

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

A Know Your Customer solution over the

Portuguese Citizenship Card

Mestrado em Engenharia Informática

 Especialização em Arquitetura, Sistemas e Redes de Computadores

Hermínio Miguel Sobral Tavares

Trabalho de Projeto orientado por:

Professor Doutor Carlos Coutinho

Professora Doutora Maria Isabel Nunes

2019

i

Agradecimentos

Em primeiro lugar, queria agradecer à minha família, que sempre esteve

disponível em tudo o que precisei. Sempre me apoiaram incondicionalmente em todos os

momentos da vida.

Queria deixar também o especial agradecimento a ambos os professores

orientadores que me acompanharam neste trabalho, pois foi também graças a eles que

consegui atingir este marco. Em especial, ao Professor Carlos Coutinho por me ter

aceite como seu orientando; de outra forma, provavelmente não teria concluído o

mestrado este ano letivo.

Devo também um especial agradecimento à Caixa Mágica Software, que me deu

a possibilidade de frequentar as aulas durante o período laboral; infelizmente, nem todas

as empresas concedem este tipo de benefícios aos seus colaboradores. Para além disso,

não me posso esquecer do apoio que tive de todos os meus colegas, que sempre se

mostraram disponíveis e compreensivos para me ajudar no que fosse necessário.

 Um agradecimento especial ao Bruno Cipriano, que foi meu professor durante a

licenciatura e que hoje é um grande amigo. Devo a ele grande parte dos conhecimentos

que tenho hoje em dia. Mesmo fora da vida académica e das suas responsabilidades como

professor, sempre se mostrou disponível para me ajudar em diversas situações que

careciam de conhecimento que eu não possuía.

Finalmente, mas não menos importante, queria também agradecer ao Professor

Pedro Alves que também me acompanhou durante a licenciatura. Também sempre se

mostrou disponível para me ajudar e foi um dos impulsionadores que me levou a fazer o

mestrado.

ii

iii

Dedicatória

Para o meu pai, o meu lutador.

iv

v

Resumo

Nos dias que correm, temos observado avanços significativos nas diversas áreas

da informática. Não obstante, ainda é frequente encontrarmos, nas soluções existentes no

mercado, aquelas que exigem processos manuais e por vezes morosos, como por

exemplo, os relacionados com a atividade de adesão, engajamento, ou, usando o termo

técnico, Know Your Customer (KYC). Estes processos consistem em identificar e validar

clientes ou membros de uma instituição. Se um cidadão se deslocar a um banco para abrir

uma conta ou pedir um empréstimo, é obrigado a entregar um conjunto de documentos e

provas da sua identidade, documentação essa que será alvo de análise humana. Em média,

de acordo com estudos efetuados, os atuais mecanismos de KYC consomem às grandes

empresas e instituições (com cerca de 10 mil milhões de dólares de lucro anuais) perto de

150 milhões de dólares. Para além disso, em média, o custo de um processo que envolva

mecanismos de KYC nos trâmites atuais, varia entre os 15 e os 20 dólares.

Adicionalmente, dado que estas tarefas são realizadas manualmente por olho

humano, estão – como seria de esperar – sujeitas a erros, assim como a um maior consumo

de tempo em relação ao comportamento de tarefas automatizadas. Hoje em dia num

mercado globalizado e extremamente competitivo, é fulcral que estas empresas e

instituições sejam o mais eficientes possível. Neste caso concreto, o facto destas tarefas

de KYC estarem a ser realizadas manualmente, prejudica em muito a eficiência destas

entidades, uma vez que poderiam realocar este esforço noutros cenários que lhes

poderiam ser mais vantajosas.

De forma a agilizar estes processos, a Caixa Mágica Software serviu de

incubadora para um projeto denominado WalliD. O WalliD é um protocolo open source

que tem como objetivo guardar identidades na blockchain Ethereum. Embora já existam

algumas soluções deste género, este protocolo garante também a segurança e a confiança

destas identidades, desde que as mesmas tenham associado um certificado X.509

confiável. Embora esta solução esteja assente numa blockchain, a identidade do cidadão

é cifrada com recurso a criptografia assimétrica, possibilitando que apenas o próprio tenha

acesso aos dados. Desta forma, o cidadão é livre de deliberar a quem facultará os seus

dados pessoais para efeitos de verificação da sua identidade.

vi

A utilidade deste protocolo é notória, especialmente porque permite de forma fácil

e transparente a implementação de um sistema de KYC automatizado, eliminando assim

o erro humano e automatizando processos que anteriormente eram manuais.

Este trabalho retrata o desenvolvimento do primeiro KYC assente no protocolo

WalliD utilizando o Cartão de Cidadão português. Este sistema de KYC resulta numa

arquitetura genérica e modular que possibilite, através de testes unitários, testar as

funcionalidades implementadas, assim como adicionar novas identidades para além do

Cartão de Cidadão português, com o mínimo de esforço possível. Para isso, foram

utilizadas técnicas de injeção de dependências, uma vez que promovem a construção de

módulos com uma elevada independência entre eles.

Este sistema de KYC contempla três grandes validações. Em primeiro lugar, a

validação do certificado existente no Cartão de Cidadão português. Esta validação

permite identificar casos em que o documento de identificação já se encontra expirado,

revogado, ou que não seja confiável por impossibilidade da criação de uma cadeia de

certificados de confiança. Uma vez que a identidade dos utilizadores é guardada na

blockchain, o passo seguinte resume-se à verificação de uma assinatura criptográfica

disponível pelo Cartão de Cidadão português, aplicada à wallet address da conta

Ethereum do utilizador em questão. A verificação desta assinatura é realizada com recurso

ao certificado verificado no passo anterior. Finalmente, é necessário aferir a validade dos

atributos de identidade e de morada do utilizador. Esta validação é efetuada recorrendo a

um ficheiro existente no Cartão de Cidadão português denominado de Document Security

Object (SOD). Este ficheiro contém um conjunto de hashes que são gerados através da

concatenação de todos os atributos de identificação e de morada do utilizador.

Seguidamente, são assinados criptograficamente de forma a serem verificáveis através de

uma chave pública existente num certificado digital residente no ficheiro SOD. No

entanto, a verificação destes atributos só se considerará válida caso este certificado seja

confiável. Para isso, é necessário verificar se o mesmo não se encontra expirado, nem

revogado e se é possível construir uma cadeia de certificados de confiança.

Para além da definição da arquitetura, este trabalho também resultou numa

implementação piloto para o já referido Cartão de Cidadão português. Esta solução foi

realizada através da linguagem de programação Java, e a razão da escolha desta

linguagem prendeu-se essencialmente por dois motivos, (i) é uma linguagem open source;

(ii) de forma a facilitar a implementação de certas funcionalidades, recorreu-se a uma

vii

biblioteca também open source denominada de Bouncy Castle. Visto que esta biblioteca

apenas está disponível para C# e Java, optou-se uma vez mais por esta última. Ainda de

modo a que esta solução fosse o mais modular possível, foi utilizado um padrão de injeção

de dependências através de uma biblioteca desenvolvida pela Google denominada de

Guice. Desta forma, foi possível construir uma solução que abstrai na totalidade o

documento de identificação em questão (neste caso, o Cartão de Cidadão), garantindo

assim que os módulos desenvolvidos sirvam para outros tipos de documentos.

Adicionalmente, a utilização deste padrão facilitou o desenvolvimento de testes unitários.

Atendendo às necessidades deste trabalho e da linguagem de programação

utilizada, optou-se por gerar uma biblioteca no formato Java Archive (JAR). Assim, um

programador poderá encapsular o serviço de KYC num web service, através de um

servidor que responde com recurso a sockets, entre outras formas, para que não exista

uma dependência relativamente à tecnologia utilizada. De forma a facilitar a instalação,

manutenção e a escalabilidade deste serviço, este web service foi configurado numa

imagem de Docker.

Pretende-se, no final, que este trabalho dê resposta a quatro questões de

investigação, nomeadamente, (i) se é possível verificar a identidade de uma pessoa

através de uma blockchain; (ii) se com a utilização da blockchain é possível mitigar o uso

descontrolado da nossa identidade, no sentido em que, ao facultarmos a nossa identidade

para identificação de terceiros, perdemos o rasto completo do nosso documento de

identificação; (iii) se através dos certificados digitais é possível aumentarmos a eficiência

da forma como as identidades são verificadas, minimizando assim o erro humano;

finalmente, (iv) se é possível, através de tarefas automatizadas, verificar identidades mais

rapidamente, em contraponto com as tarefas realizadas atualmente de forma manual.

Caso seja possível dar resposta a todas estas questões, a utilidade do protocolo do

WalliD pode ser demonstrada através de um caso de uso, que neste caso envolve a

entidade bancária fictícia denominada Credibank. Esta empresa tem como objetivo

fornecer créditos aos seus clientes e, para tal, necessita de validar as suas identidades.

Através do mecanismo de KYC desenvolvido neste trabalho, o Credibank poderá atuar

somente como uma entidade online.

Visto que o WalliD privilegia a metodologia open source, tanto o código da

biblioteca desenvolvida, assim como, o código do web service, serão disponibilizados de

viii

forma open source, permitindo assim a melhoria continua assim como dos processos

implementados.

O trabalho descrito neste documento já conta com uma publicação científica na 9ª

Conferência Internacional em Sistemas Inteligentes IEEE-TEMS realizada na Madeira,

Portugal, no ano de 2018 com o título “WalliD: Secure your ID in an Ethereum Wallet”.

Adicionalmente, encontra-se em processo de aprovação um segundo artigo na revista

“IEEE Instrumentation and Measurement Magazine”, com o título “Instrumentation and

Measurement context: From a methodological point of view”.

Palavras-Chave: Know Your Customer, WalliD, X.509, blockchain, identidade.

ix

x

Abstract

At the present time we observe several improvements in many informatics topics.

Despite that, we still find too many manual processes which could be automated such as

the Know Your Customer (KYC) processes. The goal of these processes is to identify and

validate current or future customers or members of an institution. As an example, trivial

operations such as opening a bank account, at least in Portugal, is a task that in most of

the cases is not able to be performed online. The process must be conducted in person,

involving signing and delivering all documentation needed or uploading a set of

documentation that needs to be analyzed and checked. Additionally, that personal

documentation is manually verified by a bank employee, and of course this process can

be subject to errors, resulting in further delays to the account approval.

In order to solve these issues, Caixa Mágica Software, on its Startup Lab,

developed and incubated a project called WalliD. WalliD is an open source protocol

whose goal is to solve the type of issues aforementioned. This means that with the

proposed solution, users are able to store their own identity in the Ethereum blockchain.

Although the market already contains some solutions with similar purposes, WalliD

brings trustworthiness to the users’ identities as long as they have a X.509 certificate

attached. Despite having the user’s identity being stored in a blockchain, only the user

himself has access to it because that data is encrypted using an asymmetric pair of keys.

This solution gives the identity owner the ability to choose who, and when, an entity has

access to his identity attributes.

As an open source protocol, anyone can help improve it and verify how secure

and simple it is. Developing KYC solutions based on WalliD could avoid human

misbehaviors and speed up this kind of processes as well.

This work describes the development of a KYC solution based on WalliD over

the Portuguese Citizenship Card (PTCC).

Keywords: Know Your Customer, WalliD, X.509, blockchain, identity.

xi

xii

Contents

List of Figures ... xiv

Chapter 1 Introduction ... 1

1.1 Motivation ... 2

1.2 Goals and Research Questions .. 2

1.3 Publications and Exploitation ... 4

1.4 Working Plan .. 5

1.5 Document Structure .. 5

Chapter 2 Related Work ... 7

2.1 Blockchain with WalliD ... 7

2.2 Similar Projects to WalliD .. 9

2.3 KYC Services ... 10

2.4 X.509 Certificates ... 11

2.5 Public Key Infrastructure for X.509 (PKIX) .. 12

2.6 Certification Paths ... 13

2.7 Revocation Lists ... 14

2.8 Cryptographic Message Syntax (CMS) .. 15

2.9 PKCS#12 .. 16

Chapter 3 The WalliD Protocol.. 17

3.1 MetaMask ... 18

3.2 ImportiD .. 19

3.3 MyEtheriD .. 19

3.4 StoreiD .. 21

3.5 Use Case ... 21

3.6 Summary ... 23

Chapter 4 Design and Implementation ... 25

4.1 Architecture .. 26

4.1.1 Portuguese CC Gateway.. 27

4.1.2 Certificate Verifier .. 29

4.1.3 Certificate Chain Check .. 31

xiii

4.1.4 Certificate Revocation Gateway.. 32

4.1.5 OCSP Verifier ... 33

4.1.6 CRL Verifier ... 36

4.1.7 Wallet Address Verifier .. 38

4.1.8 SOD Verifier ... 39

4.2 Integration ... 41

4.3 Class Diagram ... 43

Chapter 5 Evaluation .. 47

5.1 API .. 47

5.2 Performance Tests ... 50

5.3 Summary ... 53

Chapter 6 Conclusions & Future Work .. 55

Glossary….. .. 59

Bibliography .. 61

xiv

List of Figures

Figure 1 - Working Plan .. 5

Figure 2 - PKI Entities .. 13

Figure 3 - CRL content ... 14

Figure 4 - OCSP content example ... 15

Figure 5 - WalliD Flow ... 17

Figure 6 - Extracting and Storing identity flow .. 20

Figure 7 - Proof of Identity flow ... 21

Figure 8 - WalliD ecosystem... 23

Figure 9 - Proposed KYC Architecture and Flows ... 26

Figure 10 - Main Flow .. 28

Figure 11 - Certificate Verification Flow ... 30

Figure 12 - Chain Verification Flow ... 31

Figure 13 - Certificate Revocation Flow ... 33

Figure 14 - OCSP Verifier flow .. 35

Figure 15 - CRL verifier flow ... 38

Figure 16 - Wallet Address Verifier.. 39

Figure 17 - SOD verifier flow ... 41

Figure 18 - Docker containers ... 43

Figure 19 - Class Diagram Part I... 44

Figure 20 - Class Diagram Part II ... 45

Figure 21 - Positive Response ... 48

Figure 22 - Revoked Certificate Response.. 48

Figure 23 - Expired Certificate ... 48

Figure 24 - Wallet Signature verification failed ... 49

Figure 25 - Identity attributes verification failed .. 49

Figure 26 - Address attributes verification failed ... 49

Figure 27 - Hardware used during the performance tests 50

Figure 28 - System performance with PC 1 .. 51

Figure 29 – System performance with PC 1 without cache 52

Figure 30 – System performance with PCs 1 and 2 .. 52

file:///C:/Users/hmigu/Downloads/Relatorio_V5-reviewed-by-cc%20(1).docx%23_Toc12230878

xv

1

Chapter 1

Introduction

The evolution of computer science has provided new ways to improve and create

new markets. However, there are still areas which have not yet benefited from those

improvements. For instance, if we want to open a bank account in Portugal, in most cases

we are forced to be physically present at the bank institution. This happens because we

still must prove our identity by old-fashioned ways and processes; consequently, a person

will receive and manually validate the received documentation such as our identity card,

home address, among other information.

The goal of the project WalliD [1] is to connect the physical world to trustful

digital identities in a secure, decentralized, transparent and immutable way. In order to

do that, those identities are encrypted by the owner, and then stored on a blockchain

through a smart contract. Hence, any citizen will be able to perform a Proof of Identity

(PoI) in such a way that it will be possible to avoid the legacy process described in the

previous paragraph.

Actually, the project WalliD was conceived and designed to accept any kind of

trustful digital identity. The integration with the Portuguese Citizenship Card is simply

the first full-featured example use-case of this process. In this case, it is possible to

perform a PoI because the Portuguese Citizenship Card contains consistency and security

information such as a X.509 digital certificate [2] issued by the Portuguese governmental

certification authority, which makes it possible to anyone to perform proof of identity by

chain of trust.

2

1.1 Motivation

Old-fashioned KYC mechanisms make companies expenses grow. Large financial

institutions (with an average annual return of $10 Billion USD) have an average annual

cost of $150 Million USD with KYC processes and the average annual cost for the same

practices on other financial firms is around 60 Million USD [3]. Currently, the on-

boarding costs for businesses with KYC Processes range from $15 USD to $20 USD per

process and demand a renovation of due diligence validations periodically. High expenses

are not the only issue of those KYCs – since they are performed through a human eye, it

is only natural that some mistakes arise. From the moment the customer’s personal

documentation is delivered, these processes usually take a long time, too much time, and

may block the opportunity for businesses to be performed.

Moreover, sometimes the customer’s documentation flows through unsafe

channels – for instance, it is usual that, in the process of opening a bank account, a copy

of its citizenship card is produced. Hence, the customer is trusting its identity not only on

the bank institution, but also on the employee. Despite of that, identity trust can be

considered a well-solved problem in the physical world. Every jurisdiction has its own

identity issuer organization which is responsible for certifying every citizen’s identity

attributes and issuing a respective proof of identity, usually represented by physical

objects like citizenship cards and passports, and everybody, from citizens within those

jurisdictions to organizations, recognize these certificates as trustful. Unfortunately, few

identities are globally accepted. Each country may have their own way to issue and

validate its citizens’ identity.

In order to solve this problem, WalliD has a modular, customizable, decentralized

and transparent information structure and architecture. Any trusted identities that use

X.509 certificates are able to join and use this protocol. Companies are also able to

develop their own KYCs through automatic mechanisms, avoiding high expenses and

human misbehaviors.

1.2 Goals and Research Questions

The main goal of the work here described was the development of the first KYC

based on the WalliD protocol, which uses the Portuguese citizenship card. The output of

this solution is a generic architecture with an open source implementation. As a result,

3

any entity which wishes to use a KYC based on Portuguese citizenship card can use this

implementation, or even develop its own solution based on this architecture. The

contributions of this work for WalliD can be summarized as:

• Develop a generic architecture for KYCs systems that will use WalliD to verify

users’ identities.

• Based on this architecture, this work aims to develop a pilot KYC

implementation based on Portuguese Citizenship Card.

• Since Credibank [4] is a use case created by WalliD to show that the protocol is

valid and valuable. The KYC produced must be implemented on Credibank

system in order to identity their customers.

• This KYC solution can help WalliD as a company to build their own products

using the protocol and this KYC solution.

Besides developing this platform, the research objective of this work intends to

answer some of the following open research questions:

• RQ1: Can a blockchain, as a decentralized, immutable and transparent

environment, be able to help to properly verify a citizen’s identity?

• RQ2: Can the use of blockchain prevent the growing spread of copies of a

citizen’s identity documents over the internet?

• RQ3: Will the use of Digital Certificates improve the accuracy of the ID

verification?

• RQ4: Can the use of a blockchain speed the KYC verification process?

These questions led to the development of the following research hypotheses:

• HYP1: The use of blockchain presents a secure and cyphered form of storing

important information such as the personal identification, mainly because the

only information being exchanged is in the form of anonymous hashes;

• HYP2: The use of blockchain not only allows a safe and private storage of data,

but if properly configured, it also registers all accesses to that data, which allows

4

the user to have the information stored only once and to keep its access under

control;

• HYP3: Much better than recognizing ink on a piece of paper, Digital Certificates

ensure that the bearer of a specific identification has an identification recognized

by a certified third-party (the best part of the real-world) and that it is also the

person that submitted a particular request;

• HYP4: Reducing drastically the number of documents to ensure the veracity of

the identity, automating the analysis of the identity and tying that analysis with

a strong check of a Digital Certificate is a something that will potentially reduce

the time required for identity verification to a fraction.

We consider that the confirmation of these hypotheses will satisfy the research

questions being proposed, and the resulting system will provide its users with a safer,

faster and more effective mechanism to validate identities both for the company and for

the user being identified. The remainder of this document will then be spent finding

evidences that support these hypotheses.

1.3 Publications and Exploitation

The work described on this dissertation resulted in a paper in the 9th IEEE-TEMS

international Conference on Intelligent Systems, Madeira, Portugal, 2018, named as

“WalliD: Secure your ID in an Ethereum Wallet” [5], and a paper in a special issue of the

IEEE Instrumentation and Measurement Magazine1 which has already been submitted

and is waiting for approval.

Furthermore, the author of this dissertation is currently leading a team which is

developing the first WalliD product. This product is being developed under a partnership

with Docusign [6] and consists in a service that verifies a user’s identity in order to prove

that a signature in a document really belongs to him. In order to develop this solution, the

proposed product uses the WalliD protocol to fetch users’ identities and validate them

through a KYC such as the one available at Credibank. In the end, the proposed solution

will sign a document just after the user, in order to certify any entity that the user’s

signature really belongs to him.

1 https://ieeexplore.ieee.org/xpl/aboutJournal.jsp?punumber=5289

5

1.4 Working Plan

The following Gantt chart in Figure 1 illustrates the plan which was followed

during this work.

Figure 1 - Working Plan

A more detailed description of each of the above tasks:

• Task 1 (September and October): Learning about project goals, related work

and involved technologies. Preliminary report writing;

• Task 2 (October, November and December): Keeping the preliminary report

updated, start designing the library architecture and its flow charts. Perform the

implementation starting by the basics, such as JUnit testing and parsing the

dataID JSON;

• Task 3 (December, January and February): Evaluating the current solution

using a dummy dataID JSON. Performing some improvements and starting the

integration tests;

• Task 4 (February, March and April): Performing some tests with real dataID

JSON files. Testing the current implementation under pre-production scenario;

• Task 5 (April, May and June): Report writing.

1.5 Document Structure

The remainder of the document is structured as follows. Chapter 2 presents related

work. Chapter 3 briefly describes how the WalliD protocol works. Chapter 4 talks about

6

the design, architecture and the integration phase. Chapter 5 discusses achieved results.

And, finally, Chapter 6 talks about future work and concludes.

7

Chapter 2

Related Work

This chapter reviews some systems, concepts and approaches that are somehow

related to this work. Section 2.1 briefly introduces blockchains and how they are related

to WalliD. Section 2.2 presents some other projects that aim to do the same as WalliD.

Then, Section 2.3 introduces some approaches to automatize KYC services. Section 2.4

talks about X.509 certificates, and Section 2.5 presents how a Public Key Infrastructure

for X.509 (PKIX) works. Then, Section 2.6 talks about a very important topic of this work

which are the certification paths. Section 2.7 presents two ways which could be used to

check whether a certain certificate is revoked or not. Then, Section 2.8 presents the

Cryptographic Message Syntax (CMS), which is a standard to sign, digest, authenticate

or encrypt arbitrary message contents. Finally, Section 2.9 talks about a standard which

is used to store several cryptographic objects, such as private keys and certificates, in one

only file.

2.1 Blockchain with WalliD

It is common knowledge that it is easier to copy a set of bits (digital money) than

a piece of paper (money on the real world). One of the biggest issues related to digital

money is the “double spending” problem: on the real world we are not able to spend more

than once the same coin; however, since digital money are sets of bits, we are able to

clone them and spend the same coin more than once. Satoshi Nakamoto explains this

problem and explains how Bitcoin [7] deals with it. His solution uses a chronologically

ordered timestamped ledger, also known as “blockchain”, to solve this problem.

Bitcoin stores all money transactions on those blocks in order to allow everyone

to check who is the owner of that money. Even if we copy a set of bits in order to duplicate

money, everyone will be able to look at the blockchain and realize that we are not the

owner of that piece of money – then the transaction will not be performed. This is possible

because blockchains have a property called immutability, which prevents them from

being changed without being noticed. This is possible because each block has a special

8

pointer which references the previous block. This pointer is calculated through a hash

function. Basically, hashes are functions with certain special properties which calculate

digests through a given input. On this case, the input of the hash function is the entire

block. Here is where the “mining” process comes in. Each block is only allowed to join

the blockchain if its digest starts with a certain number of zeroes, being that number of

zeroes defined by the network. In order to find the digest which fulfils this condition, each

block has a number which is computed in a brute force way. So, the mining process

consists of (i) adding a certain number (called “nonce”) to the block being added, (ii)

computing its digest, and (iii) checking if that output contains the expected number of

zeroes. If it doesn’t, this process must be repeated once again. This randomized

concurrency control mechanism process is called “Proof of Work” (PoW) and aims to

establish consensus in the network. The difficulty level is adjusted dynamically and grows

exponentially with the number of zeroes at the left required by the network. For security

reasons, Bitcoin’s network is configured to append a new block in an average of 10

minutes. PoW is a technique which works very well on networks with a large number of

nodes, but classic protocols such as Practical Byzantine Fault Tolerance (PBFT) [8] are

unfeasible because they exchange a lot of messages. On the other hand, PoW requires a

huge quantity of energy consumption, which is a disadvantage of this technique.

Unlike Bitcoin, that can only be used to exchange money, the Ethereum [9]

network allows running code over its blockchain through smart contracts. While a

standard contract outlines the terms of a relationship (usually one enforceable by law), a

smart contract enforces a relationship with cryptographic code as described on Ethereum

white paper [10]. Those smart contracts, or “autonomous agents”, as they are called, can

remove third parties and bring a layer of trust over the network layer. For instance, usually

when we buy something on the Internet, we would like to ensure that no one will

misbehave. In order to do that, people trust some companies (for example, Paypal) as

third parties to deal with this problem. If any problem occurs, we can contact them and

ask our money back. We can code a set of rules in a smart contract which will perform

the same behavior as PayPal.

The process of mining in the Ethereum network is similar to the one described for

Bitcoin in Satoshi Nakamoto’s white paper – where a “miner” tries to find a particular

nonce which is added to the block. Then, the miner must generate a hash of that block

9

and check if it contains a certain number of zeroes at the left. Only the blocks which

accomplish this condition can be added to the blockchain.

The Bitcoin protocol was made specifically for money exchanging, so it does not

fit WalliD’s needs; WalliD’s protocol was built on top of the Ethereum blockchain. As

this dependence on Ethereum is a disadvantage, there are some solutions such as

Syahputra and Weigand that have developed a process that can generate smart contracts

for heterogeneous blockchain technologies, such as Ethereum or Hyperledger, using

Unified Modelling Language (UML) and Object Constraint Language (OCL) to

implement the workflow and algorithm used to produce smart contracts in a platform-

independent way, and proposed algorithms to simplify the development for

heterogeneous blockchain platforms [11]. This could be very interesting if, in the future,

the project faces limitations regarding the Ethereum protocol, and this approach could be

adopted in order to use other blockchains.

2.2 Similar Projects to WalliD

Some other projects similar to WalliD were also developed during the last couple

of years, their main focus being the use of the blockchain as a tool to let users keep control

of their identities and transactions.

One of them is named CIVIC project [12], and its main difference to WalliD is

that CIVIC does not actually connect to any document or certified system – it simply asks

that information to the user and assumes the inserted information to be correct. This

means that it may be useful for dealing with KYC processes, but misses one essential

feature which is to avoid fake impersonation of another person’s identity.

On the other hand, the uPort project [13] also deals with the decentralization of

identity management, but their approach is to create a separate, independent identity

system with their own security and not bound to real documents. Again, the main problem

is about the trust and actual effectiveness of having an identity system that is not

recognized by everybody.

The Persona project [14] is a solution for identity management which is also

aligned with the latest data protection regulations. Its scope is to empower the individual

and grant them the control over their personal data as well as the means to secure access

to their private details. The idea is again to allow users to insert identification attributes

in the blockchain environment, and then to validate them by the user itself, so once again

10

it is the users who are in charge of inserting the data that will state their identity and they

will themselves validate if that data is correct. However, this will not prevent a user from

faking, stating to be another person, and that is one major drawback of these systems.

Other similar projects do the same such as IDCoins [15], SelfKey [16], TheKey

[17], and REMME [18], implementing authentication systems based on blockchain-based

data. Existing electronic ID systems like Eestki and Guardtime from Estonia [19] are

becoming leading environments for building European enterprise security solutions, as

well as Bitnation [20]. Despite the success of some of these projects, the issue of

connecting the already trusted offline identities with the blockchain and ultimately with

online services remains.

2.3 KYC Services

There are some companies which use machine learning to provide KYC services.

Jumio [21] developed a product named Netverify which uses Artificial Intelligence (AI)

to prove its users’ identities. In order to do that, the user can take a photo of a document

asserting his identity, such as a driver license or passport. On the next step, the AI

algorithm will analyze the document and will perform a biometric facial recognition

through the user’s smartphone camera. Shufti Pro [22] also provides KYC services

through AI such as Jumio. They have a very interesting product which allows us to verify

a user’s handwritten notes. This could be used for instance to replace notaries.

On another approach, there are solutions based on Multi-factor authentication

[23]. On that paper, the authors describe a KYC mechanism which, on a first stage

performs a simple authentication with user’s identity and a password. Afterwards, the

KYC process executes an algorithm of risk analysis which results in a certain level of

risk. Final stage of the verification is OTP / EMAIL / OTP & Email confirmation if it is

indicated by the result of the risk level.

Finally, but not less important, there are similar solutions which are based on Big

Data [24]. Researchers in India realized it is quite hard for bank institutions to identify

unique customers. A person is able to open a bank account using several different

documents, like for instance Permanent Account Number (PAN), passport and even with

driving license. Since all these documents have different serial numbers, it is very hard to

find a unique identity; they also show an example of a customer with five different

records. A way to mitigate this issue is to use the first name, last name, birth date, address

11

and identification to match a customer. The proposed solution on this paper uses a fuzzy

matching technique, an advanced mathematical process that determines the similarities

between data sets, information, and facts – where the outcome is neither true or false, nor

100 percent certain. The process compares any data type of any length and from any place

in a field to find non-exact matches. For every piece of data examined, the fuzzy matching

process will give a probability score to determine the accuracy of the match.

2.4 X.509 Certificates

X.509 certificates give confidence to the users of a public key that the private key

is owned by the correct subject. This confidence is achieved through the use of public key

certificates which are data structures that bind public keys to subjects. This binding is

performed by a trusted CA which digitally signs each certificate. Each certificate contains

the following fields:

• Version: Indicates the certificate version;

• Serial Number: Holds a unique number per certificate;

• Signature: Contains the issuing authority signature;

• Issuer: Indicates the issuer’s distinguished name;

• Validity: Contains the activation and expiration dates;

• Subject: Indicates the subject’s distinguished name;

• Extensions: Are fields which are only available in version 3 certificates. This

property allows applications to add some arbitrary for specific purposes which

are not covered here.

There are two main methods to encode these certificates which are:

• Distinguished Encoding Rules (DER): Binary encoding for certificate data;

• Privacy-enhanced Electronic Mail (PEM): Base64 encoding of DER encoded

format, with header and footer lines added.

The use of digital certificates is strongly recommended; it provides us with some

guarantees that we are dealing with the right subject. The X.509 certificates will be

12

intensively used in this work since we are dealing with electronic identity documents,

such as the Portuguese citizenship card.

2.5 Public Key Infrastructure for X.509 (PKIX)

The Public Key Infrastructure (PKI) for X.509 certificates [25] profiles the format,

the semantic of certificates and Certificate Revocation Lists (CRLs) for the Internet PKI.

The goal of this specification is to facilitate the use of X.509 certificates within Internet

applications such as e-mail, user authentication, and so on.

The architecture model of PKIX assumes the existence of five entities:

• End Entity (EE): The user or system which owns a PKI certificate that is the

subject of a certificate;

• Certification Authority (CA): Trusted entity which issues and revokes

certificates;

• Registration Authority (RA): Optional entity to which a CA delegates certain

management functions, such as user management and logging of certain events;

• CRL issuer: System that generates and signs the CRLs;

• Repository: System or collection of distributed systems where the certificates

and CRLs are being stored in order to distribute them to the end entities.

Figure 2 illustrates how these entities communicate with each other.

13

Figure 2 - PKI Entities [25]

Since Portuguese citizenship cards use X.509 certificates, we will consider this

architecture during this work. In this case, Portuguese citizens behave as PKI users, and

the Portuguese mint house, which is the entity that issues the certificates within the

Portuguese citizenship card, acts as PKI management entity.

2.6 Certification Paths

In order to validate a certain certificate, we need to perform some verifications,

such as the validity and the issuer’s signature, among others. But sometimes there are

certificates that are not issued and signed by a CA, but by an intermediate entity. On these

cases, we may need more than one certificate to perform the certificate validation.

Commonly, the aggregations of these certificates are called certificate chains, or

certification paths.

14

A certificate must not be present more than once in a certain certification path.

However, if the trust anchor is passed to the certification path as a self-signed certificate,

that certificate does not make part of the prospective certification path. A trust anchor is

a special kind of certificate where the trust is assumed and not derived.

These certification paths will be used on this research to validate the user’s

certificates which are within the Portuguese citizenship cards. Without this verification

we cannot trust a certain certificate; through this method we are able, for instance, to

identify/detect forged certificates. On those cases, the certificates will not be issued by a

trusted anchor, so in the end we can say that a certain end entity certificate is also not

trustful.

This procedure is described in a more detailed way on section 6 of RFC5280 [25].

2.7 Revocation Lists

CAs are responsible for indicating the revocation status of a certain certificate.

Usually, this information is provided using Certificate Revocation Lists (CRLs) [25] or

Online Certificate Status Protocol (OCSP) [26].

CRLs are lists of revoked certificates that are issued by CRL issuers, which are

also CAs or entities that were authorized by a CA to issue CRLs. Each element of those

lists contains the serial number of the revoked certificate and the date of revocation.

Figure 3 illustrates an example of a CRL content.

Revoked Certificates:

 Serial Number: 2572757EAAF2BEC5980067579A0A7705

 Revocation Number: May 1 19:56:10 2019 GMT

 Serial Number: 776DDD15D25C713616E7D4A8EACFB41A

 Revocation Number: May 10 13:03:16 2019 GMT

Figure 3 - CRL content

A disadvantage of CRLs is that, in order to check whether a certain certificate is

revoked, it is necessary to download the entire CRL, which contains several certificates

that will be useless. Of course, this introduces a huge overhead. Another disadvantage

15

regards scalability – since a CRL contains several revoked certificates, applications will

perform a search in order to check whether a certain certificate is revoked or not. And,

maybe the worse one, CRLs are usually not updated every day. This means that there is

no guarantee that the certificate of interest is revoked or not.

In order to solve some of these constraints, a new protocol named OCSP replaced

CRLs. First of all, when an application asks an OCSP server to check whether a certain

certificate is revoked, the server checks and gives the status for that singular certificate.

The protocol defines three kinds of status:

• Good: This status indicates a positive response about the requested certificate,

meaning that the certificate is not revoked.

• Revoked: The revoked status means that the requested certificate is revoked.

• Unknown: This status indicates that the server does not know if the certificate

is revoked or not.

Figure 4 illustrates a sample of an OCSP response.

Response verify OK

0x25F5V12D5E6FD0BD4EAF2A2C966F3B4aE: good

 This Update: May 1 19:56:10 2019 GMT

 Next Update: May 10 13:03:16 2019 GMT

Figure 4 - OCSP content example

Since we are dealing with highly volatile certificates, such as the Portuguese

citizenship card where a certificate could easily get revoked, these two mechanisms will

be present in this work – in case OCSP is not available, this solution is able to use a

cached CRL if available.

2.8 Cryptographic Message Syntax (CMS)

Cryptographic Message Syntax (CMS) [27] is an IETF standard syntax based on

PKCS#7 [28] used to digitally sign, digest, authenticate, or encrypt arbitrary message

16

content. CMS is general enough to support many different content types. There are six

content types that describe the form enhancement that could be applied to the digital data:

• Data: this content type is intended to refer to arbitrary octet strings, such as

ASCII text files. Typically, this type is used on the other types;

• Signed-Data: a content of any type together with encrypted message hashes of

the content for zero or more signers;

• Enveloped-Data: a content of any type together with encrypted content

encryption keys for one or more recipients;

• Digested-Data: a content of any type together with the message digest and the

digest algorithm used;

• Encrypted-Data: this type contains an encrypted content of any type, however,

unlike the enveloped-data, it does not contain the recipients, nor encrypted

content keys – those keys must be managed by other means;

• Authenticated-Data: a content of any type together with a Message

Authentication Code (MAC), and encrypted authentication keys for one or more

recipients.

2.9 PKCS#12

PKCS#12 [29] is a standard which describes a transfer syntax for personal identity

information such as private keys, certificates, etc. Applications that support this standard

allow the user to import, export and exercise a single set of personal identity information.

Furthermore, PKCS#12 describes a very useful standard which allows us to store

in only one file a set of private keys, certificates; usually we call this a keystore.

This feature is very interesting for this work since we are aiming at building a

generic solution. In this case, our KYC system will receive a keystore which contains all

certificates (intermediate and root) needed to build certification paths. These paths will

be used to verify the X.509 certificate which is associated to the Portuguese citizenship

card. For future nationality integrations or certificate updates this could be very useful;

we can build a keystore with all that is needed to validate the chain in only one file,

without care about their codification types.

17

Chapter 3

The WalliD Protocol

WalliD is a new Ethereum-based protocol that allows citizens to encrypt and store

their certified identity documents and attributes from the real world on the blockchain,

access and instantly exchange them with KYC services they trust. WalliD is described on

a white paper [30] and it is supported by open source software whose code is available

on GitHub [31]. The main innovation in this protocol is the ability to verify if the uploaded

attributes are under a globally trusted digital certificate such as the X.509, making sure

that every identity uploaded and verified by the system is a valid identity and certified by

its Certification Authority (CA).

Figure 5 - WalliD Flow [30]

The main steps of the WalliD flow are:

• Step 1: First of all, the user must own an identity document which must contain

an X.509 certificate within;

• Step 2: The user exports his identity attributes from his document. This process

requires a computer and a smart card reader;

• Step 3: The user stores his identity attributes previously exported in the WalliD

infrastructure.

18

The onboarding phase, which is performed by all the three steps above, is only

executed once by the user. However, if the user asks for a new identity card, this process

must be repeated. This happens because the X.509 certificate is not valid anymore. Then,

the next three following steps are executed once the user wants to prove his identity:

• Step 4: The system that needs to validate the user’s identity asks for his identity;

• Step 5: The user asks for his identity to the WalliD smart contract, receives it

and decrypts it. Then, the user’s identity is sent to the system that asked for it;

• Step 6: The system receives the user’s identity and runs his KYC service to

validate it.

The following sections describe some components that make part of WalliD

architecture. Section 3.1 talks about MetaMask which is a web plugin used to interact

with the Ethereum blockchain. Section 3.2 describes the ImportiD component which is

used to extract and generate the WalliD data structure from the Portuguese Citizenship

Card. Section 3.3 presents MyEtheriD which is responsible to store the data structure

generated by ImportiD in the WalliD infrastructure. Section 3.4 describes another WalliD

component named StoreiD, which is responsible to store part of the data generated by

ImportiD, such as the user’s X.509 certificate extracted from his Portuguese Citizenship

Card. Finally, but not less important, Section 3.5 describes a use case created by the

WalliD team in order to demonstrate a complete round trip around the protocol.

3.1 MetaMask

MetaMask [32] is a cryptocurrency wallet which can be used on Chrome, Firefox

and Brave browsers. Since the web browser does not know how to deal with the Ethereum

blockchain, MetaMask is installed as a plugin which injects a JavaScript library named

Web3 in order to provide the communication between the web browser and the Ethereum

network. It allows users to sign smart contracts, and interface with Ethereum distributed

applications without running a full node.

All WalliD users must have a MetaMask account; it is through their wallet address

that the association is established to his digital identity.

19

3.2 ImportiD

The ImportiD [33] deals with the data identity extraction from the user’s

document, such as the Portuguese citizenship card. In order to achieve this goal, the user

must own a smart card reader that will be used to read the user’s identity document.

Since each identity has its own data format, it is not possible to develop a generic

ImportiD that could deal with all identity documents. Each document will have its specific

ImportiD in order to perform the data extraction. As a result, ImportiD will generate a

JSON file which contains all information regarding the user’s identity. This JSON is

named dataID and contains three main blocks of data. The first one is called identifyiD

and contains the user’s identity attributes, such as the first name, last name, address,

among others. The second one is called verifyID – this block contains the X.509

certificate and a Document Security Object (SOD) [34] file which is also present in

Portuguese citizenship cards. Without this block, the user’s identity attributes have no

meaningful value. The SOD is used to verify the user’s identity and address attributes,

while the X.509 certificate is used, for instance, to check if this identity is still valid. If a

citizen loses its citizenship card, the action of requesting another one causes this

certificate to be automatically revoked by the governmental institution which manages

the Portuguese identities.

In order to perform a match between these two blocks, the ImportiD component

signs the user’s wallet address and stores it in the verifyID block. This signature can be

verified through the digital certificate which is stored on the verifyID. Finally, but not

less important, the third element on the dataID JSON file is the StoreIDProvider which

defines the provider that will store verifyID block.

3.3 MyEtheriD

While the user’s attributes are being stored in the Ethereum blockchain encrypted

with its MetaMask public key, the verifyID data is stored in another component named

StoreiD [35].

The component which is responsible for storing this information is named

MyEtheriD [36] [37] and receives as input the JSON file generated by ImportiD. The

process how WalliD fetches and stores user’s identities is illustrated in Figure 6.

20

Figure 6 - Extracting and Storing identity flow [30]

The main steps of the MyEtheriD flow are:

• Step 1: The user opens a web browser and navigates to MyEtheriD.io PoI

provider to download an importing application such as ImportiD;

• Step 2: Then, the user opens his importing application, follows the instructions

and generates his dataID JSON;

• Step 3: The user goes back to his web browser, accesses MyEtheriD.io again

and pastes the generated dataID block into the “Store Identity” tab;

• Step 4 & 4b: User presses “Connect with MetaMask” to store his dataID. Then,

the verifyID block will be stored in the StoreiD provider (4). Hence, the

identityID block will be stored in the blockchain through WalliD smart contract

(4b);

• Step 5: The stored identityID block is stored in the smart contract and indexed

through the user’s wallet and Identity Type (IDT).

21

3.4 StoreiD

In order to turn WalliD profitable, the verifyID block is provided by a third-party,

generally out of the chain, such as a regular database system. The identity attributes have

no meaning without the certificate, wallet address signature and the SOD – it is through

these data that we can verify the trustiness of user’s identity. In order to get the verifyID

block, the entity that wants to verify the user’s identity, such as Credibank, must pay a

fee to the entity which is storing the verifyID block. This fee is charged in WALs

(currency used in WalliD) per each time that an entity such as Credibank wants to perform

a request to receive a verifyiD block. This payment is intermediated by WalliD’s smart

contract, and if the entity does not receive the verifyID block within a certain period of

time, the payment is refunded.

3.5 Use Case

A simple use case was built to test the WalliD protocol. This use case includes a

dummy bank institution called Credibank. The goal of this institution is to lend money to

their customers. In order to speed up their internal identification processes, Credibank

uses WalliD to verify the identity of their customers. The flowchart of this use case is

illustrated on Figure 7.

Figure 7 - Proof of Identity flow [30]

22

The main steps to proof user’s identity are:

• Step 1: The customer opens a web browser, logs in on his MetaMask account

and then navigates to the Credibank web page. Then, the customer must fill the

credit purpose, the amount of money and the payment tranches. Each

identification process (KYC) has an operation unique identifier (OPID), and a

list of StoreiD providers which has a list of identity documents (IDT) associated.

The customer must choose which provider and document will be used on the

identification process.

• Step 2: Once selected the provider and the document, the WalliD smart contract

will be invoked asking the user’s dataID block. At that moment, MetaMask will

show a popup asking the user to validate the operation. Once accepted, the call

which invokes the smart contract contains a public session key (SDKEY). That

public session key is generated by the client in order to be used to encrypt the

verifyID block which is stored on StoreiD. This key will be used by StoreiD in

order to encrypt the verifyID block. Since the private key is stored on the user’s

side, only him will be able to decrypt it. This is used to protect the

communication between the user and the StoreiD.

• Step 3: Credibank back-end is listening for all events that require for a KYC

verification. In order to filter which events belong to it, the service that deals

with that task needs the user’s wallet address (WA), the IDT and OPID.

• Step 4: The smart contract then triggers an event in order to request a payment.

• Step 5: Credibank back-end receives the event and performs the payment which

is performed in WALs.

• Step 6: When the payment is received by the smart contract, it checks which

StoreiD provider customer was chosen and asks for its corresponding verifyID

block. In order to find the correct verifyID block, the StoreiD needs the WA and

the IDT. This dependency is related with the way how StoreiD stores data, where

each verifyID entry is indexed by these two parameters.

• Step 7: Smart contract collects the verifyID block plus the StoreiD wallet

address from StoreiD. These data were encrypted using SDKEY provided

previously.

23

• Step 8: Once the data is collected, the WalliD smart contract pays to the

StroreiD.

• Step 9: The smart contract then loads from the blockchain the identityID block

which is encrypted by MetaMask, ensuring that only the customer will be able

to decrypt it. This encryption process was performed during the onboarding

process.

• Step 10: WalliD smart contract emits the DataID event which contains the

identityID and the verifyID blocks.

• Step 11: The service provider web page will receive this event and ask the user

to decrypt that data using MetaMask. Once successfully decrypted, the web page

will send that information to a component that will validate the user’s identity.

3.6 Summary

As presented on the previous sections, WalliD aims to solve a lack of trust on the

online world bringing identities digital certified used on the physical world, such as the

Portuguese Citizenship Card. As illustrated on Figure 8, in order to accomplish this goal,

WalliD stores the users’ identities on their Ethereum wallet.

Since that document was issued by a trustful entity and contains a digital

certificate within, it should be possible to verify that identity on the online world through

it. The main goal of this work is to develop an architecture, and its implementation, for

Figure 8 - WalliD ecosystem

24

the component referred to on step 11, which is responsible to verify this identity on the

online world.

25

Chapter 4

Design and Implementation

During this work, several cryptographic techniques were used, such as signature

verification, certificate chain verification, among others. Since these techniques are

widely used, a research task was performed in order to find some open source libraries

that could be used. During that task, the author realized that several developers were using

a library called Bouncy Castle [38]. This library completely fulfills this project needs: it

is open source, it offers the features needed to develop this work and it has a nice

community which can provide pretty good support.

Then, after reading the documentation, the author realized that this library is

available for Java which is the language he is most familiar with. The output of this

implementation will result in a library in a Java Archive (JAR) format because it gives

the developers more flexibility than a web service. For example, if the output is a web

service, a developer will not be able to develop a socket-based solution.

This software was designed following a modular architecture in such a way that it

will be easy to add more KYCs, based on other kind of identities like the Spanish

citizenship card, the Portuguese mobile digital key [39] and so on. In order to do that, this

software was developed using an open source framework developed by Google called

Guice [40]. Guice helps developers to use Dependency Injection (DI) patterns in order to

make their code very modular.

Test-Driven Development (TDD) methodology was also used in this work in such

a way that the development is supported and validated by integration and unitary

automated tests. In order to do that, some Java libraries are used such as JUnit [41]. These

tests help a lot, especially during the deployment phase because it is possible to test any

feature automatically in any moment, as well as to ensure business continuity and

continuous integration.

26

4.1 Architecture

The designed architecture is represented on Figure 9. This and the following

sections will detail each of its components and flows.

First of all, the flow starts when the system receives the dataID block, which

arrives at a gateway. The dataID is a cleartext block of data, which was already decrypted

by the user through his MetaMask account. Then, the Portuguese CC Gateway is

responsible for dealing with user requests and responses; furthermore, it dispatches the

dataID block to three components named verifiers, which, as the name says, are

components that perform some verifications on the received data. The main ones are:

• Certificate Verifier: This module builds the certificate chain and verifies if the

certificate is revoked or expired.

• Wallet Address Verifier: The verifyID block contains a signature of the user’s

wallet address. This module verifies this signature in order to check if this wallet

really belongs to the user.

• SOD Verifier: This module verifies the authenticity of the user’s identity and

address attributes.

Figure 9 - Proposed KYC Architecture and Flows

At the beginning, the flow is dispatched from the gateway to the certificate verifier

component. At this phase, there are some validations performed, such as the certificate

27

validity and the certificate path chain. If everything goes without failures, the user’s

certificate is dispatched to the revocation gateway. This gateway is responsible to dispatch

the revocation verifier request. Since OCSP is getting updated more frequently than

CRLs, and the overhead is lower as well, the requests are dispatched first to the OCSP

verifier. If the OCSP request fails, or the response is invalid, the revocation gateway

dispatches the request to the CRL verifier. Before asking a new CRL remotely, the verifier

checks if that CRL is available locally cached and his validity. This procedure avoids

nonsense network communications since the local CRL is still valid.

The next verification to be done is the wallet address. First of all, this module

verifies if the wallet used has the correct address stored in the blockchain. Then, the next

step is to verify the wallet address signature which is executed by the ImportiD

component during the onboarding process.

Finally, the flow goes to the SOD verifier. The main goal of this component is to

validate the user’s identity and address attributes. This verification is performed through

a pair of hashes SHA256 which are stored in the SOD file. If this verification succeeds, a

secondary verification is performed, which is related with the X.509 certificate that is in

the SOD file. This certificate verification follows the same flow as the user’s certificate

which was presented previously.

If all these steps are performed with success, the user receives a positive feedback

from the KYC module.

The following sections will explain in detail how each of these modules work.

4.1.1 Portuguese CC Gateway

The gateway module is the core of this solution. It is responsible for receiving

users’ requests, dispatch them to its sub-modules, and return the reply to the user. The

flow chart illustrated on Figure 10 presents how this component processes users requests.

28

Figure 10 - Main Flow

29

First of all, the main module receives a dataID block which is in the JSON format.

Then, this block of data is parsed to generate a set of objects in order to make the data

manipulation easier. If these objects are created successfully, the next step is to verify the

certificate which is provided with the Portuguese citizenship card that is also stored in the

verifyID block.

If this verification succeeds, the next verification to be done is the wallet address.

This verification is mandatory because we need to ensure that the wallet really belongs to

the user. Since this verification is performed through the user’s certificate, this process

can only be executed after the certificate verification. The reason for this is related with

the way the wallet address is verified. During the onboarding process, the ImportID signs

the user’s wallet address using the private key stored in the Portuguese citizenship card.

Then, the signature and the wallet address are stored in the dataID block, and the

verification of the wallet address is executed by verifying this signature. Since this

signature is verified by the public key which is stored inside the Portuguese citizenship

card certificate, we must be sure that the certificate is already verified.

Finally, the last verification to be done is the SOD. This verification is optional

except for cases where all identity and address attributes are verified. If only a small set

of attributes such as name, birth date, the certificate verification already ensures this

verification. If that is the case, the flow can be stopped, and some resources and time

saved; otherwise, this module can be used to verify the remaining attributes.

4.1.2 Certificate Verifier

The certificate verifier is responsible for the X.509 certificate verification. The

role of this module is to verify whether a certain certificate is trustful or not. The flowchart

illustrated in Figure 11 shows how this verification is performed.

30

Figure 11 - Certificate Verification Flow

In order to achieve its goal, the certificate verifier uses two modules which are

responsible for the following tasks:

• Chain verification: This process aims to build a chain of trust in order to check

if the certificate is trustful or not;

• Revocation verification: There are some cases for which this verification must

fail even if the chain is built with success. For instance, if a citizen loses his

citizenship card, he will ask for another one. The governmental institution which

deals with this process will revoke the certificate which is in the old, lost card.

This process deals with this situation, basically verifying if the citizen certificate

is revoked or not.

31

4.1.3 Certificate Chain Check

The certificate chain check module is responsible for building a certification path

between the end entity and the certification authority. This procedure is explained on

Figure 12.

Figure 12 - Chain Verification Flow

32

The next items will explain how each of these verifications are performed:

• Validity verification: First of all, the process needs to ensure the certificate is

not expired. For instance, a certificate which has an expiration date of yesterday

must miss this verification at the next day. In order to do that, the process

compares today’s date with the one which is inside the certificate;

• Issuer search: All certificates have an issuer; even the self-signed certificate

has an issuer which is itself. At this phase, this process tries to find his issuer

certificate which will be used afterwards;

• Signature verification: Each produced certificate contains in itself a signature

which is produced by its issuer. This process consists on verifying this signature

using the issuer certificate previously found;

• Issuer verification: Finally, the last phase of this module is to verify if the issuer

is trustful or not; this means that the issuer must be a self-signed certificate where

this process ends. If not, the issuer must pass the same process as the current

certificate under verification.

4.1.4 Certificate Revocation Gateway

This module is responsible for verifying whether a certain certificate is revoked

or not. In order to do that there are two mechanisms that can be used, which are OCSP

and CRLs. In this case, priority is given to OCSP for several reasons. First of all, the

OCSP repository is updated more frequently than the CRLs one, providing more

accuracy. Furthermore, the OCSP is more efficient in a way that the response only

contains information regarding the requested certification; on the other hand, CRLs

contain information of several certificates, resulting in a higher overhead. However,

CRLs are still used on this work; if the OSCP service is not available, the certificate

revocation gateway redirects the request to the CRL verifier module.

Since this is a critical piece of software which deals with identity verification, in

cases where it is not possible to verify whether the user’s certificate is revoked or not

(because the system has no Internet connection to execute an OCSP nor a CRL), the

author chose to abort execution, informing the requester that it is not possible to verify

the requested identity. Figure 13 illustrates the flow of verification on this module.

33

Figure 13 - Certificate Revocation Flow

4.1.5 OCSP Verifier

This module is responsible for asking to a certain Certification Authority (CA) if

a certificate is revoked. In order to do that, there are several phases that must be

accomplished. The flowchart on Figure 14 illustrates how this process is handled.

34

35

Figure 14 - OCSP Verifier flow

First of all, the OCSP address to be contacted must be obtained from the

certificate. The process that involves the request creation has some particularities. For

each request, the following information is added:

• Certificate Identifier: This identifier is the serial number of the certificate to be

verified. The OCSP server will use this identifier to search for the certificate

revocation status;

• Issuer’s Name Hash: Is the hash of the issuer’s Distinguished Name (DN);

• Issuer’s Key Hash: Is the hash of the issuer’s public key;

• Hash Algorithm: The hash algorithm used to create both hashes.

• Nonce: A nonce is being created and added to the request. The nonce will

prevent replay attacks; in order to do that, the nonce binds the request to a

certain response. This action is defined as an extension to the OCSP standard.

36

Once the request is performed, the server will verify the target certificate and

return a response. In order to trust on the server response, some validations are

performed:

• Response validation: First of all, it is verified if the response is valid; if so, the

response status must have the successful state;

• Nonce verification: Then, the next verification to be performed is the nonce; as

mentioned before, the nonce is very important since it avoids replay attacks;

• Issuer verification: On this step it is verified if the issuer data sent on the request

is the same as the one received on the response;

• Certificate verification: In order to trust on the signature, the certificate must

be verified as trustful. In order to do that, the verifier tries to build and verify a

certification path; if that path is trustful, the certificate will be as well;

• Signature verification: The response is signed by the entity that takes the target

certificate verification. This signature is verified with the certificate public key

which is sent in the response;

• Revoke verification: There are three revocation status – good, revoked and

unknown. If the received status is different from good, the verification is aborted,

and an exception is emitted. In this case, the identity verification fails.

4.1.6 CRL Verifier

CRLs are only used when OCSP is not available. However, a new CRL is

requested only in two cases:

• There is no CRL locally cached. Every time a new CRL is downloaded, that file

is stored locally in order to be used as cache;

• In the case where the CRL is stored locally, it has to be checked for validity

before using it to verify the certificate revocation status. CRLs contain the date

of the next update to be performed; if the current date is ahead of the next update

date, the current CRL is deleted and a new one is requested.

The following items will describe how this verifier works step-by-step:

37

• Cache verification: First of all, before executing a request in order to download

the CRL, the download CRLs are cached locally. If the CRL is already stored

and is still updated, this verifier does not need to request it again;

• Download CRL: If the CRL is not stored locally, the verifier will fetch the URL

from the PTCC certificate and then it downloads it;

• Chain verification: Before keeping the CRL in cache and search for the

certificate status on it, the trustfulness of the certificate which signs the CRL

must be verified. This process is performed through a certificate verification as

was performed with OCSP certificate;

• Signature verification: Then, if the certificate is trustful, the CRL signature will

be verified with the certificate public key;

• Revoke verification: Once all these verifications are completed, the verifier

searches for the certificate serial number on the CRL.

This flow is illustrated on Figure 15.

38

Figure 15 - CRL verifier flow

4.1.7 Wallet Address Verifier

Each WalliD user owns a MetaMask wallet which has an address. In order to

verify if a certain wallet belongs to a user, the ImportiD signs with the PTCC private key

the user’s wallet address. This signature is placed in hexadecimal format in the verifyID

block that is stored in the StoreiD component. Then, this signature is verified through the

39

PTCC public key which is in the certificate that was verified by the certificate verifier

component. This flow is illustrated on Figure 16.

Figure 16 - Wallet Address Verifier

4.1.8 SOD Verifier

In order to make sure that the data stored in the PTCC is trustful, a file named

Security Data Object (SOD) is stored in the card containing digital signatures of identity

attributes, address, photo and the authentication public key. Each of this set of attributes

were hashed using SHA-256 algorithm and then signed through the SOD certificate

issuer. In order to trust these data, the next steps are followed:

40

• Certificate verification: First of all, as in the case of PTCC certificate, the SOD

certificate must be performed as well in order to trust it.

• Signature verification: The verification hashes were signed by the SOD issuer.

In order to trust them, this signature must be verified first.

From now on, the SOD file can be trusted. Since WalliD is only storing identity

and address attributes, only these two hashes need to be verified. The process to verify

them is very clear: for both cases, the attributes just need to be appended following a

specific order. Then, a SHA-256 hash is generated for each of them. Once the hashes are

generated, they are compared with the ones that are stored in SOD; if they are equal, then

the attributes are trustful. This process is illustrated on Figure 17.

41

Figure 17 - SOD verifier flow

4.2 Integration

In order to easily integrate this KYC solution, a Java REST web service was

conceived which receives the dataID block and processes it. The JAR file produced on

this work is included as a library on this web service. Then, KYC service will be available

through a POST with the route name verify. As a result, the web service will reply

with a JSON which carries the operation result, which is true if that dataID block was

verified successfully, and false if not. Furthermore, the response message will also

42

contain a message reason carrying error reasons that are identified during the dataID block

verification.

In order to verify users’ certificates which are within the Portuguese Citizenship

Card, this library requires to access issuers’ certificates. Since they are several, a good

way to centralize them all is to store them in a keystore. The path where this library is

placed is passed to this library through an environment variable. The needed environment

variables are:

• KEYSTORE_PATH: This variable defines the path where the keystore which

stores the issuers’ certificates is placed;

• KEYSTORE_PASSWORD: This variable is used to store the password used

to access the certificates stored in the keystore.

This KYC library has two operation modes: production and debugging. The

production mode is enabled by default; on this mode, the library does not print any logs.

On other hand, the debugging mode prints to the console and to a certain file. In order to

enable the debugging mode, these two environment variables must be defined.

• KYC_DEBUG: This variable is used to enable the debugging mode. By default,

the library assumes this variable as false; once turned to true, the library will start

printing logs to the console.

• KYC_DEBUG_FILE_PATH: This variable provides to the developer the

possibility to define a certain file path where the logs will be stored.

Then, in order to turn this solution easier to deploy, a docker image which contains

this web service was created. Docker [42] is an open platform for developers and system

administrators to build, ship, and run applications. These applications run in a docker

container which is a controlled environment such as a virtual machine. A container [43]

includes in itself all needed dependencies, system tools and libraries needed to run our

applications. Figure 18 illustrates the architecture of how Docker runs our containers on

the operation system.

43

Figure 18 - Docker containers [43]

Docker makes deployment easier to be performed since it just requires a Docker

image to be built, which will run in a Docker container. These images can be deployed

everywhere since the environment has Docker installed. A Docker image is a set of layers

which are built from Dockerfiles. A Dockerfile is a kind of recipe which contains lines of

code that are used to create an environment where our services will be deployed.

4.3 Class Diagram

Figure 19 and Figure 20 present the class diagram of the solution presented on this

work. Only Plain Old Java (POJO) and Guice classes were omitted in order to present

only the most important classes of the system.

The mechanisms behind each class were already described on the previous

sections.

44

Figure 19 - Class Diagram Part I

45

Figure 20 - Class Diagram Part II

46

47

Chapter 5

Evaluation

This chapter presents how the proposed KYC library reacts to a set of test cases.

In order to perform this explanation, let us take in consideration Credibank’s use-cases.

For the following scenarios, the dataID block will be omitted for privacy meanings, as

these tests were conducted using some real Portuguese Citizenship Cards.

The chapter is structured as follows: Section 5.1 describes how the Application

Programming Interface (API) for each test case; Section 5.2 presents some performance

tests performed through the API.

5.1 API

As mentioned before, the developed library receives as input a dataID block which

is processed and then returns a result. On this case, the web service that is using the library

provides the results in a JSON format. This JSON has only two keys:

• verificationSuccessful: This key will contain the true value if the user’s identity

was successfully verified. If any error occurs during this process, the returned

value will be false;

• reason: This key returns a string containing the cause of the failure during the

identity verification process.

Since Credibank is a credit institution that aims to provide loans to their

customers, it makes sense that they need to validate the customer’s identity. The first test

case to be presented is a positive scenario; this means that the user’s identity is verified

successfully, without any errors. Figure 21 presents the related response.

48

{

 "verificationSuccessful": true,

 "reason": null

}

Figure 21 - Positive Response

Figure 22 presents a response of an identity which has the certificate revoked. This

could happen for example if a citizen loses his Portuguese Citizenship Card and asks for

a new one.

{

 "verificationSuccessful": false,

 "reason": "Certificate status is not good"

}

Figure 22 - Revoked Certificate Response

Figure 23 illustrates a response of an identity which contains an expired

certificate. This scenario can occur if a certain Portuguese Citizenship Card gets expired.

{

 "verificationSuccessful": false,

 "reason": "NotAfter: Tue Feb 27 00:00:00 UTC 2018"

}

Figure 23 - Expired Certificate

Figure 24 presents a scenario where the wallet address and its signature do not

match.

49

{

 "verificationSuccessful": false,

 "reason": "Wallet Address signature verification

failed."

}

Figure 24 - Wallet Signature verification failed

The response presented on Figure 25 represents a scenario where there is an error

during the user’s identity attributes verification process. This message will be triggered

for example if a user tries to forge his own identity attributes, like changing his name.

{

 "verificationSuccessful": false,

 "reason": "Identity verification failed."

}

Figure 25 - Identity attributes verification failed

A scenario where a user that tries to forge his address attributes, such as street

name, zip code, the software will detect that inconsistency and will return the response

illustrated on Figure 26.

{

 "verificationSuccessful": false,

 "reason": "Address verification failed."

}

Figure 26 - Address attributes verification failed

50

As presented on this section, the API seems to be very concise and clear on its

outputs. For each failure case, seems to be pretty clear and concise what each of these

reasons are meant to transmit.

5.2 Performance Tests

In order to present how this library reacts in load scenarios, some tests were

performed to simulate this kind of situations.

The following tests were performed five times each, the values presented are an

average of the collected values. These results can suffer changes depending of the

hardware, Internet connection and the current load of the remote servers. The hardware

used on these tests are depicted on Figure 27.

Figure 27 - Hardware used during the performance tests

The generated loads were performed by PC 3 under three scenarios which are: 20

threads where each of them will produce 100 requests, 80 threads where each of them

produced 100 requests and so on. The following requests where produced through three

different Portuguese Citizenship Cards. The usage of these documents was completely

random. The chart presented on Figure 28 presents how the produced library reacts on

PC 1 to a certain load.

51

Figure 28 - System performance with PC 1

The first impression analyzing this chart is that CRL provides a better performance

than OCSP. When a CRL is downloaded, the provider adds a tag saying until when that

CRL will take the next update, in that case, the library is keeping that CRL for future

requests, that is how the cache mechanism is implemented. The library could do the same

for OCSP, in other words, the library could store the serial number and attach to it the last

result retrieved. But this solution has a problem, the OCSP is updated much more

frequently than the CRL. This CRLs are being updated one time per week, on the other

hand, OCSP responses have no information of when the next update will take place. In

that case, it is risky to cache this kind of data. In order to show that the cache mechanism

is doing its job, take in consideration the chart presented on Figure 29.

42

145
164

15

46
62

0

20

40

60

80

100

120

140

160

180

20*100 80*100 100*100

S
ec

o
n
d

s

Requests

OCSP & CRL (cache)

OCSP CRL (Cache)*Less is better

52

Figure 29 – System performance with PC 1 without cache

As illustrated on the previous chart, without cache the performance of CRL is far

worse than OCSP. This occurs because CRLs do not contain only the requested certificate

revocation information, but a whole range of them. In that case, the time required to

download and search increases, which will result in a worse performance. Finally, but not

less important, the chart illustrated on Figure 30 presents how the performance is scaling

when the number of computers increase.

Figure 30 – System performance with PCs 1 and 2

For the OCSP point of view, the performance has been kept. No reason was found

for this fact, maybe there is a kind of limitation on the OCSP service, since there are two

instances dispatching the same kind of requests, the time spent to process the same request

42
145 164

298

1197

1494

0

200

400

600

800

1000

1200

1400

1600

20*100 80*100 100*100

S
ec

o
n
d

s

Requests

OCSP & CRL (no cache)

OCSP CRL (no cache)*Less is better

41

139

163

7
28 32

0

20

40

60

80

100

120

140

160

180

20*100 80*100 100*100

S
ec

o
n
d

s

Requests

OCSP & CRL (cache)

OCSP CRL (Cache)*Less is better

53

should decrease. On the other hand, it is possible to observe that behavior on CRL. Since

the library is using a local cache, if the number of instances increase, the time spent to

process those requests will decrease as well.

5.3 Summary

Using the referred examples and use-cases, it is possible to infer that the proposed

solution, as an example of an application of blockchain, allows securing sensitive data in

a safe and cyphered manner, whether directly on the blockchain or in a separate server

which can be accessed with hash keys being stored in the blockchain. This verifies

hypothesis HYP1. The blockchain in itself does not mandate that there will be solely one

instance of the identification documents, as this is more about the policies regarding

storage of data. What can be said is that the blockchain does provide a mechanism that

allows a user to give a public key and address that allows multiple entities to access that

information, while registering each access request, which is sufficient to verify hypothesis

HYP2. The digital certificate within the SOD file aims to verify users’ identity attributes,

such as name, surname, address and so on. This approach is far better than ink on a piece

of paper which needs to be verified by a notary, that even could take some risks.

Furthermore, there is no need for a third party to verify a certain identity – this seems

sufficient to verify hypothesis HYP3. Finally, but not less important, this work proves

that it is possible to develop automatic KYC mechanisms, which could be used to tackle

human errors, waste of money and speed up the legacy KYC mechanisms. This seems

sufficient to verify the hypothesis HYP4.

Additionally, as presented on the previous section, it is possible as well to give

some feedback related with a possible failure during the identity verification process,

which could be useful too. Furthermore, it is possible to provide this feature as a service,

which in that case, will allow companies to remove third parties from identity verification

processes. There are more advantages on this kind of services: the minimization of human

error during these processes, the speed up of these and the cost of these processes can be

very appreciated for some entities that aim to use this kind of services.

54

55

Chapter 6

Conclusions & Future Work

Nowadays, performing a proof of identity in the online world is a complex issue.

The current solutions do not provide the same trust as we have in the physical world. For

instance, the CIVIC project assumes that the user is not acting in misbehavior, in other

words, it trusts that the user will really insert his identity attributes. Some KYC solutions

are human based, which may cause errors and slow down these processes.

WalliD uses trust on the entities which issue our identity cards on the real world.

Those identity attributes can be validated anytime through its digital certificate, and this

brings the confidence that other solutions do not ensure. Furthermore, WalliD also

provides a way to any entity to build their own KYC system – this work will prove that

these processes can be performed in a fast and secure way.

As described in the previous chapter, WalliD is an example of an application that

can satisfy the research questions proposed in this work.

Nevertheless, WalliD does have a critical issue that is related with a statement of

General Data Protection Regulation (GDPR) which is “the right to be forgotten”. In the

case the data is stored in the blockchain, although ciphered, there is no way to remove it.

WalliD also assumes that the user’s identity contains a digital certificate to verify the

user’s identity attributes. Similarly, KYC process also does this assumption.

Future work in this area includes integrating more KYC services in this library

which will help WalliD to grow up, such as Spanish citizenship card which uses X.509

certificates as well. The Portuguese government already announced the digital driver’s

license, and this could be very interesting for WalliD. It could be possible to develop

KYC services which may help insurance companies or rent-a-car companies to identify

and verify their users’ identities automatically.

Publishing this library on the Maven Central Repository [44] would be a

significant improvement. Maven Central Repository is a place where the developers can

publish their libraries. Once they are published, any developer can use it freely under the

software license attached to that software. In this way, any developer will be able to

56

import this library as a Maven dependency, which turns the process of dependency

management easier to perform.

As soon as the integration with Docusign finishes, the produced library will be

released for the open source community. It is a goal as well that this library can get some

improvements provided by the community, or even be audited by anyone that aims to use

it as well.

In addition to this research work, the author also performed a quite extent set of

contributions to the scientific community, such as:

The participation in numerous research projects, namely:

• H2020 vf-OS (Virtual Factory Operating System)

o http://vf-os.eu

o Consortium of Caixa Mágica Software with ICE (L), Ascora, Almende,

Uninova, UPV, IKERLAN, Mondragón Assembly, Univ. Lyon 2, Via

Solis, Consulgal, Knowledgebiz, APR and Tardy;

o Funding: H2020-FoF-11-2016 – Digital Automation;

o Project Nr. 723710 – Budget ≈ 8 M€;

o Project duration: 2016-10-01 to 2019-09-30;

o vf-OS aims to develop an Open Operating System for Virtual Factories,

composed by a Virtual Factory System Kernel, a Virtual Factory

Application Programming Interface and a Virtual Factory Middleware

specifically designed for the factory of the future. An Open Applications

Development Kit will be provided to software developers for deploying

Manufacturing Smart Applications for industrial users, using the

Manufacturing Applications Store at the Virtual Factory Platform. The

Virtual Factory Platform will provide a range of services to the connected

factory of the future to integrate better manufacturing and logistics

processes;

o Responsibilities: Main developer for partner Caixa Mágica Software,

which participates in all the phases of the development, mainly the vf-OS

Open Development SDK, Studio and Development Engagement Hub.

http://vf-os.eu/

57

• H2020 UMOBILE

o http://www.umobile-project.eu/

o Consortium of Athena RC, UCL, UCAM, COPElabs, Tecnalia, Tekever,

Senception, FON and AFA Systems;

o Funding: H2020-ICT-05-2014 – Smart Networks and novel Internet

Architectures;

o Project Nr. 645124 – Budget ≈ 3 M€;

o Project duration: 2015-02-01 to 2018-04-30;

o UMOBILE aims to develop a communication system for emergency

situations, such as fire, earthquake and so on. In order to do that, a

universal mobile-centric and opportunistic communications architecture

was developed, integrating the principles of delay tolerant networks. Then,

the people which were facing disaster scenarios could use their

smartphones to generate messages, such as, indicating that a certain road

is destroyed or doomed by fire. Those messages were transferred through

Wi-Fi Direct device to device, that could be smartphones nearby or drones

that were used to carry those messages far away;

o Responsibilities: Main developer for partner COPElabs, developing an

Android service which deals with the messaging exchange generated by

smartphones. This service implements a routing algorithm developed

during the project, which aims to choose the best next hop to transfer a

certain message.

The elaboration and writing of papers published in the proceedings of

International Conferences:

• M. Tavares, F. Veiga, A. Guerreiro, A. Campos, C. Coutinho, “WalliD: Secure

your ID in an Ethereum Wallet”, in Proceedings of the 9th IEEE-TEMS

international Conference on Intelligent Systems, Madeira, Portugal, 2018;

• M. Tavares, O. Aponte, P. Mendes, "Named-data Emergency Network

Services", in ACM Mobisys 16th Annual International Conference on Mobile

Systems, Applications, and Services, Munich, Germany, 2018.

http://www.umobile-project.eu/

58

Additionally, a paper was submitted to a special issue on “Instrumentation and

Measurement context: From a methodological point of view” of the IEEE Instrumentation

and Measurement Magazine2, waiting for approval.

2 https://ieeexplore.ieee.org/xpl/aboutJournal.jsp?punumber=5289

59

Glossary

AI Artificial Intelligence

API Application Programming Interface

CRLs Certificate Revocation Lists

CA Certification Authority

CMS Cryptographic Message Syntax

DI Dependency Injection

DER Distinguished Encoding Rules

DN Distinguished Name

EE End Entity

GDPR General Data Protection Regulation

IDT Identity Type

KYC Know Your Customer

JAR Java Archive

MAC Message Authentication Code

OCL Object Constraint Language

OCSP Online Certificate Status Protocol

OPID Operation Unique Identifier

PAN Permanent Account Number

PC Personal Computer

PBFT Practical Byzantine Fault Tolerance

PEM Privacy-enhanced Electronic Mail

PoI Proof of Identity

PoW Proof of Work

POJO Plain Old Java Object

PKIX Public Key Infrastructure for X.509

PTCC Portuguese Citizenship Card

RA Registration Authority

SDKEY StoreiD Session Public Key

TDD Test-Driven Development

UML Unified Modelling Language

60

WA Wallet Address

61

Bibliography

[1] "WalliD", [Online]. Available: https://wallid.io [Accessed 18-11-2018].

[2] "Recommendation X.509", ITU - International Telecommunication Union,

[Online]. Available: http://www.itu.int/rec/T-REC-X.509. [Accessed 10-01-

2018].

[3] R. Mui, "Know Your Customer compliance costs continue to grow at

financial firms: surveys", 27-10-2018. [Online]. Available:

https://www.businesstimes.com.sg/banking-finance/know-yourcustomer-

compliance-costs-continue-to-grow-at-financial-firmssurveys. [Accessed

10- 01-2018].

[4] "Credibank", WalliD, [Online]. Available: http://credibank.herokuapp.com.

[Accessed 18-11-2018].

[5] M. Tavares, F. Veiga, A. Guerreiro, A. Campos, C. Coutinho, “WalliD:

Secure your ID in an Ethereum Wallet”, in Proceedings of the 9th IEEE-

TEMS international Conference on Intelligent Systems, Madeira, Portugal,

2018.

[6] “Docusign”, [Online]. Available: https://www.docusign.com. [Accessed 10-

04-2019].

[7] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System", 2009.

[8] M. Castro, B. Liskov, “Practical Byzantine Fault Tolerance”, in Proceedings

of the Third Symposium on Operating Systems Design and Implementation,

New Orleans, USA, February 1999.

[9] "Ethereum", [Online]. Available: https://www.ethereum.org. [Accessed 18-

11-2018].

[10] “Ethereum White Paper”, [Online]. Available:

https://github.com/ethereum/wiki/wiki/White-Paper. [Accessed 12-02-

2019].

62

[11] H. Syahputra, H. Weigand, "The Development of Smart Contracts for

Heterogeneous Blockchains", in Interoperability for Enterprises Systems and

Applications (I-ESA 2018), Berlin, Germany, 2018.

[12] "Civic Secure Identity Ecosystem", [Online]. Available:

https://www.civic.com. [Accessed 24-04-2018].

[13] "uPort: Open Identity System for the Decentralized Web", [Online].

Available: https://www.uport.me. [Accessed 04-05-2018].

[14] "Persona: Digital Identity Management System on Blockchain", [Online].

Available: https://persona.im. [Accessed 20-03-2018].

[15] D. Duccini, "IDCoins: A Web of Trust Blockchain for Identity and

Reputation", 2014 [Online]. Available: https://github.com/IDCoin/IDCoin.

[Accessed 21-06-2019].

[16] "Selfkey: Your key to Freedom", [Online]. Available: https://selfkey.org.

[Accessed 26-04-2018].

[17] "TheKey: Decentralized Ecosystem of an Identity Verification Tool",

[Online]. Available: https://www.thekey.vip. [Accessed 04-05-2018].

[18] "REMME Portal", [Online]. Available: https://remme.io. [Accessed 27-06-

2018].

[19] "Guardtime Portal", [Online]. Available: https://guardtime.com. [Accessed

07-07-2018].

[20] "Bitnation Portal", [Online]. Available: https://bitnation.co. [Accessed 20-

07-2018].

[21] “Jumio”, [Online]. Available: https://www.jumio.com/. [Accessed 02-01-

2019].

[22] “Shufti Pro”, [Online]. Available: https://shuftipro.com/. [Accessed 02-01-

2019].

[23] P. Mondal, R. Deb, M. Huda, “Know Your Customer (KYC) based

authentication method for financial services through the internet”, in

Proceeding of the 19th International Conference on Computer and

Information Technology, North South University, Dhaka -1229, Bangladesh,

2016.

63

[24] A. Soni, R. Duggal, “Reducing Risk in KYC (Know Your Customer) for

large Indian banks using Big Data Analytics”, International Journal of

Computer Applications, vol. 97, pp. 49-53, 2014.

[25] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk,

"Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile RFC 5280", Internet Engineering Task Force

(IETF), 2008.

[26] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams,

"X.509 Internet Public Key Infrastructure RFC6960", Internet Engineering

Task Force (IETF), 2013.

[27] R. Housley, “Cryptographic Message Syntax (CMS) 5652”, Internet

Engineering Task Force (IETF), 2009.

[28] B. Kaliski, “PKCS #7: Cryptographic Message Syntax Version 1.5”, Internet

Engineering Task Force (IETF), 1998.

[29] E. Moriarty. et al., “PKCS #12: Personal Information Exchange Syntax

v1.1”, Internet Engineering Task Force (IETF), 2014.

[30] "WalliD White Paper", [Online]. Available: https://wallid.io/docs/one-pager-

v4.pdf. [Accessed 18-11-2018].

[31] "WalliD GitHub", [Online]. Available: https://github.com/walliDprotocol.

[Accessed 18-11-2018].

[32] "Metamask", [Online]. Available: https://metamask.io. [Accessed 18-11-

2018].

[33] "ImportiD GitHub", WalliD, [Online]. Available:

https://github.com/walliDprotocol/wallid-ImportID. [Accessed 18-11-2018].

[34] "Manual técnico do Middleware Cartão de Cidadão", 2016, p. 24.

[35] "StoreiD", WalliD, [Online]. Available:

https://github.com/walliDprotocol/wallid-StoreID. [Accessed 18-11-2018].

[36] “MyEtheriD”, WalliD, [Online]. Available: https://myetherid.io. [Accessed

18-11-2018].

64

[37] "MyEtheriD GitHub", WalliD, [Online]. Available:

https://github.com/walliDprotocol/wallid-MyEtherID. [Accessed 18-11-

2018].

[38] "Bouncy Castle", [Online]. Available: https://www.bouncycastle.org.

[Accessed 18-11-2018].

[39] "Chave Movel Digital", [Online]. Available:

https://www.autenticacao.gov.pt/a-chave-movel-digital. [Accessed 18-11-

2018].

[40] "Guice", Google, [Online]. Available: https://github.com/google/guice.

[Accessed 10-04-2019].

[41] “JUnit”, [Online]. Available: https://junit.org/junit5. [Accessed 18-11-2018].

[42] “Docker”, Docker, [Online]. Available: https://www.docker.com. [Accessed

03-04-2019].

[43] “Docker Containers”, Docker, [Online]. Available:

https://www.docker.com/resources/what-container. [Accessed 03-04-2019].

[44] “Maven Central Repository”, Apache Maven Project, [Online]. Available:

https://maven.apache.org/repository/. [Accessed 15-05-2019].

