

2019

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Types to the Rescue: Verification of REST APIs

Consumer Code

Nuno Miguel Pereira Burnay

Mestrado em Engenharia Informática

 Especialização em Engenharia de Software

Dissertação orientada por:

Prof. Doutor Vasco Manuel Thudichum de Serpa Vasconcelos

Prof. Doutor Maria Antónia Bacelar da Costa Lopes

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/237196315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Agradecimentos

Os maiores agradecimentos vão para quem mais contribuiu para o sucesso desta dis-
sertação: o prof. Vasco Vasconcelos e a prof. Antónia Lopes. Em primeiro lugar, por
terem-me proposto este tema e aceitado trabalhar comigo. De seguida, por terem-me ori-
entado maravilhosamente ao longo de quase um ano, corrigindo os meus erros e dando-
me liberdade para errar. Por fim, por terem-me ajudado a escrever esta tese, atenuando as
minhas lacunas na escrita. Sem os meus orientadores teria sido um ano muito entediante!

Agradeço também a todos os colegas do LASIGE que tive de aturar durante o ano
inteiro. Quase conseguiram que eu não entregasse a tese a tempo. Sem vocês isto teria
sido muito menos emocionante.

Estendo este agradecimento a todos os colegas e professores que me auxiliaram ao
longo do meu percurso académico. Também aos meus (poucos mas bons) amigos que
estiveram ao meu lado antes de ingressar na faculdade. Foram certamente quem mais
contribuiu indiretamente para esta tese.

Por fim, um agradecimento especial a todos aqueles que colocaram pedras no meu
caminho. Guardeias todas e fiz-me Mestre.

i

Aos amigos que me ajudaram

Aos inimigos que me motivaram

Resumo

As arquiteturas de software são fundamentais para o desenvolvimento de um software
fiável, escalável e com uma fácil manutenção. Com a criação e crescimento da internet,
surgiu a necessidade de criar padrões de software que permitam trocar informação neste
novo ambiente. O protocolo SOAP e a arquitetura REST são, dos padrões que emergiram,
os que mais se destacaram ao nível da utilização. Durante as últimas décadas, e devido
ao grande crescimento da World Wide Web, a arquitetura REST tem se destacado como a
mais importante e utilizada pela comunidade.

REST (Representational State Transfer) retira partido das características do protocolo
HTTP para descrever as mensagens trocadas entre clientes e servidores. Os dados na ar-
quitetura REST são representados por recursos, que são identificados por um identificador
único (p.e. URI) e que podem ter várias representações (em vários formatos), que são os
dados concretos de um recurso. A interação com os recursos é feita usando os métodos
HTTP: get para obter um recurso, post para adicionar um novo recurso, put para fazer
uma atualização de um recurso, delete para remover um recurso; entre outros, sendo estes
os principais para aplicações CRUD.

As aplicações RESTful, isto é, aplicações que fornecem os seus serviços através da
arquitetura REST, devem ser claras na especificação dos seus serviços de forma a que os
seus clientes possam utilizá-las sem erros. Para tal, existem várias linguagens de espe-
cificação de APIs REST, como a Open API Specification ou a API Blueprint, no qual é
possível descrever formalmente as várias operações fornecidas pelo serviço, como o for-
mato dos pedidos de cada operação e as respetivas respostas. No entanto, estas linguagens
apresentam uma limitação nas condições formais que se pode colocar nos parâmetros dos
pedidos e no impacto que estes têm no formato e conteúdo da resposta.

Deste modo, foi introduzida uma nova linguagem de especificação de aplicações
REST, HeadREST, onde é adicionada a expressividade necessária para cobrir as lacu-
nas das outras linguagens. Esta expressividade é introduzida com a utilização de tipos
refinados, que permitem restringir os valores de um determinado tipo. Adicionalmente,
é introduzida também uma operação que permite verificar se uma determinada expressão
pertence a um determinado tipo. Em HeadREST, cada operação é especificada usando
uma ou mais asserções. Cada asserção é composta por um método HTTP, um URI tem-
plate da operação, uma pré-condição que define as condições onde esta operação é aceite,

v

e uma pós-condição que estabelece os resultados da operação se a pré-condição for com-
prida. Deste modo, estas condições permitem expressar os dados enviados nos pedidos
e a receber na resposta, assim como expressar o estado do conjunto de recursos antes e
depois do pedido REST.

Devido à utilização de tipos refinados não é possível resolver sintaticamente a relação
de subtipos na validação de uma especificação HeadREST. Deste modo, é necessária uma
abordagem semântica: a relação de subtipos é transformada em fórmulas de lógica de
primeira ordem, e depois é utilizado um SMT solver para resolver a formula e, consecu-
tivamente, resolver a relação de subtipos.

Por outro lado, é também importante garantir que as chamadas às APIs REST cum-
prem as especificações das mesmas. As linguagens de programação comuns não conse-
guem garantir que as chamadas a um serviço REST estão de acordo com a especificação
do serviço, nomeadamente se o URL da chamada é válido e se o pedido e resposta estão
bem formados ao nível dos valores enviados. Assim, um cliente só percebe se as cha-
madas estão bem feitas em tempo de execução. Existem poucas soluções para análise
estática deste tipo de chamadas (RESType é um raro exemplo) e tendem a ser limitadas e
a depender de um único tipo de linguagem de especificação. Para além disso, os clientes
de serviços REST tendem a ser maioritariamente desenvolvidos em JavaScript, que possui
uma fraca análise estática, o que potencializa ainda mais o problema identificado.

Numa primeiro passo para tentar resolver este problema desenvolveu-se a linguagem
SafeScript, que se caracteriza por ser um subconjunto do JavaScript equipado com um
forte sistema de tipos. O sistema de tipos é muito expressivo graças à adição de tipos
refinados e também de um operador que verifica se uma expressão pertence a um tipo.
SafeScript apresenta flow typing, isto é, o tipo de uma expressão depende da sua localiza-
ção no fluxo de controlo do programa. Tal como no HeadREST, não é possível realizar
uma simples análise sintática para a validação de tipos. No entanto, neste caso trata-se de
uma linguagem imperativa com flow typing, logo uma abordagem igual de tradução direta
para um SMT solver não é trivial. Deste modo, a validação de tipos é feita traduzido o
código SafeScript para a linguagem intermédia Boogie, onde as necessárias validações
são traduzidas como asserções, sendo que o Boogie utiliza internamente o Z3 SMT solver
para resolver semanticamente as asserções. Devido à validação semântica, o compilador
de SafeScript consegue detetar estaticamente diversos erros de execução comuns, como
divisão por zero ou acesso a um array fora dos seus limites, e que não conseguem ser de-
tetados por linguagens similares, como o TypeScript. SafeScript compila para JavaScript,
com o intuito de poder ser utilizado em conjunto com este.

Graças ao seu expressivo sistema de tipos, o validador de programas SafeScript é
também um verificador estático. A partir deste é possível provar que um programa cumpre
uma determinada especificação, que pode ser descrita usando os tipos refinados. Neste
trabalho destacou-se a capacidade de prova do validador de SafeScript, concretamente

vi

resolvendo alguns desafios propostos pelo Verification Benchmarks Challange.
A partir do SafeScript desenvolveu-se a extensão SafeRESTScript, que adiciona pe-

didos REST à sintaxe do SafeScript e valida-os estaticamente de encontro a uma especi-
ficação HeadREST. Para cada chamada REST são feitas principalmente duas validações.
Em primeiro lugar, é verificado se o URL é um endereço válido do serviço para o método
HTTP do pedido, isto é, se existe algum triplo na especificação com o par método e URL
do pedido. De seguida, e com a tradução da especificação HeadREST importada para
Boogie, é verificado se as chamadas REST cumprem os triplos da especificação, nome-
adamente, se as pré-condições são cumpridas então as pós-condições também se devem
verificar. Por exemplo, se uma pós-condição, cuja respetiva pré-condição é verdadeira
para uma determinada chamada, asserta que no corpo da resposta existe um objeto com
o campo id, então um acesso a este campo no corpo da resposta é validado. Neste traba-
lho, como exemplo ilustrativo das capacidades da linguagem, desenvolveu-se um cliente
SafeRESTScript da API REST do conhecido repositório GitHub.

Ambas as linguagens possuem um compilador e editor que estão disponíveis como
plug-in para o IDE Eclipse, para além de uma versão terminal. As duas linguagens pos-
suem várias limitações, e por isso muito trabalho ainda existe pela frente. No entanto,
SafeScript e SafeRESTScript não têm ambição de ser linguagens de produção, mas sim
contribuir para um melhoramento da análise estática de programas e mostrar que é possí-
vel auxiliar o desenvolvimento fiável de código cliente de serviços REST.

Palavras-chave: REST, análise estática, JavaScript, tipos refinados

vii

Abstract

REST is the architectural sytle most used in the web to exchange data. RESTful ap-
plications must be well documented so clients can use its services without doubts and
errors. There are several specification languages for describing REST APIs, e.g. Open
API Specification, but they lack on expressiveness to describe the exchanged data. Head-
REST specification language was introduced to address this gap, containing an expressive
type system that allows to describe rigorously the request and response formats of a ser-
vice endpoint.

On the other hand, it is also important to ensure that REST calls in client code meet
the service specification. This challenge is even more important taking in account that
most REST clients are made in JavaScript, a weakly typed language.

To aim this problem, we firstly developed SafeScript, a subset of JavaScript equipped
with a strong type system. SafeScript has a expressive type system thanks to refinement
types and to an operator that checks if an expression belongs to a type. A semantic
subtyping analysis is necessary; the typing validation in done by translating the code to
Boogie intermediate language which uses the Z3 SMT solver for the semantic evaluation.
SafeScript compiles directly to JavaScript.

SafeRESTScript is an extension of SafeScript that adds REST calls, being a client-side
language for consuming REST services. It uses HeadREST specifications to verify REST
calls: whether the URL of the call is a valid endpoint and whether the data exchanged
match the pre and post-conditions declared in the specification.

With the creation of this new languages, we dot not intend in having them as produc-
tion languages, but to show that it is possible to contribute with a better verification and
correction in area where software reliability is weak.

Keywords: REST, static analysis, JavaScript, refinement types

ix

Contents

List of Figures xvii

List of Tables xix

Acronyms xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 2
1.3 Objectives and Contributions . 2
1.4 Structure of the document . 3

2 Background & Related Work 5
2.1 REST - Representational State Transfer 5
2.2 Interface Definition Languages for RESTful Applications 8
2.3 Static Verification in JavaScript Code 9
2.4 Static Verification of REST Calls . 11

3 HeadREST Specification Language 15
3.1 Basic Ideias . 15
3.2 A Running Example . 18
3.3 Syntax . 20

3.3.1 Core Syntax . 20
3.3.2 Derived Syntax . 22

3.4 Validation . 23
3.4.1 Algorithmic Type Checking . 23
3.4.2 Semantic Subtyping . 29

4 SafeScript Language 33
4.1 Main Ideas . 33
4.2 Syntax . 34
4.3 Examples . 36

xi

4.4 Validation . 39
4.4.1 Declarative Type System . 39
4.4.2 Translation to Boogie . 44

4.5 Translation to JavaScript . 52
4.5.1 Operational semantics . 53

4.6 Implementation . 59

5 SafeRESTScript Language 61
5.1 Main Idea . 61
5.2 Additional Syntax . 62
5.3 A Simple Example . 62
5.4 Validation . 64
5.5 Translation to JavaScript . 65
5.6 Implementation . 66

6 Evaluation 69
6.1 Verification Benchmarks Challenge . 69
6.2 Comparison with TypeScript . 73
6.3 SafeRESTScript: More Examples . 75
6.4 Limitations . 79
6.5 Future Work . 80

7 Conclusion 85

A HeadREST type normalization and extraction 87

B SMT-LIB Axiomatization in HeadREST 91

C Boogie Axiomatization of SafeScript and SafeRESTScript 105

D REST calls JavaScript Auxiliary Functions 113

Bibliography 125

xii

xiv

List of Figures

2.1 Dummy API . 7
2.2 JQuery REST call example, from [81] 11

3.1 Refinement types as sets: an example with an integer type 16
3.2 Example of a method javadoc with requires clause 16
3.3 HeadREST syntax . 20
3.4 The syntax of URI templates . 21
3.5 Operators signatures: ⊕ : T1, . . . , Tn → T 21
3.6 Type abbreviations . 22
3.7 Derived expressions . 23
3.8 Validation contexts . 24
3.9 Judgments of the algorithmic type system 24
3.10 Algorithmic context formation: ∆ ` Γ 24
3.11 Algorithmic type formation: ∆; Γ ` T 24
3.12 Algorithmic type synthesis: ∆; Γ ` e � T 26
3.13 Algorithmic type checking: ∆; Γ ` e � T 27
3.14 Algorithmic specification formation: ∆; Γ ` S 27
3.15 Request and response types . 27
3.16 URI template type extraction: ` u_ T 28
3.17 Algorithmic subtyping: ∆; Γ ` T <: U 28
3.18 Algorithmic specification formation (top level): ∆; Γ t̀ S 29
3.19 Type to FOL: F′JT K(t) . 29
3.20 Variable context to FOL: F′JΓK . 30
3.21 Expressions to FOL: VJeK . 30
3.22 Conversion of operators: VJ⊕K . 31

4.1 SafeScript syntax . 34
4.2 Derived statements . 35
4.3 Derived bindings . 36
4.4 The environment syntax . 40
4.5 Judgments of the declarative type system 40
4.6 Context formation: ` Γ . 40

xv

4.7 Well-formed types: Γ ` T . 41
4.8 Type assignment to expressions: Γ ` e : T 41
4.9 Semantic subtyping: Γ ` T1 <: T2 . 42
4.10 Type checking statements: Γ;ϕ1 ` S : (T ;ϕ2) 42
4.11 Consistent environment: ϕ ` Γ . 43
4.12 Well-formed functions: Γ ` F . 44
4.13 Translation of in type predicates: F′JT K(e) 45
4.14 Translation of expressions: VJeK . 46
4.15 Translation of operator names: VJ⊕K 46
4.16 Translation of expressions with type validation: V∗JeK(x) 47
4.17 Translation of type formation: WJT K 48
4.18 Translation of statements: BJSK . 48
4.19 Translation of variable update: UJuK(e) 49
4.20 Translation of variable update optimized: U′JuK(x, S̄, ē) 50
4.21 Translation of function definitions: BJF K 50
4.22 Translation of global variable declarations: BJT x = eK 51
4.23 Translation of SafeScript in type predicate to JavaScript: JsJT K(e) 52
4.24 Additional syntax for evaluation (extends figure 4.1) 53
4.25 Judgments of the evaluation system . 54
4.26 Expression evaluation: e | µ −→ e′ | µ′ 55
4.27 In type predicate evaluation: v in T −→ e 56
4.28 Statement evaluation: S | µ −→ S ′ | µ′ 57
4.29 Left hand side evaluation: u | µ ↪→ u′ | µ′ 57
4.30 Store update: [w 7→ v]µ ⇓ µ′ . 58
4.31 SafeScript compilation time works flow 59
4.32 Eclipse IDE error of an invalid SafeScript program 59

5.1 SafeRESTScript additional syntax (extends figure 4.1) 62
5.2 Translation of HeadREST specification: BJSK 64
5.3 Translation of expressions with type validation: V∗JeK(x) (extends fig-

ure 4.16) . 64
5.4 SafeRESTScript compilation time works flow 66
5.5 SafeRESTScript project structure . 67
5.6 Eclipse IDE error report in an invalid SafeRESTScript program 67
5.7 Eclipse IDE content assist in an REST call 67
5.8 Eclipse IDE quick fix example . 68

A.1 Disjunctive normal form types (DNF): D 87
A.2 Type normalisation: norm(T) = D . 88
A.3 Extraction of field type: D.l U . 88

xvi

A.4 Extraction of item type: D.Items U 89

xvii

List of Tables

2.1 Summary of the REST operations . 7

6.1 Comparison between Dafny and SafeScript execution time (in seconds) . 72

xix

Acronyms

ANTLR ANother Tool for Language Recognition
API Application Programming Interface
AST Abstract Syntax Tree
ATP Automated Theorem Proving
CoAP Constrained Application Protocol
CRUD Create, read, update and delete
DLS Domain-Specific Language
ECMA European Computer Manufacturers Association
FOL First-order logic
IDE Integrated Development Environment
IDL Interface Definition Language
JSON JavaScript Object Notation
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
LHS Left-hand side
MSON Markdown Syntax for Object Notation
OWL Ontology Web Language
RAML RESTful API Modeling Language
REST Representational State Transfer
RFC Request for Comments
SMT Satisfiability modulo theories
SOA Service-oriented architecture
SOAP Simple Object Access Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium
WADL Web Application Description Language
WSDL Web Services Description Language
WWW World Wide Web
XML Extensible Markup Language

xxi

YAML Ain’t Markup Language

xxii

Chapter 1

Introduction

1.1 Motivation

Architectural styles are the basis for a good software system. Richard Taylor says that they
"are a key technical ingredient in the creation and sustainment of a successful software
ecosystem" [68], which evidence the importance of have a good, suitable and maintain-
able architecture in the development of a software product or service, specially the ones
who intend to be scalable or integrable with others systems.

With the need of exchange information in web services, some web architectures and
protocols emerged with the service-oriented architecture (SOA) paradigm. The two that
are more distinguished, recognized and used by the community are REST architecture
and SOAP protocol. In the last decade, particularly due to the grow of the World Wide
Web [23], REST has become more and more prominent. Nowadays, 69% of the APIs are
handed on REST services [47]. Also, RESTful services are seen more flexible and with
more control, when directly compared with SOAP services [55]. Big software companies
like Facebook, Google and Microsoft have REST APIs endpoints to their more relevant
services [20, 30, 49], and some of them already retired their SOAP APIs [72].

With this in mind, we can anticipate the importance of REST in the current and future
days. With the current permanent grow of the web applications, the usage of the REST
architecture will scale as well. So, the necessity of reliability on RESTful applications is
an important and actual topic.

During the development of a RESTful application, it is mandatory to have a good
documentation about the API, so clients can use it without errors or doubts. Joop Aué
et al. reported that 74% of API consumers consult documentation often or very often [2].
There are tools that help developers to build strong documentation. For example, Open
API specification (swagger) [67] is one of the most popular. However, current tools have
several limitations regarding the description of data exchanged in REST calls. They do not
allow, for example, to describe some data as being a prime number, or establish a relation
between two parameters (except in the natural language). Microsoft Outlook Calendar

1

Chapter 1. Introduction 2

API [49] has a practical and common example: a time range input must have an end time
not before the respective start time.

On other hand, it is also important that the client side meets the web service specifi-
cation. A study in a large-scale payment company revealed that request data (for being
invalid or missing) causes the most faults for the respective API consumer [2].

In a general-purpose programming language, when a call is made to an external li-
brary, the compiler or interpreter checks whether the parameters have the right type. So,
why can’t we do have the same for REST calls? In the general case, it is not possible be-
cause there is not a standardization in the API specifications languages. There are some
tools that perform some verification in REST calls inside popular languages, however, as
expected, they required that the API specification must be done in their way. Wittern et
al. suggested very recently four important challenges for web API consumption, one of
them being this exact problem: web API clients don’t know if their calls are right until
runtime [80].

In the begin of this century, Tony Hoare proposed the creation of a Verifying Com-
piler as a grand challenge for the computing research, reinforcing that the "correctness
of computer programs is the fundamental concern of the theory of programming and of
its application in large-scale software engineering" [37]. Shortly, the major motivation
of this work is to contribute with verification and correction in an area where there are
several gaps in software reliability.

1.2 Context

This work was conducted at Large-Scale Informatics Systems Laboratory (LASIGE), a
research unit at the the Department of Informatics, Faculty of Sciences, University of Lis-
boa, in the context of project Communication Contracts for Distributed Systems Devel-
opment (CONFIDENT), supported by the Fundação para a Ciência e Tecnologia (FCT)
through the Project UID/CEC/00408/2013.

CONFIDENT [75] is a toolchain for effective construction and evolution of REST
APIs. In the context of this project was developed HeadREST, an expressive specification
language of REST APIs [74]. From that language two tools were developed: HeadREST-
TestTool [21], a tool to automatically test REST APIs from its HeadREST description;
and HeadREST-CodeGen [62], a tool to generate server and client-side code from a Head-
REST specification.

1.3 Objectives and Contributions

The first contribution is the reconstruction of the HeadREST language validator. Since its
implementation several major bugs were found, being some of them related with the lan-

Chapter 1. Introduction 3

guage core typing rules. The original language validator source code had a high complex-
ity, so it was decided to rebuild the validator from scratch, fixing errors and performing
some improvements, culminating in a new version of the language.

The second goal and contribution is the design and development of SafeScript lan-
guage, a JavaScript syntax based language equipped with types and a strongly type anal-
yses. It was developed a declarative type system and a translation to Boogie, which
is responsible for the semantic evaluation of the type system. SafeScript compiles to
JavaScript, so it can be used together with this.

The third contribution and main objective of this thesis work is the development of
SafeRESTScript, a client-side language for programming clients of REST applications.
The language is an extension of SafeScript and uses HeadREST specifications to ver-
ify REST calls: whether the URL of the call is a valid endpoint and whether the data
type exchanged and respective relations match the pre and post-conditions declared in the
specification.

The artifacts produced in this work are available at CONFIDENT web page [75], and
includes an Eclipse IDE plugin and a terminal version of SafeScript and SafeRESTScript
languages compiler and editor. Also, a summarize version of this work is published in [9].

1.4 Structure of the document

This document is organised as follows:

Chapter 2 Background & Related Work - Introduces fundamental concepts to the under-
stand of the problem. Reports similar languages, tools, and recent research related
to the topic of this thesis.

Chapter 3 HeadREST Specification Language - Presents the HeadREST specification
language, namely its syntax and validation rules. Includes some examples of spec-
ifications.

Chapter 4 SafeScript Language - Introduces the SafeScript language with its main ideas,
syntax, and some simple examples. Describes the validation phase, namely the
declarative type system and the translation to Boogie. Describes also the translation
to JavaScript and presents the language operational semantics. Finalizes with an
overview of SafeScript implementation.

Chapter 5 SafeRESTScript Language - Introduces the REST extension of SafeScript, its
additional syntax and semantic, and a simple example of a SafeRESTScript client.
Describes the novelties of the validation and translation phases, relatively to Safe-
Script. Ends with the integration of SafeRESTScript in SafeScript implementation,
and with some editor IDE features.

Chapter 1. Introduction 4

Chapter 6 Evaluation - Evaluates the designed languages, comparing them with similar
propose languages and tools. Presents a set of more complex examples of Safe-
Script and SafeRESTScript programmes. Enumerates the limitations of the lan-
guages, and from these suggests a plan for the future work.

Chapter 7 Conclusion - Summarizes the thesis, presenting the main contributions and
conclusions of this work.

Chapter 2

Background & Related Work

2.1 REST - Representational State Transfer

Roy Fielding introduced the concept of REST in his PhD thesis, describing it as an ar-
chitectural style for distributed hypermedia systems [24]. REST uses the most known
hypermedia system, the World Wide Web (WWW), to represent and exchange data, but
does not necessarily depend of it. REST was developed in parallel and together with the
Hypertext Transfer Protocol (HTTP), the WWW protocol, with the goal of using HTTP
as the main and most syntax appropriate protocol to make REST communications.

REST defines a few terms concerning its data elements. A resource is the abstraction
of the data or information in REST. More formally, a resource R is a function, MR(t),
that maps a time t to a set of entities, which can include resource identifiers and resource
representations. The former is an identifier that references unequivocally a particular
resource. A representation is basically a piece of information that captures a concrete state
of a resource. This can be accompanied with the representation metadata that describes
the representation itself. A resource can also have metadata with similar purposes and
may have multiples representations in different formats.

The main principles and constraints in the design of REST architecture are the follow-
ing [54]:

Stateless Interactions All REST communications must be stateless, therefore no state
must be saved and used from a REST call to another. Clients do not establish
permanent sessions when connecting to REST services.

Uniform Interface The interaction to all resources must be made through a uniform in-
terface and each available method of the interface must have a well-defined seman-
tics. This is the key feature that distinguishes the REST architectural from other
network styles; the next constraints are a consequence of this decision.

Addressability All resources must have an unique and stable identifier (e.g., an URL in
WWW).

5

Chapter 2. Background & Related Work 6

Self-Describing Messages Services interact using request and response messages that
contain the data exchanged and the metadata, i.e., the messages hold the information
about their own data.

Hypermedia Resources can have relations to each other. For example, a resource rep-
resentation can have an hyperlink to another resource, representing some relation
between the two resources.

An application that fulfills these constraints is called RESTful. Applications that use
the HTTP as the communication protocol take advantage of its syntax to make the ex-
changed messages more concise. The request message is composed by the URL of the
resource, the HTTP method, a body (that may not be present) and a set of header fields,
that must contain the media type of the body, if present. The response message contains
a three digit response code with the correspondent text message, header fields and a body
(also with the media type in the respective header).

HTTP includes several request methods, but for REST the more relevant ones are the
equivalent to the four CRUD operations (create, read, update, delete), the base operations
for persistence storage. They are formally described in RFC7231 [22]:

GET is the method for retrieving representations of one or more resources. It is a safe
method since it is not supposed to change the resources set, i.e., after a GET call
the data must not change. It is the CRUD equivalent to read operation.

POST is the target method for creating a new resource. The request should have a body
with the representation associated with the resource to be created. It is the only
method that is not idempotent, i.e., multiple equals sequential POST requests can
create multiple resources. It is associated with the CRUD create operation.

PUT is the method for creating or changing an already existent resource(s). In creation
utilization, the main different to the POST method (that also creates resources) is
the fact that this operation is idempotent, so multiple equal creation requests are
equivalent to a single request. In both cases the data is passed in the body. This
method is used for the update operation.

DELETE is the available method for removing a resource. The request should have URI
of the resource to be deleted in the header and no body. It corresponds to the CRUD
delete operation.

Table 2.1 shows a summary of the various methods. Note that the definitions intro-
duced may not be followed: REST is an architecture style and not a protocol or a standard.
So, the above definitions can be seen as the REST best practices and not as a must do.

Figure 2.1 shows the Dummy API [19], a simple API that applies the REST principles
to a CRUD application. Next, we present an example of a request to the Dummy API,
with the creation of a new employee.

Chapter 2. Background & Related Work 7

HTTP method CRUD operation Body in request Safe Idempotent
GET read Optional Yes Yes
POST create Yes No No
PUT update Yes No Yes
DELETE delete No No Yes

Table 2.1: Summary of the REST operations

Figure 2.1: Dummy API

POST /api/v1/create HTTP/1.1

Host: dummy.restapiexample.com

Content-Type: application/json

{"name": "test", "salary": "123", "age": "23"}

The first line contains the HTTP method, the relative path of the resource, and the
version of the protocol. The following two lines introduce the header fields: the host (the
first part of the resource URL), and the media type of the body. The last line contains the
body (necessary in this case because we are in the presence of a POST operation) with
the necessary operation data for the creation of an employee. One possible response to
this request is the following:

HTTP/1.1 200 OK

Content-Type: application/json

{"name": "test", "salary": "123", "age": "23", "id": "5407"}

It begins with the response status code (200), accompanied with its description (OK),
and with the protocol version. The second line contains the media type of the body, which
is the only response header field. After a blank line, the response contains the body with
a representation of the resource created.

From this simple example it becomes evident that the REST architecture matches very
well the HTTP protocol. This contrasts with SOAP: if a SOAP application uses HTTP
protocol for communication, it must only use POST method (not idempotent), which
encapsulates any action that must be described in the body [65].

As already explained, REST naturally uses the HTTP protocol, but being an architec-
ture style, it can be used with other protocols, specially for specific and more optimized

Chapter 2. Background & Related Work 8

applications. For example, the Constrained Application Protocol (CoAP) [64], a protocol
design specially for constrained networks (e.g., for low-power use), can be used to publish
RESTfull APIs in embedded systems [61].

2.2 Interface Definition Languages for RESTful Applica-
tions

We now present the most relevant existing Interface Definition Languages (IDLs) for
describing REST APIs.

RAML [59] is a language definition for RESTful APIs based on YAML version 1.2
[52], a human-friendly data serialization language. The goal of this language is
to provide API documentation for users, but it may also be used to create client or
server source code from specifications. It is equipped with different tools, including
one for automatic testing a REST application from its RAML specification.

API Blueprint [8, 70] uses markdown [32], a markup language design to simplify HTML,
to create a user-friendly documentation of RESTful APIs. It groups the actions by
each resource, and uses MSON, a markdown specially design for data structures, to
describe separately the data structures of the data exchanged. As in RAML, many
tools were developed to help build servers and clients from specifications.

Web Application Description Language (WADL) [78] is a language to describe HTTP-
based services, particularly oriented to REST applications. Based on XML, WADL
is particularly designed to machines, so less adequate to humans. WADL allows
the description of the set of resources, the relations among them, the HTTP meth-
ods that can be applied to the resources (with expected inputs and outputs and their
supported formats) and also supports media types and data schemes. It is currently
one of the languages recommended by the W3C [26].

Web Services Description Language (WSDL) [77] is another XML based language,
originally developed for SOAP APIs. The latest version (2.0) added the semantics
necessary to describe RESTful APIs. However, WSDL keeps a syntax specially
suited for SOAP calls, so, together with the fact that there is another XML based
language dedicated to REST APIs, WSDL is not recommend for REST.

SERIN [11] is an IDL to describe RESTful services using OWL semantics. The goal
of the language is to define abstract models using interfaces, so that, when a host
wants to implement a REST service, it must implement the interface described by
the specification. SERIN uses annotated ontologies to provide information about
the resources and their possible operations, using the OWL classes and properties
for that characterization.

Chapter 2. Background & Related Work 9

Open API specification [67] (formerly know as Swagger) is one of the most used lan-
guages for describing REST APIs. It may be written in JSON or YAML notations,
providing good readability both for humans and machines. It can describe the avail-
able endpoints and their HTTP operations, the input and output for each operation
(parameters schema, description, etc), methods of authentication and other impor-
tant information for the user client (contact information, terms of use, etc).

RESTyped [14, 16] is a specification language for REST services made from TypeScript
[50] annotations, more precisely from TypeScript description files. The notation is
very similar to JSON. It can describe the available operations for each path, the type
of the members of request (query, parameters, body, etc) and response. The types
available are those of JavaScript, including intersection and union types, allowing a
precise description of the API.

2.3 Static Verification in JavaScript Code

JavaScript is an interpreted language created by Netscape in 1996 with the goal of provid-
ing a more dynamic web [57]. It is the most popular web language for the development
of client-side applications, being the most used language in the GitHub software reposi-
tory [39].

There are languages and tools that help in statically detecting type-related errors re-
lated with types. Although these tools and languages do not directly involve REST calls,
they provide some verification that can be useful in coding REST clients. Some of them
are shortly described below.

TypeScript [50] is a superset of JavaScript created by Microsoft. Any valid JavaScript
code is a valid TypeScript code, and this code is always compiled to JavaScript, thus
enabling the use of other JavaScript frameworks. TypeScript introduces type anno-
tations in field declarations, which help the compiler to understand some possible
type errors. TypeScript also allows the creation of interfaces and classes, something
that was not possible in JavaScript until the ECMAScript 6 definition [18]. In short,
TypeScript helps in reducing the number of typing bugs in JavaScript code [28].

Dart [12] is an object-oriented class-based language that compiles directly to JavaScript.
Unlike TypeScript, Dart is a completely new language, so it is not possible to write
JavaScript code inside Dart (making code migration more difficult). It was design
for web applications, mainly at the syntax level, which tends to facilitate the design
of REST clients. It also has a good support for mobile applications.

Flow [38] is a static type checker for JavaScript developed by Facebook. It is very similar
to TypeScript, in terms of annotations and the kind of errors detected. Although not

Chapter 2. Background & Related Work 10

sold like that, flow is a new language, because the JavaScript interpreter doesn’t
support Flow annotations. The main difference when compared with TypeScript is
that Flow depends on external tools to remove the needed annotations [63]. Flow
was developed to be fast in the checking, thanks to its modularity and parallelization
in the code analysis [10]. It was reported that Flow detects the same amount of bugs
as TypeScript in JavaScript code [28].

JSHint [42] is a tool to detect errors and potential problems in JavaScript code. It stat-
ically analyses the code looking for syntax errors, leaking variables, invalid type
conversions, and more possible bugs. It does not require specific annotations for
verification, since it works with pure JavaScript code.

Parallel to these open-source projects, several researchers have proposed new solu-
tions to deal with the dynamic typing of JavaScript programs.

Peter Thiemann identified a subset of JavaScript, added a type system, and called the
result Core JavaScript [71]. This language predates those described above, but has similar
goals: detect typing errors. However, Thiemann proved the soundness of the type system,
a result that is not available for TypeScript.

Christopher Anderson et al. developed a similar system: a new language that is a
subset of JavaScript (with few additions) and features a type system [1]. However, the
goal of this language is to allow type inference, so type annotations may be omitted by
the programmer and inferred by the compiler. The type system was also proved sound.

Nordio et al. created Javanni, a verifier for JavaScript [51]. This tool simple parses
the JavaScript code to the Boogie language and then calls the Boogie verifier. Boogie [3]
is an intermediate verification language developed by Microsoft. It is design to accom-
modate the encoding of verification conditions for imperative object-oriented programs.
To discharge verification condition, Boogie uses Z3 [13], an efficient SMT solver, also
developed by Microsoft Research. So, discarding possible Boogie heuristics, the typing
bugs are caught by the SMT, and relayed to Javanni that alerts the error directly in the
JavaScript code. The major advantage of using Javanni as opposed to previous tools is the
fact that it deals directly with JavaScript code and does not require code annotation.

Vekris et al. developed Refined TypeScript, a lightweight refinement type system for
TypeScript [76]. It can statically detect common runtime problems, e.g., in the areas of
array safety, reflection, and down-casts. Regarding the validation, refinements are reduced
to verification conditions, so the subtyping validation can be achieved with the help of an
SMT solver.

Chapter 2. Background & Related Work 11

2.4 Static Verification of REST Calls

The previous examples are a small set of the many works on static verification of Java-
Script code. It is the principal research topic for this client-side language in the last
years [66]. When compared to research concerning the verification of consumer code
of REST APIs in JavaScript (or in similar client-side languages) the number goes down
dramatically, and the solutions proposed tend to be very limited.

Wittern et al. propose an approach to statically check web API requests from Java-
Script code [81]. They focus on ajax requests made using the jQuery library [41], al-
though JavaScript supports different forms of REST APIs requests [33]. The tool aims
at detecting bugs in two ways: checking whether the endpoints URLs calls match a valid
URI template defined in a swagger specification, and checking whether the request data
(both payload data and query parameters) are as expected. The tool uses a field-based call
graph to make the necessary string analyses on the JavaScript method calls. Figure 2.2
shows an example of data flow in a context of a jQuery REST request. The URL is formed
from variables defined outside the function scope, so a flow analyses is needed to build
the URL. Note that no type verification is performed. The tool was tested with more than
6000 request from GitHub code, and had a general precision above 90%.

Figure 2.2: JQuery REST call example, from [81]

Dezfuli-Arjomandi developed RESTyped Axios, a client-side tool that verifies REST
calls against a RESTyped specification [15, 16]. The code must be written in TypeScript
and the requests must be made using the Axios framework [82]. It checks at compile time
whether the URLs are valid and if the types of the members passed on the request and
accessed on response correspond to the ones declared in the specification. An example of
the specification of the Dummy API in RESTyped is the following.

1 interface Employee {

Chapter 2. Background & Related Work 12

2 name: string

3 salary: string

4 age: string

5 }

6

7 interface EmployeeWithId {

8 name: string

9 salary: string

10 age: string

11 id: string

12 }

13

14 export interface DummyAPI {

15 ’/employee/:id’: {

16 GET: {

17 params: {

18 id: string

19 }

20 response: EmployeeWithId

21 }

22 }

23 ’/create’: {

24 POST: {

25 body: Employee

26 response: EmployeeWithId

27 }

28 }

29 //...

30 }

An example of a client of this API using the RESTyped Axios is presented next. The
field name is declared as a string (line 8 above). If, for example, line 8 below is replaced
by name: 789, then a typing error is thrown during the compilation process.

1 import axios from ’restyped-axios’

2 import {DummyAPI} from ’./dummyAPI’

3

4 const client = axios.create<DummyAPI>(

5 {baseURL: ’http://dummy.restapiexample.com/api/v1’})

6

7 client.post(’/create’, {

8 name: "test",

9 salary: "123",

10 age: "23"

11 })

In short, the lack of available research in this area and solutions to the problem, to-

Chapter 2. Background & Related Work 13

gether with the fact that this is a topic of utmost importance in the software development
process, suggest the difficulty of finding solutions to statically analyze REST clients.

Chapter 2. Background & Related Work 14

Chapter 3

HeadREST Specification Language

In this chapter it is present HeadREST, a specification language for REST APIs. The
language was already design, implemented [21], and publish [74]. Several bug were
found in the language validator, some of them related with the core typing rules, so a
new language validation algorithm is presented here, culminating in a new version of
HeadREST language.

3.1 Basic Ideias

The main goal of the HeadREST specification language is to support the description of
the operations in a REST API. It is based on two key ideas:

• Types to express properties of states and of data exchanged in interactions;

• Pre and post-conditions to express the relationship between data sent in requests
and those obtained in responses, as well as the resulting state changes.

Pre and post-conditions relations are expressed using Hoare Triples, a mathematical
logical notation proposed by Tony Hoare [35]. Adapting this notation to our propose
results in assertions composed by four parts:

{e1} m u {e2} (3.1)

1. e1, a boolean expression that establishes the pre-condition;

2. m, the HTTP method of the corresponding REST request (currently, the supported
methods are get, post, put and delete);

3. u, an URI template that, according to the pre-condition, expands to a valid API
endpoint;

4. e2, a boolean expression that establishes the post-condition.

15

Chapter 3. HeadREST Specification Language 16

The typing system and its rules are based on the Dminor language [7]. This first-order
functional language has two type primitives that accounts for its expressiveness:

• Refinement types, x:T where e, consisting of values x of type T that satisfy prop-
erty e;

• A predicate, e in T, which returns true or false depending on whether the value
of expression e is or is not of type T.

Refinement types were introduced by Freeman and Pfenning with the application to
the language ML [27]. Hayashi describes a refinement type has a subset of an ordinary
type, but not necessarily a subtype of this [34]. Figure 3.1 shows possible refinements of
the integer type and their relation, using the set interpretation.

Int

{x : Int | x is even} {x : Int | x is prime}

A = {x : Int | x = 2}

A

Figure 3.1: Refinement types as sets: an example with an integer type

Refining a type allow us to reduce the possible values of a type. In most imperative
languages, method declarations are accompanied by descriptions, which sometimes in-
clude restrictions. Figure 3.2 introduces an example in the Java programming language,
where is necessary to restrict the possible values of the arguments.

Figure 3.2: Example of a method javadoc with requires clause

The arguments restrictions are addressed to humans only, since the standard Java com-
piler ignores them. Using the refinement types it is possible to restrict the type of the

Chapter 3. HeadREST Specification Language 17

parameters, (i: int where 0 <= i && i < graph.length), providing more informa-
tion for the compiler to detect type errors. Similar problems happen in basic expressions,
for example when accessing an array object that must lie within array bounds or when
performing an integer division, where the divisor must be non-zero.

In REST applications it is also common to restrict the types of the request data as well
as the response data as a function of the request. Below is the same example, but as an
HeadREST specification for an hypothetical Dijkstra REST API endpoint:

1 specification GraphLand

2

3 // a matrix

4 type Graph = (g: Integer[][] where

5 forall i: Integer . 0 <= i && i < length(g) ==>

6 length(g[i]) == length(g))

7

8 {

9 request in {body: Graph} &&

10 request.template.node in

11 (i: Integer where 0 <= i && i < length(request.body))

12 }

13 get ‘/dijkstra/{node}‘

14 {

15 response.code == 200 &&

16 response in {body: (a: Integer[] where

17 length(a) == length(request.body) &&

18 a[request.template.node] == 0)}

19 }

First, we declare the representation of the graph as a type, in this case a simple matrix.
Next, we show the success case, where the input corresponds exactly what is expected
in the pre-condition: a body with a graph in the specified format, and the initial node
parameter as an integer within the graph bounds. If these conditions are met, then the
post-condition must apply: the response code must be 200 (OK) and the response body
must contain an array with the length of the input graph, where the distance to the source
node should by 0. These last conditions show the dependency of the response format with
respect to the request. Other assertions can be written for the cases where the node index
is out of bounds or the body is not in the right format. In such cases the response body
and code should certainly have different types.

This example demonstrates that the dependency on types can be naturally described
using refinement types, which demonstrates the power, expressiveness, and usefulness of
including them in the HeadREST specification language.

Although this is a valid example of a REST endpoint, the endpoint described does
not exactly match the spirit of the REST architecture. The URL is not a resource, so
the operation does not manipulate a resource. In this case the operation is get, so it is

Chapter 3. HeadREST Specification Language 18

expected to return a resource representation in the body, but instead it returns the result of
a static operation that does not depend or change the resource set.

3.2 A Running Example

For a more realistic example, we consider again the Dummy API [19]. Below, we meet a
partial specification of one of its endpoints.

1 specification DummyAPI

2

3 resource Employee

4

5 type EmployeeRequest = {name: String, salary: String, age: String}

6 type EmployeeRepresentation = EmployeeRequest & {id: String}

7

8 // Creation of an employee, the successful case

9 {

10 request in {body: EmployeeRequest} &&

11 (forall e: Employee .

12 (forall eR: EmployeeRepresentation .

13 eR repof e => eR.name != request.body.name

14)

15)

16 }

17 post ‘/create‘

18 {

19 response.code == 200 &&

20 response in {body: EmployeeRepresentation} &&

21 response.body.name == request.body.name &&

22 response.body.salary == request.body.salary &&

23 response.body.age == request.body.age &&

24 (exists e: Employee . response.body repof e)

25 }

It is possible (and sometimes desirable) to separate the specification of each endpoint
in two: description of the data exchanged and description of the state, in terms of its
resources. In this example, for the creation of a new employee the request data must have
a body with a EmployeeRequest (line 10), that is by type definition, an object with fields
name, salary, and age. If the pre-condition is satisfied, then the specification expects a
response with the code 200 and with a body of the type EmployeeRepresentation, equal
to EmployeeRequest but additionally with the field id, where all fields except this last one
are equal to the ones send in request body (lines 19-23).

For describing the resource set it is declared the types of resources that exist in
the system. The example declares the resource Employee in line 3, and also the type

Chapter 3. HeadREST Specification Language 19

EmployeeRepresentation, the only representation of this resource. The pre-condition in-
cludes a restriction on the state of the resource set: the name of the employee to be created
must not be equal to any name of any representation of a Employee (lines 11-15). The
post-condition also has guarantees that the body of the response is a representation of a
resource (line 24).

This example shows how to issue a valid request to this endpoint. In general, each
endpoint may have multiple successful cases, depending of the input sent in the request
or the state of the resource set, and each can be described using additional Hoare triples
for same endpoint URL and method. It is also possible and important to describe the
unsuccessful cases of a call. Below is specified one of the unsuccessful cases of the
employee creation endpoint, where the request includes an employee name equal to an
existing name.

25 type ErrorMessage = {error: {text: String}}

26

27 // Creation of an employee, unsuccessful case: name already exists

28 {

29 request in {body: EmployeeRequest} &&

30 (exists e: Employee .

31 (exists eR: EmployeeRepresentation .

32 eR repof e && eR.name == request.body.name

33)

34)

35 }

36 post ‘/create‘

37 {

38 response.code == 200 &&

39 response in {body: ErrorMessage}

40 }

The pre-conditions of triples over a same pair HTTP method - URI template may
intersect each other, resulting in calls where possible multiple post-condition apply. In this
example, and according to the DummyAPI [19], if the the request body is well formed
the status code in the response is always 200, regardless of whether the employee was
created or not. Note that in the post-condition of both triples the response code is ensure
to be 200, but in this last, as the resource was not created, by the REST architecture style
it should be a 4XX error, which report a client error. The triple described below asserts
that, if the body of the call is as expected, then the response code should be 200. In fact,
these two triples could omit the specification of the response code in the post-condition if
we add the following triple.

40 // Creation of an employee, general response code

41 {

42 request in {body: EmployeeRequest}

43 }

Chapter 3. HeadREST Specification Language 20

44 post ‘/create‘

45 {

46 response.code == 200

47 }

3.3 Syntax

The syntax and the validation system of HeadREST are heavily influenced by Dminor
language [7]. Adaptations and additions to Dminor types, expressions and their respective
validation rules were made to address the specific needs of REST.

3.3.1 Core Syntax

The HeadREST core syntax is presented in figure 3.3.

Expression e ::= x | c | ⊕(e1, . . . , en) | e1 ? e2 : e3 | e in T

| {l1 = e1, . . . , ln = en} | e.l | [e1, . . . , en] | e1[e2]
| forall x : T . e | exists x : T . e

Scalar constant c ::= n | s | true | false | u | r | null

Type T ::= Any | G | {} | {l : T} | T [] | (x : T where e) | α
Basic type G ::= Integer | String | Boolean | Regexp | URITemplate

Verb m ::= get | put | post | delete

Specification S ::= ε | var x : T S | resourceα S | {e1}mu {e2} S

Figure 3.3: HeadREST syntax

Dminor has three scalar types Integer, String and Boolean. HeadREST added two
new scalar types: URITemplate, necessary to represent a service endpoint, or a group
of resources URIs, and Regexp, representing regular expressions, important to add extra
expressiveness to string operations. Arrays (T[]) substitute Dminor bags, so that an order
between elements might be established and enabling indexed access, aspects very relevant
in the data exchanged in REST applications. The empty object type ({}) was added in
order to enable empty objects and to provide a super type for all objects. The resource
type (α) is particularly useful, since REST uses resources to represent data. Any is the top
type.

To Dminor integer, string, and boolean scalar constants the null value was added.
The null is a value of Any type and it is not a value of the object types. To inhabit the
Regexp and URITemplate types two scalar constants were added: regular expressions and
URI templates values. The regular expression of HeadREST form a subset of those in

Chapter 3. HeadREST Specification Language 21

JavasScript (defined in ECMAScript [69]). The syntax of URI Templates is conform to
RCF-6570 [31], and is defined in figure 3.4.

URI Template u ::= ‘t‘

Term t ::= ε | l t | {v, . . . , v} t | {?v, . . . , v} t
Literal l ::= ([ˆ"’%<>\ˆ‘{|}] | %[0-9A-F]{2})+

Variable v ::= ([0-9A-Z_a-z]|%[0-9A-F]{2})([.0-9A-Z_a-z]|%[0-9A-F]{2})*

Figure 3.4: The syntax of URI templates

Expressions are those of Dminor, except the array literal and array access that replace
the expressions for bags. Two further expressions were added: the forall and exists

quantifiers. They are mandatory when expressing constraints related to resources and
their representations. They also help in the declarative description of arrays and are also
useful for the expressiveness of refinement of types. For example, the type that represents
all prime numbers can only be represented using quantifiers:

1 type Prime = (x: Integer where x > 1 &&

2 forall i: Integer. 1 < i && i < x ==> x % i != 0)

HeadREST also inherits the primitive operators of Dminor, and adds a few more.
Figure 3.5 introduces all HeadREST primitive operators and their type signatures.

<=> : Boolean,Boolean→ Boolean

| : Boolean,Boolean→ Boolean

==: Any,Any→ Boolean

< : Integer, Integer→ Boolean

> : Integer, Integer→ Boolean

repof : Any, α→ Boolean

+: Integer, Integer→ Integer

++: String, String→ String

%: Integer, Integer→ Integer

! : Boolean→ Boolean

length : Any []→ Integer

expand : URITemplate, {} → String

=> : Boolean,Boolean→ Boolean

&: Boolean,Boolean→ Boolean

! =: Any,Any→ Boolean

<=: Integer, Integer→ Boolean

>=: Integer, Integer→ Boolean

uriof : String, α→ Boolean

− : Integer, Integer→ Integer

∗ : Integer, Integer→ Integer

/ : Integer, Integer→ Integer

− : Integer→ Integer

size : String→ Integer

matches : Regexp, String→ Boolean

Figure 3.5: Operators signatures: ⊕ : T1, . . . , Tn → T

Functions length and size determine, respectively, the length of an array and the size
of a string, two internal and immutable features of each literal; matches checks whether

Chapter 3. HeadREST Specification Language 22

a string matches a regular expression, and expand performs the URI template expand
operation as defined in RFC-6570 [31]. Two infix operators were added to manipulate
resources: repof and uriof. The former checks whether a given value is a representation
of some resource. The latter checks whether a given string is an URI that identifies a
specific resource. As demonstrated in the examples, these two operators are important to
describe the state of the resource set, namely to state pre-conditions involving the resource
set, or to describe changes of the resource set after the call.

A HeadREST specification consist in three type of declarations: variable declarations
(var x: T), resource declarations (resource a), and assertions (Hoare Triples) that de-
scribes the behavior of an endpoint. Currently HeadREST supports the four principal
HTTP methods: get, post, put and delete.

3.3.2 Derived Syntax

Although HeadREST has a small core of types, these types together with HeadREST
expressions, are quite expressive, due to the interplay between refinement types and the
it predicate. Many other useful types are derivable, several of them that are primitive in
other programming languages. Figure 3.6 shows some of them, where fv(·) represents the
free variables of an expression or type.

[e : T] , (x : T where x == e) x /∈ fv(e)

[e] , [e : Any]

T | U , (x : Any where (x in T | x in U)) x /∈ fv(T, U)

T & U , (x : Any where (x in T & x in U)) x /∈ fv(T, U)

!T , (x : Any where !(x in T)) x /∈ fv(T)

‖e‖ , (x : Any where e) x /∈ fv(e)

if e then T else U , (T where e) | (U where !e)

{?l : T} , (x : {} where x in {l : Any} ⇒ x in {l : T}) x /∈ fv(T)

{?l1 : T1, . . . , ?ln : Tn} , {?l1 : T1}& . . .&{?ln : Tn} where ? is ? or ε n ≥ 2

Natural , (x : Integer where x ≥ 0)

Empty , (x : Any where false)

Figure 3.6: Type abbreviations

The operator e in T is essential for the expressiveness of the type system. The in-
tersection, union and negation types are derived using this operator, and these types are
the basis for many other derived types. The important multi-field object type can be de-
rived thanks to the intersection type. For example, {l: Integer, m: Boolean} abbrevi-

Chapter 3. HeadREST Specification Language 23

ates the type (x: Any where (x in {l: Integer} & x in {m: Boolean}), which only
uses core types. Another important derived type is the optional field type, {?l: T}. Ac-
cording to the definition in RCF, URI templates can have optional variables, as seen in
the last term of URI Template syntax (figure 3.4). So the type of these variables can only
be represented with this derived type, which asserts that if an object has a field l then its
type is T.

The derived singleton type, [e], is particular to refinement types. In HeadREST each
type can be seen as a set of values. A singleton type allows to restrict the type of an
expression to a singleton set. Normally in a standard programming language, an ex-
pressions such as 7 * (2 + 4) has simply the type Integer. In HeadREST, using the
singleton type, the same expression has the type [7 * (2 + 4)], which is equivalent to
(x: Any where x == 42).

The derived expressions of HeadREST are presented in figure 3.7. The function
isdefined checks whether an object has a given field. Other three are boolean short-
cut operators.

isdefined(e.l1.l2 . . . ln) , e in {l1 : {l2 : {. . . {ln : Any} . . . }}
e && f , e ? f : false

e || f , e ? true : f

e =⇒ f , e ? f : true

Figure 3.7: Derived expressions

In what concerns declarations, HeadREST supports type aliases: type X = T . Occur-
rences of the type identifier X are directly replaced by T in the rest of the specification,
without the creation of a new type. This and other declarations can appear in any order,
but each only affects the declarations that apper after, so the order is relevant.

3.4 Validation

3.4.1 Algorithmic Type Checking

Typing checking is the more difficult and complex part of validating an HeadREST spec-
ification. Figure 3.8 introduces additional syntax necessary for the validation algorithm:
a variable context Γ that maps variables in scope to their declared types, and a resource
context ∆, a list of resources.

Type validation is made via a bidirectional system of rules, composed by two main
relations: one that synthesizes the type of each expression and one that checks whether
an expression is of a given type. Additionally, there are rules to check the good formation

Chapter 3. HeadREST Specification Language 24

Variable context Γ ::= ε | Γ, x : T

Resource context ∆ ::= ε | ∆, α

Figure 3.8: Validation contexts

of the contexts, types, and specifications, as well as a rule for the subtyping relation.
Figure 3.9 summarizes the judgments of the algorithmic type system.

∆ ` Γ ≡ in ∆, context Γ is well formed Figure 3.10
∆; Γ ` T ≡ in ∆; Γ, type T is well formed Figure 3.11

∆; Γ ` e � T ≡ in ∆; Γ, expression e synthesizes type T Figure 3.12
∆; Γ ` e � T ≡ in ∆; Γ, expression e checks against type T Figure 3.13

∆; Γ ` S ≡ in ∆; Γ, specification S is well formed Figure 3.14
` u_ T ≡ URI template u synthesizes type T Figure 3.16

∆; Γ ` T <: U ≡ in ∆; Γ, type T is a subtype of type U Figure 3.17

Figure 3.9: Judgments of the algorithmic type system

The first relation, presented in figure 3.10, verifies whether a variable context is well
formed given the resource context. Note that the variable context can reference resources,
namely in the types of the variables, but not the contrary.

∆ ` ε
∆; Γ ` T x /∈ Γ

∆ ` Γ, x : T

Figure 3.10: Algorithmic context formation: ∆ ` Γ

The validation checks whether types of each variable are well formed. To check
whether a type is well formed, it is used the second relation, whose rules are presented in
figure 3.11.

∆; Γ ` Any ∆; Γ ` G ∆; Γ ` {}
α ∈ ∆

∆; Γ ` α

∆; Γ ` T
∆; Γ ` T []

∆; Γ ` T
∆; Γ ` {l : T}

∆; Γ ` T ∆; Γ, x : T ` e � Boolean

∆; Γ ` (x : T where e)

Figure 3.11: Algorithmic type formation: ∆; Γ ` T

Chapter 3. HeadREST Specification Language 25

The only type that actually needs a type validation is the refinement type, where the
expression must be a boolean condition given the variable context loaded with the bind of
the refinement. The type presented in the bind must be well formed in order to be added
to the variable context. The other rules check whether the types within the main type (if
any) are well formed, except the resource type rule that checks whether the resource is
included in the resource context.

Type synthesis of an expression is defined by the rules in figure 3.12. In general,
the rules use the check against rule to check whether the expression arguments have the
expected type. The rules synthesize the singleton type of each expression (or the most
precise type). This type is accompanied with a less precise type for better error reporting.
For example, in the Synth Const rule, and for the Integer expression 1, it is not synthesize
the type (x: Any where x == 1), but the equivalent type (x: Integer where x == 1).
It is introduced a single rule for all scalar constants, with function typeof(c) yielding the
primitive type of the scalar constant c.

The ternary operator has the particularity of passing the information of the condition
to each of its branches. In other words, in the evaluation of the true branch the fact that
the condition e1 is true is added to the context, and in the evaluation of the false branch
the fact that the condition e1 is false is added to the context. This is done in the rule Synth
Cond by adding a dummy variable to the context, whose type is ‖e1‖ or ‖!e1‖. Recall from
figure 3.6 that ‖e‖ stands for the type (x : Any where e). For example, if obj is a variable
with the type {} then the expression obj in {l: boolean} ? obj.l : false is valid,
since the formation of obj.l is guaranteed by the condition that obj has the field l. An
expression with the same meaning can be written as the conjunction short-cut operator:
obj in {l: boolean} && obj.l.

The object and array access rules require type extraction. For the object field access,
first the type of the object is synthesized, then this type is normalized to a Disjunctive
Normal Form (DNF) and from the DNF type the type of the field is extracted. The DNF
type syntax, D, the normalization rules, norm(T), and the extraction rules, D.l U and
D. items U , are from Dminor and are presented in Appendix A. Adaptations where
needed in the extraction rules to support arrays instead of Dminor bags.

These rules have a problem: they are partial, so they do not work on all cases. The
normr(T) function of the type normalization, that is responsible for normalize refinement
types, only extract types from some expressions, missing the ternary operator, for exam-
ple. To work around this situation, it is possible to, in the case an unsuccessful extraction,
make an additional check if the object expression has that access: ∆; Γ ` e � {l : Any}.
If the check is positive, then it is synthesized a type with only the singleton of the expres-
sion, which is a type equivalent to the one synthesize if the extraction were successful.

Array access rules checks whether the index has an in-bounds integer type ensuring
that the access is valid.

Chapter 3. HeadREST Specification Language 26

(x : T) ∈ Γ

∆; Γ ` x � [x : T] ∆; Γ ` c � [c : typeof(c)]
(Synth Var, Synth Const)

⊕ : T1, . . . , Tn → T ∆; Γ ` ei � Ti ∀i ∈ 1..n

∆; Γ ` ⊕(e1, . . . , en) � [⊕(e1, . . . , en) : T]
(Synth Operator)

∆; Γ ` e1 � Boolean ∆; Γ, _ : ‖e1‖ ` e2 � T2 ∆; Γ, _ : ‖!e1‖ ` e3 � T3
∆; Γ ` (e1 ? e2 : e3) � (if e1 then T2 else T3)

(Synth Cond)

∆; Γ ` T ∆; Γ ` e � Any

∆; Γ ` e in T � [e in T : Boolean]
(Synth Test)

∆; Γ ` ei � Ti ∀i ∈ 1..n

∆; Γ ` {l1 = e1, . . . , ln = en} � {l1 : T1, . . . , ln : Tn}
(Synth Obj)

∆; Γ ` e � T norm(T) = D D.l U

∆; Γ ` e.l � [e.l : U]
(Synth Dot)

∆; Γ ` ei � Ti T = T1 | . . . | Tn (n > 0,Any when n = 0) ∀i ∈ 1..n

∆; Γ ` [e1, . . . , en] � [[e1, . . . , en] : T []]
(Synth Array)

∆; Γ ` e1 � T norm(T) = D D. items U
∆; Γ ` e2 � (i : Natural where i < length(e1))

∆; Γ ` e1[e2] � [e1[e2] : U]
(Synth Array Elem)

∆; Γ ` T ∆; Γ, x : T ` e � Boolean

∆; Γ ` forall/exists x : T . e � [(forall/exists x : T . e) : Boolean]
(Synth Quantifier)

Figure 3.12: Algorithmic type synthesis: ∆; Γ ` e � T

The check against system are presented is figure 3.13. The principal rule is the Check
Swap. It can be applied to any type: the type of the expression is synthesized and then it is
compared against the expected type using subtyping. The algorithm works only with this
single rule, the other three were added because they provide in practice a better precision
in the type-checking, according to Bierman et al [7], and yield better error messages.
They also help in not reach the synthesis rules of object and array access that have a
partial extraction.

This bidirectional system of synthesis and check against is responsible for type-check-
ing expressions, including those inside refinement types. In HeadREST it is used for
checking the pre and post-condition of each assertion. Variable and resource declarations
have the responsibility of setting the variable and resource context. Figure 3.14 presents
the rules for checking the good formation of a HeadREST specification.

Chapter 3. HeadREST Specification Language 27

∆; Γ ` e1 � Boolean ∆; Γ, _ : ‖e1‖ ` e2 � T ∆; Γ, _ : ‖!e1‖ ` e3 � T

∆; Γ ` (e1 ? e2 : e3) � T
(Check Cond)

∆; Γ ` e2 � (x : Natural where x < length(e1))
∆; Γ ` e1 � (a : Any [] where a[e2] in T)

∆; Γ ` e1[e2] � T
(Check Array Elem)

∆; Γ ` e � {l : T}
∆; Γ ` e.l � T

∆; Γ ` e � T ∆; Γ ` T <: U

∆; Γ ` e � U
(Check Dot, Check Swap)

Figure 3.13: Algorithmic type checking: ∆; Γ ` e � T

∆; Γ ` ε
∆; Γ ` T ∆; Γ, x : T ` S

∆; Γ ` var x : T ;S

∆, α; Γ ` S
∆; Γ ` resourceα;S

∆; Γ ` S ` u_ T ∆; Γ, request : Request &T, root : String ` e1 � Boolean
∆; Γ, request : Request &T, response : Response, root : String, _ : ‖e1‖ ` e2 � Boolean

∆; Γ ` {e1}mu {e2};S

Figure 3.14: Algorithmic specification formation: ∆; Γ ` S

For the evaluation of the pre and post-conditions three variables are added: request

and response variables that correspond to the call and respective response, and root which
is the absolute URL of the service. The request and response types are described in
figure 3.15, and are according to the HTTP format presented in section 2.1.

Request , {location : String, ?template : {}, header : {}, ?body : Any}
Response , {code : Integer, header : {}, ?body : Any}

Figure 3.15: Request and response types

To the Request type we add the type extracted from the URI template of the assertion.
The URI template contains a set of variables (possibly empty) that must be substituted by
their values to execute the call to a valid endpoint URL. The values of these variables can
be accessed via the field template of the request variable. Figure 3.16 introduces the rules
for type extraction from an URI template. Note that no type is extracted from the optional
variables, since they are not guaranteed to be present.

For the evaluation of the post-condition we consider that the pre-condition holds, so
a dummy variable is added for that purpose. This simplifies the post-condition, since

Chapter 3. HeadREST Specification Language 28

` t_ T

` ‘t‘ _ T ` ε_ {}
` t_ T

` l t_ T

` t_ T

` {?v1, . . . , vn} t_ T

` t_ T

` {v1, . . . , vn} t_ T & {template : {v1 : Any, . . . , vn : Any}}

Figure 3.16: URI template type extraction: ` u_ T

it does not need to restrict again the type of the request variable. However, resource
operations (repof and uriof) may change after the call and therefore a expression with
these operators may have two different values in pre and post-conditions of the same
triple. So, when the pre-condition is placed in the content of the post, both operations
are encapsulated with an internal operator pre (an uninterpreted operation), permitting
distinguish values from before and after the call is done.

Finally, for this system to work it is necessary a subtyping algorithm; its rules are
presented in figure 3.17. There are two types of rules: a semantic rule, the last in the
figure, and the syntactic rules, all the others.

∆; Γ ` T <: Any ∆; Γ ` G <: G
(Subt Any, Subt Scalar)

∆; Γ ` {} <: {}
∆; Γ ` T <: U

∆; Γ ` {l : T} <: {l : U}
(Subt Empty Obj, Subt Obj)

∆; Γ ` {l : T} <: {}
∆; Γ ` T <: U

∆; Γ ` T [] <: U []
(Subt Nonempty Obj, Subt Array)

∆; Γ ` T <: U

∆; Γ ` (x : T where e) <: U ∆; Γ ` α <: α
(Subt Refine, Subt Resource)

x /∈ dom(Γ) � (F′JΓK ∧ F′JT K(x))⇒ F′JUK(x)

∆; Γ ` T <: U
(Subt Semantic)

Figure 3.17: Algorithmic subtyping: ∆; Γ ` T <: U

The presence of refinement types and the in predicate does not allow a syntactic ap-
proach to subtyping. So a semantic rule is included, where the subtyping relation, together
with variable and resource context, is transformed into a first order logic formula to be
checked by an SMT solver. Details of this transformation are presented in next subsection.

The semantic rule handle all subtyping goals, and by itself is sufficient for the algo-
rithm to work. However, we added a set of syntactic rules. These are applied whenever
possible before the semantic rule, trying to solve the subtyping rule without using the
SMT solver, which is a time costly operation.

Chapter 3. HeadREST Specification Language 29

For each set of rules, it is considered in what context the rules are called, to remove
redundant checks in the precondition of some rules. This happens particularly with the
context formation rules. Figure 3.18 presents a top formation rule for specification that
checks the formation of the contexts before checking the specification. This allows to
remove all context validations from the algorithm rules, since all variables and resources
added to the context are guaranteed valid by other checks, as happens for example in the
rule Synth Quantifier (figure 3.12) or the refinement type formation (figure 3.11).

∆ ` Γ ∆; Γ ` S
∆; Γ t̀ S

Figure 3.18: Algorithmic specification formation (top level): ∆; Γ t̀ S

3.4.2 Semantic Subtyping

In HeadREST type system, a type T is subtype of U if and only if all values that belong
to T also belong to U . The subtyping rule uses function F′JT K(e), which transforms the
expression e in T into a first order logic formula. So, if for all x, F′JT K(x)⇒ F′JUK(x),
then T is a subtype of U .

FOL formulas are evaluated using an SMT solver. Our implementation uses Z3, an
efficient SMT solver developed by Microsoft [13]. The procedure of the translation is
based on Bierman et al. work [7]. Figure 3.19 shows the translation for the in type relation,
where t is a FOL term.

F′JAnyK(t) = true

F′JIntegerK(t) = In_Integer(t)

F′JBooleanK(t) = In_Boolean(t)

F′JStringK(t) = In_String(t)

F′JURIK(t) = In_URITemplate(t)

F′JRegexpK(t) = In_Regexp(t)

F′JαK(t) = Good_R(t) ∧ is_resource_of(t, α)

F′JT []K(t) = Good_A(t)∧
(∀i : int. array_has_value(t, i)⇒ F′JT K(v_nth(t, i))

F′J{}K(t) = Good_O(t)

F′J{l : T}K(t) = Good_O(t) ∧ v_has_field(t, l) ∧ F′JT K(v_dot(t, l))

F′J(x : T where e)K(t) = F′JT K(t) ∧VJ[t/x]eK = VJtrueK

Figure 3.19: Type to FOL: F′JT K(t)

Chapter 3. HeadREST Specification Language 30

The translation uses auxiliary predicates, uninterpreted functions and axioms that can
be found in appendix B. They are described using the standard SMT-LIB 2 syntax [4].
The axiomatization is provided to the SMT when a subtyping goal is evaluated. The
variable context is also added to the evaluation of the relation, as showed in the rule Subt
Semantic (figure 3.17). Figure 3.20 presents the transformation of variable contexts into
FOL formulas.

F′JεK = true

F′JΓ, x : T K = F′JT K(x) ∧ F′JΓK

Figure 3.20: Variable context to FOL: F′JΓK

The refinement type contains an arbitrary expression, so all expressions must be trans-
formed to formulas. Figure 3.21 presents VJeK, the transformation of HeadREST expres-
sions into Value, a datatype common to all values: scalar constants, arrays, objects, regular
expressions, URI template ans resources. This datatype is defined in the axiomatization
(appendix B).

VJforall x : T . eK = G_Boolean(∀x.(F′JT K(x)⇒ VJeK = VJtrueK))
VJexists x : T . eK = G_Boolean(∃x.(F′JT K(x) ∧VJeK = VJtrueK))

VJe1 ? e2 : e3K = ifVJe1K = VJtrueK thenVJe2K elseVJe3K
VJ⊕(e1, . . . , en)K = VJ⊕K(VJe1K, . . . ,VJenK)

VJe in T K = G_Boolean(F′JT K(VJeK))
VJe1[e2]K = v_nth(VJe1K,VJe2K)

VJe.lK = v_dot(VJeK, l)
VJ{l1 : e1, . . . , ln : en}K = O({l1 7→ VJe1K, . . . , ln 7→ VJenK})

VJ[e1, . . . , en]K = A({0 7→ VJe1K, . . . , n− 1 7→ VJenK}, n)

VJtrueK = v_tt

VJfalseK = v_ff

VJnK = G_Integer(n)

VJsK = G_String(s)

VJrK = G_Regexp(r)

VJuK = G_UriTemplate(u)

VJnullK = v_null

VJxK = x

Figure 3.21: Expressions to FOL: VJeK

Chapter 3. HeadREST Specification Language 31

The boolean and integer scalar constants are translated to the respective SMT primi-
tive value. String and regular expressions values use operations in the Z3str3 solver [5].
Arrays and objects are translated to maps, the former from integers to values, and the lat-
ter from string to values. URI template values are decomposed in their atomic variables
and literals, so that the expand operation may be performed primitively. The operations
are translated using functions from the axiomatization (figure 3.22). Exceptions are the
operators that involve resources, repof and uriof, and the internal pre operator, which
are uninterpreted functions.

VJ<=>K = O_Equiv VJ=>K = O_Implies VJ|K = O_Or

VJ&K = O_And VJ==K = O_EQ VJ! =K = O_NE

VJ<K = O_NT VJ<=K = O_LE VJ>K = O_GT

VJ>=K = O_GE VJrepofK = r_repof VJuriofK = r_uriof

VJ+K = O_Sum VJ−K = O_Sub VJ++K = O_ + +

VJ∗K = O_Mult VJ%K = O_Rem VJ/K = O_IntDiv

VJ!K = O_Not VJ−K = O_Minus VJlengthK = v_length

VJsizeK = v_size VJexpandK = v_expand VJmatchesK = v_matches

Figure 3.22: Conversion of operators: VJ⊕K

SMT solvers determine whether an given formula is satisfied, i.e, if there is some
assignment of values to constants, variables, and uninterpreted function where the formula
logically evaluates to true. If yes the SMT reports SAT and the conditions make the
formula true, else it reports UNSAT. The subtyping relation asserts that F′JT K(x) ⇒
F′JUK(x), for all variables x. If we negate the formula, the SMT reports SAT when there
is a value for x such that the subtyping relation does not hold. If it reports UNSAT then
the subtyping relations holds.

The major limitation of Z3 solver regarding HeadREST semantic is the quantifiers.
Z3 has by default a model-based quantifier instantiation (MBQI) for solving quantifier
formulas [29]. Although being very powerful, MBQI is also slow, which in our case
is exacerbated by an axiomatization with many quantifiers. Hence, we have MBQI de-
activated in order to speed up formula evaluation, with the down side of increasing the
number quantified formulas that can not be evaluated.

Chapter 3. HeadREST Specification Language 32

Chapter 4

SafeScript Language

To accomplish our goal of statically validating REST calls from within a programming
language, we divide our work into two subgoals: first create a language similar to Java-
Script with strong type validation; then extend this language with primitive REST call
operators with static validation.

This chapter presents the first language, which was named SafeScript. Although the
principal design decisions were made having the REST extension in mind, the language
by itself has a set of relevant features, namely when seen from the perspective of static
analysis and formal program validation. In this way, SafeScript can be extended for sup-
porting other different forms of validation, thanks to its expressive type system.

4.1 Main Ideas

SafeScript is intend to be a typed safe JavaScript. JavaScript features type coercion: any
value can be converted to a value of each primitive type. The coercion is necessary since
JavaScript operators are total in general. For example, multiplying a string by an array
("hello" * [12, 34]) or accessing the 42th position of a boolean value (true[42]) are
valid JavaScript expressions.

Universal implicit type coercion can be regarded as a plus because situations such as
null dereference, division by zero, or accessing an array outside bounds do not raise run-
time exceptions, greatly decreasing the possibility of runtime errors, and, consequently,
of program crashes. On the other hand, semantically dubious operations can negatively
affect the intended meaning of a program. The behavior of JavaScript expressions are con-
sidered surprising and unintuitive by programmers [46]. Hence, operators do not crash
the program but their results can cause the program to behave wrongly, which can be even
worst. The fact that JavaScript variables are not declared with a type, and therefore may
contain any type of value at any time, exacerbates this problem.

SafeScript was designed to be, at the syntactic level, as close as possible to JavaScript,
so that it can be used easily by JavaScript programmers. It also compiles to JavaScript, so

33

Chapter 4. SafeScript Language 34

JavaScript programs can easily interact with SafeScript.
SafeScript adopts the HeadREST type system, not only for its envisaged REST ex-

tension, but also to provide a very precise static type checking. Each variable is declared
with a type, so that the values that can be assigned to a variable are restricted to the type
the variable was declared with (as happens in strongly typed languages). Operators define
the type of their arguments. Each variable has also an effective type that correspond to
set of values the variable may have at a given point in a program. SafeScript features
flow typing, since effective types change with the program flow. The effective type of a
variable is necessarily a subtype of its declared type.

Compared with other typed extensions of JavaScript, such TypeScript, the principal
novelty in SafeScript is the incorporation of refinement types in the type system. On the
one hand, they support the definition of many useful types. For example, the type of the
second argument of the division operator can become (x: int where x != 0), so that a
possible division by zero can be statically detected. On the other hand, as discussed in the
previous chapter, refinement types demand a semantic subtyping analysis. This is even
more challenging to accomplish in an imperative language.

4.2 Syntax

The syntax of SafeScript is presented in figure 4.1. In fact, this is a simplified version
of the language that has been implemented. For simplicity, the grammar of statements is
ambiguous.

Expression e ::= x | c | ⊕(e1, . . . , en) | e1 ? e2 : e3 | e in T

| {l1 = e1, . . . , ln = en} | e.l | [e1, . . . , en] | e1[e2]
| f(e1, . . . , en) | forall x : T . e | exists x : T . e

Scalar constant c ::= n | s | true | false | null | undefined

Type T ::= any | G | {} | {l : T} | T [] | (x : T where e) | void

Basic Type G ::= int | boolean | string

Statement S ::= u = e | if (e) S1 else S2 | while (e1) inv e2 S

| return e | S1;S2 | ε
LHS u ::= x | u [e] | u.l
Function F ::= T f (T1 x1, . . . , Tn xn) {U1 y1 = e1 ; . . . ; Um ym = em ; S }

| function f (T1 x1, . . . , Tn xn) { e }
Declaration D ::= F | var T x | type x = T

Program P ::= ε | D P

Figure 4.1: SafeScript syntax

Chapter 4. SafeScript Language 35

Expressions, scalar constants, and types are those of HeadREST with three exceptions:
resource types are not available because they are not necessary in SafeScript, a new type
void and a new constant undefined are added, the latter denotes void’s unique value. In
JavaScript, undefined represents the value of undeclared variables and unexisting object
field, among others cases. In SafeScript, undefined represents the value returned by a
function with return type void.

A SafeScript program is composed of functions, global variables and type abbrevia-
tions. A function definition includes the return type, its name, the list of parameters with
their respective types, and the function body. In order to simplify variable scope vali-
dation, the body starts with the declaration and initialization of all local variables. The
initialization is mandatory since there are no default values for all types, in particular be-
cause of refinement types. The function’s body consists of a sequence of statements, that
define the control flow and the return value. Statements include variable assignments,
conditional statements, loops, and return statements. The left hand side of an assignment
is a variable, a object field or an index access of an array. This allows to update a specific
element of an array or object. Loops may declare an invariant, i.e., an expression that
is true at loop entry and after each loop iteration. Invariants are sometimes necessary to
prove that certain expressions have the right type, for instance, whether the effective type
of the expression used in a return statement matches the return type of the function.

SafeScript includes all operators available in HeadREST, except for the ones related
with resources, URI templates and regular expressions. The only new operator is mkarray,
which creates an array of a given size, filled with the value of a given expression. The
sets of derived types and expressions are equal to HeadREST. From SafeScript core state-
ments, additional derived statements were defined. Figure 4.2 presents some of them.
Syntactic sugar was introduced for bindings, as shown in figure 4.3. For example, if a
function needs to receive a non zero integer x, instead of the tedious (i: int where i

!= 0) x argument declaration, it can be simply declare as int x where x != 0.

u ⊕= e , u = ⊕(u, e)

if (e) S , if (e) S else ε

while (e) S , while (e) inv true S

for (T x = e1 ; e2 ; u = e3) S , T x = e1 ; while (e2) {S ; u := e3 }
for (x of e) S , for (int y = 0 ; y < length(e) ; y += 1)

[e [y] /x]S

return , return undefined

where y a fresh variable

Figure 4.2: Derived statements

Chapter 4. SafeScript Language 36

T x where e , (y : T where [y/x]e) x y /∈ fv(T, e)

Figure 4.3: Derived bindings

4.3 Examples

To better understand SafeScript and its type system, we present in this section a set of
examples.

Assignments Consider first a function that calculates the sucessor of an integer:

1 int increment(int n) {

2 n = n + 1;

3 return n;

4 }

Checking the validity of this program requires to perform three typing validations:
both arguments of the addition operation have type int, after the assignment, the variable
n has a value of type int (the declared type), and the expression used in the return state-
ment matches the function return type. Intuitively, if these validations succeed, the pro-
gram is valid. However, if we add to the program another function that calls increment, it
might be necessary to guarantee that the result is greater than the value provided as input.
For that, we need a more precise return type: (i: int where i > n). Typing validation
still holds after this change. Although the variable x was declared as int, which is not a
subtype of this return type, its effective type is changed after the assignment. We could
be even more precise and change the return type to (i: int where i == n + 1). The
resulting program would still valid.

Conditional statements Function increment illustrates flow typing caused by a sim-
ple assignment. Other statements, namely conditional and loops are also responsible for
changing the variables effective type. Consider the following example with a conditional
statement:

1 boolean toBoolean(int|boolean bit) {

2 if (bit in int) {

3 return bit > 0;

4 }

5 else {

6 return bit;

7 }

8 }

Chapter 4. SafeScript Language 37

The function extracts the boolean value of a bit, which can be an integer or a boolean
as declared in the function signature. The conditional statement checks whether bit is
an integer, using the in type operator. In the first branch,the effective type of bit is int,
a subtype of int|boolean, therefore it can be used as the argument of the comparison
operator. In the second branch, bit is ensured to not be an integer, so its effective type is
boolean and, hence, is a valid return value for the function.

Refinement types help to statically detect common runtime errors. An usual example
is the division by zero:

1 int f(nat x) {

2 return 42 / x; // error!

3 }

The divisor argument of a division operation must be non-zero. Hence, an error is
reported at line 2, since the effective type of x in that point (in this case is equal to the
declared one) includes the value 0. Consider now the function below, which uses the
increment function:

1 int f(nat x) {

2 return 42 / increment(x); // error?

3 }

This is a concrete example of the usefulness of restricting the return type of the
increment function. If the return type is simply int, then there is still an error. If the
return type is instead (i: int where i > n), then the type of expression increment(x)

is (i: int where i > 0), which is a subtype of what is expected in the division, and the
program is valid.

Arrays In JavaScript, there is no distinction between arrays and objects, because arrays
are interpreted as objects that map integers to values. In SafeScript, arrays and objects are
distinct, each having its own type. An array access is only valid if it is possible to prove
that the value of the index expression is within the array bounds. Note that these are fixed
since the length is a primitive and immutable characteristic of an array.

1 void g(int[] a) {

2 a[0] = 1; // error!

3 }

In the example above, there is an error in line 2 since array a may be of length 0. This
can be fixed by restricting the type of the argument to be not empty, using a refinement
type:

1 void g((x: int[] where length(x) > 0) a) {

2 a[0] = 1;

3 }

Chapter 4. SafeScript Language 38

These two examples also illustrate the use of type void. In SafeScript, all functions
must return a value, that must be included in the set of values defined by the return
type. As mentioned in the syntax section, void represents a singleton type inhabited
by undefined value. In this way, each function defined in a SafeScript program has an
implicitly return statement at the end of its body. As presented in figure 4.2, return
abbreviates return undefined and, hence, matches the return type void.

Loops Iterating over the elements of an array is a common operation. In this case, it
must be guarantee that in every step of the loop iteration, the array is accessed inside its
bounds. The example below illustrates a function that calculates the sum of all elements
of an integer array:

1 int sum(int[] a) {

2 int i = 0;

3 int sum = 0;

4 while (i < length(a)) {

5 sum = sum + a[i]; // error!

6 i = i + 1;

7 }

8 return sum;

9 }

Although the function effectively sums the elements of any integer array, the validator
reports an error in the array access at line 5. The loop guard ensures that i does not exceed
the array size but the validator is not able to prove that in every loop iteration i is non-
negative. To overcome this issue, it is necessary to provide some additional information to
the validator. There are two alternatives: add a loop invariant stating that i is non negative
or declare i with a type that prevents it from being negative. The latter strategy is more
adequate, since it restricts the variable in all its usages, working as a global invariant for
the variable in the function. Both alternatives are presented below.

1 int sum(int[] a) {

2 int i = 0;

3 int sum = 0;

4 while (i < length(a))

5 inv i >= 0 {

6 sum = sum + a[i];

7 i = i + 1;

8 }

9 return sum;

10 }

11 int sum(int[] a) {

12 nat i = 0;

13 int sum = 0;

14 while (i < length(a)) {

15 sum = sum + a[i];

16 i = i + 1;

17 }

18 return sum;

19 }

Objects If an object is declared to have a collection of fields, then the object must have
at least those fields, but may have others. Field access is valid only if it is possible to

Chapter 4. SafeScript Language 39

prove that the object has that field.

1 {a: int} bToOne({a: int} x) {

2 x.b = 1; // error!

3 return x;

4 }

In the example above, parameter x is declared as an object with an integer field a and,
hence, the update of field b at line 2 is not valid. The function could be changed so that
the update of b is only performed if it indeed exists and is of type integer, as presented
below:

1 {a: int} bToOne({a: int} x) {

2 if (x in {b: int}) {

3 x.b = 1;

4 }

5 return x;

6 }

The update is valid because of flow typing: at line 3, x has the effective type {a:

int, b: int}. Note that it is not possible to declare that the return type of the function is
{a: int,b: int}, because the field b may not exist or if exists, it may not be an integer.
A valid and more precise (and also more complex) return type would be (o: {a: int}

where o in {b: int} ==> o.b == 1).
The examples presented so far illustrate the main features of SafeScript. In section 6,

more complex programs are presented.

4.4 Validation

As it is the case in HeadREST, typing validation is the major challenge for the SafeScript
validator. SafeScript is an imperative language with flow typing and, hence, typing valida-
tion relies on the ability to synthesize the effective type of a general expression in a given
a context. If the type cannot be synthesized, then the subtyping rule cannot be applied
and the SMT cannot be used directly.

To address this problem, validation is realized by a translation to Boogie [3]. Boogie
is an intermediate verification language, designed to be a platform on which to build pro-
gram verifiers for other languages. Boogie is also the name of the tool that checks whether
programs are correct, generating verification conditions written as first order logic formu-
las and using the Z3 SMT solver to semantically evaluate formulae satisfiability.

4.4.1 Declarative Type System

The declarative type system for SafeScript is composed of the set of declarative judgments
presented in Figure 4.5. These include judgments of the form Γ ` T , where Γ is an

Chapter 4. SafeScript Language 40

environment and T is a type. The syntax of environments is introduced in Figure 4.4.

Variable Context Γ ::= ε | Γ, x : T

Assertion ϕ ::= e

Figure 4.4: The environment syntax

The variable context Γ is a map that binds the declared variables, including global
ones, with their respective declared type. The effective type of each variable is determined
from the assertion ϕ, a boolean expression that characterises the possible values of the
variables in a given point in the program flow. Such an expression may be added to Γ as
a entry with a dummy variable: Γ, _ : ‖ϕ‖, abbreviated as Γ, ϕ.

` Γ ≡ context Γ is well-formed Figure 4.6
Γ ` T ≡ in Γ, type T is well-formed Figure 4.7

Γ ` e : T ≡ in Γ, expression e has type T Figure 4.8
Γ ` T1 <: T2 ≡ in Γ, type T1 is subtype of T2 Figure 4.9

Γ;ϕ1 ` S : (T ;ϕ2) ≡ in Γ, statement S if executed when ϕ1 holds, returns Figure 4.10
type T , and ensures that ϕ2 holds in the next
execution point

ϕ ` Γ ≡ in ϕ, environment Γ is consistent Figure 4.11
Γ ` F ≡ in Γ, function F is well-formed Figure 4.12

Figure 4.5: Judgments of the declarative type system

The first judgment checks whether the variable context is well formed. Figure 4.6
presents the two judgment rules. A variable context is well formed if and only if its
variables have a well formed type. The rules for this judgment are presented in figure 4.7.

` ε
(W-EmpEnv)

Γ ` T x /∈ Γ

` Γ, x : T
(W-VarEnv)

Figure 4.6: Context formation: ` Γ

The rules for type assignment to expressions (figure 4.8) are similar to the type check-
ing rules for expressions in HeadREST. The rule for function calls is similar to the rule
for operators. As this type system is not algorithmic, each rule assigns a general type.
The rule T-Single restricts the type of an expression to a singleton type. Conversely, the

Chapter 4. SafeScript Language 41

` Γ

Γ ` any
(W-AnyType)

` Γ

Γ ` G
(W-ScalarType)

` Γ

Γ ` {}
(W-EmpObjType)

Γ ` T
Γ ` {l : T}

(W-ObjType)
Γ ` T

Γ ` T []
(W-ArrType)

Γ, x : T ` e : boolean

Γ ` (x : T where e)
(W-RefType)

` Γ

Γ ` void
(W-VoidType)

Figure 4.7: Well-formed types: Γ ` T

rule T-SubSump widens the type of an expression, using the subtyping relation. This is
equal to HeadREST, as shown in figure 4.9.

` Γ (x : T) ∈ Γ

Γ ` x : T
(T-ExpVar)

` Γ

Γ ` c : typeof(c)
(T-ScalarExp)

⊕ : T1, . . . , Tn → T Γ ` ei : Ti ∀i ∈ 1..n

Γ ` ⊕(e1, . . . , en) : T
(T-Op)

Γ ` e1 : boolean Γ, _ : ‖e1‖ ` e2 : T Γ, _ : ‖!e1‖ ` e3 : T

Γ ` e1 ? e2 : e3 : T
(T-Ternary)

Γ ` e : any Γ ` T
Γ ` e in T : boolean

(T-InType)

Γ ` ei : Ti ∀i ∈ 1..n

Γ ` {l1 = e1, . . . , ln = en} : {l1 : T1, . . . , ln : Tn}
(T-ObjExp)

Γ ` e : {l : T}
Γ ` e.l : T

(T-ObjAcc)
Γ ` ei : T ∀i ∈ 1..n

Γ ` [e1, . . . , en] : T []
(T-ArrExp)

Γ ` e2 : (i : int where 0 ≤ i < length(e1))
Γ ` e1 : (a : any [] where a[e2] inT)

Γ ` e1[e2] : T
(T-ArrAcc)

f : (x1 : T1, . . . , xn : Tn)→ T is defined
Γ, x1 : T1, . . . , xi−1 : Ti−1 ` ei : Ti ∀i ∈ 1..n

Γ ` f(e1, . . . , en) : [e1/x1] . . . [en/xn]T
(T-FunCall)

Γ, x : T ` e : boolean

Γ ` forall x : T . e : boolean
(T-Forall)

Γ, x : T ` e : boolean

Γ ` exists x : T . e : boolean
(T-Exists)

Γ ` e : T1 Γ ` T1 <: T2
Γ ` e : T2

(T-SubSump)
Γ ` e : T

Γ ` e : 〈e : T 〉
(T-Single)

Figure 4.8: Type assignment to expressions: Γ ` e : T

Chapter 4. SafeScript Language 42

Γ ` T1 Γ ` T2 x /∈ dom(Γ) � (F′JΓK ∧ F′JT1K(x))⇒ F′JT2K(x)

Γ ` T1 <: T2

Figure 4.9: Semantic subtyping: Γ ` T1 <: T2

Rules for statements are presented in figure 4.10. Judgment Γ;ϕ1 ` S : (T ;ϕ2) means
that given a context Γ and an assertion ϕ1 that holds when statement S is executed, assigns
to S (i) a returning type T , representing the type of the value returned by the function (if
any), and (ii) a new assertion ϕ2, that represents the condition that holds in the next
execution point. The condition ϕ1 is usually called the pre-condition. The condition ϕ2

is similar to a post-condition, in the sense that it captures the changes in the effective
types of the variables in the context that results form the execution of S. However, since
SafeScript includes a return statement, it also captures whether the next execution point
exists.

Γ, [e/u]ϕ ` u : T1 Γ, [e/u]ϕ ` e : T2 ϕ ` Γ

Γ; [e/u]ϕ ` u = e : (empty;ϕ)
(T-Assign)

Γ, ϕ1 ` e : boolean Γ;ϕ1 & e ` S1 : (T ;ϕ2) Γ;ϕ1 & !e ` S2 : (T ;ϕ2)

Γ;ϕ1 ` if (e) S1 else S2 : (T ;ϕ2)
(T-If)

Γ, ϕ ` e1 : boolean Γ, ϕ ` e2 : boolean
Γ, e1 & e2 ` S : (T ; (e1 in boolean) & (e2 in boolean) && e2)

Γ;ϕ ` while (e1) inv e2 S : (T ; !e1 & e2)
(T-While)

Γ, ϕ ` e : T

Γ;ϕ ` return e : (T ; false)
(T-Return)

Γ;ϕ1 ` S1 : (T ;ϕ2) Γ;ϕ2 ` S2 : (T ;ϕ3)

Γ;ϕ1 ` S1;S2 : (T ;ϕ3)
(T-Seq)

` Γ, ϕ

Γ;ϕ ` ε : (empty;ϕ)
(T-EmpStat)

Γ;ϕ1 ` S : (T1;ϕ2) T1 <: T2
Γ;ϕ1 ` S : (T2;ϕ2)

(T-SubtStat)

Γ � ϕ1 → ϕ2 Γ;ϕ2 ` S : (T ;ϕ3)

Γ;ϕ1 ` S : (T ;ϕ3)
(T-LStr)

Γ;ϕ1 ` S : (T ;ϕ2) Γ � ϕ2 → ϕ3

Γ;ϕ1 ` S : (T ;ϕ3)
(T-RWeak)

Figure 4.10: Type checking statements: Γ;ϕ1 ` S : (T ;ϕ2)

Flow typing is inspired in the Floyd-Hoare logic [25, 35]. In the T-If rule, the branch
condition is added to the pre-condition ϕ1 for the evaluation of the statements of both

Chapter 4. SafeScript Language 43

branches, which should produce a common type T and a common assertion ϕ2 as post-
condition.

The post-condition of the T-While rule depends on the invariant condition specified in
the statement. This invariant must be true immediately before and after the evaluation of
the guard. If the invariant and the guard hold, the loop body must preserve the invariant.
Additionally, if the invariant and the guard hold, the loop body must preserve the boolean
type of the guard and the of invariant. This is achieved done by strengthening the post-
condition of the loop body with two in type conditions. The post-condition of the loop
statement consists of the invariant and the negation of the guard, discarding completely
the pre-condition ϕ.

The T-Return rule states that the type of a return statement is the type of its expression
and that false holds at the next execution point, meaning that there is no next execution
point. This rule works together with the sequential composition rule, which expects the
same type from both statements. If the first statement is a return then false becomes a
pre-condition of the second statement and the same retuning type can be concluded. The
T-EmpStat rule assigns to an empty statement the empty return type. These rules imply
that typing errors in unreachable code are just ignored.

The T-SubtStat rule shrinks the returning type assigned to a statement. The two rules,
T-LStr and T-RWeak, are for, respectively, strengthening the pre-condition and weakening
the post-condition of a statement.

The post-condition of the rule T-Assign is defined as in the assignment axiom of Hoare
logic. In addition, the precondition must entail that the left hand sides are well formed and
that the environment is consistent with the post-condition. This means that the effective
type of all variables after the execution of the assignment is still a subtype of the type in the
context. Figure 4.11 introduces the rules for checking the consistent of the environment.

ϕ ` ε
(W-EmpEnv)

ϕ ` Γ x /∈ Γ Γ, x : any, ϕ ` [x] <: T

ϕ ` Γ, x : T
(W-VarEnv)

Figure 4.11: Consistent environment: ϕ ` Γ

An environment is consistent if all of the variables in the variable context have an
effective type, represented by the singleton type of the variable, subtype of the variable
declared type. The effective type is determined only by the assertion, and not by the
declared type, since it is not considered in the subtyping evaluation. Note that all variables
must be verified after each update, and not only the particular variable invoked in the
update, because types can be refined to depend on other variables. For example, suppose
we have x: int and y: (i: int where i > x), i.e, y is greater than x. If x is updated
to a value greater than y, then y value no longer belongs to its type, although its value did
not change in the update.

Chapter 4. SafeScript Language 44

Finally, the top judgment of the declarative type system checks the formation of func-
tion declarations. Its single rule is presented in figure 4.12. The rule states that the types
of the parameters and local variables must be well formed. Since types of the parameters
can refer the previous parameters in the list, it is possible to define restrictions such as that
the second parameter is an integer greater than the first. The rule also states that, given
an environment that reflects the function parameters and types, the initialization of the lo-
cal variables, followed by the body of the function and a return statement, must match the
function type. Recall that the final return statement, (of type void), ensures that a function
always has a return type. The variable context passed to the function rule should contain
all the global variables of the program, including the ones declared after the function.

Γ, x1 : T1, . . . , xi−1 : Ti−1 ` Ti (∀i ∈ 1..m)
Γ, x1 : T1, . . . , xk : Tk, true ` x1 = ek+1 ; . . . ; xm = em ; S ; return : (T ;ϕ)

Γ ` T f (T1 x1, . . . , Tk xk) {Tk+1 xk+1 = ek+1 ; . . . ; Tm xm = em ; S }

Figure 4.12: Well-formed functions: Γ ` F

4.4.2 Translation to Boogie

To validate a SafeScript program we translate it to Boogie. We add a set of type-related
assertions, and use Boogie tool to verify whether all assertions hold. As in the validation
of HeadREST using directly aN SMT, the types are not directly translated to Boogie, but
the relation in type. The axiomatization of the typing relation is inspired in Whiley [56].

Whiley is a multi-paradigm programming language with extended static checking per-
formed by an internal Automated Theorem Proving (ATP). Utting et al. proposed and
tested the replacement of Whiley’s internal ATP to Boogie for the verification phase of
the compiler [73]. Since Whiley has a type system similar to that of SafeScript (except for
refinement types), the authors faced similar to ours problems, and found cleaver solutions
to encode the Whiley type system into Boogie. However, the Whiley typing validation is
done prior to the usage of either the internal ATP or the Boogie tool. These are only used
to prove verification conditions. In our case, all typing validation is done via Boogie.

The SafeScript Boogie axiomatization is presented in the appendix C. Values and
types are modeled using sets, as for refinement types. All SafeScript values, indepen-
dently of their type, belong to a single Boogie type: Value. For each type are introduced
functions and axioms that define the subset of values of the type. All types have a com-
mon form. For example, given a type X and its Boogie internal representation Y, the base
functions and axioms are the following.

1 function isX(Value) returns (bool);

2 function toX(Value) returns (Y);

Chapter 4. SafeScript Language 45

3 function fromX(Y) returns (Value);

4

5 axiom (forall y: Y :: isX(fromX(y)));

6 axiom (forall y: Y :: toX(fromX(y)) == y);

7 axiom (forall v: Value :: isX(v) ==> fromX(toX(v)) == v);

Function isX, checks whether a value belongs to type X, and returns a Boogie primitive
boolean. Function toX converts Boogie type to its internal representation Y, and fromX

performs the inverse operation. The axioms introduce the properties of the functions. The
first asserts that all values constructed from type Y belong to type X. The second and third
axioms assert that toX and fromX are inverse functions.

For example, for the scalar type int, the following functions and axioms are intro-
duced.

1 function isInt(Value) returns (bool);

2 function toInt(Value) returns (int);

3 function fromInt(int) returns (Value);

4

5 axiom (forall i: int :: isInt(fromInt(i)));

6 axiom (forall i: int :: toInt(fromInt(i)) == i);

7 axiom (forall v: Value :: isInt(v) ==> fromInt(toInt(v)) == v);

In Dminor, Bierman et al. translate the opertator (e in T) into a first order logic for-
mula for each type T. SafeScript uses a similar process, relying on the functions defined
in the axiomatization. Figure 4.13 presents the transformation of the in predicate into
Boogie boolean expressions.

F′JanyK(e) = true

F′JintK(e) = isInt(e)

F′JbooleanK(e) = isBool(e)

F′JstringK(e) = isString(e)

F′JT []K(e) = isArray(e) ∧ (forall y : int :: isValidIndex(e, y)

⇒ F′JT K(getIndexValue(e, y)))

F′J{}K(e) = isObject(e)

F′J{l : T}K(e) = isObject(e) ∧ hasField(e, l) ∧ F′JT K(getFieldValue(e, l))

F′J(x : T where e1)K(e) = F′JT K(e) ∧VJ[e/x]e1K == VJtrueK

where y is a fresh variable

Figure 4.13: Translation of in type predicates: F′JT K(e)

The translation of expressions is presented in figure 4.14. The translation of operators
is presented in figure 4.15. To each operator corresponds an interpreted function defined
in the axiomatization (appendix C).

Chapter 4. SafeScript Language 46

VJforall x : T . eK = fromBool((forall x : Value :: F′JT K(x)⇒ VJeK == VJtrueK))
VJexists x : T . eK = fromBool((exists x : Value :: F′JT K(x) ∧VJeK == VJtrueK))

VJe1 ? e2 : e3K = if VJe1K == VJtrueK then VJe2K else VJe3K
VJ⊕(e1, . . . , en)K = VJ⊕K(VJe1K, . . . ,VJenK)

VJe in T K = fromBool(F′JT K(VJeK))
VJe1 [e2]K = getIndexValue(VJe1K, toInt(VJe2K))

VJe.lK = getFieldValue(VJeK, l)
VJf(e1, . . . , en)K = f(VJe1K, . . . ,VJenK)

VJ{l1 : e1, . . . , ln : en}K = fromObject(objectConst()[l1 := maybeOf(VJe1K)]
. . . [ln := maybeOf(VJenK)])

VJ[e1, . . . , en]K = fromArray(arrayConst()[0 := maybeOf(VJe1K)]
. . . [n− 1 := maybeOf(VJenK)], n)

VJtrueK = True

VJfalseK = False

VJnK = fromInt(n)

VJ”c1 . . . cn”K = fromString(emptyString()[0 := c1] . . . [n− 1 := cn] , n)

VJnullK = Null

VJundefinedK = Undefined

VJxK = x

Figure 4.14: Translation of expressions: VJeK

VJ<=>K = equi VJ=>K = imp VJ|K = or VJ&K = and

VJ==K = eq VJ! =K = ne VJ<K = lt VJ<=K = le

VJ>K = gt VJ>=K = ge VJ+K = sum VJ−K = sub

VJ++K = concat VJ∗K = mult VJ%K = rem VJ/K = div

VJ!K = neg VJ−K = min VJmkarrayK = mkArray VJlengthK = length

VJsizeK = size

Figure 4.15: Translation of operator names: VJ⊕K

Integer and boolean values are translated to the corresponding boogie primitive type.
Boogie does not support strings, so we represent them using a map of integers to inte-
gers, the first representing the index, and the second the unicode of each character. An
additional type is necessary for objects and arrays: MaybeValue, that represents a concrete
value or its absence. Objects and arrays are represented using maps from, fields and inte-
gers, respectively, to a MaybeValue. Since Boogie maps are total, i.e., are defined on all

Chapter 4. SafeScript Language 47

their domains, MaybeValue helps in checking whether an object has a field and relating
the array length against a given index. The array length, as the string size, is a constant
that is given in the construction of a value.

Figure 4.16 presents the translation of SafeScript expressions with validation. The
translation returns a list of Boogie statements where validations are done via assertions,
and where the resulting value is placed in the given variable. The assertions are according
in the declarative type assignment rules for expressions (figure 4.8)

V∗Jforall x1 : T . eK(x) = WJT K assumeF′JT K(y1); V∗J[y1/x1]eK(y2)
assertF′JbooleanK(y2);
x := VJforall x1 : T . x1 == y1 ⇒ y2K;

V∗Jexists x1 : T . eK(x) = WJT K assumeF′JT K(y1); V∗J[y1/x1]eK(y2)
assertF′JbooleanK(y2);
x := VJexists x1 : T . x1 == y1 ∧ y2K;

V∗Je1 ? e2 : e3K(x) = V∗Je1K(y1) assertF′JbooleanK(y1);
if (y1 == VJtrueK) {V∗Je2K(x) } else {V∗Je3K(x) }

V∗J⊕(e1, . . . , en)K(x) = V∗Je1K(y1) . . .V∗JenK(yn)

assertF′JT1K(y1) ∧ · · · ∧ F′JTnK(yn);

x := VJ⊕(y1, . . . , yn)K; where ⊕ : T1, . . . , Tn → T

V∗Je in T K(x) = V∗JeK(y) WJT K x := VJy in T K;
V∗Je1[e2]K(x) = V∗Je1K(y1) V∗Je2K(y2) assertF′Jany []K(y1)∧

F′J(i : nat where i < length(y1)K(y2); x := VJy1[y2]K;
V∗Je.lK(x) = V∗JeK(y) assertF′J{l : any}K(y); x := VJy.lK;

V∗Jf(e1, . . . , en)K(x) = V∗Je1K(y1) . . .V∗JenK(yn)

if f pure function assertF′JT1K(y1) ∧ · · · ∧ F′JTnK(yn);

x := VJf(y1, . . . , yn)K; where f : T1, . . . , Tn → T

V∗Jf(e1, . . . , en)K(x) = V∗Je1K(y1) . . .V∗JenK(yn)

if f not pure function call x := VJf(y1, . . . , yn)K; where f : T1, . . . , Tn → T

V∗J{l1 : e1, . . . , ln : en}K(x) = V∗Je1K(y1) . . .V∗JenK(yn) x := VJ{l1 : y1, . . . , ln : yn}K;
V∗J[e1, . . . , en]K(x) = V∗Je1K(y1) . . .V∗JenK(yn) x := VJ[y1, . . . , yn]K;

V∗JcK(x) = x := VJcK;
V∗JxK(z) = z := VJxK;

where y, y1, . . . , yn are fresh variables

Figure 4.16: Translation of expressions with type validation: V∗JeK(x)

These translation rules follow a general pattern: the inner sub-expressions are recur-
sively translated (with validation), then it is checked whether the variables that contain the
sub-expressions have the expected type, and finally, value translation is used to assign the

Chapter 4. SafeScript Language 48

expression to the given variable. The assert commands are aligned with the expected types
presented in declarative system, namely in type assignment to expressions (figure 4.8).

Types must also be validated since refinement types contain expressions. Figure 4.17
presents the translation of the well formation of SafeScript into Boogie statements. The
validation follows the rules in figure 4.7.

WJT []K = WJT K
WJ{l : T}K = WJT K

WJ(x : T where e)K = WJT K assumeF′JT K(y1); V∗J[y1/x]eK(y2)
assertF′JbooleanK(y2);

otherwise WJT K = ε

where y1 and y2 are fresh variables

Figure 4.17: Translation of type formation: WJT K

SafeScript statements are translated directly to equivalent Boogie statements, along
with the necessary validations. Initial versions of Boogie only had goto and return state-
ments for controlling the flow of execution [3]. Boogie version 2 includes control flow
structures as found in high-level languages, including conditionals and while loops, which
are subsequently transform into goto statements [45]. Figure 4.18 presents the translation
of SafeScript statements to Boogie 2.

BJu = eK = V∗JeK(y) UJuK(y)

BJif (e) S1 else S2K = V∗JeK(y) assertF′JbooleanK(y);

if (y == VJtrueK) {BJS1K } else {BJS2K }
BJwhile (e1) inv e2 SK = V∗Je1K(y1) V∗Je2K(y2)

assertF′JbooleanK(y1) ∧ F′JbooleanK(y2);
while (VJy1K == VJtrueK)
invariant VJe2K == VJtrueK;
free invariant F′JT1K(z1) ∧ · · · ∧ F′JTnK(zn);

{BJSK V∗Je1K(y1) assertF′JbooleanK(y1); }
BJreturn eK = V∗JeK(result) return;

BJS1;S2K = BJS1K BJS2K
BJεK = ε

where y, y1, y2 and y3 are fresh variables, z1, . . . , zn the variables in scope, and
T1, . . . , Tn declared types of those variables

Figure 4.18: Translation of statements: BJSK

Chapter 4. SafeScript Language 49

If and while statements require a validation of the condition and the invariant, as
in the declarative type system (figure 4.10). In the case of while, the guard must be
verified before every execution, so is added at the end of the loop body an additional type
validation. The invariant is a Boogie primitive. The Boogie code checks whether the
given invariant is a valid loop invariant, i.e., if it holds after the loop condition evaluation
in each loop step. The declared type of each variable is also considered to be an invariant
at every loop step. These invariants are prefixed with the keyword free which indicates
to Boogie that there is no need to verify whether they hold, since such invariants are
validated after every update.

One important detail about the invariant validation is the exact moment where it must
be true. In Floyd-Hoare logic, expressions do not have side effects, so it is not relevant if
the invariant must be considered before or after the evaluation of the loop condition. Since
SafeScript expressions may have a side effect in global variables (by a function call), we
make sure that the invariant should be true exactly after the loop condition evaluation.

The translation rule for return places the return expression in a special variable result,
and ends the method execution. In Boogie, the value of a procedure must be placed in a
variable declared in the method header, result in our case.

The variable update complexity demands a particular set of translation rules, which
are presented in figure 4.19. They make the necessary validation of the left hand side,
update the target variable, and check whether the declared type is respected. The functions
arrayUpdate and objectUpdate are defined in the Boogie axiomatization.

UJxK(e) = x := e; assertF′JT1K(z1) ∧ · · · ∧ F′JTnK(zn);

UJu [e1]K(e) = V∗JuK(y1) V∗Je1K(y2) V∗Jy1[y2]K(y3) UJuK(arrayUpdate(y1, y2, e))

UJu.lK(e) = V∗JuK(y1) V∗Jy1.lK(y2) UJuK(objectUpdate(y1, l, e))

where y1, y2 and y3 are fresh variables, z1, . . . , zn the variables in scope, and T1, . . . , Tn
types of those variables

Figure 4.19: Translation of variable update: UJuK(e)

As discussed in the declarative type system of section 4.4.1, after an assignment it
must be verified that all variables in scope have a effective type subtype of the declared
type. The translation rule for variable update reflects this idea. However, many of these
checks are redundant because there may be no connection between the updated variable
and the declared type of the variable to be checked. To reduce the assertions that the
Boogie must prove, and therefore the time of typing validation, it is possible to create a
graph with type dependencies of the variables, and then check only the necessary variables
according to the dependency graph.

The translation rules proposed in figure 4.19 have redundant verification of the left
hand side. For example, the translation of the expression x.a.b validates two times the

Chapter 4. SafeScript Language 50

access x.a. An equivalent translation, less intuitive, but optimized in the validation, is
presented in figure 4.20. Here, S̄ and ē represent Boogie statements and expressions,
respectively.

U′Jx0K(x, S̄, ē) = x := x0; S̄ x0 := ē; assertF′JT1K(z1) ∧ · · · ∧ F′JTnK(zn);

U′Ju [e]K(x, S̄, ē) = U′JuK(y1,V∗JeK(y2) V∗Jy1[y2]K(x) S̄, arrayUpdate(y1, y2, ē))

U′Ju.lK(x, S̄, ē) = U′JuK(y,V∗Jy.lK(x) S̄, objectUpdate(y, l, ē))

where y, y1 and y2 are fresh variables, z1, . . . , zn the variables in scope, and T1, . . . , Tn
types of those variables

Figure 4.20: Translation of variable update optimized: U′JuK(x, S̄, ē)

Figure 4.21 presents the transformation of SafeScript functions into Boogie proce-
dures, making the necessary validations according with the declarative system (figure 4.12).

BJT f (T1 x1, . . . , Tn xn) {U1 y1 = e1 ; . . . ; Um ym = em ; S }K =

procedure f(x1 : Value, . . . , xn : Value) returns (result : Value)

requires F′JT1K(x1) ∧ · · · ∧ F′JTnK(xn);

modifies g1, . . . , gp;
ensures F′JT K(result);

{ var z1, . . . , zk, y1, . . . , ym, w1, . . . , wn, : Value;

w1 := x1; . . . wn := xn;

WJT1K . . .WJTnKWJU1K . . .WJUmKWJT K
BJy1 = e1 ; . . . ; ym = em ; [w1/x1] . . . [wn/xn]S ; returnK }

where y1, . . . , yn are fresh variables representing each parameter, z1, . . . , zk are the
respective fresh local variables of the procedure, and g1, . . . , gp are the global variables

Figure 4.21: Translation of function definitions: BJF K

Boogie procedures parameters are immutable. Since in SafeScript parameters are
mutable, new variables are necessary to replace the parameters in the function body. The
requires clause validates the calls made to this procedure from this or other methods,
i.e., it checks whether the call arguments belong to the parameters declared types. The
modifies header asserts that all global variables can be modified by the procedure. The
ensures condition checks whether in all returning points of the procedure the returned
result matches the expected function return type, and asserts the return conditions for
the procedure caller. As in SafeScript, Boogie local variables must be declared at the
beginning of a procedure, so all fresh variables require by the translation must also be
declared before the Boogie statements.

Chapter 4. SafeScript Language 51

The declaration of global variables is presented in figure 4.22. The initialization ex-
pression is discarded since Boogie does not support global variable initialization, and
when a procedure is called the only fact that the procedure knows about the value of each
global variable is that belongs to its type. The global variables declaration types and initial
values are validated via an additional procedure with a fresh name f .

BJT x = eK = varx : Value where F′JT K(x); VJT f() { return e }K

where f is a fresh procedure name

Figure 4.22: Translation of global variable declarations: BJT x = eK

To complete the section we present an example of the translation of a simple Safe-
Script program to Boogie: the example of the section 4.3, where an invalid array access
is attempted.

1 void g(int[] a) {

2 a[0] = 1; // error!

3 }

Below is the Boogie code generated from the previous SafeScript function, according
to the translation presented in this section. This is an excerpt from the code sent to the
Boogie verifier; the axiomatization (appendix C) was removed. The variables with the
prefix var# are fresh variables.

272 procedure g(a: Value) returns (.result: Value)

273 requires (.isArray(a) && (forall var#8: int :: .isValidIndex(a,

var#8) ==> .isInt(.getIndexValue(a, var#8))));

274 modifies ;

275 ensures .isVoid(.result);

276 {

277 var var#a, var#0, var#1, var#2, var#3, var#4, var#6: Value;

278 var#a := a;

279 var#0 := .fromInt(1);

280 var#2 := var#a;

281 var#3 := .fromInt(0);

282 var#4 := var#2;

283 assert (.isArray(var#4) && (forall var#5: int ::

.isValidIndex(var#4, var#5) ==> true));

284 var#6 := var#3;

285 assert .isInt(var#6);

286 assert 0 <= .toInt(var#6) && .toInt(var#6) < .arraylen(var#4);

287 var#1 := .getIndexValue(var#4, .toInt(var#6));

288 var#a := .arrayUpdate(var#2, var#3, var#0);

289 assert (.isArray(var#a) && (forall var#7: int ::

.isValidIndex(var#a, var#7) ==> .isInt(.getIndexValue(var#a,

Chapter 4. SafeScript Language 52

var#7))));

290 assert .isVoid(.Nothing);

291 .result := .Nothing;

292 }

The assertion in line 286, which checks the validity of the array access index, cannot
be proven by Boogie, since it cannot show that the index is within the arrays bounds. The
Boogie verifier produces the following output reporting the error:

1 code.bpl(286,2): Error BP5001: This assertion might not hold.

2 Execution trace:

3 code.bpl(278,8): anon0

4

5 Boogie program verifier finished with 0 verified, 1 error

4.5 Translation to JavaScript

SafeScript compiles to JavaScript, so that JavaScript programs can be used together with
SafeScript ones. The SafeScript syntax and semantics, namely its expressions and state-
ments, was heavily based on JavaScript, so the translation is almost direct.

In JavaScript types are not declared, so SafeScript type declarations are forgotten
in the translation. However, types in SafeScript can influence control flow via the in
predicate (x in T), so we have to translate types to JavaScript expressions. Figure 4.23
presents the translation, where JsJe in T K is defined as JsJT K(JsJeK).

JsJanyK(e) = true

JsJintK(e) = typeof(e) === ”number”

JsJbooleanK(e) = typeof(e) === ”boolean”

JsJstringK(e) = typeof(e) === ”string”

JsJT []K(e) = (a⇒ Array.isArray(a) ∧ a.every(x⇒ JsJT K(x)))(e)

JsJ{}K(e) = (o⇒ o instanceof Object ∧ !Array.isArray(o))(e)

JsJ{l : T}K(e) = (o⇒ o instanceof Object ∧ !Array.isArray(o)

∧ o.hasOwnProperty(l) ∧ JsJT K(o.l))(e)
JsJ(x : T where e1)K(e) = (x⇒ JsJT K(x) ∧ JsJe1K)(e)

where a and o are fresh variables

Figure 4.23: Translation of SafeScript in type predicate to JavaScript: JsJT K(e)

Every SafeScript scalar type has a direct correspondence with a JavaScript primitive
type. JavaScript does not distinguish between integer and floating point numbers. All
primitive integers are stored using IEEE 754 double precision floating point format, and

Chapter 4. SafeScript Language 53

belong to a single type number. Arrays are represented by objects in JavaScript. The
JavaScript primitive function Array.isArray is used to distinguished them.

There is substantial difference between objects and arrays: SafeScript does not use
references. Therefore, when making an assignment of an object, a new object is created.
This happens also with function arguments: they are passed as object values and not as
references. To simulate this behavior in JavaScript, whenever a value is assigned to a
variable or used in a function called, the value is deeply copied.

Functions and global variables of a SafeScript program are exported, so they can be
accessed in other JavaScript files. For instance, if the examples of section 4.3 are con-
tained in a file named utils.ss, then these functions can be accessed as follows (using
node.js):

1 var utils = require("utils.js"); // imports functions

2

3 console.log(utils.sum([1, 2, 3])); // uses array sum function

4.5.1 Operational semantics

To precisely describe the semantics of SafeScript language an operational semantics was
defined. The semantics essentially follows JavaScript, more precisely the ECMAScript
Specification [69]. The major differences are related to the absence of object references,
reflected in the assignment rules.

Figure 4.24 presents the additional syntax necessary to describe the operational se-
mantics rules.

Value v ::= c | {l1 = v1, . . . , ln = vn} | [v1, . . . , vn]

Location w ::= x | w.l | w[v]

Store ρ ::= ε | ρ, x = v

Store stack π ::= ε | ρ : π

Local and global stores µ ::= π; ρ

Expression e ::= . . . | {U1 y1 = e1 ; . . . ; Um ym = em ; S }

Figure 4.24: Additional syntax for evaluation (extends figure 4.1)

SafeScript values comprise scalar constants, and objects and arrays whose elements
are themselves values. The value of each variable is placed in a store ρ, a map from
variables to values. At a given time during the evaluation of a program there may exist
multiple stores: the store on global variables ρ, and the various stores for local variables
π = ρ1 : . . . : ρn, where ρ1 is the current function store and ρ2 : . . . : ρn are the

Chapter 4. SafeScript Language 54

suspended stores of the functions on the stack. We introduce a new expression, the body
of a function, representing a function call under evaluation.

The operational semantics is defined using the one step relation evaluation, as defined
by B. Pierce [58]. Figure 4.25 summarizes the judgments of the evaluation system.

e | µ −→ e′ | µ ≡ in store µ, expression e reduces to e′ and yields µ′ Figure 4.26
v in T −→ e ≡ expression v in T reduces to e Figure 4.27

S | µ −→ S ′ | µ′ ≡ in store µ, statement S reduces to S ′ and yields µ′ Figure 4.28
u | µ ↪→ u′ | µ′ ≡ in store µ, LHS u reduces, without variable Figure 4.29

reduction, to u′ and yields µ′

[w 7→ v]µ ⇓ µ′ ≡ in store µ, updating w with value v results in store µ′ Figure 4.30

Figure 4.25: Judgments of the evaluation system

All reduction relations but store update use small-step semantics. The first judgement
describe how expressions reduce, and the rules are presented in figure 4.26. In each ex-
pression, the sub-expressions are evaluated from left to right, and only when all reach
a value the operation is applied. In the variable expression, only the top store is acces-
sible, from the current procedure (E-LocVar), or the store ρ with the global variables
(E-GlobVar), in this order. There are no reduction rules for quantifiers expressions since
they are only allowed in types not in the scope of an in predicate.

In the case of function calls, the call is replaced by the function body (a newly in-
troduced expression), and a new store is added to the stack (E-FCall). The body is then
reduced, first the local variable declarations (E-Decl), and later its statements (E-Stat).
When reduction reaches a return statement, whose expression is a value, the statement
reduces to the value, and the stack is popped (E-StatRet). Note that, if the function ter-
minates, the evaluation of the body must reach a return statement since rule E-FCall adds
a return statement to the end of the function body, (cf. the function validation rule, fig-
ure 4.12).

The reduction of the in predicate is done separately, since it is necessary to consider
each primitive type. Figure 4.27 introduces the evaluation rules for the in type predicate.
The in type expression does not reads or writes the store, so the judgement not includes
it. Note that the translation to JavaScript (in figure 4.23) matches these reduction rules.

The reduction rules for expressions are used by the statements evaluation rules, which
are presented in figure 4.28. The rules for statements rules are intuitive, except for the
assignment. In JavaScript assignments are evaluated from left to right: first the left hand
side of the assignment is reduced to a memory location, then the right hand side is reduced
to a value, and finally the memory location is updated with the value. Figure 4.29 shows
according to the syntax of SafeScript expressions the evaluation of left-hand side terms to

Chapter 4. SafeScript Language 55

(x = v) ∈ ρ
x | (ρ : π; ρg) −→ v | (ρ : π; ρg)

(E-LocVar)
(x = _) /∈ ρ (x = v) ∈ ρg

x | (ρ : π : ρg) −→ v | (ρ : π : ρg)
(E-GlobVar)

ei | µ −→ e′i | µ′

⊕(v1, . . . , vi−1, ei, . . . , en) | µ −→ ⊕(v1, . . . , vi−1, e′i, . . . , en) | µ′
(E-OpArg)

⊕(v1, . . . , vn) 7→ e is defined
⊕(v1, . . . , vn) | µ −→ e | µ

(E-Op)
e1 | µ −→ e′1 | µ′

e1 ? e2 : e3 | µ −→ e′1 ? e2 : e3 | µ
(E-Ternary)

true ? e2 : e3 | µ −→ e2 | µ
(E-TerTrue)

false ? e2 : e3 | µ −→ e3 | µ
(E-TerFalse)

e | µ −→ e′ | µ′

e in T | µ −→ e′ in T | µ′
(E-InTypeArg)

v in T −→ e

v in T | µ −→ e | µ
(E-InType)

ei | µ −→ e′i | µ′

{l1 = v1, . . . , li−1 = vi−1, li = ei, . . . , ln = en} | µ −→
{l1 = v1, . . . , li−1 = vi−1, li = e′i, . . . , ln = en} | µ′

(E-ObjExp)

e | µ −→ e′ | µ′

e.l | µ −→ e′.l | µ′
(E-ObjAccArg)

{l1 = v1, . . . , li = vi, . . . , ln = vn}.li | µ −→ vi | µ
(E-ObjAcc)

ei | µ −→ e′i | µ′

[v1, . . . , vi−1, ei, . . . , en] | µ −→ [v1, . . . , vi−1, e′i, . . . , en] | µ′
(E-ArrExp)

e1 | µ −→ e′1 | µ′

e1[e2] | µ −→ e′1[e2] | µ′
(E-ArrAccArg1)

e2 | µ −→ e′2 | µ′

v1[e2] | µ −→ v1[e′2] | µ′
(E-ArrAccArg2)

[v1, . . . , vn+1, . . . , vm][n] | µ −→ vn+1 | µ
(E-ArrAcc)

ei | µ −→ e′i | µ′

f(v1, . . . , vi−1, ei, . . . , en) | µ −→ f(v1, . . . , vi−1, e′i, . . . , en) | µ′
(E-FCallArg)

Figure 4.26: Expression evaluation: e | µ −→ e′ | µ′ (part 1)

location, hence the expression evaluation rules (figure 4.26) cannot be used.
After the left hand side is reduced via rule E-AssLeft to a location w, and the expres-

sion is reduced to a value via rule E-AssRight, the store is updated via rule E-Assign.
The rules for store update are presented in figure 4.30, using a big step semantics. The
rule E-StrObjAcc for object access of form w.l first evaluates w as an expression to a
value. The relation e | µ −→∗ v | µ′ denotes the reflexive and transitive closure of the
e | µ −→ e′ | µ′ relation.

Chapter 4. SafeScript Language 56

T f (T1 x1, . . . , Tn xn) {U1 y1 = e1 ; . . . Um ym = em ; S } is defined
f(v1, . . . , vn) | (π; ρg) −→ {U1 y1 = e1 ; . . . ; Um ym = em ; S ; return }

| ((x1 = v1, . . . , xn = vn) : π; ρg)

(E-FCall)

e1 | µ −→ e′1 | µ′

{U1 y1 = e1 ; . . . ; Um ym = em ; S } | µ −→
{U1 y1 = e′1 ; . . . ; Um ym = em ; S } | µ′

(E-DeclExp)

{U1 y1 = v1 ;U2 y2 = e2 ; . . . ; Um ym = em ; S } | ρ : π : ρg −→
{U2 y2 = e2 ; . . . ; Um ym = em ; S } | ρ, y1 = v1 : π : ρg

(E-Decl)

S | µ −→ S ′ | µ′

{S } | µ −→ {S ′ } | µ′
(E-Stat)

{ return v } | ρ : π : ρg −→ v | π : ρg
(E-StatRet)

Figure 4.26: Expression evaluation: e | µ −→ e′ | µ′ (part 2)

v in any −→ true

v in G −→ true if v ∈ K(G)

{l1 = v1, . . . , ln = vn} in {} −→ true

{l1 = v1, . . . , li = vi, . . . , ln = vn} in {li : Ti} −→ vi in Ti

[v1, . . . , vn] in T [] −→ v1 in T & . . . & vn in T

v in (x : T where e) −→ v in T & [v/x]e

undefined in void −→ true

otherwise v in T −→ false

where K(G) denotes the set of all values of scalar type G

Figure 4.27: In type predicate evaluation: v in T −→ e

Chapter 4. SafeScript Language 57

u | µ ↪→ u′ | µ′

u = e | µ −→ u′ = e | µ′
(E-AssLeft)

e | µ −→ e′ | µ′

w = e | µ −→ w = e′ | µ′
(E-AssRight)

[w 7→ v]µ ⇓ µ′

w = v | µ −→ ε | µ′
(E-Assign)

e | µ −→ e′ | µ′

if (e) S1 else S2 | µ −→ if (e′) S1 else S2 | µ
(E-IfCond)

if (true) S1 else S2 | µ −→ S1 | µ
(E-IfTrue)

if (false) S1 else S2 | µ −→ S2 | µ
(E-IfFalse)

while (e1) inv e2 S | µ −→ if (e1) {S ; while (e1) inv e2 S } else ε | µ
(E-While)

S1 | µ −→ S ′1 | µ′

S1;S2 | µ −→ S ′1;S2 | µ′
(E-SeqFst)

ε;S2 | µ −→ S2 | µ
(E-SeqSnd)

return e;S2 | µ −→ return e | µ
(E-SeqRet)

e | µ −→ e′ | µ′

return e | µ −→ return e′ | µ′
(E-Return)

Figure 4.28: Statement evaluation: S | µ −→ S ′ | µ′

u | µ ↪→ u′ | µ′

u.l | µ ↪→ u′.l | µ′
(E-ObjAccUpd)

u | µ ↪→ u′ | µ′

u[e] | µ ↪→ u′[e] | µ′
(E-ArrAccUpd1)

e | µ ↪→ e′ | µ′

w[e] | µ ↪→ w[e′] | µ′
(E-ArrAccUpd2)

Figure 4.29: Left hand side evaluation: u | µ ↪→ u′ | µ′

Chapter 4. SafeScript Language 58

[xi 7→ v]((x1 = v1, . . . , xi = vi, . . . , xn = vn) : π; ρg)
⇓ ((x1 = v1, . . . , xi = v, . . . , xn = vn) : π; ρg)

(E-StrLocVar)

(x = _) /∈ ρ
[xi 7→ v](ρ : π; (x1 = v1, . . . , xi = vi, . . . , xn = vn))
⇓ (ρ : π; (x1 = v1, . . . , xi = v, . . . , xn = vn))

(E-StrGlobVar)

w | µ −→∗ {l1 = v1, . . . , li = vi, . . . , ln = vn} | µ
[w 7→ {l1 = v1, . . . , li = v, . . . , ln = vn}]µ ⇓ µ′

[w.li 7→ v]µ ⇓ µ′
(E-StrObjAcc)

w | µ −→∗ [v1, . . . , vi−1, vi, vi+1 . . . , vn] | µ
[w 7→ [v1, . . . , vi−1, v, vi+1, . . . , vn]]µ ⇓ µ′

[w[i] 7→ v]µ ⇓ µ′
(E-StrArrAcc)

Figure 4.30: Store update: [w 7→ v]µ ⇓ µ′

Chapter 4. SafeScript Language 59

4.6 Implementation

The SafeScript compiler is implemented in Java using Xtext [6, 17], Xtext is a framework
to develop programming languages and DSLs. It uses ANTLR 3 (ANother Tool for Lan-
guage Recognition) [53] to create a lexer and a parser from the SafeScript grammar, and
links the generated AST (Abstract Syntax Tree) to Eclipse editing support (or other editor
that supports the Language Server Protocol [48]).

Figure 4.31 summarizes the compilation process. First, SafeScript programs are parsed
using Xtext, thus generating an AST. Then, during the validation phase, the AST is trans-
lated to Boogie code in order to perform typing validation according with the validation
rules presented in section 4.4. The Boogie verifier is used to check the Boogie code.
Assertion that cannot be proved result in a typing error and the compilation ends. If all
assertions are proved (i.e., the program has no typing error), then the AST is translated to
JavaScript, according with the description and rules of section 4.5.

Parser Validator Translator JavaScript
code

SafeScript
program

Boogie
Verifier

errorsboogie
code

Z3 SMT
solver

sat?smt code

.js.ss

AST AST

Figure 4.31: SafeScript compilation time works flow

The SafeScript editor and compiler is available as a Eclipse plugin in [75]. This
allows to create SafeScript projects, which compiles SafeScript source code and, in the
absence of errors, automatically generates the correspond JavaScript program. Errors are
identified in the Eclipse IDE at the point of the program where they occured. For example,
the invalid array access example in section 4.3 is shown in figure 4.32.

Figure 4.32: Eclipse IDE error of an invalid SafeScript program

Chapter 4. SafeScript Language 60

Chapter 5

SafeRESTScript Language

This chapter presents the SafeRESTScript programming language, an extension of Safe-
Script with support for REST calls that are statically validated. This is the second and
main goal of this work. The language validator uses HeadREST specifications, presented
in chapter 3, for helping with the validation of programs with REST calls.

5.1 Main Idea

In SafeScript, the verification of a function call consists in verifying whether arguments
match the parameters type. Furthermore, the function type may reference the parameters.

A REST endpoint can be seen as function that receives an HTTP request, possibly
changes a global resource set state, and then returns an HTTP response. Therefore, a
REST call can be seen as a call to an external function. Note that such functions should
accept any argument, even those that do not conform to expectations.

A HeadREST specification of a REST API describes the relation between request and
response of each API endpoint. Looking at REST endpoints as functions, each HeadREST
triple specifies the relation of the input function parameters (request) against the function
output (response), as well as the changes in the resource set inflicted by the execution of
the function.

JavaScript is single threaded and its code should not block, since this would freeze the
browser (or the tab) were the JavaScript runs. Therefore, function calls that take time to
handle or execute should be executed asynchronously. Towards this, the runtime main-
tains a queue of asynchronous calls. REST calls fall into this category, so they should
ideally be executed asynchronously. SafeRESTScript provides for asynchronous and syn-
chronous REST calls.

61

Chapter 5. SafeRESTScript Language 62

5.2 Additional Syntax

SafeRESTScript extends SafeScript with new syntax to describe REST calls. The addi-
tional syntax is presented in figure 5.1.

Expression e ::= . . . | await m s e | synch m s e | await f(e1, . . . , en)

REST Method m ::= get | post | put | delete

Declaration D ::= . . . | specification s of s | async F

Figure 5.1: SafeRESTScript additional syntax (extends figure 4.1)

A new declaration is introduced to import HeadREST specifications. The first string
literal must have the path to the HeadREST file, and the second literal must contain the
absolute base path of the REST service, which is appended to the relative URL (taken
from the REST calls) to form the absolute URL.

The REST call expression is composed of an HTTP method m (get, post, put or
delete), a string literal with the relative URL of the target resource, and an expression
that should evaluate to a request object. The URL string literal must be equal to at least
one of the URI template in the HeadREST specification imported by the program. The
request object expression must be of the type Request, whereas the returning value from
the call is of the type Response. These two types definitions are those of HeadREST, and
are defined in figure 3.15.

Recently, JavaScript introduced the operations async and await for defining asyn-
chronous calls using promises, rather than the usual callbacks [69]. This new syntax al-
lows creating simpler asynchronous calls with a syntax similar to that synchronous calls.
The same idea was used in SafeRESTScript. Asynchronous REST calls must be preceded
by the keyword await. Functions to be treated asynchronously must include async in the
header, as presented in the new syntax (figure 4.1). Functions that call other asynchronous
function must also be annotated with async.

5.3 A Simple Example

To illustrate the use of SafeRESTScript we program a consumer of the Dummy API in-
troduced in section 2.1. A simplified version of the HeadREST specification of employee
creation is presented below. In this version, only the success case is specified and only
the request and response formats are described.

1 specification DummyAPI

2

3 type EmployeeRequest = {name: String, salary: String, age: String}

Chapter 5. SafeRESTScript Language 63

4 type EmployeeResponse = EmployeeRequest & {id: String}

5

6 {

7 request in {body: EmployeeRequest}

8 }

9 post ‘/create‘

10 {

11 response.code == 200 &&

12 response in {body: EmployeeResponse}

13 }

Below is a simple SafeRESTScript program with a function that makes an async call
to the Dummy API for adding a new employee.

1 specification "dummyAPI.hrest"

2 of "http://dummy.restapiexample.com/api/v1"

3

4 async string addEmployee(string empName, string empSalary,

5 string empAge) {

6 EmployeeRequest requestBody = {name = empName,

7 salary = empSalary, age = empAge};

8 Response response = await post "/create" {body = requestBody};

9 return response.body.id;

10 }

First the program imports the specification from the dummyAPI.hrest file and indicates
the absolute base path for the Dummy API. The function receives the three parameters
needed for employee creation: name, salary and age. Line 6 creates the request body
using the function arguments. Note that the type of the variable requestBody is also
imported from the specification. Then, in line 8, it is made an asynchronous call to the
employee creation and finally, in line 9, it is returned the id that was received in the
response (created by the service).

In this function there are two important validations concerning to the REST call.
First we must check that the endpoint is valid, i.e., that in the API specification exists
at least one triple with "/create" URL and the post method. Next we need to check
whether the object response.body has field id. This can be concluded from the triple:
since the request body belongs to type EmployeeRequest, then the body is in the type
EmployeeResponse, and therefore the field id exists.

A final note about this example: since keyword await prefixes the REST call (making
the call asynchronous), the function itself is also asynchronous and must be annotated
with the async keyword in its signature.

Chapter 5. SafeRESTScript Language 64

5.4 Validation

Several additional validations are necessary to support the new syntax. The first is related
with specifications imported. The given path must be a path to a HeadREST file, and the
specification is validated using the HeadREST validator described in chapter 3.

The REST calls are encoded in Boogie using a simple function, restCall, as presented
at the end of the axiomatization (appendix C). The function receives as parameters the
REST method, a string representing the URI template relative path, and the request object,
and returns the response object. The interpretation of this function is given axioms (one
per triple of the specification) according to figure 5.2. The axiom relates the function
return value, the REST call response defined in the post-condition, with the function
request call argument that is defined in the pre-condition.

BJ{e1}mu {e2}K = axiom (forall request : Value, response : Value,

method : RestMethod, urit : Value ::

restCall(method, urit, request) == response

∧method == m ∧ urit == VJu′K ∧VJe1K == VJtrueK
⇒ VJe2K == VJtrueK);

where u′ is the string that represents u

Figure 5.2: Translation of HeadREST specification: BJSK

Since SafeScript does not support resources and their operator (including uriof and
repof predicates) at the line of this writing, we assume HeadREST specifications do not
include resources. It may be necessary to create a separate specification that only specifies
the format of the request and response.

Figure 5.3 presents the translation of REST calls expressions with validation.

V∗Jsynch m s eK(x) = V∗JeK(y) assertF′JyK(Request); x := restCall(m,VJsK, y);

assumeF′JxK(Response);

V∗Jawait m s eK(x) = V∗Jsynch m s eK(x) havoc g1, . . . , gn;

where y is a fresh variable, and g1, . . . , gn are the global variables.

Figure 5.3: Translation of expressions with type validation: V∗JeK(x) (extends fig-
ure 4.16)

The request object must be of the type Request, as defined in HeadREST. On the other
hand, the response can be assumed to be of the type Response, which is also the case in
HeadREST. The effective type of the REST call response is defined by the axioms of the

Chapter 5. SafeRESTScript Language 65

restCall function, and therefore by the post-condition of HeadREST triples that match the
pair (HTTP method, URI template) of the REST call, for which the pre-condition with
the given the request object holds.

In asynchronous REST calls the execution of the function is suspended, and when it is
resumed, the global variables may have changed. The primitive Boogie statement havoc
is used over all global variables to assign an arbitrary value to those values, that respect
their declared type presented in there where clause (see global variable Boogie translation
in section 4.5).

Additionally, it is also checked whether there exists at least one triple in the imported
specification for the pair (REST method, URI template) of each REST call. The spec-
ification may not cover all possible scenarios, i.e., the disjunction of the pre-conditions
for a given method and URI template may not be true, so that calls may not have triples
that apply. In that case, the only aspect known about the response is that it belongs to
the generic Response type. Triples in the HeadREST specification may also be inconsis-
tent: two or more triples that have a non false pre-condition intersection may have a false
post-condition intersection. In that case, the axioms generated will also be inconsistent
and Boogie will validate all assertions, including false ones. Therefore, this sort of REST
calls validation only makes sense with consistent specifications.

5.5 Translation to JavaScript

The translation of REST calls is achieved by calling auxiliary functions, one for syn-
chronous and another by asynchronous calls. These functions are added to the generated
JavaScript code and are detailed in appendix D.

The URL to the call is the expansion of the URI template; its parameters are defined
by the field template of the request object. The expansion follows the RFC 6570 [31],
only for the level of URI templates supported by the HeadREST language. We add the
content-type JSON to the request headers, so objects sent and received in the body are
ensured to be of JSON format, and therefore having a direct translation to JavaScript
objects. The calls use XMLHttpRequest, an object that is supported by all browsers and
devices.

Many REST APIs endpoints can only be used successfully with authentication, that is
including a special token in the header authorization. The simpler and most common type
of authentication is the Basic authentication scheme, defined by RFC 7617 [60]. This
authentication is not secure and must be used with HTTPS. The token must be encoded in
base64 [40], which is done by the native JavaScript function btoa. To simply this process,
an additional header basicAuthorization is supported, that, before the call, performs the
necessary encoding and adds the necessary authorization header.

The await and async keywords are directly translated to JavaScript. Functions that

Chapter 5. SafeRESTScript Language 66

are asynchronous return a promise with the returning value, and the await operator reads
that value. An example of a JavaScript program is presented below. This program calls
the asynchronous function presented in section 5.3 and programmed in SafeRESTScript,
made available in JavaScript by the SafeRESTScript compiler.

1 var dummyClient = require("dummyClient.js"); // imports function

2

3 // prints the employees id after the response is received in a

4 // non deterministic order

5 dummyClient.addEmployee("Robin", "750", "24").then(console.log);

6 dummyClient.addEmployee("Francisco", "750", "24").then(console.log);

7

8 // this log is printed first

9 console.log(42);

5.6 Implementation

SafeRESTScript is implemented as an extension of SafeScript, so SafeRESTScript com-
piler its implemented with the same language and tools. Figure 5.4 presents a diagram
that summarizes the compilation of a SafeRESTScript program.

Parser Validator Translator
JavaScript
code

SafeRESTScript
program

Boogie
Verifier

errors
boogie
code

Z3 SMT
solver

sat?
smt code

HeadREST
Validator

file path
AST

smt code
sat?

HeadREST
specs

.js.srs

refers

.hr

AST AST

Figure 5.4: SafeRESTScript compilation time works flow

The main difference with SafeScript (cf. figure 4.31) is in the validation phase. A
SafeRESTScript program can reference a HeadREST specification, which is validated
using the HeadREST validator (described in chapter 3), using the same SMT solver for
the semantic evaluation. If the validation fails, an error is reported, else the HeadREST
compiler retrieves an AST that represents the specification. Each REST call in the AST
is validated by translating each specification triple to Boogie as described in section 5.4.
The JavaScript translation is similar since the SafeRESTScript specification is only used
for the validation phase.

SafeRESTScript compiler and editor is available as a SafeScript extension in [75]. The
plugin compiles SafeRESTScript files, and is also equipped with the HeadREST validator

Chapter 5. SafeRESTScript Language 67

and editor, so that specifications can be edited as well. Figure 5.5 presents the structure
of a SafeRESTScript project, that uses the DummyAPI example. In the project root we
find SafeRESTScript programs. The generated JavaScript files are generated and placed
in the src-gen folder. In this case HeadREST specifications were placed in folder specs,
but SafeRESTScript programs can import specifications from arbitrary locations (inside
or outside the project).

Figure 5.5: SafeRESTScript project structure

As shown in SafeScript implementation section, errors related to REST calls are also
highlighted by the Eclipse IDE. Figure 5.6 shows an error detected by the SafeRESTScript
validator: the post-condition of the triple for post does not ensure that the object body
contains the address field (so it cannot be accessed in the response body).

Figure 5.6: Eclipse IDE error report in an invalid SafeRESTScript program

IDEs help programmers in writing code or fixing errors, and Eclipse is no exception.
A few features were added to the SafeRESTScript editor, including one that assists the
programmer in writing REST calls against a specification. Figure 5.7 presents an exam-
ple: when the programmer introduces the method of the REST call (get), the IDE shows
the possible URI templates available for the method, according to the imported specifica-
tion.

Figure 5.7: Eclipse IDE content assist in an REST call

Chapter 5. SafeRESTScript Language 68

A common mistake when writing code that consumes REST services is to forget to
declare the asynchronous calls inside asynchronous functions. Figure 5.8 shows two quick
fixes for this kind of error: add the async keyword the function signature, or change the
REST call to synchronous.

Figure 5.8: Eclipse IDE quick fix example

Chapter 6

Evaluation

This chapter presents some experiments that were carried out in order to evaluate Safe-
Script and its extension SafeRESTScript. These experiments have several goals: (i) show
the ability of SafeScript validator and comparing the performance with other verification
tool, (ii) compare with a similar propose language (TypeScript) the code that is necessary
to achieve some functionally or error, and (iii) present a set of practical and sophisticated
examples which include complex REST calls that could be found in real examples.

In this chapter it is also discussed the languages limitations and, from these, delineated
the future work.

6.1 Verification Benchmarks Challenge

In 2008, Weide et al. published a suite with eight incremental benchmarks for verifica-
tion tools and techniques that prove total correction of object-based and object-oriented
software [79], to answer Hoare et al. Verified Software Initiative [36]. Some authors
of verification tools (e.g. Dafny [44]) accepted the challenge and proposed solutions for
some of this benchmarks. This section presents solutions for two of these benchmarks
using SafeScript.

Benchmark #1: Adding and Multiplying Numbers Verify an operation that adds
two numbers by repeated incrementing. Verify an operation that multiplies two numbers
by repeated addition, using the first operation to do the addition. Make one algorithm
iterative, the other recursive.

An iterative version of the addition and recursive version of the multiplication were
developed. Below it is presented the addition function.

1 (x: int where x == a + b) sum(int a, int b) {

2 int r = a;

3 int l = b;

4 if (b > 0) {

5 while (l != 0)

69

Chapter 6. Evaluation 70

6 inv l >= 0 && r == a + b - l {

7 r = r + 1;

8 l = l - 1;

9 }

10 }

11 else {

12 while (l != 0)

13 inv l <= 0 && r == a + b - l {

14 r = r - 1;

15 l = l + 1;

16 }

17 }

18 return r;

19 }

This solution is very similar to the one developed in Dafny. While Dafny asserts the
addition correction using an ensures clause, SafeScript asserts the same using a refinement
type for the function return type. Thanks also to refinement types, as show below, it is
possible to program the function with a single loop.

1 (x: int where x == a + b) sum(int a, int b) {

2 int r = a;

3 (x: int where sameSign(b, x)) l = b;

4 int d = b > 0 ? 1 : -1;

5 while (l != 0) inv r == a + b - l {

6 r = r + d;

7 l = l - d;

8 }

9 return r;

10 }

11

12 // auxiliary specification function

13 function sameSign(int x, int y) {

14 x > 0 => y >= 0 & x < 0 => y <= 0

15 }

The main difference between both loops is the invariant which asserts the sign of l,
that, during the loop execution, must have the same signal as b (including zero). This
information can be establish in the variable declaration, refinement the integer that l can
contain, which depends on b’s value. Note the use of a specification function which helps
to assert this dependency. As explained in chapter 4, the variable type declaration must
hold during all execution points of the function, including all loops iterations, so it works
as a loop invariant as well, and therefore it helps, in this case, to prove the return type
condition.

The recursive version of the multiplication function is presented next. It uses the
addition function defined before.

Chapter 6. Evaluation 71

1 (x: int where x == a * b) multiply(int a, int b) {

2 if (a == 0) {

3 return 0;

4 }

5 if (a > 0) {

6 return sum(multiply(a - 1, b), b);

7 }

8 else {

9 return -multiply(-a, b);

10 }

11 }

Benchmark #2: Binary Search in an Array Verify an operation that uses binary
search to find a given entry in an array of entries that are in sorted order.

The developed solution has a binary search over an array of integers, sorted by their
natural order, and in an iterative way. Below, it is presented the algorithm.

1 type IntArrOrd = (a: int[] where forall i: int . forall j: int .

2 i >= 0 && j < length(a) && i < j ==> a[i] <= a[j]);

3

4 (i: int where bs(a, k, i)) binarySearch(IntArrOrd a, int k) {

5 int mid = 0;

6 int low = 0;

7 int up = length(a) - 1;

8 while (low <= up)

9 inv 0 <= low && up < length(a)

10 inv (forall x: int . up < x && x < length(a) ==> a[x] > k)

11 inv (forall x: int . 0 <= x && x < low ==> a[x] < k)

12 {

13 mid = (low + up) / 2;

14 if (a[mid] == k) {

15 return mid;

16 }

17 if (a[mid] > k) {

18 up = mid - 1;

19 } else {

20 low = mid + 1;

21 }

22 }

23 return -1;

24 }

25

26 // auxillary specification function

27 function bs(IntArrOrd a, int k, int i) {

28 i >= -1 && i < length(a) && // index in array bounds

29 (i >= 0 ?

Chapter 6. Evaluation 72

30 a[i] == k : // target found, index positive

31 (forall x : int . 0 <= x && x < length(a)

32 ==> a[x] != k) // target not found, index -1

33)

34 }

The function returns the index of the target element in that array if it is present, and
-1 otherwise. The binary search requires that the array is sorted and this is specified by
the type IntArrOrd. An integer array is sorted if and only if given any two of its valid
indexes, the greater index has the greater integer, or equivalently, if given any two of
its consecutive indexes, the second must have an integer greater or equal than the first.
Hence, we could define IntArrOrd type as follows:

1 type IntArrOrd = (a: int[] where forall i: int .

2 i >= 0 && i < length(a) - 1 ==> a[i] <= a[i + 1]);

However, if this type definition replaces the other, the Boogie tool cannot verify the
invariants in the loop, even though the types are equivalent. The same problem happens
also in Dafny when a similar declaration is done. This shows one of the limitations of
SafeScript and of other verifiers: quantifiers are not decidable.

Performance The presented benchmarks can be used to establish a execution time com-
parison between verifiers. Dafny solutions to those benchmarks are available, and its
verifier also uses Boogie as an intermediate language and the Z3 SMT solver. Table 6.1
presents the execution time comparison between Dafny and SafeScript.

Dafny v2.3.0 SafeScript
Terminal Boogie Terminal Boogie

Benchmark #1: addition 1,7 0,9 6,1 0,6
Benchmark #1: multiplication 1,9 1,0 6,2 0,6
Benchmark #2: binary search 1,9 1,0 9,7 4,0

Table 6.1: Comparison between Dafny and SafeScript execution time (in seconds)

The time benchmarks presented in table were taken in a machine with an Intel Core
i7-7700HQ CPU, with 2.80 GHz and 16 GB of RAM memory, under Windows 10 envi-
ronment. The times are the average of three runs.

Boogie and Z3 versions were the same for both verifying tools. It was chosen to com-
pare two different times: the execution time of the terminal version of each tool, which
includes the parsing, validation and translation to another language (in Dafny, .NET),
and the execution time of the Boogie tool given the generated Boogie code during the
validation phase.

SafeScript terminal version has a heavy initialization, about 5,5 seconds, namely be-
cause it was designed to be used with Eclipse IDE. In the IDE, the initialization is only

Chapter 6. Evaluation 73

done once, and the compilation time is similar to the time that Boogie tool takes to make
the necessary validations.

6.2 Comparison with TypeScript

TypeScript has the motto JavaScript that scales. It was designed to detect statically com-
mon JavaScript errors with the introduction of type declaration. SafeScript has a similar
goal, so the comparison with TypeScript is important to understand the power of Safe-
Script. It will be used examples adapted form the TypeScript documentation [50].

TypeScript has a type system similar to SafeScript, except for the refinement types.
The object and arrays types and respective literals have some differences, namely in terms
of semantics. SafeScript structural objects correspond to TypeScript interfaces, but Type-
Script classes does not have an equivalence into SafeScript.

A simple function that returns the field of an object is presented below, in TypeScript
and SafeScript.

1 // TypeScript

2 function returnLabel(labeledObj: {label: string}) : string {

3 return labeledObj.label;

4 }

1 // SafeScript

2 string returnLabel({label: string} labeledObj) {

3 return labeledObj.label;

4 }

In this case there is almost no difference, the object type declared in the TypeScript
function argument is an interface and behaves like SafeScript objects types: the function
can receive all objects that have the field label that is a string, and that objects can have
other fields as well.

A more complex example, with optional fields in objects, is presented next.

1 // TypeScript

2 interface SquareConfig {color?: string; width?: number}

3

4 function createSquare(config: SquareConfig): {color: string;

5 area: number} {

6 let newSquare = {color: "white", area: 100};

7 if (config.color) {

8 newSquare.color = config.color;

9 }

10 if (config.width) {

11 newSquare.area = config.width * config.width;

12 }

13 return newSquare;

Chapter 6. Evaluation 74

14 }

1 // SafeScript

2 type SquareConfig = {?color: string, ?width: int};

3

4 {color: string, area: int} createSquare(SquareConfig config) {

5 any newSquare = {color = "white", area = 100};

6 if (config in {color: any}) {

7 newSquare.color = config.color;

8 }

9 if (config in {width: any}) {

10 newSquare.area = config.width * config.width;

11 }

12 return newSquare;

13 }

In TypeScript the optional fields in interfaces, identified by the quotation mark, have
the same semantics as in SafeScript: if the object has the field, then it must be of the
declared type. TypeScript also has flow typing, as this example shows: the object fields
can only be accessed in lines 8 and 11 because the if conditions in the previous lines are
taken in account. The field checking in the conditions uses the JavaScript coercion that
is supported by TypeScript. In SafeScript the verification must be done with the in type
operator.

TypeScript interface can only defined an object type, and SafeScript type declaration
can define any type abbreviation. For example, if at least one of the fields in SquareConfig

is mandatory, then the type can be represented in SafeScript using the union and intersec-
tion types as follows:

1 type SquareConfig = {?color: string, ?width: int} &

2 ({color: any} | {width: any});

TypeScript supports hierarchy in interfaces (and also classes), so an interface can ex-
tend other. A simple example is presented below.

1 // TypeScript

2 interface Shape {

3 color: string;

4 }

5

6 interface PenStroke {

7 penWidth: number;

8 }

9

10 interface Square extends Shape, PenStroke {

11 sideLength: number;

12 }

13

Chapter 6. Evaluation 75

14 function doSomething(x: Square) { /* ... */ }

15

16 doSomething({color: "green", sideLength: 4}) // error!

An object of type Square must have the three fields: sideLength, penWidth and
color. Therefore, the call to the doSomething function is not valid, since the object
passed as argument does not have the field penWidth. Equivalent object types can be
declared in SafeScript thanks to intersection types:

1 // SafeScript

2 type Shape = {color: string};

3

4 type PenStroke = {penWidth: int};

5

6 type Square = Shape & PenStroke & {sideLength: int};

7

8 void doSomething(Square x) { /* ... */ }

9

10 void main() {

11 doSomething({color = "green", sideLength = 4}) // error!

12 }

6.3 SafeRESTScript: More Examples

Chapter 5 presented a simple example of a REST call supported by a HeadREST speci-
fication. In this section it is presented a set of more real and complex examples of Safe-
Script programs that consume the REST API of GitHub, a very popular git based version
control.

The first target endpoint, /users{?since}, allows to get all registered users of GitHub,
in the order that they signed up for GitHub. This is done by pagination: each call does
not retrieve all users, but a small list of them, where the begin of the list is defined by
the optional parameter since. If the parameter is not sent, then the default value is zero.
Below it is described this endpoint in HeadREST. Note that the user representation is
declared only with the fields that are used in the examples of this section.

1 specification GitHub

2

3 type User = {

4 login: String,

5 id: Integer,

6 site_admin: Boolean

7 }

8

9 // since parameter is present

10 {

Chapter 6. Evaluation 76

11 request in {template: {since: Integer}}

12 }

13 get ‘/users{?since}‘

14 {

15 response in {body: User[]} &&

16 (forall i: Integer . 0 <= i && i < length(response.body) ==>

17 response.body[i].id == i + request.template.since + 1)

18 }

19

20 // since parameter is not present

21 {

22 request in !{template: {since: Any}}

23 }

24 get ‘/users{?since}‘

25 {

26 response in {body: User[]} &&

27 (forall i: Integer . 0 <= i && i < length(response.body) ==>

28 response.body[i].id == i + 1)

29 }

There is no REST endpoint that gets only the user with a given id. Below it is pre-
sented a SafeRESTScript program with a function that does exactly that. It takes advan-
tage of the endpoint specification to prove the return type, ensuring that the obtained user
has the same id as the function argument.

1 specification "GitHub.hrest" of "https://api.github.com"

2

3 type NotFoundError = (x: string where x == "not found");

4

5 async (u: User where u.id == id)|NotFoundError getUserById(int id) {

6 Request request = {template = {since = id - 1}};

7 Response response = await get "/users{?since}" request;

8 User[] users = response.body;

9 if (length(users) > 0) {

10 return users[0]; // valid id

11 }

12 else {

13 return "not found"; // invalid id

14 }

15 }

In the successful case, the object body has a non-empty array, the function returns the
user in the position zero. This user object is guaranteed to have an id equal to the function
parameter id, thanks to the post-condition of the specification triple, namely the forall
quantifier that asserts the id of each user according to the since variable.

Another possible operation over this endpoint is searching for an user with a certain
characteristics. The SafeRESTScript function presented below searches over the GitHub

Chapter 6. Evaluation 77

users to find an administrator, characteristic ensured by the field site_admin of an user
representation.

14

15 type AdminUser = (u: User where u.site_admin);

16 type NoAdminError = (x: string where x == "There are no admins!");

17

18 async AdminUser|NoAdminError getSiteAdmin() {

19 nat i = 0; // start from the first user

20 nat j = 0;

21 User[] users = [];

22 while (true) {

23 users = (await get "/users{?since}"

24 {template = {since = i}}).body;

25 j = 0;

26 while (j < length(users)) {

27 if (users[j].site_admin) {

28 return users[j];

29 }

30 j = j + 1;

31 }

32 if (length(users) == 0) { // empty page

33 return "There are no admins!";

34 }

35 i = i + j - 1;

36 }

37 }

The search is done getting the various pages of users and stopping when one of them
has an user with admin privileges, or returning an error message when all pages were
checked and non admin user was found. It is guarantee that the returned user representa-
tion (if any) is an administrator thanks to the flow typing caused by the if conditional at
line 27, which allows to statically validate the return type.

For the next example it is necessary to introduce two additional GitHub endpoints and
resource representations. Each user has a set of repositories, that has a set of collabo-
rators, and each repository contains a list of commits, that identify the collaborated user
that made the commit (author). The endpoint /repos/{owner}/{repo}/collaborators
retrieves the collaborators of a given repository repo for a given user owner, and the end-
point /repos/{owner}/{repo}/collaborators retrieves the repository list of commits.
Below this endpoints are specified in HeadREST, extending the specification presented
before. Only the successful cases of each endpoint are presented.

30 type Repository = {

31 id: Integer,

32 name: String,

33 owner: User

Chapter 6. Evaluation 78

34 }

35

36 type Commit = {

37 commit: {

38 message: String

39 },

40 author: User

41 }

42

43 {

44 request in {template: {owner: String, repo: String}}

45 }

46 get ‘/repos/{owner}/{repo}/collaborators‘

47 {

48 response in {body: User[]} &&

49 (exists i: Integer . 0 <= i && i < length(response.body) ==>

50 response.body[i].login == request.template.owner)

51 }

52

53 {

54 request in {template: {owner: String, repo: String}}

55 }

56 get ‘/repos/{owner}/{repo}/commits‘

57 {

58 response in {body: Commit[]}

59 }

Using these endpoints it is possible to program a function that verifies the collabora-
tors of an repository that did not contribute to the project, i.e., did not make a commit.
The correspondent SafeRESTScript function is presented next.

34 type DidCommit = {user: string, isCommitter: boolean};

35

36 async DidCommit[] checkUncommitters(string repositoryUser,

37 string repository, string key) {

38 nat i = 0;

39 nat j = 0;

40 Request request = {template = {owner = repositoryUser,

41 repo = repository}, header = {basicAuthorization = key}};

42 User[] users = (await get "/repos/{owner}/{repo}/collaborators"

43 request).body;

44 Commit[] commits = (await get "/repos/{owner}/{repo}/commits"

45 request).body;

46 (d: DidCommit[] where length(d) == length(users)) didCommit =

47 mkarray({user = "", isCommitter = false}, length(users));

48 while (i < length(users)) {

49 didCommit[i].user = users[i].login;

Chapter 6. Evaluation 79

50 i = i + 1;

51 }

52 i = 0;

53 while (i < length(commits)) {

54 j = 0;

55 while (j < length(didCommit)) {

56 if (didCommit[j].user == commits[i].author.login) {

57 didCommit[j].isCommitter = true;

58 }

59 j = j + 1;

60 }

61 i = i + 1;

62 }

63 return didCommit;

64 }

The function crosses the information obtained in both endpoint calls to return an array
with all repository collaborators and if they made a commit or not. As the repository may
be private, the function receives a key that must give authorization to access the repository
information, and that is added to the request header (as explained in section 5.5). In this
case the HeadREST specification triples are essentially important to validate statically
sequential access to the body object of both endpoints responses, like in lines 49 and 56.

6.4 Limitations

From the evaluation presented in this chapter, and also from the languages theory defined
in previous chapters, it is possible to identify some limitations of SafeScript language and
its extension SafeRESTScript. This section discusses them.

No References SafeScript does not have references, so when an object or array is passed
as a function argument, it is not passed a reference but the object or array value. Therefore,
functions do not have side effects over the values of variables provided as arguments. On
one hand, this can be good, since it guarantees that when calling a function the state of the
local variables cannot change, simplifying the validation. On the other hand, for having
functions that change and object or array, it is necessary to have the changing object or
array in the returning value, which can be complicated in some cases. For example, in a
function that performs the traditional pop operation over a stack, it is necessary to return
the top element and also the remaining stack. As there are no tuples and a function only
returns a single value, this requires the creation of an object structure for the effect.

Since SafeScript compiles to JavaScript (that has references), it is necessary to intro-
duce copies of objects and arrays when necessary, as explained in section 4.5, and which
carries an unnecessary complexity to the generated JavaScript, as well as complicating

Chapter 6. Evaluation 80

the transition from one language to other. In the next section it is discussed a possible
way of adding references to SafeScript.

Partial correctness SafeScript only ensures a partial correction, i.e., that the result of a
function belongs to the function return type. For total correctness, it would be additionally
necessary to prove that each function terminates. Two aspects prevent a trivial termination
proof: while loops and recursive calls (possibly indirect). Relatively to the loops, there is
an additional rule in Hoare calculus that, substituting the traditional while rule, guarantees
a total correctness. However, in a general case, it is not possible to apply the rule without
additional information provided by the loop statement.

URL construction In SafeScript, the relative URL endpoint for making a REST call
must be a string literal, that matches an URI template in the imported HeadREST spec-
ification. Therefore, it is not possible to construct the URL string with the values of the
URI template variables, but these must be indirectly indicated in the object request. The
problem is that it is common in REST APIs to have URLs as parte of resources repre-
sentations, linking one resource to another. For example, in the GitHub API described
before, the user representation contains a hyperlink to the user repositories, which can be
used as an URL in another REST call. However, the syntax of SafeRESTScript does not
allow this, namely because the necessary correspondence with the an URI template of the
HeadREST specification, that must be made during the validation phase.

Error messages Good compilation error messages are essential in a programming lan-
guage. In a case of type errors, it is common to have an error message with at least
two important information: the expected type and the actual type of the expression that
is causing the typing error. In SafeScript, it is only possible to inform the programmer
with the expected type, because the typing algorithm does not synthesize the type of the
expressions. Note that Boogie evaluates an assertion with the expression in type opera-
tor, and not with a subtyping relation. In contrast, HeadREST does not have this problem,
since the type validation algorithm synthesize the types of the expressions, which are then
shown in the error messages.

6.5 Future Work

This section presents a set of identified challenges that can improve SafeScript language
and its extension SafeRESTScript.

References Introducing references in objects and arrays is not trivial and adds addi-
tional complexity to Boogie translation, which may difficult Boogie tool validation, in-

Chapter 6. Evaluation 81

creasing the compilation time. On the other hand, it makes SafeScript even more similar
to JavaScript and simplifies the operational semantics of object and arrays updates.

Dafny has a clever solution with object references translation to Boogie [43]: the
object heap is a global variable that maps references to values, which can be also other
references. The state of the heap is defined in a procedure requires clause, and the pro-
cedure changes are reported in the ensures clause. The objects that can change in the
procedure have to declared in the function signature, so the post-condition of the heap
can be formed: asserting that all existing references that does not belong to these objects
maintain the same value in the heap, and others have a new undefined value. In object
updates, the left hand side is reduced to a reference and this is updated in heap variable.
A similar procedure can be accomplish for arrays as well.

However, this solution only works because Dafny does not have a subtyping relation
between types, since there is no type hierarchy. If this solution is directly applied to
SafeScript, a problem emerges, as the following example demonstrates:

1 void m1({x: int} a) /* modifies a */ {

2 a.x = -1; // error?

3 }

4

5 void m2() {

6 {x: nat} v = {x = 1};

7 m1(v);

8 }

By definition, {x: nat} is subtype of {x: int}, so the variable v may be an argument
of a call to the function m1. The function m1 change the field x to a negative value, that
belongs to the type int, declared in the function signature. However, this does not belong
to the nat type of the variable v, and therefore when the call to the function m1 ends, v
will have a value that does not belong to its declared type.

This problem is well known in some programming languages. It happens, for ex-
ample, when writing arrays in Java. In SafeScript it can also happen in objects because
the subtyping relation is structural for objects. A possible solution is to have an invari-
ant validation for expressions arguments in function calls that can be modified inside the
function. For example, in the case presented above, v could only be used as m1 argument
if, and only if, had the declaration type {x: int} (or other semantically equivalent).

This solution uncovers other challenge: determine the declaration type of a general
expression. This is trivial if the expression is a variable, but not if it is a consecutive
object or arrays access, namely when the declaration type has refinement types. As it was
presented in HeadREST validation, performing a type normalization and extraction may
not cover all possible cases. In short, there is still a lot of work to do for introducing
references in SafeScript.

Chapter 6. Evaluation 82

Functions as values Functions are values in JavaScript: they can be stored in variables
or sent as arguments in a function call. They are particularly useful in Javascript due
to its asynchronicity, since callbacks functions are necessary in several function calls.
Adding functions as values will make SafeScript one step closer to JavaScript. It is also
necessary to add a new type, the function type, that will increase the expressivity of the
language type system. The major challenge is to represent the function in Boogie, as
well as translating the in type relation of the function type. The subtyping relation in the
function type must be contravariant in its arguments and convariant in its return type:

Ti <: Ui ∀i ∈ 1..n Un+1 <: Tn+1

(U1, . . . , Un)→ Un+1 <: (T1, . . . , Tn)→ Tn+1

External functions As SafeScript compiles to JavaScript, it has available JavaScript
standard libraries, and others that can be imported. To use these functions in SafeScript,
taking advantage from all JavaScript existing libraries, it is necessary to annotate the
functions, adding types to the parameters and to the return function value, so the semantic
of these functions can be known in the validation phase. So, a new function declaration
syntax should be added: a function declaration without body, that represents a primitive
JavaScript function. A similar concept is done in TypeScript, with declaration files, where
external JavaScript function, interfaces, or variables, can be declared, annotated with the
TypeScript types, to be used in TypeScript code.

Safety prove One of the most important properties of a type system if safety (also
known as soundness), which, in this case, states that a well typed expression never gets
stuck during the evaluation stage. From the rules presented in chapter 4 it in prin-
ciple should be possible to prove the safety of SafeScript, or at least for a subset of
this. Two steps are necessary for this proof: a progress theorem, which asserts that
a well-typed expression, Γ ` e : T , is a value or can take a step according to the
evaluation rules; and a preservation theorem, which asserts that if a well-typed term
takes a small step in the evaluation rules, then the resulting term is also well typed:
Γ ` e : T ∧ e | µ −→ e′ | µ ⇒ Γ ` e′ : T . As expression evaluation depends on other
SafeScript grammar terms, like statements, similar proofs for them must be achieved.

Inconsistent specifications HeadREST specifications may have inconsistent triples,
i.e., the intersection of the post-conditions of two or more triple over the same endpoint
and that the intersection of the pre-condition is not false, may be false. For example, if
a, b, c are boolean expressions, then the triples {a} . . . {c} and {b} . . . {!c} are inconsistent
if a ∧ b 6= ∅. This aspect does not influence the validation of a HeadREST specification,
since each triple is validated independently of the others, but it can affect the validation
of a SafeRESTScript program. If a specification has inconsistent triples, then the Boogie

Chapter 6. Evaluation 83

axiomatization generated (that contains all triples) is also inconsistent, and the respec-
tive program is validated, even with errors. Therefore, adding a detection of inconsistent
specification in HeadREST validation will improve the validation of SafeRESTScript pro-
grams.

Specifications with resources HeadREST resource types and the resource related op-
erations repof and uriof cannot be translated to SafeScript expressions. The value of
these expressions depend on the state of the system resources, which cannot be known in
compilation time, nether in execution by the client.

A solution is to translate these operators as non interpreted functions, similar to what
is done in HeadREST validation. This solution has two problems. It demands that each
pair method endpoint must be described for all of its request domain. It also may assert a
post-condition about the resource set, which can not be considered as a true assertion in
the evaluation of a possible next REST call.

For example, for some service, and in a client-side perspective, if it is created a re-
source, there is the possibility that in a next call to get the resource representation the
resource may already not exist (may had been deleted by another service client), so the
post-condition about the resource creation must not be considered in the evaluation of
sequential calls pre-conditions.

An alternative is to remove the expressions containing resources references from the
triple pre and post-conditions, maintaining the expressions semantic. This solution is
not trivial, namely because of the expressivity of the language semantics. So, it may be
chosen a syntactic approach to remove the resource expressions.

As discussed in chapter 3, pre and post-conditions describe the format of the request
and response, and the state of the system resource set. In each condition these descrip-
tions normally do not overlap, being connected by a boolean logic operator to form the
complete condition. So, a simple removal over the boolean and and or binary operator
solve most cases. For more complicated and unusual cases, it may be necessary to create
a separate specification that only specifies the format of the request and response.

Chapter 6. Evaluation 84

Chapter 7

Conclusion

REST is the architecture most used for exchanging data in the web. Many web services
have their data available in a REST service, so web clients can retrieve and, in some cases,
change them. With the high rise of REST clients, it was expected that there were several
and potentially good solutions to statically verify REST calls made by clients. However,
the real state of the art does not indicate that: there are few solutions, and these tend to be
very limited. This aspect is even more relevant as the principal language used for REST
clients is JavaScript, which has a weak static validation.

To address the problem presented, this work introduces two new programming lan-
guages: SafeScript, a subset of JavaScript equipped with types and a strong static analy-
ses; and SafeRESTScript, an extension of SafeScript that allows making REST calls and
statically validates them against a HeadREST specification of the service.

The HeadREST specification language distinguishes from other REST specification
languages by its expressivity. It uses a type system with refinement types, and also a pow-
erfully predicate that checks whether an expression belongs to a type, both responsible for
allow a rigorous description of the request and response formats of each service endpoint.

SafeScript adds a expressive type system to JavaScript syntax, including refinement
types. It was presented a declarative type system and a Boogie translation that substitutes
an algorithmic system. The Boogie tool validates the generated code with the help of Z3
SMT solver, ensuring a semantic evaluation of the type system. This validation system
guarantees the detections of common runtime errors, like null dereference, division by
zero, or access outside arrays bounds, aspects that others JavaScript based languages, as
TypeScript, cannot ensure in compilation time.

Thanks to the expressive type system, SafeScript compiler is also a verifier. It was
exposed some examples that demonstrate the proving capacity of the language validator.
Theoretical limitations regarding the indecibility of quantifiers are currently impeding
more complex and interesting proves.

The SafeRESTScript language extension introduces REST calls to SafeScript. Using
a HeadREST specification of the service, the language validator checks if the REST calls

85

Chapter 7. Conclusion 86

are made into a valid service endpoint, and verifies whether each call is according with
the pre and post-conditions of the respective endpoint specification. To demonstrate the
capacity of the language, it was exemplified a SafeRESTScript client of GitHub API.

Both languages have some limitations; future work was identified to improve them.
Unlike TypeScript or Flow, SafeScript and SafeRESTScript do not have the ambition of
being production languages, but rather contribute to advance the state of the art of static
analyses, and demonstrate that is possible to improve the support for writing reliable
code that consumes REST services. The languages compiler and editor is available as an
Eclipse IDE plugin.

Finally, and in a more personal retrospective, this work was essential to really under-
stand the world of reliable software, namely static analyses: its difficulty, its limitations,
and the vast work yet to be done. I hope that this work, contextualized in a final aca-
demic learning process, has contributed, even at an infinitesimal level, for a more reliable
programming.

Appendix A

HeadREST type normalization and
extraction

Normal disjunction D ::= R1 ∨ · · · ∨Rn (n ≥ 0,Empty when n = 0)

Normal refined conjunction R ::= x : C where e

Normal conjunction C ::= A1 ∧ · · · ∧ An (n ≥ 0,Any when n = 0)

Atomic type A ::= G | α | {} | {l : D} | D []

Figure A.1: Disjunctive normal form types (DNF): D

87

Appendix A. HeadREST type normalization and extraction 88

norm(Any) , Any

norm(G) , y : G where true

norm(α) , y : α where true

norm({}) , y : {} where true

norm({l : T}) , y : {l : T} where true

norm(T []) , y : T [] where true

norm(x : T where e) ,
n∨

i=1

conjDD(xi : Ci where ei, normr(x : Ci where e))

if
n∨

i=1

(xi : Ci where ei) = normr(T)

normr(x : C where x in T) , norm(C & T) if x /∈ fv(T)

normr(x : C where e1 | e2) , normr(x : C where e1) ∨ normr(x : C where e2)

normr(x : C where e1 & e2) , conjDD(normr(x : C where e1), normr(x : C where e2))

normr(x : C where e) , x : C where e otherwise

conjDD((R1 ∨ · · · ∨Rn), D) , conjRD(R1, D) ∨ · · · ∨ conjRD(Rn, D)

conjRD(R, (R1 ∨ · · · ∨Rn)) , conjRR(R,R1) ∨ · · · ∨ conjRR(R,Rn)

conjRR(x1 : C1 where e1, x2 : C2 where e2) , y : C1 ∧ C2 where [y/x1]e1 & [y/x2]e2

where y is a fresh variable in all cases

Figure A.2: Type normalisation: norm(T) = D

Ri.l Ui ∀i ∈ 1..n

(R1 | . . . |Rn).l (U1 | . . . |Un)
(Field Disj)

C.l U

(x : C where e).l U
(Field Refine)

(S = {Ui |Ai.l Ui}) 6= ∅
(A1 & . . . &An).l (&S) {l : T}.l T

(Field Conj, Field Atom)

Figure A.3: Extraction of field type: D.l U

Appendix A. HeadREST type normalization and extraction 89

Ri.Items Ui ∀i ∈ 1..n

(R1 | . . . |Rn).Items (U1 | . . . |Un)
(Items Disj)

C.Items U

(x : C where e).Items U
(Items Refine)

(S = {Ui |Ai.Items Ui}) 6= ∅
(A1 & . . . &An).Items (&S) T [].Items T

(Items Conj, Items Atom)

Figure A.4: Extraction of item type: D.Items U

Appendix A. HeadREST type normalization and extraction 90

Appendix B

SMT-LIB Axiomatization in HeadREST

1 (set-info :smt-lib-version 2.0)

2

3 (set-option :auto_config false)

4 (set-option :smt.mbqi false)

5

6 (set-option :smt.string_solver z3str3)

7

8 (set-option :model_evaluator.completion false)

9 (set-option :model.v1 true)

10 (set-option :smt.phase_selection 0)

11 (set-option :smt.restart_strategy 0)

12 (set-option :smt.restart_factor 1.5)

13 (set-option :nnf.sk_hack true)

14 (set-option :smt.qi.eager_threshold 100.0)

15 (set-option :smt.arith.random_initial_value true)

16 (set-option :smt.case_split 3)

17 (set-option :smt.delay_units true)

18 (set-option :smt.delay_units_threshold 16)

19 (set-option :type_check true)

20 (set-option :smt.bv.reflect true)

21 (set-option :smt.timeout 2000)

22

23 ; -------------------------------

24 ; Values

25 ; -------------------------------

26

27 (declare-datatypes () ((U_VarList

28 EmptyList

29 (U_Vars (headVar String) (tailVars U_VarList))

30)))

31

32 (declare-datatypes () ((U_Fragment

33 (U_Literal (of_U_Literal String))

91

Appendix B. SMT-LIB Axiomatization in HeadREST 92

34 (U_Expression (of_U_Expression U_VarList) (optional Bool))

35)))

36

37 (declare-datatypes () ((UriTemplate

38 EmptyUriTemplate

39 (U_Fragments (headFragment U_Fragment) (tailFragments

UriTemplate))

40)))

41

42 (declare-datatypes () ((General

43 (G_Boolean (of_G_Boolean Bool))

44 (G_Integer (of_G_Integer Int))

45 (G_String (of_G_String String))

46 (G_Regexp (of_G_Regexp (RegEx String)))

47 (G_UriTemplate (of_G_UriTemplate UriTemplate))

48 G_Null

49)))

50

51 (declare-sort SVMap)

52 (declare-sort IVMap)

53

54 (declare-datatypes () ((Value

55 (G (out_G General))

56 (O (out_O SVMap))

57 (A (out_A IVMap) (length Int))

58 (R (id Int) (type String))

59)))

60

61 (declare-datatypes () ((ValueOption

62 NoValue

63 (SomeValue (of_SomeValue Value))

64)))

65

66 (declare-fun Good_A (Value) Bool)

67 (assert (forall ((v Value))

68 (! (iff

69 (Good_A v)

70 (is-A v)

71) :pattern(Good_A v))

72))

73

74 (declare-fun Good_O (Value) Bool)

75 (assert (forall ((v Value))

76 (! (iff

77 (Good_O v)

78 (is-O v)

Appendix B. SMT-LIB Axiomatization in HeadREST 93

79) :pattern(Good_O v))

80))

81

82 (declare-fun Good_R (Value) Bool)

83 (assert (forall ((v Value))

84 (! (iff

85 (Good_R v)

86 (is-R v)

87) :pattern(Good_R v))

88))

89

90 ; ----------------------------------

91 ; Operations

92 ; ----------------------------------

93

94 (declare-const v_tt Value)

95 (declare-const v_ff Value)

96 (declare-const v_null Value)

97

98 (assert (= v_tt (G (G_Boolean true))))

99 (assert (= v_ff (G (G_Boolean false))))

100 (assert (= v_null (G G_Null)))

101

102 (declare-fun In_Boolean (Value) Bool)

103 (assert (forall ((v Value))

104 (! (=

105 (In_Boolean v)

106 (and (is-G v) (is-G_Boolean (out_G v)))

107) :pattern(In_Boolean v))

108))

109

110 (declare-fun In_Integer (Value) Bool)

111 (assert (forall ((v Value))

112 (! (=

113 (In_Integer v)

114 (and (is-G v) (is-G_Integer (out_G v)))

115) :pattern(In_Integer v))

116))

117

118 (declare-fun In_String (Value) Bool)

119 (assert (forall ((v Value))

120 (! (=

121 (In_String v)

122 (and (is-G v) (is-G_String (out_G v)))

123) :pattern(In_String v))

124))

Appendix B. SMT-LIB Axiomatization in HeadREST 94

125

126 (declare-fun In_Regexp (Value) Bool)

127 (assert (forall ((v Value))

128 (! (=

129 (In_Regexp v)

130 (and (is-G v) (is-G_Regexp (out_G v)))

131) :pattern(In_Regexp v))

132))

133

134 (declare-fun In_UriTemplate (Value) Bool)

135 (assert (forall ((v Value))

136 (! (=

137 (In_UriTemplate v)

138 (and (is-G v) (is-G_UriTemplate (out_G v)))

139) :pattern(In_UriTemplate v))

140))

141

142 (declare-fun O_Equiv (Value Value) Value)

143 (declare-fun O_Implies (Value Value) Value)

144 (declare-fun O_Sum (Value Value) Value)

145 (declare-fun O_Sub (Value Value) Value)

146 (declare-fun O_Mult (Value Value) Value)

147 (declare-fun O_IntDiv (Value Value) Value)

148 (declare-fun O_Rem (Value Value) Value)

149 (declare-fun O_EQ (Value Value) Value)

150 (declare-fun O_NE (Value Value) Value)

151 (declare-fun O_Not (Value) Value)

152 (declare-fun O_Minus (Value) Value)

153 (declare-fun O_And (Value Value) Value)

154 (declare-fun O_Or (Value Value) Value)

155 (declare-fun O_GE (Value Value) Value)

156 (declare-fun O_GT (Value Value) Value)

157 (declare-fun O_LT (Value Value) Value)

158 (declare-fun O_LE (Value Value) Value)

159 (declare-fun O_++ (Value Value) Value)

160

161 (assert (forall ((v1 Value) (v2 Value))

162 (! (=

163 (O_Equiv v1 v2)

164 (ite (= v1 v2) v_tt v_ff)

165) :pattern(O_Equiv v1 v2))

166))

167

168 (assert (forall ((v1 Value) (v2 Value))

169 (! (=

170 (O_Implies v1 v2)

Appendix B. SMT-LIB Axiomatization in HeadREST 95

171 (O_Or (O_Not v1) v2)

172) :pattern(O_Implies v1 v2))

173))

174

175 (assert (forall ((v1 Value) (v2 Value))

176 (! (=

177 (O_Sum v1 v2)

178 (G (G_Integer (+ (of_G_Integer (out_G v1)) (of_G_Integer

(out_G v2)))))

179) :pattern(O_Sum v1 v2))

180))

181

182 (assert (forall ((v1 Value) (v2 Value))

183 (! (=

184 (O_Sub v1 v2)

185 (G (G_Integer (- (of_G_Integer (out_G v1)) (of_G_Integer

(out_G v2)))))

186) :pattern(O_Sub v1 v2))

187))

188

189 (assert (forall ((v1 Value) (v2 Value))

190 (! (=

191 (O_Mult v1 v2)

192 (G (G_Integer (* (of_G_Integer (out_G v1)) (of_G_Integer

(out_G v2)))))

193) :pattern(O_Mult v1 v2))

194))

195

196 (assert (forall ((v1 Value) (v2 Value))

197 (! (=

198 (O_IntDiv v1 v2)

199 (G (G_Integer (div (of_G_Integer (out_G v1)) (of_G_Integer

(out_G v2)))))

200) :pattern(O_IntDiv v1 v2))

201))

202

203 (assert (forall ((v1 Value) (v2 Value))

204 (! (=

205 (O_Rem v1 v2)

206 (G (G_Integer (rem (of_G_Integer (out_G v1)) (of_G_Integer

(out_G v2)))))

207) :pattern(O_Rem v1 v2))

208))

209

210 (assert (forall ((v1 Value) (v2 Value))

211 (! (=

Appendix B. SMT-LIB Axiomatization in HeadREST 96

212 (O_EQ v1 v2)

213 (ite (= v1 v2) v_tt v_ff)

214) :pattern(O_EQ v1 v2))

215))

216

217 (assert (forall ((v1 Value) (v2 Value))

218 (! (=

219 (O_NE v1 v2)

220 (ite (= v1 v2) v_ff v_tt)

221) :pattern(O_NE v1 v2))

222))

223

224 (assert (forall ((v Value))

225 (! (=

226 (O_Not v)

227 (ite (not (= v v_tt)) v_tt v_ff)

228) :pattern(O_Not v))

229))

230

231 (assert (forall ((v Value))

232 (! (=

233 (O_Minus v)

234 (G (G_Integer (- (of_G_Integer (out_G v)))))

235) :pattern(O_Minus v))

236))

237

238 (assert (forall ((v1 Value) (v2 Value))

239 (! (=

240 (O_And v1 v2)

241 (ite (and (= v1 v_tt) (= v2 v_tt)) v_tt v_ff)

242) :pattern(O_And v1 v2))

243))

244

245 (assert (forall ((v1 Value) (v2 Value))

246 (! (=

247 (O_Or v1 v2)

248 (ite (or (= v1 v_tt) (= v2 v_tt)) v_tt v_ff)

249) :pattern(O_Or v1 v2))

250))

251

252 (assert (forall ((v1 Value) (v2 Value))

253 (! (=

254 (O_GE v1 v2)

255 (ite (>= (of_G_Integer (out_G v1)) (of_G_Integer (out_G

v2))) v_tt v_ff)

256) :pattern(O_GE v1 v2))

Appendix B. SMT-LIB Axiomatization in HeadREST 97

257))

258

259 (assert (forall ((v1 Value) (v2 Value))

260 (! (=

261 (O_GT v1 v2)

262 (ite (> (of_G_Integer (out_G v1)) (of_G_Integer (out_G v2)))

v_tt v_ff)

263) :pattern(O_GT v1 v2))

264))

265

266 (assert (forall ((v1 Value) (v2 Value))

267 (! (=

268 (O_LT v1 v2)

269 (ite (< (of_G_Integer (out_G v1)) (of_G_Integer (out_G v2)))

v_tt v_ff)

270) :pattern(O_LT v1 v2))

271))

272

273 (assert (forall ((v1 Value) (v2 Value))

274 (! (=

275 (O_LE v1 v2)

276 (ite (<= (of_G_Integer (out_G v1)) (of_G_Integer (out_G

v2))) v_tt v_ff)

277) :pattern(O_LE v1 v2))

278))

279

280 (assert (forall ((v1 Value) (v2 Value))

281 (! (=

282 (O_++ v1 v2)

283 (G (G_String (str.++ (of_G_String (out_G v1)) (of_G_String

(out_G v2)))))

284) :pattern(O_++ v1 v2))

285))

286

287 ; ----------------------------------

288 ; Primitive operators

289 ; ----------------------------------

290

291 (declare-fun v_size (Value) Value)

292 (declare-fun v_matches (Value Value) Value)

293 (declare-fun v_pre (Value) Value)

294

295 ;; Link v_size to str.len

296 (assert (forall ((v Value))

297 (! (=

298 (v_size v)

Appendix B. SMT-LIB Axiomatization in HeadREST 98

299 (G (G_Integer (str.len (of_G_String (out_G v)))))

300) :pattern((v_size v)))

301))

302

303 (assert (forall ((v1 Value) (v2 Value))

304 (! (=

305 (v_matches v1 v2)

306 (G (G_Boolean (str.in.re (of_G_String (out_G v2))

(of_G_Regexp (out_G v1)))))

307) :pattern((v_matches v1 v2)))

308))

309

310 ;; pre internal function is only used for repof and uriof operations,

311 ;; so it is only necessary to define for the boolean case

312 (assert (forall ((v Value))

313 (! (=>

314 (In_Boolean v)

315 (In_Boolean (v_pre v))

316) :pattern((v_pre v)))

317))

318

319 ; ---------------------------------

320 ; Objects

321 ; ---------------------------------

322

323 ;; Entity related sorts/functions

324 (define-sort SVMapArray () (Array String ValueOption))

325 (declare-fun alphas (SVMap) SVMapArray)

326 (declare-fun betas (SVMapArray) SVMap)

327

328 (declare-fun v_dot (Value String) Value)

329 (declare-fun v_has_field (Value String) Bool)

330

331 ;; SVMap and the arrays in SVMapArray are isomorphic

332 (assert (forall ((am SVMapArray))

333 (! (= (alphas (betas am)) am)

334 :pattern(alphas (betas am)))

335))

336 (assert (forall ((svm SVMap))

337 (! (= (betas (alphas svm)) svm)

338 :pattern(betas (alphas svm)))

339))

340

341 (assert (forall ((v Value) (l String))

342 (! (iff

343 (v_has_field v l)

Appendix B. SMT-LIB Axiomatization in HeadREST 99

344 (not (= (select (alphas (out_O v)) l) NoValue))

345) :pattern(v_has_field v l))

346))

347

348 (assert (forall ((v Value) (l String))

349 (! (=

350 (v_dot v l)

351 (of_SomeValue (select (alphas (out_O v)) l))

352) :pattern(v_dot v l))

353))

354

355 ; ---------------------------------

356 ; Arrays

357 ; ---------------------------------

358

359 ;; Array related sorts/functions

360 (define-sort IVMapArray () (Array Int ValueOption))

361 (declare-fun alphai (IVMap) IVMapArray)

362 (declare-fun betai (IVMapArray) IVMap)

363

364 (declare-fun v_nth (Value Value) Value)

365 (declare-fun v_array_has_value (Value Int) Bool)

366 (declare-fun v_length (Value) Value)

367

368 ;; IVMap and the arrays in IVMapArray are isomorphic

369 (assert (forall ((am IVMapArray))

370 (! (= (alphai (betai am)) am)

371 :pattern(alphai (betai am)))

372))

373

374 (assert (forall ((ivm IVMap))

375 (! (= (betai (alphai ivm)) ivm)

376 :pattern(betai (alphai ivm)))

377))

378

379 (assert (forall ((v Value) (i Int))

380 (! (iff

381 (v_array_has_value v i)

382 (not (= (select (alphai (out_A v)) i) NoValue))

383) :pattern(v_array_has_value v i))

384))

385

386 (assert (forall ((v Value) (i Int))

387 (! (iff

388 (v_array_has_value v i)

389 (and (Good_A v) (>= i 0) (< i (length v)))

Appendix B. SMT-LIB Axiomatization in HeadREST 100

390) :pattern(v_array_has_value v i))

391))

392

393 (assert (forall ((v Value) (i Value))

394 (! (=

395 (v_nth v i)

396 (of_SomeValue (select (alphai (out_A v)) (of_G_Integer

(out_G i))))

397) :pattern(v_nth v i))

398))

399

400 (assert (forall ((v Value))

401 (! (=>

402 (Good_A v)

403 (=

404 (v_length v)

405 (G (G_Integer (length v)))

406)

407) :pattern(v_length v))

408))

409

410 ; ---------------------------------

411 ; Resources

412 ; ---------------------------------

413

414 (declare-fun r_repof (Value Value) Value)

415 (declare-fun r_uriof (Value Value) Value)

416

417 (declare-fun is_resource_of (Value String) Bool)

418 (assert (forall ((v Value) (s String))

419 (! (=

420 (is_resource_of v s)

421 (= (type v) s)

422) :pattern(is_resource_of v s))

423))

424

425 ; ---------------------------------

426 ; Expand of UriTemplate

427 ; ---------------------------------

428

429 (declare-fun v_expand (Value Value) Value)

430 (declare-fun expand (UriTemplate Value) String)

431 (declare-fun expandFragment (U_Fragment Value) String)

432 (declare-fun expandVars (U_VarList Value) String)

433 (declare-fun expandOptionalVars (U_VarList Value Bool) String)

434

Appendix B. SMT-LIB Axiomatization in HeadREST 101

435 (declare-fun toString (Value) String)

436 (declare-fun intToString (Int) String)

437 (declare-fun intToStringAux (Int) String)

438 (declare-fun arrayToString (Value Int) String)

439

440 (assert (forall ((v1 Value) (v2 Value))

441 (! (=

442 (v_expand v1 v2)

443 (G (G_String (expand (of_G_UriTemplate (out_G v1)) v2)))

444) :pattern(v_expand v1 v2))

445))

446

447 (assert (forall ((ut UriTemplate) (v Value))

448 (! (=

449 (expand ut v)

450 (ite (is-EmptyUriTemplate ut)

451 ""

452 (str.++ (expandFragment (headFragment ut) v) (expand

(tailFragments ut) v))

453)

454) :pattern(expand ut v))

455))

456

457 (assert (forall ((uf U_Fragment) (v Value))

458 (! (=

459 (expandFragment uf v)

460 (ite (is-U_Literal uf)

461 (of_U_Literal uf)

462 (ite (optional uf)

463 (str.++ "?" (expandOptionalVars (of_U_Expression uf)

v false))

464 (expandVars (of_U_Expression uf) v)

465)

466)

467) :pattern(expandFragment uf v))

468))

469

470 (assert (forall ((uvl U_VarList) (v Value))

471 (! (=

472 (expandVars uvl v)

473 (ite (is-EmptyList uvl)

474 ""

475 (str.++

476 (ite (v_has_field v (headVar uvl))

477 (toString (v_dot v (headVar uvl)))

478 ""

Appendix B. SMT-LIB Axiomatization in HeadREST 102

479)

480 (expandVars (tailVars uvl) v)

481)

482)

483) :pattern(expandVars uvl v))

484))

485

486 (assert (forall ((uvl U_VarList) (v Value) (b Bool))

487 (! (=

488 (expandOptionalVars uvl v b)

489 (ite (is-EmptyList uvl)

490 ""

491 (ite (v_has_field v (headVar uvl))

492 (str.++ (ite b "&" "") (headVar uvl) "=" (toString

(v_dot v (headVar uvl))) (expandOptionalVars (tailVars uvl) v

true))

493 (expandOptionalVars (tailVars uvl) v b)

494)

495)

496) :pattern(expandOptionalVars uvl v b))

497))

498

499 (assert (forall ((v Value))

500 (! (=>

501 (In_Boolean v)

502 (=

503 (toString v)

504 (ite (of_G_Boolean (out_G v)) "true" "false")

505)

506) :pattern(toString v))

507))

508

509 (assert (forall ((v Value))

510 (! (=>

511 (In_Integer v)

512 (=

513 (toString v)

514 (intToString (of_G_Integer (out_G v)))

515)

516) :pattern(toString v))

517))

518

519 (assert (forall ((v Value))

520 (! (=>

521 (In_String v)

522 (=

Appendix B. SMT-LIB Axiomatization in HeadREST 103

523 (toString v)

524 (of_G_String (out_G v))

525)

526) :pattern(toString v))

527))

528

529 (assert (forall ((v Value))

530 (! (=>

531 (and (is-G v) (is-G_Null (out_G v)))

532 (=

533 (toString v)

534 ""

535)

536) :pattern(toString v))

537))

538

539 (assert (forall ((v Value))

540 (! (=>

541 (Good_A v)

542 (=

543 (toString v)

544 (arrayToString v 0)

545)

546) :pattern(toString v))

547))

548

549 (define-const _base String "0123456789")

550

551 (assert (forall ((n Int))

552 (! (=

553 (intToString n)

554 (ite (= n 0)

555 "0"

556 (ite (> n 0)

557 (intToStringAux n)

558 (str.++ "-" (intToStringAux n))

559)

560)

561) :pattern(intToString n))

562))

563

564 (assert (forall ((n Int))

565 (! (=

566 (intToStringAux n)

567 (ite (= n 0)

568 ""

Appendix B. SMT-LIB Axiomatization in HeadREST 104

569 (str.++ (intToStringAux (div n 10)) (str.at _base (rem n

10)))

570)

571) :pattern(intToStringAux n))

572))

573

574 (assert (forall ((array Value) (i Int))

575 (! (=

576 (arrayToString array i)

577 (ite (= i (length array))

578 ""

579 (ite (= i 0)

580 (str.++ (toString (v_nth array (G (G_Integer i))))

(arrayToString array (+ i 1)))

581 (str.++ "," (toString (v_nth array (G (G_Integer

i)))) (arrayToString array (+ i 1)))

582)

583)

584) :pattern(arrayToString array i))

585))

Appendix C

Boogie Axiomatization of SafeScript
and SafeRESTScript

Functions and constants begin with a dot so they do not match possible generated proce-
dures in the translation. Therefore all functions and constants reference in Boogie trans-
lation corresponde to ones here prefixed with a dot.

1 type Value;

2 type MaybeValue;

3 type Field;

4

5 // MaybeValue definitions

6

7 function .isNothing(MaybeValue) returns (bool);

8 function .isPresent(MaybeValue) returns (bool);

9 function .getValue(MaybeValue) returns (Value);

10 function .maybeOf(Value) returns (MaybeValue);

11

12 axiom (forall mv: MaybeValue :: .isNothing(mv) <==> !.isPresent(mv));

13 axiom (forall v: Value :: .isPresent(.maybeOf(v)));

14 axiom (forall v: Value :: .getValue(.maybeOf(v)) == v);

15 axiom (forall mv: MaybeValue :: .isPresent(mv) ==>

.maybeOf(.getValue(mv)) == mv);

16

17 // Integer values

18

19 function .isInt(Value) returns (bool);

20 function .toInt(Value) returns (int);

21 function .fromInt(int) returns (Value);

22

23 axiom (forall i: int :: .isInt(.fromInt(i)));

24 axiom (forall i: int :: .toInt(.fromInt(i)) == i);

25 axiom (forall v: Value :: .isInt(v) ==> .fromInt(.toInt(v)) == v);

105

Appendix C. Boogie Axiomatization of SafeScript and SafeRESTScript 106

26

27 // Boolean values

28

29 function .isBool(Value) returns (bool);

30 function .toBool(Value) returns (bool);

31 function .fromBool(bool) returns (Value);

32

33 axiom (forall b: bool :: .isBool(.fromBool(b)));

34 axiom (forall b: bool :: .toBool(.fromBool(b)) == b);

35 axiom (forall v: Value :: .isBool(v) ==> .fromBool(.toBool(v)) == v);

36

37 const .True: Value;

38 const .False: Value;

39

40 axiom .True == .fromBool(true);

41 axiom .False == .fromBool(false);

42

43 // Arrays values

44

45 function .isArray(Value) returns (bool);

46 function .toArray(Value) returns ([int]MaybeValue);

47 function .arraylen(Value) returns (int);

48 function .fromArray([int]MaybeValue,int) returns (Value);

49

50 axiom (forall s: [int]MaybeValue, len: int :: 0 <= len ==>

.isArray(.fromArray(s, len)));

51 axiom (forall s: [int]MaybeValue, len: int :: 0 <= len ==>

.toArray(.fromArray(s, len)) == s);

52 axiom (forall s: [int]MaybeValue, len: int :: 0 <= len ==>

.arraylen(.fromArray(s, len)) == len);

53 axiom (forall v: Value :: .isArray(v) ==> .fromArray(.toArray(v),

.arraylen(v)) == v);

54 axiom (forall v: Value :: .isArray(v) ==> 0 <= .arraylen(v));

55 axiom (forall v: Value, i: int :: .isArray(v) ==> (0 <= i && i <

.arraylen(v) <==> .isPresent(.toArray(v)[i])));

56

57 function .isValidIndex(a: Value, i: int) returns (bool) {

58 .isPresent(.toArray(a)[i])

59 }

60

61 function .getIndexValue(a: Value, i: int) returns (Value) {

62 .getValue(.toArray(a)[i])

63 }

64

65 function .emptyArray() returns ([int]MaybeValue);

66 axiom (forall i: int :: .isNothing(.emptyArray()[i]));

Appendix C. Boogie Axiomatization of SafeScript and SafeRESTScript 107

67

68 function .constArray(v: Value) returns ([int]MaybeValue);

69 axiom (forall v: Value, i: int :: .getValue(.constArray(v)[i]) == v);

70

71 function .arrayUpdate(a: Value, i: Value, v: Value) returns (Value) {

72 .fromArray(.toArray(a)[.toInt(i) := .maybeOf(v)], .arraylen(a))

73 }

74

75 axiom (forall a: Value, i: Value, v: Value :: {.arrayUpdate(a, i, v)}

76 .isArray(.arrayUpdate(a, i, v)) &&

77 (forall j: int :: .toInt(i) != j && .isValidIndex(a, j) ==>

.getIndexValue(.arrayUpdate(a, i, v), j) == .getIndexValue(a, j))

78 && .getIndexValue(.arrayUpdate(a, i, v), .toInt(i)) == v

79);

80

81 axiom (forall a1: Value, a2: Value :: {.isArray(a1), .isArray(a2)}

82 .isArray(a1) && .isArray(a2)

83 ==>

84 ((forall i: int :: .toArray(a1)[i] == .toArray(a2)[i]) <==> a1

== a2)

85);

86

87 // Objects values

88

89 function .isObject(Value) returns (bool);

90 function .toObject(Value) returns ([Field]MaybeValue);

91 function .fromObject([Field]MaybeValue) returns (Value);

92

93 axiom (forall s: [Field]MaybeValue :: .isObject(.fromObject(s)));

94 axiom (forall s: [Field]MaybeValue :: .toObject(.fromObject(s)) ==

s);

95 axiom (forall v: Value :: .isObject(v) ==> .fromObject(.toObject(v))

== v);

96

97 function .hasField(o: Value, f: Field) returns (bool) {

98 .isPresent(.toObject(o)[f])

99 }

100

101 function .getFieldValue(o: Value, f: Field) returns (Value) {

102 .getValue(.toObject(o)[f])

103 }

104

105 function .emptyObject() returns ([Field]MaybeValue);

106 axiom (forall f: Field :: .isNothing(.emptyObject()[f]));

107

Appendix C. Boogie Axiomatization of SafeScript and SafeRESTScript 108

108 function .objectUpdate(o: Value, f: Field, v: Value) returns (Value)

{

109 .fromObject(.toObject(o)[f := .maybeOf(v)])

110 }

111

112 axiom (forall o1: Value, o2: Value :: {.isObject(o1), .isObject(o2)}

113 .isObject(o1) && .isObject(o2)

114 ==>

115 ((forall f: Field :: .toObject(o1)[f] == .toObject(o2)[f]) <==>

o1 == o2)

116);

117

118 // String values

119

120 function .isString(Value) returns (bool);

121 function .toString(Value) returns ([int]int);

122 function .stringSize(Value) returns (int);

123 function .fromString([int]int,int) returns (Value);

124

125 axiom (forall s: [int]int, len: int :: 0 <= len ==>

.isString(.fromString(s, len)));

126 axiom (forall s: [int]int, len: int :: 0 <= len ==>

.toString(.fromString(s, len)) == s);

127 axiom (forall s: [int]int, len: int :: 0 <= len ==>

.stringSize(.fromString(s, len)) == len);

128 axiom (forall v: Value :: .isString(v) ==> .fromString(.toString(v),

.stringSize(v)) == v);

129 axiom (forall v: Value :: .isString(v) ==> 0 <= .stringSize(v));

130 axiom (forall v: Value, i: int :: .isString(v) ==> (0 <= i && i <

.stringSize(v) <==> .toString(v)[i] >= 0));

131

132 function .emptyString() returns ([int]int);

133 axiom (forall i: int :: .emptyString()[i] == -1);

134

135 axiom (forall s1: Value, s2: Value :: {.isString(s1), .isString(s2)}

136 .isString(s1) && .isString(s2)

137 ==>

138 ((forall i: int :: .toString(s1)[i] == .toString(s2)[i]) <==> s1

== s2)

139);

140

141 // Function values

142

143 function .isFunction(Value) returns (bool);

144 function .toFunction(Value) returns ([Value]Value);

145 function .argValid(Value) returns ([Value]bool);

Appendix C. Boogie Axiomatization of SafeScript and SafeRESTScript 109

146 function .fromFunction([Value]Value, [Value]bool) returns (Value);

147

148 axiom (forall f: [Value]Value, v: [Value]bool ::

.isFunction(.fromFunction(f, v)));

149 axiom (forall f: [Value]Value, v: [Value]bool ::

.toFunction(.fromFunction(f, v)) == f);

150 axiom (forall f: [Value]Value, v: [Value]bool ::

.argValid(.fromFunction(f, v)) == v);

151 axiom (forall v: Value :: .isFunction(v) ==>

.fromFunction(.toFunction(v), .argValid(v)) == v);

152

153 function .apply(f: Value, v: Value) returns (Value) {

154 .toFunction(f)[v]

155 }

156

157 // Nothing value and void type

158

159 const .Undefined: Value;

160

161 function .isVoid(v: Value) returns (bool) {

162 v == .Undefined

163 }

164

165 // Primitive functions

166

167 function .equi(x: Value, y: Value) returns (Value) {

168 .fromBool(.toBool(x) <==> .toBool(y))

169 }

170

171 function .imp(x: Value, y: Value) returns (Value) {

172 .fromBool(.toBool(x) ==> .toBool(y))

173 }

174

175 function .or(x: Value, y: Value) returns (Value) {

176 .fromBool(.toBool(x) || .toBool(y))

177 }

178

179 function .and(x: Value, y: Value) returns (Value) {

180 .fromBool(.toBool(x) && .toBool(y))

181 }

182

183 function .eq(x: Value, y: Value) returns (Value) {

184 .fromBool(x == y)

185 }

186

187 function .ne(x: Value, y: Value) returns (Value) {

Appendix C. Boogie Axiomatization of SafeScript and SafeRESTScript 110

188 .fromBool(x != y)

189 }

190

191 function .lt(x: Value, y: Value) returns (Value) {

192 .fromBool(.toInt(x) < .toInt(y))

193 }

194

195 function .le(x: Value, y: Value) returns (Value) {

196 .fromBool(.toInt(x) <= .toInt(y))

197 }

198

199 function .gt(x: Value, y: Value) returns (Value) {

200 .fromBool(.toInt(x) > .toInt(y))

201 }

202

203 function .ge(x: Value, y: Value) returns (Value) {

204 .fromBool(.toInt(x) >= .toInt(y))

205 }

206

207 function .concat(Value, Value) returns (Value);

208 axiom (forall s1: Value, s2: Value :: .isString(.concat(s1, s2)));

209 axiom (forall s1: Value, s2: Value, i: int ::

210 0 <= i && i < .stringSize(s1) ==> .toString(.concat(s1, s2))[i]

== .toString(s1)[i]);

211 axiom (forall s1: Value, s2: Value, i: int ::

212 .stringSize(s1) <= i && i < .stringSize(s1) + .stringSize(s2)

==> .toString(.concat(s1, s2))[i] == .toString(s2)[i -

.stringSize(s1)]);

213 axiom (forall s1: Value, s2: Value, i: int ::

214 i < 0 || i >= .stringSize(s1) + .stringSize(s2) ==>

.toString(.concat(s1, s2))[i] == -1);

215 axiom (forall s1: Value, s2: Value :: .stringSize(.concat(s1, s2))

== .stringSize(s1) + .stringSize(s2));

216

217 function .sum(x: Value, y: Value) returns (Value) {

218 .fromInt(.toInt(x) + .toInt(y))

219 }

220

221 function .sub(x: Value, y: Value) returns (Value) {

222 .fromInt(.toInt(x) - .toInt(y))

223 }

224

225 function .mult(x: Value, y: Value) returns (Value) {

226 .fromInt(.toInt(x) * .toInt(y))

227 }

228

Appendix C. Boogie Axiomatization of SafeScript and SafeRESTScript 111

229 function .div(x: Value, y: Value) returns (Value) {

230 .fromInt(.toInt(x) div .toInt(y))

231 }

232

233 function .rem(x: Value, y: Value) returns (Value) {

234 .fromInt(.toInt(x) mod .toInt(y))

235 }

236

237 function .min(x: Value) returns (Value) {

238 .fromInt(-.toInt(x))

239 }

240

241 function .neg(x: Value) returns (Value) {

242 .fromBool(!.toBool(x))

243 }

244

245 function .mkarray(v: Value, l: Value) returns (Value) {

246 .fromArray(.constArray(v), .toInt(l))

247 }

248

249 function .length(a: Value) returns (Value) {

250 .fromInt(.arraylen(a))

251 }

252

253 function .size(s: Value) returns (Value) {

254 .fromInt(.stringSize(s))

255 }

256

257 //REST calls

258

259 type RestMethod;

260

261 const unique .GET: RestMethod;

262 const unique .POST: RestMethod;

263 const unique .PUT: RestMethod;

264 const unique .DELETE: RestMethod;

265

266 function .restCall(RestMethod, Value, Value) returns (Value);

267

268 // Code to verify is added below

Appendix C. Boogie Axiomatization of SafeScript and SafeRESTScript 112

Appendix D

REST calls JavaScript Auxiliary
Functions

1 /**
2 * Makes a synchronous rest call

3 * @param method A string with the http method

4 * @param uriTemplate A string with the complete uriTemplate of the

call

5 * @param request An object with the fields: header, an object with

the request

6 * headers; template, an object with the substitution of the

variables in the

7 * uriTemplate; body (optional), the body of the request (any type)

8 * @returns An object representing the response of the rest call

with fields:

9 * code, the integer status code of the response; header, an object

with the

10 * response headers; body, the response body (any type)

11 */

12 function _synchRestCall(method, uriTemplate, request) {

13 var httpRequest = new XMLHttpRequest();

14 httpRequest.open(method, _expand(uriTemplate, request.template),

false); // false -> synchronous call

15 httpRequest.setRequestHeader("Content-Type", "application/json");

16 request.header = _convertHeader(request.header);

17 for (var property in request.header)

18 if (request.header.hasOwnProperty(property))

19 httpRequest.setRequestHeader(property,

request.header[property]);

20 httpRequest.send(JSON.stringify(request.body));

21 var response = {code: httpRequest.status, header: {}};

22

httpRequest.getAllResponseHeaders().trim().split(/[\r\n]+/).forEach(line

=> {

113

Appendix D. REST calls JavaScript Auxiliary Functions 114

23 var parts = line.split(’: ’);

24 var headerField = parts.shift();

25 var value = parts.join(’: ’);

26 response.header[headerField] = value;

27 });

28 response.body = JSON.parse(httpRequest.responseText);

29 return response;

30 }

31

32 /**
33 * Makes an asynchronous rest call

34 * @param method A string with the http method

35 * @param uriTemplate A string with the complete uriTemplate of the

call

36 * @param request An object with the fields: header, an object with

the request

37 * headers; template, an object with the substitution of the

variables in the

38 * uriTemplate; body (optional), the body of the request (any type)

39 * @returns a Promise with the response

40 */

41 async function _asyncRestCall(method, uri, request) {

42 return new Promise(function (resolve) {

43 var httpRequest = new XMLHttpRequest();

44 httpRequest.open(method, _expand(uri, request.template),

true);

45 httpRequest.setRequestHeader("Content-Type",

"application/json");

46 request.header = _convertHeader(request.header);

47 for (var property in request.header)

48 if (request.header.hasOwnProperty(property))

49 httpRequest.setRequestHeader(property,

request.header[property]);

50 httpRequest.onload = () => {

51 var response = {code: httpRequest.status, header: {}};

52

httpRequest.getAllResponseHeaders().trim().split(/[\r\n]+/).forEach(line

=> {

53 var parts = line.split(’: ’);

54 var headerField = parts.shift();

55 var value = parts.join(’: ’);

56 response.header[headerField] = value;

57 });

58 response.body = JSON.parse(httpRequest.responseText);

59 resolve(response);

60 }

Appendix D. REST calls JavaScript Auxiliary Functions 115

61 httpRequest.send(JSON.stringify(request.body));

62 });

63 }

64

65 /**
66 * Expands the uriTemplate uri using the defined variables in

parameters,

67 * according to RFC6570. Note that it is only implemented for the

uriTemplates

68 * supported by HeadREST.

69 * @param uri A string with the uriTemplate to be expanded

70 * @param parameters An object with the pair (variable, value)

71 * @returns The expansion of uriTemplate uri using the values in

parameters

72 */

73 function _expand(uri, parameters) {

74 var i = 0;

75 while ((i = uri.indexOf("{")) != -1) {

76 var j = uri.indexOf("}", i);

77 if (uri.charAt(i + 1) == "?")

78 var substitution = "?" + uri.substring(i + 2,

j).split(",").filter(p => parameters.hasOwnProperty(p))

79 .map(p => p + "=" +

parameters[p]).map(_convertValue).join("&");

80 else

81 var substitution = uri.substring(i + 1,

j).split(",").filter(p => parameters.hasOwnProperty(p))

82 .map(p =>

parameters[p]).map(_convertValue).join(",");

83 uri = uri.substring(0, i) + substitution + uri.substring(j +

1);

84 }

85 return uri;

86 }

87

88 /**
89 * Converts a value into a string, and changes the necessary

characters to

90 * percentage encoding so it can be a valid URI literal

91 * @param str The value to be converted

92 * @returns The value converted

93 */

94 function _convertValue(str) {

95 str = str + "";

96 var newStr = "";

97 for (var i = 0; i < str.length; i++) {

Appendix D. REST calls JavaScript Auxiliary Functions 116

98 c = str.charAt(i);

99 if (c == "%" && /[0-9A-F]{2}/.exec(str.substring(i + 1, i +

3)))

100 newStr += c;

101 else if (c.charCodeAt() < 32 || c == " " || c == ’"’ || c ==

"’" || c == "%" || c == "<" || c == ">" ||

102 c == "\\" || c == "^" || c == "‘" || c == "{" || c

== "|" || c == "}")

103 newStr += "%" + c.charCodeAt();

104 else

105 newStr += c;

106 }

107 return newStr;

108 }

109

110 /**
111 *
112 */

113 function _convertHeader(header) {

114 if (header === undefined)

115 return header;

116 if (header.hasOwnProperty("basicAuthorization"))

117 header.authorization = "Basic " +

btoa(header.basicAuthorization);

118 return header;

119 }

Appendix D. REST calls JavaScript Auxiliary Functions 118

Bibliography

[1] Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. Towards type in-
ference for javascript. In Proceedings of the 19th European Conference on Object-
Oriented Programming, ECOOP’05, pages 428–452, Berlin, Heidelberg, 2005.
Springer-Verlag.

[2] Joop Aué, Maurício Aniche, Maikel Lobbezoo, and Arie van Deursen. An ex-
ploratory study on faults in web api integration in a large-scale payment company.
In Proceedings of the 40th International Conference on Software Engineering: Soft-
ware Engineering in Practice, ICSE-SEIP ’18, pages 13–22, New York, NY, USA,
2018. ACM.

[3] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A modular reusable verifier for object-oriented programs.
In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul
de Roever, editors, Formal Methods for Components and Objects, pages 364–387,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[4] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version
2.6. Technical report, Department of Computer Science, The University of Iowa,
2017. Available at www.SMT-LIB.org.

[5] M. Berzish, V. Ganesh, and Y. Zheng. Z3str3: A string solver with theory-aware
heuristics. In 2017 Formal Methods in Computer Aided Design (FMCAD), pages
55–59, Oct 2017.

[6] Lorenzo Bettini. Implementing domain-specific languages with Xtext and Xtend
: learn how to implement a DSL with Xtext and Xtend using easy-to-understand
examples and best practices. Packt Publishing, Birmingham, 2016.

[7] Gavin M. Bierman, Andrew D. Gordon, Cătălin Hriţcu, and David Langworthy.
Semantic subtyping with an smt solver. SIGPLAN Not., 45(9):105–116, September
2010.

[8] Api blueprint. Documentation. https://apiblueprint.org/documentation/, last
accessed on 2018-11-19.

119

https://apiblueprint.org/documentation/

Bibliography 120

[9] Nuno Burnay, Antónia Lopes, and Vasco T. Vasconcelos. Safe(REST)Script. In
Actas do 11o Encontro Nacional de Informatica, INFORUM 2019, Guimarães, Por-
tugal, 2019.

[10] Avik Chaudhuri. Flow: Abstract interpretation of javascript for type checking and
beyond. In Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security, PLAS ’16, pages 1–1, New York, NY, USA, 2016. ACM.

[11] J. R. V. Dantas, H. A. Lira, B. d. A. Muniz, T. M. Nunes, and P. P. M. Farias. Seman-
tic web services discovery adopting serin. In 2015 IEEE International Conference
on Computer and Information Technology; Ubiquitous Computing and Communi-
cations; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and
Computing, pages 387–394, Oct 2015.

[12] Dart. Dart programming language. https://www.dartlang.org/, last accessed on
2018-11-20.

[13] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[14] Arman Dezfuli-Arjomandi. Restyped. https://github.com/rawrmaan/restyped,
last accessed on 2018-11-27.

[15] Arman Dezfuli-Arjomandi. Restyped axios. https://github.com/rawrmaan/rest
yped-axios, last accessed on 2018-11-27.

[16] Arman Dezfuli-Arjomandi. Introducing restyped: End-to-end typing for rest apis
with typescript, 2017. https://blog.falcross.com/introducing-restyped-end

-to-end-typing-for-rest-apis-with-typescript/, last accessed on 2018-11-
27.

[17] Eclipse. Xtext - language engineering made easy. https://www.eclipse.org/Xt

ext/, last accessed on 2018-12-11.

[18] Ralf S. Engelschall. Ecmascript 6 — new features: Overview & comparison, 2015.
http://es6-features.org/#ClassDefinition, last accessed on 2018-11-20.

[19] Rest Api Example. Dummy sample rest api. http://dummy.restapiexample.com/,
last accessed on 2018-12-19.

[20] Facebook. Graph api. https://developers.facebook.com/docs/graph-api/, last
accessed on 2018-11-19.

https://www.dartlang.org/
https://github.com/rawrmaan/restyped
https://github.com/rawrmaan/restyped-axios
https://github.com/rawrmaan/restyped-axios
https://blog.falcross.com/introducing-restyped-end-to-end-typing-for-rest-apis-with-typescript/
https://blog.falcross.com/introducing-restyped-end-to-end-typing-for-rest-apis-with-typescript/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
http://es6-features.org/#ClassDefinition
http://dummy.restapiexample.com/
https://developers.facebook.com/docs/graph-api/

Bibliography 121

[21] Fábio Ferreira. Automatic test generation for restful apis. Master’s thesis, Faculdade
de Ciências da Universidade de Lisboa, 2017.

[22] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content. RFC 7231, RFC Editor, June 2014.

[23] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web archi-
tecture. ACM Trans. Internet Technol., 2(2):115–150, May 2002.

[24] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, 2000. AAI9980887.

[25] Robert W. Floyd. Assigning Meanings to Programs, pages 65–81. Springer Nether-
lands, Dordrecht, 1993.

[26] M. Fokaefs and E. Stroulia. Using wadl specifications to develop and maintain rest
client applications. In 2015 IEEE International Conference on Web Services, pages
81–88, June 2015.

[27] Tim Freeman and Frank Pfenning. Refinement types for ml. In Proceedings of the
ACM SIGPLAN 1991 Conference on Programming Language Design and Imple-
mentation, PLDI ’91, pages 268–277, New York, NY, USA, 1991. ACM.

[28] Zheng Gao, Christian Bird, and Earl T. Barr. To type or not to type: Quantifying
detectable bugs in javascript. In Proceedings of the 39th International Conference
on Software Engineering, ICSE ’17, pages 758–769, Piscataway, NJ, USA, 2017.
IEEE Press.

[29] Yeting Ge and Leonardo de Moura. Complete instantiation for quantified formulas
in satisfiabiliby modulo theories. In Ahmed Bouajjani and Oded Maler, editors,
Computer Aided Verification, pages 306–320, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[30] Google. Gmail api. https://developers.google.com/gmail/api/, last accessed
on 2018-11-19.

[31] J. Gregorio, R. Fielding, M. Hadley, M. Nottingham, and D. Orchard. URI Template.
RFC 6570, RFC Editor, March 2012.

[32] John Gruber. Markdown, 2004. https://daringfireball.net/projects/markdo

wn/, last accessed on 2018-11-19.

[33] Said Hayani. Here are the most popular ways to make an http request in
javascript, 2018. https://medium.freecodecamp.org/here-is-the-most-pop

https://developers.google.com/gmail/api/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://medium.freecodecamp.org/here-is-the-most-popular-ways-to-make-an-http-request-in-javascript-954ce8c95aaa
https://medium.freecodecamp.org/here-is-the-most-popular-ways-to-make-an-http-request-in-javascript-954ce8c95aaa
https://medium.freecodecamp.org/here-is-the-most-popular-ways-to-make-an-http-request-in-javascript-954ce8c95aaa

Bibliography 122

ular-ways-to-make-an-http-request-in-javascript-954ce8c95aaa, last ac-
cessed on 2018-11-26.

[34] Susumu Hayashi. Logic of refinement types. In Proceedings of the International
Workshop on Types for Proofs and Programs, TYPES ’93, pages 108–126, Berlin,
Heidelberg, 1994. Springer-Verlag.

[35] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, October 1969.

[36] C.A.R. Hoare, Jayadev Misra, Gary Leavens, and Natarajan Shankar. The verified
software initiative: A manifesto. ACM Comput. Surv., 41, 10 2009.

[37] Tony Hoare. The verifying compiler: A grand challenge for computing research. J.
ACM, 50(1):63–69, January 2003.

[38] Facebook Inc. Flow: A static type checker for javascript. https://flow.org/, last
accessed on 2018-11-21.

[39] GitHub Inc. Projects | the state of the octoverse. https://octoverse.github.com

/projects#languages, last accessed on 2018-12-26.

[40] S. Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC 4648, RFC
Editor, October 2006.

[41] The jQuery Foundation. jquery. https://jquery.com/, last accessed on 2018-11-
26.

[42] JSHint. Jshint, a static code analysis tool for javascript. https://jshint.com/abo

ut/, last accessed on 2018-11-23.

[43] K. Rustan M. Leino. Specification and verification of object-oriented software. In
M. Broy, W. Sitou, and T. Hoare, editors, Engineering Methods and Tools for Soft-
ware Safety and Security, pages 231–266. IOS Press, 2009.

[44] K. Rustan M. Leino and Rosemary Monahan. Dafny meets the verification bench-
marks challenge. In Gary T. Leavens, Peter O’Hearn, and Sriram K. Rajamani,
editors, Verified Software: Theories, Tools, Experiments, pages 112–126, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[45] Rustan Leino. This is boogie 2. Microsoft Research, June 2008.

[46] Brian LeRoux. Wtfjs. dotJS 2012, https://www.dotconferences.com/2012/11/b
rian-leroux-wtfjs.

https://medium.freecodecamp.org/here-is-the-most-popular-ways-to-make-an-http-request-in-javascript-954ce8c95aaa
https://medium.freecodecamp.org/here-is-the-most-popular-ways-to-make-an-http-request-in-javascript-954ce8c95aaa
https://medium.freecodecamp.org/here-is-the-most-popular-ways-to-make-an-http-request-in-javascript-954ce8c95aaa
https://flow.org/
https://octoverse.github.com/projects#languages
https://octoverse.github.com/projects#languages
https://jquery.com/
https://jshint.com/about/
https://jshint.com/about/
https://www.dotconferences.com/2012/11/brian-leroux-wtfjs
https://www.dotconferences.com/2012/11/brian-leroux-wtfjs

Bibliography 123

[47] Guy Levin. The rise of rest api, 2015. https://blog.restcase.com/the-rise-o

f-rest-api/, last accessed on 2018-11-16.

[48] Microsoft. Language server protocol. https://microsoft.github.io/language

-server-protocol/, last accessed on 2018-12-11.

[49] Microsoft. Office 365 apis. https://docs.microsoft.com/en-us/previous-vers
ions/office/office-365-api/, last accessed on 2018-11-19.

[50] Microsoft. Type script - javascript that scales. https://www.typescriptlang.org

/index.html, last accessed on 2018-11-20.

[51] Martin Nordio, Cristiano Calcagno, and Carlo Alberto Furia. Javanni: A verifier
for javascript. In Proceedings of the 16th International Conference on Fundamental
Approaches to Software Engineering, FASE’13, pages 231–234, Berlin, Heidelberg,
2013. Springer-Verlag.

[52] Ingy döt Net Oren Ben-Kiki, Clark Evans. Yaml ain’t markup language version 1.2,
2009.

[53] Terence Parr. Antlr parser generator. https://www.antlr3.org/, last accessed on
2018-12-11.

[54] Cesare Pautasso. RESTful Web Services: Principles, Patterns, Emerging Technolo-
gies, pages 31–51. Springer New York, New York, NY, 2014.

[55] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services
vs. "big"’ web services: Making the right architectural decision. In Proceedings of
the 17th International Conference on World Wide Web, WWW ’08, pages 805–814,
New York, NY, USA, 2008. ACM.

[56] David J. Pearce and Lindsay Groves. Whiley: A platform for research in software
verification. In Martin Erwig, Richard F. Paige, and Eric Van Wyk, editors, Soft-
ware Language Engineering, pages 238–248, Cham, 2013. Springer International
Publishing.

[57] Sebastián Peyrott. A brief history of javascript, 2017. https://auth0.com/blog/a
-brief-history-of-javascript/, last accessed on 2018-11-23.

[58] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edi-
tion, 2002.

[59] RAML. Welcome - raml. https://raml.org/, last accessed on 2018-11-19.

https://blog.restcase.com/the-rise-of-rest-api/
https://blog.restcase.com/the-rise-of-rest-api/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://docs.microsoft.com/en-us/previous-versions/office/office-365-api/
https://docs.microsoft.com/en-us/previous-versions/office/office-365-api/
https://www.typescriptlang.org/index.html
https://www.typescriptlang.org/index.html
https://www.antlr3.org/
https://auth0.com/blog/a-brief-history-of-javascript/
https://auth0.com/blog/a-brief-history-of-javascript/
https://raml.org/

Bibliography 124

[60] J. Reschke. The ’Basic’ HTTP Authentication Scheme. RFC 7617, RFC Editor,
September 2015.

[61] Leonard Richardson, Mike Amundsen, and Sam Ruby. RESTful Web APIs. O’Reilly
Media, Inc., 2013.

[62] Telmo Santos. Code generation for restful apis in headrest. Master’s thesis, Facul-
dade de Ciências da Universidade de Lisboa, 2018.

[63] Marius Schulz. Typescript vs. flow, 2017. https://blog.mariusschulz.com/2017
/01/13/typescript-vs-flow, last accessed on 2018-11-21.

[64] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol
(CoAP). RFC 7252, RFC Editor, June 2014.

[65] SmartBear. Rest request methods. https://www.soapui.org/learn/api/rest-re
quest-method-verbs.html, last accessed on 2018-12-13.

[66] Kwangwon Sun and Sukyoung Ryu. Analysis of javascript programs: Challenges
and research trends. ACM Comput. Surv., 50(4):59:1–59:34, August 2017.

[67] Swagger. What is openapi? https://swagger.io/docs/specification/about/,
last accessed on 2018-11-20.

[68] Richard N. Taylor. The role of architectural styles in successful software ecosystems.
In Proceedings of the 17th International Software Product Line Conference, SPLC
’13, pages 2–4, New York, NY, USA, 2013. ACM.

[69] Brian Terlson. Ecmascript 2018 language specification. https://www.ecma-inter
national.org/ecma-262/9.0/index.html, last accessed on 2018-06-26.

[70] Write the Docs. Api blueprint. http://www.writethedocs.org/guide/api/apibl
ueprint/, last accessed on 2018-11-19.

[71] Peter Thiemann. Towards a type system for analyzing javascript programs. In Pro-
ceedings of the 14th European Conference on Programming Languages and Sys-
tems, ESOP’05, pages 408–422, Berlin, Heidelberg, 2005. Springer-Verlag.

[72] Eric Tholomé. A well earned retirement for the soap search api, 2009. http:

//googlecode.blogspot.com/2009/08/well-earned-retirement-for-soap-se

arch.html, last accessed on 2018-11-19.

[73] Mark Utting, David J. Pearce, and Lindsay Groves. Making whiley boogie! In
Nadia Polikarpova and Steve Schneider, editors, Integrated Formal Methods, pages
69–84, Cham, 2017. Springer International Publishing.

https://blog.mariusschulz.com/2017/01/13/typescript-vs-flow
https://blog.mariusschulz.com/2017/01/13/typescript-vs-flow
https://www.soapui.org/learn/api/rest-request-method-verbs.html
https://www.soapui.org/learn/api/rest-request-method-verbs.html
https://swagger.io/docs/specification/about/
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
http://www.writethedocs.org/guide/api/apiblueprint/
http://www.writethedocs.org/guide/api/apiblueprint/
http://googlecode.blogspot.com/2009/08/well-earned-retirement-for-soap-search.html
http://googlecode.blogspot.com/2009/08/well-earned-retirement-for-soap-search.html
http://googlecode.blogspot.com/2009/08/well-earned-retirement-for-soap-search.html

Bibliography 125

[74] Vasco T. Vasconcelos, Francisco Martins, Antónia Lopes, and Nuno Burnay. Head-
REST: A Specification Language for RESTful APIs, pages 428–434. Springer Inter-
national Publishing, Cham, 2019.

[75] Vasco T. Vasconcelos, Francisco Martins, Antónia Lopes, Fábio Ferreira, Telmo
Santos, and Nuno Burnay. Confident. http://rss.di.fc.ul.pt/tools/confiden

t/, last accessed on 2018-11-29.

[76] Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Refinement types for type-
script. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’16, pages 310–325, New York, NY,
USA, 2016. ACM.

[77] W3C. Web services description language, 2001. https://www.w3.org/TR/2001/N

OTE-wsdl-20010315, last accessed on 2018-11-20.

[78] W3C. Web application description language, 2009. https://www.w3.org/Submiss
ion/wadl/, last accessed on 2018-11-20.

[79] Bruce W. Weide, Murali Sitaraman, Heather K. Harton, Bruce Adcock, Paolo Bucci,
Derek Bronish, Wayne D. Heym, Jason Kirschenbaum, and David Frazier. Incre-
mental benchmarks for software verification tools and techniques. In Natarajan
Shankar and Jim Woodcock, editors, Verified Software: Theories, Tools, Experi-
ments, pages 84–98, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[80] Erik Wittern, Annie Ying, Yunhui Zheng, Jim A. Laredo, Julian Dolby, Christo-
pher C. Young, and Aleksander A. Slominski. Opportunities in software engineering
research for web api consumption. In Proceedings of the 1st International Workshop
on API Usage and Evolution, WAPI ’17, pages 7–10, Piscataway, NJ, USA, 2017.
IEEE Press.

[81] Erik Wittern, Annie T. T. Ying, Yunhui Zheng, Julian Dolby, and Jim A. Laredo.
Statically checking web api requests in javascript. In Proceedings of the 39th In-
ternational Conference on Software Engineering, ICSE ’17, pages 244–254, Piscat-
away, NJ, USA, 2017. IEEE Press.

[82] Matt Zabriskie et al. axios. https://github.com/axios/axios, last accessed on
2018-11-27.

http://rss.di.fc.ul.pt/tools/confident/
http://rss.di.fc.ul.pt/tools/confident/
https://www.w3.org/TR/2001/NOTE-wsdl-20010315
https://www.w3.org/TR/2001/NOTE-wsdl-20010315
https://www.w3.org/Submission/wadl/
https://www.w3.org/Submission/wadl/
https://github.com/axios/axios

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Context
	Objectives and Contributions
	Structure of the document

	Background & Related Work
	REST - Representational State Transfer
	Interface Definition Languages for RESTful Applications
	Static Verification in JavaScript Code
	Static Verification of REST Calls

	HeadREST Specification Language
	Basic Ideias
	A Running Example
	Syntax
	Core Syntax
	Derived Syntax

	Validation
	Algorithmic Type Checking
	Semantic Subtyping

	SafeScript Language
	Main Ideas
	Syntax
	Examples
	Validation
	Declarative Type System
	Translation to Boogie

	Translation to JavaScript
	Operational semantics

	Implementation

	SafeRestScript Language
	Main Idea
	Additional Syntax
	A Simple Example
	Validation
	Translation to JavaScript
	Implementation

	Evaluation
	Verification Benchmarks Challenge
	Comparison with TypeScript
	SafeRestScript: More Examples
	Limitations
	Future Work

	Conclusion
	HeadREST type normalization and extraction
	SMT-LIB Axiomatization in HeadREST
	Boogie Axiomatization of SafeScript and SafeRestScript
	REST calls JavaScript Auxiliary Functions
	Bibliography

