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Abstract 

Particle size is a critical quality parameter in several pharmaceutical unit operations. An 

adequate particle size distribution is essential to ensure optimal manufacturability which, in 

turn, has an important impact on the safety, efficacy and quality of the end product. Thus, the 

monitoring and control of the particle size via in-process size measurements is crucial to the 

pharmaceutical industry. Currently, a wide range of techniques are available for the 

determination of particle size distribution, however a technique that enables relevant real-time 

process data is highly preferable, as a better understanding and control over the process is 

offered.  

The pharmaceutical industry follows the “technology-push model” as it depends on scientific 

and technological advances. Hence, optimization of product monitoring technologies for drug 

products have been receiving more attention as it helps to increase profitability. An increasing 

interest in the usage of virtual instruments as an alternative to physical instruments has arisen 

in recent years. A software sensor utilizes information collected from a process operation to 

estimate values of some property of interest, typically difficult to measure experimentally. One 

of the most significant benefits of the computational approach is the possibility to adapt the 

measuring system through several optimization solutions. 

The present thesis focuses on the development of a mathematical dynamic model capable of 

predicting particle size distribution in-real time. For this purpose, multivariate data coming from 

univariate sensors placed in multiple locations of the continuous production line, ConsiGmaTM-

25, was utilized to determine the size distribution (d50) of granules evaluated at a specific site 

within the line. The ConsiGmaTM-25 system is a continuous granulation line developed by GEA 

Pharma. It consists of three modules: a continuous twin-screw granulation module, a six-

segmented cell fluid bed dryer and a product control unit. In the continuous granulation module, 

granules are produced inside the twin-screw granulator via mixing of the powder and the 

granulation liquid (water) fed into the granulation barrel. Once finalized the granulation 

operation, the produced granules are then pneumatically transferred to the fluid bed dryer 

module. In the dryer module, the granules are relocated to one specific dryer cell, where drying 

is performed for a pre-defined period of time. The dry granules are formerly transported to the 

product control hopper with an integrated mill situated in the product control unit. The granules 

are milled, and the resulting product is gravitationally discharged and can undergo further 

processing steps, such as blending, tableting and coating. The size distribution (d50) of the 

granules to be determined in this work were assessed inside dryer cell no.4, located at the 

dryer module. The size distribution was measured every ten seconds by a focused beam 

reflectance measurement technique.  



ii 

 

A non-linear autoregressive with exogenous inputs network was developed to achieve 

accurate predictions of granules size distribution values. The development of the predictive 

model consisted of the implementation of an optimization strategy in terms of topology, inputs, 

delays and training methodology. The network was trained against the d50 obtained from 

particle size distribution collected in-situ by the focused beam reflectance measurement 

technique mentioned above.  

The model presented the ability to predict the d50 value from the beginning to the end of the 

several drying cycles. The accuracy of the artificial neural network was determined by a root 

mean squared error of prediction of 6.9%, which demonstrated the capability to produce close 

results to the experimental data of the cycles/runs included on the testing set. The predictive 

ability of the neural network, however, could not be extended to drying cycle that presented 

irregular fluctuations. 

Due to the importance of the precise monitoring of the size distribution within pharmaceutical 

operations, a future adjustment of the optimization strategy is of great interest. In the future, a 

higher number of experimental runs/cycles can be used during the training process to enable 

the network to identify and predict more easily atypical cases. In addition, a more realistic 

optimization strategy could be performed for all process parameters in simultaneous through 

the implementation of a genetic algorithm, for example. Changes in terms of network topology 

can also be considered. 
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Resumo 

O tamanho de partícula é um parâmetro crítico de qualidade em diversas operações unitárias 

da indústria farmacêutica. Uma distribuição de tamanho de partícula adequada é essencial 

para garantir condições ideais de fabrico, o que por sua vez, possui um impacto significativo 

na segurança, eficácia e qualidade do produto final.  Deste modo, a monitorização e controlo 

do tamanho de partícula através de medições efetuadas durante o processo são consideradas 

cruciais para a indústria. Atualmente, uma ampla gama de técnicas encontra-se disponível 

para a determinação da distribuição de tamanho de partícula. Contudo, uma técnica que 

permita a obtenção de dados relevantes em tempo real é altamente preferível, visto que um 

melhor entendimento e controlo sobre o processo é obtido. 

A indústria farmacêutica encontra-se altamente dependente de avanços científicos e 

tecnológicos. Nos últimos anos, um interesse crescente no uso de instrumentos virtuais como 

alternativa à instrumentalização física na monitorização de produto é evidente. Um sensor 

virtual faz uso da informação contida num determinado conjunto de dados para efetuar 

medições adequadas de uma propriedade de interesse. Uma das vantagens mais importantes 

desta abordagem computacional corresponde à possibilidade de adaptação do sistema de 

medição, recorrendo a variados métodos de otimização. 

A presente tese encontra-se focada no desenvolvimento de um modelo matemático dinâmico 

capaz de prever a distribuição de tamanho de partícula em tempo real. Para o efeito, dados 

multivariados gerados, a cada segundo, por sensores localizados em múltiplos locais da linha 

de produção contínua, ConsiGmaTM-25, foram utilizados para determinar a distribuição de 

tamanho (d50) de grânulos avaliada num ponto específico da linha. O sistema ConsiGmaTM-

25 trata-se de uma linha contínua de produção de grânulos, que pode ser dividida, 

essencialmente, em três módulos principais: granulador contínuo, secador de leito fluido e 

unidade de acondicionamento de produto. No módulo de granulação, ocorre a produção de 

grânulos através da mistura de pó e água (líquido de granulação). Uma vez finalizada a 

operação unitária, os grânulos produzidos são pneumaticamente transferidos para o secador 

de leito fluido. Neste local, os grânulos são introduzidos numa das seis células de secagem, 

onde ocorre o processo de secagem durante um período de tempo pré-definido. Os grânulos 

secos resultantes são, de seguida, transferidos para a unidade de acondicionamento de 

produto, integrado por um moinho, responsável pela operação de moagem. O material moído 

é gravitacionalmente descarregado e pode ser novamente processado através de operações 

como a mistura, compressão ou revestimento. A distribuição de tamanho (d50) dos grânulos 

a ser determinada neste trabalho foi medida, a cada dez segundos, através da técnica de 

reflectância por um feixe de luz focalizado. Um total de dezasseis corridas realizadas no mês 

de agosto foram utilizadas neste trabalho. Para cada corrida, dados relativos a parâmetros de 
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processo tais como, pressões, temperaturas, fluxos de ar, entre outros, bem como, a 

distribuição do tamanho (d50) dos grânulos foram disponibilizados. Com base na discrepância 

temporal verificada entre os dados de processo e os valores de distribuição de tamanho (d50) 

dos grânulos, diversas etapas de processamento foi executadas. O processamento de dados 

foi realizado, essencialmente, em três fases distintas: alinhamento, filtragem e 

organização/fragmentação. Uma vez finalizado o processamento, os dados foram utilizados 

no desenvolvimento do modelo preditivo (rede neural).  

Uma rede neuronal não-linear autorregressiva com três entradas exógenas foi desenvolvida 

para realizar previsões da distribuição de tamanho (d50) dos grânulos. O desenvolvimento do 

modelo preditivo consistiu na implementação de uma estratégia de otimização em termos de 

topologia, atrasos, dados de entrada, seleção de corridas e metodologia de treino.  Para cada 

variável de processo (entrada), um atraso foi assinalado com base em pressupostos 

fundamentados por estudos relativos ao tempo de residência dos três módulos da linha 

contínua. Os dados de entrada foram definidos com base no resultado de um modelo 

matemático desenvolvido para designar o conjunto de variáveis para o qual se observava um 

menor erro médio quadrático de previsão da propriedade de interesse, d50. De forma a 

possibilitar o treino da rede, os dados fragmentados foram divididos em dois principais 

conjuntos: treino e teste. A rede foi treinada e validada com dados de treino, sendo os dados 

de teste seguidamente utilizados para avaliar a capacidade preditiva do modelo otimizado. 

O modelo apresentou a capacidade de prever o valor de d50 ao longo dos vários ciclos de 

secagem. A precisão da rede neural foi determinada por um valor de erro médio quadrático 

de previsão de 6,9%, demonstrando sua capacidade de produzir resultados próximos aos 

dados experimentais incluídos no conjunto de teste. A capacidade preditiva da rede neural, 

no entanto, não foi capaz de abranger casos atípicos. 

Considerando a importância de uma monitorização precisa da distribuição de tamanho nas 

operações farmacêuticas, uma futura alteração na estratégia de otimização implementada é 

altamente aconselhável. No futuro, o uso de um número mais elevado de ciclos/corridas de 

secagem durante o processo de treino da rede poderá permitir que esta seja capaz de 

identificar e prever com maior facilidade casos atípicos. Adicionalmente, uma abordagem mais 

realista da estratégia de otimização poderá ser executada para todas os parâmetros de 

processo em simultâneo através da implementação de um algoritmo genético. Ainda, 

alterações na topologia da rede poderão ser também consideradas. 

 

 

Palavras-chave: Distribuição de tamanho de partícula; Grânulos; Secagem; Monitorização; 

Rede neuronal artificial. 
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1. Introduction 
 

1.1. Pharmaceutical manufacturing: from batch to continuous 

The modern pharmaceutical industry is showing a growing interest in transitioning from the 

more traditional batch manufacturing to continuous manufacturing, a movement that FDA is 

seeking to encourage among more pharmaceutical manufacturers. [1], [2]  

Nowadays, pharmaceutical production is dominated by batch manufacturing processes. [3] 

However, continuous manufacturing has gained an increasingly amount of attention in recent 

years. Producing a pharmaceutical product continuously has been considered an innovative 

approach that has a great deal of potential to improve agility, flexibility, and robustness in the 

manufacture of pharmaceuticals, providing opportunities for product quality improvement, 

process enhanced cost-efficiency and reduced environmental effect. [4]–[6] 

Batch manufacturing plants operate through multiple discrete steps and often a few or even all 

process units are shut down and started up. [7] Raw materials are fed and removed from the 

process at different times, i.e., all materials are charged before the process begins and the 

final product is discharged at the end of the corresponding process unit operation. [1] In 

contrast to batch processing, in continuous manufacturing, material is simultaneously charged 

and discharged from the process throughout its duration. [5], [8] In this case, the raw materials 

undergo an assembly line of fully integrated components until the final product is obtained. [9], 

[10] A continuous production plant is designed to run twenty-four hours a day, seven days a 

week for more than fifty weeks per year. [7] The fact that the manufacturing line can run for a 

longer period of time reduces the likelihood of drug shortages and avoids scale-up issues. [9], 

[11] The continuous approach is considered to be more efficient, safer and faster as it 

eliminates ‘hold times’ between unit operations which are characteristic from batch 

manufacturing. The elimination of these ‘hold times’ decreases human intervention, hence 

decreasing the risk of human error. Additionally, ‘hold times’ can easily affect the integrity of 

product being manufactured considering that for some active pharmaceutical ingredients 

(APIs), there is the risk of degradation due to their sensitivity to the surrounding environment. 

[9], [10] 

In batch manufacturing, a batch size increase involves dramatic changes in equipment. [12] 

Oppositely, in continuous manufacturing scale-up can be achieved in several ways including 

operating the process for longer periods of time, using parallel processing units or increasing 

the flow rate. [5] This eliminates the need to carry out the time-expensive scale-up studies as 

the production rate is increased by numbering up alternatively to scaling up. [3] 

In batch manufacturing, a great demand for a certain drug requires an increase on production 

and consequently, a scale-up in terms of equipment.  As more physical space is needed, a 

bigger plant footprint becomes mandatory requiring more time and additional investment. [10] 
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In continuous manufacturing, the operating system and the simplicity of the scale-up procedure 

greatly reduces the plant footprint resulting in significant savings in capital investment and 

operational costs. [8] Fundamentally, a small continuous plant capable of operating as long as 

necessary to manufacture the desired amount of product is more likely to be cheaper than 

constructing a large batch plant. [11] Additionally, a smaller footprint is associated to a more 

efficient use of energy, reduced waste and a smaller ecological impact. [3] 

In a batch manufacturing process, materials are normally tested off-line and stored before 

being sent to the following processing step. If the in-process material does not meet the well-

defined quality expectations, it can be discarded, or, on exceptional cases, it may be 

reprocessed to achieve the quality target prior further processing. [5] Thus, batch 

manufacturing offers the advantage of a simpler quality control procedure as a batch can be 

accepted or rejected. In a continuous process, the material is continuously sent to the next 

processing step. [4] However, it is possible for a continuous process to generate batches 

considering that the definition of batch is defined by the quantity of manufactured drug and not 

by the mode of manufacture (batch or continuous). According to the FDA, a batch is ‘a specific 

quantity of a drug or other material that is intended to have uniform character and quality, within 

specified limits, and is produced according to a single manufacturing order during the same 

cycle of manufacture’. [8] From a regulatory point of view, this definition does not interfere with 

the adoption of a continuous manufacturing process as a batch in a continuous setting can be 

considered ‘a specific identified amount produced in a unit of time or quantity in a manner that 

assures its having uniform character and quality with specified limits’. [6] 

Batch processing can adopt both an off-line and real time quality control strategy by measuring 

or sampling at different spatial locations within the equipment. [11] In contrast with batch 

manufacturing, in continuous manufacturing, apart from local control, also the entire process 

flow must be mandatorily equipped with second-level control systems responsible for 

monitoring and aligning the performance of the individual unit operations. [13] For this reason, 

continuous processing is compatible with FDA’s process analytical technology (PAT) initiative 

launched in 2003 that promotes the use of PAT tools to provide a more thorough understanding 

of pharmaceutical manufacturing processes. [14], [15] In a fully integrated continuous line, PAT 

tools are used to gather real-time data for process monitoring and control, and ultimately, to 

mitigate the impact of in-process material and process variability on the finished product’s 

quality. This comes in line with FDA’s Quality-by-Design (QbD) initiative for pharmaceutical 

development framed by the International Conference on Harmonization (ICH) Q8 guideline 

which promotes continuous improvement based on scientific understanding of critical process 

and product attributes. [16] A QbD/PAT-strategy will enable quality to be built into the 

pharmaceutical product, ensuring an acceptable and reproducible product quality and 

performance throughout its lifecycle.  [5], [15] 
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Despite the various advantages of continuous manufacturing, batch operations might be, in 

some instances, preferable to continuous manufacturing as there are still a few challenges 

related to its implementation. For several years, the strict regulatory environment was 

responsible for the pharmaceutical industry’s reluctance on engaging on continuous 

manufacturing. Regardless on the FDA’s support on the adoption of continuous processing, 

manufacturing continuously may not be approvable by other global regulators. [7] Another 

challenge is changing the mindset of the industry that pharmaceutical products should be 

produced used traditionally out-of-date methodologies. Many companies prefer to maintain 

their current manufacturing procedure due to their deep comfort on methodologies that have 

been followed for years. [17] Implementing an integrated continuous manufacturing line would 

require the implementation of QbD/PAT principles, new product development processes and 

improvements in the technical skills of the professionals allowing them to analyze and 

understand process data. [15] During the 80s and 90s, a heavy capital investment was made 

on batch manufacturing for process improvement, throughput time reduction and operational 

efficiency enhance. [7], [15] A transition from batch to continuous manufacturing would imply 

an additional investment that companies with an established batch asset-base were not willing 

to make. The investment in continuous operations is easier for new products or specific 

processes where an investment would be required either way. [11] For that reason, it is 

expected for most pharmaceutical companies to convert or integrate several of their current 

batch operations into a continuous plant prior to investing in a fully continuous-based 

manufacturing operation. [7] Additionally, switching the manufacturing approach may require 

new equipment, process control parameters, control strategies and process operational 

models in order to stablish product equivalency. [18] 

The transition from batch to continuous manufacturing is clearly not simple procedure. 

However, a growing number of manufacturers are working towards implementing continuous 

manufacturing into their processes as they have recognized that the challenges of transitioning 

can easily be compensated by the advantages offered by manufacturing continuously. [19] 

Several years ago, GlaxoSmithKline invested 60 U.S. dollars to set up a facility in Singapore 

to continuously process APIs for its respiratory drugs. [20] AstraZeneca has also recently 

invested in a continuous wet granulation unit for solid dosage forms (tablets) processing. The 

company selected GEA Pharma Systems equipment (ConsiGmaTM25) for use in developing 

novel drugs and to produce clinical trials materials, allowing cost, time and material saving 

throughout the product life-cycle. [21], [22] In 2016, Eli Lilly announced a 40 million U.S. dollars 

investment to build a continuous API manufacturing facility at its 37-year-old manufacturing 

site in Cork Country, Ireland. The continuous processing facility will be used for development 

and commercialization of late-stage drug pipeline. [9] Vertex has been using a continuous 

manufacturing process for a cystic fibrosis drug, Orkambi, since its approval in July 2015. 
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Orkambi was the first ever oral solid dosage drug to be continuously produced. [23] Recently, 

FDA approved Vertex’s third medicine to treat the underlying cause of cystic fibrosis, Symdeko, 

which is Vertex’s second approved drug produced by a continuous manufacturing process. 

[24] In 2016, the FDA allowed for the first time in history a manufacturer to switch from batch 

to continuous manufacturing. The manufacturing change is for Janssen’s HIV-1 infection 

medication, Prezista (darunavir), a direct compression product. Janssen Supply Chain can 

now produce tablets on a continuous manufacturing production line at its facility in Gurabo, 

Puerto Rico. The incorporation of one of the industry’s first full continuous direct compression 

solid oral dosage manufacturing facilities will decreased the timeline from a two-week to a one-

day production and allow continuous monitoring of product quality. Janssen and Johnson and 

Johnson aim to “manufacture 70% of its highest-volume products using continuous 

manufacturing” within 6 years. [2], [25] The trend of transition from batch to continuous 

manufacturing will continue, and it is expected more companies to invest in continuous 

manufacturing technologies. The increasingly demand for higher-quality pharmaceutical 

products to be produced in a faster and more cost-efficiently way, will offer early adopters of 

continuous manufacturing a substantial competitive advantage over other companies. [26] 

 

1.2. Drying process 
 
Drying is defined as the operation used to remove liquid from a moist material by converting 

the liquid into its gaseous state, which can be achieved by heat application. Usually, water is 

the liquid aimed to be removed and air is the medium used to promote the heat transfer to the 

water.  Drying is a unitary process extensively utilized in various applications within the 

pharmaceutical industry. It is an essential unit operation to produce granules, in the context of 

wet granulation, which may be dispensed in that same form or used in tablets or capsules. 

Drying is also known for its ability to reduce size and weight of the material and for facilitating 

milling as it turns the dried substance much more friable. A great variety of dryers is available 

to perform the operation described above, reason why it is impossible to describe every 

existing equipment. Given this, more attention must be provided to dryers that have a direct 

application in the manufacturing of drug products, such as fluid bed dryers.  [27] 

 

1.2.1. Fluid bed dryer 

Nowadays, fluid bed drying (FBD) is the most common and best-known method to prepare 

granules for compression or to simply dry wet granules. [27] This is due to the numerous 

benefits that it offers over other drying methods, such drying time reduction. [28] It also enables 

drying of a large amount of material, and a relatively low capital cost. [29] 
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A fluid bed dryer works on the principle of fluidization, a process in which hot gas or air passes 

vertically through a bed of solid particles. The gas is expected to be introduced at a higher rate 

than the setting rate of the particles, in order to allow the particles to fluctuate and be partially 

suspended in the gas stream. A state of fluidization exists as the particles continuously fall into 

a random motion similar to the appearance of a boiling liquid. The fluidization technique is 

efficient and offers a uniform drying process since each particle is entirely surrounded by the 

drying gas. Furthermore, the intense mixing between the solid particles and the gas causes 

uniform conditions of temperature, composition and dispersion of particle size in the bed. [27] 

The air stream for fluidization is produced by a fan mounted at the top of the equipment. The 

air is heated to the required temperature and moves vertically through the wet material, placed 

at the bottom of the drying chamber. [30], [31] The flow is adjusted, and the filters situated at 

the top of the drying chamber prevent the release of fine particles to the outer environment.  

Both flow rate and operating temperature are regulated by a control panel. [32] The 

temperature of the inlet air should be monitored to ensure that only a determined amount of 

moisture evaporates. A high inlet air temperature can lead to the formation of a crust on the 

surface of the material or even inhibit the moisture to be transferred from the interior of the 

granulate to its surface, which will consequently delay the drying process.  [33] 

 

1.3. Particle size characterization 

Particle size distribution (PSD) are one of the most important quality attributes of solid dosage 

forms, such as granulated products. An inadequate PSD can influence granule properties, 

which might cause problems in the performance, processability, stability and appearance of 

the end product.  Particle size analysis has become a routine measurement during granulation 

as it can be indicative of batch development and quality. Thus, it is significantly important to 

monitor granule growth and understand its effects on the end product. Nevertheless, a 

discussion about size is not possible without first taking into mind the diameter of the particle, 

which in turn is influenced by shape and morphology. [4] The concept of diameter is more 

easily applicable to spherical particles as its size is determined exclusively by the diameter. In 

contrast, for non-spherical particles defining other parameters is required. The most broadly 

used particle size parameters are projected area diameter, length and width, and two other 

related particle size descriptors, Feret’s diameter and Martin’s diameter (Figure 1). These 

parameters are extremely useful upon the measurement of particle size though microscopy 

since the measuring sample is composed by static particles. [34] Many other techniques used 

to determine particle size assume that every single particle corresponds to a sphere design 

and therefore will present the same volume of one of equivalent diameter. In this case, length 

and weight descriptors must be derived either into its spherical equivalent. For example, the 
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volume diameter will be referred as the diameter of a sphere whose volume is the same as of 

the non-spherical particle. [35] 

Particle size determination is performed to provide information about the size attributes of an 

ensemble of particles whose size is typically not the same, reason why particle size is usually 

described as a distribution. Ideally, the central values of the distribution (mean, median and 

mode) and distribution width descriptors should be taken into account. For a bell-shaped 

normal distribution (Figure 2a), mean, median and mode present the same value, and 

therefore is fully described by distribution width descriptors, the mean particle size and the 

standard deviation. Oppositely, for a non-symmetric distribution (Figure 2b) the central values 

of the distribution will differ.  

  

 

 

 

 

 

 

 

 

Figure 2: Particle size distribution. (a) Symmetric distribution where mean, median and mode present the same 

value; (b) Non-symmetric distribution where mean, median and mode present different values.(adapted from [35]) 

Figure 1: Usual particle size descriptors and its definitions (adapted from [34]). 
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The mode corresponds to the value at which the frequency presents its maximum value and 

is characterized by the highest peak in the distribution. Moreover, it denotes which particle size 

is more usual to be found in the distribution.  The median will provide the value at which the 

frequency curve is divided into two equal parts, where half of the population lies below this 

value and the other half above.  For PSDs the median is usually referred as the D50. In regard 

to the mean, it corresponds to the average particle size of a sample within a given distribution. 

An alternative common approach to characterize a distribution is the usage of D-values, D10, 

D50 and D90, as shown in (Figure 3). To better understand the D-value concept, particles 

arranged by ascending mass must be considered. In this sense, the Dx will describe the 

diameter where x% of the particles in the sample have a smaller particle size and (100-x) % a 

larger particle size. As previously mentioned, the D50 value corresponds to the median. 

Accordingly, 90 and 10 percent of the distribution lies bellow the D90 and D10 value, 

respectively. [35], [36] 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.1. Particle size characterization methods 

A wide range of techniques are available for PSD determination (Figure 4). Currently, the most 

broadly utilized technique is laser diffraction. However, alternative approaches can include the 

use of other techniques such as image and sieve analysis, spatial filter velocimetry (SFV), 

focused beam reflectance measurement (FBRM), and acoustic emission (AE). [4], [37] Prior 

to the decision of which technique to use, the purpose of the analysis itself must be considered. 

Therefore, the choice of a suitable analyzer must acknowledge different aspects as the 

theoretical assumption behind the measurement mechanism, applicability (e.g. size range), 

ease and speed with which the analysis can be performed, the cost of the apparatus and 

known advantages and drawbacks. Once the different criterions are reviewed, particle size 

can be appropriately measured generating reproducible data in a form that is relevant to the 

process.  An in-line technique may be preferable as enables more relevant real-time process 

Figure 3: D10, D50 and D90. (adapted from [35]) 
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data and thus offers a better understanding and control over the process. However, due to the 

challenges associated to the sensitivity of an in-line technique within the process stream, an 

at-line, on-line and off-line approach might also be applicable. [38], [39] In fact, it is possible 

nowadays for an off-line instrument to be adapted to an on-line operation by integrating a 

simple accessory to the original instrument. [34] 
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1.3.1.1. Off-line methods 
 

1.3.1.1.1. Laser diffraction 

Laser diffraction (LD) is a well-established technique for particle size determination of 

pharmaceutical powders and granules. The method has been used for several years as it 

allows the sizing of a wide range of particles from hundreds of nanometers up to numerous 

millimeters in size. It can be used as both an in-process and an off-line method.  

Figure 4: Particle size techniques according to the size range. (adapted from 
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A sample, dispersed at a suitable concentration, is passed through the beam of 

monochromatic light causing light scattering, which produces a diffraction pattern with different 

light intensities at various angles. The diffraction pattern is captured by laser diffraction 

analyzers and an optical model is used to generate particle size information. In general, large 

particles scatter light at narrow angles and small particles at wide angles.  [41], [42] 

The early LD particle size analyzers relied on the Fraunhofer approximation by using 

exclusively scattering at small angles. In addition to the Fraunhofer approximation, recent LD 

instruments use the Mie theory to calculate PSD based on light scattered in a wider angular 

range. The Fraunhofer approximation is a simplified approach that does not assume the optical 

properties of the measured material, and therefore, can be used for to measure mixtures 

consisting of different materials. Furthermore, it assumes that the particles are opaque disks, 

that the scattering phenomena presents the same efficiency for all particle sizes and that light 

is scattered exclusively at narrow angles. Taking into consideration that large particles scatter 

light at narrow angles, the Fraunhofer approximation can provide accurate results when 

measuring large particles. Distinctly, the Mie theory predicts the scattering intensity induced 

by particles, regardless of the fact of them being opaque or transparent. It uses the assumption 

of spherical particles in its optical model, making it not possible to distinguish between 

scattering by single particles and scattering by clusters of primary particles. The particles are 

considered homogeneous, i.e., they are uniform in terms of composition, and the suspension 

diluted, so the light is scattered by one single particle and is detected prior interaction with 

other particles. This theory requires knowledge of the optical properties (refractive index) of 

the particles and the dispersant as the light intensity distribution pattern will be slightly altered 

depending on the value of the refractive index. [34], [38], [43] Nowadays, both the Fraunhofer 

approximation and the Mie theory are utilized, but the ISO13310 acknowledges the superiority 

of the Mie theory. The use of Fraunhofer is limited to the measurement of particles with a 

minimum of 50 µm in size while Mie theory enables the analysis of particles between 0.1 µm 

up to 3 mm. [44] In most cases, the LD technique results are presented as a volume-weighted 

PSD. Therefore, if the median value (D50) of a volume-weighted PSD is 200 µm, it means that 

particles whose size goes up to 200 µm account for 50% of the sample volume. Depending on 

the software of the analyzer, the results might be extracted as a number-weight distribution. 

[38] 

Nowadays, a variety of instruments are available (e.g. Malvern, Coulter, Fritsch, Retsch and 

Horiba instruments) which vary in terms of complexity and sensitivity. This will determine which 

range of particle size can be analyzed, how easy the data can be processed and summarized, 

and the quality of the information obtained. [45] 
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1.3.1.1.2. Sieve analysis 

Sieve analysis is one of the oldest and most applied techniques to characterize granules 

through PSD. The sieve size is described in the American Pharmacopoeia as ‘the length of the 

side of the minimum square aperture through which the particle will pass’. [46] This can be 

used to serve two main purposes, (1) powder separation or deagglomeration into different 

fractions of sizes and (2) determination of particle size, referred in this case as analytical 

sieving. The same sieve should not be used for both purposes as the sieves differ depending 

on the type of analysis to be performed. Thus, an analytical sieve must not be used for powder 

separation or deagglomeration taking into mind that this procedure normally forces powders 

to pass through the sieve, hence compromising structure of the analytical sieves, which will 

ultimately lead to poor results. [46], [47] 

Usually, a sieving analysis requires a stack of 2 to 6 sieves with different aperture sizes, a top 

cover and a fines collector. The sieves are normally made from wire woven and must be 

stacked following an ascending order of opening size. Therefore, the sieve with the largest 

aperture should be place at the top, while the one with the smallest aperture has to be 

positioned at the bottom. In a general way, the technique consists of placing a sample with a 

predetermined weight on the top sieve that will be retained into different sieve fractions.  [48], 

[49] The whole structure is put into motion (manually or by an instrument) which promotes 

particles to pass through the sieves and end up on the sieve whose aperture size will be 

smaller than the particle size of the particle. Thus, if a particle passes through a 100 µm but is 

retained on a sieve with an aperture of 75 µm, particle size will be in-between 75 and 100 µm. 

However, it cannot have a particle size of 100 µm considering that for a particle to pass through 

a certain sieve, it has to present a smaller dimension than the actual sieve size. Once the 

structure remains in motion for a standardized period of time, and then the particles retained 

on each sieve is weighted and presented as a percentage of the total amount of sample. [38] 

The results can be represented either by plotting ‘particle size versus the amount retained or 

cumulative retained on the sieves to obtain a particle size distribution’ and therefore, a mass-

based distribution is attained. [49] In this case, a median of 50 µm suggests that 50% of the 

total amount of the sample is composed by particles that can pass through a sieve with an 

aperture of 50 µm. [38] 

As mentioned before, sieving can be done manually or by an instrument. However, manual 

sieving is not considered the best option because it can result on the acquisition of unreliable 

data as the analysis performance can vary between different operators. Sieving by means of 

an instrument, also known as automatic sieving, utilizes either air entrainment or mechanical 

agitation methods to promote the motion of the particles. Mechanical agitation methods is 

considered to be more intense when compared to the air entrainment method. The first utilizes 
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movements as shaking and tapping, while the second performs sieving using air or sonic 

movement which leads to particle motion without leading to screen blinding (clogging of the 

screen aperture). [49] 

Sieving is a relatively simple technique and requires a minimal sample preparation. It is 

applicable over a broad range of sizes (20 µm to 125 mm) and is mostly used as an off-line 

technique although an on-line approach has been designed for process and quality control 

monitoring. [46] Despite minimal sample preparation, a relatively large quantity of sample is 

needed to perform the analysis which makes it inappropriate for pricey materials and materials 

that are only available in small quantities. Additionally, measurements for odd-shaped particles 

are extremely difficult as sieve analysis does not consider the effect of particle shape. One of 

the most significant drawbacks is the sieves susceptibility to the blinding phenomena, which 

can greatly influence the mass distribution and consequently the accurateness of the PSD. 

Thus, high maintenance and a rigorous cleaning procedure are required. [38], [50] 

 

1.3.1.1.3. Image analysis 

Microscopy-based techniques provide a powerful tool for particle characterization as it is 

accepted as the most direct measurement of particle size, distribution and morphology. Over 

time, two different approaches have been developed in terms of image analysis: static and 

dynamic image analysis. Both involve the direct observation of particles in a two-dimensional 

image however they differ regarding the way how the sample is introduced into the measuring 

zone. The choice of which technique to use is influenced by the size of the particles to be 

analyzed. [51], [52] Dynamic image analysis is used for measurements of particle over the 

range of 30 up to 3000 µm, while static image analysis is adequate for measurement of 

systems sized between 0.5 and 1000 µm. [35] When performing a static image analysis, the 

particles to be analyzed rest on a slide, while on dynamic image analysis, particles flow during 

measurements. Despite the differences, many basic functions operate on the same way with 

either one of the approaches. The particles are placed on the measurement zone and a digital 

(CCD) camera captures images. The captured images are then analyzed in order to distinguish 

the particles from the background which will ultimately allow to measure numerous size and 

shape parameters for each individual particle. [34], [51], [52] 

Samples analyzed by static image analysis normally sit on a slide that is moved by an 

automated stage. The slide is then scanned, and the resulting images of the particles are 

collected by a microscope and digital camera. Most static image analysis measurements are 

performed on powders (to be used on solid oral dosage forms) which require a sample 

preparation step before the analysis. In most cases, the sample preparation corresponds to 

the breakage of agglomerates or the dispersion of the particles on the slide that can be 
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achieved by using positive pressure on a rigid surface. Once the sample preparation step is 

concluded, the slide is scanned, and a series of image are processed through the device’s 

software. The software allows particles to be separated from the background by defining a 

parameter with a specific threshold value (e.g. contrast threshold – particle/background 

contrast). Additionally, several software functions can be used to improve the image definition. 

Many steps used on static image analysis are also utilized on dynamic image analysis, 

however there are a number of exceptions. [53]  Within the dynamic approach, the sample 

preparation step differs completely as the particles are in motion during the measurement. In 

this particular case, a sample director can be used to orientate particles towards the 

measurement site or an ionizer can be included on the sample preparation steps in order to 

reduce possible static interactions between particles improving the flowability of the sample 

itself. When the sample reaches the measurement site, the particles are dropped between a 

backlight and two CCD cameras (basic camera and zoom camera). The backlight is 

responsible for generating and projecting the particles shadow which is recorded at a rate of 

60 frames (or more) per second, followed by the image analysis.  The basic camera records 

the larger particles, while the zoom camera provides enables a higher resolution for a fine 

range of particles. The two-camera system will ultimately provide maximum precision over the 

whole measuring range. [54] 

Image analysis enables the measurement of size and shape-related parameters of particles 

through the analysis of a two-dimensional image. Every parameter measurement is stored 

separately.  Regarding the measurement of PSD, the diameter is the most important parameter 

to take into account. Several measurements of particle size are described on Subchapter 1.3. 

[48] 

Recent technological advances in dynamic image analysis enable the reconstruction of three-

dimensional images of particles by using multiple light sources e.g. photometric stereo 

imaging. The photometric stereo imaging (PSI) technique has been used for at-line 

measurement of granules and on-line measurement during granulation and dry milling. In 

resemblance to the older image analysis techniques, a digital image is obtained and 

processed. The digital image will consist of pixels that contain information regarding the 

brightness of a particular point in the image. Thus, the digital image will be presented as a 

black and white image and a grey-scale value between 0 and 255 will be associated to each 

individual pixel, where 0 and 255 correspond to black and white, respectively. Considering that 

particles surface can be characterized by the grey-scale value of the pixel at a certain location, 

a three-dimensional projection is achievable, and its area can be calculated. Simple 

calculations using the area value will ultimately allow the acquisition of a volume-based PSD 

and the related D values of the particles present on the captured image. [38], [55] 
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1.3.1.2. In-line methods 
 

1.3.1.2.1. Acoustic emission 

Acoustic emission (AE) is a well-suited technique for continuous measurement of particle size 

and size distribution. It is one of very few techniques capable of sizing particles within a range 

of 0.01 µm to 1 mm. AE measurements are broadly applied within granulation process which 

is an essential step in the pharmaceutical industry. [56] There are several pharmaceutical 

manufacturing processes that cause vibrations. These vibrations can be translated into useful 

information concerning both chemical and physical parameters such as particle size. In 

general, AEs are measured at a high frequency range (70 – 500 Hz) as it allows an easy 

propagation through solid materials and a rapid attenuation in air. [57] Thus, the audible noise 

from the background produced by the mechanical vibrations is suppressed. [58] 

The AE methods presents numerous advantageous such as the continuous on-line 

measurement of the signal, high sensitivity, slight influence on the flow channel and simple 

instrumentation. Acoustic measurements also offer a relatively inexpensive real-time response 

and can be performed in hazardous process environments without engaging supplementary 

protection. [58] Additionally, the AE is an appropriate method to be applied in-line on a fluid 

bed granulation (FBG) environment due to its minimum invasiveness. [37]  In this case, the 

sensor has to be of a small dimension and easily mounted outside of the granulator in order to 

enable noninvasive measurements during granulation.  However, the fluidizing air flow rate in 

combination with external uncontrollable factors can compromise the sensitivity of the 

technique. [58] 

Measurements using the AE method are based on signals generated by particle-chamber 

collisions due to the creation of a natural (e.g. flow channel bend) or artificial obstacle 

introduced into the flow. The solid particles hit against the obstacle which results on an acoustic 

emission signal that is collected by a piezoelectric acoustic emission sensor, also known as 

an AE transducer. A waveguide is used to generate and transmit the AE signal. The AE 

transducer is attached to the outer endpoint of the waveguide and will feed the signal to a 

signal conditioning and data acquisition system (Figure 5). [59] 

The impact force carries information about particle since it is affected by the size of the 

impinging particle. Once the AE signal is collected and the peaks of the impulsive signals 

detected, the particle size distribution. Through physical modelling of the particle impact, a 

relationship between peak AE voltage and particle size can be defined.  [59] 
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1.3.1.2.2. Methods based on chord length measurements 

Spatial Filtering Velocimetry (SFV) and Focused Beam Reflectance Measurement (FBRM) are 

in-process particle size techniques that measure chord length in place of actual particle size. 

The chord length of a particle can be designated as a straight-line segment whose endpoints 

both reach the surface of the particle. (Figure 6) These techniques use a laser beam that 

randomly passes through the particle and a chord length is derived. The number of times an 

individual particle is measured takes the form of a particle size distribution. [38] 

For spherical particles, the highest possible value for chord length is the diameter of the 

particle. Thus, the measured chord length is not dependent of the particle orientation in regard 

to the laser beam. Oppositely, the shape and orientation of a particle has an influence on chord 

length measurement when analyzing non-spherical particles. [60] 

 

Figure 6: Examples of the measurement of chord length (bold red line) when a laser beam crosses (1) a spherical 

particle and (2a and 2b) non-spherical particle in two distinct positions. Illustration of the influence of particle 

orientation on chord length. [38] 

 

Figure 5: Schematic illustration of particle measurement 

through AE sensing. [59] 
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The interpretation of chord length distribution (CLD) is of considerable importance to obtain 

actual particle size distribution (PSD), whose value can be significantly different from CLD.  

Apart from the fact that particle size is easier to interpret when compared to chord length, it 

permits the comparison to particle size measured by other techniques as most instruments 

present their results as PSD. Despite SFV and FBRM use a laser beam for their 

measurements, chord length is obtained in a distinct way on both techniques. FBRM calculates 

chord length from the reflected laser light detected by the probe, while SFV calculates chord 

length from the shadows generated by the particles crossed by a laser beam. Apart from the 

measurement mechanism, the techniques also differ in terms of probe design. The 

measurement (sapphire) window of FBRM probe (e.g. FBRM® C35 by Mettler-Toledo) is 

positioned at the tip of the probe, whereas the SFV probe (e.g. Parsum® IPP70 by Malvern) 

has its measuring gap inside the probe between two measurement windows. [38] For the 

FBRM® C35 system, the implementation of the probe on the process environment is 

significantly important. Particles placed a few hundred micrometers away from the probe are 

more likely not to be measured, reason why it is required for particles to flow over the sapphire 

window. [61] Parsum® IPP70 can perform real-time size measurements for particle over the 

dynamic range of 50 up to 6000 µm, while FBRM is more adequate for the measurement of 

systems sized between 3 and 3000 µm. [62], [63] 

There are several advantages of using the SFV and FBRM techniques such as the fact that 

no sampling and calibration is required and the real-time measurement at high particle loadings 

(ideal for fluid bed monitoring). [63] 

 

1.3.1.2.2.1. Spatial filtering velocimetry  

Spatial filtering velocimetry (SFV) is a technique used for the concurrent measurement of 

particle size and velocity. The basic operation of SFV is to observe the shadow of particles 

moving in-between two sapphire windows (measuring gap) of the probe. During SFV 

measurements, a laser beam passes through the moving particles resulting in the cast of 

shadows on the opposite side of the measuring gap, on which there are two fiber-optic 

receivers for detecting the velocity and the time-of-flight of each individual particle. The velocity 

sensor is a spatial frequency filter that consists of linear optical fibers, while the time-of-flight 

detector is a single optical fiber placed after it. The shadow cast onto an array of optical fibers 

generates a burst signal whose frequency along with the known lattice constant of the array 

will permit the calculation of the velocity of each individual particle. The addition of a single 

optical channel generates a secondary signal (time-of-flight) as the beam passes through the 

moving particles. By knowing the velocity and the time-of-flight for each particle, chord length 

can be determined, and is then stored in an adjustable-length ring buffer. The ring buffer 
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detains the total number of particles and is continuously updated by replacing old particle 

measurements by recent ones. This continuous update will allow the calculation of particle size 

distribution. Therefore, a higher number of particles in the buffer is preferable considering that 

a lower value is associated to more unreliable size results. [63]–[65] 

The SFV techniques has been successfully used to obtain granule size information during fluid 

bed granulation (FBG) utilizing an in-line, at-line and off-line experimental approach which 

demonstrates the technique’s ability to uninterruptedly monitor the granule size distribution 

during processing (Figure 7). [63] 

A system based on the SFV principle is the Parsum® IPP70 probe developed by Malvern. The 

Parsum® instrument is an in-line particle sizing probe designed to measure the particle size 

and size distribution in pharmaceutical processes. It can be utilized for particle characterization 

of dense particle flows that can be found in fluidizing bed processes. The Parsum® 

measurement software allows a flexible interface that is capable of reporting size after 

converting raw CLD into a number or volume-based PSD through an algorithm in the system’s 

software. [62], [66] 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.1.2.2.2. Focused beam reflectance measurements  

Focused beam reflectance measurement (FBRM) is an in-line technique designed for 

monitoring chord lengths. The FBRM probe operates based on the principle of laser back-

scattering. In a FBRM method, a tightly-focused laser beam is projected through the sapphire 

window of the probe, as shown in Figure 8a. When the laser beam contacts a particle passing 

near the probe window, light is reflected and detected as it propagates back through the probe. 

The light reflectance continues until the rotating focused beam reaches the opposite edge of 

the particle. The light back-scattered towards the probe is utilized to determine particle chord 

length and particle chord length distribution. The particle chord length is calculated through the 

Figure 7: Illustration of three types of measurements 

with the probe systems. [63] 
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software by multiplying the optical rotating laser scan speed of the laser by the duration of time 

for which the beam is reflected.  The laser scan speed can be regulated between 2 to 8 m/s 

depending on the particle size distributions, and dispersion concentrations and flow rates of 

the sample. [38], [67] A high speed of the laser scan allows the assessment of thousands of 

particle chord lengths per second, generating a chord length distribution (CLD) which is a 

function of the actual PSD (Figure 8b). The results are presented as a number-based CLD, 

i.e., the number of particles within a size (chord length) class. Additionally, the apparatus 

software enables the extraction of D-values from the number-based CLDs. [68] 

 

 
 

Figure 8: (a) The FBRM probe technique; (b) Measurement of a particle chord length using the FBRM technique. 

[68] 

 
The measuring instrument consists of three parts: a computer for data assemble and analysis, 

a measurement unit and the measurement probe itself. FBRM is a user-friendly instrument that 

requires nominal maintenance and calibration requirements. Its most significant disadvantage 

is the fouling phenomena that can occur on the probe window. This is caused by dispersed 

material that sticks to the probe window which results on the same particles being counted 

several times, compromising the quality of the monitoring system itself. [69] 

The FBRM® C35 technology developed by Mettler Toledo, a global leader in PAT for in-situ 

particle characterization within the pharmaceutical industry, addresses window fouling as a 

potential issue in numerous applications. Accordingly, the fouling drawback was overhauled 

by including a patented scraper unit that keeps the probe window clean during real time in-

process measurements enabling measurements to be performed in highly concentrated 

particle systems. [61] In contrast to the FBRM® C35 probe, the Parsum® IPP70 is designed 

to perform in-line measurements of adhesive or wet material. In this case, the measurement 
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windows are kept clean due to an internal and external pressurized air connection existing on 

the probe.  [62] 

As a particle chord distribution differs from particle size, several studies have been done to 

establish a relationship between CLD and PSD. The Parsum® IPP70’s software results can 

be presented as PSD as it performs the CLD-PSD conversion itself. In the other hand, using 

the FBRM®35, the results are expressed as chord length. The simplest way to perform a CLD-

PSD conversion is through the development of a PSD-CLD model in order to calculate a CLD 

correspondent to a known PSD and shape. Once the PSD-CLD model is attained, it should be 

inverted to obtain a PSD based on a CLD value (CLD-PSD model). [38] 

 

1.4. ConsiGmaTM-25 continuous manufacturing system 

A truly continuous granulation line is the ConsiGma™-25 system developed by GEA Pharma 

Systems, Collette™ (Wommelgem, Belgium. The ConsiGma system consists of three 

modules: a continuous twin-screw granulation module, a six-segmented cell fluid bed dryer 

and a product control unit (also known as granule conditioning unit) (Figure 9). In addition, the 

ConsiGma line allows complementary blending, tableting and coating by attaching a blender, 

a tablet press, and a coater, respectively, to the product control unit (Figure 10). However, the 

thesis was not focused on these three additional unit operations. [70]–[74] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: ConsiGmaTM-25 continuous manufacturing line. (1) Continuous twin-

screw granulation module; (2) Six-segmented cell fluid bed dryer; (3) Product 

control unit. [4] 
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1.4.1. Continuous twin-screw granulator 

The continuous granulation module consists of a powder dosing unit (i.e. powder feeder), a 

liquid addition module and the twin-screw granulator (TSG) itself (Figure 11). The powder 

dosing unit operates based on the loss-in-weight principle, and continuously feeds a pre-

blended mixture consisting of excipients and active pharmaceutical ingredient (APIs) into the 

granulator. Alternatively, several feeders can act simultaneously, each one dosing a different 

ingredient (excipient or API) to the feeder which homogenizes the material before entering the 

granulator. Furthermore, before reaching the granulator, the pre-blended mixture is passed 

through a rotational bridge breaker which prevents bridging and ensures an extra mixing step 

of feed before entering the granulator. 

 

 

 

 

 

 

 

 

 

 

Figure 10: ConsiGmaTM-25 continuous line: 1. Twin-screw granulator; 2. Six-cell segmented fluid 

bed dryer; 3. Product control unit; 4. Blender (external phase); 5. Tablet press; 6. Tablet coater 

(Courtesy of GEA Pharma Systems). [4] 

 

Figure 11: Continuous granulation module. [4] 
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The granulation unit consists of a barrel enclosing two co-rotating screws, containing either 

conveying or kneading elements for transportation and mixing purposes, respectively. The 

screws consist of a long transport zone and two kneading zones (also known as mixing zones). 

Each kneading zone contains six kneading elements in an angle of 60° and are separated from 

each other by a short transport zone, that has the same length as a mixing zone. The modular 

structure of the screws makes it possible to vary the number of kneading elements, therefore 

allowing to modify the length of the mixing zone (Figure 12). 

 

 

The barrel of the continuous granulator can be divided into three segments: a feed segment, 

a work segment and a discharge segment (Figure 13). In the feed segment, the powder is fed 

into the barrel containing screws with conveying elements (transport zone).  The dry powder 

is blended while being transported to the work segment. In the work segment, granulation 

occurs due to the intensive mixing of the powder with the granulation liquid. The change of 

particle morphology from small (micro-structure) to large (macro-structure) is done by the 

kneading elements present on both mixing zones. The granulation liquid is fed into the 

granulator right before the first mixing zone through two injection nozzles, one for each screw, 

using a peristaltic pump (loss-in-weight principle). The wet granules produced are unloaded 

from the barrel in the discharge segment and are pneumatically transferred to the six-

segmented cell fluid bed dryer. [70]–[74] 

 

 

 

 

Figure 12: Screw configuration with 12 kneading elements (two mixing blocks, each containing six kneading 

elements) indicating the geometry of the screws used in a TSG. [72] 
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1.4.2. Six-segmented cell fluid bed dryer   

The granulation and drying units of the ConsiGmaTM-25 line (Ghent, Belgium) are lined up 

horizontally, reason why the granules are pneumatically transported from the granulation barrel 

to the top of the six-segmented fluid bed dryer. For new generation systems, the twin-screw 

granulation is placed on top of the dryer allowing the gravitational transfer of wet granules to 

the dryer. 

The fluid bed dryer consists of six identical cells which are sequentially charged and 

discharged, one after the other, ensuring a continuous flow of incoming wet granules and 

outcoming dry granules (Figure 14 and Figure 15). The granules are dried by hot air, whose 

flow (m3), humidity (%RH) and temperature (°C) can be controlled while the actual temperature 

inside the individual cell is monitored. The number of cells is user-defined depending on the 

quantity of material used. The material inside a cell can vary between a minimum of 0.5 and a 

maximum of 1.5 kg. The airflow, which is set from bottom-to-top, is regulated by a push/fan 

system while a fan/blower system regulates the pressure within the dryer. Several HEPA filters 

are placed at the air outlets of the dryer to ensure that there is no material exiting the system. 

The cells dry for a predefined period, and after discharge, remain inactive until they are once 

again filled. After a set drying period, the granules are vacuum discharged from the drying 

segment through a rotational outlet valve and are transferred to the product control unit. [70]–

[74] 

 

 

Figure 13: The feed segment (a), work segment (b) 

and discharge segment (c) of a TSG during 

operation. [72] 
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1.4.3. Product control unit  

The dry granules discharged from the cells are then transported to the product control hopper 

with an integrated mill (Figure 16). The granules are gravitationally fed, at a constant flow, to 

the mill inlet. The resulting milled material is discharged gravitationally, and can undergo 

further processing, such as blending, tableting and coating. [70]–[74] 

 

 

 

 

Figure 14: Six-segmented cell fluid bed dryer. [4] 

Figure 15: Inside view of the six-

segmented cell fluid bed dryer. [4] 
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1.5. Artificial neural networks 
 

An artificial neural network (ANN) is a computational technique designed to simulate the 

information processing ability of a human brain, although in a much simpler way. However, it 

still resembles the human brain in various aspects. ANNs have the ability to process a broad 

amount of data and acquire knowledge through learning procedures (also known as network 

training). After the network has undergone the learning procedure, it is capable of storing 

information, which can be further applied to unknown data. For these reasons, ANNs are 

considered highly useful for classification and prediction purposes based on pattern 

recognition.  [75] 

All ANNs are characterized by their architecture and training process.  The architecture of a 

given ANN determines how the neurons are arranged within the network. The network is 

usually divided into three segments known as: input layer, hidden layer(s) and output layer. 

On the other hand, the training process aims the adjustment of the connections between 

neurons, which will ultimately allow to approximate the output of the network being trained to 

the desired value.  [76] 

An ANN consists of a number of processing elements (PE), called neurons, that are connected 

by coefficients (weights), forming the neural structure. The neuron receives one or more inputs 

from an external source or from an output of another neuron, and produces its own output. The 

outputs of all the neurons of the neural structure will ultimately propagate through the network 

towards the final layer (output layer) where the final output is obtained. Each inter-neuron 

Figure 16: Product control unit. [4] 
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connection has a processing weight, which is acquired during the training process of the neural 

network. The processing weight is indicative of the relevance that every single input linked to 

the neuron. [77] 

As shown in Figure 17, the inputs (x1, x2 and x3) have a connection weight associated to them 

(w1, w2 and w3). The inputs are multiplied by the connection weight, then the set of inputs are 

summed (activation function) and fed into a transfer function (f(∑xiwi)) in order to produce an 

output (y).  [78] 

 

 

 

 

 

 

 
 

 

Figure 17: Structure of an artificial neuron. [79] 

 
In addition to the inputs, another element with a weight associated to it must be considered 

within the neural structure. This additional element is usually called a bias and allows the 

activation function to be shifted (left or right) depending on its weight value. In other words, it 

determines whether or not the activation function of a given neuron will propagate forward 

throughout the network. Considering the integration of a bias, before the activation is applied, 

the bias values must be added to the summed weighted inputs. Alike the several weights of 

the network, biases undergo the training procedure, which means that their weight values will 

suffer a readjustment. [77], [80] 

Taking into consideration the aim of the present thesis, all discussion regarding neural 

networks will be focused on multilayer ANNs. In general, multilayer ANNs can be divided in 

two main categories concerning the architecture of the network: feedforward neural networks 

and the recurrent neural networks. The categories differ from each other in terms of the type 

of inter-neuron connection used on the neural structure. When using a feedforward neural 

network the signal travels throughout the network in one single direction: from input to output. 

There are no feedback loops, i.e., there is no feedback from the outputs of the neurons to 

towards the inputs.  On the other hand, recurrent neural networks make use of feedback loops 

which allow the signal to travel in both directions. [81] 

 

 



43 

 

 

Figure 18: Example of neural networks. (a) single-layer feedforward network; (b) multilayer feedforward network; 

(c) recurrent network. (adapted from [76]) 

 

1.5.1. Multilayer artificial neural networks 

In a multilayer feedforward neural network, the signal follows a unidirectional flow from the 

input towards the output layer, which means that there is a straightforward association between 

inputs and outputs. Depending on the number of layers, this type of network can be 

denominated as single layer or multilayer feedforward neural network. [81] 

 

1.5.1.1. Single-layer feedforward artificial neural network 

In Figure 18a, a feedforward neural network consisting of one layer is shown. This type of 

network is composed by n inputs and m outputs, integrated in the input and output layers, 

respectively. Despite two layers are included in single-layer feedforward ANN, the input layer 

is not taken into consideration as computation is only performed on the output layer. The input 

signals (x1, x2, …, xn) propagate towards the output layer through the inter-neuron connections 

(weights) and the neurons there located (1, 2, …, m) produce the final output signals (y1, y2, 

…, yn). The number of neurons will always correspond to the number of outputs computed by 

the network. [76] 
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1.5.1.2. Multilayer feedforward artificial neural network 

Contrarily to a single-layer feedforward network, a multilayer feedforward network is composed 

by one or more hidden layers in-between the input and output layers. The number of hidden 

layers and the number of neurons which is composed by are dependent on the problem being 

mapped by the ANN, in addition to the condition of the data, quantitatively and qualitatively 

wise.  

In Figure 18b a neural network with two hidden layers with an unequal number of neurons is 

shown.  The network is referred as a n-n1-n2-m network as there are n inputs, n1 and n2 neurons 

on the first and second hidden layer, respectively, and m output neurons. Both Figure 18a and 

Figure 18b display a “fully connected” network, which means that each neuron, placed in every 

layer, is connected to any other neuron of the layer ahead. In case some inter-neuron 

connections are not observed, the network is designated as “partially connected”. Similarly to 

a single-layer feedforward neural network, this type of network will compute the same number 

of output signals as the number of neurons located at the output layer. [76], [81] 

 

1.5.2. Recurrent artificial neural network 

In recurrent ANNs, the outputs of the neurons are utilized as feedback inputs of the previous 

layers, or of the same layer (Figure 18c). These networks have the capability of elaborating 

data through the time, i.e., they can be used on time-variant systems, as time series prediction. 

For this reason, recurrent networks are considered to be dynamic as they acknowledge that a 

system remains in constant change and progress over time and that a relationship between 

current and past events exists. Thus, using the recurrent ANN, the output is analyzed as a 

function of the previous output value, which means that the final output produced by the 

network will correspond to an integration of not only the input values but also of the previous 

states of the system. [76] 

 

1.5.2.1. Non-linear autoregressive network with exogenous inputs  

The non-linear autoregressive network with exogenous inputs (NARX) is a class of recurrent 

networks well suited for time-series modelling. The NARX is a dynamic network and has 

feedback connections towards previous layers within the network. This recurrent network can 

be described by the following equation: 

 

y(t) = f (x(t − 1), … , x(t − d), y(t − 1), … , y(t − d)) 
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Where the value of the output signal (y(t)) is a function of past values of itself 

(y(t − 1), … , y(t − d)) and previous values of (exogenous) input signals (x(t − 1), … , x(t − d)).  

The NARX model is commonly used in time-series modelling as a predictor, with the goal of 

predicting the next value of a certain input signal. [82] One of the reasons why this type of 

neural network is broadly used remains in the fact that it can present different architectures, 

as shown in Figure 19. It is possible to create a NARX network with a series-parallel (open 

loop) architecture which is extremely useful for training, and then rearrange it into a parallel 

(closed loop) architecture. This rearrangement presents two main advantages. Firstly, the input 

provided to the feedforward network is more precise, and secondly, as the network presents a 

feedforward architecture, it can be trained using the back-propagation algorithm, which will 

ultimately enable a faster and more efficient training process when compared to a parallel 

architecture. In regard to the series-parallel architecture, training is performed using the true 

output rather than feeding back the estimated output, which is characteristic of a parallel 

architecture. However, a series-parallel architecture is only able to perform “one-step ahead” 

predictions, reason why a rearrangement is highly appropriate as the parallel architecture 

enables “multi-step ahead” predictions. [83] 

 

 

Figure 19: NARX neural network. (a) Series-Parallel Architecture. (b) Parallel Architecture. [82] 

 

1.5.3. Training process 

As previously mentioned, one of the most significant characteristics of ANNs is their ability to 

acquire knowledge regarding the system behavior through learning procedures. Once the 

network is capable of recognizing existing input-output relationships from a complete dataset, 

it can produce an output that will closely correspond to the expected output of a given set of 

inputs. [75] 

The goal of the training process (also known as learning) is to achieve the best linear/non-

linear relationship between inputs and outputs of a complete dataset, which is done by the 

adjustment of the weight/bias values associated to the neurons. During the training procedure, 
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the ANN will attain discriminant features from the dataset which will allow to determine input-

output relationships.  [78] 

Normally, the complete dataset is split into two subsets, called training subset and test subset. 

The training and test subsets consist of 60 to 90% and 10 to 40%, respectively, of the samples 

composing the complete dataset. The training subset is used in the learning procedure of 

neural network, while the test subset is utilized to assess predictive ability of the network. [76] 

Once the training-test division is done, a percentage of the training dataset is chosen to 

integrate the calibration and validation subsets. Thus, the training process includes both a 

calibration and a validation step.  Whereas the calibration subset is used for training, i.e., 

weight adjustment, the validation subset is utilized to make sure that the overfitting phenomena 

does not occur. [84] A model is considered overfit when it can classify very well the data in the 

calibration subset but is unable to generalize and perform accurate classification on data that 

it was not trained on. The overfitting phenomena is among the most critical issues when 

training a neural network. [85]  

Each cycle of presentation of all the samples of the training subset is named training iteration 

(epoch). Each training iteration converts the weights somewhat more efficient in terms of 

converting inputs into outputs, which involves the enhancement or weakening of the 

interneuron connections. [78] During training, the model will be classifying each input from the 

validation subset as well, however no weight adjustment is performed. In this case, the 

classification will be done based on what the model has learned regarding the data that is 

being used for training.  The iterative process should be ceased when an inflection point is 

detected, i.e., when the validation dataset acquires an error value higher than the last one 

assessed. However, many different early-stopping implementations can be defined. The 

weight values of inter-neuron connections at that epoch are recorded and can then be applied 

to the test subset. [86] The testing process will be used to predict the output values of new 

unseen data (test subset), which will ultimately provide a realistic performance assessment of 

the trained neural network model. [87] 

The learning procedure can be executed using two different approaches, a supervised or an 

unsupervised training/learning (Figure 20).  
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1.5.3.1. Supervised training 

The supervised approach is the most commonly used, being highly indicated for classification 

and regression purposes. It utilizes known input and output data to train the network for it to 

be able to generate acceptable predictions in response to new unseen data. Therefore, the 

output values must be known, and the data used during training has to be well-established, 

i.e., correctly labelled. Classification methods are utilized to develop a predictive model. 

Classification methods are used to classify the input data into classes, while regression 

methods are responsible for continuously predicting output values. [88] 

 

1.5.3.2. Unsupervised training 

Unsupervised training, on the other hand, is usually used to detect patterns and structures in 

the input data, reason why it is extremely suitable in exploratory data analysis. The most 

common task within this type of training is clustering, which consists of separating the input 

data into different groups according to the similarities detected between them. [88] 

 

1.6. Objectives 

This thesis aims at evaluating the possibility of estimating the mean particle size of dried 

granules produced by the ConsiGmaTM-25 continuous manufacturing system using a 

software sensor (inferential sensor) resourcing to process variables logged at a very high rate. 

Given the underlying dynamic nature of the continuous system and the probable non-linear 

relationships, the type of modelling strategy was based on an autoregressive multilayer 

feedforward neural network. The neural network was calibrated resourcing to process data 

(e.g., feed-rates, temperatures, pressures) logged by the ConsiGmTM-25 against the median 

Figure 20: Types of training. [86] 
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particle size (d50) obtained also in real-time by a focused beam reflectance measurement 

(FBRM). The FBRM probe was positioned immediately after one of the multiple drying 

chambers used by ConsiGma25-TM. The objective is to assess the feasibility of a software 

sensor for estimating this important material property paving the way to the possibility of 

estimating the same property on different process locations and, eventually, replacing the need 

for physical equipment, that is known to represent a substantial fraction of the investment when 

setting up a PAT monitoring strategy on pharmaceutical processes. 
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2. Materials and methods 

2.1. Pharmaceutical formulation 

A pharmaceutical dry premix containing two APIs, powdered cellulose, maize starch, 

pregelatinized starch and sodium starch glycolate was granulated with distilled water in the 

ConsiGma™-25 system.  

 

2.2. Manufacturing process 

The experiments were performed in the continuous production line ConsiGmaTM-25 line (GEA 

Pharma Systems, ColletteTM Wommelgem, Belgium), previously described in Subchapter 1.4. 

During the runs, the powder dosing unit fed the dry premix to the granulator at a speed of 20 

kg/h. The liquid addition module fed the granulation liquid (water) at a rate of 50 g/min. The 

screw speed and barrel temperature were set at 900 rpm and 25°C, respectively. The six cells 

were filled for 180 seconds sequentially, one after each other, ensuring a continuous operation. 

The drying time was set to 790 seconds in total, including the 180 seconds cell filling time. 

During the last seconds of drying, granules were pneumatically discharged to the product 

control unit after which the cell remained inactive for 290 seconds until new wet granules were 

introduced for a new drying cycle (Figure 21). At the product control unit, the dried material 

was milled and subsequently discharged from the system. The air handling unit, responsible 

for preparing the air entering the dryer according to the defined setpoints, contains a 

dehumidifier inside which unit removes moisture from the incoming air. In addition, a push/fan 

system regulated the air flow inside the dryer while a fan/blower system controlled the 

pressure. Both the air exiting the dryer and the product control unit had to pass through 

different HEPA filters in order to prevent particulate material to be carried out of the system. 

 

Figure 21: Schematic representation of time lengths of cell filling, drying process and cell inactivity time. 
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2.3. In-process measurements 

In multiple locations of the ConsiGmaTM-25 system, fifty sensors were continuously measuring 

variables (e.g., temperatures, pressures, etc.) essential to the control system of the process. 

These were logged every second. These process variables, summarized in Annex 1, 

incorporate user-set variables (setpoints) as well as other variables (open loop variables) that 

are simply measured, i.e., are not set by the user. Although the setpoints are pre-defined, 

variances around their set point value may occur due to disturbances which will then be 

corrected by the system itself by means of independent proportional-integral-derivate (PID) 

controllers. The set value for each setpoint is also described in Annex 1. 

 

2.3.1. In-line particle size analysis 

A FBRM probe (FBRMTM C35, Mettler-Toledo) was used for measuring particle size distribution 

(d50 profile) every 10 seconds. The probe was placed, at an angle of approximately 45⁰, inside 

dryer cell no. 4 located at the six-segmented cell fluid bed dryer unit. 

 

2.4. Continuous manufacturing runs  

As observed in Table 1, a total of sixteen continuous manufacturing runs were produced during 

August of 2014. Eight of the sixteen runs (Run 8-15) were performed in normal operating 

conditions (NOC) and, therefore, are known as reference runs. For the eight remaining runs 

(Run 1-7, 16), a disturbance was imposed. Thus, for each disturbed run, a different setpoint 

was changed at the time dryer cell no. 1 was filled for the fourth time (3240 seconds; sampling 

point no. 324) and altered back to the original set value when the same cell was filled for the 

seventh time (6480 seconds; sampling point no. 648), as shown in Figure 22. The time length 

of the disturbance (three fills) was selected to guarantee that the effect of the disturbances 

could be visibly identified, and that a new steady state would be observed. The inclusion of 

runs with an imposed disturbance in the present work was related to the need of an evaluation 

of the impact that a certain disturbance can have on the particle size value. However, runs 

were not defined in accordance to an experimental design.  

For Run 1 the imposed disturbance was the increase of the dryer air flow (V4) from 360 to 400 

m3/h. In Run 2, the granulator barrel temperature (V23) was increased from 25 ºC to 35ºC. 

Despite the setpoint being set at 25°C, the logged average temperature varied around 28°C. 

When the setpoint was changed to 35°C, the temperature increased to 36°C. For both Run 3 

and Run 4, there was not a provoked disturbance. Run 3 differs from the NOC runs, due to the 

occurrence of the caking phenomena. Regarding Run 4, the system was not cleaned after the 

previous run (Run 8).  In Run 5, the temperature of the air entering in the dryer was changed 
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from 50 ºC to 60 ºC. Another set point changed was the granulation liquid mass flow (Run6 

V46) from 58 to 66.7 g/min. For Run 7 the powder dosing unit mass flow (V37) was changed 

between 25 to 21.7 kg/h. The final setpoint changed was the granulator screws speed (Run16 

V19) that was altered between 700 and 900 rpm. 

 

Table 1: Sixteen continuous manufacturing runs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Run Description Date 

1 Airflow 19.08.2014 

2 Barrel Temperature 20.08.2014 

3 Caking Reference 14.08.2014 

4 Dirty Reference 13.08.2014 

5 Drying Temperature 19.08.2014 

6 Liquid 12.08.2014 

7 Powder 20.08.2014 

8 Reference 1 12.08.2014 

9 Reference 2 13.08.2014 

10 Reference 3 13.08.2014 

11 Reference 4 13.08.2014 

12 Reference 5 14.08.2014 

13 Reference 6 15.08.2014 

14 Reference 7 15.08.2014 

15 Reference 8 21.08.2014 

16 Speed 18.08.2014 
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Figure 22: Disturbances imposed on Runs 1, 2,5, 6, 7 and 16. 

 
 

2.5. Data collection 

The collected data from each run of the continuous production line was represented by two 

two-dimensional data arrays, Xn and Yn, being n correspondent to the run. Since a total of 

sixteen runs were performed, thirty-two data arrays were used in this work, sixteen of them 

associated to in-process measurements and the other sixteen to the d50 measurements. A 

two-dimensional array Xn (A x B) indicates that B process variables were measured at A time 

intervals. Additionally, a data array Yn (C x D) was also used, being D correspondent to the 

d50 value measured at C sampling times. Whereas the data array Xn includes fifty process 

variables measured every second within multiple locations of the ConsiGma system, the data 

array Yn consists of the d50 value measured every 10 seconds.  

Table 2 and Table 3, respectively, display useful information in regard to data arrays Xn and 

Yn. This information includes the number of times a measurement was performed, the time at 

which the process variables/d50 were first and lastly assessed and, the total duration of 

sampling. It is acknowledgeable that the number of sampling points is much superior on data 

array Xn when compared to Yn. This is mainly due to the fact that the process variables were 

assessed every second, in contrast with the d50 value which was measured every ten 

seconds. On the other hand, the process variables and d50 measurements were not performed 

exactly at the same time. While the in-process variables were measured throughout the entire 

length of the run, i.e., from the beginning until the shut-down of the system, particle size was 

only assessed during a time-section of the run. By taking Run 1 as an example, it is noticeable 

that the total run length corresponds to three hours, twenty-six minutes and thirty-two seconds, 
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which translates on 12 393 seconds corresponding to 12 3393 sampling points. Differently, the 

d50 value was assessed for two hours, fifty-three minutes and fifty seconds as the FBRM 

probe, started recording values, approximately, thirty minutes after the run began and stopped, 

two minutes prior to the shutdown of the system. In this case, the d50 value was measured for 

10 440 seconds, however the number of sampling points corresponds to 1044 as 

measurements were performed every 10 seconds. 

Nevertheless, it is noticeable that for Run 3 the d50 measurements were performed for a longer 

period of time when compared to the in-process variables measurements. This suggests that 

despite shutting down the ConsiGma system, the FBRM probe continued its operation for 

about two more minutes. 

 

 

Table 2: Starting and ending time of the fifty in-process measurements performed within the three modules of the 

ConsiGmaTM-25 system. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Run 
Number of 
Sampling 

Points 
Start Time End Time 

Total 
Duration 

1 12 393 13:11:54 16:38:26 03:26:32 

2 12 357 08:24:33 11:50:29 03:25:56 

3 4 066 07:45:52 08:53:37 01:07:45 

4 3 799 12:45:18 13:48:36 01:03:18 

5 11 930 08:27:32 11:46:21 03:18:49 

6 11 341 14:42:15 17:51:15 03:09:00 

7 11 306 14:09:41 17:18:06 03:08:25 

8 7 626 08:33:27 10:40:32 02:07:05 

9 4 835 09:12:22 10:32:56 01:20:34 

10 4 926 11:22:04 12:44:09 01:22:05 

11 5 029 15:07:57 16:31:45 01:23:48 

12 4 870 12:41:14 14:02:23 01:21:09 

13 7 442 07:59:16 10:03:17 02:04:01 

14 8 538 14:02:58 16:25:15 02:22:17 

15 6 153 09:05:14 10:47:46 01:42:32 

16 12 909 13:03:11 16:38:19 03:35:08 
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Table 3: Starting and ending time of the d50 measurements performed by the FBRM probe inserted inside the dryer 

cell no.4. 

Run 

Number of 
Sampling 

Points 

Starting 
Time 

Ending Time 
Total 

Duration 

1 1044 13:42:29 16:36:19 02:53:50 

2 1052 08:54:32 11:49:42 02:55:10 

3 437 08:00:54 09:13:34 01:12:40 

4 371 12:57:18 13:58:58 01:01:40 

5 1126 08:48:05 11:55:35 03:07:30 

6 1050 14:52:28 17:47:18 02:54:50 

7 1113 14:23:04 17:28:24 03:05:20 

8 618 08:55:25 10:38:15 01:42:50 

9 336 09:27:52 10:23:42 00:55:50 

10 387 11:35:05 12:39:25 01:04:20 

11 409 15:18:11 16:26:11 01:08:00 

12 436 12:50:31 14:03:01 01:12:30 

13 679 08:10:44 10:03:44 01:53:00 

14 777 14:14:57 16:24:17 02:09:20 

15 398 09:37:26 10:43:36 01:06:10 

16 1052 13:41:41 16:36:51 02:55:10 

 

 

2.6. Data processing 

All data arrays designated in the previously subchapter endured several steps of data 

processing. As the data assessed within all sixteen runs was utilized to predict future values 

of d50, a data processing step was highly recommendable. In contrast to raw data, processed 

data will allow the development of a robust model which will ultimately permit the attainment 

of good predictions of the d50 value. The several data processing steps described throughout 

Subchapters 2.6, 2.7 and 2.8 were executed using Matlab (R2016b) software. 

 

2.6.1.  Data alignment  

Taking into consideration that the number of sampling points of the data arrays Xn and Yn are 

not the same, a data alignment was performed. As the d50 measurements were performed in-

between the process variables measurements, the alignment was done by preserving the 
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sampling points of Yn. Once the exact time of every sampling point of Yn was selected, the 

same sampling times were selected on Xn with the subsequent exclusion of the unselected 

sampling points. Whereas data array Yn remained unchanged, array Xn had its number of 

sampling points narrowed to the number of points of its corresponding Yn array. As a result, 

each run will be associated to an array Xn and Yn with the number of sampling points depicted 

on Table 3, which ultimately represents a measurement performed every 10 seconds.  

 
 

2.6.2. Data filtering 

Once the data alignment was completed, a data filtering step was performed in two different 

stages: (1) zero removal and (2) ‘NaN’ (missing data) removal. At a first stage, the sampling 

points for which the d50 value corresponded to zero were removed. The removal of those 

same sampling points was performed in the Xn array. The second stage of data filtering 

consisted of removing ‘NaN’s present in Xn and, accordingly, the removal of those sampling 

points was done to the Yn array. Throughout all data processing steps, the same sampling 

points were preserved in both Xn and Yn arrays. Therefore, every time a sampling point was 

removed from either one of the arrays, the removal of that same point was executed on the 

corresponding Xn or Yn array. This was done to ensure that both arrays of each run presented 

the same length once the processing step was finalized.  

 

2.7. Data organization  

Once the several steps of data processing were completed, all thirty-two data arrays were 

fragmentated in smaller slots of data. The fragmentation was done based on the d50 profile 

(Yn), which translated on the number of drying cycles performed on each run. Taking into 

account, that the length of all Yn arrays is superior to the duration of one individual drying cycle 

(1080 seconds), Yn will be composed of the d50 profile of different drying cycles. Figure 23 

shows the d50 profile of Run 1, where nine drying cycles occurred, reason why the array was 

fragmentated in nine smaller slots of data. The time intervals of the fragmentations were 

recorded, and the same division was done to its correspondent Xn array. 
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Figure 23:d50 profile (Run 1). 

 

2.8. Supplementary data processing 

Once the data fragmentation according to the number of drying cycles displayed was 

completed, a further data processing step was performed due to the existence of deviations 

within the smaller data arrays. For each run, each slot of data was analyzed, and a removal of 

outliers was completed. The removal was done by executing a script that eliminated sampling 

points for which its corresponding d50 value did not lie within a defined interval of values. 

Furthermore, a few sampling points from the beginning and/or end of each slot of data were 

also removed. Data slots with a low number of sampling points were excluded.  

 

2.9. Modelling strategy  

In this work, a non-linear autoregressive with exogenous inputs (NARX) neural network was 

utilized to predict the d50 value for a time t given past values of itself and process variables 

(exogenous). In order to generate accurate predictions of the d50 value, several steps for 

network optimization were performed, characterized by the determination of the following: (1) 

Input delay, (2) Input selection, (3) Run selection and (4) Training methodology. The 

optimization of the network was executed by means of the Matlab (R2016b) software and the 

Neural Networks Toolbox (version 9.1). A generic representation of the topology of a NARX 

neural network is shown in Figure 24.  
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Figure 24: Generic representation of the NARX network. 

 

2.9.1. Input delay 

In this work, the effect of the existing time lags was minimized through a dataset adjustment 

based on the location where each univariate process parameter is measured. The delay value 

for each input variable included on the model was assigned based on the article “Linking 

granulation performance with residence time and granulation liquid distributions in twin-screw 

granulation: An experimental investigation” written by Kumar A., et al. [89] For this purpose, 

several assumptions were made for each process parameter based on the residence time of 

the granules in the twin-screw granulator, wet granules transfer line and fluid bed dryer. 

 

2.9.2. Input selection  

In this work, an input selection was performed with the overall goal of selecting a subset of 

variables that is considered to be relevant to the problem (i.e. d50 value). Although the subset 

corresponds to a representation that utilizes fewer variables, it will still express most of its 

information. This procedure is commonly known as data compression and it enables the 

reduction of unnecessary or irrelevant information in the data, which in turn will allow the neural 

network being optimized to perform the predictions of the d50 value in a more efficient way. 

Data compression was performed using two distinct approaches: (1) manual approach and (2) 

empirical approach. In the manual approach, a total of eighteen variables were excluded based 

on prior knowledge regarding the ConsiGmaTM-25 continuous line. Once completed the 

manual selection, a back-wise input selection was performed on the remaining thirty-two 

variables. The input selection technique included a total of thirty-one rounds, in which a 

sequential removal of the most irrelevant variables was executed. In each round, a model was 

performed as many times as the number of variables being evaluated. Thus, as thirty-two 
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variables were included in round 1, also thirty-two feedforward neural networks were used in 

this round. Each neural network used as an input a specific subset of variables composed by 

thirty-one variables to produce an output (i.e. d50 value). The mathematical model for which a 

better prediction was observed, i.e., that presented a lower RMSEP was selected and the 

variable not included in the input subset was identified. This procedure ultimately allowed to 

verify which subset of variables provided the best fit to the property of interest or, in other 

words, which variable that once excluded allowed the neural network to perform better 

predictions. Once the missing variable is identified, round 2 is executed using the same 

procedure described above, however, in this case, thirty-one neural networks were used to 

perform the output predictions. This procedure was carried out until one single variable is left 

which, in theory, corresponds to the variable that affects more significantly the d50 value 

predictions.  

 

2.9.3. Run selection 

In this work, the sixteen runs were split into two subsets, named training subset and test 

subset. The training subset was used in the learning procedure itself, while the test subset was 

used to assess the predictive ability of the network. A large amount of training data is essential 

to build a good empirical model, however it must be sufficiently representative of the data that 

is expected to be obtained during real-time operation of the analyzer (i.e. FBRM probe). In 

other words, the training subset must cover the range of states of the sample during the 

operation of the analyzer, which in turn will allow the network to have a good performance on 

its predictions. Therefore, a meticulous selection for the training subset must be carried out so 

that some states are not over-represented and others under-represented.  

In order to perform the training-test division, two principal component analysis (PCA) were 

performed. The PCA models were used for data visualization, more specifically to reveal 

patterns in data such as clusters and outliers, along with their consistency between runs. The 

first PCA model was calibrated with the eight reference runs (Run 8-15), whereas the second 

PCA model made use of the runs for which a disturbance was imposed (Run 1-7,16). 

Considering that the overall data was arranged as a three-mode array Xn (sixteen runs, fifty 

variables and the number of sampling points shown in Table 4), an unfolding step was 

performed to generate two-dimensional arrays. As a result of the unfolding step, two two-

dimensional arrays were created, one with 2572 rows and a second with 4733 rows (Figure 

25). Apart from the fifty process variables, another column corresponding to the d50 value (Yn 

array) was added to both arrays. The final arrangement of both arrays is shown in Figure 25a 

and b. Before performing the PCA, both unfolded matrixes were mean centered and auto-

scaled. 
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Table 4: Total number of rows for each two-dimensional array. 

Description Run 
Number of Sampling 

Points  
Total 
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8 397 

2572 

9 222 

10 261 

11 258 

12 251 

13 397 

14 530 

15 256 
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1 761 

4733 

2 741 

3 169 

4 167 

5 737 

6 667 

7 729 

16 762 

Figure 25: Final arrangement of each two-dimensional array (a) 

reference runs; (b) runs with an imposed disturbance. 
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2.9.4. Training methodology  

The first essential step of network training is the train-test run division. Based on the results of 

the run selection described in the previous subchapter, twelve runs were selected for training, 

whereas four runs were used to test the predictive ability of the network. All train runs were 

divided in three different sets: calibration, validation and test. The division was automatically 

performed by the algorithm (50% for training, 25% for validation and 25% for testing). 

Considering that the data used in this work is not continuous, i.e., presents dynamics, the 

training procedure was performed using slots of data correspondent to drying cycles in 

alternative to the usage of the complete run dataset. The training procedure is composed by 

several iterations. In each iterative step, a randomly obtained drying cycle (from the calibration 

set) was presented to the network and an adjustment of its parameters occurred. During 

training, a total of three-hundred iterations were performed, meaning that three-hundred 

randomly selected cycles were presented to the network (Figure 26). As the iterative process 

progressed, the network becomes successively more capable of estimating data from the 

validation set in spite of not being used to adjust the parameters of the network. The end-point 

of the training process was defined by the increase of the validation error (inflection point). 

Once the validation error started increasing, the network started losing the ability of 

generalizing and classifying data that was not used for training (calibration and test set). Once 

ceased the training, the weights values of the interconnections were recorded, and the test set 

was applied. Considering that the network was trained with three-hundred randomly selected 

drying cycles, a total of one-hundred neural networks were created and trained (different 

initialization and runs/cycles order). The one hundred networks were tested with the entire 

calibration runs/cycles and the worst 25% in terms of RMSEC were excluded, while the 

remaining 75% were maintained. The final prediction for each model corresponds to the 

average of the predictions obtained from each selected network (75%). Further details 

regarding the training of the neural networks are described in Annex 3. 

 

 

 

Figure 26: Example of the iterative steps occurring during the training of the neural network. 
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3. Results and Discussion 

3.1. Data filtering 

At a first stage of data filtering, sampling points for which the d50 value corresponded to zero 

were removed. The existence of values equal to zero within the Yn arrays is most certainly 

related to the setup of the FBRM probe. As mentioned before, the FBRM measurements are 

acquired when a laser beam enters in contact with the granule passing near the probe window. 

Thus, a d50 value equal to zero suggest that at that exact second, no granules were positioned 

near the tip of the probe. As demonstrated in Run 3, FBRM measurements kept being 

performed even though the system had already been shut-down. Once the system was shut-

down, the flow of the dryer air inlet within the dryer cell is ceased. Consequently, the granules 

remain at the bottom of the dryer cell which prevents them from being detected by the FBRM 

probe. After removing the sampling points on the Yn array, the same points were removed on 

Xn array.  

The second stage of data filtering consisted of the ‘NaN’ removal. For certain sampling points 

of the Xn arrays, the value of all fifty process variables was not acquired. This is likely due to 

punctual failures of the monitoring/control system established within the continuous line as for 

some of those sampling points, a d50 value was acquired. The sampling points removed from 

the Xn array were removed in its corresponding Yn array. 

The total number of sampling points removed during the two stages of data filtering, is shown 

in Table 6. Table 6 depicts the number of sampling points of the Xn and Yn arrays of each run 

and the corresponding sampling duration.  

 

Table 5: Total number of sampling points removed after the two stages of data filtering. 

Run 
Number of Sampling 
Points (Before Data 

Filtering) 

Number of Sampling 
Points (After Data 

Filtering) 

Number of 
Sampling Points 

Removed 

1 1044 761 283 

2 1052 741 311 

3 437 169 268 

4 371 167 204 

5 1126 737 389 

6 1050 667 383 

7 1113 729 384 

8 618 397 221 

9 336 222 114 
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10 387 261 126 

11 409 258 151 

12 436 251 185 

13 679 397 282 

14 777 530 247 

15 398 256 142 

16 1052 762 290 

 
 
 

Table 6: Total duration of both Xn and Yn arrays within each run. 

Run 
Number of 

Sampling Points  
Total 

Duration 

1 761 02:06:50 

2 741 02:03:30 

3 169 00:28:10 

4 167 00:27:50 

5 737 02:02:50 

6 667 01:51:10 

7 729 02:01:30 

8 397 01:06:10 

9 222 00:37:00 

10 261 00:43:30 

11 258 00:43:00 

12 251 00:41:50 

13 397 01:06:10 

14 530 01:28:20 

15 256 00:42:40 

16 762 02:07:00 

 

3.2. Data organization  

After data processing, all thirty-two data arrays were fragmentated into smaller slots of data. 

For each run, the fragmentation was done based on the d50 profile shown in the Yn array. As 

already stated in Subchapter 2.2, one drying cycle has the total duration of 1080 seconds 

which corresponds to approximately 108 sampling points. Although the duration of all drying  
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cycles must be equal to 1080 seconds, most of the cycles take less time to be concluded. In 

Figure 23 it is possible to state that during Run 1, nine drying cycles take place, each one of 

them with the approximate duration of 1000 seconds (100 sampling points). Once the drying 

cycles are identified, the start and end point of each drying cycle is established and, based on 

that information the fragmentation on Y1 is performed. For Run 1, Y1 will be divided into nine 

smaller slots of data, each one of them corresponding to one drying cycle. The exact same 

fragmentation is performed in X1, which will permit that for the time length of each slot of data, 

information regarding the fifty process variables and particle size is acquired.  

Table 7 shows the number of drying cycles within each run based on the observation of the 

d50 profile of its respective Yn array, as well as the number of sampling points of each cycle.  

The fragmentation procedure described above was done to every single one of the sixteen 

runs. Figure 27 illustrates the smaller slots of data that resulted from the fragmentation of the 

Yn array of each run. A close-up of some drying cycles is presented in Annex 4. 

 

Table 7: Number of drying cycles and number of sampling points of each cycle. 

 

 

 

 

  Drying Cycle no.  

Run 
Number of 

Drying Cycles  
1 2 3 4 5 6 7 8 9 10 

1 9 86 86 81 87 89 84 79 84 85 - 

2 9 83 84 82 82 80 84 82 85 79 - 

3 2 88 81 - - - - - - - - 

4 2 82 85 - - - - - - - - 

5 9 89 86 82 82 83 83 76 78 78 - 

6 8 80 80 80 70 120 78 82 77 - - 

7 10 89 82 82 80 21 58 76 79 81 81 

8 5 79 80 81 79 78 - - - - - 

9 3 88 82 52 - - - - - - - 

10 3 87 88 86 - - - - - - - 

11 3 84 91 83 - - - - - - - 

12 3 84 83 84 - - - - - - - 

13 5 81 82 78 79 77 - - - - - 

14 7 84 88 82 82 78 80 36 - - - 

15 3 87 87 82 - - - - - - - 

16 9 83 82 81 79 81 83 79 81 80 - 
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By observing Figure 23 and each slot of data represented in Figure 27, it is noticeable that, at 

a first stage, the d50 value increases abruptly. This is highly indicative of the beginning of the 

drying cycle as the granules formed in the inside the granulator barrel are inserted into the 

dryer cell no.4. Once the filling of dryer cell is completed, the drying process itself begins. At 

this point, a ‘down-to-up’ hot air source is supplied which will maintain the granules in constant 

recirculation inside of the dryer cell and, ultimately, promote granule-granule collisions. During 

the drying process, mass and heat transfer operations occur. For drying to take place, it is 

required that the heat transfers to the granules, so that they can acquire the latent heat 

necessary to the evaporation of the granulation liquid (i.e. water). On the other hand, a mass 

transfer occurs by the diffusion of the water to the evaporation surface of the granules. After 

the subsequent evaporation of the water from the surface, a diffusion of the resulting vapor 

into the stream of the passing air occurs. The water evaporation that occurs during the drying 

process results on the weakening of the bonds that preserve the structure of the granules. As 

it is known, they are formed due to the agglomeration of smaller particles during granulation, 

being the granulation liquid the main responsible for promoting the adherence between smaller 

particles. Therefore, the size reduction over time is most probably related to the combination 

of two main events: (1) weakening of the granules’ structure due to water evaporation and (2) 

granule-granule collisions promoted by the hot air source.   

Figure 27: d50 profile of each drying cycle of every run. 
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The beginning of a new drying cycle is represented by the rapid increase of the d50 value. As 

the FBRM probe is not deactivated in-between drying cycles, it detects new wet granules as 

they are being filled in the dryer cell. Once the cell is filled, the drying process begins once 

again. 

3.3. Supplementary data processing 

Once the data fragmentation according to the number of drying cycles displayed in Table 7 

was completed, a further data processing step was performed due to the existence of 

deviations within the smaller data arrays.  

By analyzing each slot of data, the existence of deviations is clear as a few data points lay far 

from the rest of the distribution. These deviations are commonly known as outliers and may be 

indicative of experimental errors or even variability in terms of granules’ size within the whole 

measurement. However, the size variability theory can be easily discarded as it is highly 

unlikely that the granule passing by the probe at those exact instants presents a much higher 

or lower particle size in comparison to the remaining granules. By closely observing Figure 23, 

it is acknowledgeable that most outliers are situated on the beginning and ending of each 

drying cycle. This fact demonstrates that the existence of deviations is most likely related to 

the sensitivity of the FBRM probe. The deviated data points appear when the filling and 

discharge of the granules within the dryer cell take place, which may be indicative that these 

two events affect the stability of the probe positioned inside of the cell. An unstable probe will 

poorly assess particle size, which results on a d50 value associated to a high level of error. 

Although the majority of the outliers were observed at the starting and ending phase of each 

drying cycle, a couple of deviated points in certain data slots were detected during the drying 

process itself. Nevertheless, most data points that diverged in a more significant manner from 

the remaining observations were removed. The same sampling points were removed from the 

corresponding Xn arrays.  

Table 8 shows the number of sampling points for each data slot within each run once the 

outliers’ removal was completed. Both drying cycle no. 5 of Run 7 and drying cycle no. 7 of 

Run 14 presented a low number of sampling points (Figure 29), and therefore, its 

corresponding Xn and Yn arrays were removed from the whole dataset (Table 9). The drying 

cycles used for the optimization of the neural network are shown in Figure 28. 
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Table 8: Number of sampling points of each drying cycle after the outliers’ removal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 9: Total number of sampling points after the removal of drying cycles no.5 (Run 7) and 7 (Run 14). 

 Drying cycle no. 

Run 1 2 3 4 5 6 7 8 9 10 

1 78 76 76 80 74 75 75 74 78 - 

2 75 76 76 74 75 70 76 79 74 - 

3 75 76 - - - - - - - - 

4 69 75 - - - - - - - - 

5 77 76 74 75 79 75 72 74 74 - 

6 69 76 73 50 49 74 73 74 - - 

7 76 76 73 73 19 56 51 74 77 73 

8 73 71 76 74 66 - - - - - 

9 82 76 46 - - - - - - - 

10 76 76 77 - - - - - - - 

11 75 72 75 - - - - - - - 

12 76 80 79 - - - - - - - 

13 78 77 74 72 72 - - - - - 

14 77 78 75 76 73 75 26 - - - 

15 75 75 74 - - - - - - - 

16 77 76 76 77 75 78 75 78 75 - 

 Drying cycle no. Total Number 
of Sampling 

Points Run 1 2 3 4 5 6 7 8 9 

1 78 76 76 80 74 75 75 74 78 686 

2 75 76 76 74 75 70 76 79 74 675 

3 75 76 - - - - - - - 151 

4 69 75 - - - - - - - 144 

5 77 76 74 75 79 75 72 74 74 676 

6 69 76 73 50 49 74 73 74 - 538 

7 76 76 73 73 56 51 74 77 73 629 

8 73 71 76 74 66 - - - - 360 

9 82 76 46 - - - - - - 204 

10 76 76 77 - - - - - - 229 

11 75 72 75 - - - - - - 222 

12 76 80 79 - - - - - - 235 

13 78 77 74 72 72 - - - - 373 

14 77 78 75 76 73 75 - - - 454 

15 75 75 74 - - - - - - 224 
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16 77 76 76 77 75 78 75 78 75 687 

Figure 29: d50 profile of each drying cycle of every run after the supplementary data processing. 

Figure 28: d50 profile of each drying cycle of every run after the removal of drying cycle no. 5 of Run 7 and drying 

cycle no. 7 of Run 14. 
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3.4. Modelling strategy  

3.4.1. Input delay 

The granulator unit of the ConsiGma cannot be considered a perfect plug-flow reactor as axial 

mixing occurs inside of the granulator barrel. Thus, residence time in the twin-screw granulator 

cannot be characterized by a single scalar value and instead is represented as a distribution. 

An experimental investigation by Kumar A. et al focused on the study of RTD in the twin-screw 

granulator by monitoring the granules at the granulator outlet using NIR-CI. In this study, 

several operating conditions were utilized during granulation to assess its impact on RTD. As 

it can be observed in Figure 30, the maximum value registered for mean residence time was 

of 6.5 seconds, which corresponded to a throughput of 25 kg/h, L/S of 8%, screw configuration 

with 12 kneading discs at 60ºC and a screw speed of 500 rpm. It is also noticeable that all 

RTDs reside below 10 seconds, which indicates a fast transport within the granulator barrel.  

Differently from the granulator unit, the wet granule transfer line can be seen as an ideal plug-

flow due to the fast transfer of the wet granules to the six-segmented cell fluid bed dryer unit. 

It is indeed so fast that usually no more than 1 second is conceded to compensate the transfer 

of wet granules. 

Since the time distance between two sampling points corresponds to 10 seconds, the 

residence time in the twin-screw granulator was roughly approximated to 10 seconds (in 

alternative to the registered time of 6.5 seconds). As the wet granules transfer from the twin-

screw granulator unit to the six-segmented cell fluid bed dryer is nearly instantaneous, a delay 

was not considered. For measurements performed within the fluid bed dryer, a delay was not 

attributed.  
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Figure 30: Normalized RTD (right) profile with a shaded region denoting the standard deviation at different screw 

speed (500, 900 rpm) during various experiments (ID) using twin screw granulation [SA: stagger angle (º), NK: 

number of kneading discs (-), MFR: material throughput (kg/h), LSR: liquid-solid ratio (%). T1: mean residence time 

at 500 rpm (s), T2: mean residence time at 900 rpm (s)]. [89] 

 
In alternative to individually assigning a delay to each variable included on the structure of the 

neural network, a dataset adjustment was executed. Thus, for every single variable a number 

of sampling points were removed depending on the delay assigned to it.  

Figure 31 corresponds to a schematic representation of the adjustment procedure of a dataset 

containing 10 sampling points given the different delays (0 and 10 seconds) to be utilized on 

the real dataset. 
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Figure 31: Schematic representation of the logical procedure behind the data alignment upon the delay 

implementation.  

Figure 31a represents an array where no delay is implemented, and thus, no alteration on the 

structure of the array is done. Differently, on Figure 31b a delay of 10 seconds is considered 

which means that a variable measured on sampling point no. 1, will be characteristic of the 

particle size assessed on sampling point no. 2. Thus, the alignment is done by removing the 

first sampling point of the Yn array. Once this first row is removed, it is noticeable that the 

variable measured at sampling point no. 10 is aligned with a non-measured particle size 

correspondent to sampling point no. 11 (highlighted in red). Therefore, a delay of 10 seconds 

requires the removal of the first and last row of the Xn array. Figure 31c corresponds to the 

combination of two tables represented in Figure 31a and Figure 31b, and ultimately represents 

all the adjustments to be performed when a delay is appointed to a variable. It is important to 

refer that for the Xn array for which a delay was not considered, as well as for the Yn array, 

the first sampling point was excluded with the purpose of maintaining the same number of 

sampling points within the whole dataset.  

As previously mentioned, Figure 31 is purely representative of the logical procedure behind 

the dataset alignment as the number of sampling points vary within the different slots of data. 

Table 10 shows the number of sampling points of each slot of data once a delay was assigned 
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to each variable. Once finalized the adjustment procedure, the complete dataset is utilized on 

the input selection step. 

 

 

3.4.2. Input selection  

3.4.2.1. Manual input selection 

As for the manual approach, a total of eighteen variables were excluded on a primary selection. 

All user-set variables (setpoints) are shown in Figure 32. Although the setpoints are pre-

defined, a variance that goes far from the set value is observed on V4, V6, V23, V32 and V47. 

These different variances are likely related to disturbances that were not able to be corrected 

by the control system itself. As the value of the five different variables do not fluctuate around 

the setpoint, they were included on the empirical input selection to assess the effect of the 

variance on the granules size produced. In contrast, setpoints represented by V19, V37 and 

V46, remain constant over time and, therefore, are not included on the next input selection 

phase. From the fifty variables, six variables, namely V3, V10, V21, V34, V40 and V48, were 

not measured throughout the whole sampling time, being for that reason omitted from the 

empirical input selection. As illustrated in Figure 33, V1, V5, V18 and V22 remained unchanged 

through sampling, reason why they were not taken into consideration. V16 and V17 

Table 10: Total number of sampling points after the delay implementation. 

 Drying cycle no. Total Number 
of Sampling 

Points Run 1 2 3 4 5 6 7 8 9 

1 77 75 75 79 73 74 74 73 77 677 

2 74 75 75 73 74 69 75 78 73 666 

3 74 75 - - - - - - - 149 

4 68 74 - - - - - - - 142 

5 76 75 73 74 78 74 71 73 73 667 

6 68 75 72 49 48 73 72 73 - 530 

7 75 75 72 72 55 50 73 76 72 620 

8 72 70 75 73 65 - - - - 355 

9 81 75 45 - - - - - - 201 

10 75 75 76 - - - - - - 226 

11 74 71 74 - - - - - - 219 

12 75 79 78 - - - - - - 232 

13 77 76 73 71 71 - - - - 368 

14 76 77 74 75 72 74 - - - 448 

15 74 74 73 - - - - - - 221 

16 76 75 75 76 74 77 74 77 74 678 
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correspond, respectively, to the pressure measured before and after HEPA suction to the 

product control unit. Taking into account that the d50 value to be modelled is assessed within 

dryer cell no. 4 of the fluid bed dryer unit, V16 and V17 are not considered to have an effect 

on the value to be predicted. Thus, V45 was accordingly excluded it corresponds to the 

differential pressure of V16 and V17. In addition, V15 was not considered on the empirical 

input selection as its values lie close to the standard atmosphere value which refers to the 

exact pressure of 101 325 Pa (1 atm). Through the analysis of the progression of V15 over the 

sixteen runs, it is observable that the atmospheric pressure measured resides around 1009 

mbar, which is equivalent to approximately 100 900 Pa (Figure 34). Given this, it was 

considered that the atmospheric pressure measurements did not present a significant 

difference from the normal pressure value, reason why V15 was not included on the next phase 

of the input selection. Apart from V15, also V35 was excluded as the weight of the granulation 

liquid tank proportionally decreases over time (Figure 34) The proportional decrease of the 

weight of the tank is justified by the fact that the granulation liquid (i.e. water) is added to the 

TSG at a constant rate. This comes in line with the constant speed (approximately 130 rpm) 

at which the water is pumped into the granulator (V1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: User-set variables for Run 8. V4: Flow air inlet wet granule transfer; V6: Relative humidity 

dryer air inlet; V19: Speed granulator drive; V23: Temperature granulator barrel; V32: Temperature dryer 

air inlet; V37: Mass flow powder dosing 1; V46: Mass flow granulation liquid; V47: Flow dryer air inlet. 
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3.4.2.2. Empirical input selection 

The results of the back-wise input selection were presented based on the RMSEP associated 

to the exclusion of each one of the thirty-two variables included in the empirical selection. As 

seen in Figure 35, the variables ordered from left-to-right correspond to the variables that were 

(sequentially) removed in each one of the thirty-one rounds performed during the empirical 

Figure 33: V1, V5, V18 and V22 for Run 8. V1: Liquid pumps speed; V5: 

Humidity air handling unit control; V18: Actual status opening control 

valve pressure dryer air inlet; V22: Temperature filter dryer air handling 

unit. 

 

 

Figure 34: V15 and V35 for Run 8. V15: Pressure atmospheric 

pressure; V35: Weight granulation liquid tank. 
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input selection. Based on the results, four variables (V28, V30, V32 and V44) seem to be the 

ideal to integrate the structure of the NARX network as it corresponds to the subset of variables 

that is associated to the lowest RMSEP value (about 20.5 micrometers). It is noticeable that 

when V33 was removed, the RMSEP decreased, however this value slightly increased in the 

next round, in association with the removal of V44. Thus, the subset of variables composed by 

V28, V31, V32 and V44 is considered to enable the neural network to perform its predictions 

in a more accurate way. Although these four variables are considered as a subset, the way 

how each individually variable correlates with the particle size measured by the FBRM probe 

is not so straightforward. Therefore, an assessment of the influence of each variable on particle 

size is highly advisable.  

 

 

As previously shown in Figure 9 and Figure 10, the ConsiGmaTM-25 system presented a 

horizontal set-up, reason why the wet granules were pneumatically transferred from the outlet 

of the TSG to the top of the six-segmented dryer. As seen in Figure 36, the differential pressure 

over the wet granules transfer line (V44) presents a negative value throughout the whole 

sampling duration, a behavior which is observed within every single one of the sixteen runs. 

However, it also is possible to identify several abrupt decreases of pressure throughout the 

run. One of the main causes for pressure drops is the gas (flow) acceleration, as confirmed by 

Figure 37. This figure illustrates the behavior of V4 and V44 of Run 8 during the first drying 

cycle. It is very much clear that as the gas airflow begins to increase, a decrease on the 

pressure of the wet transfer line is observed. Other causes for pressure drops can be 

associated to granule collisions that may occur during the pneumatic transfer. As previously 

seen in Figure 23, the d50 profile is characterized by an initial increase correspondent to the 

Figure 35: d50 RMSEP in each round of the empirical input selection. X-axis represents the variable removed at 

each round. 
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filling of the cell prior to the drying process. Although a clear increasing tendency was 

observed, a few deviations were easily identified as, at some sampling points, the d50 value 

decreased and subsequently increased. In Subchapter 3.3, the deviations were linked to 

sensitivity of the FBRM probe at the time the granules were inserted inside the dryer cell, 

however it is possible to affirm that the deviations observed during filling can also be related 

to the collisions mentioned above. The mutual collisions of granules and collisions between 

granules and the wall of the transfer line and the wall of the dryer during filling are responsible 

for breakage events that result on granules particle size reduction, reason why lower d50 

values are given by the FBRM device. In brief, the pressure drops detected in V44 can be used 

to identify the occurrence of breakage events, and, therefore, is highly correlated to the initial 

phase of the d50 profile within each run. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: Differential pressure over the wet granule transfer line (V44) during Run 8. 

Figure 37: Initial seventy-two sampling points for V4 and V44 during Run 8. 
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In spite of the body of the ConsiGmaTM-25 dryer being segmented into six identical dryer cells, 

a single ‘down-to-up’ air stream enters the dryer, being subsequently divided over the different 

cells. This single air streams only enters the bottom of the dryer cells which are activated, i.e., 

that are filled with granules. By analyzing Figure 38, it is noticeable that the temperature 

profiles of V26-31 are highly repeatable, being the only significance difference the fact that 

they are spaced in time. This means that despite of the existence of six individual dryer cells, 

the drying process occurring inside each one of them can be considered identical. Therefore, 

it becomes important to determine which temperature of dryer cell is more appropriate to be 

included in the predictive model.  

 

 

 

 

 

Figure 39 and Annex 6:  illustrate a comparison between the d50 profile and the temperature 

profile for each dryer cell (V26-31). This comparative step was completed to determine which 

variable (V26-31) is correctly aligned in time to the d50 values. Based on the graphical 

representations, it is affirmable that V29 represents the temperature of the dryer cell most 

closely spaced in time to the particle size assessed. As previously mentioned, during a drying 

cycle, the d50 value decreases throughout time, while an increase in terms of temperature 

within the dryer cell is expected. This behavior is only seen within V29, as the temperature of 

the dryer cell starts increasing at the point the d50 value starts decreasing. This comes in line 

with the fact that the FBRM probe is located inside dryer cell no.4. 

Figure 38: Temperature of dryer cells no. 1, 2, 3, 4, 5 and 6 during Run 8. 
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As seen in Figure 40, a closer inspection of the temperature of the dryer air inlet (V32) showed 

that, despite the setpoint being set at 50ºC, the logged average temperature varied around 

49.8ºC and 50.4ºC. It is known that a high temperature of the dryer air inlet (V32) promotes a 

higher heat transfer from the gas phase to the granules, which ultimately leads to a higher 

diffusion rate of the water inside the granules to the passing air stream. Therefore, it is possible 

to correlate the temperature of the air supply with the particle size assessed. The air inlet 

temperature will influence the moisture content of the granules, which is determinant on the 

physical integrity of the granules being dried, since a higher water content in the granular 

structure can lead to particle size enlargement, and vice versa.  

After a meticulous review of the subset of variables resultant from the empirical variable 

selection, V28 and V31 were not considered to be appropriate to be included on the neural 

structure. Since V29 was proven to be more suitable than V28 and V31, V29, V32 and V44 

were selected to integrate the structure of the NARX network. The location within the 

ConsiGmaTM-25 continuous line at which the monitoring of these variables was performed is 

schematically shown in Annex 6. 

 

 

 

Figure 40: Temperature of the dryer air inlet outlet (V32) during Run 8. 

Figure 39: Temperature of dryer cell no. 4 and d50 profile during Run 8. 
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3.4.3. Runs selection 

The analysis of the two main principal components as a score plot in both Figure 41 and Figure 

42, allows the identification of a main trajectory, though some variations are observed.  

For both scores’ plots, it can be acknowledgeable that the transition from the lower quadrants 

to the upper quadrants is related to the start-up phase of the process, being the steady state 

found around the origin the of score plot for the majority of the runs. In Figure 41, the scores 

plot of the reference runs is shown. It can be observed that most runs naturally group at the 

origin of the plot, except for Run 8 and 15 that vary in its PC1. The same behavior is seen in 

Figure 42, where a transition from the lower-left quadrant towards the origin of the scores plot 

is observed. In this case, Run 6 clearly stands out as from the remaining runs as few of its 

sampling points lie outside the 95% confidence ellipse. The variations between runs are mainly 

related to the operational conditions since the process was run for different periods of time and 

during different days.   

As mentioned before, the training dataset must incorporate samples that are representative of 

all states and, therefore, the runs that present a distinct behavior in comparison to the 

remaining ones were considered for the training subset. For the test subset, four runs whose 

steady state lied around the origin were randomly selected. Given the visualization of the 

scores’ plots, a 75%-25% train-test division was performed, which means that twelve runs were 

used for training and four runs were chosen to integrate the test subset, as represented in 

Table 11. 

 
 
 
 
 
 
 
 
 

Figure 41: PCA score plot from the first two principal components of the reference runs. 
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Table 11: Runs chosen to integrate the training and test subset. 

Run Train Test 

1 X  

2  X 

3 X  

4 X  

5 X  

6 X  

7 X  

8 X  

9 X  

10  X 

11 X  

12  X 

13 X  

14 X  

15 X  

16  X 

Number of runs 12 4 

 
 
 

Figure 42: PCA score plot from the first two principal components of the reference with an 

imposed disturbance. 
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3.5. Modelling strategy  

The optimized NARX neural network is composed by one hidden layer consisting of three 

hidden nodes and has one feedback connection towards the input layer. The final topology of 

the optimized NARX neural network is shown in Figure 43. This recurrent network can be 

described by the following equation: 

 

d50(t) = f (V29(t), V32(t), V44(t), d50(t − 10s)) 

 

Where the value of the output signal (d50(t)) is a function of past values of itself (d50(t − 10s)) 

and previous values of (exogenous) input signals (V29(t), V32(t), V44(t)). The exogenous 

inputs selected to integrate the neural structure were considered without a delay value, 

whereas the feedback connection of d50 value was assigned with a 10 second delay. 

3.6.  ANN model calibration 

The three-hundred iterations performed during the training process of the neural networks, did 

not made use of drying cycles of runs 5 and 6 (on the calibration and validation sets). As seen 

in Table 12 and Annex 7, most of the drying cycles of runs 5 and 6 present irregular fluctuations 

throughout its duration. As irregular variations do now follow a particular model, they cannot 

be accurately predicted. In Table 12, the RMSEP values for each drying cycle of runs 5 and 6 

is shown. In exception of the drying cycles no. 1 and 2 of Run 5, the RMSEP associated to 

each cycle is significantly high, which translates on an overall high RMSEP for runs 5 and 6. 

Based on the RMSEP values, it is affirmable that including the drying cycles of runs 5 and 6 

on the training process would not be beneficial in terms of  the final performance of the network. 

The usage of a cycle associated to a high RMSEP value during learning would induce the 

Figure 43: Final topology of the optimized NARX neural network. 
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model to perform poor predictions, which would result on the generation of an output (d50 

value) significantly dissimilar to the experimentally observed. Thus, the training of the network 

was performed using the drying cycles of ten runs (Runs 1,3-4,7-9,11,13-15) for calibration 

and validation (Figure 44). 
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Table 13 and Figure 45 display the median RMSE and standard deviation of the calibration 

and testing sets. In spite of the usage of distinct drying cycles for training and testing, the 

median RMSEP value for both sets are quite comparable, however the standard deviation is 

much higher for the calibration set in relation to the testing set. This is indicative of the 

variability within the drying cycles used for the training of the network, which in turn could have 

been compensated by the usage of a superior number of drying cycles. In the other hand, a 

lower standard deviation value for the testing set indicates that the drying cycles used for 

testing presented a median RMSE close to the overall average of the testing set. This means 

that while drying cycles used for training might present a very distinct behavior, the cycles 

utilized for testing display a more similar behavior, i.e., present a lower variability. 

 

Table 12: Median RMSEP for each drying cycle of runs 5 and 

6. Average RMSEP and standard deviation of runs 5 and 6. 

 Run 

Drying Cycle 5 6 

1 25.5 41.7 

2 16.3 83.5 

3 6034.3 85.7 

4 8144.2 168.4 

5 8191.0 275.5 

6 8155.4 85.6 

7 152.1 79.9 

8 207.5 180.6 

9 170.7 - 

   

Average RMSEP 
(µm) 

3455.2 125.1 

Standard 
Deviation(µm) 

4015.5 76.9 
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Table 13: Median RMSE and standard deviation of the calibration and testing set. 

 Median RMSE (µm) Standard Deviation (µm) 

Calibration set 20.4 14.4 

Testing set 21.0 3.8 

Figure 44: Drying cycles selected for training and testing.  

Figure 45: Distribution of RMSE for the calibration and testing set. 
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In Table 14, the RMSEP for each drying cycle of every run is shown. Despite the usage of 

drying cycles of four runs to test the optimized network, a RMSEP value for both cycles used 

during training and testing was obtained. The RMSEP of the testing cycles/run, however, were 

estimated based on the network learning process that made use of cycles exclusively from the 

training runs. Thus, it would be expected for the RMSEP value for the training cycles/runs to 

be lower than for the testing cycles/runs, as its own data was used during the training process.  

 

 

In Table 15, it is seen that a lower RMSEP value for the training runs was not necessarily 

obtained. In fact, the highest overall RMSEP values regard runs 3 and 8, which were included 

in the calibration and validation sets. As randomly obtained drying cycles are used during the 

training process of the network, it is possible that a network can end up being very well or badly 

trained. For this reason, several neural networks are usually created and trained as the 

performance of a single network lacks significance. In this work, one-hundred networks were 

developed and the 25% of them that presented the worst performance were excluded. In 

general, the overall RMSEP for every run is acceptable, being runs 3 and 8 the ones that 

presented a higher RMSEP value in comparison to the remaining ones. The RMSEP presented 

for each run corresponds to the average of the RMSEP of each drying cycle included in that 

same run. Thus, a higher RMSEP for a particular run is not necessarily related to a poor 

prediction of the all cycles within the run. Taking as an example Run 11, it is observable that 

the overall RMSEP corresponds to 29.3 µm, the third highest RMSEP value after runs 3 and 

Table 14: Median RMSEP (µm) for each drying cycle of runs 1-4,7-16. 

 Drying cycle no. 

Run 1 2 3 4 5 6 7 8 9 

1 17.7 13.4 13.1 17.0 12.3 14.2 27.6 15.1 38.4 

2 20.8 20.9 17.9 21.8 25.2 23.2 19.3 25.5 23.0 

3 45.2 37.1 - - - - - - - 

4 19.2 14.6 - - - - - - - 

7 15.6 11.8 18.6 13.0 27.0 18.9 16.6 19.3 15.3 

8 55.4 59.6 54.4 63.7 40.2 - - - - 

9 21.6 19.9 29.0 - - - - - - 

10 19.6 19.5 20.5 - - - - - - 

11 41.2 14.8 31.9 - - - - - - 

12 35.9 27.6 15.0 - - - - - - 

13 17.4 25.1 14.8 34.9 40.7 - - - - 

14 27.7 22.7 15.9 15.0 23.3 19.3 - - - 

15 15.2 39.0 10.3 - - - - - - 

16 14.4 14.2 16.8 17.1 16.7 20.0 18.0 21.8 16.3 
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8. Nevertheless, the error of d50 prediction for the drying cycle no.4 is considerably low (14.8 

µm) based on the overall results for all cycles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 46Figure 46, it is seen that the testing runs (highlighted in yellow), fell below the 

average RMSEP for the testing set, however Run 12 presented a slightly higher RMSEP value 

due to a less accurate prediction of cycle no. 1. In regard to the training runs, runs 3 and 8 

were the ones that presented a more distinguish RMSEP value in relation to the average 

RMSEP for the calibration set. This comes in line with the fact that both runs were identified 

as the less accurately predicted within the complete assembly of cycles. Also, runs 11 and 13 

remained above the average RMSEP for the calibration set, which is due to the less accurate 

prediction of the cycles no. 1 and 3 and cycles no. 4 and 5 of Run 11 and Run 13, respectively. 

 

Table 15: Average RMSEP for runs 1-4,7-16.  

Run RMSEP (µm) 
Standard Deviation 

(µm) 

1 18.8 8.7 

2 22.0 2.5 

3 41.2 5.7 

4 16.9 3.3 

7 17.3 4.4 

8 54.7 8.9 

9 23.5 4.8 

10 19.9 0.6 

11 29.3 13.4 

12 26.2 10.5 

13 26.6 11.1 

14 20.6 4.8 

15 21.5 15.4 

16 17.3 2.4 

Figure 46: RMSEP for runs 1-4, 7-16. 
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In Figure 47, a close-up of the d50 prediction for the drying cycles no.3 and 2 of runs 15 and 

16, respectively, are shown. These graphical representations correspond to the drying cycles 

for which a lower RMSEP was attained. Despite the inability of the network on producing the 

exact same experimental values, it is perceptible that the trend of the d50 value within the 

duration of the drying cycles was clearly detected by the network. Figure 48 depicts the 

extremely close prediction of the experimental data of the testing cycles/runs and most of the 

training cycles/runs. This is highly indicative that the network was successfully trained and 

presents the ability of accurately predicting the d50 value within the different cycles.  

 

 

 

 

Table 16 and Table 17 provide an overall insight regarding the performance of the network in 

terms of the predictability of the drying cycles included on the testing runs. In Table 16, the 

average d50 value for each drying cycle of the testing set and for the whole run is presented. 

In Table 17, a comparison between the average d50 within the four runs is compared to the 

average RMSEP value obtained for the same runs. Based on the information contained in the 

tables, it was possible to calculate the percentual RMSEP for each testing run. According to 

the results, it is observable that the RMSEP for each testing run does not deviate in such a 

significant proportion (<10%) from the average d50 value. Overall, an average RMSEP of 6.9% 

was obtained for the optimized neural network, which indicates that the model can perform 

accurate predictions of the experimental data that was not used during its optimization. 

 

 
 
 
 
 

Figure 47: d50 prediction for drying cycle no.3 of Run 15 (training run) and drying cycle no.2 of Run 16 

(testing run). 
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Figure 48: d50 predictions for the drying cycles of runs 1-4,7-16. 
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Table 16: Average d50 value (µm) for the testing runs. 

 Drying cycle no. 
 

Average 
experimental 

Run 1 2 3 4 5 6 7 8 9 
d50 (µm) 

2 309.4 302.6 306.2 299.7 294.4 294.3 296.0 299.9 289.9 300.2 

10 312.0 310.8 308.3 - - - - - - 310.4 

12 322.6 317.0 300.4 - - - - - - 313.3 

16 307.2 302.2 300.3 299.4 300.8 294.2 293.0 287.7 295.4 297.8 

Table 17: Average RMSEP (%) for the testing runs. 

Run RMSEP (µm) Average d50 (µm) RMSEP (%) 

2 22.0 300.2 7.3 

10 19.9 310.4 6.4 

12 26.2 313.3 8.4 

16 17.3 297.8 5.8 

  
Average RMSEP 

(%) 
6.9 
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4. Conclusions 

The non-linear autoregressive network with exogenous inputs is a class of recurrent networks 

well-suited for modelling granules size distribution. The in-process measurements provided by 

univariate sensors implemented in the continuous line can be correlated to the size distribution 

(d50) of the granules assessed inside the dryer cell. However, not all process variables will 

affect equally the attribute measured by the analytical tool (i.e. FBRM). Process variables, such 

as temperature of dryer cell, temperature of the dryer air inlet and the pressure of the wet 

granule transfer line, are evidently determinative factors in the prediction of the particle size 

distribution of granules.  

In order to evaluate the performance of the model in terms of its predictive ability, the RMSEP 

value was determined for each drying cycle. As the result of the best seventy-five neural 

networks were selected in this work, the median value was used for the RMSEP determination 

in alternative to the mean value. The usage of the median is proven to be more robust than 

the use of the mean value, as it is not affected by the presence of extreme (outliers) values 

and provides a more realistic insight on the results of the training of the seventy-five neural 

networks.  

The model presented the ability to predict the d50 value from the beginning to the end of the 

several drying cycles. The accuracy of the artificial neural network was determined by a 

RMSEP of 6.9%, which demonstrates the capability to produce close results to the 

experimental data of the cycles/runs included on the testing set. However, the predictive ability 

of the neural network could not be extended to more atypical cases, such as runs 5 and 6. 

Thus, a change in the temperature of the air entering the dryer (50 to 60ºC) and mass flow of 

the granulation liquid (58 to 66.7 g/min) is considered to affect with significance the particle 

size in such way that the model is unable to perform correctly its predictions. The model was 

not able to predict most of the cycles from both those runs, which reflected on an extremely 

high RMSEP value. Furthermore, the RMSEP value increased on drying cycles that showed a 

slight irregular behavior, which means that the computational technique does not offer enough 

sensitivity to predict abnormal variations within certain drying cycles.  

The network was successful in learning, however the quality of the predictions performed can 

be rather debatable. Particle size is one of the most important quality attributes in the 

manufacturing of tablets, as it is indicative of the progress of the manufacturing run and directly 

related to the quality of the end product. Thus, a precise monitoring strategy is required to 

ensure that no problems arise in terms of performance, stability and appearance of the end 

product. As seen, the prediction of the d50 value throughout the several drying cycles did not 

correspond exactly to the experimental data, however an average error of 6.9% (for the testing 

set) is very low. Therefore, it is affirmable that the sensor (i.e. neural network) developed 
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through software is not suitable if a precise monitoring is desired. In the other hand, if a mean 

error of 6.9% (21 µm) is proven not to be significant, the software sensor can be considered 

as an alternative to the physical FBRM sensor. 

Nevertheless, this work opens up the possibility for further improvements of the predictive 

model. A higher number of experimental runs/cycles could be useful for the training process, 

in order to enable the network to identify and predict with more ease irregular fluctuations of 

the d50 value over the drying cycle. Furthermore, a more realistic optimization strategy could 

be performed for all process parameters in simultaneous through the implementation of a 

genetic algorithm, for example. Changes in terms of network topology, such as the number of 

hidden layers and hidden nodes, can also be considered. 

Ultimately, a future aim would be to replace an analytical tool, such as the FBRM, by a novel 

software approach. Overall, this thesis presents several factors, which are meant to positively 

change the mindset towards the introduction of computational power in the pharmaceutical 

industry as an essential part of the strategy for continuous manufacturing process monitoring. 
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6. Supplementary material 
 
Annex 1: Parameters logged by the ConsiGma™-25 system during processing; ▲ – User-set variables 

(setpoints); ■ – Variables included in the mathematical model for input selection.; ▼ – Variables included 

in the structure of the NARX network. 

Variable Measurement Units 
Setpoint 

value 
ConsiGmaTM-25 unit 

Depicted 
Underneath 

Tag * 

1 Liquid pumps speed  rpm - 
Liquid addition 

module (granulator) 
FC03031 

2 
Speed air handling unit fan 

control ■ 
% - 

Air handling unit 
(dryer) 

FIC06021 

3 
Vacuum pump motor – 
variable frequency drive 

% - 
Vacuum pump 

(dryer) 
FIC09031 

4 
CB flow air inlet wet granule 

transfer ▲■ 
m3/h 3.6 

Wet granule transfer 
line (dryer) 

XFE07011 

5 
Humidity air handling unit 

control 
% - 

Air handling unit 
(dryer) 

MIC06021 

6 
Relative humidity dryer air 

inlet ▲■ 
% RH 6 Dryer ME06021 

7 
Relative humidity dryer air 

outlet ■ 
% RH - Dryer ME06022 

8 Torque- granulator drive ■ Nm - Granulator NET04021 

9 

Differential pressure for the 
air inlet wet granule transfer 

■ 
mbar - 

Wet granule transfer 
line (dryer) 

PDET07011 

10 
Differential pressure for the 
filter outlet air handling for 

dryer 
mbar - 

Air handling unit 
(dryer) 

PDET08015 

11 Pressure dryer top ■ mbar - Dryer PET06011 

12 Pressure dryer air inlet ■ mbar - Dryer PET06021 

13 
Pressure dryer air outlet 

(before HEPA filter) ■ 
mbar - Dryer PET06022 

14 
Pressure dryer air outlet 

(after HEPA filter) ■ 
mbar - Dryer PET06023 

15 
Pressure atmospheric 

pressure 
mbar - Dryer PET07016 

16 
Pressure before HEPA 

suction to product control 
mbar - Product control unit PET09031 

17 
Pressure after HEPA 

suction to product control 
mbar - Product control unit PET09032 

18 
Actual status opening 

control valve pressure dryer 
air inlet  

% - Dryer PV06021 

19 Speed granulator drive ▲ rpm 700 Granulator SET04021 

20 
Temperature filter dryer air 

handling unit ■ 
℃ - 

Air handling unit 
(dryer) 

TE08014 

21 
Temperature air handling 

unit control 
℃ - 

Air handling unit 
(dryer) 

TIC06021 
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22 
Temperature filter dryer air 

handling unit  
% - 

Air handling unit 
(dryer) 

TE08014 

23 
Temperature granulator 

barrel ▲ ■ 
℃ 25 Granulator TE04011 

24 

Temperature tank 
granulator barrel 

temperature control unit ■ 
℃ - 

Temperature control 
unit (granulator) 

TE05015 

25 
Temperature inlet 

granulator jacket ■ 
℃ - 

Temperature control 
unit (granulator) 

TE05021 

26 Temperature dryer cell 1 ■ ℃ - Dryer TE06011 

27 Temperature dryer cell 2 ■ ℃ - Dryer TE06012 

28 Temperature dryer cell 3 ■  ℃ - Dryer TE06013 

29 Temperature dryer cell 4 ■ 
▼ 

℃ - Dryer TE06014 

30 Temperature dryer cell 5 ■  ℃ - Dryer TE06015 

31 Temperature dryer cell 6 ■  ℃ - Dryer TE06016 

32 
Temperature dryer air inlet 

▲ ■ ▼ 
℃ 50 Dryer TE06021 

33 
Temperature dryer air outlet 

■ 
℃ - Dryer TE06022 

34 Temperature mill screen ℃ - Product control unit TE09021 

35 
Weight granulation liquid 

tank 
g - 

Liquid addition 
module (granulator) 

WE03031 

36 
Mass flow powder dosing 1 

(average) ■ 
kg/h - 

Powder dosing unit 
(granulator) 

XFI02011 

37 
Mass flow powder dosing 1 

(calculated) ▲ 
kg/h 25 

Powder dosing unit 
(granulator) 

XFI02011 

38 
Speed motor powder 

dosing 1 ■  
rpm - 

Powder dosing unit 
(granulator) 

X02011 

39 
Weight powder dosing 1 

(net) ■ 
kg - 

Powder dosing unit 
(granulator) 

X02011 

40 Mass flow powder dosing 2 kg/h - 
Powder dosing unit 

(granulator) 
X02021 

41 
Differential pressure dryer 

hole plate & bed ■ 
mbar - Dryer XDPI06011 

42 
Differential pressure over 

the dryer filters ■ 
mbar - Dryer XDPI06012 

43 
Differential pressure filter 

dryer air outlet ■ 
mbar - Dryer XPDI06021 

44 

Differential pressure over 
the wet granule transfer line 

■ ▼ 
mbar - 

Wet granule transfer 
line (dryer) 

XDPI07011 

45 
Differential pressure 

exhaust HEPA suction to 
product control 

mbar - Product control unit PDET09031 

46 
Mass flow granulation liquid 

(calculated) ▲ 
g/min 58 

Liquid addition 
module (granulator) 

XFI03031 

47 Flow dryer air inlet ▲ ■ m3/h 360 Dryer XFE06021 
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48 
Air inlet wet granule 
transfer (average) 

m3/h - 
Wet granule transfer 

line (dryer) 
XFE07011 

49 Power granulator drive ■ W - Granulator XJI04021 

50 
Temperature outlet 

granulator ■ 
℃ - 

Temperature control 
unit (granulator) 

TE0502A 

*Based on the GEA operating manual for ColletteTM machine number: 07CG025002R.shown in 

Annex 2. 
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Annex 2: GEA operating manual for ColletteTM machine number: 07CG025002R. 
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Annex 3: Details regarding the training of the neural networks. 

 
 

Architecture 
Multilayer feedforward neural network 

(recurrent) 

Topology Three layers 

Initialization Weights and Bias randomly initialized 

Inputs scaling Unit variance 

Transfer functions 

Input layer: None 

Hidden layer: Hyperbolic tangent 

Output layer: Linear 

Training procedure Back propagation 

Training scheme Batch 

Training algorithm Levenberg-Marquardt (second-order) 

Training criterium Minimize validation error 
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Annex 4: Close-up of the drying cycles no. 1, 2, 3 and 4 of Runs 2, 10, 12 and 16, respectively.  
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Annex 5: Comparison between the d50 profile and the temperature of dryer cells no. 1, 2, 3, 4, 5 and 6 

of the first drying cycle of Run 8. 
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Annex 6: Location at which V29, V32 and V44 were monitored within the ConsiGmaTM-25 continuous line.
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Annex 7: Predictions of the d50 value for drying cycles no. 3, 4, 5 and 6 of run 5 and drying cycles no. 

4, 5 and 8 of run 6. 
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