to illustrate the property of the
controller for system stabilization.

L V̄ ≤ ȳT
(
A1ȳ + ˜̄x2 + ˆ̄x2

)
+

1

2
nσ2

1 +

m−1∑
i=1

ηi
(
Ξi + ˆ̄xi+2

)
+

3

2

(
n∑

i=1

ε2
1i

2
z4

1i

∥∥∥∇x̄ϕ
T
1i (x̄1)

∥∥∥2

+

n∑
i=1

1

2ε2
1i

σ4
1

)

− bλmin

{
P̄
}
‖x̃‖4 +

(
ε̃2

1 + ε̃2
2

2

)
‖x̃‖4 + c̃

= ȳT
(
A1ȳ + ˜̄x2 + ˆ̄x2

)
+

m−1∑
i=2

ηi (Ξi + z̄i+1 + ϕ̄i+1 (ȳ, x̂i+1))

+ η1

Ξ1 + z̄2 + ϕ̄2

(
ȳ,̂̄ x2

)
+


ε211
2
z11

∥∥∇x̄ϕ
T
11 (ȳ)

∥∥2

...
ε21n
2
z1n

∥∥∇x̄ϕ
T
1n (ȳ)

∥∥2




+
3

2

n∑
i=1

1

2ε2
1i

σ4
1 + c̃−

(
bλmin

{
P̄
}
− ε̃2

1 + ε̃2
2

2

)
‖x̃‖4 (36)

Motivated by Lemma 1, the virtual inputs and control
input can be designed as follows:

ϕ̄1 (ȳ) = (−W −A1) ȳ − ˜̄x2

ϕ̄2

(
ȳ, ˆ̄x2

)
= −Ξ1 − z̄2 − Λ− C1z̄1

ϕ̄i+1 (ȳ, x̂i+1) = −Ξi − z̄i+1 − Ciz̄i

u = ϕ̄m (ȳ, x̂m) = −Ξm−1 − z̄m − Cm−1z̄m−1 (37)
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where W is a positive definite matrix.

Λ =


ε211
2
z11

∥∥∇x̄ϕ
T
11 (ȳ)

∥∥2

...
ε21n
2
z1n

∥∥∇x̄ϕ
T
1n (ȳ)

∥∥2


Ci = diag [ci1, . . . , cin] , cij > 0 (38)

Furthermore, L V̄ can be re-expressed as

L V̄ = −ȳTWȳ − p̃‖x̃‖4 −
m−1∑
i=1

n∑
l=1

cilz̄
4
il + c̄ (39)

while

p̃ = bλmin {P} −
ε̃2

1 + ε̃2
2

2
, c̄ =

3

2

n∑
i=1

1

2ε2
1i

σ4
1 + c̃ (40)

Therefore, the following theorem can be summarised for
the stabilisation problem of the investigated closed-loop
semi-linear stochastic system.

Theorem 3.2. Using the linear estimator (16) and control
law (37), the system outputs of the semi-linear stochastic
system (1) are bounded in the probabilistic sense if there
exists a positive definite matrix P̄ satisfying the conditions:
p̃ > 0 and A0

T P̄ + P̄A0 < 0.

Proof. Notice that A0, P and p̃ have been shown in Eqs.
(17), (25) and (40), the proof has been completed following
the analysis obtained above.

4 Output Transient Optimization

The parametric optimisation can be further taken into
account following the criterion in order to attenuate the
randomness and probabilistic coupling respectively. Moti-
vated by stochastic distribution optimisation [39], the distri-
bution information will be adopted. To implement the opti-
misation operation, the transient process should be sampled
where k is the sampling index.

4.1 Output randomness attenuation

Following the discussion in section 2, in order to describe
the randomness of the system outputs, the performance cri-
terion can be given using the concept of the entropy.

Jk = − log V̂k (ȳ,W0) (41)

where V̂k (ȳ,W0) stands for the estimated information po-
tential of ȳ, W0 = {W, ε̃1, ε̃2, ε1i, Ci} , i = 1, . . . , n has been
defined as the design parametric set while k is the sampling
index. Note that the log (·)function is a monotonic increas-
ing function, maximizing the information potential can be
used to take the place of minimizing of the entropy, then
the performance criterion can be simplified only using the
information potential V̂ (ȳ,W0).

Furthermore, another theorem is given to state that the
presented performance criterion is globally convex, if an-
other assumption is added as follows.

Assumption 2. The vector-valued stochastic system output
ȳ satisfies the following inequality:

∂ȳ

∂W0
≤ M̄ (42)

where the real positive matrix M̄ denotes the upper bound.

Theorem 4.1. Based upon the presented control algorithm,
there exists a real positive number δ0 > 0, such that the in-
formation potential is globally concave in terms of the de-
sign parameter W0 for all λmin (Σ) > δ0. It implies that the
equivalent performance criterion (41) is globally convex and
the optimum exists.

Proof. Denote εij,k = ȳi,k − ȳj,k, then we have

∂2V̂k (W0)

∂W 2
0

=
1

N2

∂

∂W0

N∑
i,j=1

∂

∂W0
G√2Σ (εij,k)

=
1

N2

∂

∂W0

N∑
i,j=1

∂G√2Σ (εij,k)

∂εij,k

∂εij,k
∂W0

≤ − 1

N2

(√
2Σ
)−1 ∂

∂W0

N∑
i,j=1

G√2Σ (εij,k)× εij,kM̄

= − M̄
N2

(√
2Σ
)−1

N∑
i,j=1

G√2Σ (εij,k)

×
(
εTij,k

(
M̄ −

(√
2Σ
)−1

)
εij,k

)
(43)

Note that ∂2Vk(ε)

∂W2
0
≤ 0 if M̄ ≥

(√
2Σ
)−1

. It implies that

the eigenvalues of ∂2Vk(ε)

∂W2
0

approach 0− as λmin (Σ) goes to

infinity. Using the Lemma 3 in [40], V̂k (ȳ,W0) is a concave
function once λmin (Σ) is sufficiently large. Thus, the per-
formance criterion (41) is a convex function which results in
the global optimum. It ends the proof of this theorem.

Once the performance criterion is proved to be a convex
function, the standard convex optimization approach, e.g.
gradient descent optimization, can be adopted directly. In
particular, we have

W0,k+1 = W0,k − ε1
∂V̂k (W0)

∂W0

∣∣∣∣∣
W0=W0,k

(44)

where ε1 > 0 stands for the pre-specified searching rate and
the information potential of each system outputs which can
be approximated by MKDE.

4.2 Output probabilistic coupling attenu-
ation

Notice that decoupling design is an important topic for
multi-variable control systems, then the couplings among
the system outputs can also be attenuated based on the pre-
sented framework. Motivated by the concept of probabilis-
tic decoupling, the performance criterion can be described
using mutual information (MI) of the system outputs [41].

Combining Cauchy-Schwarz mutual information (CSMI)
and quadratic Rényi entropy, the multi-variable CSMI is
expressed as follows:

ICS (ȳ) = − log

(∫
γ (ȳ)

n∏
i=1

γi (yi) dy

)2

(∫
γ (ȳ) dy

)(∫ n∏
i=1

γ2
i (yi) dy

) (45)
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Notice that Ics (ȳ) ≥ 0 with equality if and only if the sys-
tem outputs are probabilistic independent. Furthermore,
we have

ICS (ȳ) = log VJ + log VM − 2 log VC (46)

where

VJ =

∫
γ2 (ȳ) dy

VM =

∫ n∏
i=1

γ2
i (yi)dy

VC =

∫
γ (ȳ)

n∏
i=1

γi (yi)dy (47)

stand for information potentials. Compared with the def-
inition of Rényi’s entropy in section II, the value of the
information potentials can be estimated by sampling data.

In particular, the kernel density estimation can also be
used where the performance criterion mentioned above can
be rewritten as

Ics (ȳ) = log

(
1

N2

N∑
i=1

N∑
j=1

n∏
k=1

V̂k (i, j)

)
n∏

k=1

V̂k(
1
N

N∑
i=1

n∏
k=1

V̂k (i)

) (48)

where

V̂k (i) = 1
N

N∑
j=1

V̂k (i, j)

V̂k (i, j) = G√2Σ (yk,i − yk,j)

V̂k = 1
N

N∑
j=1

V̂k (i), k = 1, 2, . . . , n

Thus, the performance criterion can be estimated for each
sampling instant using the collected data.

ICS (ȳ) =
1

N2

N∑
i=1

N∑
j=1

n∏
k=1

V̂k (i, j)

+

n∏
k=1

V̂k −
2

N

N∑
i=1

n∏
k=1

V̂k (i) (49)

Similar to the criterion (41) and the theorem 4.1, it can
be shown that the mutual information criterion is con-
vex based on similar assumptions to those in Theorem
4.1. Then the decoupling in the probabilistic sense can be
achieved following the

W0,k+1 = W0,k − ε2
∂ICS (W0)

∂W0

∣∣∣∣
W0=W0,k

(50)

while ε2 > 0 stands for the pre-specified searching rate.

4.3 Design Procedure

To clearly illustrate progress of the presented control al-
gorithm, one flow chart is shown here to clarify the design
procedure.

Fig. 1 The flowchart of the presented control framework design
procedure

5 A Numerical Example

To demonstrate the presented algorithm procedure, a
multi-variable semi-linear stochastic system is shown as fol-
lows:

dx̄1 =

([
−1 0.5

0 −2

]
x̄1 + x̄2

)
dt+ sin (x̄1)dβt

dx̄2 =

([
−1.5 0

−0.5 −1

]
x̄2 + ū

)
dt+ cos (x̄1)dβt

ȳ = x̄1 (51)

where the matrices A1, A2, G1 and G2 are obtained as the
coefficient matrices.

In addition, the linear observer can be designed with the
observation gain L1 = L2 = diag {15, 15}. Then, the entire
system with linear estimator has been further rewritten as
follows:

dȳ =

([
−1 0.5

0 −2

]
ȳ + ˜̄x2 + ˆ̄x2

)
dt+ sin (ȳ) dβt

dˆ̄x2 =

([
−1.5 0

−0.5 −1

]
ˆ̄x2 +

[
2 0

0 3

]
˜̄x1 + ū

)
dt

d

[
˜̄x1

˜̄x2

]
=


−3 0.5 1 0

0 −5 0 1

−2 0 −1.5 0

0 −3 −0.5 −1


[

˜̄x1

˜̄x2

]
dt

+

[
sin (ȳ)

cos (ȳ)

]
dβt (52)

while the matrices A0 and G0 are obtained. Note that A0

is Hurwitz.
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Following the discussion in section 3, the control input
and first virtual control input can be obtained by Eq. (37),
which shows that the performance of the controller will
be affected by the design parameters W0. Based on the
afore-mentioned optimisation operation, the optimal pa-
rameters can be searched with the pre-selected initial value
W0 = diag {−20, 25} and other parameters can also be pre-
specified randomly as positive numbers.

To set up the simulation, k is designed as 0.01s then
Figs. 2-6 indicate the performance of the investigated
closed-loop stochastic semi-linear system, especially for the
transient performance of the system outputs. In particu-
lar, Fig. 2 shows the trajectories of the system outputs
where all the system outputs are bounded in the probabilis-
tic sense. Fig.3 indicates the control inputs signal which is
also bounded in the probabilistic sense while the entropy-
based performance criterion is given in Fig. 4. It has been
shown that the transient randomness has been attenuated
along the decrease of the performance criterion. In other
words, J descends by searching the optimal design parame-
ters in control law. Note that the entropy is approximated
by KDE. In addition, all the results shown above are based
on the model where G2 (0) 6= 0. Alternatively, the system
outputs will converge to 0 simultaneously in the probabilis-
tic sense if G2 (ȳ) = sin(ȳ) which has been demonstrated
by Fig. 5.

Fig. 2 System outputs’ trajectories of the closed-loop semi-linear
stochastic system.

Furthermore, the probabilistic decoupling problem can
also be considered following the presented algorithm where
y1 and y2 are coupled with each other transiently before the
stabilisation of system output is achieved. To quantify the
system output’s coupling, the mutual information perfor-
mance criterion can be used to replace the entropy-based
criterion, then the following results are given where the mu-
tual information of the system output has been minimised.
It implies that the independence of the system outputs for
transient performance is increasing.

Notice that G2 (0) 6= 0 and the value of the mutual in-
formation based performance criterion has been processed
using sliding average mode, while the mutual information
does not converge to zero due to the randomness of βt. How-
ever, as an optimisation problem, the minimum is achieved

Fig. 3 The designed control inputs for the closed-loop semi-linear
stochastic system.

Fig. 4 The value of entropy-based performance criterion J to
attenuate the transient randomness of the system outputs

Fig. 5 System outputs’ trajectories of the closed-loop semi-linear
stochastic system with G2 (0) = 0.

which also satisfied our design requirement for decoupling
design in probability sense.

As an additional extension of the given numerical exam-
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Fig. 6 The value of mutual information based performance crite-
rion ICS to attenuate the transient probabilistic couplings of the
system outputs.

ple, the system coefficient matrices can be replaced as fol-
lows to validate the performance of the presented algorithm
for the system model with an unstable system dynamic ma-
trix.

A1 =

[
−10 2

−1 3

]
, A2 =

[
−5 1

−2 4

]
(53)

where A1 and A2 are not Hurwitz. G1, G2 and initial values
are given as same as the example above. Thus, the perfor-
mances of the system output and control input are shown
by Figs. 7 and 8 with the presented controller design. In
particular, the system outputs are stabilised and converge
to zero in probability one, meanwhile the control inputs
converge to zero once the system outputs are stabilised.
In addition, the transient randomness has been attenuated
following the minimum entropy criterion.

0 1 2 3 4 5 6 7 8 9 10
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y
2

Fig. 7 System outputs’ trajectories of the closed-loop semi-linear
stochastic system with unstable A matrix.

To highlight the power of the presented control al-
gorithm, the performances are also compared to widely
used PI design for the system model (53), where Kp =
diag {10, 14} and Ki = diag {0.05,−0.01}. Note that the
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Fig. 8 The designed control inputs for the closed-loop semi-linear
stochastic system with unstable A matrix.

PI controller parameters have been tuned following the min-
imum entropy criterion, however most of the parameters we
tried cannot stabilise the system outputs and the best per-
formance obtained has been demonstrated by the following
figure. Comparing with Fig. 7, the system outputs are
bounded however the convergence performance cannot be
guaranteed even if the parametric optimisation has been
adopted.
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Fig. 9 The PI control inputs for the closed-loop semi-linear
stochastic system with unstable A matrix.

6 Conclusions

In this paper, the transient performance optimisation has
been investigated for a class of MIMO semi-linear stochas-
tic systems. Based on the system stabilisation and tran-
sient optimisation, a control framework has been presented,
in particular, the linear estimator has been first designed
which forms the entire strict-feedback format with the in-
vestigated system model. Based upon the entire closed-loop
system model, the m-block backstepping design has been
adopted with the free design parameters while the system
performance can be further taken into account following the
parametric optimisation of the presented controller. Basi-
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cally, the system output randomness and the probabilis-
tic decoupling have been proposed via the entropy-based
performance criterion and the mutual information based
performance criterion, respectively. Following the standard
gradient descent searching, the control objectives can be
achieved when the performance criterion has been attenu-
ated. Moreover, the convergence in the probabilistic sense
has also been analysed following the Lyapunov method with
the backstepping design. Generally, the optimisation only
affects the transient performance due to the fact that the
system outputs will be stabilised in the probabilistic sense
based on the convergence analysis.

Notice that both presented performance criteria can be
represented by the information potential which can be sim-
ply approximated using multidimensional kernel density es-
timation (MKDE) with sampling data. The convexity of
the presented performance criteria is also analysed in the
paper which guarantees that the optimum exists and the
presented control framework is implementable in practice.
To evaluate the presented control algorithm, a numerical ex-
ample has been given and the simulation results illustrate
its effectiveness and correctness. In addition, other perfor-
mance criteria can further be considered following the sim-
ilar approach by replacing the presented performance crite-
ria which means that the design approach can be adopted to
achieve other design requirements in the future. Motivated
by finite-time convergence [42] and H2\H∞ fault diagnosis
application [43], the presented framework extensions should
also focus on theoretical performance enhancement based
on the transient optimization.
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