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Resumo

Nos ultimos anos, as ontologias biomédicas tornaram-se fundamentais para descrever
o conhecimento biolégico na forma de grafos de conhecimento. Consequentemente,
foram propostas varias abordagens de mineracao de dados que tiram partido destes
grafos de conhecimento. Estas abordagens baseiam-se em representagbes vetoriais
que podem nao capturar toda a informacao seméntica subjacente aos grafos. Uma
abordagem alternativa consiste em utilizar a semelhanca seméantica como representa-
¢ao seméantica. No entanto, como as ontologias podem modelar varias perspetivas, a
semelhanca semantica pode ser calculada tendo em consideracao diferentes aspetos.
Deste modo, diferentes tarefas de aprendizagem automatica podem exigir diferentes
perspetivas do grafo de conhecimento. Selecionar os aspetos seméanticos mais rele-
vantes, ou a melhor combinagao destes para suportar uma determinada tarefa de
aprendizagem nao ¢é trivial e, normalmente, exige conhecimento especializado.

Nesta dissertacao, apresentamos uma nova abordagem usando a Programacao Gené-
tica sobre um conjunto de semelhancas seméanticas, cada uma calculada com base num
aspeto seméntico dos dados, para obter a melhor combinagao para uma dada tarefa de
aprendizagem supervisionada. A metodologia inclui trés etapas sequenciais: calcular
a semelhanca seméntica para cada aspeto seméntico; aprender a melhor combinagao
desses aspetos usando a Programacao Genética; integrar a melhor combinacao com
o algoritmo de classificagao.

A abordagem foi avaliada em nove conjuntos de dados para prever a interagao entre
proteinas. Nesta aplicagao, a Gene Ontology foi utilizada como grafo de conhecimento
para suportar o célculo da semelhanga seméantica. Como referéncia, utilizamos uma
variacao da abordagem proposta com estratégias manuais frequentemente utilizadas
para combinar os aspetos seméanticos. Os resultados demonstraram que as combi-
nagoes obtidas com a Programacao Genética superaram as combinagoes escolhidas
manualmente que emulam o conhecimento especializado. A nossa abordagem foi tam-
bém capaz de aprender modelos agnosticos em relacdo & espécie usando diferentes
combinagoes de espécies para treino e teste, ultrapassando assim as limitagoes de
prever interagoes entre proteinas para espécies com poucas interacoes conhecidas.

Esta nova metodologia supera as limitacoes impostas pela necessidade de selecionar
manualmente os aspetos seméanticos que devem ser considerados para uma dada tarefa
de aprendizagem. A aplicagao da metodologia a previsao da interagao entre proteinas
foi bem-sucedida, perspetivando outras aplicagoes.

Palavras Chave: semelhanca seméntica, programacao genética, ontologia, grafo de
conhecimento, previsao da interacgao entre proteinas.
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Abstract

In recent years, biomedical ontologies have become important for describing exist-
ing biological knowledge in the form of knowledge graphs. Data mining approaches
that work with knowledge graphs have been proposed, but they are based on vector
representations that do not capture the full underlying semantics. An alternative is
to use machine learning approaches that explore semantic similarity. However, since
ontologies can model multiple perspectives, semantic similarity computations for a
given learning task need to be fine-tuned to account for this. Obtaining the best
combination of semantic similarity aspects for each learning task is not trivial and
typically depends on expert knowledge.

In this dissertation, we developed a novel approach that applies Genetic Programming
over a set of semantic similarity features, each based on a semantic aspect of the data,
to obtain the best combination for a given supervised learning task. The methodology
includes three sequential steps: compute the semantic similarity for each semantic
aspect; learn the best combination of those aspects using Genetic Programming;
integrate the best combination with a classification algorithm.

The approach was evaluated on several benchmark datasets of protein-protein inter-
action prediction. The quality of the classifications is evaluated using the weighted
average F-measure for each dataset. As a baseline, we employed a variation of the
proposed methodology that instead of using evolved combinations, uses static com-
binations. For protein-protein interaction prediction, Gene Ontology was used as the
knowledge graph to support semantic similarity, and it outperformed manually se-
lected combinations of semantic aspects emulating expert knowledge. Our approach
was also able to learn species-agnostic models with different combinations of species
for training and testing, effectively addressing the limitations of predicting protein-
protein interactions for species with fewer known interactions.

This dissertation proposes a novel methodology to overcome one of the limitations in
knowledge graph-based semantic similarity applications: the need to expertly select
which aspects should be taken into account for a given application. The methodology
is particularly important for biomedical applications where data is often complex and
multi-domain. Applying this methodology to protein-protein interaction prediction
proved successful, paving the way to broader applications.

Keywords: semantic similarity, genetic programming, ontology, knowledge graph,
protein-protein interaction prediction.






Resumo Alargado

A descoberta de conhecimento em dominios complexos pode ser um desafio para os
métodos de mineracao de dados. Estes métodos sao tipicamente limitados a visu-
alizagoes agnosticas dos dados, nao tendo acesso ao seu contexto e significado. No
entanto, é amplamente reconhecido que o desempenho dos métodos de mineracao de
dados pode melhorar significativamente quando as relagoes adicionais entre os dados
sao tidas em conta.

Na ultima década, a explosao na complexidade e heterogeneidade dos dados biomé-
dicos motivou um novo panorama de dados seménticos, onde milhoes de entidades
biologicas descritas semanticamente estao disponiveis em grafos de conhecimento.
Os grafos de conhecimento descrevem entidades reais e as suas inter-relagoes, através
de ligagbes a conceitos ontoldgicos que os descrevem, organizados num grafo. Cada
ontologia é uma especificacao formal e explicita de uma conceptualizagao na qual
cada classe (ou conceito) esta precisamente definida e as relagoes entre classes estao
parametrizadas ou restringidas. Deste modo, as representagoes seméanticas baseadas
nos grafos de conhecimento podem ser exploradas por métodos de mineracao de da-
dos, fornecendo uma oportunidade tinica para melhorar os processos de descoberta
de conhecimento.

Dada a crescente importancia das ontologias biomédicas na forma de grafos de co-
nhecimento, o nimero de abordagens que combinam métodos de mineragao de dados
e grafos de conhecimento tem vindo a aumentar. Um dos maiores desafios enfren-
tados nestas abordagens é a transformacao dos dados provenientes dos grafos numa
representacao adequada e que possa ser processada pelos algoritmos de mineragao de
dados. Atualmente, destacam-se duas representagoes seméanticas baseadas nos grafos
de conhecimento designadas por graph kernels e graph embeddings. Na representagao
graph kernels, a distdncia entre duas instancias depende do ntimero de subestruturas
comuns. Na representacao graph embeddings, os grafos de conhecimento sao transfor-
mados em sequéncias de entidades, que podem ser consideradas frases de um corpus.
Posteriormente, com base no corpus, sao geradas representagoes vetoriais usando mo-
delos de linguagem natural. No entanto, estas representacoes vetoriais podem nao
capturar toda a informagao seméntica subjacente aos grafos uma vez que apenas tém
em consideragao subestruturas locais ou co-ocorréncias. Uma abordagem alternativa
consiste em utilizar a semelhanga seméantica como representacao seméantica. A seme-
lhanca seméntica expressa a semelhanga entre duas entidades com base no significado
de cada uma. Por exemplo, se duas entidades bioldgicas estao anotadas com a mesma
ontologia, é possivel compara-las comparando as classes com as quais estao anotadas.

As ontologias visam modelar o conhecimento para um determinado dominio, mas
dentro do dominio podem modelar miltiplas perspetivas, e consequentemente a se-
melhanca seméntica pode ser calculada tendo em consideracao diferentes aspetos
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semanticos. Deste modo, diferentes tarefas de aprendizagem automatica podem exi-
gir diferentes perspetivas do grafo de conhecimento e, consequentemente, de dife-
rentes perspetivas da semelhanca. Escolher os aspetos seménticos mais relevantes
ou a melhor combinacao desses aspetos para suportar uma determinada tarefa de
aprendizagem nao é trivial e normalmente exige conhecimento especializado.

Por exemplo, na ontologia biomédica mais usada na biologia, a Gene Ontology, o
universo de conceitos relacionado com a funcgdo das proteinas é descrito de acordo
com trés aspetos diferentes: processos bioldgicos, componentes celulares e fungoes
moleculares. Uma anotagao consiste numa associagao entre uma proteina e um con-
ceito da Gene Ontology. Uma proteina pode ser anotada com vérios conceitos dos
trés aspetos seménticos da Gene Ontology. Assim, é possivel calcular a semelhanca
semantica entre duas proteinas com base nas anotacoes para cada aspeto, ou com-
binando os véarios aspetos. Supondo que a tarefa de aprendizagem é a previsao de
interagoes entre proteinas, é expectavel que as semelhancas de processos biolégicos e
de componentes celulares sejam indicadores mais fortes de interagdo entre proteinas
do que a semelhanca de fungoes moleculares. Por esta razao, a escolha do especi-
alista seria, provavelmente, uma combinac¢ao na qual a semelhanga para processos
biolégicos e componentes celulares teria mais peso. No entanto, para outras tarefas
de aprendizagem (por exemplo, previsao de genes associados a doenga) a sele¢ao dos
aspetos seméanticos mais relevantes pode nao ser tao direta.

Nesta dissertacao, apresentamos uma nova abordagem usando a Programacao Ge-
nética sobre um conjunto de semelhancas seménticas, cada uma calculada com base
num aspeto seméantico dos dados, para obter a melhor combinagao para uma dada
tarefa de aprendizagem supervisionada. A Programacao Genética é um algoritmo de
computagao evolucionéria que é capaz de resolver problemas complexos através da
evolucao de populagoes de programas de computador, usando a evolugao darwinista e
a genética mendeliana como inspiracao. Este algoritmo é um dos métodos mais adap-
taveis e poderosos de aprendizagem automética dada a sua capacidade de pesquisa
em grandes espagos de solugdao. Para além disso, ao contrario de outros métodos de
aprendizagem automatica, este algoritmo produz modelos legiveis.

A metodologia proposta inclui trés etapas sequenciais: calcular a semelhanca se-
méantica para cada aspeto seméantico; aprender a melhor combinacao desses aspetos
usando a Programagao Genética; integrar a melhor combinagao com o algoritmo de
classificacdo. A qualidade das classificagoes é avaliada usando a média ponderada da
F-measure.

A nova metodologia foi implementada e avaliada para a previsao de interacdo entre
proteinas. Nesta aplicagao biomédica, foi utilizado o grafo de conhecimento composto
pela Gene Ontology e as anotagdes da Gene Ontology para suportar o célculo da
semelhanca seméantica. Na avaliacdo foram utilizados nove conjuntos de dados de
quatro espécies diferentes, com diferentes nimeros de elementos. A primeira etapa da
implementacao da metodologia envolve o calculo da semelhanga seméantica para cada
aspeto semantico da Gene Ontology, utilizando diferentes medidas de semelhanca
seméntica projetadas para esta ontologia. No final desta etapa, cada instancia do
conjunto de dados que representa um par de proteinas fica caracterizada por trés
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valores correspondentes a semelhanca seméantica para cada um dos aspetos seméanticos
da Gene Ontology, e uma “etiqueta” (interagao ou nao interac¢ao). Na segunda etapa,
o algoritmo de Programagao Genética é usado para aprender a melhor combinagao dos
aspetos seméanticos da Gene Ontology. A combinagao selecionada no final da evolugao
¢ utilizada na classificacao no conjunto de teste, obtendo-se um valor de desempenho.
Como referéncia, foi utilizada uma variacdo da abordagem proposta com estratégias
manuais frequentemente utilizadas para combinar os aspetos seméanticos.

Os resultados demonstraram que, para conjuntos de dados suficientemente grandes,
as combinagoes obtidas com a Programagao Genética superam as combinagoes esco-
lhidas manualmente que emulam o conhecimento especializado. Para ultrapassar a
limitacao do niimero de elementos dos conjuntos de dados, foram realizadas varias
experiéncias com combinagoes de conjuntos de dados da mesma espécie. Estas expe-
riéncias revelaram que utilizar mais dados, mesmo que pertencentes a outro conjunto,
pode ser benéfico, no entanto foi também confirmado que cada conjunto de dados
tem um enviesamento inerente. A nossa abordagem foi também capaz de aprender
modelos agnodsticos em relagao & espécie usando diferentes combinagoes de espécies
para treino e teste, ultrapassando assim as limitacoes de prever interacoes entre pro-
teinas para espécies com poucas interagdes conhecidas. Quanto & analise dos modelos
obtidos para cada conjunto de dados, os resultados mostraram estar em concordéncia
com resultados obtidos com outros métodos de previsao.

Esta nova metodologia supera uma das limitagoes das aplicagoes baseadas na seme-
lhanca seméntica em grafos de conhecimento: a necessidade de selecionar manual-
mente os aspetos que devem ser considerados para uma dada aplicacao. Esta me-
todologia é particularmente importante para aplicacoes biomédicas em que os dados
sdo geralmente complexos. A aplicacdo da metodologia & previsdo da interacdo entre
proteinas foi bem-sucedida, perspetivando outras aplica¢oes biomédicas (por exem-
plo, descoberta de genes associados a doengas). Como trabalho futuro, pretendemos
adicionar mais medidas de semelhanga seméntica a avaliagao, aplicar a metodologia a
outras tarefas de aprendizagem e combinar a abordagem proposta para selecionar os
aspetos seméanticos mais relevantes usando outras abordagens baseadas, por exemplo,
em graph embeddings.
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Chapter 1

Introduction

The amount and complexity of biological data that is being collected and accumulated is increas-
ing at accelerated rates due to improvements of existing technologies and the introduction of new
ones. Given the exponential growth of biological data, there is an urgent need for a new genera-
tion of computational tools to assist humans in extracting useful information (knowledge) from
the rapidly growing volumes of data. These tools are the subject of the research field of knowl-
edge discovery in databases (KDD), which aims at transforming low-level data into other forms
that might be more abstract or more useful (for example, to obtain a predictive model) (Fayyad
et al., 1996). The tasks performed in this research field are knowledge-intensive and can often
benefit from using additional knowledge from various sources.

Data mining is a particular step in the process of discovering useful knowledge from data and
is defined as a non-trivial process of identifying valid, novel, potentially useful, and ultimately
understandable patterns in data. The idea of data mining is to build computer programs that go
through databases automatically, looking for patterns or regularities. Strong patterns, if found,
can be generalized to make accurate predictions on future data. However, many patterns will
be uninteresting or accidental coincidences in the particular used dataset (Fayyad et al., 1996).
Data mining uses algorithms and techniques from statistics, machine learning, databases and data
warehousing, and many other disciplines to analyze large datasets. Classification, clustering, and
regression are the most popular tasks in data mining. The choice of the algorithm and technique
for each task depends on the nature of the data as well as the desired knowledge (Tzanis et al.,
2008).

In bioinformatics, the discovery of new biologically relevant patterns depends on the compar-
ison and integration of massive datasets that often contain complex data. Knowledge discovery
in complex domains can be a challenge for data mining methods, which are typically limited
to agnostic views of the data, without being able to gain access to its context and meaning.
It is widely recognized that the performance of data mining methods can improve significantly
when additional relations among the data objects are taken into account, a strategy employed
in relational data mining and Inductive Logic Programming (De Raedt, 2008).

In the last decade, the explosion in complexity and heterogeneity of biological data has
motivated a new panorama of semantic data, where millions of semantically-described biological



1. INTRODUCTION

entities are available in knowledge graphs (KGs) (Schmachtenberg et al., 2014). KGs describe
real-world entities and their interrelations, through links to ontology concepts describing them,
organized in a graph (Ehrlinger & W6k, 2016). The Linking Open Data cloud diagram for Life
Sciences domain' (Figure 1.1) illustrates the vast number of datasets published in linked data
format that is available. Therefore, semantic representations of data entities based on KGs that
can be explored by data mining approaches provide a unique opportunity to enhance knowledge
discovery processes.

Legend

Figure 1.1: LOD subcloud of Life Sciences domain.

"https://lod-cloud.net/



1.1 Objectives

One of the biggest challenges faced by the approaches that combine methods from data
mining and knowledge discovery with KGs is how to transform data coming from KGs into a
suitable representation that can be processed by those methods. Most of the existing approaches
build a propositional feature vector representation of the data (i.e., each instance is represented
as a vector of features), which allows the subsequent application of most existent data mining
algorithms. However, the approaches based on vector representations may fail to capture the
full underlying semantics. For instance, the state-of-art approaches (graph embeddings and
graph kernels) mostly explore the local structure of KGs and co-occurrences. An alternative
strategy, and since measuring similarity is fundamental to many machine learning algorithms,
is to use the KGs to measure the semantic similarity (SS) between entities in the graph. SS is
the computation of the similarity between entities based on their meaning as described in an
ontology. For instance, if two biological entities are annotated within the same ontology, we can
compare them by comparing the classes with which they are annotated (Pesquita et al., 2009).

However, a challenge remains. Ontologies aim at modeling a given domain, but within a
single domain there can be multiple perspectives, and the SS can be computed taking different
aspects into consideration. Taking as an example the Gene Ontology (GO): it describes protein
function according to three different perspectives or aspects: biological process (BP), cellular
component (CC) and molecular function (MF). Therefore, we can compute the SS between
two proteins in terms of their annotations within a single aspect, or combining multiple aspects.
Different learning tasks may need different perspectives of the KG, and selecting the best aspects
or combination of aspects to support a given learning task is not trivial. Usually, the selection of
the combination of SS aspects is based on a researchers’ intuition and experience. For instance,
if the learning task is the prediction of interaction between proteins, it is expected that similarity
in biological process or cellular component are stronger indicators for protein interaction than
similarity in molecular function. Therefore, a combination in which biological process and cellular
component aspects have more weight will probably be the choice of researchers. However, not all
tasks have such a clear choice of combination. For instance, if the learning task is the prediction
of disease-associated genes, how to combine molecular function with the remaining two aspects
is not straightforward.

1.1 Objectives

Adjusting the combination of SS aspects to the machine learning task represents a challenge.
A serious limitation of existing approaches for machine learning using SS as KG-based repre-
sentation is that the choice of the suitable combination of the SS aspects for a given learning
task depends on manual selection. Automating the selection of the best combination of KG as-
pects to support specific tasks would simplify and generalize the application of these techniques,
rendering it more independent of expert knowledge.

The main goal of this dissertation is to propose a novel methodology that uses Genetic
Programming (GP) (Poli et al., 2008) over a set of semantic similarities, each computed over
a different semantic aspect of the underlying data, to arrive at the best combination between
the different aspects to support different supervised learning tasks. The underlying hypothesis is
that GP can learn suitable combinations of SS aspects to support specific learning tasks. GP was
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1. INTRODUCTION

chosen for its unmatched ability to search large solution spaces by means of evolving a population
of free-form readable models through crossover and mutation.

This methodology was applied to Protein-Protein Interaction (PPI) prediction, where the
relationships between the different semantic aspects and potential classification performance are
well established. Furthermore, the use of similarity between two proteins to predict whether they
interact is one of the most straightforward ways of basing classification problems on SS values.

1.2 Contributions
The main contributions of this dissertation are:

1. Development of a novel GP-based approach to learn a suitable combination of SS aspects
for specific machine learning applications;

2. Implementation of the novel approach for PPI prediction;
3. Comparative evaluation of existing approaches combining KGs with machine learning;

4. Poster with the preliminary results presented in 4th LASIGE Workshop, which was awarded
the Best Student Poster Award;

5. Oral presentation of the main results at the 53rd Annual Scientific Meeting of the European
Society for Clinical Investigation, in Coimbra. The abstract of this presentation was also
published in Book of Abstracts of European Journal of Clinical Investigation;

6. Submission of a scientific article titled “Evolving knowledge graph similarity for supervised
learning in complex biomedical domains” for the special issue on Machine Learning and
Artificial Intelligence in Bioinformatics of BMC Bioinformatics.

1.3 Document Structure

The present introductory chapter gives a contextualization of the problem underlying the pro-
posed hypothesis and introduces the main objectives and contributions of this dissertation. The
remaining five chapters are organized as follows. Chapter 2 defines and explains the foundational
concepts needed to understand the problem itself. Chapter 3 surveys the relevant work developed
in this field to this date. Chapter 4 presents an overview of the proposed methodology with a
description of the main tasks. Chapter 5 presents one biomedical application of the proposed
methodology, including resources used, methods, results, and discussion. Chapter 6 summarizes
the main conclusions of this work, debating some of the limitations and how to address them in
the future.



Chapter 2

Concepts

For the sake of completeness, this chapter introduces a set of concepts required to understand
the presented work on the topics of semantic web and genetic programming.

2.1 Semantic Web

The term Semantic Web was introduced in 2001 by Tim Berners-Lee to mean “an extension of
the current web in which information is given well-defined meaning, better enabling computers
and people to work in cooperation” (Berners-Lee et al., 2001). For the semantic web to function,
computers must have access to structured collections of information and sets of inference rules
that they can use to conduct automated reasoning.

Since the beginning, the Semantic Web has promoted a graph-based representation of knowl-
edge. Such KGs contain factual knowledge about real-world entities and the relations between
them (linked data) in a fully machine-readable format. Ontologies can be used to describe the
entities in the KGs, providing the appropriate support to measure the SS between them. The
next sections present an overview of the basis of linked data, ontologies, KGs and SS.

2.1.1 Linked Data

The term linked data can be viewed as a subset of the semantic web concept and refers to a set
of best practices for publishing and connecting structured data on the Web (Bizer et al., 2011).
The adoption of the linked data best practices led to a global data space connecting data from
diverse domains such as proteins, genes, drugs, scientific publications, people, companies, books,
films, music, television and radio programs.

Resource description framework (RDF) is a common data model for linked data that defines
how to express relationships between arbitrary data elements. In RDF terminology, a statement
is a small piece of knowledge in the format of subject-predicate-object expressions. Figure 2.1
depicts the structure of a RDF statement. These expressions are known as triples in RDF
terminology. Subject and object are two things and predicate is the name of a relation that
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connects these two things. Predicate relates the subject to another entity or provides information
about the entity itself.

Figure 2.1: Structure of a RDF statement.

The main example of the use of linked data is the Linked Open Data (LOD) community
project. So far it has resulted in an openly interlinked collection of datasets in machine-
interpretable form, comprising data from diverse domains, including geography, media, and life
sciences. As shown in the LOD cloud diagram, life science data occupies one of the major do-
mains of LOD (see Figure 1.1). This situation was primarily brought by the Bio2RDF project
(Belleau et al., 2008) which translated major public bioinformatics databases into RDF.

2.1.2 Ontologies and Semantic Annotation

As a means to express knowledge about a domain in the Semantic Web, ontologies have been
introduced in the early 1990s. In the computer science context, an ontology is an explicit spec-
ification of a conceptualization in which each element is precisely defined and the relationships
between elements are parameterized or constrained (Schmachtenberg et al., 2014). Ontologies
are thus semantic models for reality domains.

The two components of ontologies are: (i) a set of concepts (or classes) that define the entities
in a domain; and (ii) a set of semantic links between the classes that describe interactions between
classes or properties of classes. Ontologies often structure their classes and the relationships
between them as a directed acyclic graph (DAG), where the classes are nodes and relationships
are edges.

Since ontologies are abstractions over reality, they only contain facts that are true for all
entities of a particular type. For that reason, they do not contain entities but instead, represent
classes only. A semantic annotation is about assigning real-world entities in a domain to their
semantic description (Kiryakov et al., 2004). Relying on ontology classes to annotate biomedical
entities allows automatic reasoning to be applied directly to them. For instance, proteins are
annotated with their functions using GO, a very successful biomedical ontology that describes
the universe of concepts related to gene function, as we can see in Figure 2.2. These annotations
can be seen as a semantic description of the protein, since they can be used to, computationally,
assign to the protein a meaning.

One important aspect of computational ontologies is the notion that an ontology provides
semantics (i.e., meaning) to the entities it represents. However, the meaning is not described
explicitly, as happens for example in dictionaries, but rather is described in the relationships
between the classes and in the overall structure of the ontology. Consequently, the power of
ontologies lies in their capacity to capture knowledge about a domain in a shareable and com-
putationally accessible form (Schuurman & Leszczynski, 2008).

The life sciences field has been taking advantage of ontologies for the past decades. Not only
is the number of ontologies increasing, their size is also growing, their relevance in biomedical re-
search is rising and they penetrate more areas of biology and biomedicine. Biomedical ontologies
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Figure 2.2: Graph representation of part of GO and GO Annotations.

have an essential role in the representation of knowledge in a computer-comprehensible way, in-
teroperability across databases and data integration. These ontologies are used in areas ranging
from gene function, as seen in the GO, to those used in characterization of drugs (Degtyarenko
et al., 2007). Phenotype ontologies (Robinson et al., 2008) are also available for multiple species
and are widely used for the annotation of the abnormalities observed in mutagenesis experiments
as well as for the characterization of diseases. Open repositories such as the BioPortal (Whetzel
et al., 2011) provide access to hundreds of biomedical ontologies expressed in various formats,
e.g., RDF, Open Biomedical Ontology (OBO), Web Ontology Language (OWL).

2.1.3 Knowledge Graphs

Ontologies and linked data are usually represented by graphs which are designated KGs. These
graphs provide a conceptualization of a domain based on a formal definition of its entities and
their relations.

In other words, KGs describe real-world entities and their interrelations, through links to
ontology classes describing them, organized in a graph (Ehrlinger & Wof, 2016). The nodes of
KG are employed in representing ontology classes and RDF statements’ subjects and objects, and
edges are employed in representing ontology classes’ relations and RDF statements’ predicates.
For example, GO and its associated annotations that link proteins to GO classes and to other
proteins make up a KG. Figure 2.3 shows a small example graph of that KG.

KGs represent an unparalleled opportunity for machine learning, given their ability to pro-
vide meaningful context to the data through semantic representations. KGs provide multiple

7
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perspectives over an entity, describing it using different properties or multiple portions of the
graph.
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Figure 2.3: Subgraph of the GO KG illustrating the relationships between proteins. The red
nodes are the biological entities (proteins) and the black nodes are the ontology concepts (GO classes).

2.1.4 Semantic Similarity

A semantic similarity measure (SSM) is a function that, given two ontology classes or two sets
of classes annotating two entities, returns a numerical value reflecting the closeness in meaning
between them (Pesquita et al., 2009). The meaning of the classes being compared is automatically
extracted from the ontologies. In the case of GO and GO annotations, SS can be calculated for
two ontology classes, for instance calculating the similarity between two GO classes (e.g., the GO
term protein metabolic process and the GO term protein stabilization); or between two entities
each annotated with a set of classes, for instance calculating the similarity between two proteins.
Each protein can be annotated with several GO terms within each of the three GO aspects so, to
assess the SS between proteins (within a particular GO aspect) it is necessary to compare sets of
terms rather than single terms. Figure 2.4 illustrates how two proteins are represented by their
GO terms when some terms annotate only one protein while others annotate both proteins.

The approaches used to quantify SS can be distinguished based on which entities they intend
to compare: approaches for comparing two terms and approaches for comparing two entities each
annotated with a set of terms.

There are essentially two types of measures for comparing terms in a graph-structured ontol-

ogy:
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Figure 2.4: Illustration of a DAG representing GO terms annotating two proteins. Red terms
annotate only protein A, orange terms annotate only protein B and white terms annotate both proteins
A and B.

e Edge-based measures consist mainly on counting the number of edges in the graph path
between two terms. The most common technique, distance, selects either the shortest path
or the average of all paths when more than one path exists (Pesquita et al., 2009). Most
of these measures assume that the distance between all the relationships in an ontology is
constant or depth-dependent. Neither assumption is valid in existing biomedical ontologies
so edge-based measures are rarely used in the biomedical field.

e Node-based measures depend on comparing the properties of the terms involved, which
can be related to the terms themselves, their ancestors, or their descendants. More recent
measures explore the notion of information content (IC), a measure of how specific and
informative a class is. This gives SSMs the ability to weight the similarity of two classes
according to their specificity. IC can be calculated based on intrinsic properties, such as the
structure of the ontology, or using external data, such as the frequency of annotations of
entities in a corpus. Taking Figure 2.3 as an example, this allows SSMs to consider protein
catabolic process and amyloid precursor protein metabolic process more similar than protein
metabolic process and protein stabilization.

Calculating SS for two entities each annotated with a set of classes typically employs one of
two approaches:

e Pairwise — where pairwise comparisons between all classes annotating each entity are con-
sidered;

e Groupwise — where set, vector or graph-based measures are employed, circumventing the
need for pairwise comparisons.
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Many SSMs applied to biomedical ontologies, especially to GO, have been proposed, see for
instance Guzzi et al. (2011); Harispe et al. (2014); Pesquita (2017) and references therein.

2.2 Genetic Programming

GP (Poli et al., 2008) is the master algorithm of evolutionary computation (Domingos, 2015) and
one of the most adaptable, powerful, underused and misunderstood methods of machine learning.
GP is capable of solving complex problems by evolving populations of computer programs, using
Darwinian evolution and Mendelian genetics as inspiration.

This evolutionary computation technique, given all the elements of a programming language,
has the potential to find the computer program that solves a particular problem without requiring
the user to know or specify the form or structure of the solution in advance. Theoretically, GP can
solve any problem whose candidate solutions can be measured and compared. It normally evolves
solutions that are competitive with the ones developed by humans (Koza, 2010), and sometimes
surprisingly creative. GP implicitly performs automatic feature selection, as selection promptly
discards the unfit individuals, keeping only the ones that supposedly contain the features that
warrant a good fitness. Unlike other powerful machine learning methods (e.g., Deep Learning),
GP produces readable ‘white-box’ models.

Figure 2.5 illustrates the basic GP evolutionary cycle. Starting from an initial population of
randomly created programs/models representing the potential solutions to a given problem, it
evaluates and attributes a fitness value to each of them, quantifying how well the program/model
solves the problem. Fitness can be measured in many ways. For example, in terms of the amount
of error between its output and the desired output or in terms of the F-measure of the program
in classifying objects. New generations of programs are iteratively created by selecting parents
based on their fitness and breeding them using (independently applied) genetic operators like
crossover (swapping of randomly chosen parts between two parents, thus creating two offspring)
and mutation (modification of a randomly chosen part of a parent, thus creating one offspring).
The fitter individuals are selected more often to breed and thus pass their characteristics to
their offspring, so the population tends to improve in quality along successive generations. This
evolutionary process continues until a given stop condition is verified (e.g., maximum number of
generations, or fitness reaching some threshold), after which the individual with the best fitness
is returned as the best model found.

In tree-based GP (the most common type), models are represented as parse trees that are
readily translated to readable strings. For example Figure 2.6 shows the syntax tree representing
max(X0+ X0, X0+ 3 x X1). The variables and constants (X0, X1,3) in the model constitute
what is called the terminal set in GP, as they are only admitted as terminal nodes of the trees.
In contrast, the function set contains the arithmetic operators (maz, +, x) that can be used to
combine elements (terminals and functions), and can only appear in internal nodes of the trees.
The function set is a crucial element in GP. Together with the fitness function and the genetic
operators, it determines the size and shape of the search space.

Given the free-form nature of the models evolved by GP, its intrinsic stochasticity, and the
size of the search space where it normally operates, there is high variability among the raw
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models returned in different runs, even when using the same settings and same dataset. Even
upon simplification, these models normally remain structurally very different from each other,
while possibly exhibiting similar behavior, i.e., returning similar predictions. This characteristic
raises some difficulty in interpreting the GP models, even if they are fully readable. Either way,
it is always advisable to run GP more than once for the same problem, to avoid the risk of
adopting a sub-optimal model that may have resulted from a less successful search on such a
large space.

Initial Population Future Parents

— Selection —»

... and the
winner is ... . Genetic
J < Operators
(crossover/
mutation)
& New
Population

Figure 2.5: GP flowchart.

Figure 2.6: GP syntax tree example.
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Chapter 3

Related Work

In this dissertation, we take advantage of the vast amount of KGs in the semantic web to
enhance the KDD processes. However, graphs are not readily adaptable to common data mining
tools. KG-based semantic representations bridge the gap between KGs and the typical vector-
based representations of entities used by most machine learning techniques. Once a suitable
representation is achieved, different machine learning algorithms can be employed.

The following sections present the state-of-art KKG-based representations (graph kernels and
graph embeddings) and other semantic representations based on KGs.

3.1 Graph Kernels

Given two input objects u and v, the basic idea behind kernel methods is to construct a kernel
k(u,v) which measures the similarity between v and v. This kernel can also be viewed as an
inner product of the form k(u,v) =< ¢(u), #(v) > in an embedding feature space determined by
the map ¢ which needs not be given explicitly. Applications of kernel methods to graphs require
the construction of graph kernels, i.e., functions that are capable of measuring similarity between
two data instances of the graph. In graph kernels, the distance between two data instances is
computed by counting common substructures (e.g., walks, paths, and trees) in the KG (Ristoski
& Paulheim, 2016b).

Losch et al. (2012) introduced two graph kernels especially suited for RDF, based on inter-
section graphs and intersection trees. The intersection graph of two graphs is a graph containing
all the elements the two graphs have in common. The use of the intersection graph may become
problematic as its calculation is potentially expensive: the whole instance graph for each entity
has to be extracted and the two graphs have to be intersected explicitly. As an alternative, using
instance trees to extract common neighborhoods of two entities enables a direct construction of
the common properties, without building the instance graphs. Instances trees are obtained based
on the graph expansion with respect to an entity of interest.

Later, the intersection tree path kernel was modified and simplified by De Vries & De Rooij
(2013). In other works, De Vries (2013) introduced a fast approximation of the Weisfeiler-Lehman

13
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graph kernel algorithm for RDF data. The Weisfeiler-Lehman Subtree graph kernel is a state-of-
the-art kernel for graph comparison introduced by Shervashidze & Borgwardt (2010). The kernel
computes the number of sub-trees shared between two (or more) graphs by using the Weisfeiler-
Lehman test of graph isomorphism. This algorithm creates labels representing subtrees in a given
number of iterations. They also have developed another type of kernels over RDF data, the RDF
walk count kernel (De Vries & de Rooij, 2015). The random walk kernels are based on a simple
idea: given a pair of graphs, perform random walks on both, and count the number of matching
walks. In this work, the RDF walk count kernel counts the different walks in the sub-graphs (up
to the provided graph depth) around the instances nodes. The approaches developed by Losch
et al. and by Vries et al. have been applied to two common relational learning tasks: entity
classification and link prediction.

3.2 Graph Embeddings

An embedding is a vector representation resulting from the use of semantic information mapping
techniques. In graph embeddings, the KG is transformed into sequences of entities, which can be
considered as corpus’ sentences. Then, based on the corpus, vector representations are generated
using neural language models (Ristoski & Paulheim, 2016D).

Ristoski & Paulheim (2016a) proposed RDF2Vec that uses language modeling approaches
for unsupervised feature extraction from sequences of words and adapts them to RDF graphs.
The first step of this approach is converting the graph into a set of sequences of entities, which
can be considered as sentences. Two general approaches are used for converting graphs into a
set of sequences of entities: graph walks and Weisfeiler-Lehman Subtree RDF Graph Kernels.
In the second step, they use those sequences of entities to train a neural language model, which
estimates the likelihood of a specific sequence of entities appearing in a graph. One of the
most popular and widely used is the Word2vec neural language model (Mikolov et al., 2013).
There are two different algorithms, the Continuous Bag-of-Words model and the Skip-Gram
model. Once the training is finished, each entity in the graph is represented as a vector of latent
numerical features. Projecting such latent representations of entities into a lower dimensional
feature space shows that semantically similar entities appear closer to each other. This approach
was applied to a number of classification and regression tasks, using two types of RDF graphs:
small domain-specific RDF datasets and large cross-domain RDF datasets.

Smaili et al. (2018) proposed Onto2Vec that also uses language modeling approaches to
generate vector representations of biological entities in ontologies by combining formal ontology
axioms and annotation axioms from the ontology. An ontology is treated as a set of axioms, each
of which constitutes a sentence. Word2vec methods are used to process the axioms syntactically,
and the vector representations are obtained in such a way that words with similar contexts tend
to be close to each other in the vector space. To evaluate Onto2Vec, GO was used to produce
vector representations of the proteins, the GO classes to which they are annotated and the axioms
in GO that constrain these classes. Onto2Vec was then applied to PPI prediction on different
datasets and the identification of protein families.

14
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3.3 Semantic Similarity

The use of SS in the biomedical field is recent, however, there are already a wide variety of
bioinformatics applications that benefit from using SSMs over biomedical KGs, namely: PPI
prediction (Jain & Bader, 2010; Lin et al., 2004; Liu et al., 2018; Maetschke et al., 2011; Patil
& Nakamura, 2005; Wu et al., 2006; Zhang & Tang, 2016), prediction of disease-associated
genes (Freudenberg & Propping, 2002; Li et al., 2014; Liu et al., 2018; Perez-Iratxeta et al., 2002;
Turner et al., 2003; Zhang et al., 2006), validation of function prediction (Duan et al., 2006),
network prediction (Lee & Lee, 2005), prediction of cellular localization (Lei & Dai, 2006), and
automatic annotation validation (Couto et al., 2006).

Given the popularity of GO, several approaches explore the SS over the GO KG to compare
proteins based on what they do, rather than using sequence similarity. Jain & Bader (2010)
proposed an algorithm, Topological Clustering Semantic Similarity, that uses the SS between
GO classes annotated to proteins to distinguish true from false protein interactions. The central
idea is to find subsets of GO terms defining similar concepts and score gene products belonging
to a similar subset higher that if they belong to different sets. Furthermore, this algorithm
considers the unequal depth of biological knowledge representation in different branches of the
GO graph.

Liu et al. (2018) proposed a method that incorporates enrichment of GO classes by a gene
pair in computing the SS. This GO enrichment was incorporated by querying gene pair in the
computation of IC of a GO term. The enrichment of a GO term by the pair of genes depends on
whether the term is annotated by one gene or by both genes in the pair. Thus, the probability
of a GO term is defined as the joint probability of the term as inferred by background corpus
and as annotated by two querying genes. The effect of introducing GO enrichment on several
SSMs was tested for prediction of sequence homologies, gene expression correlations, PPIs, and
disease-associated genes.

Although GO is the most widely-used biomedical ontology, other ontologies have also been
used, including Human Phenotype Ontology (HPO) (Robinson et al., 2008). In HPO, the on-
tology terms correspond to phenotypic abnormalities and are used for annotation of diseases.
Kohler et al. (2009) presented a method for clinical diagnostics based on measure phenotypic
similarity between queries and hereditary diseases annotated with HPO. This method uses the
semantic structure of the HPO to weight clinical features on the basis of specificity and to identify
features that, if present, best distinguish among the top candidate differential diagnoses. The
semantic network defined by the HPO is used to refine the differential diagnosis. Furthermore,
a statistical model was developed to assign p-values to the resulting similarity scores, which can
be used to rank the candidate diseases.

Hoehndorf et al. (2011) developed a method to combine phenotype ontologies with anatomy
ontologies and apply a measure of SS to generate PhenomeNET, a cross-species network of phe-
notypic similarity between genotypes and diseases. This method was used to identify orthologous
genes, genes involved in the same pathway and gene-disease associations.
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3.4 Other Semantic Representations

There are other approaches that explore innovative KG-based semantic representations. The
tools FeGeLOD (Paulheim & Fiimkranz, 2012) and RapidMiner (Ristoski et al., 2015) generate
data mining features based on the exploration of specific or generic relations in the graph. These
approaches use different unsupervised feature generation strategies for creating new data mining
features from LOD sources:

e The Direct Types generator extracts all types for an entity;
e The Datatype Properties generator extracts all datatype properties;

e The Relations generator creates a binary or a numeric attribute for each property that
connects an entity to other entity;

e The Qualified Relations generator creates a binary or a numeric attribute for properties,
taking the type of the related entity into account;

e The Specific Relations generator creates features for a user-specified relation.

All the generators are able to retrieve the hierarchical relations between the features. Since not
all the features generated by the different strategies are equally helpful, a simple heuristic is
applied to filter them out.

Bandyopadhyay & Mallick (2017) proposed a novel set of features to represent a protein
pair using their annotated GO terms, including their ancestors. In this approach, a protein
pair is treated as a bag of words, where the GO classes annotating (i.e., describing) the two
proteins represent the words. The feature value of each word is calculated using the [C of the
corresponding term multiplied by a coefficient, which represents the weight of that term inside
a protein pair. To evaluate this approach, the authors tested the performance of supervised
classifiers like Random Forest and SVM to predict PPIs using the proposed feature vectors.

Maetschke et al. (2011) used GO-driven algorithms for PPI inference introducing the concept
of inducers. Inducers are motivated by the assumption that an induced term set is richer in
information, and can be a more accurate predictor of protein interaction, than the original
annotation. Term inducers define sets of GO terms that are induced within the DAG by the GO
annotation of protein pairs and are subsequently projected onto a feature vector. In this work,
three classes of inducers were used: (i) basic inducers that ignore term relationships and represent
the traditional machine learning approach (the annotation of a protein pair is described by a
vector that encodes either all assigned GO terms or the GO terms shared by the two proteins);
(ii) ancestral inducers that are based on ancestor terms derived from a set of protein annotations
and resemble node-based SSMs; (iii) shortest-path inducers that include terms along the shortest
path or paths between two term sets and are similar to edge-based SSMs. The inducers were
then used to predict protein interactions using different classifiers, such as Random Forest and
Nalve Bayes.

Chen et al. (2019) proposed a hybrid feature representation of proteins that combines not
only GO information but also protein sequence properties and interaction topology. The GO-
based features characterize protein pairs based on the clustering of GO terms. One GO-based
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feature is defined as one GO-term cluster indexed by a lowest common ancestor. The network-
based features are derived from the topological properties (for instance the number of common
neighbors) of a PPI network. This PPI network is constructed by linking the proteins with a SS
above a certain threshold. The SS threshold is obtained by deriving a reference PPI network,
from the training set of protein pairs. The hybrid features representations were integrated with
multiple learning algorithms for PPI prediction. This ensemble learning approach adopts a
stacked generalization scheme, where five classifiers were combined into one predictive unit.
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Chapter 4

Methodology

This chapter gives an outline of the proposed methodology and the methods that should be used
in each step. An overview of the methodology is shown in Figure 4.1.

Step 1 Step 11 Step 111
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Test
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Semantic
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Set

\ 4
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Figure 4.1: Overview of the methodology.

The guiding hypothesis of this dissertation is that GP can learn suitable combinations of SS
aspects to support specific supervised classification tasks. In supervised classification, there is a
set of training examples and the objective is learning how to predict the classification of unseen
examples. Thus, the implementation of the proposed methodology takes as input a KG and
training and test sets.

4.1 Step I: Computation of Semantic Similarity

The first step is computing the SSM for each SS aspect. The semantic representations based
on SS are built by taking into account the global structure of the KG. However, KGs typically
provide multiple perspectives over an entity, either by describing it using different properties or
using different portions of the graph. Therefore, the SSs aspects can be either the properties or
portions of the graph and the SS can be computed taking each aspect into consideration.
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Relatively to the computation of SS, the rise in the number of SSMs designed for different
biomedical ontologies was accompanied by the development of tools to calculate them. For ex-
ample, Semantic Measures Library (SML) (Harispe et al., 2013) is an open source Java library
dedicated to the computation and analysis of semantic measures, such as SS. This library sup-
ports various ontology formats and specifications (e.g., OBO, RDF, OWL) and provides a large
collection of semantic measures.

4.2 Step 1I: Evolving Combinations

The second step is using GP to learn on the training test the best combination of the different
S5 aspects. Here, the programs evolved by GP are the possible combinations of the SS aspects.
The fitness function that guides evolution is based on the success of a given combination of SS
aspects in a specific task.

Once again there are several GP applications and packages, such as gplearn', that implement
this evolutionary algorithm. The Pyhton package gplearn extends the scikit-learn machine learn-
ing library (Pedregosa et al., 2011) and is designed to solve regression problems, but can also
be used for binary classification. In addition, this package allows tweaking several parameters,
including the function set, fitness function, parsimony coefficient, size of initial population and
number of generations.

4.3 Step I1I: Evaluation

The last step is the evaluation on the test set, using the evolved combination to support the
supervised learning task. The performance measure is the Weighted Average F-measure (WAF).
This metric accounts for class unbalance by computing the F-measure for each class and then
calculating the average of all computed F-measures, weighted by the number of instances of each
class:

> ccc F-measure. x Support,
> ccc Support,

WAF = (4.1)
where C' is the set of classes, F-measure, is the F-measure computed for class ¢, and Support, is
the number of instances in class c.

The F-measure (for a class ¢) is the weighted harmonic mean of the precision and recall and
is given by

Precision x Recall
F- =2 4.2
measure Precision + Recall (4.2)

where

"https://gplearn.readthedocs.io
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4.3 Step III: Evaluation

. Number of instances correctly classified as class ¢
Precision =

4.3
Number of instances classified as class ¢ (4.3)

and

Number of instances correctly classified as class ¢
Recall =

4.4
Number of instances labeled as class ¢ (44)

A key aspect of our evaluation approach is to compare our methodology that is able to evolve
a combination of semantic aspects to static combinations established a priori. This allows us to
compare our methodology to a scenario where semantic aspects are selected and combined by
experts before the learning task.
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Chapter 5

Application to Protein-Protein

Interaction Prediction

A major challenge in biological systems is the accurate mapping of the interactome, i.e., the set
of all PPIs within a cell. PPIs are responsible for many critical functions in biology and are
highly relevant to disease states. Discovering new interactions through laboratory experiments
is expensive and time-consuming, so the total number of explored interactions is still very low
compared to the whole proteome. For this reason, computational methods have been applied to
predict PPIs.

In this chapter, we apply the methodology presented in Chapter 4 to predict PPIs. Using the
GO, the most popular biomedical ontology, as KG, we analyse the methodology in nine bench-
mark datasets. The next sections describe the data sources and methodology implementation
aspects and present the results and discussion.

5.1 Data Sources

The implementation of the proposed methodology for PPI prediction took as input an ontology
file, a protein annotation file and a list of protein pairs, that are described in the following
subsections.

5.1.1 Knowledge Graph

The KG used in this work is composed by the GO and GO annotations. The development of
GO, the most widely-used biological ontology, was motivated by the semantic heterogeneity of
biomedical data and its lack of formality. This ontology is constantly revised and expanded as
biological knowledge accumulates.

GO defines the universe of classes (also called “GO terms”) associated with gene product
(proteins or RNA) functions and how these functions are related to each other with respect to
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three aspects: (i) BP, which captures the larger process accomplished by multiple molecular
activities in which the gene product is active; (ii) MF, biochemical (or molecular-level) activity
of a gene product; (iii) CC, the location relative to cellular structures in which a gene product
performs a function.

GO terms and their semantic relations form a hierarchical DAG where each node represents
a GO term and the edges represent the relationships between the terms. The edges can represent
different types of relations (e.g., is_a, part_of, requlates, has_part). GO is loosely hierarchical,
with “child” terms being more specialized than their “parent” terms, but unlike a strict hierarchy,
a term may have more than one parent term. The ancestor terms in the hierarchy subsume
the semantics of descendent terms. The three GO aspects are represented as root nodes of
the graph since they are unrelated and do not have a common parent node (see Figure 2.2).
These aspects are is_a disjoint, so no is_a relations operate between terms from the different
aspects. However, other relationships such as part of and regulates do operate between the
GO aspects. For example, the relation part of operates between the molecular function term
“cyclin-dependent protein kinase activity” and the biological process term “cell cycle”.

A GO annotation associates a specific gene product with a specific class in the GO, identifying
some aspect of its function. For instance, in Figure 2.3 the gene product for ACES HUMAN is
annotated with the GO class amyloid percursor protein metabolic process. A single gene product
may be annotated with several classes across all semantic aspects of GO.

The GO graph was collected from www.geneontology.org (dated January 2019) in OBO for-
mat and contains 45006 ontology terms subdivided into 4206 CC terms, 29689 BP terms, and
11111 MF terms. Only is-a relations were considered. GO annotations were downloaded from
Gene Ontology Annotation (GOA) database (Huntley et al., 2014) (dated January 2019) for four
species (S. cerevisiae, H. sapiens, E. coli and D. melanogaster) in Gene Association File (GAF)
2.1 format. These annotations link Uniprot (Apweiler et al., 2004) identifiers for proteins with
GO classes describing them.

5.1.2 Benchmark Protein-Protein Interaction Datasets

For evaluation and comparison, we used benchmark PPI datasets of different species. These
datasets were produced by other works and have been applied by several others in evaluating
PPI approaches. Table 5.1 provides the number of interactions and the author for each dataset.

The positive data (interacting protein pairs) of these datasets were collected from existing
databases. The negative data is obtained by random sampling of protein pairs since experimental
high-quality negative data (non-interacting protein pairs) is hardly available. Random sampling
is based on the assumption that the expected number of negatives is several orders of magnitude
higher than the number of positives, such that the negative space is randomly sampled with
larger probability than the positive space (Park, 2009). In most of the datasets, negative data is
generated by randomly creating protein pairs that are not reported to interact. In the dataset
GRID/HPRD-bal-HS a different strategy is employed to achieve balanced random sampling.
Here, the number of times each protein appears in the negative set is equal to the number of
times it appears in the positive set, with the negative set still being composed of protein pairs
that are not known to interact.
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Table 5.1: PPI Benchmark Datasets with their authors and numbers of to-
tal interactions (I), positive interactions (PI) and negative interactions (NI).
The STRING-SC, STRING-HS, STRING-EC, STRING-DM datasets are available in
http://bioinformatics.org.au/tools/go2ppi/#training. The DIP-HS dataset is available in
http://baderlab.org/Software/ TCSS. The BIND-SC and DIP/MIPS-SC datasets are available in
https://noble.gs.washington.edu/proj/sppi/. The GRID/HPRD-bal-HS and GRID/HPRD-unbal-HS
datasets are available in http://www.bioinformatics.leeds.ac.uk/BRS-nonint /PPI RandomBalance.html.

Dataset Author I PI NI

STRING-SC Maetschke et al. (2011) 30476 15238 15238
STRING-HS Maetschke et al. (2011) 6980 3490 3490
STRING-EC Maetschke et al. (2011) 2334 1167 1167
STRING-DM Maetschke et al. (2011) 642 321 321

DIP-HS Jain & Bader (2010) 2826 1391 1435
BIND-SC Ben-Hur & Noble (2005) 1499 749 750

DIP/MIPS-SC Ben-Hur & Noble (2005) 14498 4825 9673
GRID/HPRD-bal-HS Yu et al. (2010) 31608 15804 15804
GRID/HPRD-unbal-HS  Yu et al. (2010) 31608 15804 15804

Given the evolving nature of GO annotations, some benchmark proteins are no longer found
in current GOA files. Consequently, we removed all pairs that failed to meet this criterion: both
proteins have at least one annotation in one semantic aspect. Furthermore, the yeast datasets
do not use UniProt identifiers. We used the Protein Identifier Cross-reference (PICR) tool (Coté
et al., 2007) web application to map protein identifiers to the corresponding UniProt accession
numbers. PICR provides programmatic access through Representational State Transfer (REST)
that is very useful since we simply need to build a well-formatted RESTful URL. Thus, not all
identifiers could be mapped to UniProt and those proteins were removed. Table 5.2 provides the
species and the number of interactions for each dataset after excluding the pairs that did not

meet the above criteria.

Table 5.2: PPI benchmark datasets, with number of positive interactions (PI) and number
of negative interactions (NI) after exclusion.

Dataset Species PI NI
STRING-SC S. cerevisiae 15218 15166
STRING-HS H. sapiens 3460 3452
STRING-EC E. coli 1127 1118
STRING-DM D. melanogaster ~ 288 262
DIP-HS H. sapiens 1375 1364
BIND-SC S. cerevisiae 749 750
DIP/MIPS-SC S. cerevisiae 4659 9148
GRID/HPRD-bal-HS H. sapiens 15675 15674

GRID/HPRD-unbal-HS H. sapiens 15675 15645
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5.2 Methodology Implementation

Figure 5.1 shows the implementation of the proposed methodology for PPI prediction. The
following subsections refer to the implementation of each step of the methodology.

Step I Step 11 Step 111
- Computation of | ! E
GO data and SSM protein pairs . Training . Test
PPI datasets for each GO aspect ' Set : Set
o v :
SSM protein pairs ! - ' A 4
' GP for evolving ‘
' possible | Best combination : PPI WAF
' combinations of of GO aspects ' prediction
E GO aspects i

Figure 5.1: Implementation of the proposed methodology for PPI prediction.

5.2.1 Semantic Similarity Measures

For PPI prediction using GO, the semantic aspects are the three GO aspects. Thus, the SSs
corresponding to each semantic aspect were computed for each protein pair in our input data.

Given the popularity of GO, SSMs have been extensively proposed and studied using this
ontology as a source of knowledge. In this dissertation, six different SSMs were employed,
summarized in Table 5.3.

Table 5.3: Summary of SSMs used to calculate the SS between proteins.

SSM IC Type of approach Techniques
SimGIC /I1Cgeco Intrinsic  graph-based Jaccard
Resnikprax /ICseco Intrinsic  best pairs Maximum
Resnikpyia /ICseco Intrinsic  best pairs Average
SimGIC /ICResnik Extrinsic  graph-based Jaccard
Resnikpfax /ICResnik ~ Extrinsic  best pairs Maximum
Resnikpnya /ICResnik  Extrinsic  best pairs Average

Each SSM includes two approaches: the approach used to calculate the IC of each GO term
(ICseco Or ICResnik); the IC-based approach used to calculate the similarity between two sets of
GO terms (SimGIC or Resnikyayx or Resnikpya ).

ICgeco is a structure-based approach proposed by Seco et al. (2004) based on the number of
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direct and indirect descendants and given by

log [hypo(t) + 1]
log [maxnodes}

ICseco(t) = 1 — (5.1)

where hypo(t) is the number of direct and indirect descendants from term ¢ (including term t)
and maxnodes is the total number of concepts in the ontology.

ICResnik 18 a corpus-based approach proposed by Resnik (1995) and based on a corpus of GO
annotations of all gene-products in an organism, which is given by

ICResnik(t) = — log p(t) (5.2)

where p(t) is the probability of annotation in the corpus.

SimGIC is a groupwise approach proposed by Pesquita et al. (2007), based on a Jaccard
index in which each GO term is weighted by its [C and given by

1€ {GO(p1)NGO(p2)} 1C(F)

simGIC(p1,p2) =

_ (5.3)
2 e {GO(p1)UGO(p)} 1C(F)

where GO(p;) is the set of annotations (direct and inherited) for protein p;.

Resniky.x and Resnikgyia are pairwise approaches based on the class-based measure pro-
posed by Resnik (1995) in which the similarity between two classes corresponds to the IC of
their most informative common ancestor. This pairwise approach is used with two combination
variants, maximum

Resnikyiax (p1, p2) = max {sim(t1,t2) : t1 € GO(p1),t2 € GO(p2)} (5.4)

and best-match average

Zh €GO(p1) Sim(tl, t2) thEGO(pg) Sim(tl, t2)

IGO0 IGO0 55)

Resnikpya (p1, p2) =

where |GO(p;)| is the number of annotations for protein p; and sim(t1,t2) is the SS between the
GO term t; and GO term t9 and is defined as

sim(t1,t2) = max {IC(¢) : t € {A(t1) N A(t2)}} (5.6)

where A(t;) is the set of ancestors of ;.

These measures were selected because SimGIC and Resnikpya represent high-performing
group and pairwise approaches in predicting sequence, Pfam and Enzyme Commission similarity
(Pesquita et al., 2007), whereas Resnikyrax helps to elucidate whether a single source of similarity
is enough to establish an interaction. With regard to [C measures, ICregnix measure relies on
the frequency of each annotation in the corpus of GO annotations for all gene-products in an
organism depending on the size and nature of input corpus, while ICgec, measure only relies on
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the GO hierarchical structure. These measures are representative of the two main approaches for
IC calculation and help to understand if the scope and size of the GO annotations are adequate
and large enough to provide accurate [C calculations.

The SML was employed to support SS calculations. The implementation of SML dedicated to
GO requires GO in OBO format and the protein annotations in GAF 2.0. Since the most recent
GO annotation file is in GAF 2.1 format, it was converted to the older format specifications.

After SS computations, each instance of the datasets, that represents a pair of proteins, was
characterized by three values, corresponding to the SS between them for the three GO aspects,
and a label (interact or non-interact).

5.2.2 Genetic Programming and Supervised Learning

For PPI prediction, the models evolved by GP are simply combinations of the SS of the three
aspects. GP evolves a good (hopefully the best) combination of the different SS aspects to
support PPI prediction. Figure 5.2 shows a parse tree of one of the simplest combinations
evolved in our experiments, here translated as

max (BP,CC) x max (BP, M F) (5.7)

where the SS aspects BP, CC and MF are the variables.

Figure 5.2: Combination generated by GP for PPI prediction. Max stands for Maximum.

The gplearn package was employed to implement GP. A “vanilla” tree-based GP system was
used, with no extras to boost the performance. The parameters are listed in Table 5.4. All
others were used with the default values of the gplearn software. The parsimony coefficient is
a non-standard parameter, specific to gplearn, and consists of a constant that penalizes large
programs by adjusting their fitness to be less favorable for selection. It was set to 1075, a
value experimentally found to reduce the size of the evolved models without compromising their
fitness. The function set contained only the four basic arithmetic operators (4,—,x, and =+,
protected against division by zero as in Koza (1992)), plus the Maximum (max) and Minimum
(min) operators. Although there is a vast array of tunable parameters even in the most basic
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Table 5.4: GP parameters for PPI prediction.

Parameter Value

Number of generations 50

Size of population 500

Function set +,—, %, ,max,min
Fitness function RMSE

Parsimony coefficient 107°

GP system, normally they do not substantially influence the outcome in terms of best fitness
achieved (Sipper et al., 2018).

For binary classification, it is fairly standard to use GP in a regression-like fashion, where
the expected class labels are treated as numeric expected outputs, and the fitness function that
guides the evolution is based on the error between the expected and predicted values. Therefore,
we used this same system in our experiments, with the root mean square error (RMSE) as fitness
function. However, when we report the performance of the evolved models, we first transform
the real-valued predicted outputs in class labels, by applying a cutoff value. If the predicted
value is higher than 0.5, the predicted label is 1 (interaction), otherwise the predicted label is 0
(no interaction).

For the purpose of cross validation, GP learnt the models on a training set, and their per-
formance was then assessed on a test set. Before each run of GP, the original dataset was split
into training and test sets using a 70-30 ratio by stratified subset selection. In this context,
stratification means that the random split returns training and test subsets that have the same
proportions of class labels as the original dataset.

5.2.3 Performance Measure

Since GP is a stochastic process, in each experiment we performed 10 runs, splitting the dataset
into a new 70-30 partition in every run. At the end of each run, we evaluated the WAF of
classifications on the respective test set using the combination selected by GP. We report the
performance of GP as the median of the 10 obtained WAFs.

As baselines, we have used five static combinations:

e The three single aspects (BP, MF or CC);

e Two well-known strategies for combining the single aspect scores: the Average and Maxi-
mum of the single aspect scores.

To establish the performance of these baselines, the prediction of PPI was formulated as a
classification problem where a SS score for a protein pair exceeding a certain threshold (SS
cutoff) indicates a positive interaction. The SS threshold was chosen after evaluating the WAF
at different threshold intervals and selecting the maximum. This emulates the best choice that
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a human expert could theoretically select. By comparing the performance of these optimal
baselines to the performance of our proposed approach, we aim at investigating the ability of
GP to learn combinations of semantic aspects that are able to support improved classification
performance.

5.3 Results and Discussion

In this section, the results of this work are presented, discussed and compared with other pub-
lished related work. First, the results for PPI prediction for each benchmark dataset using
static combinations (corresponding to baselines) and using the proposed methodology are de-
scribed. Then, the results obtained using the proposed methodology with different combinations
of datasets for training and testing are presented. The different combinations of datasets al-
low doing intra-species, cross-species and multi-species test sets, addressing the limitations of
predicting PPI for small datasets and species with fewer known interactions. Lastly, the main
results of the GP models analysis and those from relevant related work are compiled.

5.3.1 Static Combinations

Prior to performing the comparative evaluation, we investigated the behavior of the different SS
approaches employed, coupled with the five baselines.

Figures 5.3 to 5.11 show the WAF of classification at different cutoffs with six SSMs for the
DIP-HS, STRING-HS, GRID/HPRD-unbal-HS, GRID/HPRD-bal-HS, BIND-SC, DIP/MIPS-
SC, STRING-SC, STRING-DM, STRING-EC PPI datasets, by this order.

While Figure 5.3 is representative of the behavior found for the other datasets, Figure 5.11
shows a different behavior, where the F-measure is less penalized at higher cutoffs, particularly
for the Maximum and CC results. The proteins in this dataset have fewer BP annotations, which
may help explain the improved performance of CC.

Comparing the charts for different SSMs, we observe that the results obtained using ICgeco
(SimGIC/Icgeco, Resnikyiax/IcSeco, Resnikpna /Icgeco) do not seem to be significantly different
from their homologues (SimGIC /IcResnik, Resniknax /ICResnik, Resnikpya /IcResnik). However, for
each set of curves for SimGIC, Resnikyay and Resnikgya approaches, the maximum F-measure
is achieved at different ranges of SS cutoff. For SimGIC (Figure 5.3-a and 5.3-d), Resnikyax
(Figure 5.3-b and 5.3-¢) and Resnikpya (Figure 5.3-¢ and 5.3-f) the ranges are approximately
[0.1—0.3], [0.6—0.8] and [0.2—0.5], respectively. For most datasets, each SSM shows a consistent
behavior with curves having similar shapes.

Furthermore, we verify that the maximum observed F-measure is achieved when Resnik
approaches are used. The differences between SSMs are not unexpected since SimGIC considers
multiple GO annotations for calculating SS while Resnik approaches only consider the best-
matching term pairs. Therefore, the better performance using Resnik approaches makes sense
because proteins in PPIs only need to be in proximity in a single location or participate in a
single shared biological process, to be biologically relevant for PPI prediction.
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Figure 5.3: WAF curves for DIP-HS PPI dataset.WAF evaluations with static combinations of
semantic aspects (CC, BP, MF, Avg and Max) at different cutoffs are shown. The evaluation is performed
using six SSMs: (a) SImGIC/Icgeco, (b) Resnikpyax/Icseco, (¢) Resnikpma /Icseco, (d) SImGIC/IcRresnik,
(e) Resnikpyax/IcResnik and (f) Resnikpya /IcResnik-
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Figure 5.4: WAF curves for STRING-HS PPI dataset.WAF evaluations with static combina-
tions of semantic aspects (CC, BP, MF, Avg and Max) at different cutoffs are shown. The evalua-
tion is performed using six SSMs: (a) SImGIC/Icgeco, (b) Resnikyax /Icseco, (¢) Resnikpya /Icseco, (d)
SimGIC/ICResnik, (e) ResnikMax/ICResnik and (f) ResnikBMA/IcResnik.
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Figure 5.5: WAF curves for GRID/HPRD-unbal-HS PPI dataset. WAF evaluations with static
combinations of semantic aspects (CC, BP, MF, Avg and Max) at different cutoffs are shown. The
evaluation is performed using six SSMs: (a) SInGIC/Icgeco, (b) Resnikyax/Icseco, (¢) Resnikpnma /Icseco,
(d) SimGIC/ICResnik, (e) ResnikMax/ICResnik and (f) ResnikBMA/ICResnik~
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Figure 5.6: WAF curves for GRID/HPRD-bal-HS PPI dataset.WAF evaluations with static
combinations of semantic aspects (CC, BP, MF, Avg and Max) at different cutoffs are shown. The

evaluation is performed using six SSMs: (a) SInGIC/Icgeco, (b) Resnikyax/Icseco, (¢) Resnikpnma /Icseco,
(d) SimGIC/ICResnik, (e) ResnikMax/ICResnik and (f) ResnikBMA/ICResnik~
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Figure 5.7: WAF curves for BIND-SC PPI dataset.WAF evaluations with static combinations of
semantic aspects (CC, BP, MF, Avg and Max) at different cutoffs are shown. The evaluation is performed
using six SSMs: (a) SImGIC/Icgeco, (b) Resnikpyax/Icseco, (¢) Resnikpma /Icseco, (d) SImGIC/IcRresnik,
(e) Resnikpyax/IcResnik and (f) Resnikpya /IcResnik-

35



5. APPLICATION TO PROTEIN-PROTEIN INTERACTION PREDICTION

(a) SimGIC/IcSeco

(d) SimGIC/IcResnik

1.0 1.0
I g
3 3
@ ©0.8
g 0.8 g .
L w
%O.G %0.6 —
o [}
> >
<0.4 0.4
hel el
32 1]
ey 5
-g 0.2 g 0.2

O'%.O 0.2 0.4 0.6 0.8 1.0 0'%.0 0.2 0.4 0.6 0.8 1.0

Semantic Similarity Cutoff Semantic Similarity Cutoff
(b) ResnikMax/IcSeco (e) ResnikMax/IcResnik

1.0 1.0
I g
3 3>
@ ©
g 0.8 > g 0.8
uw w
0.6 0.6 /]/
© @©
— —
2 2
<0.4 <o.
e _J ° 04
2 ,' 1]
S 5
‘g 0.24] g 0.2

0'%.0 0.2 0.4 0.6 0.8 1.0 0'%.0 0.2 0.4 0.6 0.8 1.0

Semantic Similarity Cutoff Semantic Similarity Cutoff
(c) ResnikBMA/IcSeco (f) ResnikBMA/IcResnik

1.0 1.0 BP
o ]
2 ol
©0.8 ©0.8 — Cc
£ £ — Avg
:} = Max
$0.6 $0.6
© = @©
— —
2 2
<0.4 / 0.4
® 3
- Bl
c [ 2
‘g 0.21] g 0.2

O'%.O 0.2 0.4 0.6 0.8 1.0 0'%.0 0.2 0.4 0.6 0.8 1.0

Semantic Similarity Cutoff

Semantic Similarity Cutoff

Figure 5.8: WAF curves for DIP/MIPS-SC PPI dataset.WAF evaluations with static combi-
nations of semantic aspects (CC, BP, MF, Avg and Max) at different cutoffs are shown. The evalua-
tion is performed using six SSMs: (a) SImGIC/Icgeco, (b) Resnikyax /Icseco, (¢) Resnikpya /Icseco, (d)
SimGIC/ICResnik, (e) ResnikMax/ICResnik and (f) ResnikBMA/IcResnik.
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Figure 5.9: WAF curves for STRING-SC PPI dataset.WAF evaluations with static combina-
tions of semantic aspects (CC, BP, MF, Avg and Max) at different cutoffs are shown. The evalua-
tion is performed using six SSMs: (a) SImGIC/Icgeco, (b) Resnikyax /Icseco, (¢) Resnikpya /Icseco, (d)
SimGIC/ICResnik, (e) ResnikMax/ICResnik and (f) ResnikBMA/IcResnik.
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Figure 5.10: WAF curves for STRING-DM PPI dataset.WAF evaluations with static combi-
nations of semantic aspects (CC, BP, MF, Avg and Max) at different cutoffs are shown. The evalua-
tion is performed using six SSMs: (a) SImGIC/Icgeco, (b) Resnikyax /Icseco, (¢) Resnikpya /Icseco, (d)
SimGIC/ICResnik, (e) ResnikMax/ICResnik and (f) ResnikBMA/IcResnik.
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Figure 5.11: WAF curves for STRING-EC PPI dataset.WAF evaluations with static combi-
nations of semantic aspects (CC, BP, MF, Avg and Max) at different cutoffs are shown. The evalua-
tion is performed using six SSMs: (a) SImGIC/Icgeco, (b) Resnikyax /Icseco, (¢) Resnikpya /Icseco, (d)

SimGIC/ICResnik, (e) ResnikMax/ICResnik and (f) ResnikBMA/IcResnik.
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The maximum F-measure achieved in each baseline is presented in Table 5.5. As expected,
these results indicate that the predictive power of the BP and CC aspects is similar, with a slight
advantage for BP, while the predictive power of MF is considerably lower. The dataset STRING-
EC (Figure 5.11) is an exception because using only the SS for BP ontology provides worse
results comparatively to the other combinations of single aspects. Once again, the explanation
for that can be the lack of BP annotations for the species E. coli. Regarding static combination
approaches, the Average combination outperforms the Maximum in most cases. This is possibly
due to the fact that the Average combination can take into consideration both the BP and the
CC aspects.

5.3.2 Evolved Combinations

Table 5.5 shows the maximum WAF of classification for the baselines and the median of WAFs
for the proposed methodology, using different SSMs.

In seven out of nine datasets, GP is able to learn combinations of semantic aspects that
improve the best classification performance obtained by the baselines for that dataset. In
DIP/MIPS-SC and BIND-SC datasets, GP is unable to improve the performance obtained by
the Maximum static combination. While our approach for DIP /MIPS-SC dataset achieves 0.2%
lower performance, for BIND-SC the differences between WAF values are more significant (1.1%
lower performance). However, BIND-SC is one of the smallest (less than 2000 protein pairs),
which may help explain the lower performance of our approach.

Improvements over the single aspect baselines are, as expected, more pronounced for MF
(up to 18%) than for the other aspects. The improvements are also clear when considering the
combination baselines (2-5% in most cases). However, GP is not able to improve performance
for all SSMs and sometimes shows worse performance than the Average and Maximum static
combinations. It is important to note that the baselines are built to emulate the scenario of a
researcher choosing an optimal threshold and employing two well-known strategies for combining
the single aspect scores. With GP, we have always used the 0.5 cutoff with no further tuning, and
have used a function set that included the Maximum but not the Average (which interestingly
did not guarantee success or failure when compared to these two baselines).

It is interesting to note as well, that often GP achieves its best WAF when used with
Resnikpax approaches (in six out of nine datasets). Resnikyax approaches, more specifically the
Resnikprax /ICgeco measure, is also the best overall measure for the single aspect baselines. For
that reason, in the following experiments, the results were obtained using only Resnikyiax /ICseco
as SSM.

Finally, the comparison of results using datasets obtained with different methods of selecting
negative examples can be relevant. It is known that the preparation of negative data for PPI
prediction is an important issue for training and assessing the performance of a classifier. Since
there are no “gold standard” non-interactions, different methods are used for choosing negative
examples for training a predictor of PPIs. Some authors suggest that the negative set should
include protein pairs constructed from different cellular locations or involved in different biolog-
ical processes, based on the observation that pairs of proteins that have different localization
patterns are unlikely to interact (Ben-Hur & Noble, 2006). However, this type of negative data
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5.3 Results and Discussion

Table 5.5: Maximum WAF of classifications with baseline methodologies and the median of
WAFs with the evolved combinations (EC) for the different PPI datasets. In bold, the best
result for each dataset-SSM pair. In underlined, the best result for each dataset.

Dataset SSM Single and Static combinations EC
(#interactions) BP CC MF  Avg Max
STRING-EC SimGIC/ICgeco 0.652 0.822 0.671 0.830 0.819 0.834
(2245) Resniknax /ICseco 0.670 0.820 0.649 0.813 0.832 0.859

Resnikpyia /ICseco 0659 0.828 0.654 0.833 0.844 0.840
SimGIC/ICRsnik 0651 0.813 0.672 0.833 0.825 0.832
Resniknrayx/ICResnic ~ 0.670  0.830 0.660 0.812 0.861 0.862
Resnikgyia /ICResnic  0.658 0.826  0.660 0.804 0.860 0.845
STRING-DM STGIC,/ TCs000 0896 0.886 0.792 0.911 0893 0.912
(550) Resnikyray/ICseco 0920 0.887 0.796 0.933 0.938 0.930
Resnikgya /ICseco 0918 0.880 0.795 0.940 0.918  0.952
SimGIC/ICResnik 0.896 0.893 0.792 0.916 0.896 0.915
Resnikytax/ICResnic 0913 0.865 0.804 0.931 0.944 0.933
Resnikpya /ICResnic 0913 0.845 0.799 0.935 0.918  0.933
BIND-SC STNGIC,/ ICs000 0850 0.826 0.731 0.859 0835 0.868
(1366) Resnikyray/ICseco  0.885 0.847 0.776  0.909 0.894  0.906
Resnikgya /ICseco  0.871  0.841 0.765 0.902 0.868  0.898
SimGIC/ICR ecsnik 0.856 0.844 0.757 0.881 0.863 0.888
Resnikytax/ICResnic ~ 0.888  0.878 0.764 0.916 0.920 0.910
Resnikpya /ICResnic 0.873  0.867 0.760 0.909 0.901  0.903
DID,/MIPS-SC STNGIC,/ ICs000 0813 0.774 0.692 0804 0.782 0.817
(13807) Resnikytax/ICseco  0.843  0.795 0.702 0.837 0.836  0.848
Resnikpya /ICseco  0.826 0.791 0.700 0.837 0.824  0.836
SImGIC/ICRcgnik 0.813 0.797 0.697 0.814 0.804 0.826
Resnikytax/ICResnic ~ 0.840  0.817 0.704 0.848 0.856 0.854
Resnikpyia /ICResnikc 0.825 0.810 0.707 0.837 0.839 0.838
STRING-SC STGIC, TCS000 0804 0.764 0.685 0.805 0.780 0.815
(30384) Resnikytax/ICseco  0.827 0.787 0.679 0.832 0.824  0.845
Resnikpya /ICseco  0.817 0.788 0.677 0.837 0.817  0.840
SImGIC/IC Resnik 0.804 0.788 0.691 0.816 0.805 0.826
Resnikytax/ICResnic ~ 0.826  0.809 0.680 0.845 0.845  0.852
Resnikpya /ICResnic 0.811  0.813  0.681 0.839 0.836  0.844
DIP-HS STGIC, TCS000 0855 0.738 0.686 0.805 0.767 0.868
(2739) Resnikyiax/ICseco ~ 0.887 0.818 0.761 0.876 0.863  0.910
Resnikpya /ICseco  0.881  0.761 0.749 0.867 0.816 0.898
SImGIC/IC Resnik 0.859 0.738 0.705 0.821 0.796 0.862
Resnikytax/ICResnic ~ 0.878  0.797  0.771 0.879  0.889  0.894
Resnikgya /ICResnic 0.880 0.768 0.744 0.870 0.878  0.891
STRING-TIS STGIC,/ TCs000 0822 0.768 0.703 0813 0.781 0.836
(6912) Resnikyiax/ICseco  0.854  0.764 0.720 0.853 0.811 0.877
Resnikpya /ICseco  0.854  0.789 0.726 0.865 0.817  0.877
SImGIC/ICResnik 0822 0.775 0.726 0.832 0.810 0.847
Resnikyrayx/ICResnic 0846 0.778 0.728 0.871 0.868  0.882
Resnikgya /ICResnic 0.850 0.774 0.730 0.870 0.865 0.874
GRID/HPRD-unbal IS SimGIC /ICs0co 0.691 0.652 0.618 0.690 0.665 0.707
(31320) Resnikyray/ICseco  0.717  0.677 0.662 0.731  0.705 0.736
Resnikpya /ICseco  0.717 0.680 0.653 0.735 0.699  0.742
SimGIC /ICResnik 0.693 0.657 0.637 0.708 0.689 0.711
Resnikntax/ICResnic ~ 0.709  0.666 0.665 0.733  0.730  0.736
Resnikgya /ICResnic  0.714 0675 0.653 0.736  0.729  0.740
GRID/HPRD-bal-HS  SimGIC/ICsec0 0.650 0.630 0.616 0.668 0.649 0.669
(31349) Resnikyrayx/ICseco 0652 0.600 0.595 0.654 0.639 0.661
Resnikpya /ICseco 0654 0639 0.602 0.676 0.659 0.686
SimGIC /ICResnik 0.652 0.638 0.617 0.681 0.675 0.682
Resnikytax/ICResnic ~ 0.647  0.606 0.600 0.664 0.667  0.670
Resnikpya /ICResnic  0.652  0.631  0.606 0.677 0.676  0.687
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selection criteria can make the dataset biased, especially when GO based features are used for
PPI prediction. Other authors use a simpler schema, selecting non-interacting pairs uniformly
at random. This selection scheme also has potential pitfalls because the interaction network is
not complete and the negative set can be contaminated with interacting proteins. Furthermore,
according to Yu et al. (2010), if in datasets some proteins appear many more times in the positive
set than in the negative set, then a machine learning method will learn this and predict positive
interactions preferentially for these proteins, which inflates classification accuracy. To address
this bias, Yu et al. propose a method to create a balanced negative set. In this dissertation,
we use two datasets, GRID/HPRD-unbal-HS and GRID /HPRD-bal-HS, with equal positive sets
but with two types of negative sets, namely, random and balanced random (see Section 5.1.2).
Analyzing our results, we conclude that using a negative set constructed by balanced sampling
reduced the performance. However, the explanation of Yu et al. does not apply to our approach
because our machine learning method does not “see” the proteins, it only has access to SSs.

5.3.3 Evolved Combinations for Intra-species Prediction

The previous results suggest that having fewer instances can hinder the ability of GP to learn a
suitable combination of aspects. Therefore, and since two of the species have several datasets, we
tested our methodology using combined sets for each of these species. This allows us to investigate
whether a species-oriented model based on more instances can improve on the performance of
individual datasets. The human combined set contains the data from 4 datasets (STRING-HS,
DIP-HS, GRID/HPRD-bal-HS, GRID/HPRD-unbal-HS), with a total of 54219 protein pairs.
The yeast combined set contains the data from three datasets (STRING-SC, BIND-SC, and
DIP/MIPS-SC), with a total of 42330 protein pairs. Some pairs of proteins appear in more than
one dataset so, in these combined sets, the repeated pairs are first removed from the combined
sets and only then randomly split into training and test sets. Figure 5.12 shows the WAF boxplot
for the three yeast datasets, the four human datasets, the yeast combined set and the human
combined set. Each box includes the WAF's obtained in 10 runs.

Given the influence of the large proportion of instances coming from the larger datasets, we
were expecting that the performance using the combined set was similar to the performance of
the largest datasets included in the combined set. Using the boxplots to compare the prediction
performance, we verified that, for yeast data, the performance of the yeast combined set is in
fact very similar to the performance of the STRING-SC dataset (the largest dataset). However,
for human data, the performance of the combined set is higher than the performance of the two
largest human datasets, GRID /HPRD-unbal-HS and GRID/HPRD-bal-HS, suggesting that the
data from smaller datasets enhances the performance of predictions.

We were also interested in investigating, within a species, the performance of training in a
given group of datasets and testing on a different one. Once again, to solve the problem of
repeated pairs, we determine that if a protein pair is simultaneously in the training set and in
the test set, it will be removed from one of them. Tables 5.6 and 5.7 present the different tests
we conducted, indicating for each test which datasets are in the training set and which are in
the test set for human and yeast data, respectively.
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Figure 5.12: WAF boxplot using combined sets. The yellow boxes represent the WAF of predictions
for human data and the green boxes represent the WAF of predictions for yeast data. Within the same
species, the datasets appear on the x-axis in ascending order of size. The median of the WAF values is
on top of each box.

The results for human and yeast are summarized in Figures 5.13 and 5.14, respectively.
Analyzing the results for human sets, we conclude that using a larger dataset for training can
improve the performance of classification. For instance, training with data from GRID/HPRD-
bal-HS (e.g., S+Gb_D-+Gub), the larger dataset, leads to higher test WAFs, while training with
fewer data points (e.g., D__S+Gub+Gb) leads to lower WAF values. Relatively to yeast sets, the
same behavior is observed. For instance, in S+D_B, the experiment with the largest training
set and smallest test set, WAF is more than 5% higher than in the second best performing case.

Comparing the results in Figures 5.13 and 5.14, which illustrate the performance obtained
when training and testing with different combination of datasets within the same species, with
the results in Table 5.5, we verify that prediction methods are always more effective when trained
and tested with the same dataset than when trained with other datasets of the same species.
This is not surprising, considering how easy it is for biases to be unintentionally included in a
dataset, and how much of these biases can be captured and used by a powerful method like GP,
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Table 5.6: Training and test sets and number of protein pairs respectively used in
each experiment. The names of the datasets STRING-HS, DIP-HS, GRID/HPRD-unbal-HS, and
GRID/HPRD-bal-HS are abbreviated to S, D, Gub and Gb, respectively.

Training Set  No. of pairs | Test Set No. of pairs
S 6912 D+Gub+Gb 47307
D 2739 S+Gub+Gb 51480
Gb 31349 D-+S+Gub 22870
Gub 31320 D+S+Gb 22899
S+Gb+Gub 69581 D 2115
D+Gb+Gub 65408 S 5037
S+D 9651 Gb+Gub 44929
Gb-+Gub 62669 S+D 7239
S+Gb 38261 D+Gub 17746
D+Gub 34059 S+Gb 20697
S+Gub 38232 D-+Gb 17771
D+Gb 34088 S+Gub 20668

Table 5.7: Training and test sets and number of protein pairs respectively used in each
experiment. The names of the datasets STRING-SC, BIND-SC, and DIP/MIPS-SC are abbreviated
to S, B, and D, respectively.

Training Set No. of pairs | Test Set No. of pairs
S 30384 B+D 11946

D 13807 S+B 28523

B 1366 S+D 40964
S+B 31750 D 11163
S+D 44191 B 713
B+D 15173 S 27639

as long as they help achieve a good performance. Potential sources of bias could be a direct result
of the scientific process, where determining the interaction of proteins is likely to target proteins
that are more abundant (Bloom & Adami, 2003) or that participate in relevant processes, e.g.,
resistance/susceptibility to disease or stress conditions.

5.3.4 Evolved Combinations for Cross-species Prediction

In the above analysis, the training and test data come from the same species. However, training
prediction methods on one species’ data and testing them on another species’ protein pairs may
be useful to explore, since GO annotation is designed to be species independent (Ashburner et al.,
2000). To test this idea, we used our methodology to predict PPI but, using one species’ data
to train the model and another species’ data to test it. Figure 5.15 displays the self-test and
cross-species-test WAF boxplot using four datasets (STRING-DM, STRING-EC, STRING-HS,
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Figure 5.13: WAF boxplot using human datasets to training and testing. The labels of the
plots are in format 'D1+D2_ D3+D4’, where D1, D2, D3, D4 are the original datasets, D1+D2 is the
training set that contains data from D1 and D2, and D3+D4 is the test set that contains data from D3
and D4. In the labels, the names of the datasets STRING-HS, DIP-HS, GRID/HPRD-unbal-HS, and
GRID/HPRD-bal-HS are abbreviated to S, D, Gub, and Gb, respectively.

STRING-SC) of four different species (see datasets in Table 5.2).

The results reveal that our methodology is generally more effective when trained and tested
using data from the same species than when trained with data from one species and tested with
data from another species. For D. melanogaster, performances are very similar across training
sets, with S. cerevisiae data slightly improving performance. For FE. coli, performance can differ
greatly, with the human training set decreasing performance by more than 20% when compared
to E. coli. In fact, training with human data gives consistently the worst results. This could be
a result of the human dataset being composed of proteins that bear a lower similarity to those
in other species datasets or of differences in the annotation process.

Park (2009) and Maetschke et al. (2011) also evaluated the cross-species accuracy by training
a sequence-based classifier on one species data and predicting interactions for another species.
Park found that datasets typically used for training prediction methods contain peculiar biases
that limit the general applicability of prediction methods trained with them. In strong contrast,
Maetshke et al. conclude that datasets linked to low self-test accuracy result in low cross-species
accuracies while datasets with high self-test accuracy indicate datasets of good quality and,
consequently, lead to high test accuracies for all training sets. This means that, according to
Maetshke et al., the prediction performance on the test species for different training species
largely depends on the self-test accuracy achieved on the test dataset and only to a lesser degree
on the training dataset. Interestingly, the results for our methodology do not seem to indicate

45



5. APPLICATION TO PROTEIN-PROTEIN INTERACTION PREDICTION

o

o]
0.90

0897

[e]
0.88 |
0.86 |

] % 40
0.84 T s
0833 T
T‘ﬁ“ T
o]
0.821 o
S B+D D_S+B B S+D S+B_D S+D_B B+D_S

Figure 5.14: WAF boxplot using yeast datasets to training and testing. The labels of the plots
are in format D1+D2 D3+D4, where D1, D2, D3, D4 are the original datasets, D14+D2 is the training
set that contains data from D1 and D2, and D3-+D4 is the test set that contains data from D3 and D4.
In the labels, the names of the datasets STRING-SC, BIND-SC, and DIP/MIPS-SC are abbreviated to
S, B, and D, respectively.

that datasets with high self-test WAF (such as STRING-DM) lead to high test WAF for all

training sets.

5.3.5 Evolved Combinations for Multi-species Prediction

Applying a model learnt in more than one species data to the classification of another species
data could also potentially yield interesting results. The use of diverse training data will likely
produce more generally applicable models.

Therefore, we tested our approach by training the model using all species data except the
one species that was used for testing. Additionally, we also ran a species-agnostic experiment
where the data from all datasets was combined into a single dataset which was then randomly
split into training and test sets. The strategy to remove repeated pairs used before in evolved
combinations species-oriented is applied. In Figure 5.16 we can observe some interesting effects.
For D. melanogaster and S. cerevisiae, the differences observed between training with the other
species or with the same species are rather small: D. melanogaster multiple species performance

46



5.3 Results and Discussion

[ @ZZT

0.95 ’%
0.930 8931 0932

0.90

gl

3859 .
0.85 0847 -0.845 aaa1

0.75 0.747
0.70
0.65

0.635

0.60

DM DM EC_DM HS_DM SC_DM EC_EC DM_EC HS EC SC_EC HS HS DM HS EC_HS SC_HS SC_SC DM _SC EC_SC HS_SC

Figure 5.15: WAF boxplot using one species to train and another species to test. The format
D1 D2 of the labels means training with D1 and testing on D2.

increases by 0.5%, whereas for S. cerevisiae it decreases by 0.9%. However, for E. coli and human,
the difference is more significant, with E. coli dropping performance by 13.8% and human by
7.3%. Interestingly, the all datasets experiment produced a mid-range WAF value, indicating
that it is possible to produce a successful species-agnostic model.

5.3.6 Overview of GP Models

Since GP produces readable models, after evaluating the performance of the proposed methodol-
ogy, the models generated by GP across different datasets were analyzed. The goal was to identify
which are the operators and combinations that GP uses more often, and how they compare across
datasets.

The analysis of the models was conducted using the Python library SymPy 1.3 (Meurer
et al., 2017) and the Python package Graphviz 0.10.1 (Ellson et al., 2002). SymPy is a library
for symbolic mathematics and was used to convert the GP models obtained in each experiment
into expressions that are easily parsed. Graphviz is an open source graph visualization software
and was used to visualize the obtained GP models.

Table 5.8 summarizes, for the 10 runs performed in each dataset, the average length (number
of tree nodes) of the models and the average relative frequency of variables BP, CC and MF in
the models. These are calculated after arithmetic simplification of the raw models returned by

GP.
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Figure 5.16: WAF boxplot using multispecies data in training set.

Table 5.8: Analysis of GP models for each dataset.

Dataset BP CC MF Length
STRING-EC 0.281 0.432 0.288 92
STRING-DM 0.477 0.330 0.193 175.6
BIND-SC 0.326 0.473 0.201 185.9
DIP/MIPS-SC 0.437 0.395 0.168 51.6
STRING-SC 0.322 0.533 0.145 70
DIP-HS 0.432 0.372 0.196 137
STRING-HS 0.550 0.268 0.182 72.2
GRID/HPRD-unbal-HS 0.411 0.306 0.283 58.6
GRID/HPRD-bal-HS 0.457 0.296 0.247 51.6
Average 0.410 0.378 0.211 99.8
Species-agnostic 0.508 0.373 0.134 &89.9

As expected, variable MF appears less frequently in the GP models, except for the STRING-

EC dataset. Once again, the explanation for this exception can be the lack of BP annotations

for the species E. coli. These results are in agreement with the previous results that indicated
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that BP and CC annotations are stronger indicators for PPI than MF annotation. However,
the frequency in which a given variable appears in a GP model does not necessarily measure
its importance for the predictions, as its effect may be stronger or weaker depending on its sur-
rounding context. The average length of the GP models is 99.8, with somewhat large differences
between datasets. One interesting observation is that, when the datasets are smaller, such as
STRING-DM and BIND-SC, the average length of the GP models tends to increase. This may be
an indication that GP is evolving highly tuned, possibly overfitted models, for lack of sufficient
data to induce smaller and more general ones. However, in GP the complexity of a model does
not depend on its size, but on the particular features and operators used to build it, and therefore
one cannot assume that larger models overfit more than smaller ones (Silva et al., 2012).

In GP models of the species-agnostic experiment the differences between the frequencies of
the variables BP, CC and MF are more significant, being MF the least frequent variable and
BP, clearly, the most frequent variable (last row of Table 5.8). Once again the results indicate
that similarities in BP and CC annotations are stronger indicators for PPI than MF annotation,
with a slight advantage for BP.

5.3.7 Comparison with other PPI Prediction Methods

By using benchmark datasets, our results could be in principle directly compared to the results
obtained by other works using the same datasets. However, our results cannot be directly
compared to the published ones, first because we used more recent versions of the GO KG, and
second because we excluded some protein pairs of the benchmark datasets. The results obtained
in different works are also not directly comparable between themselves. Nevertheless, the results
from relevant related work were compiled, to support a comparative overview.

Table 5.9 summarizes the area under the receiver operating characteristic curve (AUC-ROC)
for several prediction methods and the AUC-ROC median for the proposed methodology using
the best SSM.

The results in the third to sixth columns are all based on a similar approach, whereby an
interacting protein pair is described by a vector that combines the presence/absence of GO terms
for both proteins. The ULCA (up to lowest common ancestors) variant takes all annotations,
direct and inherited up to the lowest common ancestor. The AA (all ancestors) variant takes
all annotations, direct and inherited. The weighted variants (WULCA and WAA) weight the
presence of a GO term by its IC. This is not a semantic-similarity based approach, but rather
a propositional feature vector approach over the GO KG. The third column shows the best
prediction performance of the ULCA with a Naive Bayes classifier using the BP aspect obtained
by Maetschke et al. (2011). The fourth, fifth, and sixth columns present the results obtained by
cross-validation of SVM obtained by Bandyopadhyay & Mallick (2017) using all aspects.

The seventh column refers to an improved algorithm proposed by Maetschke et al. (2011) to
compute SS between GO terms annotated to proteins in benchmark interaction datasets. The
eighth column reports the results obtained by Chen et al. (2019). Here, an ensemble learning
approach for PPI prediction integrates five learning algorithms and three types protein-pair
features based on the physicochemical properties of amino acids, GO, and interaction network
topologies.
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Bandyopadhyay & Mallick (2017) is one of the most recent works where the impact of the
GO KG updates introduces less bias in a comparison with our results. We can observe that
our approach achieves a 5-6% lower performance in the STRING-SC and STRING-EC datasets,
but an equal performance in the human dataset, while in the STRING-DM dataset it achieves
an 11% higher performance. An important difference between Bandyopadhyay and Mallick’s
approach and ours, is that while ours uses SS as the features characterizing a protein pair, they
employ IC weighted vectors of the GO terms assigned to each protein. Their approach gives
the machine learning algorithm access to the annotations themselves, with models being able
to learn exactly which annotations are better interaction predictors, while in our approach the
model is only able to learn which semantic aspects are the best predictors.

Table 5.9: Comparison of the evolved combinations (EC) with other PPI prediction meth-
ods.

ULCA by ULCA by WULCA by WAA by Best SSM  Tool by

Dataset EC Maetshke Bandyopadhyay = Bandyopadhyay  Bandyopadhyay by Jain  Chen et
et al. and Mallick and Mallick and Mallick and Bader  al.

STRING-SC 0.90 0.83 0.92 0.95 0.95 0.95

STRING-HS 0.95 0.85 0.90 0.93 0.95 0.92

STRING-EC 0.91 0.93 0.93 0.96 0.96 0.95

STRING-DM 0.97 0.82 0.82 0.86 0.85 0.92

DIP-HS 0.97 0.92

BIND-SC 0.96 0.96 0.94

DIP/MIPS-SC 0.88 0.93 0.93

GRID/HPRD-bal-HS 0.74 0.68 0.67

GRID/HPRD-unbal-HS (.81 0.83 0.82

The Onto2Vec method, proposed by Smaili et al. (2018), is also applied to predict PPIs in
human and yeast. Although they did not use our benchmark datasets, PPIs were collected from
STRING, the same database of PPIs from STRING-SC and STRING-HS datasets. In this work,
Onto2Vec was used to learn feature vectors for proteins combining information about their GO
annotations and the semantics of the GO classes in a single representation. The best AUC-ROC
values were 0.8869 and 0.8931 for yeast and human datasets, respectively, and were obtained
using an artificial neural network on the Onto2Vec representations.
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Chapter 6

Conclusions and Future Work

KGs represent a unique opportunity for machine learning and knowledge discovery, given the
growing number of KGs and their ability to provide meaningful context to the data through
semantic representations. SS as a KG-based representation has been used to support several
biomedical applications, ranging from the prediction of PPIs, of gene product function or even
of genes associated with diseases. Using KG-based SSMs typically includes selecting the aspects
of the KG that are relevant for a given target application, a task that needs expert knowledge.
However, in complex and multi-domain data, such as biomedical data, this manual selection can
represent a challenge, since for some learning tasks identifying the most relevant semantic aspects
is not straightforward. Adjusting the selection of SS aspects to the machine learning task in an
automated fashion, until now, had not yet been tackled.

This chapter summarizes the main contributions of this work and discusses some limitations
and future work.

6.1 Summary of Main Contributions

This dissertation focused on overcoming the limitations imposed by manual selection of SS aspects
for machine learning. We have developed a novel approach, using GP, that is able to learn suitable
combinations of SS aspects to support supervised learning. GP was chosen for its unmatched
ability to search large solution spaces by means of evolving a population of free-form models
through crossover and mutation. An analysis of the related work showed that there are no
known approaches that use GP to improve SS representations.

The developed approach was applied and evaluated in PPI prediction, using the GO as the
KG (with its three semantic aspects: BP, CC and MF) and a set of nine benchmark datasets. SS
derived from GO is one of the most widely used indicators for protein interaction. Furthermore,
the relationships between the different semantic aspects and PPI interaction are well established.

The first step in the implementation of our methodology was the computation of SSM for
each GO semantic aspect. This computation was done using six distinct SSMs, providing a
comparative evaluation of SSMs for PPI prediction in the nine benchmark datasets. The goal

ol



6. CONCLUSIONS AND FUTURE WORK

of this evaluation was to elucidate which SSM is more suitable for PPI prediction. The results
showed that the SSMs that use Resnik approaches have better performance in general (section
5.3.1).

In the second and third steps, for each dataset, GP was used over the obtained SS values for
each GO semantic aspect to select the best combination. This combination was then used for
PPI prediction on test set. The results showed that, for sufficiently large datasets (greater than
2000 protein pairs), GP is able to learn suitable combinations of SS aspects that improve PPI
prediction performance over classical static combinations. Thus, a GP-based approach is able
to improve over the manual selection of semantic aspects (section 5.3.2). Since results suggested
that the lower size of datasets could explain the lower performance of our methodology, we
investigated the potential impact of the size of datasets by combining datasets with data from
the same species. These experiments yielded very interesting results and confirm that using
larger datasets for training improve the performance of classification (section 5.3.3).

GO and GO annotations are designed to be species-independent and this is especially impor-
tant for the cases where the number of documented proteins of that species is low. Therefore,
and since we used benchmark PPI datasets from four different species, we also demonstrated
that a model trained on one or multiple other species can be transferred and successfully be
applied to a different species (sections 5.3.4 and 5.3.5).

One of the main advantages of GP and one of the reasons that led us to choose this ma-
chine learning algorithm is its ability to produce readable models. The analysis of the models
generated across the different datasets showed that these models reflect the expert knowledge in
PPI domain, proving our hypothesis that the combination of semantic aspects can be selected
automatically using GP (section 5.3.6).

The main conclusion of this work is that our methodology can be used to automatically select
the combination of SS aspects to the machine learning task. For PPI prediction, when compared
with manual selected combinations, our methodology improves the classification performance.

6.2 Limitations

The promising results reported herein should be considered in the light of some limitations.

The primary limitation of the results concerns the data sources. Although data sources
like the GOA database contain consolidated knowledge, the information which they provide is
intrinsically biased towards well studied proteins and genes. In addition, it is also probable
that PPI datasets will have their own biases, for instance towards the preparation of negative
examples.

The approaches based on SS also have some possible limitations. The information in the
ontology is used to define the similarity but this information is reduced to a single point (the SS
value). Thus, the output of SSMs contains no explicit information of the ontology. Furthermore,
SSMs are generally designed by an expert based on a set of assumptions about how an ontology is
used and what should constitute a similarity. However, different similarity measures perform well
on some datasets and tasks and worse on others, without any measure showing clear superiority
across multiple tasks, as also noted in Smaili et al. (2018).
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Finally, as said before, GP, like nature, is a stochastic process and it can never guarantee
the optimal result. In addition, there is high variability among the raw models returned in
different runs, even when using the same settings and same dataset. This characteristic raises
some difficulty in interpreting the ensemble of GP models.

6.3 Future Work

Despite the narrow application proposed in this dissertation, the proposed methodology is not
specifically designed for PPI prediction and can be generalized to other applications and domains
available as KG. Disease gene discovery and prioritization using the HPO, or link prediction over
KGs, are examples of applications. Furthermore, other SSMs can be explored. As stated in
Section 2.1.4, there are many SSMs applied to biomedical ontologies that have been proposed
but have not been tested.

Another direction for future work is combining our approach for semantic aspect selection with
other semantic representations such as graph embeddings and graph kernels. These state-of-art
semantic representations are static and take into consideration all semantic aspects, ignoring that
some may be irrelevant to the downstream learning task, potentially introducing noise. Thus,
GP can be used to learn suitable semantic of entities extracted from KGs capable of supporting
a specific supervised learning task. In other words, GP can be used to learn which properties or
portions of the graph are more relevant and how to combine them to produce adaptive semantic
representations to address a given machine learning task.
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