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Abstract 
__________________________________________________________________________________ 

 

The latest developments in PET technology have allowed for its integration with MR scanners as 

a superior alternative to PET/CT imaging, especially useful in instances such as detection of low-grade 

tumours and prostate cancer resurgence. However, the magnetic field inherent to the MR introduces 

some challenges and uncertainty regarding the scanners’ performance. Furthermore, novel 

radiopharmaceuticals that feature a wide range of radioisotopes with different properties have been 

introduced in the market and are being used more and more in clinical contexts. Thus, it is relevant to 

study how PET/MR systems perform when using such radioisotopes, and the impact the magnetic field 

has on the performance, as a way to better understand these scanners and optimize clinical practices. 

Recently, total-body PET scanners that entirely cover the patients, or large portions of the body, have 

also been introduced. 

In this dissertation, NEMA sensitivity and count rate statistics tests are performed on a realistic 

model of the GE Signa PET/MR scanner through GATE Monte Carlo simulations, using the prescribed 
18F, as well as using other radioisotopes such as  11C, 13N, 15O, 68Ga and 82Rb, which feature positron 

energies from 633 keV do 3.3 MeV. The same studies are performed on a conceptual 1.04 m long PET 

scanner to study the potential performance of such a scanner. Also, a study of the positron range of the 

same radioisotopes in tissues of varying density was done in order to estimate the impact of the magnetic 

field. On the GE Signa PET/MR, the sensitivity test results are in line with published values and show 

a clear dependence on the positron branching ratio, with the pure β+ emitters having the highest 

sensitivity values, 21.50 cps/kBq for 13N in the presence of a 3 T MR field. The magnetic field increases 

sensitivity up to 5% for the higher energy radioisotopes, due to constraints on positron range preventing 

positron from escaping the phantom tube. The move to TB-PET shows a tremendous increase of up to 

7 times the sensitivity, peaking at 177.87 cps/kBq for 13N. Regarding the NECR test, the simulation 

results on the GE Signa PET/MR are confirmed by the published values regarding 18F, with the other 

pure β+ emitters showing comparable peak NECR values. However, 68Ga and 82Rb have much lower 

peak NECR values, due to the 3.0% and 14.2% additional prompt-gamma emission, which contaminate 

the acquisition and contribute to detector busyness, effectively lowering NECR. 

Studies on positron range show strong dependence on the tissue density. The 3 T magnetic field 

introduces significant constraints on positron range in the transversal plane which can mean up to 4 

times smaller range in the x and y directions when compared with the z direction, the direction of the 

MR field, which shows differences only in terms of density distribution but not absolute values. 

The results obtained in this dissertation point out the need to re-evaluate the different image 

reconstruction algorithms for PET/MR imaging, given the discrepancies between the transversal and 

axial ranges under a magnetic field, as well as the adaptation of the NEMA performance measurements 

protocols for scanners with long axial fields of view, and, to some extent, to be performed with different 

radioisotopes. However, there are some limitations to the conclusions drawn from the work presented, 

such as the fact that the method used to estimate NECR and the related measures can underestimate 

them due to uncertainty regarding dead time set-up. 

The work developed in this thesis and the achieved outcomes have real world applications in more 

than one area. Learning how scanners perform under difference circumstances, i.e. using different 
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radioisotopes, can help clinics better prepare their schedules according to predicted scanning times, 

optimize activity quantities injected into patients, and overall improve the patient throughput. 

Furthermore, possible applications in reconstruction algorithms that may improve the quality of the 

produced imaged and help to diagnose and/or better identify multiple diseases, leading to general 

improvements in public health through screening programs and early diagnosis. 

Keywords: PET/MR; total-body PET; NEMA performance; sensitivity; NECR; positron range; 

Monte Carlo simulations; GATE 
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Resumo 
__________________________________________________________________________________ 

 

Tomografia por emissão de positrões (PET, na sigla em inglês) é uma técnica de imagem de 

medicina nuclear que tem por base a emissão de positrões e a sua consequente aniquilação com as suas 

anti-partículas, electrões. Ao acoplar radioisótopos emissores de positrões a moléculas orgânicas, é 

possível seguir e quantificar diversos processos metabólicos que ocorrem no corpo, fazendo da PET 

uma técnica de imagem funcional. Sendo uma técnica de imagem funcional, com informação anatómica 

quase inexistente, a PET é frequentemente aliada a outras técnicas que ofereçam essa informação. Desde 

o aparecimento de scanners integrados PET/CT no início do século, estes sistemas tornaram-se 

extremamente populares. No entanto, sistemas integrados PET/MR surgiram no mercado nos últimos 

anos e têm vindo a ganhar popularidade devido às suas vantagens sobre PET/CT, tais como um contraste 

entre tecidos moles bastante superior e a eliminação da dose de radiação inerente à CT. 

A presença do campo magnético proveniente da MR introduz alguns desafios na porção PET dos 

sistemas integrados, nomeadamente no impacto do campo no comportamento dos radioisótopos, 

alterando a trajetória dos positrões emitidos para uma trajetória em hélice como resultado da força de 

Lorentz. Além disso, os testes NEMA de caracterização do desempenho de scanners PET/MR são 

apenas realizados com 18F. Dados os avanços em radiofarmacêutica, torna-se relevante e importante o 

estudo do desempenho destes scanners quando utilizados diferentes radioisótopos, nomeadamente a 

realização de testes NEMA.  

Com o objetivo de estudar e quantificar tanto o efeito do campo magnético no alcance dos 

positrões e na performance de scanners integrados PET/MR, como as diferenças na utilização de 

diferentes radioisótopos, foi construído um modelo realista do scanner GE Signa no qual podem ser 

realizadas simulações Monte Carlo dos testes NEMA de sensibilidade e NECR usando o toolkit GATE. 

Foram ainda desenvolvidos os scripts analíticos em Python, ROOT e MATLAB para análise dos 

resultados dos diferentes testes. A validação das simulações foi feita através da comparação com valores 

publicados, medidos experimentalmente num scanner GE Signa. Os mesmos testes foram aplicados a 

um sistema PET de corpo inteiro, com extensão axial de 104 cm, de modo a estudar o potencial 

desempenho de um sistema com estas características. Além disso, foi ainda estudado o efeito do campo 

magnético no alcance dos positrões em diferentes tecidos. 

O teste de sensibilidade mede a capacidade de um scanner em registar coincidências, sendo 

medida em contagens por segundo para um determinado nível de atividade (cps/kBq). A simulação deste 

teste requer a construção do seu respetivo fantoma, que envolve 5 camadas cilíndricas de alumínio com 

espessura constante, bem como a análise de dados prescrita pela NEMA. Para as simulações realizadas 

no GE Signa PET/MR sem campo magnético, no caso dos emissores β+ puros 11C, 13N e 15O, os 

resultados obtidos foram de 20.53, 20.65 e 20.31 cps/kBq, respetivamente, sendo comparáveis com o 

de 18F, 20.75 cps/kBq. 68Ga oferece também resultados semelhantes aos teóricos, 18.10 cps/kBq. Todos 

estes resultados estão de acordo com o esperado, dado que a fração de emissão de positrões é o fator 

mais significativo da sensibilidade. Quanto ao 82Rb, os valores obtidos são significativamente mais 

baixos que os previstos. Esta diferença pode ser explicada pela alta energia e longo alcance dos positrões 

provenientes deste decaimento, que têm alta probabilidade de não perderem a sua energia na primeira 

camada de alumínio, influenciando negativamente a análise de resultados, subestimando o valor real de 

sensibilidade. Aquando da aplicação do campo magnético de 3 T, as diferenças registadas em relação 
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aos valores medidos e publicados são mínimas, e os valores simulados são até 5% maiores do que sem 

a presença do campo magnético, sendo que esta diferença aumenta à medida que aumenta a energia dos 

positrões. As mesmas conclusões são retiradas das simulações realizadas com o TB-PET. No entanto, 

os valores neste são significativamente mais elevados, sendo entre 5 a 7 vezes maiores do que os 

resultados obtidos no GE Signa, chegando a um máximo de 174.27 cps/kBq, já que, no TB-PET, a fonte 

é completamente coberta pelo scanner enquanto que apenas certa de 1/3 da fonte é coberta pelo GE 

Signa, deixando grande parte da atividade fora do scanner. 

O teste de NECR e estatísticas de contagem tem o objetivo de medir fontes altamente energéticas 

e reconhecer radiação dispersa, tal como radiação gama adicional. NECR é uma medida que está 

localmente relacionada com SNR, com a dose de atividade que é necessário administrar aos pacientes 

para obter imagens, e ainda com a duração dos exames. Usando o fantoma de dispersão (scatter 

phantom), e analisando os dados através de sinogramas, é possível obter três taxas de contagem: 

coincidências verdadeiras, dispersas e aleatórias, através das quais se calcula o valor do pico de NECR 

e o nível de atividade a que este ocorre. No GE Signa PET/MR, em a presença do campo magnético, os 

isótopos 11C, 13N e 15O demonstram resultados de pico de NECR de 206.77, 201.72 e 196.08 kcps, 

próximos do valor obtido para 18F, 209.32 kcps, como seria de esperar tendo em conta as semelhanças 

das propriedades de decaimento. No 68Ga e 82Rb, estes valores são significativamente mais baixos, 

185.70 e 136.93 kcps, respetivamente, sendo notável a clara influência dos fotões gama imediatos nos 

dois isótopos, com maior expressão no 82Rb. O registo destes fotões contribui significativamente não só 

para o aumento do número de coincidências aleatórias registadas, como também para os efeitos do tempo 

morto do detetor, que leva a uma deterioração da capacidade do detetor de registar os fotões provenientes 

da aniquilação dos positrões e, consequentemente, registo de coincidências verdadeiras. Os resultados 

do mesmo teste aplicando um campo de magnético de 3 T, o pico de NECR para todos os isótopos teve 

um aumento até 8%, mais significativo para os isótopos que emitem positrões com mais alta energia, 

sendo que no caso do 82Rb, este pico chegou aos 173.50 kcps. Relativamente ao TB-PET, os aumentos 

de pico de NECR registaram-se na ordem das 7 a 8 vezes maiores que os valores obtidos no GE Signa. 

Neste scanner com 104 cm de comprimento, o pico de NECR chega aos 1624.54 kcps aquando da 

aplicação do campo magnético, efetuando o teste com 18F. Ainda seguindo a tendência registada 

anteriormente, 68Ga e 82Rb apresentam resultados muito inferiores aos emissores β+ puros. Neste scanner, 

é notável ainda uma maior discrepância entre os diferentes isótopos. 

O facto de as diferenças entre a aplicação ou não do campo magnético serem da mesma magnitude 

nos dois scanners pode sugerir que os efeitos são específicos aos protocolos NEMA e ao teste aplicado, 

e não se traduzem necessariamente para o contexto clínico e aquisições com pacientes. No entanto, 

estabelece-se uma relação com os constrangimentos impostos ao alcance dos positrões em ambos os 

testes. Por um lado, os constrangimentos ao alcance dos positrões no plano transversal à direção do 

campo magnético são notáveis pelo aumento do número de coincidências registadas nos primeiros 

cilindros de atenuação de alumínio, efetivamente aumentando o valor final calculado para a 

sensibilidade, particularmente para isótopos de alta energia. Por outro, os mesmos constrangimentos 

causam um aumento do número de coincidências detetadas próximas da fonte de radioatividade, o que, 

no processo de análise de dados, contribui significativamente para o aumento do número de 

coincidências verdadeiras e, consequentemente, NECR. 

O estudo do alcance dos positrões dos diferentes isótopos revela uma redução significativa do 

alcance tridimensional aquando da aplicação do campo magnético. Esta redução é sentida apenas no 

plano transversal (direções x e y), sendo que o alcance axial (direção z) se mantém em termos de valores 

absolutos. A distribuição de densidade dos pontos de aniquilação, ou do alcance axial, no entanto, 

apresenta-se alongada, devido aos constrangimentos no plano transversal. Além disso, é ainda notável 

uma forte dependência destes efeitos tanto na energia dos positrões como na densidade do tecido, sendo 
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que o alcance transversal pode ser até 4 vezes menor que o axial para altas energias, em tecidos pouco 

densos. 

Assim, conclui-se que o uso de diferentes isótopos tem um impacto significativo na performance 

de sistemas integrados PET/MR, com o campo magnético inerente à RM introduzindo diferenças no 

comportamento dos isótopos, especificamente constrangimentos no alcance dos positrões no plano 

transversal. Além de otimização de planos de aquisição de imagens em contexto clínico, os resultados 

obtidos nesta dissertação podem ser futuramente aplicados em software de reconstrução de imagem, 

tendo em conta as limitações referidas. 

 

Palavras-chave: PET/MR; GE Signa; testes NEMA; sensibilidade; NECR; alcance dos positrões; 

simulações Monte Carlo; GATE 
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1 Introduction 
__________________________________________________________________________________ 

 

Over the last century, scientific research has paved the way to the invention and application 

in medicine of Positron Emission Tomography (PET). Since Dirac’s prediction of the positron back in 

1929, [1] developments in quantum physics, electronics and biochemistry [2] led the group of Michael 

Phelps and Michel Ter-Pogossian to build the first prototype of a PET system, called Positron Emission 

Transaxial Tomograph (PETT), [3] based on Kuhl and Edwards’ concept of image reconstruction of 

source distributions. [4] With the introduction of radiopharmaceuticals in the 1970s, particularly the 

development of 18F-fluorodeoxyglucose (FDG), [5], [6] the technology claimed the attention of the 

medical community, which allowed for the study of specific metabolic pathways, making PET a 

functional imaging technique using widely in clinical routine. 

Since those days, PET systems have seen an incremental upgrade in their performance and 

designs, as well as the development of better, more sophisticated models of image reconstruction, among 

other improvements. Radiopharmaceuticals have also been intensively studied, there being dozens of 

commercially available variations nowadays. Although it has many applications, this technology is 

mainly used in cancer diagnosis and staging, as the abnormal cellular growth and intense metabolic 

needs lead to high uptakes of glucose – which is easily labeled with radioisotopes. 

In the last two decades, efforts in advancing the PET technology further have been focused on 

combining this functional technique with other anatomical techniques, such as computed tomography 

(CT) and magnetic resonance imaging (MRI). PET/CT was introduced in the late 1990s and has since 

become extremely popular amongst the medical community. [7] There are many advantages to 

combining PET scanners with MRI instead of CT. For instance, MRI offers a superior soft tissue contrast 

when compared to CT, as well a broader range of sequences specific to different body structures, which 

can have a big impact on diagnosis. Furthermore, radiation dose received by the patient is significantly 

reduced due to the elimination of the CT, and there is an improvement of PET image quality (resolution, 

contrast) in the transaxial direction when the exam is performed under strong static magnetic fields, due 

to the constraint to the positron range. [8] Since the proposal of this effect, in 1986, several studies have 

been carried out in order to find out how the magnetic field impacts positron range on multiple 

radiotracers, both experiments and computer simulations. [9]–[16] Despite the advantages, there were 

many challenges to the integration of MRI with PET systems, such as the PET detector technology, and 

PET/CT remains the standard for clinical practice, while PET/MR is more commonly used for research. 

Also, unlike the CT, the MR doesn’t provide attenuation coefficients that are fundamental for 

radiotherapy planning. 

Recently, the development of PET scanners took a new turn with the appearance the EXPLORER 

PET, a PET scanner with an axial field of view (AFOV) of 2 meters. [17], [18] This state-of-the-art 

scanner comes as a solution to the vast amounts of information left out of conventional scanners, which 

have AFOVs of only 20 to 25cm. 

Through Monte Carlo simulations, this dissertation aims to study how the magnetic field inherent 

to MRI impacts positron range of a wide variety of commercially available radioisotopes, the changes 

in performance of the PET portion of hybrid PET/MR scanners, and, finally, study and estimate 

performance of a conceptual total-body PET/MR system, based on the total-body PET system currently 
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being developed at MEDISIP research group, which aims to be the European version of the 

EXPLORER.  

In Chapter 2 of this dissertation, an overview of PET and MR imaging principles are presented, 

divided into three sections. The advantages, disadvantages and challenges of PET/MR imaging and fully 

integrated systems are also discussed. In Chapter 3, the NEMA protocols for evaluation of PET/MR 

systems’ performance are described. Chapter 4 comprises an introduction of Monte Carlo simulations 

and GATE, the software used in this dissertation to perform all the simulations needed. In Chapter 5, 

the methods for building scanner geometries, test set-up and data analysis are described. In Chapter 6, 

the results obtained from all the simulations are presented, and in Chapter 7 they are analyzed and 

discussed, and limitations of the work are mentioned. In Chapter 8, the overall conclusions of this 

dissertation are presented, and future work is discussed. Finally, in Chapter 9, the outcomes from this 

work are listed. 
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__________________________________________________________________________________ 

 

2 Biomedical Imaging Systems 
__________________________________________________________________________________ 

 

This chapter comprises an introduction to the imaging systems relevant to this dissertation, 

positron emission tomography (PET) and magnetic resonance imaging (MRI). Regarding PET imaging, 

several aspects, such as basic physics, commonly used radioisotopes and instrumentation, will be 

discussed. On MR imaging, the basic physics will be discussed. Finally, the challenges, advantages and 

disadvantages of the integration of both modalities on integrated PET/MR systems are described. 

2.1 Positron Emission Tomography (PET) 

PET is a nuclear imaging technique extremely useful in the measurement and imaging of 

metabolic activity inside the body. It requires radiotracers containing positron-emitting radioisotopes, 

such as the ones mentioned below, in Section 2.1.2. Although it can be used multiple fields, such as 

cardiology and neurology, clinically, this technique is mainly used in oncology, for cancer diagnosis, 

therapy follow-up, and staging. It has proven a very useful technique in pharmacokinectics to trace 

biodistribution of new drugs in pre-clinical stages. 

2.1.1 Principles of PET Imaging 

As the name of the technique suggests, PET relies on the emission of positrons by radioisotopes. 

Positron emission (𝛽+ decay) is a type of radioactive decay that occurs when there is a destabilizing 

surplus of positive charge and energy in the nucleus. In order to become more stable, a proton is 

converted into a neutron, while simultaneously releasing a positron and a neutrino Equation (2.1).  [19] 

 𝑝 →  𝑛 + 𝑒+ + 𝜈 (2.1) 

After the positron is emitted, it will interact with the matter around it, more specifically with the 

electrons present in it. When a positron collides with an electron, they will annihilate each other, emitting 

a pair of gamma photons of 511 keV energy each (mec
2 = 511 keV), travelling in opposite directions 

(180 degrees) until they reach the detector crystals (Figure 2.1). As electrons are abundant in tissues, 

PET imaging relies on the assurance that the annihilation will take place within a few millimeters from 

the emission site, allowing for the localization of lesions or process under study. This is dependent on 

the energy of the positron, which varies from radioisotope to radioisotope.  

 

Figure 2.1: Positron-electron annihilation with subsequent emission of 511 keV photons. The positron (e+) travels some 

distance before interacting with an electron and being annihilated. [20] 
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When two photons are caught in the detectors within a certain time window, they are associated 

with each other and form a coincidence. Each coincidence has its own line of response (LOR), a straight 

line that connects the two detector blocks, along which the coincidence will have taken place. Although 

a good approximation in most cases, the localization of the exact site of emission is affected by the 

emission angle of the photons. The 180º degree mentioned before is an ideal case. In reality, when the 

linear momentum of both the positron and the electron are not null, there is a slight change in this 

emission angle (non-collinearity), which will then lead to an incorrectly placed LOR and a misplacement 

of the annihilation. In addition to non-collinearity, the photons often suffer scattering due to the 

interaction with the surrounding tissues, completely changing direction. In practical terms, it is not 

possible to distinguish between coincidences coming from scattered photons of from non-collinear 

annihilations and in the scope of this work are simply referred to as scattered coincidences. Furthermore, 

detectors may register hits from simultaneous annihilations from different emissions, or even be 

absorbed by them via photoelectric effect (discussed below), which will lead to the detection of random 

coincidences. The different types of detected PET coincidences are represented in Figure 2.2. 

 

 

Figure 2.2: Types of coincidences detected in PET imaging. (A) True coincidences. (B) Scattered coincidence. (C) Random 

coincidence. [21] 

 

Each LOR is defined by two properties: the angle between itself and the horizon, and the 

perpendicular distance to the center of the scanner, referred to as displacement. When plotting each 

LOR’s two characteristics in a two-dimensional plane, each coincidence is simply a point. The visual 

representation of every coincidence (thus, every LOR) is a sinogram – the most traditional way of data 

representation in tomographic imaging. Typically, sinograms take the shape of vertical sine functions, 

as shown in Figure 2.3. 
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Figure 2.3: Representation of the formation of tomographic imaging sinogram. (A) The position of the source in the scanner. 

(B) Sinogram of the source, where displacement can be easily understood by the selected LORs and their respective points in 

the sinogram, represented in blue. [22] 

In the case of PET systems, instead of calculating the displacement and angle to the horizon of 

each LOR, a simpler approach is illustrated in Figure 2.4. As each LOR is associated with 2 detector 

blocks, striking a line diagonally across the plane for each of the detectors, will yield an intersection that 

corresponds to the point in the angle-displacement plane representing the coincidence. 

 

Figure 2.4: Sinogram in PET acquisitions. (A) Profile of the scanner with 16 detector modules and a LOR. (B) 

Representation of the LOR in the angle-displacement plane.  

 

The data contained in sinograms is used to reconstruct PET images. Multiple image reconstruction 

algorithms have been developed and were categorized as either analytical or iterative. Analytical 

algorithms are faster, linear and deterministic. Filtered back-projection (FBP) is the most commonly 

used analytical method of PET image reconstruction. It is of quite simple and straightforward 

implementation. The main drawbacks come from the assumption that data is noise-free and don’t take 

into account other degrading factors, such as positron range and noncollinearity. [23]  

Iterative methods are more complex methods that rely on statistical estimations of noise and 

physical effects to estimate images. They are more complex and require more computational power than 

analytical methods. Instead of a direct solution, the reconstruction improves with each iteration, 

following certain criteria, until a desired image is reached. Several iterative methods have been 

developed. The most noteworthy are Maximum Likelihood Expectation Maximization (ML-EM), and 

its Ordered Subsets Expectation Maximization (OSEM). Main drawback of MLEM is its slow 
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convergence, while for OSEM is the fact that convergence to the ML solution is not guaranteed. In both 

cases, the noise is increased with each iteration and requires the images to be smoothed afterwards. [24] 

No image reconstruction was performed in the scope of this project and the details of the algorithms will 

not be discussed. 

2.1.2 Radioisotopes 

PET imaging is based on the annihilation of positron emitted by radionuclides. Although there 

are hundreds of radionuclides, only a select few of them are positron emitters, with varying properties 

such as energy or decay mode. Most positron emitter radioisotopes are cyclotron-produced.  Before 

being suitable for the use in medicine, radioisotopes must be attached to an organic molecule or 

compound to form a radiopharmaceutical, or radiotracer, so that the radioisotopes can be carried to the 

target place of the examination, through metabolism of the organic molecule. The study of radiotracers 

is out of the scope of this study, which focus solely on radioisotopes. 

The most commonly used radioisotope in PET imaging is fluorine-18 (18F), which has been 

discovered and intensely studied over half a century ago. [25], [26] Its properties such as half-life, decay 

scheme and decay energy make it an extremely useful radioisotope for PET imaging, having applications 

in oncology, neurology, cardiology, and in imaging of organs and structures such as liver or bones 

(scintigraphy). Due to its low positron energy and short travel distance before annihilation, 18F provides 

one of the best performances in PET system. 18F has an half-life of  109.7 minutes and decays into stable 
18O via β+ emission with a probability of over 96% with an energy of 0.633 MeV (Figure 2.5). The 

average estimated positron range for this radioisotope ranges from 0.56 mm in water/soft tissue to 2.23 

mm in the lung [12]. The production of 18F is done with either cyclotrons or linear particle accelerators 

through bombardment of pure or 18O-enriched water. [27] 

Another well-known but less used radioisotope in PET imaging is Gallium-68 (68Ga). It has a 

more complex decay than 18F, having multiple and more energetic positron emission branches, with the 

total ratio being 88.88% and maximum energy being 1.899 MeV, although a shorter half-life of 67.7 

minutes. There are also transitions to an excited state that will promptly, or within a few picoseconds, 

emit gamma photons, with a combined probability of 3% (prompt gammas) (Figure 2.5). The 68Ga 

positron range is estimated to be 2.62 mm in water and 9.94 mm in the lungs. [12] Although a former 

go-to radioisotope for cancer staging, specially of neuroendocrine tumors, its use nowadays is essentially 

related to infectious processes and chronic infections. [28] It’s also much cheaper to produce and operate 

as it does not require a cyclotron, making it relevant from an economical point of view. 68Ga is obtained 

from its parent radioisotope, Germanium-68, via Ge-68/Ga-68 Generators. However, current generator 

technology is not optimal for medical purposes. It offers low concentrations of 68Ga and high probability 

of contamination with 68Ge and metal ion impurities, [29], [30] which can prevent radiotracer labelling.  

  

Figure 2.5: Decay scheme of 18F (left); Decay scheme of 68Ga (right). 𝜀 represents transitions by electron capture, 𝛾 

represents prompt-gamma emission. Adapted from [31]. 
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Carbon-11 (11C) has been shown to be useful in PET imaging of prostate cancer, and other low-

grade tumors, as an alternative to 18F, [32] due to the latter’s nonspecificity and the hypometabolic 

behavior of some tumors. It decays via positron emission with a branching ratio of 99.75% and an energy 

of 0.960 MeV, with a short half-life of just 20.4 minutes (Figure 2.6). [32] The short half-life has limited  

this radioisotope’s use in clinical settings. It is produced in cyclotrons from its parent radioisotope, 

nitrogen-14. [27] The mean positron range has been measured to be 1.03 mm in soft tissue and 3.98 mm 

in the lung. [12] 

Nitrogen-13 (13N) is one of the earliest discovered positron emitters, being discovered by Joliot 

and Curie, part of a research effort that awarded them the Nobel prize in Chemistry in 1935. 13N is a 

short-lived radioisotope with a half-life of 9.97 minutes, a clear drawback for widespread use. It’s 

considered to be a pure positron emitter as the branching ratio for the emission is almost 100% (Figure 

2.6). It has relatively high positron emission energy of 1.198 MeV and a mean positron range of 5.4 mm 

in water. Generally produced in multi-giga-becquerel cyclotrons via the 16O(p,𝛼)-13N reaction, it is of 

quite limited use in clinical imaging. [33] Still, it is especially relevant in the cardiological field, 

particularly quantification of myocardial and coronary blood flow. [34], [35] 

  

Figure 2.6: Decay scheme of 11C (left). Decay scheme of 13N (right). 𝜀 represents transitions by electron capture. Adapted 

from [31]. 

Oxygen-15 (15O) is an radioisotope with a very short half-life of just 2.1 minutes that is originated 

from 16O in cyclotrons. Such a small half-life and the only means of production being via cyclotron 

meant great limitations for its usability, which led early researchers to dismiss it as a radiotracer for PET 

imaging. With the necessary resources, 15O proved to be very useful for the diagnosis and study of 

cardiovascular diseases (e.g. coronary artery disease), as well as brain imaging (in vivo regional 

measurement of blood flow and volume). The positron branching ratio of 99,89% and the transition 

energy of 1.735 MeV (Figure 2.7) give the positrons originated from this radioisotope a mean range of 

2.44 mm in soft tissue and 9.26 mm in the lungs. [12] 

Rubidium-82 (82Rb) is a very high energy radioisotope nowadays commonly used for myocardial 

perfusion imaging and diagnosis of myocardial ischemia or coronary artery disease. It’s decay scheme 

(simplified in Figure 2.7) is a very complex one, with dozens of possible transitions between states. 

About 12 of them are β+, of which the highest energy comes at 3.381 MeV with a branching ratio of 

81,81%. In total, the positron emission probability is over 95%. [31] Additionally, there is a prompt-

gamma emission with a combined ratio of 14.16%. [36] The positron range has been estimated to be 

5.21 mm in water and 19.80 mm in the lung. [12] Although the production of 82Rb is relatively simple 

and fast (in 10 minutes it is possible to produce enough quantity for 10-15 exams), done through Rb-

82/Sr-82 generators, it has a very high cost which might not be sustainable in all hospitals or research 

centers. [37] 
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Figure 2.7: Decay scheme of 15O. (right); Simplified decay scheme of 82Rb (left). 𝜀 represents transitions by electron capture, 

𝛾 represents prompt-gamma emission. Adapted from [31]. 

 

The need for cyclotron-based production of radioisotopes is a very limiting factor of PET imaging. 

Many times, radioisotopes are bought from third-party suppliers which already have methods of 

transportation with the necessary security measures in place. Still, transportation times and efficiency 

might prove very difficult or even impossible to more remote locations, especially for radioisotopes with 

very short half-lives. Fast transport by helicopter or plane is sometimes necessary (or preferable) but is 

not always available and its costs are unsustainable for many hospitals, universities and research centers. 

Although air transportation is the fastest way, there are still two stages of ground couriers (production 

site to origin airport, destination airport to PET facility), as well as security measures at the airport which 

can take up to two hours. For instance, for a 2h flight, the total shipping time will be over 5h, depending 

on the distance to the respective airports, which represents many half-lives of the radioisotopes (over 3 

half-lives for 18F) and implies the production of several times the needed activity, driving up the costs 

greatly. Even in cases where all these conditions are met, there is still a need for extensive planning and 

patient preparation, in order to avoid the cancellation of exams and wasting of money, time, and overall 

resources. [38] 

Furthermore, due to the radioactivity, the transport needs to be regulated and controlled as to not 

expose bystanders to high levels of radiation and radioisotopes need to be transported in safe containers, 

by trained professionals who know how to properly handle and care for sensitive, perishable, hazardous 

materials. 

2.1.3 Scintillation Detectors 

PET imaging traditionally uses scintillating material coupled to photomultiplier tubes (PMT) for 

the detection of gamma photons emitted by the positron annihilation. This process comprises conversion 

of the 511 keV photons into visible light through interaction with the material, which can be divided in 

three main steps. At first instance, the photon interacts via Compton scattering or photoelectric 

absorption, creating a free electron in the material. As this electron travels through the material, it excites 

other electrons, losing its own energy. When the excited electrons lose their energy and go back to the 

ground state, they emit visible light photons (in some cases, ultraviolet photons are also emitted), which 

will be caught by the photocathodes of the PMTs. [39] 

The efficiency of the crystals depends on the material’s properties. A high light yield should be 

ensured, which is generally done by taking into account the material’s effective atomic number (Zeff), 

density and refraction index close to that of glass, to minimize losses between the crystal and the 

detector. Moreover, short rise and decay times are preferable as to improve the temporal resolution of 

the detectors. Lutetium Yttrium Oxyorthosilicate (LYSO) is one of the most used materials in PET 

systems, alongside Bismute Germanate (BGO) and Sodium Iodide (NaI).  

c
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The use of PMTs is important in PET for the amplification of the light signal originated in the 

scintillator into an electronically readable signal. As the photons emitted by the crystal hit the PMT’s 

photocathode, electrons are released and go through a series of dynodes where they will be multiplied 

via secondary emission until they reach the anode, where the signal is read-out. This process is illustrated 

in Figure 2.8. PMTs offer excellent gain and a high signal-to-noise ratio (SNR) 

Over the last few years, other types of detectors for PET imaging have been tested and used 

commercially. Avalanche photodiodes (APD) and silicon photomultipliers (SiPM) are the two most 

popular alternatives to PMTs, both offering their respective advantages and drawbacks. This will be 

explored further ahead in this work. 

 

Figure 2.8: Scheme of the amplification of the light photon into an electronically readable output in a photomultiplier.  

 

2.1.4 Interaction of Particles and Matter 

When emitted by radionuclides, positrons are subject to a series of possible interactions with the 

atoms of the surrounding matter, annihilation being just one of them. 

Elastic scattering, or Rutherford scattering, refers to the process where charged particles, such as 

positrons, are deflected by an atom’s electromagnetic field created by the Coulomb potential, without 

any loss of energy. The positrons can be largely deflected or even backscattered while the atom remains 

unaffected. These interactions were first described by Rutherford, in an experiment represented in Figure 

2.9. 

 

Figure 2.9: Representation of the Rutherford experiment. 1 and 2 represent large deflection angles, and 3 represents a 

backscattered particle. [40] 
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An inelastic scatter process takes place when the charged particle loses energy while interacting 

with the matter. This is the case in ionization and excitation of the atoms, by transfer of energy from the 

charged particles to the bound electrons, which will move further away from the nucleus to more 

energetic orbitals (excitation) or be ejected from it (ionization) if the energy of the particle is high 

enough. The transfer of energy determines the collision stopping power of particles. [41] 

Bremsstrahlung, from the German “braking radiation”, is a type of radiation originated when 

charged particles are abruptly slowed down and deflected by a close-by electrical field from an atom. 

Through conservation of energy, the loss in kinetic energy by the particle is converted into a photon, in 

this case an X-ray (Figure 2.10). Because there is loss of energy, this effect is relevant to the stopping 

power, specifically it’s radiative term. 

Stopping power includes both the terms described above, collision and radiative stopping powers, 

also commonly referred to as hard and soft collision stopping power. Although it depends on many 

factors, such as the properties of the stopping medium and particle energy, [42] broadly speaking, it can 

be written that: 

 (
𝑑𝐸
𝑑𝑙
)
𝑟𝑎𝑑

(
𝑑𝐸
𝑑𝑙 )𝑐𝑜𝑙

 ∝ 𝐸𝑍 (2.2) 

 

Figure 2.10: Representation of bremsstrahlung. When it is the deflected, the particle loses energy in the form of X-rays (EX), 

slowing down. 

 

As matter and its anti-matter cannot exist simultaneously, and positrons are the anti-particles of 

electrons, they cannot coexist. The laws of physics allow for a very limited number of possibilities for 

the outcome of a collision between these two particles. The creation of a pair of 511 keV gamma photons 

is the most probable result, given the conservation of linear and angular momentum, energy and electric 

charge. Generally, it is assumed that the photons are emitted in exactly opposite directions (180º). As 

described before (Figure 2.1) this is the fundamental principle for PET imaging. However, when the net 

linear momentum of the pair is not null, the angle of emission is slightly altered. 

After annihilation, photons are also susceptible to multiple kinds of interactions before reaching 

the detector, and even inside the detector, such as pair production, Compton and Rayleigh scattering, 

and absorption via the photoelectric effect. These interactions were represented in Figure 2.11.  
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Figure 2.11: Possible photon interactions with matter. (a) Pair production. (b) Compton scattering. (C) Photoelectric effect. 

In the case of Compton scattering, the energy of the scattered photon (𝛾’) is smaller than the original photon (𝛾). Adapted 

from [43].  

 

Pair production is a process where a pair of electron/positron is created from the interaction of a 

photon with an electromagnetic field (Figure 2.11(a)). Thus, due to the need of an external field and the 

conservation of momentum and energy, this process can only take place when in the presence of a third-

party – usually an atomic nucleus. [44] Following Einstein’s formula, this process can only take place 

when the energy of the photon is bigger than that of the electron-positron pair. As the positron is the 

electron’s anti-particle, they have the same mass and thus the energy of the pair will be 2𝑚𝑒𝑐
2 = 1.022 

MeV.  Pair production becomes especially relevant at high energies and in the presence of heavy nuclei, 

as its probability, or cross-section, is dependent on the energy of the photons and the atom’s atomic 

number, according to Equation 2.3. [43] 

 𝜎𝑝𝑎𝑖𝑟 ∝ 𝑍
2 ln(𝐸𝛾) (2.3) 

A variation of this process is internal pair production, where the electromagnetic field inherent to 

the nucleus, with an excess energy higher than 1.022 MeV, induces the ejection of an electron-positron 

pair without the intervention of an external photon. [45] 

Compton scattering, also commonly referred to as inelastic scattering, comprises alteration of the 

energy, direction and wavelength of a photon that interacts with a weakly bound electron from the outer 

orbitals of atoms (Figure 2.11(b)). The decrease in energy, which is transferred from the photon to the 

electron, called recoil electron, results in an increase in the photon’s wavelength as described by the 

Compton formula, derived by Compton in 1992: 

 ∆𝜆 =  𝜆′ − 𝜆 =
ℎ

𝑚𝑒𝑐
(1 − cos θ) (2.4) 

As such, the energy of the scattered photon depends on the scattering angle (θ) [46]. At high 

energies, the scatter angle tends to zero, meaning the scattered photon will barely be deviated from its 

original path and will behave like there was no scattering. Compton scatter does not depend on any 

property of the absorbing material. [47] 

Rayleigh scattering, or coherent scattering, is only relevant for low energy photons (<< 50 keV) 

and is a type of elastic collision, meaning the scattered photon has the same energy as the incident 

photon. This interaction occurs between photon and atoms in their entirety, as opposed to interaction 

with electrons. Rayleigh scattering shows a strong dependence on the photon’s wavelength: 

 𝜎𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ ∝
1

𝜆4
 (2.5) 
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Rayleigh scattering is never the dominant process in interaction of photons with matter and is of 

little to no importance in nuclear medicine and, particularly, PET imaging. 

The photoelectric effect is a type of interaction described by the total absorption of a photon’s 

energy by an atom. When the energy of the photon (E0) is equal to the binding energy of the electron 

shell (KB), a photoelectron is ejected. When the energy of the photon is higher, the surplus is converted 

into kinetic energy of the photoelectron (Kpe). 

 𝐸𝑝𝑒 = 𝐸0 − 𝐾𝐵  (2.6) 

The ejection of the electron creates a vacant spot in the orbital which will be filled by an outer 

orbital electron. When the outer electron moves from one orbital to the other, there is an emission of 

characteristic X-rays, also referred to as Auger electrons, with an energy of only a few keV that 

corresponds to the difference of energy between the orbitals. [47] Contrary to Compton scatter, the 

photoelectric effect shows dependence on the material, as well as on the energy of the photon: 

 𝜎𝑃𝐸 ∝
𝑍2

𝐸𝛾
3 (2.7) 

The dominance of each type of interaction is dependent on both the atomic number of the 

interacting material and the energy of the photon, as shown in Figure 2.12. 

 

Figure 2.12: Dominance of effects according to photon energy and atomic number of the material. Rayleigh scattering is not 

represented as it is not significant for PET imaging. [48] 

 

2.2 Magnetic Resonance Imaging (MRI) 

Magnetic Resonance Imaging (MRI) is one of the most advanced, complex and versatile imaging 

techniques there is nowadays. It allows for both metabolic and anatomic information of the body, with 

great soft tissue sensitivity and contrast, without the use of ionizing radiation. In addition, it is a 3D 

technique that allows for the simultaneous imaging of multiple planes of the body, eliminating the need 

for translation of the patient inside the scanner. 

MRI is based on the phenomenon of nuclear magnetic resonance (NMR). When an atom’s nucleus 

is composed of an odd number of protons or neutrons, it will exhibit a property known as spin, which, 

for simplicity, can be thought of as the rotation of the nucleus. As it is positively charged, the rotation 

will induce a small magnetic field around itself. Left undisturbed, the tissue’s nuclei will be oriented in 

random directions, cancelling out any collective magnetic effect. However, when subject to a stronger, 

external magnetic field, B0, the axis around which the nucleus rotates will tend to align with the direction 
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of B0, never fully reaching it and continuously precessing around that axis, in a parallel or anti-parallel 

direction, with a frequency 𝜔 called the Larmor frequency ( 

Figure 2.13).  

 

Figure 2.13: Free atoms with intrinsic spins in random directions (left). Atoms precessing at the Larmor frequency 𝜔 around 

the magnetic field's (B0) direction (right). Adapted from [49]. 

 

The Larmor frequency is dependent on the strength of the magnetic field, as well as other nuclear 

properties that are condensed into the gyromagnetic ratio, 𝛾. As the energy of the parallel direction is 

slightly lower than the anti-parallel, it will be favoured, and a non-null magnetic effect (bulk 

magnetization) arises in the direction of the magnetic field. Because the spins are out of phase with it 

each other, the bulk magnetization will have no transversal components and will be aligned with the B0 

axis. By applying radiofrequency (RF) pulses, which are alternating magnetic fields with frequency 

equal to the Larmor frequency, the magnetization is forced to tip over and a transversal component is 

induced (Figure 2.14), and the spins will be in phase. Stopping the RF pulse will cause the spins, and 

thus magnetization, to return to its initial direction, in what is called Relaxation. Relaxation comprises 

two independent mechanisms: spin-spin and spin-lattice interactions. [50] 

 

Figure 2.14: Tipping over of the net magnetization (�⃗�)caused by the application of and RF pulse. [50] 

 

Spin-lattice interactions result in the recovery of Mz after the application of the RF pulse through 

the realignment of the spins with B0, by exchanging energy with the surrounding tissue. Mathematically, 

this recovery is modelled by an exponential curve and its growth constant being T1 (spin-lattice 

relaxation time), the time it takes for Mz to recover 63% of its initial value (Figure 2.15). [50] 

Spin-spin interactions are the de-phasing of spins after the RF pulse is stopped and result in a 

decrease in the transversal component of the magnetization (Mxy) as it returns to the original state. This 

is described by an exponential curve with a time constant T2 (spin-spin relaxation time), which 

represents the time it takes for Mxy to reach 37% of its original magnitude (Figure 2.15) and depends on 

the tissue type, as well as being affected by inhomogeneities in the magnetic field. [49] 
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Figure 2.15: Graphical representation of T1 and T2 relaxation. T1 and T2 are constants measured for 90º RF pulses. [51] 

 

To allow for the imaging of the detected signals, special encoding is still needed in order to 

precisely locate where the signals are coming from. This process is done in three parts: slice selection, 

frequency encoding and phase encoding.  

A slice is selected by introducing a linear gradient in the magnetic field in the axial direction 

(Figure 2.16). As mentioned before, the frequency of the spin is proportional to the strength of the 

magnetic field. In the presence of a gradient, spins in different location are subject to different strengths, 

and the RF pulses with the Larmor frequency corresponding to those strengths will only induce 

magnetization in a specific part of the patient’s body, selecting a slice and locating the origin of the 

signal in the axial direction, giving it a z coordinate, Gz. 

 

Figure 2.16: Principle of slice selection through the application of a linear magnetic field gradient and a small bandwidth of 

the RF pulses. [52] 

 

To further locate the spins, the same principle is applied in the y and x directions, with a phase 

encoding gradient and a frequency encoding gradient, respectively, all at different times. The three 

successive gradients then yield all the necessary coordinates (Gx, Gy, Gz) to precisely locate the spins. 

This information is then stored along with the time in a 4D spatial frequency domain called the k-space. 

[53], [54] By applying an inverse Fourier transform to this domain, the MR image is formed. 

There is a large number of sequences that offer different contrasts between tissues, with different 

applications and purposes. Different sequences are achieved by selecting different RF pulse duration, 

intensity and shape, as well as the interval between them. The combination of this selection leads to very 

different image properties and different contrasts. MR image reconstruction and sequences are a matter 

that falls out of the scope of this dissertation and will not be discussed further. 
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2.3 PET/MR Hybrid systems 

There are many approaches to multimodal imaging, involving different processes (simultaneous 

or sequential) and, of course, different techniques. The combination of different techniques provides 

many advantages, one of the biggest ones being that it joins physiological information with anatomical 

information, allowing for a better understanding of the human body and many kinds of diseases 

(cardiological, oncological, etc). PET/CT is nowadays one of the most popular multimodal imaging 

techniques, with thousands of systems installed worldwide. However, over the last few years, PET/MR 

has been gaining more and more popularity. 

The idea of creating a fully integrated whole-body PET-MR hybrid system was proposed in the 

1990s. [55] Since the insurgence of this concept, several studies have been conducted in order to make 

the differences between both systems compatible, both hardware- and software-wise. [56] In recent 

years, this kind of system has become commercially available, [57], [58] giving way to many studies 

regarding the potential of this multimodal technique. 

The development of integrated PET/CT systems was quite straightforward, simply involving 

mounting stand-alone systems in a common gantry as there are no major incompatibilities. However, 

the process for PET/MRI was quite more troublesome and complex. The presence of the magnetic field, 

the size of both systems, the PET’s need for linear attenuation coefficients, which are obtained directly 

from CT scans but not MRI, full integration with the same FOV, among others, are technical challenges 

that had to be overcome in order to build integrated PET/MR systems. 

Traditional PET detectors are usually made of inorganic scintillation crystals, lutetium 

oxyorthosilicate (LSO) or LYSO being the most used, coupled to photomultiplier tubes (PMTs). The 

magnetic field causes the electrons to deviate from their original path, causing tremendous loss in gain 

and rendering PMTs essentially useless in magnetic field of several mT. [59] Therefore, the main 

challenge was to find a way to have both systems operate simultaneously or at least in close proximity, 

like PET/CT scanners, which operate in-line, with the patient going through the CT before being in the 

FOV of the PET scanner. The crystals themselves are largely unaffected by the magnetic field and have 

also been shown to have little to no impact in MRI images [60] and so, the challenge relies mainly on 

replacing PMTs or changing the way they are coupled to the detectors. Besides the magnetic field issue, 

the size of the detectors would also have to be significantly decreased, to allow them to be placed inside 

the MRI bore without reducing the diameter so much that a patient could not fit inside. With the 

photodetectors being placed inside the MRI, the electronics associated with them will also have to be 

inside and thus, the circuit layouts, choice of components and good RF shielding have to be carefully 

chosen in order to avoid multiple kinds of interference and artifacts between both systems.  

In early stages, the focus was mainly on separating the detector crystals from the PMTs and 

coupling them via fiber optics, placing all the PMTs in a magnetic field free environment. This solution 

was very impractical and raised many problems, such as the handling of such a large quantity of fiber 

optics and poor energy and timing resolutions. (Figure 2.17) 
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Figure 2.17: PET detectors coupled via fiber optics. [56] 

The focus then shifted to the development of a new generation of detectors that could replace 

PMTs and perform well under magnetic fields. Avalanche photodiodes (APDs) and silicon 

photomultipliers (SiPMs, also known as Geiger-mode APDs) both fulfill almost the necessary 

requirements, being unaffected by strong magnetic fields and having an internal gain suitable for the 

purpose. Even though APDs have some good qualities, they have not been widely used in clinical PET 

systems due to its sensitivity to temperature and voltage, as well as the poor temporal resolution. 

Compared to APDs, SiPMs have a much higher gain at much lower voltages, providing a high SNR 

without the low-noise front end electronics. Their speed provides these detectors with very good 

temporal resolution, comparable to that of PMTs, although their characteristics (smaller sensitive area) 

result in a lower photon detection efficiency. More technical detail on both types of photodetectors is 

shown in Table 2.1. 

Table 2.1: Comparison of different types of photodetectors used in PET/MR systems. 

 GAIN 
BIAS 

VOLTAGE 
SIZE EFFICIENCY 

TEMPORAL 

RESOLUTION 
COST 

PMT 106 800V – 1kV Large ~ 30% < 600 ps High 

APD 102 100V – 1kV Small ~ 80% ~ 1 ns Medium 

SIPM 106 30V Small < 40% ~ 100 ps Low 

 

2.3.1 Effect of the Magnetic Field on Positron Range 

As stated previously, when a positron is emitted by a radioisotope, it travels some distance in the 

tissue before it annihilates with an electron and forms a pair of 511 keV photons. With no restrictions, 

the positron emission is generally considered to be isotropic. However, from quantum physics it is 

known that when submitted to a magnetic field, �⃗⃗�, charged particles (such as positrons) will be induced 

in a helical trajectory along the direction of the magnetic field due to the Lorentz force, �⃗�: 

 �⃗�  = 𝑞�⃗⃗� +  𝑞 𝑣  × �⃗⃗� (2.8) 

where q is the charge of the particle and 𝑣 is its velocity vector. 

This helical pattern results in shortening of the transversal range, with no significant alteration in 

the axial direction (Figure 2.18). From this, knowing that typically the magnetic field in an MRI system 

is along the z-axis (axial), we can expect increased resolution in the x- and y-axis (transversal), and 

either no difference or a decreased resolution in the z-axis. Although the range of the positron range in 

the axial direction is not significantly changed, the profile (distribution) of the particles is much 

elongated. Physics also predicts that the effects are greater the higher the energy of the positrons. 
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Figure 2.18: Helical path of positrons subject to a magnetic field. [61] 

From the time this effect was proposed, these predictions have been confirmed by experimental 

studies. Hammer and Christensen [10] determined that for Galium-68, the positron range in the direction 

transversal to the magnetic field is significantly reduced, predicting that this would consequently reduce 

image blurring if an image was to be reconstructed out of the measurements (their data was simply 

analytical). Studies using Monte Carlo simulations also lead to the same conclusions – transversal 

positron range is reduced under static magnetic fields. [16], [62] It has also been shown that the effect 

is greater the stronger the magnetic field is, i.e., positron range is reduced further when the strength of 

the magnetic field increases, while the non-collinearity remains untouched. Furthermore, it concluded 

that the effect of magnetic fields is also dependent on the energy spectrum of the emitted positrons, 

showing barely significant improvements in resolution for 18F but great differences for 68Ga. A study 

carried out by Shah et al in 2014 [14] is one of the few that uses realistic phantoms (in this case, brain 

phantom) and studies the effect of magnetic fields in both point sources and reconstructed PET images, 

analyzing the results for all directions and for low, medium and high energy radioisotopes. In the 

reconstructed images, the effect of the magnetic field becomes very clear (Figure 2.19). High energy 

radioisotopes such as 120I are greatly affected by the magnetic field, resulting in a significant 

improvement in transaxial spatial resolution, while low energy radioisotopes such as 18F showing little 

to no improvements. In the study with the realistic brain phantom, there was significant increase in both 

resolution and contrast from 3 T magnetic field and stronger (7 T and 9 T), especially for 68Ga and 120I.  

 

Figure 2.19: PET/MR images of a point source (left) and brain phantom (right) filled with different emitters at different 

magnetic field strengths. [14] 

Overall, results seem to be consistent in all studies, always reaching the conclusion that a magnetic 

field will reduce the positron range in its perpendicular directions, while not significantly affecting the 

axial directions, allowing for a better spatial resolution and contrast on the transversal plane. Despite the 

axial positron range not being affected by the magnetic field, some studies have found that certain 

artifacts are introduced in PET-MR images. One of the most significant ones is the shine through effect 
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(Figure 2.20), [15] where there is an apparent additional uptake of high energy radiopharmaceuticals in 

areas across an air cavity from the real place of injury. This artifact is a consequence of the elongation 

of the positron range in the direction of the magnetic field, combined with the current algorithms for 

PET-MRI image reconstruction. It can be very misleading because there are apparent lesions that may 

appear to be bigger or more significant, i.e., sometimes the artifact area is brighter than the actual lesion, 

possibly inducing professionals into a wrong diagnosis or diagnosis of lesions in wrong places. Other 

artifacts have also been studied, namely ones from off-plane sources, where the conclusions were that 

the artifacts are much sharper at high magnetic fields, instead of a diffuse background blurring. 

Furthermore, it was shown that these artifacts can be almost completely eliminated in simple source 

configurations by correcting positron range in the reconstruction algorithm, although for complex 

sources the problem persists. [63] 

 

Figure 2.20: Shine through artefacts on PET/MR images at 20º (top) and 35º (bottom) angles. [15] 

 

2.3.2 Total-Body PET/MR 

With today’s radiation dose and administered activity regulation and state-of-the-art PET 

scanners, it is impossible to images with high SNR values in short acquisition times. Even in the most 

sophisticated scanners, sensitivity is relatively low (less than 1%), given that roughly 90% of the body 

is outside the scanner at all times, making it impossible to obtain coincidences from most of the body. 

Furthermore, for the portion that is covered by the detectors, only about 5% of the signal is registered 

because of the isotropic emission of the gamma photons. Both these problems can be addressed in a very 

simple manner: extending the length of the scanner to cover the whole body and significantly increase 

the acceptance angle of photons. This is exactly what Simon Cherry and Ramsey Badawi et al did with 

the EXPLORER scanner. [18] Their predictions indicate a 40-fold increase in sensitivity, which can be 

translated into multiple advantages from a scanning point of view: greatly increase SNR to improve 

image quality and possibly detect  smaller and lower-contrast structures, significantly reduce (by a factor 

of 40) the scanning time to just a few seconds while maintaining the current state-of-the-art image 

quality and SNR, or  reducing the injected activity by a factor of 40. 

From allowing PET scanning to be used for sensitive populations such as children, significantly 

improving patient throughput in high-demand clinics, or reducing operational costs by using much less 

activity, the possibilities for this kind of scanner are very diverse and can be looked at from many points 
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of view. It also opens the door for multi-tracer studies and total-body dynamic imaging and kinetic 

analysis. [64]–[66] 

Although the integration of a total-body PET with MRI would be technically possible, even with 

its fair share of technical challenges, this is only a dream for the near future. Even though total-body 

MRI protocols are available, they are not widely spread and their use within a total-body scanner would 

not be as advantageous as they require translation of the patient, which would interfere with the PET 

acquisition. Furthermore, it would significantly increase the costs, which are high enough for a total-

body PET system alone and are a concern for the inventors regarding the adopting of these scanners in 

clinical context.
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__________________________________________________________________________________ 

 

3 NEMA Performance Measurements of 

Positron Emission Tomographs 
__________________________________________________________________________________ 

 

In this chapter, the National Electrical Manufacturers Association (NEMA) performance 

measurement tests for PET scanners are described. It covers the different tests performed in this 

dissertation, as well as additional ones commonly performed. 

In order to reliably compare PET and PET/MR scanner’s performances amongst different models, 

it is necessary (or at least recommendable) that all manufacturers follow the same set of guidelines for 

testing of their scanners. The National Electrical Manufacturers Association (NEMA) is an American 

organization that represents hundreds of electrical and medical equipment manufacturers. Although 

NEMA is not a regulatory entity, it does lobby for the safety, reliability, efficiency and cost reduction 

of all kinds of electrical equipment and medical imaging systems in the US. In addition to lobbying, 

NEMA regularly publishes and updates hundreds of standards and other documents that are used as 

guidelines for device testing, which throughout the years have become a worldwide standard for 

characterization of electrical and medical devices. 

The NEMA Standards Publication NU 2-2007 [67] is a document that provides the procedures to 

perform the necessary measures to characterize and classify PET scanners. The publication includes 

many different tests, such as spatial resolution, sensitivity, scatter fraction, count losses and randoms 

measurement, and image quality, which will be described below. 

It is important to point out that these tests are currently only done with 18F and are optimized to 

that radioisotope only. Furthermore, they are set for the currently commercially available PET/MR 

scanners, which short AFOVs, which are not suitable for the study of total-body, next generation PET 

scanners and must be adapted in the future to allow for a better understanding of these scanner’s 

scanners’ performance, and also to have a reliable way of comparing them to the current generation of 

scanners. With the increase in number and usage of different radioisotopes for more specific 

examination, adaptation of the procedures to include other radioisotopes, such as the ones mentioned in 

Section 2, is mandatory in the future. This will be discussed further in this dissertation. 

3.1 Sensitivity 

Sensitivity measures a scanner’s efficiency in obtaining coincidence data and is usually measured 

in counts per seconds per kilo becquerel (cps/kBq) and can be thought of as the fraction of decays that 

is registered by the detectors. It depends greatly on the geometry of the scanner (geometric efficiency) 

and also on the detection efficiency intrinsic to the detectors (intrinsic efficiency). The geometric 

efficiency is dependent on the width and length of the scanner, more specifically on the detectable solid 

angle, inside which coincidences can be detected. Intrinsic efficiency is mainly related to the properties 

of the detectors, mainly the atomic numbers of its components. The sensitivity test for PET scanners is 

performed with very low levels of activity spread out throughout a 70 cm plastic tube, to ensure 

minimum count losses and minimise the effect of dead time. Successive measurements are taken, adding 

a layer of attenuating material (aluminum) between each scan (Figure 3.1, left). The tubes are positioned 

parallel to the axial direction and are held in place by a phantom holder Figure 3.1 (right), to minimize 

movement of the source between each scan.  The procedure is repeated two times, at different radial 
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positions: at the center of the FOV and with a 10 cm offset from the center. The attenuation-free 

sensitivity is obtained later in post-processing, by extrapolating the value from the multiple attenuated 

measurements. 

  

Figure 3.1: Left: Plastic tube (center) with surrounding aluminum cylinders. Right: Phantom holder. [67] 

 

3.1 Scatter Fraction, Count Losses, and Randoms Measurement 

The scatter fraction, count losses and randoms measurements, also referred to as count rate 

statistics test, are obtained from a single test that aims to calculate a system’s ability to measure high-

energy sources, and to recognize scattered radiation, as opposed to radiation coming directly from the 

positron annihilations. Peak NECR and the activity at which it occurs is one of the most important sets 

of data that comes out of this test, due to its relationship with clinically relevant data. Generally speaking, 

the higher the NECR, the lower the dose a patient has to be exposed to. NECR measures the true 

coincidences that are registered by the scanner, as compared to the total registered coincidences, which 

include scattered and random coincidences [68]. This test is performed overnight with a scatter phantom, 

a long, 70 cm polyethylene cylinder through which a 70 cm line source runs all through its height, 4 cm 

below the center (Figure 3.2). The scatter phantom is positioned parallel to the axial direction of the 

scanner and the line source is filled with very high levels of activity (close to 1 GBq). Successive 

measurements are obtained periodically to measure each rate (total prompts and true, random and 

scattered coincidence rates) for multiple levels of activity, in order to plot the rates against the activity 

concentration. 

  

Figure 3.2: Scatter phantom. [67] 

 

3.2 Spatial Resolution 

Spatial resolution (SR) is defined as the ability to distinguish between two points in the final, 

reconstructed image. The reconstruction should be done with no post-processing, such as smoothing or 
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apodization. Resolution can mean both Full Width Half Maximum (FWHM) and Full Width Tenth 

Maximum (FWTM), so it is important to clarify which one is being referred to. It is usually measured 

in millimeters. In both cases, the values are obtained through linear interpolation of the values of 

adjacent pixels corresponding to half or a tenth of the maximum value of the image’s point spread 

functions. SR is determined in all directions, through radial, tangential and axial slices. For this test, 

glass capillary tubes with sub-millimetric internal radius and length such that the activity is not spread 

out for more than 1 mm are used. A dedicated phantom that holds the capillaries in precise coordinates 

is shown in Figure 3.3 (left). The test is performed at the center of the FOV and repeated at ¼ of that 

distance (Figure 3.3, right). 

 

Figure 3.3: Spatial resolution phantom holder (left); Location of sources (right). [67] 

 

3.3 Image Quality 

Image quality is measured from a test that aims to simulate the whole body. It used two phantoms: 

a body phantom that simulated soft tissue, hot and cold lesions and lung tissue (Figure 3.4) and the 

scatter phantom used previously (Figure 3.2). The body phantom is composed of a large volume of water 

(background), and spheres of varying sizes (10 to 27 mm), with a central cylinder filled with foam beads 

to simulate lung tissue. Coupling the scatter phantom to the body phantom the test becomes more 

realistic, as the scatter phantom simulates the scattered radiation that comes from body parts that stay 

out of the scanner while performing the examination. This test measures the contrast recovery ratio (%) 

between the spheres and the background, as well as the background variability (%). 

 

 

Figure 3.4: body phantom (left); phantom setup on the scanner bed (right). 

In this dissertation, the NEMA measurements of sensitivity and scatter fraction, count losses 

and randoms measurement tests are used to compare the performance of different scanners, as well as 

the performance of a single scanner with and without the presence of an MR field.
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__________________________________________________________________________________ 

 

4 GATE Monte Carlo Simulations 
__________________________________________________________________________________ 

  

In this chapter, the reader is introduced to Monte Carlo methods, as well as GATE, the software 

used in this dissertation to perform simulations of the tests described in the previous chapter. 

Monte Carlo methods are a set of algorithms designed to numerically solve differential and 

integral equations through the random sampling of variables from a probability distribution. They are 

used in all fields, from accounting and finance to engineering and astrophysics.  

For probability calculation, the method can be explained in a simple manner, by imagining a 

situation where a coin is tossed a number of times, and each time the outcome is recorded simply as 

heads or tails. By the Law of Large Numbers, which states that “as the number of identically distributed, 

randomly generated variables increases, their average approaches their theoretical means”, as the 

number of coin tosses increases, the obtained (simulated) probability value will be closer to the real 

value. In this case, it will be 0.5, as demonstrated in Figure 4.1. 

 

Figure 4.1: Probability of outcome being "Heads" when a coin is tossed a number of times. The greater the number of tosses 

(experiments), the closer the probability gets to 0.5. 

For high energy particle physics, the principle of Monte Carlo simulations is the same. Each 

particle is in constant interaction with matter and other particles that surround it, and is susceptible to 

change its energy, direction, etc. These changes all have their own probability distributions, from which 

each parameter is randomly sampled in order to estimate the evolution of the particle, and are also 

dependent on the type of interaction a given particle can be subject to, as described before in Section 

3.1.4. 

4.1 GATE 

Every simulation performed in this project was done using GATE – GEANT4 Application for 

tomographic Emission. GATE is an open-source software developed by multiple internationally 

recognized research groups with the aim of performing numerical Monte Carlo simulation regarding 

biomedical imaging and radiotherapy. [69] GATE is based on GEANT4, a toolkit developed at CERN 
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for the simulation of particles of all energies passing through matter, which has application is fields from 

astrophysics to medical imaging [70], [71] and is one of the most known and spread out toolkits for 

Monte Carlo simulations in particle physics. 

Although there is an interactive mode, in which the user must enter commands one by one into 

the GATE command line, the simplest and best way to work in GATE is through macro files, which are 

ASCII files with ‘.mac’ extension that contain command scripts. The use of scripting mechanisms 

eliminates the need for C++ programming, a key aspect of the development of GATE. It is common to 

write a main macro file which contains commands calling other macro files, these being responsible for 

the different setup steps such as scanner geometry, radioisotope source, etc. This modular way of 

creating a simulation allows for the possibility of re-using macro files across several simulations, 

avoiding the need to continuously repeat code within every macro, besides one line calling said macro. 

4.1.1 Geometry and Materials 

To build the scanner geometry in GATE, the software offers a set of templates with predefined 

geometries which can be adapted at will to model almost any desired system. These templates are 

described in tree level structure, with already some presets or assumptions made about the system type 

chosen by the user. For PET systems, GATE uses the ‘cylindricalPET’ system, which has 5 different 

hierarchy levels: 

1. rsector (repeated n times with a ring repeater in order to cover the complete scanner bore) 

2. module (represents one individual ring of the scanner) 

3. submodule (the detector unit of the scanner that contains the sensitive crystals) 

4. crystal 

5. layer 

Visual representation of the scanner geometry can be seen in Figure 4.2. The output level is set 

later on the digitizer settings (section), when the readout depth is specified (the level at which the output 

is collected – usually crystal or layer). 

 

Figure 4.2: CylindricalPET in GATE. Pink: scanner cylinder; Yellow: rsector; Blue: module; Green: Submodule; Red: 

Crystal. Layer level not shown. [72] 

While defining the scanner geometry, the materials from which each portion of the scanner is 

made is also defined. The materials are defined in a separate database file (“GateMaterials.db”). In this 

database, elements are defined as in the periodic table, containing information about each element’s 

name, symbol, atomic number, and molar mass. Complex materials or molecules are defined based on 
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combinations of elements. To define a material, the user needs to specify its name, density, constituent 

elements and their respective abundances by mass fraction. To define a molecule or chemical compound, 

instead of element abundance, the number of atoms is specified. [73] 

4.1.2 Physics 

The physics macro is where the user defines all the physical processes taken into account by 

GATE for the simulation. For PET imaging, one should include all possible effects that may occur in 

the scanner to all particles involved – positron, electron and photon interactions (as described previously 

in Section 3.1.4). For the scope of this dissertation, all the discussed interactions were included in the 

physics macro and no energy cuts were made. Furthermore, GATE allows for the introduction of a 

magnetic field, although it has some limitations. The magnetic field can only be applied to the whole 

simulated world. It must be static and have the same strength throughout the world, meaning there are 

no gradients as in MR systems.  

4.1.3 Digitizer 

In GATE, the digitizer simulates the behavior of the scanner detectors and its signal processing 

chain, from the particle detection in the sensitive crystal to sorting out coincidence data. There are 

multiple parts that make up the digitizer, simulating the different steps of the signal processing chain in 

a real scanner. 

PET detectors measure each hit in the crystal as a single pulse with a certain intensity, 

disregarding the energy difference in energy from the moment it first interacts with the crystal until them 

moment it is absorbed via photoelectric effect. Considering GATE has the ability of recording the entire 

history of a particle, from its emission to its absorption in the detector, the first stage of the digitizer is 

the adder. The adder sums up all the energy from a particle from the moment it first interacts with the 

crystal until it is stopped (until it is absorbed into the crystal via the photoelectric effect), taking into 

account the multiple interactions might occur within the crystal (e.g. multiple Compton scatter events). 

Once a hit is recorded, a timing window called the coincidence window is open (Figure 4.3). 

Within this period, the next hit that is recorded by another detector, located a minimal distance from the 

original one, is assumed to be a photon that originated from the same annihilation event. If the distance 

between detectors is too small, they are not registered as a coincidence because it would be physically 

impossible for both photons originated in the annihilation to be located so close together in the scanner 

bore. For this purpose, a minimum difference between sectors is defined with the minSectorDifference 

command. It is important to point out that the detected coincidence cannot yet be considered as a true 

coincidence, it might also be a scattered or random event. 

 

Figure 4.3: Illustration of the coincidence window principle. The event recorded in Detector 2, although considered a 

coincidence, can still be true, random or scattered event. 
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Furthermore, when more than two singles are in registered within the timing window, GATE will 

only record them as Coincidences according to the chosen multiple coincidences policy. The software 

offers a broad choice of policies. For this project, the default option, keepIfAllAreGoods was selected. 

This means that all the multicoincidences (coincidences composed of more than 2 singles) will be 

registered as long as they satisfy the previous conditions of being separated by at least the 

minSectorDifference.  

Dead time of the detector is also modeled on the digitizer. Due to the physics of the detectors, 

they require a minimum time to detect an interaction with a particle, as well as time required by the 

electronics to register such an interaction as a hit. There are two ways of dealing with incoming particles 

during this timing window. On one hand, they can be discarded, only making the system available to 

process another hit after the previous one is completely finished. This is called non-paralyzable behavior. 

On the other hand, paralyzable behavior allows the system to stay sensitive to new hits and will pile 

them up, which may distort the signal and lead to loss of information from both events. However, at 

high count rates (high activities), the system will become saturated and it will not be able to register new 

hits. The counting behavior is characterized by the dead time. [74] The total dead time of a system 

comprises all dead times of the components, from the crystals to the electronics and processing, which 

makes it hard to determine precisely and, thus, simulate.  

 

4.2 ROOT  

ROOT is a powerful software kit developed by CERN for the handling and statistical analysis of 

large sets of data. In addition to saving, accessing and processing data, it has powerful graphical 

capabilities that can be adjusted interactively, in real time. ROOT files (‘.root’) are organized in a tree 

structure, with ‘leaves’ as subsets, that can be extremely quickly and efficiently accessed, allowing users 

to easily process the needed data. The software is mainly implemented in C++, also offering a seamless 

integration with R, python and Mathematica and allowing for a cross-platform analysis with the most 

advantages from each software. [75] 

GATE offers a native ROOT output with several presets for each type of simulated system. For 

PET systems, the file consists of three main trees: Coincidences, Singles and Hits, in which a wide 

variety of variables are stored, such as position and energy of the particles. [76] 

In this dissertation, GATE is used to build realistic models of a state-of-the-art scanner, the GE 

Signa PET/MR, as well as a conceptual design for a total-body PET scanner and perform the NEMA 

performance measurement tests of sensitivity and count rate statistics as described on the previous 

chapter. Furthermore, the software is used to perform a study of positron range in different tissues, 

without the need for scanner geometry.
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__________________________________________________________________________________ 

 

5 Methods 
__________________________________________________________________________________ 

 

In this Chapter, the experimental methods used to achieve the dissertation’s aims are explained. 

A comprehensive description of the GE Signa and TB-PET geometries is presented, as well as the 

geometry of the NEMA scatter and sensitivity phantoms. The methods for data analysis for each of the 

tests are described, based closely on the NEMA protocols. In the last section, the methods for a study of 

positron range on different tissues are described. 

5.1 Scanner Geometry 

5.1.1 GE Signa PET/MR 

The GE Signa PET/MR system is made of five detector rings, conferring it an axial field of view 

(AFOV) of 25 cm. According to the hierarchy described in Section 4.1.1, the setup follows the 

CylindricalPET sections, as shown in Table 5.1, including naming of components in GATE, dimensions 

and materials used for the model. Additionally, 12 attenuation layers are included in the geometry, 

modelling all the components of the scanner, including Kevlar layers, RF and copper shielding (not 

shown in Table 5.1). In the end, the bore radius comes in at 60 cm. Figure 5.1 shows the modeled system 

via OpenGL.  

Table 5.1: GE Signa PET/MR geometry hierarchy, dimensions and materials. 

 Name Dimensions (x, y, z)1 [mm3] Material 

rsector signaModule 25.00 x 64.50 x 250.40 Air 

module signaDetUnit 25.00 x 64.50 x 47.84 Air 

submodule signaBlock 25.00 x 15.90 x 47.84 Air 

crystal signaCrystal 25.00 x 3.95 x 5.30 Air 

layer signaLYSO 25.00 x 3.95 x 5.30 LYSO 

The rsector section is repeated 28 times along the 5 rings. Each submodule is composed of 36 

individual LYSO crystals (4 by 9 array), providing the GE Signa with over 5,000 crystals for photon 

detection in a pixelated fashion. The use of pixelated detectors leads to a significant amount of dead 

space in the detector block due to the reflective material used to wrap each individual crystal, which 

prevents photon migration from one crystal to another. This dead space has also been modelled in 

GATE, as it will affect the performance of the scanner. The composition of the LYSO crystals used in 

this scanner has been provided by GE Healthcare and represent the theoretical composition and density 

of the crystals. In reality, there are slight fluctuations in these values, depending on the manufacturer. 

Details of the LYSO composition used in this model are shown in Table 5.3. 

The digitizer settings are mostly provided by GE, including energy blurring and window, time 

resolution, minimal sector difference and coincidence time windows. The multiples policy was set to 

the default keepIfAllAreGoods and the dead time was set at 300 ns in a non-paralyzable behavior. The 

specification can be seen in more detail in Table 5.5. 

 

1 x, y, z according to the referential presented in Figure 5.1. 
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Figure 5.1: Modelled GE Signa PET/MR geometry. CylindricalPET outline in white; rsector outlined in green; detector 

block and crystal represented in red; 12 attenuation layers represented in gray. For scale, the axis length is 10 cm is all 

directions. 

 

5.1.2 Total-Body PET 

The design of the total-body PET was planned based on a fraction of the sitting height of the 

tallest European citizen, which is 104 cm. [77] This means this scanner would be capable of performing 

full torso exams on 99% of the population of Europe, without the need for translation inside the scanner. 

To achieve such a long AFOV, the plan includes 20 detector rings with 50 x 50 x 16 mm3 monolithic 

LYSO crystals. The use of monolithic crystals reduces the dead space in the detectors, while maintaining 

or even increasing spatial resolution. [78] The hierarchy of the system is shown in Table 5.2 and a 

representation can be seen in Figure 5.2.  

Table 5.2: TB PET/MR geometry hierarchy, dimensions and materials. 

 Name Dimensions (x, y, z)2 [mm3] Material 

rsector rsector 1060 x 56 x 43 Carbon Fiber 

module air_box 1040 x 52 x 40 Vacum 

submodule pcb 52 x 52 x 17 PCB 

crystal crystal 50 x 50 x 16 LYSO 

 

The rsector is repetead 36 times along the CylindricalPET geometry, adding up to 720 monolithic 

crystals in the scanner. The LYSO material used in these crystals is slightly different from the one used 

in the GE Signa and was taken from a paper by L. Pidot et al [79]. PCB, or printed circuit board, models 

the electronic components that readout the crystals and process the data and has a density of 1.85 g/cm3. 

The TB-PET LYSO and PCB compositions can be found in Table 5.3 and Table 5.4, respectively. The 

specifications of the digitizer used for the TB-PET can be seen Table 5.5. For consistency and due to 

 

2 x, y, z according to the referential shown in Figure 5.2. 

y 

x 

z 
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uncertainty in these parameters, the multiples policy and dead time behavior were set as the same as the 

GE Signa. 

 

Figure 5.2: Modelled TB-PET geometry. CylindricalPET outline in white; rsector outlined in green; plastic layer represented 

in green; PCB outlined in yellow; monolithic crystals represented in red. For scale, the axis length is 10cm in all directions. 

Table 5.3: Composition of the LYSO materials used for the GE Signa and TB-PET GATE models. 

Atom TB-PET GE Signa 

Lutetium (Lu) 0.715 0.730 

Yttrium (Y) 0.040 0.028 

Silicium (Si) 0.064 0.063 

Oxygen (O) 0.182 0.179 

Density [g/cm3] 7.11 7.21 

 

Table 5.4: Composition of the printed circuit board used in the TB-PET geometry, which has a density of 1.85 g/cm3. 

Material Fraction of Composition 

Air 0.75 

Silicon 0.20 

Lead 0.05 

 

Table 5.5: Digitizer settings for the GE Signa PET/MR and the TB-PET scanner. 

Setting GE Signa TB-PET 

Energy Blurring 12% 11.5% 

Energy Window 425 - 650 keV 425 – 650 keV 

Time resolution 385 ps 212.13 ps 

minSectorDifference 3 5 

Coincidence time window 4.9 ns 3 ns 

Multiples policy keepIfAllAreGoods keepIfAllAreGoods 

Dead time (paralyzable) 300 ns 300 ns 

y 

x 

z 
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5.2 Sensitivity Measurements 

5.2.1 Simulation Set-Up 

To model the NEMA sensitivity phantom in GATE, a 700 mm long by 4 mm diameter 

polyethylene cylinder is created to act as the source distribution tube. This tube is placed at the center 

of the FOV, aligned with the axis of the scanner (z-direction). As the NEMA protocols require, 5 layers 

of attenuating material (aluminum) of 2.5 mm thickness each are placed sequentially around the source 

tube, as a way to ensure annihilation of the emitted positrons. In GATE, this means performing five 

different simulations, with 1 to 5 attenuation layers. The modelled and real sensitivity phantoms are 

represented in Figure 5.3. The polyethylene tubes shown in the photograph are not modelled in GATE 

and their only purpose on the phantom is to ensure the correct placement of the tubes and the spacing 

between each tube. 

 

Figure 5.3: Scheme of NEMA sensitivity phantoms modelled in GATE (right); Photography of real NEMA Sensitivity 

phantom (left). 

 

The activity is expected to be very low so that the count losses and random events rate are kept at 

less than 1% and 5%, respectively. For 18F, NEMA predicts an activity of 5-10 MBq. To keep count 

losses and random events rate at a minimum, an activity of 5 MBq was chosen for this project, for 18F. 

As NEMA recommends acquiring at least 10,000 coincidences and assuming that about 1% of all decays 

are captured by the scanner, an acquisition time of 1 second for the given activities should yield 

approximately 50,000 true coincidences. To account for the difference in branching ratios, the activity 

of radioisotopes other than 18F were adjusted to yield approximately the same number of events. All 

used activities are presented in Table 5.6. 

Table 5.6: Activity levels of each radioisotope for NEMA Sensitivity simulations. 

 18F 11C 13N 15O 68Ga 82Rb 

Activity (MBq) 5.00 4.85 4.85 4.85 5.45 5.07 

GATE’s ROOT output was enabled, enabling the “Coincidences” tree and disabling all others 

(“Hits”, “Singles”) to minimize the size of the files, which can reach up to 1 GB for each layer if all 

trees are enabled, as opposed to up to 200 MB for just “Coincidences”. 

Due to the TB-PET’s long AFOV, the sensitivity phantom is completely covered by the scanner 

bore. As an adaptation to the NEMA protocols for scanners with long AFOV, two phantoms of longer 

lengths were tested using 18F. The used lengths were of 100 cm and 120 cm, as to have a phantom that 

approximated the length of the scanner, and a longer one that emits gamma photons from outside the 
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scanner bore, in a more realistic scenario. The allow for more accurate comparison of results, the activity 

concentration was maintained from the original NEMA protocol, adapting the activity to the total 

volume of the tube source. The data analysis is identical for all phantom sizes. For the TB-PET, this test 

was focused on the 100 cm long phantom for the testing of different radioisotopes. 

5.2.2 Post-processing in ROOT and Excel 

ROOT’s “Coincidences” tree stores pairs of Singles that meet the conditions specified in the 

digitizer. Each pair is identified by an eventID for each particle (eventID1 and eventID2), which 

identifies the radioactive decay the Singles comes from. Furthermore, the entire history for each particle 

of the pair is recorded, from their original position’s coordinates to the interactions (Compton or 

Rayleigh scattering) they suffer before reaching the detector. Here lies one of the key advantages of 

simulations - being able to distinguish between true, scattered or random coincidences, allowing for the 

measurement of ‘trues only sensitivity’, a situation idealized by NEMA, and the reason for performing 

the test with very low levels of activity.  

To achieve trues only sensitivity, the situation idealized by NEMA, a C++ script (‘.c’ file) was 

developed to sort out true, random and scattered coincidences. A coincidence is considered to be random 

when the eventID for particle 1 differs from particle 2. When they are equal, a coincidence can still be 

considered scattered or true. True coincidences are obtained after checking for any Compton or Rayleigh 

scattering. When a true coincidence is found, its position along the z-direction (the position of where 

the radioactive decay took place) is stored into a 1D histogram, which can be used later to obtain an 

axial sensitivity distribution, or profile, for the scanner. The portion of code that sorts out the coincidence 

can be seen in Figure 5.4. The complete C++ script can be found in Appendix 1. The count of each type 

of coincidence should also be registered. 

 

Figure 5.4: Portion of the C++ script responsible for the sorting out between true, scattered and random coincidences. 

Complete script is found in Appendix 1. 

As sensitivity is defined by NEMA as “the rate in counts per second that true coincidence events 

are detected for a given source strength”, [67] the sensitivity for each of the attenuation layers is obtained 

dividing the count of true coincidences by the activity of the source. Although NEMA prescribes the 

correction of the count rate for the radioactive decay, taking into account the radioisotopes’ half-life 

period and the time of the acquisition, this step was disregarded due to the short acquisition time of the 

simulation of only 1 second.  

To obtain the system sensitivity, the data for each of the 5 layers should be made to fit the 

following equation:  

 𝑆𝑖 = 𝑆0. exp(−𝜇𝐴𝑙 ∗ 2 ∗ 𝑋𝑖) (5.1) 

where 𝜇𝐴𝑙  is the attenuation coefficient of the material and should be left as a variable to account for 

small amounts of scattered radiation, 𝑋𝑗 is the accumulated layer thickness and 𝑆0 is the attenuation-free 



 

 
32 

sensitivity. In this work, the fitting was done through Microsoft® Excel for Mac (Version 16.22) via 

exponential regression in a scatter plot, as is shown in Figure 5.5. 

 

Figure 5.5: Extrapolation of the attenuation-free sensitivity value via exponential regression for simulations at the center of 

the FOV (blue) and with a 10 cm radial offset (orange). 

 

This procedure is done for simulations at the center of the FOV and with a 10 cm radial offset 

from the center. The final reported sensitivity value is the average of both values: 

 
𝑆 =

𝑆𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑆10 𝑐𝑚 𝑜𝑓𝑓 𝑐𝑒𝑛𝑡𝑒𝑟
2

 
(5.2) 

5.3 Count Rate Statistics Measurements 

5.3.1 Simulation Set-Up 

The NEMA Standards Publications [67] prescribe the use of the NEMA Scatter phantom to 

perform the count rate statistics, as stated before in Section 5. In GATE, this phantom is modeled as a 

700 mm long polyethylene cylinder with a diameter of 203 mm. 45 mm directly below the axial center, 

a 6.4 mm diameter hole is inserted, which will house the line source. The line source is modeled as a 

3.2 mm diameter tube with a length equal to that of the phantom. A representation can be found in Figure 

5.6. 

 

Figure 5.6: Scheme of the NEMA Scatter phantom labeled with dimensions used for its modelling in GATE. 
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NEMA’s count rate statistics test is ran overnight in real scanners, making periodic measurements 

over several levels of activity in order to plot the count rates in function of the activity concentration in 

the line source. In GATE, to achieve such a plot, different simulations are run with different activities 

ranging from 1 to 900 MBq, providing the software with enough acquisition time to ensure that at least 

500,000 coincidences are registered. NEMA also recommends that the activity sampling rate around the 

peak count rate is higher than at beginning and end of the spectrum. The acquisition time is dependent 

on both the scanner and the radioisotopes. The used activities in this project ranged from 1 to 900 MBq, 

including 10 MBq and increments of 50 MBq starting from 50 MBq onward (100 MBq, 150 MBq and 

so on). Although no higher sampling rate for activity is used around the peak of the count rate as is 

recommended by the NEMA procedures, which is expected to be at an activity close to 400 MBq for 
18F, this is accounted for in post processing via linear interpolation. 

No scanner-intrinsic method for randoms estimation was used and the data analysis was 

performed by following the method described by NEMA for systems without randoms estimate. 

As the TB-PET/MR has a length superior to that of the scatter phantom, in this dissertation two 

hypothesis to adapt the NEMA procedures to future total body scanners are proposed. First, increasing 

the length to 100 cm, approximating the phantom size to the AFOV width of the TB-PET studied in this 

thesis. Second, increasing the size to 120 cm in order to have signal originating from outside the scanner 

that can no longer be covered by the bore and will act as the portion of the body that is outside the 

scanner and take into account border effects from the edges of the AFOV. Third, two separate scatter 

phantoms positioned in-line on the scanner bed, composing a ‘total’ phantom of 140 cm. The usage of 

two phantoms instead of a single long one comes from the fact that the scatter phantom is quite heavy 

and requires assembling, which could pose multiple challenges for the user. Furthermore, with the 

increasing length of the phantom and the radioisotope source, it is increasingly difficult to assure the 

homogeneity of the source distributions, which can significantly influence results. In GATE, this last 

phantom includes a 3.5 cm gap between each portion due to parts of the phantom outside the 

polyethylene cylinder, which were not modelled on any of the hypothesis, nor on the NEMA setup 

described previously. However, the post-processing procedure followed is identical for all hypothesis, 

as described below. 

5.3.2 Post-processing in ROOT and MATLAB 

For this test, the analysis is based on sinograms and is aimed at estimating the rate at which the 

scanner acquires coincidence data, be it true, random, or scattered coincidences.  Instead of recording 

the coincidence’s position in a 1D histogram as done before, ROOT’s sinogram data is extracted and 

written into a data file (‘.dat’ file) that will be later processed in MATLAB R2018a. The sinogram data 

consists of the angle (sinogramTheta) and the displacement (sinogramS) of the LOR, as described in 

more detail in Section 3.1.1. The core code of this script can be seen in Figure 5.7 and the full code can 

be found in Appendix 2.  

 

Figure 5.7: Portion of code that extracts ROOT's sinogram data. This line of code is looped over each entry in the 

“Coincidences” tree. The complete script can be found in Appendix 2. 

The ‘.dat’ file containing the columns of data are then read into MATLAB as a 2D matrix and 

transformed into a 2D histogram with 320 bins for the angle information in the vertical axis, which 

varies from 0 to , and 640 bins for the displacement data in the horizontal axis, varying from -300 to 

300 for the GE Signa, and -320 to 320 for the TB-PET, representing bins of 1 mm covering the entire 

FOV for each scanner (Figure 5.8). 
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Figure 5.8: Sinogram of coincidences as extracted from ROOT. The dark line on the image represents the line source and is 

curved due to its positioning being 45 mm below the center of the FOV. 

To make the simulation results more realistic and taking into account the limited spatial resolution 

of the scanner, a Gaussian blurring filter is applied to each horizontal line of the histogram (each angle). 

Spatial resolution is dependent on the radial offset as well as the direction of the measurement and ranges 

from a FWHM of 4.08 mm to 5.35 mm, for a 1 cm radial offset on the GE Signa PET/MR [80], while 

for the TB-PET it is 1.5 mm (FWHM). The conversion to standard deviation, 𝜎, of the Gaussian function 

is found in Equations (5.4) and (5.5), according to Equation (5.3) that is used by MATLAB’s 

imgaussfilt3 function. 

 Gaussian kernel: 𝑓(𝑥) =  
1

𝜎√2𝜋
𝑒
−(𝑥−𝜇)2

2𝜎2  (5.3) 

From this formula, the calculation of the standard deviation, 𝜎, can be derived as: 

 𝜎 =  
𝐹𝑊𝐻𝑀

√8 ln (2)
 (5.4) 

 𝜎𝐺𝐸 𝑆𝑖𝑔𝑛𝑎 = 
5.35 𝑚𝑚

√8 ln (2)
= 2.272 𝑚𝑚

𝑣𝑜𝑥𝑒𝑙 𝑒𝑑𝑔𝑒=3.125 𝑚𝑚
⇒                 𝜎𝐺𝐸 𝑆𝑖𝑔𝑛𝑎 = 0.727 (5.5) 

 𝜎𝑇𝐵−𝑃𝐸𝑇 = 
1.5 𝑚𝑚

√8 ln (2)
= 0.637 𝑚𝑚  

𝑣𝑜𝑥𝑒𝑙 𝑒𝑑𝑔𝑒=3.125 𝑚𝑚
⇒                 𝜎𝑇𝐵−𝑃𝐸𝑇 = 0.204 (5.6) 

Following the NEMA analysis, all pixels located farther than 12cm from the center of the FOV 

are set to zero, as shown in Figure 5.9. 
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Figure 5.9: Sinogram after applying Gaussian filter and setting all pixels farther than 12 cm from the center of the FOV to 

zero 

NEMA prescribes an alignment of the sinogram by finding the maximum value of the pixel for 

each projection, and shifting each angle so that the maximum value is at the center of the sinogram, with 

S = 0 mm, as shown in Figure 5.10. 

 

Figure 5.10: Sinogram after alignment according to the maximum values for each projection angle. 

After alignment, pixels in every projection angle that have the same displacement are summed in 

order to obtain a sum projection, according to: 

 𝐶(𝑟)𝑖,𝑗 = ∑ (𝑟 − 𝑆𝑚𝑎𝑥(𝜃), 𝜃)𝑖,𝑗𝜃 , (5.7) 

where r is the pixel, 𝜃 is the projection, and Smax represents the location of the pixel with the maximum 

value in each projection. This sum projection is shown in Figure 5.11. 
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Figure 5.11: Sum projections of the sinograms. The peak on the total coincidences projection (left) originate from the line 

source - as expected, most coincidences come from there. 

These curves are dependent on the bin size chosen for the sinograms, as wider bin sizes include 

more coincidences, and vice-versa. As stated before, a bin size of 1 mm was used in this work. 

Regardless of bin size, the integrated area under the curve remains the same and represents the total 

number of coincidences, CTotal. 

In order to estimate the background counts, the NEMA procedure filters the sum projection of the 

total coincidences into a 40 mm wide strip (Figure 5.12). The value of the left and right bins at the edge 

of the curve are then averaged and multiplied by the number of pixels in the strip. By adding this value 

to the number of coincidences outside the strip, the number of random plus scatter counts, Cr+s, is 

obtained. A visual representation of this procedure can be seen in Figure 5.13. 

 

Figure 5.12: 40 mm wide strip of the total coincidence's sum projection. 
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Figure 5.13: Graphical representation of NEMA procedure for calculation of background (random and scatter) counts, 

represented in the image in grey. 

All the steps mentioned above are performed on the .m script shown in Appendix 3. 

For each activity concentration A, the true, random, total and scattered events count rates are 

calculated by dividing the counts be the total time of acquisition: 

 𝑅𝑇𝑜𝑡𝑎𝑙,𝐴 =
𝐶𝑇𝑜𝑡𝑎𝑙,𝐴
𝑇𝑎𝑐𝑞,𝐴

 (5.8) 

 𝑅𝑇𝑟𝑢𝑒,𝐴 =
𝐶𝑇𝑜𝑡𝑎𝑙,𝐴 − 𝐶𝑟+𝑠,𝐴

𝑇𝑎𝑐𝑞,𝐴
 (5.9) 

 𝑅𝑅𝑎𝑛𝑑𝑜𝑚,𝐴 = 𝑅𝑇𝑜𝑡𝑎𝑙,𝐴− (
𝑇𝑇𝑟𝑢𝑒,𝐴
1 − 𝑆𝐹

) (5.10) 

 𝑅𝑆𝑐𝑎𝑡𝑡𝑒𝑟,𝐴 = (
𝑆𝐹

1 − 𝑆𝐹
) ∗ 𝑅𝑇𝑟𝑢𝑒,𝐴 (5.11) 

The scatter fraction is obtained only for the lowest activity acquisitions, where the count losses 

and randoms rate are expected to be less than 1% of the trues rate.  

 
𝑆𝐹 =  ∑

𝐶𝑟+𝑠,𝐴
𝐶𝑇𝑜𝑡𝑎𝑙,𝐴

𝐴

 (5.12) 

Having obtained all the count rates for the different types of detected coincidences, as well as the 

scatter fraction and NECR values for each of the simulated activity concentrations, these values can be 

displayed in a scatter plot against the activity concentration, allowing for a visual interpretation of the 

results. In addition to peak NECR, activity at peak NECR, and the scatter fraction, NEMA recommends 

the calculation of the NECR at specific activity concentrations as a way to investigate the integrity of 

the curve  

For the different phantom sizes, it is important to take into account the activity concentration due 

to the changing source length and, consequently, volume. For the 70 cm source, this volume is of 22,000 

cm3, while for the 100 cm, 120 cm and 140 cm phantoms the volumes are of 31,000 cm3, 38,000 cm3 

and 44,000 cm3, respectively. 
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5.4 Positron Range 

5.4.1 Simulation Set-Up 

To estimate the positron range of different radioisotopes, the coordinates of the point where a 

positron is annihilated are needed, as well as the coordinates from where it originated, if possible. For 

this purpose, a 10 x 10 x 10 cm3 cubic phantom with a sphere source of radius 0.1 mm placed in its 

center was built. No scanner geometry or digitizer was used for this part of the work. The phantom size 

was chosen to be large enough to ensure all positrons are annihilated within itself. The sub-millimetric 

radius of the source simulated a point source and allows for the simplification that every positron is 

originated from the origin of the referential, with coordinates (x, y, z) = (0, 0, 0) cm.  

The difference tissues used in phantom composition to study the effect of the magnetic field and 

its dependence on tissue density are specified in Table 5.7.  

Table 5.7: Phantom materials for the study of positron range. 

Tissue Density (g/cm3) 

Lung 0.26 

Soft Tissue 1.00 

Bone 1.42 

 

GATE allows for particle tracking from the moment they are originated until the moment they 

are annihilated and prints each step of the particle’s path onto the command line, or an output text file 

(‘.txt’ file), with a label. With the point source simplification, the only needed coordinates are the 

annihilation points, which are labeled “annihil” in the output. Using a Unix/Linux system, the line from 

the output that contains this expression can easily be printed onto a text file using command “grep” 

when executing the simulation, as follows: 

Gate macroFile.mac | grep "annihil" OUTPUT.txt 

 

5.4.2 Analysis  

The output file originated is read onto Python 3.7.1, where the x, y and z coordinates are copied 

to separate variables. The three-dimensional (3D) range of each recorded positron is calculated 

according to Equation (5.13), looping over the individual coordinate variables.  

 𝑅 =  √𝑥2 + 𝑦2 + 𝑧2 (5.13) 

The mean 3D positron range is obtained using numpy function mean(). The mean positron range 

for each direction can only be calculated using the absolute values of the variables, otherwise the result 

will average at 0, and numpy function abs() is used before applying the mean() function. The complete 

‘.py’ script used for this analysis can be found in Appendix 4. 
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6 Results 
__________________________________________________________________________________ 

 

The results from all the simulations regarding the sensitivity and count rate statistics tests 

performed on the GE Signa PET/MR and TB-PET are presented in this chapter. The results of the study 

on positron range are also presented. 

6.1 GE Signa PET/MR 

6.1.1 Sensitivity Measurements 

The simulated results for the NEMA sensitivity for the GE Signa PET/MR without and with the 

presence of a magnetic field (0 T and 3 T, respectively) are shown in Table 6.1. The values represent 

the average from simulations performed at the center of the FOV and with a 10 cm offset, according to 

Equation (5.2). The theoretical values were calculated based on the official GE Healthcare sensitivity 

for 18F, 22.5 cps/kBq, [81] and taking into account each radioisotopes’ total positron branching ratio. 

Axial sensitivity profiles for 18F and 82Rb are shown in Figure 6.1 and Figure 6.2, respectively. The 

coefficient of determination for the exponential regression (R2) observed in almost all cases was close 

or equal to 1, indicating a strong credibility of the simulated result. The exception is 82Rb, for which the 

regression coefficient is lower (R2 = 0.95) and where the scattered points have a different distribution 

when compared to that of 18F and all other radioisotopes, effectively influencing the regression and 

results (Figure 6.3). 

Table 6.1: Simulated results for the GE Signa PET/MR with and without the presence of a magnetic field. The theoretical 

values are based on the sensitivity value of 22.5 cps/kBq for 18F, provided by GE Healthcare, [81] taking into account each 

radioisotope’s total positron branching ratio. 

Radioisotope 
Positron Branching 

Ratio (%) 

Sensitivity (cps/kBq) 

0 T  3 T Theoretical @ 3 T 

18F 96,86 20,75 21,16 22,50 

11C 99,75 20,53 21,07 23,21 

13N 99,82 20,65 21,50 23,22 

15O 99,89 20,31 20,95 23,24 

68Ga 88,88 18,10 19,06 20,68 

82Rb 95,45 18,78 19,87 22,20 
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Figure 6.1: Axial sensitivity profile of the GE Signa PET/MR using 18F. The histogram only extends as far as the length of 

the scanner. 

 

Figure 6.2: Axial sensitivity profile of the GE Signa PET/MR using 82Rb. In addition to a lower peak, the histogram extends 

all throughout the source, with coincidences noticeably situated outside of the scanner bore. 

  

Figure 6.3: Sensitivity data plotted against the accumulated attenuation layer thickness and exponential regression of data 

from 18F and 82Rb, without the presence of a MR field. Fitted equation and coefficient of determination for both radioisotopes 

are presented for simulations at the center of the FOV (0 cm, blue) and for 10 cm radially off center (10 cm, orange). 

6.1.2 Count Rate Statistics 

On Table 6.2 the simulated NECR and related measures on the GE Signa PET/MR without a 

magnetic field are presented. The same measurements for the simulations with a 3 T MR field are 

presented in Table 6.3. Individual rates for the true, random and scattered coincidence rates are not 

presented individually. The rates are dependent on the activity concentration rather than absolute 

activity, and so they are plotted against the activity concentration, taking into account a total volume of 
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22,000 ml. As recommended by NEMA, NECR obtained at activity concentration 17.5 kBq/ml and at 

30.0 kBq/ml are also reported and ensure the integrity of the curves and the acceptability of the test.  

Table 6.2: Results of the simulated count rate statistics test for the GE Signa PET/MR without a MR field. 

Radioisotope 
Peak NECR 

(kcps) 

Activity @ peak 

NECR (kBq/ml) 

Scatter 

fraction 

(%) 

NECR @ 

17.5 kBq/ml 

(kcps) 

NECR @ 

30.0 kBq/ml 

(kcps) 

18F 209,32 15,34 39,23 207,40 174,83 

11C 206,77 14,63 39,18 203,42 164,35 

13N 201,72 14,19 39,39 194,94 156,38 

15O 196,08 17,18 39,61 196,03 149,41 

68Ga 185,70 19,36 39,70 184,24 173,11 

82Rb 136,93 17,65 48,45 123,74 105,17 

 

Table 6.3: Simulated results for the count rate statistics tests for the GE Signa PET/MR in the presence of a 3 T MR field. 

Radioisotope 
Peak NECR 

(kcps) 

Activity @ peak 

NECR (kBq/ml) 

Scatter 

fraction 

(%) 

NECR @ 

17.5 kBq/ml 

(kcps) 

NECR @ 

30.0 kBq/ml 

(kcps) 

18F 223,54 17,40 28,61 223,37 202,37 

11C 217,60 16,67 38,52 216,75 202,37 

13N 211,96 16,53 38,62 211,40 196,37 

15O 216,40 18,18 38,82 216,28 181,07 

68Ga 207,07 20,09 38,65 204,00 191,76 

82Rb 173,50 19,59 40,72 172,85 156,34 

 

6.2 Total-Body PET/MR 

6.2.1 Sensitivity Measurements 

Table 6.4 shows the results of the sensitivity testing using 18F for the TB-PET/MR with and 

without the presence of the 3 T magnetic field, with phantoms of different lengths but with a constant 

activity concentration of 0.227 kBq/ml for all lengths, which corresponds to 5 MBq, 7.14 MBq, and 

8.36 MBq for the 70 cm, 100 cm, and 120 cm long phantoms, respectively. The sensitivity decreases as 

the length of the phantom increases but is not significantly affected by the presence of the magnetic 

field, for this radioisotope. The simulated sensitivity for the different tested radioisotopes using the 

NEMA 70 cm long phantom are shown in Table 6.5. Under a 0 T, sensitivity is lower due to bigger 

positron range in the transversal plane when compared to 3 T, allowing high energy positrons to escape 

the phantom without being annihilated. Figure 6.4, Figure 6.5, and Figure 6.6 show the axial sensitivity 

profiles of the TB-PET sensitivity with the 70 cm, 100 cm and 120 cm long phantoms, respectively, for 

an 18F source. 
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Table 6.4: Simulated sensitivity in the TB-PET to an 18F source for different phantom lengths while maintaining the activity 

concentration in the tube source, with and without the presence of the 3 T MR field. 

Phantom Length (cm) 
Sensitivity (cps/kBq) 

0 T  3 T 

70 160,68 159,64 

100 128,71 128,10 

120 106,12 106,58 

 

Figure 6.4: Axial sensitivity profile of the TB-PET for a 70 cm long phantom, using 18F. As the source is completely covered 

by the scanner bore, coincidences are detected all throughout the source and the histogram cuts off where the source ends. 

 

Figure 6.5: Axial sensitivity profile of the TB-PET for a 100 cm long phantom, using 18F. As the source is completely 

covered by the scanner bore, coincidences are detected all throughout the source and the histogram cuts off where the source 

ends. The sensitivity decreases as the distance from the center of the scanner increases. 
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Figure 6.6: Axial sensitivity profile of the TB-PET for a 120 cm long phantom, using 18F. Coincidences are detected all 

throughout the AFOV. The sensitivity decreases as the distance from the center of the scanner increases. 

 

Table 6.5: Simulated TB-PET sensitivity for different radioisotopes with and without the presence of a 3 T MR field, using a 

70 cm long phantom. 

Radioisotope 

Positron 

Branching 

Ratio (%) 

Average Sensitivity 

(cps/kBq) 

0 T 3 T 

18F 96,86 164,58 165,70 

11C 99,75 156,88 158,86 

13N 99,82 174,27 177,87 

15O 99,89 152,29 157,00 

68Ga 88,88 135,90 147,30 

82Rb 95,45 138,37 152,72 

 

6.2.2 Count Rate Statistics 

Table 6.7 and Table 6.7 show the simulated results of the count rate statistics test for the different 

phantom lengths using 18F, without and with the presence of a MR field, respectively. As the rates are 

plotted against the activity concentration instead of absolute concentration, the total volumes used for 

the 70 cm, 100 cm and 120 cm to calculate concentration were of 22,000 ml, 31,000 ml and 38,000 ml, 

respectively. On Table 6.8 the simulated peak NECR and related measures on the TB-PET without a 

magnetic field are presented. The same measures for the simulations with a 3 T MR field are presented 

in Table 6.9. Individual rates for the true, random and scattered coincidence rates are not presented 

individually. As recommended by NEMA, NECR obtained at activity concentration 17.5 kBq/ml and at 

30.0 kBq/ml are also reported and ensure the integrity of the curves and the acceptability of the test.  

Table 6.6: Simulated results of the count rate statistics test for TB-PET without a magnetic field (0 T), using phantoms of 70 

cm, 100 cm, 120 cm, and 140 cm lengths. 

Phantom 

Length 

Peak NECR 

(kcps) 

Activity @ peak 

NECR (kBq/ml) 

Scatter 

Fraction (%) 

NECR @ 17.5 

kBq/ml (kcps) 

NECR @ 30.0 

kBq/ml (kcps) 

70 1543,71 19,27 39,11 1542,45 1339,30 

100 1250,14 12,95 40,19 1174,22  

120 1044,91 10,53 40,55 1044,71 - 
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Table 6.7: Simulated results of the count rate statistics test for TB-PET with a magnetic field (3 T), using phantoms of 70 

cm, 100 cm, 120 cm, and 140 cm lengths. 

Phantom 

Length 

Peak 

NECR 

(kcps) 

Activity @ peak 

NECR (kBq/ml) 

Scatter 

Fraction 

(%) 

NECR @ 17.5 

kBq/ml (kcps) 

NECR @ 30.0 

kBq/ml (kcps) 

70 1624,54 17,77 36,96 1618,52 1361,20 

100 1250,14 12,95 40,19 1167,97 913,93 

120 1075,47 10,53 40,14 1074,79 - 

 

Table 6.8: Simulated results of the count rate statistics test for TB-PET without a magnetic field (0 T), using a 70 cm length 

phantom. 

Radioisotope  
Peak NECR 

(kcps) 

Activity @ peak 

NECR (kBq/ml) 

Scatter 

Fraction 

(%) 

NECR 

@ 17.5 

kBq/ml 

(kcps) 

NECR @ 

30.0 kBq/ml 

(kcps) 

18F 1543,71 19,27 39,11 1542,45 1339,30 

11C 1530,99 16,91 39,48  1338,96 

13N 1516,24 17,04 39,44 1516,00 1332,02 

15O 1501,30 16,81 39,69 1500,58 1307,34 

68Ga 1489,64 20,23 41,83 1480,75 1276,80 

82Rb 1283,25 16,81 42,73 1282,71 1154,62 

 

Table 6.9: Simulated results of the count rate statistics test for TB-PET with a magnetic field (3 T), using a 70 cm length 

phantom. 

Radioisotope  
Peak NECR 

(kcps) 

Activity@ peak 

NECR (kBq/ml)  

Scatter 

Fraction 

(%) 

NECR 

@ 17.5 

kBq/ml 

(kcps) 

NECR @ 

30.0 kBq/ml 

(kcps) 

18F 1624,54 17,77 36,96 1618,52 1361,20 

11C 1567,18 17,04 37,28 1566,70 1383,96 

13N 1536,23 19,31 37,72 1532,63 1372,96 

15O 1516,53 20,00 38,33 1509,39 1372,35 

68Ga 1501,34 20,23 38,32 1492,06 1395,71 

82Rb 1399,59 18,18 40,32 1395,71 1239,39 

 

6.3 Positron Range 

The simulated mean 3D positron range values for different tissues with and without the presence 

of a 3 T MR field are shown in table Table 6.10. It is possible to observe a reduction in positron range 

when going from 0 T to 3 T, an effect which is more noticeable for higher energy radioisotopes. On 

Table 6.11 and Table 6.12. the transversal (x and y directions) and axial (z direction) positron ranges, 

mailto:Activity@%20peak%20NECR%20(kBq/ml)
mailto:Activity@%20peak%20NECR%20(kBq/ml)
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respectively, are presented. While significant changes are seen in the transversal plane, the magnetic 

field does not show any impact in the absolute values of the positron range in the axial direction, the 

same as the MR field. Annihilation point density distribution profiles are presented in Figure 6.7, 

showing a spread-out density distribution in the z-direction. 

Table 6.10: Mean 3D positron range in different tissues, for different radioisotopes with and without the presence of a 3 T 

magnetic field. 

  
Maximum 

Energy (keV) 

Mean 3D range (mm) 

 Radioisotope Soft Lung Bone 

  0 T 3 T 0 T 3 T 0 T 3 T 

18F 633.5  0.50 0.49  2.23 1.70  0.34 0.34 

11C 960.2 1.02 0.96  3.05 1.97  0.51 0.51 

13N 1198.5  1.08 1.01  4.30 2.63  0.71 0.69 

15O 1732.0  1.87 1.66  7.74 4.28  1.22 1.17 

68Ga 1899.0  2.02 1.77  8.09 4.59  1.33 1.26 

82Rb 3378.0  4.64 3.58  18.18 9.98  3.09 2.74 

 

Table 6.11: Mean tranversal (x or y directions) range in different tissues, for different radioisotopes with and without the 

presence of a 3 T magnetic field. 

  

Radioisotope  

  

Maximum 

Energy (keV) 

Mean x (or y) range (mm) 

Soft Lung Bone 

0 T 3 T 0 T 3 T 0 T 3T 

18F 633.5 0.27 0.26  0.95 0.73  0.17 0.17 

11C 960.2 0.39 0.36  1.52 0.63  0.26 0.25 

13N 1198.5 0.54 0.49  2.15 0.74  0.35 0.34 

15O 1732.0 0.93 0.77  3.74 0.97  0.61 0.57 

68Ga 1899.0 1.01 0.82  4.04 1.00  0.66 0.61 

82Rb 3378.0 2.32 1.48  9.10 2.25  1.54 1.28 
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Table 6.12: Mean axial (z direction) range in different tissues, for different radioisotopes with and without the presence of a 

3 T magnetic field. 

  

Radioisotope  

  

Maximum 

Energy (keV) 

Mean z range (mm) 

Soft Lung Bone 

0 T 3 T 0 T 3 T 0 T 3T 

18F 633.5 0.27 0.27 0.95 1.08 0.17 0.17 

11C 960.2 0.39 0.39  1.52 1.5  0.26 0.26 

13N 1198.5 0.54 0.54  2.15 2.15 0.35 0.35 

15O 1732.0 0.93 0.93  3.74 3.74  0.61 0.61 

68Ga 1899.0 1.01 1.16 4.05 4.04 0.66 0.66 

82Rb 3378.0 2.32 2.32 9.09 9.08 1.55 1.55 

 

 

Figure 6.7: Transversal (top) and longitudinal (bottom) distributions of a point source in lung tissue with and without a 3 T 

magnetic field along the z direction.
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7 Discussion 
__________________________________________________________________________________ 

 

In this chapter, the results presented previously are discussed, as well as the limitations and 

drawbacks of the methods followed on this dissertation. 

The results obtained for the simulated sensitivity measurement performed on GE Signa PET/MR 

with a 3 T MR field using a 18F source, 21.16 cps/kBq, are comparable to literature values measured 

following the NEMA protocols, 21.5 cps/kBq [81], thus validating the simulation model. The sensitivity 

for the pure 𝛽+ emitters 11C, 13N and 15O is comparable to that of 18F. The effect of the 3% extra positron 

emission does not significantly impact sensitivity measurements. However, 68Ga and 82Rb show 

considerable differences. For 68Ga, this was to be expected as the literature values show lower sensitivity 

of about 2 cps/kBq less than 18F [81], which is also seen in the simulations.  

The case of 82Rb is quite particular. With a positron branching ratio similar to 18F (<2% 

difference), the sensitivity is much lower than what was expected. Taking a closer look at the data reveals 

a difference in the behavior of the radioisotope regarding the annihilation in the sensitivity phantom’s 

attenuation layers, significantly affecting the regression method used to estimate the attenuation-

sensitivity. Due to the extremely high energy of 3.381 MeV of the emitted positrons, the measurement 

with only one attenuation layer shows that it falls outside the trend of the rest of the measurements for 

this radioisotope, and the other radioisotopes. This is reflected on the coefficient of determination of the 

regression, which is lower than for any other tested radioisotope, significantly underestimating 

sensitivity for 82Rb.  

The sensitivity profiles for radioisotopes other than 82Rb are in line with what was expected, with 

peak sensitivity occurring near the center of the scanner and declining towards the edge of the bore, due 

to geometrical and physical limitations. However, for 82Rb in particular, the profile shows a significant 

portion of the coincidences being detected outside the scanner bore, which, in theory, should not be 

possible as no LOR can be placed outside the scanner when two photons are registered in the detectors. 

However, due to the additional 777 keV prompt-gamma emission, two gamma photons coming from 

the same particle can be registered inside the scanner, even when the source is outside of the scanner. 

Moreover, as the method for the ROOT analysis does not take into account LOR formation principles 

and reads only the initial positions of the detected photons, it is possible that these positions fall outside 

the scanner, originating the abnormal sensitivity profile we see in Figure 6.2. This constitutes a limitation 

of the simulation method used in this thesis.  

Without the presence of a MR field, the results across the range of radioisotopes are 1 to 5% lower 

than with the 3 T field present. The effect is bigger on higher energetic positrons, such as 82Rb, where 

the coefficient of determination for the regression is also higher. This suggests an effect of the magnetic 

field on the positron range of the radioisotopes in the transversal plane to the direction of the magnetic 

field. This effect prevents the positrons from escaping the phantom tube. With the reduced range, the 

probability that annihilations occur in the inner layers of aluminum is higher, and the higher the 

sensitivity will be. 

NEMA count rate statistics simulation results for 18F and 68Ga are in agreement with published, 

measured values [80], thus validating the built GATE model, as well as the analysis method. 11C, 13N 

and 15O offer similar results to 18F in terms of peak NECR and scatter fraction. The activity concentration 
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at peak NECR shows a variance that is inversely proportional to the branching ratio. For the highly 

energetic and non-pure emitters, 68Ga and 82Rb, the count rates show lower values compared to 18F. 

These differences are attributed to the 3% and 14.16% additional gamma photons that are emitted when 

the radioisotopes decay to certain excited levels. These additional prompt-gammas are susceptible to 

Compton scattering and, in the case of 68Ga, even pair production due to its high energy of 1.077 MeV, 

which exceeds the threshold for pair production, 1.022 MeV. Either by down-scattering onto the energy 

window of the detector via Compton scattering or by production of extra pairs of 511 keV photons, these 

additional gammas result in contamination of the acquired data, with the scanner registering more 

random and scattered coincidences and, in case they are considered true coincidences, most likely 

misplacing the LORs. Furthermore, additional prompt-gammas will be registered by the detectors and 

contribute to their busyness, aggravating their dead-time limitations, more significantly at high activity 

levels. Both these effects effectively lower the ability of the scanner to register true coincidences and 

lower the NECR values for both these radioisotopes. This is more prominent for 82Rb, due to its prompt-

gamma probability being higher and their energy being much closer to the energy window, at only 777 

keV. 

The move to total-body PET results in tremendous increase in both sensitivity and NECR. A 104 

cm AFOV yields a sensitivity of 164.58 cps/kBq for 18F, which represents a sensitivity that is almost 8 

times higher than in the GE Signa, which stands at only 21.16 cps/kBq. This trend is present with all the 

tested radioisotopes. In what regards the count rate statistics test, the TB-PET yields a peak NECR of 

1543.71 kcps for 18F. In the TB-PET, the influence of the positron branching ratio as well as additional 

gamma photons seems to be amplified, however, the effects of the magnetic field are about the same, 

with an increase in sensitivity of up to 5% in the presence of the magnetic field, both in the GE Signa 

and the TB-PET. This suggests that the effect of the MR field is a result of the NEMA protocols and the 

way the tests are conducted, rather than a direct effect on performance of the scanners and may not 

translate directly into benefits in real patient scanning and clinical practice. 

When considering longer phantoms for the sensitivity test on the TB-PET, starting to take into 

account border effects of the scanner, the sensitivity drops from 160.68 cps/kBq on the NEMA 70 cm 

phantom to 128.71 cps/kBq for the 100 cm phantom and to 106.12 cps/kBq for the 120 cm phantom, 

without the presence of the magnetic field. On the latter case, there is already some activity outside the 

scanner as the phantom is longer than the AFOV, although the activity concentration is the same all 

throughout the phantom. Despite being lower than the 70cm NEMA phantom, this still represents an 

increase of over 4 times the sensitivity of the GE Signa, and represents a more real-life simulation of the 

capacities of the scanner, as in patient scanning there is always some activity outside the scanner. This 

is also the case for the count rate statistics test, specifically peak NECR. For the 100 cm phantom, peak 

NECR drops to 1250.14 kcps and to 1049.91 kcps for the 120 cm phantom, still being 4 times higher 

than peak NECR for the GE Signa. Considering the 70 cm scanner, both measures on the TB-PET would 

be 7 to 8 times higher. Together, these measurements allow for the manipulation and optimization of 

clinical scanning protocols, regarding exam times and activity dose injected in the patient. With either 

faster imaging or lower dose, or a combination of both, it is possible to maintain state of the art image 

quality while reducing operational costs, increasing patient throughput and/or increase profit. Due to the 

capability of scanning with lower activities, TB-PET represents the future of PET imaging in remote 

areas, to where transportation times are longer.  

The positron range studies confirm a strong dependency on the density of the tissue surrounding 

the source. The effect of the magnetic field is also clearly seen all throughout the different radioisotopes 

and different tissues, although it is much more prominent for high energy emitters in less dense tissues. 

Considering the three-dimensional mean positron range, the impact of the magnetic field is felt through 

a reduction of up to 50% in its value under a magnetic field, compared to no magnetic field. From a 
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deeper analysis, it is clear that the decrease is a result of the constraints on the range in the transversal 

plane to the direction of the field, which was to be expected given the physics involved, namely the 

Lorentz force. However, no significant changes are observed in the axial range, with all the values being 

unchanged when going from 0 T to 3 T. The constraints are more noticeable with the energy of the 

positron and can go up to 4 times smaller ranges in the x (or y) direction than in the z (axial) direction. 

Despite no significant changes being observed in absolute values for positron range in the z-direction, 

there are differences in the density distribution along this direction, showing an anisotropic profile. This 

strongly points out the need to re-evaluate image reconstruction algorithms for PET/MR imaging. 

The simulations performed in this dissertation have a few drawbacks. For starters, the dead time 

digitizer settings have a certain degree of uncertainty as these values are not published by the 

manufacturer, in the case of the GE Signa, and, because the TB-PET is still under development, there 

are no certain values for the dead time yet as not all the components have been chosen or developed yet. 

For consistency and to allow for comparison between scanners, the same dead time was used for the GE 

Signa and the TB-PET. Having accurate measurements of dead time as well as its behavior (paralyzable 

or non-paralyzable), could introduce changes in the presented results, although the conclusion overall 

would be expected to remain the same. Furthermore, some literature suggests that the NEMA methods 

for data analysis of sensitivity via exponential regression can underestimate sensitivity when applied to 

simulated data. [82] 
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8 Conclusion 
__________________________________________________________________________________ 

 

In this dissertation, a study of the performance of integrated PET/MR systems was done using a 

wide range of clinically available radioisotopes, covering energies from 633 keV to over 3.3 MeV. 

Different tests following the NEMA protocols were simulated on a realistic model of the GE Signa 

PET/MR, as well as on a 104 cm long state-of-the-art PET system currently under development. Also, 

a study of positron range and how it is affected by a static magnetic field was performed. 

Significant differences in performance were found for the different tested radioisotopes, and as a 

result of the presence of the magnetic field. NEMA sensitivity was found to be highly dependent on the 

positron branching ratio, with higher ratios meaning higher sensitivity, but also suffer some 

underestimation for highly energetic positrons. The presence of additional prompt-gamma photons 

degrades a scanners ability to acquire data, due to effects of dead time and scanner busyness. The 

magnetic field generally improves both these measures in up to 5%. For a total-body PET scanner, 

NEMA performance is up to 8 times higher than a conventional, though state-of-the-art, scanner, both 

in terms of sensitivity and peak NECR, meaning faster and/or lower dose imaging, reduced operational 

costs, and possibility for new kinds of studies. Also, with the development of a new generation of 

scanners arises the need for adaptation of the NEMA protocols. Constraints to positron range in the 

transversal plane were found to be highly significant, especially in lower density tissues, when applying 

a magnetic field axially.  

To try and overcome the limitations of the work developed in this dissertation, future projects 

should simulate also the NEMA spatial resolution and image quality tests, for better classification and 

quantification of the system’s performance. However, this will only be possible when some 

specifications of the scanner, like dead time, are well-known. Other radioisotopes that are gaining 

popularity amongst the medical community can also be tested, such as 90Y and 124I, which were not 

included in this study due to lack of proper implementation in GATE and Geant4. Applying the 

quantified impact of the magnetic field on positron range on image reconstruction algorithms is also a 

necessary step on the path to better image quality and artifact elimination in PET/MR imaging. Lastly, 

research into the adaptation of the NEMA protocols to large AFOV PET scanners is needed, as the 

market is evolving in this direction and this kind of scanners, like the EXPLORER, is starting to become 

available. 
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Thesis Outcomes 
__________________________________________________________________________________ 

 

Over the course of the internship at Medisip, multiple publications based, at least in part, on the 

work developed for this dissertation were published and presented. They are listed below, in 

chronological order. 

• Poster MedImag1 “GE Signa Integrated PET/MR: Evaluation of Positron Range for 

Clinically Relevant PET Isotopes”. 17th National Day on Biomedical Engineering. 

30/11/2018, Brussels, Belgium.  

• Abstract and oral presentation O 3 “NEMA NU 2–2007 measurements and GATE Monte 

Carlo simulations of GE Signa integrated PET/MR for different PET isotopes”. 8th 

Conference on PET/MR and SPECT/MR (PSMR 2019). 15/04/2019, Munich, Germany. 

• Abstract and oral presentation PHYS 02 “GE Signa Integrated PET/MR system: results 

of the NEMA NU2-2007 tests and a GATE Monte Carlo study of the clinically available 

isotopes”. 19th BELNUC Symposium. 11/05/2019, Liège, Belgium. 

• E-poster oral presentation EPS-106 “NEMA NU 2-2007 Measurements and GATE 

Monte Carlo of GE Signa integrated PET/MR for pure and non-pure positron emitters”. 

EANM’19 – Annual Congress of the European Association of Nuclear Medicine. 

14/10/2019, Barcelona, Spain. 
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__________________________________________________________________________________ 

 

Appendix 
__________________________________________________________________________________ 

 

Appendix 1 – Processing of sensitivity data via ROOT (SensitivityAnalysis.c) 

 

void SensitivityAnalysis() 

{ 

    gROOT->SetStyle("Plain"); 

    //GateRootCoincBuffer mybuffer; 

     

    //Lists of files to be read, histogram titles for each sensitivity 

profile, and output file to save the sensitivity profile 

    char filename[5][100]={ 

    "OUT_1layer.root", 

    "OUT_2layers.root", 

    "OUT_3layers.root", 

    "OUT_4layers.root", 

    "OUT_5layers.root", 

    };  

     

    char histoTitle[5][200] = { 

    "Sensitivity Profile GE Signa PET/MR (1 layer)", 

    "Sensitivity Profile GE Signa PET/MR (2 layers)", 

    "Sensitivity Profile GE Signa PET/MR (3 layers)", 

    "Sensitivity Profile GE Signa PET/MR (4 layers)", 

    "Sensitivity Profile GE Signa PET/MR (5 layers)",  

    }; 

     

    char outFiles[5][100] = { 

    "Sensitivityprofile_1layer.png", 

    "Sensitivityprofile_2layers.png", 

    "Sensitivityprofile_3layers.png", 

    "Sensitivityprofile_4layers.png", 

    "Sensitivityprofile_5layers.png", 

    }; 

     

     

    // for cycle to loop over each file, title and output file 

 for (int k=0;k<5;k++){ 

 

    TFile *f = new TFile(filename[k], "READ"); 

     

    ////// Process Hits  /////// 

    TTree *htree = (TTree *) f->Get("Coincidences"); 

    long Hitentries = (long) htree->GetEntries(); // get number of 

entries in the htree 

     

 //   Get relevant variables to sort out coincidences 

    float sourcePosZ1; 

    int 

comptonPhantom1,comptonPhantom2,RayleighPhantom1,RayleighPhantom2,event

ID1,eventID2; 
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    float nrandom=0; 

    float ntrue=0; 

    float nscatter=0; 

     

    TBranch *b_sourcePosZ1 = htree->GetBranch("sourcePosZ1"); 

    b_sourcePosZ1->SetAddress(&sourcePosZ1); 

     

    TBranch *b_RayleighPhantom1 = htree->GetBranch("RayleighPhantom1"); 

    b_RayleighPhantom1->SetAddress(&RayleighPhantom1); 

     

    TBranch *b_RayleighPhantom2 = htree->GetBranch("RayleighPhantom2"); 

    b_RayleighPhantom2->SetAddress(&RayleighPhantom2); 

     

    TBranch *b_comptonPhantom1 = htree->GetBranch("comptonPhantom1"); 

    b_comptonPhantom1->SetAddress(&comptonPhantom1); 

     

    TBranch *b_comptonPhantom2 = htree->GetBranch("comptonPhantom2"); 

    b_comptonPhantom2->SetAddress(&comptonPhantom2); 

     

    TBranch *b_eventID1 = htree->GetBranch("eventID1"); 

    b_eventID1->SetAddress(&eventID1); 

 

    TBranch *b_eventID2 = htree->GetBranch("eventID2"); 

    b_eventID2->SetAddress(&eventID2); 

     

    TH1F *Sensitivity = new TH1F("Sensitivity",histoTitle[k],1040,-

520,520); 

     

    //loop over each entry 

    for (int i=0;i < Hitentries; i++) 

    { 

        b_sourcePosZ1->GetEntry(i); 

        b_comptonPhantom1->GetEntry(i); 

        b_comptonPhantom2->GetEntry(i); 

        b_RayleighPhantom1->GetEntry(i); 

        b_RayleighPhantom2->GetEntry(i); 

        b_eventID1->GetEntry(i); 

        b_eventID2->GetEntry(i); 

         

        // sort random, true and scattered coincidences         

        if (eventID1!=eventID2) { 

            nrandom++; 

        } 

        else { 

            if 

(comptonPhantom1==0&&comptonPhantom2==0&&RayleighPhantom1==0&&RayleighP

hantom2==0) { 

                ntrue++; 

                // fill sensitivity profile (histogram) 

                Sensitivity->Fill(sourcePosZ1); 

            } 

            else{nscatter++; 

            } 

        } 

    } 

     

    //The parameters LengthOfSource, simulationTime, LengthOfScanner 

and Activity has to be manually adjusted 
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    Int_t   startingActivity=5000000; 

    Double_t  simulationTime=1; //in s 

    Int_t    LengthOfSource=700; // in mm 

    Int_t    LengthOfScanner=250; // in mm 

     

    // Set axis titles 

    Sensitivity->GetXaxis()->SetTitle("Distance from center of scanner 

[mm]"); 

    Sensitivity->GetYaxis()->SetTitle("Sensitivity [cps/Bq]"); 

 

 /// Normalisation factor (needed due to the use of a linesource) 

    Double_t norm = (startingActivity*simulationTime)/ ((1/Sensitivity-

>GetBinWidth(100))*LengthOfSource);  

     

    // Set histogram parameters 

    Sensitivity->Scale(100*(1/norm)); 

    Sensitivity->SetMaximum(25); 

    Sensitivity->SetMinimum(0); 

    char  Profile_Name[256]; 

    TCanvas* P2 = new TCanvas("P2", "Sensitivity",3,28,970,632); 

    P2->SetFillColor(0); 

    P2->SetBorderMode(0); 

    P2->cd(1); 

    Sensitivity->SetMarkerColor(kBlue); 

    Sensitivity->Draw(); 

     

    // Calculate Sensitivity (trues only) 

    float sensitivity_truesScatters = (ntrue)/(startingActivity)*1000; 

    printf("Overall sensitivity (trues+scatters): %f cps/kBq\n \n \n 

\n",sensitivity_truesScatters); 

  

 // Save sensitivity profile 

    P2->SaveAs(outFiles[k]); 

    } 

} 
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Appendix 2 – Processing of count rate statistics test data via ROOT (NECRAnalysis.c) 

 

using namespace std; 

 

int NECRAnalysis(){ 

  

 // input .root file 

    char filename[200]= {"OUTPUT_1M.root"}; 

     

    // output coincidence file 

    char coincFiles[100] = {"OUTPUT/coincidences.dat"}; 

 

    // Read input .root file 

    TFile *f = new TFile(filename[k], "READ"); 

      

 // create output .dat files     

    FILE *coincidences; 

    coincidences = fopen(coincFiles[k], "w"); 

    if(coincidences == NULL) 

    { 

     printf("Cannot open file!"); 

    } 

      

    // Obtaining coincidence data 

    TTree *htree = (TTree *) f->Get("Coincidences"); // Reading 

Coincidences tree 

    long Hitentries = (long) htree->GetEntries(); // get number of 

entries in the htree 

 

 // Get relevant variables 

    float sinogramTheta,sinogramS; 

 

    TBranch *b_sinogramTheta = htree->GetBranch("sinogramTheta"); 

    b_sinogramTheta->SetAddress(&sinogramTheta); 

     

    TBranch *b_sinogramS = htree->GetBranch("sinogramS"); 

    b_sinogramS->SetAddress(&sinogramS); 

         

    // loop over each entry 

    for (int i=0;i < Hitentries; i++) 

    { 

   b_eventID1->GetEntry(i); 

        b_eventID2->GetEntry(i); 

        b_sinogramS->GetEntry(i); 

        b_sinogramTheta->GetEntry(i); 

   // print total coincidences onto coincidence.dat file into two 

columns 

        fprintf(coincidences,"%f %f\n",sinogramTheta,sinogramS);         

    } 

 //close output files 

      fflush(coincidences); 

 fclose(coincidences);  

 } 

} 

 

  



 

 
61 

Appendix 3 – Estimation of count rates via MATLAB (NECRSinogramAnalysis.m) 

function [C_tot,C_rs] =NECRSinogramAnalysis(inputFile) 

% From the root files, the first column is the theta and the second 

column 

% is the distance along the LOR 

coincidences=load(inputFile); 

Theta=coincidences(:,1); 

S=coincidences(:,2); 

h_coinc=hist3([Theta,S],'Nbins',[321 641]); %2D histogram with 321 bins 

for theta and 641 bins for S (1 bin = 1mm) 

Coinc = length(S); 

 

 

% Applying Gaussian filter to take into account the effect of limited 

% spatial detection resolution  

for i=1:321 

  h_coinc(i,:)=imgaussfilt(h_coinc(i,:),0.652);   

end 

 

%%% NEMA ANALYSIS WITH NO RANDOMS ESTIMATE %%% 

% Step 1: Remove more than 12cm from center  

central_bin = (length(h_coinc)-1)/2; 

hc_coinc=h_coinc; hc_coinc(:,1:(central_bin-120)) = 0; 

hc_coinc(:,(central_bin+120):end)=0; 

 

% Steps 2 and 3: Find the maximum pixel and shift rows (Alignment) 

nbins=length(hc_coinc); 

central_bin = round(nbins/2)-1; 

for i=1:321 

    maxbin = max(hc_coinc(i,:)); 

    [x,y] = find(hc_coinc(i,:)==maxbin); 

    shift=round(central_bin-y); 

    row=hc_coinc(i,:); 

    row=circshift(row,[0 shift]); 

    hc_coinc(i,:)=row; 

end 

 

% Step 4: Sum projection 

S_coinc=sum(hc_coinc).'; 

C_tot=sum(S_coinc); 

 

% Step 5: 40mm strip 

Central=S_coinc((central_bin-20):(central_bin+20)); 

 

% Step 6: Average of the 2 values 

B=(Central(1)+Central(41))/2*41; 

C=sum(Central); 

C_rs=B+(C_tot-C); 

 

 

end 
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Appendix 4 – Processing of positron range data via Python (PositronRange.py) 

******************************************************************** 

This code extracts the steps number, the xyz position and the positrons 

ranges emitted from a source. it saves in .txt file. 

Data obtained from 'tracking/verbose 1' in Gate simulation. 

******************************************************************** 

 

nameOfInputFile = "OUT.txt" 

 

saveFile = "PositronRange.txt" 

 

####################### Data Analysis 

 

#1 - Plotting the end-points 

from mpl_toolkits.mplot3d import Axes3D 

import numpy as np 

import matplotlib.pyplot as plt 

from matplotlib import cm 

from scipy import stats 

from scipy import signal 

 

from scipy.interpolate import splrep, sproot, splev 

 

def fwhm(x, y, k=10): 

    """ 

    Determine full-with-half-maximum of a peaked set of points, x and 

y. 

 

    Assumes that there is only one peak present in the datasset.  The 

function 

    uses a spline interpolation of order k. 

    """ 

 

    class MultiplePeaks(Exception): pass 

    class NoPeaksFound(Exception): pass 

 

    half_max = np.max(y)/2.0 

    s = splrep(x, y - half_max) 

    roots = sproot(s) 

 

    if len(roots) > 2: 

        raise MultiplePeaks("The dataset appears to have multiple 

peaks, and " 

                "thus the FWHM can't be determined.") 

    elif len(roots) < 2: 

        raise NoPeaksFound("No proper peaks were found in the data set; 

likely " 

                "the dataset is flat (e.g. all zeros).") 

    else: 

        return abs(roots[1] - roots[0]) 

 

f = np.loadtxt(nameOfInputFile) 

 

data = f[1:1000000,1:4].copy() # X Y Z 

 

X = data[1:1000000,0] 

Y = data[1:1000000,1] 

Z = data[1:1000000,2] 
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Ax = np.abs(X) 

Ay = np.abs(Y) 

Az = np.abs(Z) 

Alcance = np.sqrt(np.sum(data**2, axis=1)) #mm 

 

### ************ Calculate FWHM through Histograms ************* 

import matplotlib.ticker as mtick 

 

 

# ATENCAO Eu modifiquei Pz para Px 

Px_total = data[1:1000000,0] # Y Z 

Py_total = data[1:1000000,1] # Y Z 

Pz_total = data[1:1000000,2] # X Y 

 

Pz = [] 

 

for x in range(0, len(Pz_total)): 

    if (abs(Pz_total[x]) < 2.5 and abs(Py_total[x]) < 2.5): 

        Pz.append(Pz_total[x]) 

 

fig = plt.figure(facecolor="white") 

 

ax = fig.add_subplot(111)     

 

FWHM_histZ, binsZ = np.histogram(Pz,101) 

SFile_Txt = np.vstack([binsZ[1:],FWHM_histZ]).T 

np.savetxt(saveFile,SFile_Txt) 

FWHM = fwhm(binsZ[1:], FWHM_histZ) 

 

### ************ Print Results ************* 

 

print('==================== 0 T ===================') 

print('X, Y, Z Avarage Positron Range (mm): %.2f, %.2f, %.2f' % 

(Ax.mean(), Ay.mean(), Az.mean())) 

print('3D Avarage Positron Range (mm): %.2f'% (Alcance.mean())) 

print("FWHM Z (mm): %.2f" % (FWHM)) 

print("No of Anihilation: %.3g"% (data.shape[0])) 

 

### ************ Plot Histogram ************* 

 

label = '0 T [FWHM = %.2f mm]' % (FWHM) 

plt.plot(binsZ[1:], FWHM_histZ, lw=2, label=label) 

plt.legend(loc='upper right') 

plt.title("Positron Range (Fluorine-18)") 

plt.xlabel("Z (mm)") 

plt.ylabel("Number of Events") 

 

axes = plt.gca() 

axes.set_xlim([-1,1]) 

ax.xaxis.set_major_formatter(mtick.FormatStrFormatter('%.1f')) 

ax.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.0e')) 

 

plt.show() 
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