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Abstract 

 

The mechanism that triggers Alzheimer’s disease (AD) is not well-established, with amyloid plaques, 

neurofibrillary tangles of tau protein, microgliosis and glucose hypometabolism all likely involved in 

the early cascade. One main advantage of animal models is the possibility to tease out the impact of each 

insult on the neurodegeneration. Following an intracerebroventricular (icv) injection of streptozotocin 

(STZ), rats and monkeys develop impaired brain glucose metabolism, i.e. “diabetes of the brain”. Nu-

merous studies have reported AD-like features in icv-STZ animals, but this model has never been char-

acterized in terms of Magnetic Resonance Imaging (MRI)-derived biomarkers beyond structural brain 

atrophy. White matter degeneration has been proposed as a promising biomarker for AD that well pre-

cedes cortical atrophy and correlates strongly with disease severity. Therefore, this project proposes a 

longitudinal study of white matter degeneration in icv-STZ rats using diffusion MRI. An existing image 

processing pipeline was primarily used to obtain preliminary results and propose an optimization strat-

egy to improve it in terms of data quality and reliability. These strategies were tested and implemented 

in the pipeline when confirmed to be valuable, in order to achieve results as reproducible as possible 

and find the spatio-temporal pattern of brain degeneration in this animal model.  

All experiments were approved by the local Service for Veterinary Affairs. Male Wistar rats (N=18) 

(236±11 g) underwent a bilateral icv-injection of either streptozotocin (3 mg/kg, STZ group, N=10) or 

buffer (control group, CTL, N=8). Rats were scanned at four timepoints following surgery on a 14 T 

Varian system. Diffusion data were acquired using a semi-adiabatic SE-EPI PGSE sequence as follows: 

4 (b=0 ms/µm2), 12 (b=0.8 ms/µm2), 16 (b=1.3 ms/µm2) and 30 (b=2 ms/µm2) directions; 

TE/TR=48/2500 ms, 9 coronal 1 mm slices, δ/Δ=4/27 ms, FOV=23x17 mm2, matrix=128x64 and 4 

shots.  

The existing image processing pipeline included image denoising and eddy-correction. Moreover, 

diffusion and kurtosis tensors were calculated for each voxel, producing parametric maps of fractional 

anisotropy (FA), mean, axial and radial diffusivity (MD, AxD and RD) and mean, axial and radial kur-

tosis (MK, AK and RK). Additionally, the two-compartment WMTI-Watson model was further esti-

mated to provide specificity to the microstructure assessment. The following metrics were derived from 

the model: volume water fraction 𝑓, parallel intra-axonal diffusivity 𝐷𝑎, parallel 𝐷𝑒,║ and perpendicular 

extra-axonal diffusivities 𝐷𝑒,ꓕ and dispersion of fiber orientations 𝑐2. Since the model allows for two 

mathematical solutions, the 𝐷𝑎 > 𝐷𝑒,║ solution was retained based on recent evidence. Considering pre-

vious findings, the corpus callosum, cingulum, fornix and fimbria were chosen as white matter regions 

of interest (ROIs) and automatically segmented using anatomical atlas-based registration. Mean diffu-

sion metrics were calculated in each ROI for each dataset. CTL and STZ groups were compared using 

two-sided t-tests at each timepoint. Within-group longitudinal changes were assessed using one-way 

ANOVA. Because of the small cohort, statistical analysis excluded the last time point.  

In the course of this project, strategies to optimize the existing pipeline were developed and tested. 

The existing brain atlas template was supplemented with white matter labels, rat brain extraction was 

semi-automated, and bias field correction of anatomical data was added before registration. Ventricle 

enlargement is typically reported in icv-STZ animals and normally constitutes an issue of misalignment 

in registration. In order to better match the label ROIs with the respective underlying tissue, several 

registration procedures were tested with different FA and color-coded FA template images. Color-coded 

FA-based registration dramatically improved the segmentation of the corpus callosum and the fimbria 

and reliability of diffusion metrics extracted from these regions. Moreover, additional fiber metrics were 

extracted from a newly developed tractography pipeline to compare with tensors metrics and finally, 

tensors metrics were evaluated in the gray matter for a more comprehensive spatio-temporal character-

ization of brain degeneration.     
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Results from statistical analysis were obtained after implementing the successful optimization strat-

egies into the pipeline. There were few significant differences within groups over time. However, be-

tween-group differences at each time point were more pronounced. White matter microstructure altera-

tions were consistent with previous studies of histology and cognitive performance of the icv-STZ 

model. Changes in tensors metrics indicate early axonal injury in the fimbria and fornix at 2 weeks after 

injection, a period of potential recovery at 6 weeks after injection and late axonal injury at 13 weeks in 

all ROIs. The WMTI-Watson biophysical model provided specificity to the underlying microstructure, 

by showing intra-axonal damage in the fimbria and corpus callosum as early as 2 weeks, followed by a 

recover period and definite axonal loss at 13 weeks after injection.  

Results from tensors metrics and the WMTI-Watson model are not only complementary, they are 

consistent with each other and with previously-established trends for structural thickness, memory per-

formance, amyloid deposition and inflammation. The icv-STZ model displays white matter changes in 

tracts reportedly affected by AD, while the degeneration is induced primarily by impaired brain glucose 

metabolism. The icv-STZ constitutes an excellent model to reproduce sporadic AD and should allow to 

further explore the hypothesis of AD being “type III diabetes”. The combination of diffusion information 

extracted from tensor imaging and biophysical modelling is a promising set of tools to assess white 

matter in the AD brain and might be the upcoming strategy to assess the human brain. Regarding future 

work, it will focus on estimating the correlation between microstructural alterations and functional con-

nectivity (from resting-state functional MRI), glucose hypometabolism (from FDG-PET), and patholog-

ical features (from histological stainings) – all currently under processing at CIBM. Tractography is a 

cutting-edge methodology to assess brain connectivity and the pipeline created could be further devel-

oped to improve understanding and support diffusion metrics. The relationship between white and gray 

matter will also improve the understanding of spatio-temporal degeneration and the progression nature 

of the disease.   

 

Keywords: Alzheimer’s disease, animal models, white matter microstructure, diffusion tensors and 

biophysical models of diffusion 

  



 

vi 

 

Resumo 

 

O mecanismo que desencadeia a doença de Alzheimer (DA) não é bem conhecido, contudo sabe-se 

que a presença de placas amilóides e de emaranhados neurofibrilares da proteína tau, microgliose e ainda 

hipometabolismo de glucose estão envolvidos na fase inicial da cascata de desenvolvimento da doença. 

A principal vantagem dos modelos animais é justamente a possibilidade de estudar individualmente o 

impacto de cada um destes mecanismos no processo de neurodegeneração. Após uma injeção intracere-

broventricular (icv) de estreptozotocina (STZ), várias espécies de animais mostraram um metabolismo 

anormal de glucose no cérebro, processo que foi referido como “diabetes do cérebro”. Vários estudos 

demonstraram que animais icv-STZ são portadores de características típicas de DA, mas este modelo 

animal nunca foi estudado em termos de biomarcadores derivados de técnicas de imagem por ressonân-

cia magnética (IRM), exceto atrofia estrutural do cérebro. Um biomarcador promissor de DA que se 

acredita preceder a atrofia do córtex cerebral é a degeneração da matéria branca do cérebro, uma vez 

que foi fortemente correlacionado com a progressão e gravidade da doença. Logo, este projeto propõe 

um estudo longitudinal da degeneração da matéria branca em ratazanas icv-STZ utilizando IRM de di-

fusão. O plano de processamento de imagem existente foi utilizado primeiramente para obter resultados 

preliminares e viabilizar a proposta de estratégias de otimização da mesma, em termos de melhoramento 

da qualidade de imagem e credibilidade das variáveis extraídas das imagens resultantes. Estas estratégias 

foram testadas e implementadas no plano de processamento quando a sua performance confirmou ser 

de valor, para que os resultados fossem o mais reproduzíveis possível em caracterizar a distribuição 

espácio-temporal da degeneração do cérebro neste modelo animal. 

Todos os procedimentos aqui descritos foram aprovados pelo serviço local dos assuntos veterinários. 

Ratazanas macho Wistar (N=18, 236±11 g) foram submetidas a uma injeção icv de STZ (3 mg/kg) no 

caso do grupo infetado (N=10) ou de um buffer no caso do grupo de controlo (N=8). As ratazanas foram 

examinadas no scanner de IRM do tipo Varian de 14 T em quatro momentos no tempo: 2, 6, 13 e 21 

semanas após a injeção. As imagens por difusão foram adquiridas com uma sequência semi-adiabática 

spin-echo EPI PGSE com os seguintes parâmetros: 4 (b=0), 12 (b=0.8 ms/µm2), 16 (b=1.3 ms/µm2) and 

30 (b=2 ms/µm2) direções; TE/TR=48/2500 ms, 9 secções coronais de 1 mm, δ/Δ=4/27 ms, FOV=23x17 

mm2, matriz=128x64 e 4 shots.  

O plano existente de processamento de imagem incluía a correção das imagens ao nível de ruído e 

correntes-eddy. Posteriormente, os tensores de difusão e curtose foram estimados para cada voxel e os 

mapas paramétricos de anisotropia fracional (FA), difusão média, axial e radial (MD, AD e RD) e cur-

tose média, axial e radial (MK, AK e RK) foram calculados. Adicionalmente, um modelo de difusão de 

água nas fibras da matéria branca foi utilizado para providenciar maior especificidade ao estudo da 

microestrutura do cérebro. Como tal, o modelo de dois compartimentos denominado WMTI-Watson foi 

também estimado e as seguintes variáveis foram derivadas do mesmo: a fração do volume de água 𝑓, a 

difusividade paralela intra-axonal 𝐷𝑎, as difusividades paralela 𝐷𝑒,║ e perpendicular 𝐷𝑒,ꓕ extra-axonais 

e, finalmente, a orientação da dispersão axonal 𝑐2.  Este modelo matemático tem duas soluções possíveis 

dada a sua natureza quadrática, pelo que a solução 𝐷𝑎 > 𝐷𝑒,║ foi imposta com base em evidências re-

centes. Considerando estudos anteriores, as regiões de interesse (RDIs) da matéria branca escolhidas 

para analisar a microestrutura cerebral foram o corpo caloso, o cíngulo, a fimbria e a fórnix. Estes foram 

automaticamente segmentados através de registo de imagem de um atlas das regiões do cérebro da rata-

zana e as médias das medidas extraídas dos tensores de difusão e curtose e ainda do modelo biofísico 

neuronal foram calculadas em cada RDI para cada conjunto de imagens obtidas. Os dois grupos de teste 

e controlo foram comparados usando testes t de Student bilaterais em cada momento do tempo, e a 

comparação das alterações longitudinais em cada grupo foi feita usando uma ANOVA. Devido ao baixo 

número de amostras, o último momento no tempo às 21 semanas foi excluído da análise.    
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No decorrer deste projeto, várias estratégias para otimizar o processamento de imagem ou comple-

mentar a análise da informação disponível foram testadas. Nomeadamente, o atlas cerebral da ratazana 

foi aperfeiçoado relativamente às regiões de matéria branca, a segmentação do cérebro foi testada com 

algoritmos automáticos e a correção do bias field em imagens estruturais de IRM foi adicionada ao plano 

antes do registo de imagem. O aumento dos ventrículos cerebrais é uma característica frequente em 

animais icv-STZ, constituindo um problema de alinhamento nos métodos de registo de imagem. No 

sentido de otimizar a correspondência entre as regiões do atlas e as respetivas regiões na imagem estru-

tural e por difusão, vários procedimentos de registo de imagem foram testados. O co-registo de imagem 

convencional utiliza imagens estruturais para normalizar o espaço das imagens por difusão, no entanto 

os mapas paramétricos de FA têm vindo a substituir este conceito dado o excelente contraste que provi-

denciam entre a matéria branca e cinzenta do cérebro. Mapas de FA com diferentes direções predomi-

nantes mostraram uma melhoria significante da segmentação do corpo caloso e da fimbria e também do 

poder estatístico das variáveis extraídas destas RDIs. Adicionalmente, um novo plano de processamento 

de tratografia foi construído de raiz no âmbito deste projeto para extrair variáveis adicionais das fibras 

de interesse e compará-las com as variáveis de difusão obtidas por análise voxel-a-voxel. Por último, as 

variáveis calculadas através dos tensores de difusão e curtose foram avaliadas na matéria cinzenta do 

cérebro para uma caracterização espácio-temporal da degeneração cerebral na DA.  

Os resultados da análise estatística foram obtidos após integrar no plano de processamento as estra-

tégias que mostraram valorizar o projeto em termos de qualidade de imagem ou credibilidade das vari-

áveis. Houve poucas diferenças significativas ao longo do tempo em cada grupo, no entanto as diferen-

ças entre grupos foram bastante acentuadas. As alterações ao nível da microestrutura da matéria branca 

foram consistentes com estudos prévios em animais icv-STZ usando métodos histológicos e avaliações 

das suas capacidades cognitivas. Alterações nas variáveis extraídas dos tensores indicaram deficiência 

axonal inicial na fimbria e no fórnix 2 semanas após injeção no grupo de teste, um potencial período de 

recuperação às 6 semanas e novamente deficiência axonal às 13 semanas, sendo que neste período tardio 

todas as RDIs foram afetadas. O modelo biofísico WMTI-Watson confirmou aumentar especificidade 

ao estudo da microestrutura, visto que demostrou danos intra-axonais na fimbria e no corpo caloso 2 

semanas após injeção, seguidos de um período de recuperação e de perda de estrutura axonal definitiva 

às 13 semanas em todas as RDIs.  

Não só estes dois métodos de análise de IRM de difusão se complementam, como são também con-

sistentes entre eles e com as tendências de alterações ao longo do tempo descritas noutros estudos. Além 

disso, o animal icv-STZ mostrou alterações características da DA, mesmo tendo a degeneração cerebral 

sido induzida pela disrupção do metabolismo de glucose no cérebro. Como tal, este modelo animal é 

excelente para reproduzir a doença e deverá continuar a ser avaliado nas diferentes áreas multidiscipli-

nares para explorar a hipótese de a DA ser desencadeada pela falha do sistema insulina/glucose. A com-

binação da informação de difusão obtida dos tensores e da modelação da difusão neuronal provou ser 

uma ferramenta promissora no estudo das fibras da matéria branca do cérebro e poderá vir a ser o desafio 

futuro no que toca a investigação clínica da DA. Este estudo focar-se-á em correlacionar as alterações 

microestruturais aqui descritas com dados de conectividade funcional (obtida por IRM funcional em 

repouso), hipometabolismo de glucose (por FDG-PET) e outras características patológicas (por colora-

ção histológica) – todos já em curso no CIBM. Tratografia é a metodologia topo de gama para aceder à 

conetividade cerebral e o plano de processamento gerado neste projeto poderá continuar a ser desenvol-

vido no futuro para informação adicional, assim como a relação entre a matéria branca e cinzenta poderá 

suplementar a compreensão da progressão da doença no espaço e no tempo.  

 

Palavras-chave: Doença de Alzheimer, modelos animais, microestrutura da matéria branca cerebral, 

tensores de difusão, modelos biofísicos de difusão.  
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1. Introduction 

 

Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder affecting 10% of the popu-

lation over 65 years old. AD is the most common form of dementia and its increasing incidence is lead-

ing to a costly burden of disease. There is no effective cure to AD since brain damage begins 20 years 

before clinical symptoms are evident, which are manifested by cognitive and memory impairment [1]. 

Current approaches to treat AD have failed because at time of symptoms onset, the disease is already 

irreversible. According to the Alzheimer’s Association, due to the rising life expectancy and other en-

vironmental factors, the incidence of AD is expected to quadruplicate by 2050 if no healthcare plan, 

other than palliative care or social support, is provided [2]. Hence, it is of the outmost importance to 

understand the determinants leading to AD development in its long asymptomatic stage.    

According to the report “Health at a Glance 2017” published by OCDE, Portugal is the fourth country 

in the EU with the higher prevalence of dementia, with an average of 1 in each 50 inhabitants having 

dementia. In Switzerland, 1 in each 58 inhabitants suffer from dementia and the tendency of incidence 

is to double in the next 10 years, according to the non-profit organization Alzheimer Switzerland.  

Even though the trigger mechanism of the disease remains unknown, AD is well characterized by a 

pathological cascade of events that defines the temporal progression and severity of the disease, which 

normally ends in dementia because of the late diagnosis [3]. The pathological hallmarks of the cascade 

include aggregation of amyloid-β plaques and neurofibrillary tangles of tau, cortical atrophy, synaptic 

dysfunction, inflammation and hypometabolism of glucose. Understanding the temporal and causal re-

lationships between them might offer the opportunity for an early and efficient detection.  

Fortunately, animal models provide the possibility to tease out the individual impact of each of these 

hallmarks and perform longitudinal studies in a relatively short period of time [4]. Following an intrac-

erebroventricular (icv) injection of Streptozotocin (STZ), animals develop impaired glucose metabolism 

in the brain [5]–[7]. Several studies have reported AD-like features in icv-STZ animals [8]–[12], but 

this model has never been assessed with magnetic resonance imaging (MRI) derived biomarkers.   

MRI has emerged in the 70’s, even though the first clinical MRI scanners have appeared in 1990. It 

relies on generating 3D images by measuring the magnetic moments of particles in resonance. With a 

range of contrasts that provide better image detail than Computed Tomography, MRI has become one 

of the standard non-invasive non-ionizing imaging modalities. Both structural and functional imaging 

have profited from the introduction of MRI, with several applications coming along with it.  In particu-

lar, diffusion-weighted imaging (DWI) was introduced in 1986 and relies on the Brownian motion of 

water molecules to study the underlying microstructure of tissues [13]. Fibrous tissues such as white 

matter tracts present a restricted diffusion which provides contrast to images. The study of skeletal and 

cardiac muscle is one of the applications of DWI, however neuroimaging research has made the most 

promising advances. While ischemic stroke is the killer application of DWI, this technique has brought 

over the past 30 years an incontestable insight into neurodegenerative processes.  

Several approaches have been proposed to model diffusion within the brain. From the simple diffu-

sion tensor imaging to the non-Gaussian diffusivity kurtosis imaging [14], [15], numerous metrics can 

be extracted from DWI data to quantify microstructure. Moreover, biophysical models of neuronal dif-

fusion have emerged to provide specificity to the interpretation of changes, which indicate abnormalities 

in tissue microstructure such as demyelination, inflammation, axonal loss, among others [16], [17]. 

Tractography has become the standard approach to assess brain connectivity using diffusion data [18]. 

White matter degeneration has been proposed as a promising biomarker for AD that well precedes 

cortical atrophy and correlates strongly with disease severity and progression [19]–[21]. Given its ani-

sotropic diffusion properties, white matter tracts have been widely assessed using DWI [22], [23], be-
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cause the diffusion tensor is sensitive to the direction of diffusion. Therefore, this master’s project con-

sisted in a longitudinal study of the white matter microstructure in the icv-STZ rat using DWI. Longitu-

dinal information was expected to contribute to the understanding of the spatio-temporal impact of the 

disrupted metabolism of brain glucose in the white matter tracts as well as of the temporal interplay 

between microstructural damage, amyloid deposition, functional loss and cognitive performance. 

This project occurred in the context of the integrated BSc/MSc in Biomedical Engineering and Bio-

physics of Faculdade de Ciências da Universidade de Lisboa (FCUL) in Portugal and took place at 

Centre d’Imagerie Biomédicale (CIBM), École Polytechnique Fédérale de Lausanne (EPFL) in Swit-

zerland, from September 2018 to June 2019. The main objective of this project was the biological inter-

pretation of neurodegeneration results obtained by an existing processing pipeline of DWI images. From 

an engineering perspective, optimization strategies to improve the processing pipeline and the statistical 

analysis were tested and implemented in the course of the traineeship.  

Theoretical background on AD’s pathological features and the icv-STZ animal model are further 

described in the Section 2.1. MRI principles are shortly explained as well in the Section 2.2 and DWI 

fundamentals and applications are put into neuroimaging context in the Section 2.3, by characterizing 

the standard cutting-edge mathematical models to assess diffusion data. In the Section 2.4, general image 

processing techniques including registration and intensity and noise correction are briefly mentioned. 

The study design is described in the Section 3.1 and the methodology used in this project consists in the 

MRI data acquisition explained in the Section 3.2, the image processing pipeline and the statistical anal-

ysis. The image processing pipeline is divided into the existing pipeline and the optimization strategies. 

The existing image processing pipeline was developed by Dr. Ileana Jelescu and used in previous 

projects. It includes image reconstruction, registration and correction, as well as two different ap-

proaches to assess DWI data.  Namely diffusion and kurtosis tensors and the WMTI-Watson biophysical 

model of the white matter. This pipeline is fully described in the Section 3.3 because it was firstly used 

to obtain preliminary results. Practice using this pipeline provided deep understanding of the processing 

methodology and allowed for the development of strategies towards its optimization.  

These strategies were tested following the purpose and procedure described in the Section 3.4. Opti-

mization strategies were focused on obtaining more efficiently reliable and accurate results in terms of 

data quality and statistical power. They consisted in speeding up some of the steps in the existing pro-

cessing pipeline, improving registration methods and diffusion metrics extraction from available data. 

The Section 4.1 shows the performance of each of these strategies and whether they were an additional 

value to the existing pipeline or not. If so, they were integrated in the pipeline to achieve the final results.  

After image processing, statistical analysis of the measures extracted from tensors and the biophysi-

cal model is described in the Section 3.5. Tests here described allowed for the quantification of changes 

in the white matter microstructure and were computed after integrating in the existing pipeline the strat-

egies that were previously shown to be effective improvements in terms of data quality or reliability. 

Results are shown in the Section 4.2.  

Other strategies were proposed as well in this project to complement the final analysis and take ad-

vantage of the available diffusion data. These included performing tractography and diffusion analysis 

of the gray matter. The purpose and procedure to test these strategies are described in the Section 3.6. 

Additional diffusion analysis did not affect statistical tests as strategies were not meant to replace any 

stages of the processing pipeline, but to support the results from the statistical analysis of diffusion 

metrics in the white matter. The performance of these strategies are shown in the Section 4.3. 

The results from each part of the methodology pipeline are addressed and interpreted in depth in the 

Chapter 5, as well as potential drawbacks of the final optimized processing pipeline and promising ad-

vantages of this project. The consistency of the results presented with the existing literature is evaluated 

and so is the future lines of this project at CIBM towards the understanding of AD progression and the 

spatio-temporal relationship between the hallmarks characteristic of the pathological cascade.   
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2. Theoretical Background 

 

2.1. Alzheimer’s disease 

Alzheimer’s disease (AD) is a progressive multifactorial neurodegenerative disorder without effec-

tive treatment. AD is the most common form of dementia, affecting 10% of the population over 65 years 

worldwide. According to Alzheimer’s Association, the incidence of AD will quadruplicate until 2050 if 

no healthcare plan is provided with its outburst already constituting an economic and social burden [2].  

Over the years, the view of Alzheimer’s disease (AD) has been changing in what concerns to the 

clinical progression of the disease. As recently as 30 years ago, pathological changes and clinical evi-

dence were believed to be independent. The current view of AD is that these occur gradually, with 

dementia being the end stage of many years of accumulation of brain alterations. Dementia might be 

defined as the clinically observable result of the cumulative burden of multiple pathological insults in 

the brain [3], that implies an inevitable course towards the complete loss of autonomy.  

Importantly, it is now well-established that pathological changes begin to develop decades before the 

earliest clinical evidences [1]. According to the clinical stage, the disease has been  divided into three 

phases [24]. The first one is the long asymptomatic phase, in which individuals are cognitively normal 

but might show pathological changes. The second phase is the mild cognitive impairment and consists 

in the early onset of cognitive symptoms, most likely deficits in episodic memory, that do not meet yet 

criteria for dementia but are at high risk for developing AD. The last phase is dementia, in which there 

are irreversible impairments in multiple domains that are severe enough to produce loss of function.  

 

2.1.1. Pathological cascade of AD 

The measurement of biomarkers in longitudinal studies enables the understanding of the interplay 

between them and their relationship to clinical symptoms, being a biomarker defined as any chemical 

or imaging indicator of specific changes that characterize AD. The time-dependent occurrence of dif-

ferent physiological changes could provide an effective disease staging, its expression as clinical 

changes and a prediction of mild cognitive impairment conversion into AD. In that regard, many studies 

have proposed the order in which relevant biomarkers occur in the disease progression [1], [24], [25], 

allowing studies from different disciplines to relate to one another through a common framework. 

AD is clinically manifested by progressive memory loss and gradual decline in cognitive function, 

often culminating in premature death. Neuropathologically, AD is characterized by abnormal protein 

deposits and neurodegeneration. The former includes both amyloid-β (Aβ) plaques in the extracellular 

space and intracellular neurofibrillary tangles of hyperphosphorylated tau (NFTs). Normally, measuring 

the concentration of Aβ42 or tau in the cerebrospinal fluid (CSF) within the ventricles is a way of eval-

uating abnormal plaques deposition, as well as Positron Emission Tomography (PET) imaging. Nearly 

all patients clinically diagnosed with AD have positive amyloid imaging studies [26]. 

In turn, neurodegeneration is manifested as reduced brain glucose metabolism [27] that leads to neu-

ron loss and synaptic dysfunction and these to gross cerebral atrophy [28], especially in the hippocampus 

and parietotemporal cortex [19], [20], [29]–[31]. In this context, AD is commonly assessed either by 

histological post-mortem examinations, anatomical MRI to provide volumetric measures of atrophy or 

2-[18F]fluoro-2-Deoxy-D-glucose (FDG) PET. A decreased uptake of FDG has been well correlated 

with impaired synaptic activity and cognitive decline [32].  

Brain structural atrophy encountered in AD studies in humans refers to both gray and white matter 

degeneration. In terms of the temporal projection of these mechanisms, the emerging hypothesis, though 

not fully established, is that gray matter degeneration begins in the temporal lobe and progresses to other 
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brain areas via degenerating white matter tracts [33]. The most reported gray matter regions early af-

fected are the medial temporal lobe (MTL), the parietal cortex and the posterior cingulate cortex [34], 

while the main white matter tracts affected are the corpus callosum, the cingulum and the fornix [19], 

[35]. White matter degeneration has recently been gathering attention as a key biomarker for AD, being 

strongly correlated with disease severity and progression [19], [21], although its relationship with clin-

ical symptoms is largely under-investigated.  

All these hallmarks of AD occur in a pathological cascade, that is yet to be fully understood. One of 

the proposed temporal progression of pathological changes is shown in Figure 2.1 and suggests that 

malformation of protein precedes neurodegeneration, neurodegenerative biomarkers are temporarily or-

dered and biomarkers abnormalities precede clinical symptoms [1], [24].  

 

 
Figure 2.1: Pathological cascade of AD adapted from Jack et al, 2013 [24]. Evolution of biomarkers over disease progression, 

where white matter degeneration might have a key role. MCI: mild cognitive impairment. 
 

2.1.2. Etiopathology of AD 

There are two origin-based types of AD, despite the indistinguishable clinical symptoms. The early-

onset familial AD occurs in a very small proportion (≈1%) of the population compared to the sporadic 

late-onset AD. Familial AD has a genetic origin and is caused by a mutation in Aβ protein precursor 

(APP), presenilin-1 or presenilin-2. While an abnormal processing of APP leads to the excess production 

and/or reduced clearance of Aβ in the cortex, presinilin mutations encode abnormal cleavage of Aβ from 

APP to generate amyloidogenic Aβ peptides [36]. Nevertheless, the majority of the cases are sporadic 

in origin, with aging, type II diabetes and apolipoprotein E4 as the main risk factors [37].  

The uncertainties associated with the etiopathology and progression of AD have led to intense inves-

tigation over the past years. The most prevailing theory stands in the amyloid cascade hypothesis, where 

neuropathological alterations are downstream consequences of a gradual aberrant Aβ accumulation [38], 

[39], as represented by the Figure 2.1.   

An amyloid is a type of protein susceptible to structural conversion. Amyloid protein aggregation is 

considered a hallmark in several degenerative disorders, depending on the major constituents of the Aβ 

plaques. In AD, Aβ plaques are mainly formed by Aβ40 and Aβ42 peptides, which vary in the amino acids 

present at the C-terminal, resulting in distinct toxicity profiles. Due to environmental and genetic factors, 

Aβ peptides may undergo a toxic process of on-path oligomerization and be transformed into metastable 

structured oligomeric species, contributing to the proliferation of toxic species and the acceleration of 

neurodegeneration. Aβ oligomers affect cellular membranes on multiple levels by inducing endocytosis 

of the cell, influencing cellular signalling transduction, dysregulating the flux through the cell pores or 

being internalized into neurons and accumulated intracellularly [40]. These damaging events induce 

microglia and astrocyte activation and typically involve the presence of NFTs [41]. 
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In accordance, evidence clearly shows that severe amyloidosis triggers familial AD [39], [42]. Yet, 

Aβ has not be proven to be required for the onset and progression of sporadic AD, despite of its early 

occurrence [37], [43]. Evidence indicates that Aβ is normally present in the brain, being in higher levels 

in younger than in older individuals in the absence of dementia [44]. Whereas mutations do not manifest 

dementia until 40 years of age [45], 30% of individuals carrying pre- or post-mortem detected amyloid 

plaques are cognitively intact [46]. In addition, immunotherapy can remove these plaques but does not 

affect the progression of dementia, suggesting that Aβ may not be sufficient to cause dementia [47].  

So far, brain metabolic decline has been assumed to result from Aβ plaques and NFTs aggregation, 

being ultimately associated with dementia [48], [49]. Curiously, dementia has been reported in rodents, 

which do not produce Aβ, implying that the mechanism that triggers the cascade must be prior to Aβ 

aggregation. Hence, the aggregation of Aβ has been questioned as the primary cause of AD, being in-

stead proposed as a secondary consequence of disturbed insulin/glucose metabolism in the brain [43]. 

In the mature brain, most of the insulin derives from the periphery, being transported by the CSF 

after its synthesis in the pancreatic β-cells and a smaller portion is synthetized de novo in the brain. As 

well as in the periphery, insulin actions in the brain are mediated by insulin receptors (IRs), a tyrosine 

kinase type of receptors. As shown in the Figure 2.2, insulin binds to IRs promoting autophosphoryla-

tion of their intracellular domain. Activated IRs phosphorylate intracellular substrates that activate sev-

eral signalling pathways, one of which triggers the translocation of the insulin-sensitive glucose trans-

porter to the membrane surface, enhancing cellular glucose uptake [50]. In addition to be the master 

regulator of brain glucose metabolism, insulin plays a significant role in neuronal growth [51], influ-

ences APP metabolism potentiating Aβ formation [52] and tau phosphorylation [53] and is involved in 

synaptic plasticity by altering gene expressing required for long-term memory consolidation [54]. 

 

 
Figure 2.2: The role of insulin in the cellular membrane. PI-3K and PKB/Akt: signalling pathways. GLUT4: glucose trans-

porter [51]. 
 

It has been reported that AD patients have higher levels of plasma insulin as well as decreased IR 

density and reduced tyrosine kinase activity [55] reinforcing the idea that abnormalities in brain insulin 

function and insulin signal transduction are major factors that influence the onset of AD [50]. It has also 

been shown that insulin administration improves cognitive performance in AD patients [56]. In that 

regard, reductions in brain glucose have been shown to decrease the rate of acetyl-coenzime A suggest-

ing a causal role of glucose metabolism dysfunction in the loss of cognitive function [57].  

Other less acknowledged hypotheses for the primary cause of development and progression of AD 

are tau pathology, synaptic loss and inflammation [58]. 
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2.1.3. Animal models of AD 

One problem in investigating neurodegenerative disorders is obtaining comprehensive longitudinal 

data on prospective patients. Longitudinal studies in animals are of particular interest because the study 

can be designed across their entire lifespan, whereas many years would have to be dedicated to capture 

the human lifespan. Besides, animal models allow studying each of the characteristics and the disease 

stages individually, which is particularly important when multiple domains are affected simultaneously.  

Independent mechanisms can be studied separately by biologically modifying the animals, with an 

increasing use of rodents to reproduce AD. Transgenic mouse models of AD are very common in re-

search and focus on reproducing protein mutations, namely APP, presinilin or tau protein. The mouse 

models most used in current AD research are the triple transgenic model (3xtg AD) and the 5XFAD 

(Tg6799) mouse line. Whereas transgenic mice are naturally representative of familial AD, the sporadic 

form of AD is reproduced without genetic modifications. With AD being increasingly recognized as an 

insulin-resistant state, a non-transgenic animal model has emerged to reproduce early pathological 

changes of sporadic AD [5], [6], [59]. This model consists in an intracerebroventricular (icv) injection 

of streptozotocin (STZ), which is a toxic diabetogenic substance that damages pancreatic β cells when 

given parenterally. When injected exclusively into the ventricles, STZ does not induce type I diabetes 

because the molecule cannot pass across the blood brain barrier to reach the systemic circulation. For 

that reason, icv-STZ induced-AD has been referred to as type III diabetes or “diabetes of the brain” [11].  

Even though its mechanism is not fully elucidated, STZ is thought to disrupt the brain IR system 

thereby reducing the glycolytic metabolism in the parietotemporal cortex and in the hippocampus [7]. 

Accordingly, behavioural, neurochemical and structural features reported in icv-STZ studies resemble 

those found in the human AD brain, validating this experimental model. Several icv-STZ animals such 

as mice, rats, dogs, pigeons, monkeys and pigs have been studied and displayed features including 

memory impairment, thinning of the parietal cortex and corpus callosum, NFT changes and extracellular 

accumulation of Aβ early in the neocortex and later in the hippocampus [9]. Focal lesions on the corpus 

callosum and on the septum were found in the form of neuronal loss and inflammation, as well as atrophy 

of the entorhinal, cingulate cortex and hippocampal regions [8]. In addition, histopathological studies 

have shown evidence of axonal damage and demyelination in the hippocampus and fornix, where ab-

normal transport of nerve growth factor has been reported. More than disrupting brain glucose metabo-

lism, STZ also induces oxidative stress to which myelin is particularly vulnerable [8]–[12].  

The icv-STZ model has been demonstrating its potential to reproduce sporadic AD [60]. However, 

beyond anatomical MRI, all icv-STZ studies have used histology, immunohistochemistry, PET and elec-

tron microscopy derived-biomarkers. Pathological alterations typical of this animal model have never 

been assessed with MRI techniques, which have brought a significant insight into neurodegenerative 

processes with such a broad spectrum of contrast mechanisms as described in the Section 2.2. This 

scenario opens a window for future investigation, provided that white matter degeneration has been 

repeatedly reported in icv-STZ studies and a unique way to assess brain microstructure is diffusion 

weighted imaging (DWI), as explicated in detail in the Section 2.3.  

 

2.1.4. Relevant rat brain anatomy 

AD has been highly associated with degeneration in the hippocampus as one of the explanations to 

high memory deficits. The hippocampus is a major component of the brain, located in between the me-

dial temporal lobes (MTL) and is composed of several subparts such as the dentate gyrus, cornus am-

monis and subiculum. There are two groups of fibers covering its communication with the brain: the 

myelinated tract that connects the ventricle part of the hippocampus is designated by alveus, while the 

tract that covers the temporal part of the hippocampus is the fimbria-fornix complex. This complex is a 

C-shaped structure composed by fiber bundles that are mainly output tracts of the hippocampus. 
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The fimbria is composed by two separated bundles on the left and right sides that leave the hippo-

campus and go to a posterior and superior location around the thalamus where the bundles take the name 

of crura of the fornix. These are intimately connected with the under surface of the corpus callosum and 

come together in the midline of the brain forming the body of the fornix. Between the corpus callosum 

and the fornix lies a transparent membrane composed of white matter fibers referred to as septum. The 

two hippocampi are thus connected by the hippocampal commissure. Going along with the corpus cal-

losum to the anterior part of the brain, the fornix is divided into two arches and meet the mammillary 

bodies. The function of this complex in the physiology of the brain is not entirely understood, although 

the fimbria and the fornix are thought to be related to learning and memory processes intermediation.   

As a wide, thick and flat tract across the entire brain, the corpus callosum is the largest white matter 

structure there is. It is a bundle of commissural fibers beneath the cerebral cortex and above the fornix 

and it connects the left and the right cerebral hemispheres enabling communication between them. The 

corpus callosum is divided into several parts depending on the coronal position. Towards the frontal 

lobe, the bundles are designated genu, whereas towards the occipital lobe and the cerebellum the bundles 

are designated splenium. Behind the splenium stands the retrosplenial cortex (RSC), whose function 

might be related to mediating perceptual and memory functions. 

The trunk of the corpus callosum is located in the middle of the brain and connects exactly the two 

sides of the temporal lobe, through a tract named anterior commissure. The cortices are connected to 

inferior parts of the brain through the numerous ramifications of the corpus callosum, in particular the 

external capsule. The posterior parietal cortex (PPC) is on top of the corpus callosum and is responsible 

for receiving information from somatosensory systems.  

Right above the corpus callosum is the cingulum, which is composed of two groups of fibers in a C-

shaped structure as well. The cingulum is located beneath the cingulate cortex from where fibers are 

projected into the entorhinal cortex and the RSC. The anterior cingulate cortex (ACC) controls emotion 

such as apathy and depression, while the posterior part of the cingulate cortex is in charge of cognitive 

function such as memory. While establishing the communication between these regions, the cingulum 

has a serious role in the correction of mistakes, appraisal of pain and reinforcement behaviour. These 

regions are represented in the Figure 2.3.     

 

 
Figure 2.3: Anatomy of the rat brain from the Allen Brain Atlas in a coronal plane. Regions in purple correspond to white 

matter tracts.  
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2.2. Magnetic Resonance Imaging principles 

2.2.1. Alignment and precession of magnetic moments 

The atom is the smallest constituent unit of ordinary matter and is composed of protons, neutrons 

and electrons. Electrons are negatively-charged and orbit around the atomic nucleus that is composed 

by positively-charged protons and uncharged neutrons. In quantum mechanics, elementary particles 

such as atomic nuclei carry an intrinsic angular momentum called nuclear spin. The spin assumes two 

possible values (-½ and +½) and the proportion of populations in each of the two states is given by the 

Boltzmann distribution which gives the relative weight of magnetic energy to thermal energy. However, 

while this is a purely quantum phenomenon, a convenient classical description might be used to explain 

it. Herein, MRI is explained with an illustrative classical approach.    

From the classical physics point of view, the spin is viewed as the rotational motion of the nuclei 

around their own axis and the principles of MRI rely on that spinning motion of specific nuclei present 

in biological tissue. Following the laws of electromagnetic induction, when a charged nucleus is spin-

ning, it acquires a magnetic moment and therefore is able to align with an external magnetic field. In the 

absence of an external magnetic field, the orientations of the nuclear spins are random. Contrarily, when 

a magnetic field 𝐵0 is applied, the magnetic moments of the nuclei are capable of aligning in either a 

parallel or anti-parallel direction. These two states of energy are explained by quantum physics that 

describes the properties of electromagnetic radiation in terms of discrete quantities.  

The parallel aligning nuclei are the low-energy population that does not have enough energy to op-

pose 𝐵0 and therefore the magnetic moments align in the same direction as the 𝐵0. On the contrary, the 

anti-parallel nuclei are the high-energy population that opposes 𝐵0 and aligns in the opposite direction 

of 𝐵0. Naturally, the low-energy population is larger and there is a small excess of magnetic moments 

in the parallel direction. The energy difference between the two populations produce a net magnetic 

moment which is proportional to the strength of 𝐵0. The higher the 𝐵0, the fewer nuclei in the anti-

parallel state, the higher the energy difference and the larger the magnetization, that ultimately improves 

the MRI signal. The alignment phenomenon is shown in the Figure 2.4. 

 

 
Figure 2.4: Alignment of nuclear spins with no external field applied (on the left) and in the presence of 𝑩𝟎 (on the right) 

[61]. NMV: net magnetization vector.  
 

Every nucleus that makes up the net magnetization is spinning on its own axis with one of two ori-

entations. In addition, the influence of 𝐵0 produces another rotation of the magnetic moment around 𝐵0, 

which is called precession and is shown in the Figure 2.5. The speed at which the net magnetization 

precesses around 𝐵0 is called precessional frequency 𝑤0 and depends on nuclei properties, such as the 

gyromagnetic ratio 𝛾, as stated by the Larmor equation in the Equation 4.1 [61]–[63].  
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In particular, hydrogen creates a large net magnetization after aligning with 𝐵0 since it is relatively 

more abundant in biological tissue than other species and hydrogen nuclei have a large gyromagnetic 

ratio. Providing that the gyromagnetic ratio of the hydrogen nuclei is 42.57 MHz/T, if an external field 

of 14.1 T is applied, their precessional frequency is roughly 600 MHz.  

 𝑤0 = 𝐵0 𝛾 [4.1] 

 

 
Figure 2.5: Precessional movement of the net macroscopic magnetic moment induced by 𝑩𝟎 [61]. 

 

2.2.2. Resonance phenomenon 

Acquaintance with the precessional frequency is fundamental to produce resonance of a nucleus and 

produce a moving magnetic field that can finally be captured by a coil to acquire an MRI signal. The 

phenomenon of resonance occurs when a nucleus precessing in its natural frequency is exposed to an 

external perturbation with an oscillation with similar frequency and gains energy from the interaction. 

For resonance of hydrogen to happen, a radio-frequency (RF) pulse at frequency equal to the hydrogen’s 

precessional frequency must be applied. Other nuclei that have aligned with 𝐵0 do not resonate because 

their precessional frequency is different from that of the hydrogen. 

As a result of resonance, the absorption of energy from the RF pulse by the nuclei increases the high-

energy population as some of the low-energy nuclei gain enough energy to oppose 𝐵0. With a balanced 

number of nuclei in both populations, the longitudinal component of the magnetization is completely 

transferred into the transverse plane and is no longer affected by 𝐵0 as shown in the Figure 2.6. The 

angle at which the net magnetization moves relatively to 𝐵0 direction is called flip angle and depends 

on the amplitude and duration of the RF pulse. The transverse component of the magnetization rotates 

at the Larmor frequency and the magnetic moments of the hydrogen nuclei move in phase with each 

other.  

 

 
Figure 2.6: The net magnetization vector (NMV) is completely transferred from the longitudinal to the transverse plane after 

a 90° RF pulse as a resonance result [61]. 

 



 

10 

 

When the RF pulse is switched off, the net magnetization is influenced by 𝐵0 again and realigns with 

it, by losing the energy it has acquired from the RF pulse. The process of returning to the original lon-

gitudinal alignment is called relaxation and consists in two phases, namely the recovery phase and the 

decay phase. The recovery phase is the exponential increase of longitudinal magnetization while the 

nuclei transfer energy to the surroundings – spin lattice relaxation, with a time constant T1. The decay 

phase is due to the transfer of energy to other nuclei – spin-spin relaxation and it represents the expo-

nential decrease of transverse magnetization with a time constant T2 < T1.  

According to Faraday’s laws of induction, a voltage is produced in a receiver coil when it experiences 

a time-varying magnetic flux through its cross-section. The precessing net magnetization produces such 

a time-varying magnetic flux in a receiver coil if the coil axis is perpendicular to 𝐵0, i.e. is parallel to 

the transverse plane. The induced voltage across the coil, and of the electric current flowing in the coil 

as a result, are proportional to the amplitude of the transverse magnetization. When the RF pulse is 

switched off, the transverse magnetization starts decaying and so does the voltage amplitude in the re-

ceiver coil. This reduced signal in induction is designated free induction decay [61]–[63]. 

   

2.2.3. Pulse sequence parameters and image contrast 

Image contrast can be produced by exploiting T1 and T2 relaxation differences between different 

types of tissues. Fat tissue and water, for instance, have completely different properties that make them 

appear with opposite contrasts in the MRI image. Considering that relaxation relies on giving up energy, 

in fat tissue, the slow molecular mobility makes recovery and decay very efficient so that the net mag-

netization realigns quickly and leads to a short T1 and T2. Regarding to water, the high molecular mo-

bility makes recovery and decay less efficient, so that the net magnetization takes longer to realign and 

leads to long water T1 and T2. This is shown in the Figure 2.7. 

The amount of T1 relaxation that has occurred is determined by the time between RF pulses, which 

is called time of repetition (TR). The amount of T2 relaxation is controlled by the time of echo (TE), 

which is the interval between the application of the RF pulse and the peak of the signal induced in the 

coil. TR and TE are specifically set in a pulse sequence and their combination gives rise to different 

contrast mechanisms. For instance, in T2-weighted images, since water has a longer T2 than fat tissue, 

it takes longer to lose its transversal magnetization. Thus, the signal amplitude of the water in the re-

ceiver coil is larger and water appears bright and fat tissue dark. The maximum contrast between tissues 

in T2-weighting occurs when there is the major difference in the transversal magnetization. Because TE 

controls the amount of T2 decay, it controls the amount of T2-weighting. The contrary applies to T1-

weighted images. 

 

 
Figure 2.7: Difference of image contrast between fat tissue and water as a function of time parameters in a T2-weighted im-

age [61]. 
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The most standard pulse sequences in MRI acquisitions are spin-echo and gradient-echo. Spin-echo 

pulse sequences are characterized by having a 180º RF pulse after the initial 90º RF pulse, because of 

the so-called T2* decay. This decay is faster than the T2 decay because it also accounts for the effect of 

the magnetic field inhomogeneities that may cause spatial variations in precessional frequencies depend-

ing on the magnetic field experienced at a given location. To compensate for the dephasing induced by 

these variation, the 180º RF pulse rephases all nuclei by flipping magnetic moments to the opposite 

longitudinal magnetization and with the same transverse magnetization. After the 180º RF pulse, a max-

imum signal is induced in the coil generating an individual spin-echo used to create an image [61]–[63].  

In a different approach, the gradient-echo pulse sequence uses variable magnetic fields that cause 

nuclei to precess at variable frequencies along the direction of the applied magnetic field gradient, lead-

ing to a phase shift. While a first gradient induces magnetic moments within the transverse magnetiza-

tion to dephase, a consecutive gradient with reversed polarity and double the duration time rephase them, 

inducing a signal in the coil called the gradient echo. Unlike the spin-echo, the dephasing and rephasing 

occur in the same direction and do not cancel inhomogeneity effects. These pulse sequences are illus-

trated in the Figure 2.8. Many other sequences have been proposed according to the quality image re-

quired in each study [61].  

 

 
Figure 2.8: Spin-echo (A) and gradient-echo pulse sequences (B). 

   

2.2.4. Signal acquisition and image reconstruction 

Considering that the value of the magnetic field sets the precessional frequency at which nuclei pre-

cess, if the outer field is no longer homogeneous and there is a spatial gradient, nuclei in different regions 

will precess at different frequencies. This is the basis of MRI ability to spatially locate signals. Spatial 

encoding is performed by using three coils placed in the main directions. The magnetic field gradient is 

achieved by overlapping the field of these coils and its direction is determined by the combination of 

their orientations. The first encoding is the slice selection gradient and the frequency of the RF pulse 

defines the slice of the image and its thickness. The second encoding is called phase encoding and locates 

the signal along the short axis of the anatomy. From the moment each position in the short axis corre-

sponds to a different phase, the various elements in that position are encoded by the frequency encoding 

gradient. This is perpendicular to the phase encoding gradient and defines the field of view (FOV).   

At the end of all encoding, the signal coming from each slice is phase and frequency encoded.  When 

applying the frequency encoding gradient, an echo is produced and corresponds to a real time series of 

measurements. The successive application of increasing phase selection gradients leads to the variation 

of these echoes according to TR. The echoes recorded in each TR are stored in an abstract spatial-

frequency domain matrix, designated k-space, as shown in the Figure 2.9. The horizontal axis of the k-

space is the phase information (kPE) while the vertical axis corresponds to the frequency (kFE). By ap-

plying the Fourier transform to the sampled time-dependent signal, the various frequencies specific to a 

point in the image are calculated and the image is able to be reconstructed.  
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Figure 2.9: At each TR, echoes are stored in the frequency and phase encoded k-space to produce an image by applying a 

Fourier transform [63]. 

 

The simplest way to fill in the k-space is to start filling it sequentially line by line from bottom to 

top. However, this form of acquisition is slow and may limit clinical applications. In order to suit the 

circumstances at scan, other forms of acquisition are available such as fast spin-echo pulse sequences or 

echo-planar imaging (EPI). As suggested by its name, fast spin-echo is a spin-echo pulse sequence with 

scan times shorter than the conventional spin-echo, by filling out more than one line of the k-space per 

TR. This is achieved by using a train of several 180º RF pulses, each rephasing the spins and producing 

several echoes that lead to different phase encoding steps at each TR [61].  

Taking the fast spin-echo to the limits, EPI fills all lines after one repetition [64]. The train of RF 

pulses is applied and afterwards, instead of filling out each line in the same direction from the left to the 

right, the k-space is filled in a spiral form beginning at the center. Not only does the frequency encoding 

oscillate to fill lines from left to right and then right to left, the phase encoding must also oscillate from 

bottom to top and then top to bottom. EPI has a huge potential in clinical applications due to its rapid 

data acquisition and sensitivity that can capture physiological motion. Despite all these advantages, the 

rapid switching of gradients causes severe noise vibration of the system. 

Both spatial resolution and signal-to-noise ratio (SNR) characterize the image quality in MRI. The 

SNR is the ratio between the amplitude of the signal received and the average noise of the image. MRI-

derived noise is generated both by physiological motion and thermal noise. In order to be minimized, 

the signal must be increased so that the SNR increases as well. Several factors affect the SNR, namely 

a high proton density, the thickness of slices or a wide FOV increase the SNR, although the latter will 

increase the partial volume effect [65]. Approaches for noise correction of images are described in the 

Section 2.4.   
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2.3. Assessing microstructure with diffusion-weighted imaging 

2.3.1. Biological diffusion principles 

Diffusion is a random transport phenomenon which describes the transfer of material, such as ions 

and molecules, from one spatial location to another over time. From the physical point of view, diffusion 

is characterized by the random walk of the diffusion particles, also known as Brownian motion. The 

Brownian net movement of particles suspended in a fluid result from their collision with fast-moving 

particles in that fluid, where there is no preferential direction. 

The massive amount of interactions that yield the Brownian pattern (roughly 1014 collisions/s) cannot 

be solved by classical mechanics models that account for every involved molecule. Therefore, probabil-

istic models must be used to consider a collective motion of particles in the assessment of how far a 

Brownian particle travels in a given time interval. In 1905, Einstein developed the Brownian theory to 

find the relationship between the diffusion coefficient and the mean squared displacement of particles 

in random motion [66]. When the particle position is incremented over time in a space 𝑥 with a random 

variable ∆ with a probability density function 𝜑(∆), the density of diffusion particles is given by an 

expansion in a Taylor series, as shown in the Equation 4.2. The second order of probability of displace-

ment in the Equation 4.2 might be interpreted as the mass diffusivity 𝐷, such that the density of particles 

at point 𝑥 and at time 𝑡 satisfies the diffusion equation in the Equation 4.3. 

 
𝑑𝜌

𝑑𝑡
=

𝑑2𝜌

𝑑𝑥2
∫

∆2

2𝜏
 𝜑(∆)𝑑∆

+∞

−∞

+ higher order odd terms [4.2] 

 𝑑𝑝

𝑑𝑡
= 𝐷

𝑑2𝜌

𝑑𝑥2
 [4.3] 

Assuming that N particles start from the origin at the initial time 𝑡 = 0, the diffusion equation has a 

solution with a Gaussian distribution with mean 𝜇 = 0 and variance 𝜎2 = 2𝐷𝑡 given by the Equation 

4.4, which shows that the spread of particles increases with elapsed time. Evidently, when 𝜌(𝑥, 𝑡) = 0, 

since a molecule is equally likely to diffuse in a positive or negative x-direction, the average displace-

ment is zero. Therefore, the average square of the displacement can be considered instead, which is 

shown to be proportional to the elapsed diffusion time in the Equation 4.5 [66]. 

 
𝜌(𝑥, 𝑡) =

𝑁

√4𝜋𝐷𝑡
𝑒−

𝑥2

4𝐷𝑡 [4.4] 

 ∆𝑥2̅̅ ̅̅ ̅ = 2𝑁𝐷𝑡 [4.5] 

In the current context, the diffusion coefficient of pure water at 20 ºC is 2 µm2/s and increases at 

higher temperatures, according to the equation of the ideal gas law. Water diffusion is primarily caused 

by random thermal fluctuations and is modulated by interactions with cellular membranes and orga-

nelles. While cellular membranes hinder the extracellular diffusion of water, causing water molecules 

to take more tortuous paths and thereby decreasing the mean squared displacement, intracellular water 

tends to be more restricted. In fibrous tissues, water diffusion is relatively unimpeded in the direction 

parallel to the fiber orientation and hindered in perpendicular directions. Thus, diffusion in fibrous tis-

sues is anisotropic as opposed to homogeneous unrestricted media.  

To describe anisotropic diffusion, a diffusion tensor was introduced in the normal distribution of 

particles defined by the Equation 4.6 [22], [23]. The tensor is a 3x3 covariance matrix that describes the 

diffusion displacement in three dimensions of a single voxel. The diagonalization of the matrix is a 

common procedure as diffusion coefficients become independent of the orientation of the reference 

frame. It yields the eigenvalues (𝜆1, 𝜆2, 𝜆3) and corresponding eigenvectors (𝜖1, 𝜖2, 𝜖3) of the diffusion 

tensor that correspond to the directions and apparent diffusivities along the axes of principal diffusion, 

that are obtained with the Equation 4.7.  



 

14 

 

 

𝐷 = [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

] = [

𝐷𝑥𝑥′ 0 0

0 𝐷𝑦𝑦′ 0

0 0 𝐷𝑧𝑧′

] [4.6] 

 

𝐷 = [𝜖1 𝜖2 𝜖3]𝑇 [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] [𝜖1 𝜖2 𝜖3] = ∑ 𝜖𝑘
𝑇𝜆𝑘𝜖𝑘

3

𝑘=1

 [4.7] 

The diffusion tensor may be visualized as an ellipsoid, whose directions of the principal axes are 

characterized by the eigenvectors and the radii by the eigenvalues [22], [23], as shown in the Figure 2.10. 

When diffusion is isotropic, the ellipsoid resembles a sphere and eigenvalues are nearly equal (𝜆1 ≈

𝜆2 ≈ 𝜆3), whereas an anisotropic medium is represented by an ellipsoid with significantly different ei-

genvalues magnitudes (e.g. 𝜆1 > 𝜆2 > 𝜆3). The major diffusion eigenvector represents the direction of 

greatest diffusivity and it is assumed to be parallel to the main tract orientation. This directional rela-

tionship is the basis for diffusion tensor image metrics and tract reconstruction algorithms.  

Therefore, diffusion neuroimaging techniques rely on the ability of the diffusion coefficient to pro-

vide information about microstructure. The eigenvalues magnitude might be affected by changes in local 

tissue microstructure such as tissue injury, disease or normal physiological changes such as aging, mak-

ing the diffusion tensor a sensitive probe for characterizing both normal and abnormal tissue.    

 

 
Figure 2.10: A fibrous tissue is an anisotropic medium and can be represented by an ellipsoid with one of the eigenvalue 

magnitudes greater than the others.  
 

2.3.2. Diffusion-weighted imaging and signal representation  

Diffusion-weighted imaging (DWI) is the application of MRI principles to the Brownian water mo-

tion within the human body. DWI is a unique method to describe the microstructure of the brain since 

its characteristic features are able to capture the displacement of water molecules (in 50 ms molecules 

move about 10 µm). The most common approach is the spin-echo pulse sequence with an EPI readout 

and a pair of opposite large-gradient pulses on both sides of the 180º refocusing RF pulse. While the 

first gradient dephases the magnetization across the sample, the second rephases the magnetization. 

 In stationary molecules, the phases induced by both gradient pulses completely cancel and the mag-

netization is maximally coherent, producing no signal attenuation from diffusion. Conversely, when 

there is coherent flow in the direction of the applied gradient, there is a change in the phase by different 

amounts for each pulse. The net phase difference produced is proportional to the displacement, which 

is described by the distribution in the Equation 4.5. In the presence of diffusion gradients, phase disper-

sion of water molecules generates attenuation of the signal 𝑆, i.e. contrast.  

Without any a priori assumptions about the medium, the signal might be represented by a Taylor 

series called the cumulant expansion as shown in the Equation 4.8, where 𝑆0 is the DWI signal without 

any gradients, 𝑏 is the diffusion-weighting factor that characterizes the gradient pulses,  K is the kurtosis 

of the diffusion tensor that quantifies complexity and inhomogeneity of the medium [14] . 

 ln (
𝑆

𝑆0
) = −𝑏𝐷 +

1

6
(𝑏𝐷)2𝐾 + ⋯ [4.8] 
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The cumulant expansion can be simplified under the assumption that the medium is indistinguishable 

from a Gaussian medium. This distribution requires low diffusion-weighting (low b-values) so that 𝐾 =

0 and uniformity of water distribution occurs in all directions. Thus, for isotropic Gaussian diffusion, 

the signal attenuation is described by the Equation 4.9 [13], with the b-value defined by the Equation 

4.10. In this case, for the expansion up to the first order of the Equation 4.8 to be valid, 𝑏 ≪
1

𝐷𝐾
 [68].  

 𝑆 = 𝑆0𝑒
−𝑏𝐷 [4.9] 

 
𝑏 = 𝛾2𝐺2𝛿2 (∆ −

𝛿

3
) [4.10] 

In the presence of anisotropy, diffusion can no longer be characterized by scalars and requires the 

use of the tensor in the Equation 4.6, that fully describes molecular mobility along each direction. The 

Equation 4.9 should then be rewritten as the combination of all main directions as in the Equation 4.11. 

 

𝑆 = 𝑆0 exp(− ∑ ∑ 𝑏𝑖𝑗𝐷𝑖𝑗

𝑗=𝑥,𝑦,𝑧𝑖=𝑥,𝑦,𝑧

) [4.11] 

In the Equation 4.11, 𝑏𝑖𝑗 are in this case the elements of the b matrix that replaced the b coefficient, 

since the b-value is different in each direction depending on the gradients used. To access the anisotropic 

diffusion effects, the diffusion tensor must be fully calculated, knowing both attenuated and non-atten-

uated DWI signals and collecting the b-values along several gradient directions. The use of the diffusion 

tensor to produce parametric maps is designated diffusion tensor imaging (DTI). 

Although DTI metrics are recognized to characterize water diffusion properties, only part of the in-

formation is being assessed due to the assumption that the displacement function has a Gaussian distri-

bution. Therefore, an extension to DTI has been proposed to quantify the non-Gaussian diffusion. Be-

yond low b-values, i.e. using the cumulant expansion, it is possible to estimate how much the medium 

deviates from the Gaussian distribution and further estimate 𝐾. The use of the kurtosis tensor to produce 

parametric maps is designated diffusivity kurtosis imaging (DKI) [14]. DKI has been gathering attention 

due to its sensitivity to microstructure not captured by the diffusion tensor in multiple clinical areas, 

including stroke [69] and children brain development [68].   

Since b-values are quadratic terms, the 2nd order symmetric diffusion tensor requires measurements 

along at least six directions, while the 4th order kurtosis tensor requires at least 15 measurements. For 

DTI and DKI joint analysis, a minimum total of 21 gradient directions is necessary, even though col-

lecting data along as many directions as possible is recommended to uniformize space sampling and 

increase SNR [70], [71]. Sampling directions are shown in the Figure 2.11. The estimation of 𝐷𝑖𝑗 and 

𝐾𝑖𝑗𝑘𝑙 is generally done by multiple linear regression, and therefore measurements of diffusion in all 

directions require at least two non-zero b-values (shells). In in-vivo experiments, the maximum b-value 

for Gaussian brain DTI is roughly 𝑏𝑚𝑎𝑥 = 1 ms/µm2 whereas for non-Gaussian brain DKI is 𝑏𝑚𝑎𝑥 = 2 

ms/µm2. Naturally, in ex-vivo, the maximum b-values are higher because diffusion is slower. 

 

 
Figure 2.11: Directional sampling in increasing directions [67]. 
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2.3.3. DWI data assessment using tensor-derived metrics 

As aforementioned, despite being a high-sensitivity and non-invasive method, DWI is an indirect 

probe of the microstructure because its signal needs to be modelled to extract quantitative measures. 

The display and interpretation of 3D image data with diffusion and kurtosis tensors at each voxel must 

be simplified into simple scalar maps, by extracting metrics from the combination of eigenvalues.  

Regarding DTI, although the apparent diffusion coefficient has been extremely successful in clinical 

practice, it is being replaced by direct quantitative measures. For instance, the mean diffusivity (MD) is 

a rotationally invariant measure – independent of the orientation of the reference frame [23]. MD char-

acterizes the overall mean-squared displacement of water molecules in all directions, being equivalent 

to the average of the eigenvalues, as given by the Equation 4.12. Therefore, it is proportional to the trace 

of the diagonalized tensor and can be separated into axial (AxD) and radial diffusivity (RD) according 

to the gradient directions, as shown in the Equations 4.13 and 4.14. 

 

𝑀𝐷 =
𝑇𝑟(𝐷⃗⃗ )

3
=

𝐷𝑥𝑥
′ + 𝐷𝑦𝑦

′ + 𝐷𝑧𝑧
′

3
=

𝜆1 + 𝜆2 + 𝜆3

3
 [4.12] 

 𝐴𝑋𝐷 = 𝜆1 [4.13] 

 
𝑅𝐷 =

𝜆2 + 𝜆3

2
 [4.14] 

While low values of AxD are representative of axonal degeneration, RD appears to be modulated by 

myelin in the white matter and thereby is expected to increase as a result of demyelination in neuro-

degenerative processes. As a combination of diffusivity in each direction, MD is expected to decrease 

due to inflammation or to increase if there is loss of structure resulting in increased water mobility.  

The degree to which diffusion is a function of DWI encoding directions is represented by metrics of 

anisotropy [67]. The most popular invariant metric of anisotropy is the fractional anisotropy (FA) and it 

represents the magnitude of the D that is attributed to anisotropic diffusion. FA varies between 0 (iso-

tropic) and 1 (anisotropic) [72] and is described by the Equation 4.15. 

 

𝐹𝐴 = √
(𝜆1 − 𝑀𝐷)2 + (𝜆2 − 𝑀𝐷)2 + (𝜆3 − 𝑀𝐷)2

2 (𝜆1
2 + 𝜆2

2 + 𝜆3
2)

 [4.15] 

Because of the well-oriented integrity of white matter tracts and their myelin insolation, FA is ex-

pected to be higher within white matter tracts than in gray matter regions in normal conditions. In neu-

rodegeneration, FA is expected to decrease because of fiber dispersion. Even though FA is sensitive to 

a broad spectrum of pathological conditions, different eigenvalues combinations can generate the same 

value of FA [73]. This means that FA recognizes changes in diffusion, but different pathologies such as 

inflammation, demyelination or axonal injury might result in the same change in FA.  

Another relevant metric extracted from the diffusion tensor is the tensor orientation described by the 

major eigenvector direction. Using a color-coded map, the eigenvectors are represented to identify and 

parcelate specific white matter tracts [74]. These maps are hereafter called color-coded FA (CCFA) 

maps. The 3D approach of this metric is called DTI-based tractography [75], and it is greatly appreciated 

to anatomically track white matter bundles, as discussed in the Section 4.3.5.  

Analogous to DTI, DKI defines the mean kurtosis (MK) as the directionally averaged observed kur-

tosis. However, because kurtosis is a 4th order tensor, it is calculated over at least 15 directions  𝑛̂ and 

MK is solved by averaging projections of the tensor over as many directions as possible, isotropically 

distributed on a sphere, as given by the Equation 4.16. 

 
𝑀𝐾 =

1

4𝜋
∫𝐾(𝑛̂)𝑑𝑛̂ [4.16] 
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𝐾 provides as well metrics of the axial and radial components of kurtosis. Axial (AK) and radial 

kurtosis (RK) may be represented in terms of the eigenvectors of the diffusion tensor [14], even though 

different definitions have been proposed [76], as shown in the Equations 4.17 and 4.18.  

 

𝐴𝐾 = 𝐾(𝜖1̂) =
𝑀𝐷2

𝜆1
2 𝐾𝑧𝑧𝑧𝑧 [4.17] 

 
𝑅𝐾 =

𝐾(𝜖2̂) + 𝐾(𝜖3̂)

2
=

𝑀𝐷2

2
(
𝐾𝑥𝑥𝑥𝑥

𝜆2
2 +

𝐾𝑦𝑦𝑦𝑦

𝜆3
2 ) [4.18] 

MK, AK and RK are expected to be increasing as long as there is on-going development of the brain, 

because there is a general increase in the complexity of the tissues. However, a variety of physiological 

mechanisms could result in the increase of complexity. A high cellular crowding that happens during 

inflammation for instance would contribute to increase the MK value, even though it is not a matter of 

development. As much as DKI brings complementary value to DTI analysis by extending the signal to 

a non-Gaussian distribution, the empirical representation of DWI still lacks specificity.  

  

2.3.4. Biophysical modelling of DWI data 

In order to address this issue, analytical expressions can be derived from theoretical models as a 

complement to tensors estimation. Models rely on assumptions about the underlying tissue and therefore 

provide specific parameters, whereas the cumulant expression in the Equation 4.8 is universally appli-

cable. In the past few years, several models of neuronal tissue have aroused, with special focus on white 

matter characterization. Such models have common features before establishing their own assumptions 

[17], [77], for instance all models consist in at least two non-exchangeable compartments that represent 

the intra-axonal and extra-axonal spaces. Generally, what differs among the existing models is the ori-

entation distribution function (ODF) 𝜓 of the fibers. The ODF is a continuous distribution that repre-

sents the volume and orientation of the underlying fibers and its assessment depends on the application 

of interest. 

One of the most popular neuronal models is NODDI (Neurite Orientation Dispersion and Density 

Imaging) [78], which uses a Watson ODF and includes CSF as a compartment. Thus, it requires a sub-

stantial amount of diffusion parameters that enforce the fixation of some of them. Therefore, without 

biological validation, the approach of fixating parameters defeats the purpose of biophysical modelling. 

NODDIDA (NODDI with Diffusivity Assessment) [79] has emerged to answer the requirement for sim-

plification, suggesting the exclusion of CSF and consequently releasing the diffusivities.  

Another highly accepted model in animal studies is the WMTI (White Matter Tract Integrity) [16]. 

This model varies from the later by analytically deriving parameters as a function of diffusion and kur-

tosis metrics instead of fitting the signal to non-linear equations describing the diffusion of water. In the 

WMTI-Watson model, represented in the Figure 2.12, the axons are modelled as long narrow cylinders 

that reproduce a highly anisotropic medium. The intra-axonal space is described by a volume fraction 

of water molecules 𝑓 and the parallel intra-axonal diffusivity 𝐷𝑎. The perpendicular intra-axonal diffu-

sivity is negligible at the relevant diffusion times, such that axons are considered to be sticks, with radius 

equal to zero. The bundle of axons is embedded in the Gaussian extra-axonal space that yields the par-

allel 𝐷𝑒,║ and the perpendicular extra-axonal diffusivities 𝐷𝑒,ꓕ. The extra-axonal space is orientationally 

correlated with the fibers, whose orientation is given by the FOD-based parameter 𝑐2 = 〈cos(ψ)2〉.  
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Figure 2.12: Two-compartment WMTI model providing five parameters [16]. 

 

The diffusion signal can be described in terms of both compartments, as given by the Equation 4.19. 

The first term represents the signal originating from a volume fraction of voxel consisting of intra-axonal 

tissue that is only affected in the axial direction, whereas the second term represents the signal originat-

ing from the remaining extra-axonal volume fraction (1 − 𝑓) that is affected in both axial and radial 

directions. As the signal in each compartment is modelled by the orientation distribution, the Equation 

4.19 is the integral of the fiber ODF across all directions [80], [81].  

 
𝑆(𝑏, 𝑢̂) = ∫ψ(û) (𝑓𝑒−𝑏𝐷𝑎(𝑢̂.𝑛̂)2 + (1 − 𝑓)𝑒−𝑏𝐷𝑒,║ −𝑏(𝐷𝑒,ꓕ−𝐷𝑒,║ )(𝑢̂.𝑛̂)2

)  𝑑𝑢̂ [4.19] 

Taking advantage of the stable fitting of DKI, analytical expressions of tensors as functions of the 

model parameters can be readily found [77], [81], if assuming axial symmetry of the fiber ODF. Geo-

metric interpretation of diffusion allows for the decomposition of the diffusivity into radial and axial 

directions, where 𝜉 = 𝑢̂. 𝑛̂ represents the direction and the functions ℎ𝑙 the moments of the fiber ODF 

with l=2,4. Each component is the sum of the diffusion in the intra-axonal and in the extra-axonal spaces 

in that direction weighted by the volume fraction, as shown in the Equations 4.20 and 4.21.  

 ℎ2(𝜉) = 0:𝐷ꓕ = (1 − 𝑓) 𝐷𝑒,ꓕ [4.20] 

 ℎ2(𝜉) = 1:𝐷║ = 𝑓𝐷𝑎 + (1 − 𝑓) 𝐷𝑒,║ [4.21] 

The diffusion tensor can be represented as a function of ℎ2(𝜉) by the Equation 4.22. Using the cu-

mulant expression in the Equation 4.8, the kurtosis tensor can be further represented in the same form 

as shown in the Equation 4.23. The diffusion tensor has two rotational invariants 𝐷0 and 𝐷2 because of 

the implications of axial symmetry while the 4th order kurtosis tensor has three 𝐾0, 𝐾2 and 𝐾4. 

 
𝐷(𝜉) = (1 − 𝑓) (𝐷𝑒,⊥ + ℎ2(𝜉)(𝐷𝑒,∥ − 𝐷𝑒,⊥)) + 𝑓𝐷𝑎ℎ2(𝜉) [4.22] 

 
𝐷2𝐾 = 𝑊(𝜉) = 3((1 − 𝑓) (𝐷𝑒,⊥

2 − 𝐷(𝜉)2 + 2𝐷𝑒,⊥(𝐷𝑒,∥ − 𝐷𝑒,⊥)
2
ℎ2(𝜉)

+ (𝐷𝑒,∥ − 𝐷𝑒,⊥)
2
ℎ4(𝜉)) + 𝑓𝐷𝑎

2ℎ4(𝜉)) 

[4.23] 

Without further simplification, it is impossible to determine all 6 unknown parameters in the model 

(𝑓, 𝐷𝑎, 𝐷𝑒,∥, 𝐷𝑒,⊥, ℎ2 and ℎ4), because there are only 5 rotational invariants from the tensors. By em-

ploying a one-parameter family of axially symmetric ODFs, ℎ2 and ℎ4 contain only one common degree 

of freedom 𝜅. Therefore, the Equations 4.22 and 4.23 can be solved for the 5 independent microstruc-

tural parameters. The most successful parametrization used by the WMTI model is the Watson distribu-

tion as shown in the Equation 4.24 [77].   

 𝑝(𝑢̂) ∝ 𝑒−𝜅(𝑢.𝑛) [4.24] 
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Thus, the fiber ODF moments ℎ𝑙 are defined by 𝑝𝑙 with  l=2,4 as a function of 𝜅 and can be matched 

with the measured DWI signal. The solutions to the Equations 4.22 and 4.23 are given by the Equations 

4.25-29 with the rotational invariants of 𝐷 and K being defined by the Equations 4.30-34.  

 3𝐷0 = (1 − 𝑓)(2𝐷𝑒,⊥ + 𝐷𝑒,∥) + 𝑓𝐷𝑎 [4.25] 

 3

2
𝐷2 = 𝑝2 ((1 − 𝑓)(𝐷𝑒,∥ − 𝐷𝑒,⊥) + 𝑓𝐷𝑎) [4.26] 

 
(1 − 𝑓)(5𝐷𝑒,⊥

2 + (𝐷𝑒,∥ − 𝐷𝑒,⊥)
2
+

10

3
𝐷𝑒,⊥(𝐷𝑒,∥ − 𝐷𝑒,⊥))𝐷2

2 + 𝑓𝐷𝑎
2

= 5𝐷𝑜
2 (1 −

𝐾0

3
) 

[4.27] 

 1

2
𝐷2(𝐷2 + 7𝐷0) +

7

12
𝐾2𝐷𝑜

2

= 𝑝2 ((1 − 𝑓)((𝐷𝑒,∥ − 𝐷𝑒,⊥)
2
+

7

3
𝐷𝑒,⊥(𝐷𝑒,∥ − 𝐷𝑒,⊥)) + 𝑓𝐷𝑎

2) 
[4.28] 

 9

4
𝐷2

2 +
35

24
𝐾4𝐷𝑜

2 = 𝑝2 ((1 − 𝑓)(𝐷𝑒,∥ − 𝐷𝑒,⊥)
2
+ 𝑓𝐷𝑎

2) [4.29] 

 

 
𝐷0 =

2𝑅𝐷 + 𝐴𝐷

3
= 𝑀𝐷 [4.30] 

 
𝐷2 =

2

3
(𝐴𝐷 − 𝑅𝐷) [4.31] 

 𝐾0 = 𝑀𝐾 [4.32] 

 
𝐾2 =

1

7
(3𝐴𝐾 (

𝐴𝐷

𝑀𝐷
)
2

+ 5𝑀𝐾 − 8𝑅𝐾 (
𝑅𝐷

𝑀𝐷
)
2

) [4.32] 

 
𝐾4 =

4

7
(𝐴𝐾 (

𝐴𝐷

𝑀𝐷
)
2

− 3𝑀𝐾 + 2𝑅𝐾 (
𝑅𝐷

𝑀𝐷
)
2

) [4.34] 

In practical terms, the rotational invariants are estimated from the tensors and inputted into the system 

of Equations 4.25-29. The first four equations are solved analytically by expressing 𝑓 and all the diffu-

sivities in terms of 𝑝2 and then 𝜅 is determined by solving the last equation numerically, which is related 

to the orientation dispersion through the Equation 4.35, with 𝐹 being the Dawson’s function.  

 
𝑐2 =

1

2√𝜅𝐹(√𝜅)
−

1

2𝜅
 [4.35] 

Due to the squared diffusivities in the parametrization, the system of Equations 4.31-35 has two 

possible solutions [16], [80], [82]: one solution corresponds to the condition 𝐷𝑎 < 𝐷𝑒,∥ and the other 

fulfils 𝐷𝑎 < 𝐷𝑒,∥. In certain neurodegenerative pathologies, both 𝑓 and 𝐷𝑎 are expected to be lower as 

there is damage and loss of function of the tracts. 𝐷𝑒,║  and 𝐷𝑒,ꓕ characterize the degree of cellular 

crowding and might be higher in case of inflammation or as a result of demyelination. With potential 

loss of structure of the fibers, there is higher orientation dispersion and 𝑐2 is expected to be lower.  

Numerous models have been developed to alleviate the downsides of both NODDI and WMTI-Wat-

son, although they come with the expense of new parameters. The intrinsic assumptions of each model 

have the potential to introduce bias in the estimation of diffusion properties, but nevertheless all models 

indeed outperform DTI and DKI in capturing specificity and bringing new interpretations of the under-

lying changes of diffusivity. The choice of the model to use should have into account the purpose of the 

analysis since the reliability in pathological tissue needs further investigation [17].         
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2.3.5. Tractography 

Assuming that the orientation of the largest component of the diagonalized diffusion tensor corre-

sponds to the orientation of dominant axonal tracts in a certain voxel, DTI can provide a 3D vector field 

with each component representing the fiber orientation. Based on this information, it is possible to re-

construct a 3D trajectory, method referred to as tractography. Particularly, the study of white matter has 

been making progress due to tract reconstruction methods since there is a coherent fiber orientation 

within a voxel. On the contrary, isotropic gray matter anisotropy information is dominated by random 

noise, and therefore a single gray matter voxel may have incoherent fiber orientation. 

Tractography can be performed using either deterministic or a probabilistic approaches. [83]. The 

most intuitive way to reconstruct a 3D trajectory from a field of fiber orientations is to propagate a line 

from a seed point by following the local fiber orientation at each iteration. This is the conceptual idea 

of deterministic approaches, also known as propagation methods, and based on which several streamline 

tracking techniques have been proposed over the years. In detail, seeds are placed in voxels with FA 

greater than a certain threshold to only include white matter voxels (𝐹𝐴 ≈ 0.5). These seeds grow in 

both directions along the dominant diffusion direction, generating streamlines according to the dominant 

diffusion direction in the neighbouring voxel. A streamline is terminated when it reaches a voxel with 

sub-threshold FA or when the turning angle exceeds a certain limit.  

The first successful tractography obtained was the “connect-the-voxels” approach [84]. As voxels 

are discrete entities, the vector information contained in each voxel was not being fully reflected in the 

propagation. To overcome this issue, the vector field was turned into a continuous number field, so that 

the streamline could be continuously propagated rather than discretized in such a way that a streamline 

exits a pixel to enter the next one at a location with continuous coordinates [85]. This method is called 

FACT (Fiber Assignment by Continuous Tracking). Since FACT still lacked streamline smoothness, 

tensor interpolation was proposed by a continuous non-linear method [75] in which the principal diffu-

sion direction was treated as the path tangent. These methods are depicted in the Figure 2.13. 

 

 
Figure 2.13: Deterministic tractography methods. A) discretized “connect-the-voxels”. B) continuous FACT. C) non-linear 

method [83]. 
 

Such deterministic methods are, however, susceptible to noise accumulation as the propagation of 

streamlines becomes longer. Although the noise effect can be reduced using smoothing, it comes with a 

cost in the reduction of data resolution and slows down the computation. At the millimeter scale resolu-

tion typical of DTI, the widespread divergence and convergence of white matter fascicle lead to a con-

siderable amount of intra-voxel orientational heterogeneity. At the low b-values conventionally em-

ployed by DTI, the diffusion tensor possesses only a single orientational maxima that is its major eigen-

value. This makes it incapable of capturing intra-voxel orientational heterogeneity in the form of cross-

ing fibers, branching issues and partial volume effect [83].  

An assessment of all drawbacks of deterministic methods led to a turnaround into a probabilistic 

perspective of fiber reconstruction, in which a fiber orientation distribution probability function is ob-

tained at each voxel and a streamline follows a particular path according to its likelihood [86], [87]. This 

is possible as long as diffusion signals can be detected with multiple discrete maxima indicating the 
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presence of multiple underlying fiber population. High-angular resolution, i.e. high b-value diffusion 

direction sampling, is therefore required in diffusion data acquisition for probabilistic tractography, as 

models can provide more information than the DTI-based tractography. In this way, not only this method 

takes into account the uncertainty of fiber orientation allowing for multiple paths, it is also more robust 

to noise in the sense that streamlines along noisy paths are of low probability and tend to disperse. As a 

result, the importance of curvature and anisotropy stopping criteria is reduced.  

One of the most popular models for fiber ODF estimation is the use of spherical deconvolution [88].  

In this model, the diffusion signal characteristic of each fiber population is assumed to be identical in 

all respects apart from their orientation. Hence, the response function from a single coherently oriented 

fiber population is represented as 𝑅(𝜃), being 𝜃 the elevation angle in spherical coordinates, relative to 

the z-axis. Considering that the diffusion signal emanating from different regions add independently to 

generate the total signal measured, this signal is given by the sum of the response functions, weighted 

by their respective volume fractions 𝑓𝑖 and with a certain rotation onto the direction (𝜃, 𝜙) represented 

by the operator 𝐴𝑖̂, as shown in the Equation 4.36 [88].  

 
𝑆(𝜃, 𝜙) = ∑𝑓𝑖

𝑖

𝑅(𝜃)𝐴𝑖̂ [4.36] 

The fraction of fibers aligned along the direction (𝜃, 𝜙) is, in fact, its orientation density. The fiber 

orientation density is in fact the fiber ODF 𝜓(𝜃, 𝜙) and thus, differences in the ODF amplitude along a 

given orientation can be attributed to differences in the relative amount of fibers thought to be aligned 

with that direction [87]. Hence, the total signal measured can be expressed as the convolution of the 

response function with the fiber ODF along the direction (𝜃, 𝜙), as shown in the Figure 2.14 and given 

by the Equation 4.37. The response function can be estimated directly from data by measuring the dif-

fusion-weighted signal profile in regions likely to contain an oriented fiber population, i.e. where the 

diffusion anisotropy is higher [88], [89].  

If the response function is known a priori, the ODF can be obtained by performing the spherical 

deconvolution of 𝑅(𝜃) from 𝑆(𝜃, 𝜙). Spherical deconvolution uses a set of spherical and rotational har-

monics [90] and can be formulated as the action of an ensemble of rotations corresponding to the con-

volution kernel. Therefore, it can be simplified into a set of matrix multiplications through a simple 

linear least squares fit. 

 𝑆(𝜃, 𝜙) = 𝑅(𝜃) ∗ 𝐹(𝜃, 𝜙) [4.37] 
 

 
Figure 2.14: Fiber populations within a voxel with orientations (θ1,ϕ1) and (θ2, ϕ2). The measured signal can be obtained by 

the convolution between the response functionl and the fiber ODF [88]. 
 

A potential application of spherical deconvolution of the diffusion signal obtained from high-angular 

resolution diffusion-weighted acquisition is to reliably reconstruct tracts in regions of crossing fibers. A 

successful metric proposed for voxel-wise comparison of tracts is the apparent fiber density (AFD). It 

reflects the relative amount of underlying axons thought to be aligned with a certain orientation in each 

voxel [91], grounded on information provided by the ODF.     
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2.4. DWI image processing 

2.4.1. General image noise correction 

Microstructural modelling sets a high bar on estimating signals in an unbiased way, considering that 

the non-Gaussian random nature of noise is very likely to bias diffusion parameters, as confirmed by the 

low SNR typical of diffusion data [92]. The correction of this noise-induced bias relies on an independ-

ent unbiased estimate for the noise map, that can denoise the original data. Most of the existing noise 

estimation methods that are able to deal with spatially varying noise patterns depend on many unrealistic 

assumptions such as homogeneous signal intensities. Recently, a new model-independent approach was 

proposed [93] based on the Random Matrix Theory. . 

 The elements of a random matrix are random variables from several probability distributions. The 

main goal of this method is to provide understanding of the diverse properties of the matrix after de-

composition into its linearly independent sources with Principal Component Analysis. Since DWI data 

are said to exhibit redundancy, an uncorrelated basis set can be extracted as an independent source from 

the random matrix and characterized as noise [93]. Thus, by coupling Random Matrix Theory with 

Principal Component Analysis, the precise estimation of local noise in multi-directional data is possible.  

This random type of noise however does not include subject motion or other physiological variations 

such as the breathing and the heart rates. Naturally, such periodic variations cannot be assessed with 

random noise approaches. One strategy to deal with it is to apply an automatic detector of outliers in the 

data, exclude them and refit the model without the presence of these outliers. This method is called 

robust model fitting and the most common algorithm is the RESTORE algorithm [94], which uses an 

iterative reweighted process with Monte Carlo simulations to find the outliers. 

 

2.4.2. Image correction in EPI acquisition 

Single-shot EPI is the most widely used DWI acquisition method because it is fast, efficient and 

insensitive to small motion [95]. As mentioned in the Section 2.2.4, the fast acquisition speed of EPI 

effectively freezes any head motion, maximizing the image SNR and the accuracy of diffusion meas-

urements. Although EPI is available in most clinical MR systems, its use has certain disadvantages. 

First, the mechanical impacts on the holder (tilting) occur as a result of the gradients changing rapidly, 

causing vibration of the system. Moreover, according to Faraday’s law of induction, a changing mag-

netic field in a conductor creates the so-called eddy-currents. When these gradients are applied, the eddy-

currents account for distortions in the image, causing misalignments that lead to errors in the estimation 

of diffusion maps [96]. The images may be further warped non-linearly due to magnetic field inhomo-

geneities caused by non-zero off-resonance fields induced by the susceptibility field of the tissue [97]. 

The homogeneity level might be determined by the linewidth of the spectrum of frequencies.  

All things considered, diffusion EPI images are particularly vulnerable to distortion and sources of 

misregistration from a combination of eddy-currents, motion and magnetic field inhomogeneities. Ide-

ally, these should be corrected before calculating any subsequent quantitative diffusion maps. Image 

distortions can be reduced using bipolar diffusion-weighting schemes [98], correction with the displace-

ment field [99], or image registration methods [96], which are mentioned in the Section 2.4.4. Bipolar 

diffusion-weighting schemes use two diffusion-encoding gradients with opposing polarities between the 

90º and the 180º RF pulses. Both gradients induce eddy-currents that cancel out because they are inverse. 

As this option requires a higher TE, an alternative is to acquire an image with each of these gradients at 

a time. The displacement field can be calculated because distortion is imaged in opposing directions and 

used to correct the original image. As mentioned previously, sequence parameters selection such as 

increasing the number of encoding directions or the SNR improve the accuracy of DTI measures. Un-

fortunately, these increase the scan time and increase the partial volume effect respectively.  
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2.4.3. Bias field correction 

One of the concerns during image processing is an undesirable low-frequency signal designated bias 

field that is caused by magnetic field inhomogeneities of MRI machines. This smooth signal corrupts 

the high-frequency content of images, blurring its edges. In addition, it changes the intensity values of 

image pixels, causing one single tissue to have different gray-level distributions across the image.  

Applying high-pass filters was one of the first methods for correcting the bias field. Recently, ap-

proaches towards the elimination of contrast differences and the maximization of high frequency content 

include the expectation maximization algorithm. It divides one function that has multiple local maxima 

into a sequence of subfunctions each with global maxima. Thereby, this tool is applied to segmentation 

algorithms in order to find the most likely location of tissues and then correct for the bias field induced 

spatial invariance with a smoothing kernel. 

 

2.4.4. Image registration 

The aim of neuroimaging in longitudinal studies is to consistently and accurately communicate the 

spatial relationship within data and thus compare data across subjects, time, image types or other con-

ditions, classify data in terms of meaningful position-dependent metrics and find patterns. These benefits 

are contingent on the premise that positions and sizes in one brain must correspond to positions and 

sizes in another brain. Determining anatomical correspondence is almost universally done by image 

registration, in which brains are transformed into one another or into a template. The essential compo-

nents of any generic registration algorithm are transformation models, similarity measures and optimi-

zation strategies. These steps combined lead to image spatial normalization while finding the optimal 

transformation that maps each x of the image 𝐼(𝑥) to a location z in the image 𝐽(𝑧), such that a specified 

cost function 𝐷(𝐼, 𝐽), that describes the similarity between 𝐼 and 𝐽, is minimized [100].  

Registration algorithms can be divided into linear and non-linear, depending on the type of defor-

mations they permit. Linear registration includes transformation models capable of performing transla-

tion, scaling, rotation and shearing. With up to 12 degrees of freedom (DOF), linear transformations 

globally deform an image, while preserving collinearity and ratios of distance. Particular cases of linear 

transformation are the 6-DOF rigid-body transformation widely used in data from the same subject or 

affine transformation that uses 12 DOF. With over 12 DOF, non-linear registration matches boundaries 

and internal structures by warping the data and allows for the local alignment between two images.  

Transformations are carried out by a simple multiplication matrix of the voxels coordinates from one 

image to give the corresponding coordinates of another. If a voxel at coordinates 𝑥𝑖 undergoes a trans-

formation to the coordinates 𝑧𝑗, the mapping of the deformation is given by the Equation 4.38. 

 

𝑧𝑗 = ∑𝑚𝑗𝑖𝑥𝑖

3

𝑖=0

+ 𝐶𝑗 [4.38] 

In this notation, 𝑚𝑖𝑗  with 𝑖, 𝑗 = 1,2,3 specifies the respective transformation matrix. This matrix 

𝑚𝑖𝑗 = 𝑀𝑟 is such that 𝑀𝐼
−1𝑀𝑟𝑀𝐽 will co-register the images 𝐼 and 𝐽 and define the transformation that 

maps the space of 𝐼(𝑥) to that of 𝐽(𝑧) [101], [102]. An additional matrix 𝑀𝑋 should account for image 

dimensions, since its voxels might be anisotropic and often differ from other images. Thus, using a given 

interpolation method, the image is resampled according to its FOV and axis size as in the Equation 4.39.  

 

𝑀𝑋 = [

𝐹𝑂𝑉𝑥 0 0 𝑆𝑖𝑧𝑒𝑥

0 𝐹𝑂𝑉𝑦 0 𝑆𝑖𝑧𝑒𝑦

0 0 𝐹𝑂𝑉𝑧 𝑆𝑖𝑧𝑒𝑧

0 0 0 1

] [4.39] 
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3. Methods 

 

This project aims at studying the brain microstructure of the icv-STZ rat, since this animal model has 

shown features typical of AD, yet it has never been assessed with MRI-derived techniques. The study re-

quired MRI data acquisition and processing for posterior statistical analysis. The study design and acquisition 

are explained in the Sections 3.1 and 3.2. The existing image processing pipeline is fully described in the 

Section 3.3 and it was primarily used to obtain preliminary results and come up with a methodology to im-

prove it. The improvement strategies are described in the Section 3.4 and the statistical analysis is described 

in the Section 3.5. The strategies for additional approaches to analyse the available diffusion data are shown 

in the Section 3.6.  

 

3.1. Study design 

The longitudinal study of the brain microstructure in the icv-STZ rat required two study groups for 

comparison. Therefore, a treated (STZ) and a healthy or control (CTL) groups took part in the study and 

underwent an icv-injection so that all rats were under the same conditions.  

The CTL group (241±23 g at injection, N=8) was injected with a citrate buffer, while the STZ group 

(245±17 g at injection, N=10) was injected with 3 mg/kg of streptozotocin. As shown in the Figure 3.1, 

each rat was scanned at four time points after injection following the ethics plan of the local Service for 

the Veterinary Affairs. MRI data were collected at 2, 6, 13 and 21 weeks after injection and rats were 

subsequently sacrificed by perfusion fixation under sedation. This euthanasia method was used to enable 

brain extraction and acquire histological data to support imaging results in future projects. 

 

 
Figure 3.1: Experimental timeline of the longitudinal study.  

 

3.2. MRI data acquisition 

According to the Figure 3.1, each rat underwent four sessions of MRI scans. Before each scanning 

session, rats were exposed to isoflurane, which is an anaesthetic administrated by inhalation. After se-

dation, rats were tightly fixated in a holder according to a very precise experimental setup while vital 

signs including body temperature and breathing rate were being monitored. A surface coil was placed 

over the head and close to the skin, in such a way that the whole brain could be captured on image. The 

holder was finally slided into a 14 T Varian system and the resonance frequency of the coil was fine-

tuned to 600 MHz. The experimental setup is shown in the Figure 3.2.       

Moreover, the power of the RF pulses was calibrated to obtain a 90° excitation pulse at the desire 

depth from the brain surface, and the magnetic field was adjusted to be as homogeneous as possible, 

especially around the regions of interest (ROIs) of the study. The optimization of field homogeneity is 
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called shimming and it consists in changing electric currents that create new magnetic fields that when 

summed up with B0 make the total magnetic field homogeneous in each direction. The shimming algo-

rithm was performed in three steps, in which more directions were evaluated consecutively, so that the 

susceptibility distribution could be compensated for. Shimming was repeated whenever rats might have 

undergone vibration and moved from the original location, as often occurs in EPI acquisitions.  

 

 
Figure 3.2: Experimental setup for the MRI scan. A) rat holder. B) capacitors for adjustment of frequency by tuning and 

matching procedure. C) superficial rat head coil. D) water tubes for body temperature adjustment. E) sedation injection. F) 

anal thermometer. G) breathing sensor. 

 

Each scanning session comprised three acquisition protocols to obtain anatomical, diffusion and rest-

ing-state functional MRI (rs-fMRI) images. Diffusion assessment was the primary focus of this project, 

while rs-fMRI data was processed and analysed within the ambit of another project. The outcomes of 

that analysis are briefly elucidated in the Chapter 5 as they support microstructural results.  

The anatomical images were T2-weighted and since they were only used for spatial localization and 

not quantitative purposes, the scanning time was reduced by using a fast spin-echo sequence, with 

𝑇𝐸/𝑇𝑅 = 10.17/3000  ms, 𝑚𝑎𝑡𝑟𝑖𝑥 = 128𝑥128 , 𝐹𝑂𝑉 = 19.2𝑥19.2  mm3, 𝑣𝑜𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 = 0.15𝑥0.15 

mm3 and 30 slices with 0.5 mm thickness.  

 The diffusion protocol was performed with a semi-adiabatic spin-echo EPI acquisition. The se-

quence included the following parameters: 𝑇𝐸/𝑇𝑅 = 48/2500  ms, 𝑚𝑎𝑡𝑟𝑖𝑥 = 128𝑥64 , 𝐹𝑂𝑉 =

23𝑥17 mm3, 𝑣𝑜𝑥𝑒𝑙 𝑠𝑖𝑧𝑒 = 0.18𝑥0.27 mm3 and 9 slices with 1 mm thickness in 𝑁𝑅 = 4 repetitions. 

Data were acquired in three different shells and a total of 62 measurements, as shown in the Figure 3.3, 

provided that at least 21 measurements with at least 2 non-zero shells were required for regression of 

tensor estimation, as explained in the Section 2.3.3. Four b= 0 ms/µm2 (b0) images, i.e. with no diffusion 

weighting, were acquired as well. Another shell with 𝑏 = 0.8 ms/µm2 was acquired in 12 directions, 

𝑏 = 1.3 ms/µm2 in 16 directions and lastly 𝑏 = 2 ms/µm2 in 30 directions.  

In order to make up for the distortions caused by eddy-currents in the processing pipeline, two short 

b0 images were acquired with opposing gradients each, linear and reverse linear. 

 

 
Figure 3.3: Plot of the b-values acquired in a total of 62 directions in one of the repetitions. 
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3.3. Existing image processing pipeline 

The existing image processing pipeline is herein described. It includes all the processing steps taken 

towards the quantification of diffusion in the white matter. Several stages were included in order to 

correct images in terms of noise and MRI-induced artefacts and to enable the comparison across datasets. 

Diffusion was assessed in four ROIs within this project by calculating diffusion and kurtosis tensors and 

estimating the WMTI-Watson model.  

 

3.3.1. Data reconstruction and brain extraction 

Anatomical and diffusion data were reconstructed automatically in the Varian system, being only 

necessary to convert them into a common file type for additional processing. Since one of the most 

conventional formats to represent neuroimaging information is the NIfTI (Neuroimaging Informatics 

Technology Initiative), the Tools for NIfTI and ANALYZE image from Matlab were used for conversion 

into .nii images. The reconstructed anatomical (A) and diffusion images are shown in the Figure 3.4, 

with the later including the images resulting from the linear (B) and reverse linear (C) acquisition direc-

tions. The differences are mainly evident at the bottom of the brain, where structures seem more com-

pressed in the linear direction and more stretched in the reverse linear. This difference allows for the 

estimation of the displacement field and distortion correction, as treated in detail in the next section.  

 

 
Figure 3.4: Reconstructed MRI images in each modality (column) in two coronal planes (rows).    

  

 Following reconstruction, a mask was created to extract only brain tissue from data to be used in the 

subsequent stages of the pipeline. Thus, brain extraction refers here to the separation between brain and 

non-brain tissue. In the initial pipeline, the brain was extracted manually from anatomical and diffusion 

data using MRIcron [103], by carefully drawing the contour of the brain and filling in the inside of the 

outline. The drawn mask (A and C) and the extracted brain (B and D) of anatomical and diffusion data 

are shown in the Figure 3.5. It is important that brain extraction precedes bias field correction and reg-

istration so that when accounting for the intensity distribution or the parcellation of the brain, external 

regions such as fat or muscle are not included. 
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Figure 3.5: Manually drawn masks of the brain and resulting extracted brains in anatomical and diffusion data in two coro-

nal planes (rows).  

 

3.3.2. dMRI data correction 

After reconstruction and brain extraction, data underwent corrections for quality improvement and 

reliability of quantitative measures. Measurement repetitions were averaged and diffusion images were 

firstly denoised using the method of the Random Matrix Theory and Principal Component Analysis 

coupling [93]. A data matrix with Marchenko Pascur distribution was generated and Principal Compo-

nent Analysis eigenvalues were computed in the extracted brain. Each image was then associated to a 

noise map, SNR map and the denoised version of the brain.  

After random noise minimization, specific EPI distortions were minimized as well. The topup func-

tion of FSL estimated the susceptibility field by finding when the similarity of the unwarped images was 

maximal, using the sum-of-squared differences [104]. Therefore, linear and reverse linear acquisition 

directions datasets were used to correct the displacement distortions of the main image caused by mag-

netic field inhomogeneities. In the same context, the eddy tool from FSL [105] was helpful as it separated 

the offset eddy-current field from motion and aligned the different weighted images. A comparison be-

tween the original unedited diffusion data (A), denoised (B) and distortion corrected data (C) is shown 

in the Figure 3.6. From A) to B) the correction of random noise is evident with the denoised image being 

“cleaner” and with brain structures better delineated. From B) to C), differences are clear in terms of the 

ringing that was induced by motion and non-brain tissue is entirely removed from data at this stage. 

 

 
Figure 3.6: Sequential steps of diffusion data correction in two coronal planes (rows).  
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3.3.3. Spatial normalization of anatomical MRI data for co-registration 

In this project, anatomical data were acquired merely to provide spatial information of brain struc-

tures in the diffusion space, rather than to perform any morphometric analysis. A robust concept of 

location was required so that explicit estimation of diffusion measures could be done over certain regions 

of the brain known to be affected in AD and can be compared across datasets, between study groups and 

time points. Hence, anatomical images were registered to a template so that diffusion and anatomical 

data could be posteriorly co-registered.  

Instead of creating a template by averaging anatomical data, an available high-field MRI unbiased 

standard space template image, designated Waxholm Space (WHS) [106] was used to align anatomical 

datasets to. An available 255-tissue segmented atlas provided by the Minimal Deformation Template 

(MDT) [107] was transformed into the same space to be further used as the parcellation template of the 

rat brain. The template anatomical image A) and atlas B) are shown in the Figure 3.7. 

 

 
Figure 3.7: WHS template space where anatomical data were registered to. 

 

All anatomical datasets were aligned to the anatomical template using affine transformation followed 

by higher DOF non-linear registration (𝑇𝐴2𝑇), so that non-localized rotation, translation and scaling oc-

curred, as well as local warping. FSL tools were used in this regard, such as FLIRT (FMRIB’s Linear 

Registration Tool) [108], [109] and FNIRT (FMRIB’s Non-linear Registration Tool) [110]. Affine reg-

istration was estimated with the mutual information cost function, 12 DOF and trilinear interpolation; 

whereas non-linear registration used with the affine transformation matrix as the starting estimate for 

initial alignment, warp resolution of 1 mm in all directions, a cubic spline, a smoothing Gaussian kernel, 

a non-linear model for intensity mapping, 5 iterations in each direction and a final linear interpolation.     

The purpose of registration in this pipeline was not to align all datasets in the same stereotaxic space, 

but to align the template atlas in each single dataset space and obtain brain parcellation. The inverse 

warping matrix (𝑇𝐴2𝑇
−1 = 𝑇𝑇2𝐴) of the non-rigid registration was calculated, allowing for the transfor-

mation of the template space into the anatomical space of each dataset, using the FSL function invwarp.   

 

3.3.4. dMRI data registration and segmentation 

In order to obtain an atlas aligned to diffusion data, each diffusion dataset was transformed into the 

respective anatomical data space (𝑇𝐷2𝐴) using the same affine parameters aforementioned. The function 

convert-xfm from FSL allowed for the estimation of the inverse transformation matrix (𝑇𝐷2𝐴
−1 = 𝑇𝐴2𝐷), 

which was further convoluted with the inverse warping matrix previously estimated (𝑇𝑇2𝐴). This oper-

ation was performed by the FSL function applywarp using the nearest neighbour method to interpolate 

the integer values of the atlas, finally obtaining a map in the diffusion space of each dataset. The regis-

tration methodology aforementioned is shown in the Figure 3.8. 
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Figure 3.8: Schematic representation of the registration procedure. Anatomical data in A) was registered into the template 

image B) so that the deformation field from the template space to the original anatomical space could be calculated. Diffu-

sion data in D) and anatomical data in A) were co-registered so that the deformation field from the anatomical space to the 

diffusion space could be calculated. Finally, the transformations from the template space to the anatomical space and from 

this to the diffusion space were convoluted in order to calculate the transformation of the atlas in the template space C) to the 

diffusion space and obtain an atlas E) for each diffusion dataset. 

 

From the diffusion-transformed atlas, white matter regions known to be involved in AD, according 

to previous findings in human studies [35], [57] and in the icv-STZ animal models [8]–[10], [12], [20] 

were extracted. The tracts selected to characterize white matter were the corpus callosum, the cingulum, 

the fimbria and the fornix and each one was transformed into a binary mask such that diffusion param-

eters were estimated specifically in these ROIs. Tracts are represented in the Figure 3.9. 

 

 
Figure 3.9: White matter ROIs in different coronal planes (columns).  In A) ROIs are represented as binary labels and B) is 

the original diffusion data where labels are overlapped.  
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3.3.5. Diffusion and kurtosis tensors estimation 

Following denoising and distortion correction, unbiased diffusion data were used to estimate tensors 

and its measures using Matlab. First, the b-matrix initially extracted from the acquisition parameters 

was loaded and DTI was estimated with the weighted linear least squares estimator, according to the 

simplified cumulant expansion Equation 4.9 [111]. The eigenvalue decomposition was performed be-

cause the metrics chosen for this study were invariant metrics of diffusion [23]. Thus, the metrics MD, 

AxD, RD and FA were calculated in each voxel from the Equations 4.12-15, respectively.  

In non-Gaussian DKI, the cumulant expansion was used without any prior assumptions (Equation 

4.8) and the kurtosis tensor was obtained using the same estimator [111], where the several diffusion 

shells and multiple directions allowed the fitting of the tensors [70], [71]. The metrics MK, AK and RK 

from the Equations 4.16-18, respectively, were calculated in each voxel to complement DTI information 

[14]. Therefore, DTI and DKI estimation provided altogether seven parametric maps of the whole brain 

shown in the Figure 3.10, where different contrasts result from the way scalar values are calculated from 

the tensors and thereby provide different information.  

 

 
Figure 3.10: Parametric maps of DTI and DKI quantitative metrics.  

 

Tensor models take into account certain types of noise such as thermal noise or magnetic field inho-

mogeneities, but not others, such as physiological noise that is seen as motion inside the scanner. Since 

EPI acquisitions have such high sensitivity to motion, an automatic detector of outliers was used to 

refitting the model estimation, so that the effects of the breathing and the heart rates present in data were 

excluded from the estimation. The RESTORE algorithm [94] was used and the noise map previously 

obtained in the denoising phase was provided for the initial iteration of the reweighted process. The 

outlier voxels were therefore removed subsequently from the fit in an attempt to remove artefacts that 

were not removed earlier in the processing pipeline. 

In order to avoid potential outranged values in these parametric maps, a filter was applied before 

statistical analysis. Unphysical values were caused by artefacts unable to be removed from data and 

more importantly by partial volume effect. When a voxel labelled as white matter was capturing regions 

of the gray matter or CSF it caused, for instance, MD to be much higher, because those are isotropic 

regions. This issue is further addressed in the Section 3.4.4. Considering this, the filtering condition 

consisted in only including in the analysis voxels with values within the expression in the Equation 5.1. 

All these conditions characterize white matter in terms of scalar values. 

 𝐹𝑊𝑀: 0 < 𝑅𝐾 < 10 ∧  0 < 𝑀𝐷 < 2.5 ∧  0 < 𝑀𝐾 < 2 [5.1] 
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3.3.6. Estimation of the WMTI-Watson biophysical model of the white matter 

As to provide specificity to the diffusion analysis, a model of the white matter was estimated and 

yielded complementary measures [17]. The WMTI-Watson model is one of the most well-established 

existing models at the moment because it relies on DTI and DKI measures and does not depend on 

unstable non-linear fitting of parameters [16], [77]. Therefore, WMTI-Watson was estimated on Matlab, 

where tensors metrics were loaded to further calculate the rotational invariants of 𝐷 and 𝐾 as given by 

the Equations 4.30-34. The solutions were obtained with the Equations 4.25-29 using the Matlab tool 

fsolve, that was fed with 𝐷0, 𝐷2, 𝐾0, 𝐾2 and 𝐾4, the option of 5000 iterations and an initial guess of 

parameters 𝑥0 = [𝑓0, 𝐷𝑎0
, 𝐷𝑒,║0

, 𝐷𝑒,ꓕ0
, 𝜅0] = [0.35, 2.5, 0.85, 0.75, 5].  

Its output was then the series of five parameters 𝑓, 𝐷𝑎, 𝐷𝑒,║, 𝐷𝑒,ꓕ and 𝜅, and 𝑐2 was calculated using 

the Equation 4.35. The mathematical solution 𝐷𝑎 > 𝐷𝑒,∥ was here retained based on recent evidence 

[82]. Since fsolve solves systems of non-linear equations with several variables, it is extremely time-

consuming. To reduce the amount of time spent to obtain these parametric maps, the system was not 

solved over the whole brain data, but only over the ROIs. The parametric maps obtained after model 

computation are shown in the Figure 3.11, where scalar values are only given for ROIs. 

 

 
Figure 3.11: Parametric maps of parameters resulting from the WMTI-Watson model in two coronal planes (rows).  

 

Due to the risk of divergence of parameters during the fitting, a filter was applied to the 5 parametric 

maps provided by the WMTI-Watson model. Voxels were only kept for statistical analysis under the 

condition stated by the Equation 5.2. It forced all voxels to have a set of parameters within a biophysical 

acceptable range of values. An example of a filtered map is the Figure 3.12 and shows that a great deal 

of voxels is clearly outside of the range of vales required. This issue is addressed in the Section 3.4.5. 

 
𝐹𝑊𝑀𝑇𝐼: 0 < 𝑓 < 1 ∧  1 < 𝐷𝑎 < 3 ∧  0 < 𝐷𝑒,║ < 3 ∧  0 < 𝐷𝑒,ꓕ < 3 ∧  

1

3
< 𝑐2 < 1 [5.2] 

 

 
Figure 3.12: Parametric maps of f before (A) and after the filter FWMTI is applied (B) in two coronal planes (rows).  
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3.4. Optimization strategies to the existing pipeline 

The improvements proposed to the existing processing pipeline are herein described. To understand 

how to optimize the pipeline, preliminary results were obtained in the first part of the traineeship using 

the methodology described in the Section 3.3. From speeding up some stages of the existing pipeline to 

improve data quality, subprojects were developed in the second part of the project. Each of the subse-

quent sections is one optimization strategy, whose results are shown in the Section 4.1. If these results 

were satisfactory, strategies were implemented in the existing pipeline and the statistical analysis was 

computed considering the adjustments made.  

 

3.4.1. Improvement of white matter labels in the template atlas 

The existing 255-label 300-slice template atlas was initially developed for gray matter analysis and 

white matter tracts were not quite properly represented. Namely, the external capsule, corpus callosum 

and cingulum were represented as a single tissue, structures in general were not fitting in with each other 

with several voxels having the value “0”, some of the labels did not match exactly the tissue in the 

underlying anatomical image and some of them were missing. Since the aim of this project is to assess 

the white matter microstructure, additional care was taken with image-label correspondence.  

Therefore, the methodology to improve the existing template atlas in terms of white matter regions 

consisted in manually redrawing these structures slice-by-slice when overlaid onto the anatomical tem-

plate image using ITK-SNAP [112]. This hands-on methodology was based on the extensive information 

collected from the Data Portal of the Allen Brain Atlas ©. In this way, there would be less partial volume 

effect and diffusion metrics in each ROI would be more reliable. The differences between the original 

and the latest version of the improved atlas were evidenced by subtracting one from the other using 

ImageJ.  

 

3.4.2. Semi-automatic brain extraction 

Manual brain extraction was one of the most time-consuming steps in the pipeline considering that, 

for each dataset, a brain mask was drawn in 30 anatomical slices and 9 diffusion slices. Since over 45 

datasets were to be processed in the course of this project, finding a solution for this issue was naturally 

one of the first concerns. The most obvious solution consisted in the automatization of the process using 

specific algorithms for brain extraction that usually generate meshes to model the brain surface. While 

there are several tools for extracting the human brain, only few of them apply to rodents. Three tools 

were considered to meet the requirements to be used in this pipeline and replace manual work: the bet2 

(brain extraction tool) from FSL and the 3dSkullStrip and 3dAutomask from AFNI (Analysis of Func-

tional NeuroImages). Since only the latter is suitable for EPI data, bet2 and 3dSkullStrip were tested in 

anatomical data, whereas 3dAutomask was tested in diffusion data as follows. 

Bet2 generated a binary brain mask by iteratively expanding and deforming its initial tessellated 

mesh until enveloping completely the brain, according to several dynamic controlling parameters [113]. 

In turn, AFNI’s 3dSkullStrip [114] was adapted from bet2 and included a new set of processing opera-

tions more specific anatomical-wise. The expansion of the spherical surface was improved by a 3D edge 

detection tool, tools to avoid clipping of frontal areas and to reduce leakage into the skull and the ad-

justment of features to rat data. Choosing between both tools was solved essentially by trial and error. 

First, each tool was applied to an anatomical dataset with the default settings. After trying different 

controlling parameters, neither of the two tools appeared to be sufficiently good. In the end, the best 

combination of parameters was achieved with the application of the 3dSkullStrip followed by intensity 

normalization. The tool was set up with 250 iterations, defining the mesh density, an intensity threshold 

of 0.1 and nearest neighbour interpolation followed by final smoothing using the Taubin’s method.  
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Concerning diffusion data, the advantage of the 3dAutomask from AFNI of accepting 4D (3D+time) 

EPI data compromised its robustness by not generating an iteratively expanded mesh. Instead, the largest 

components of the supra-threshold voxels were kept after erosion-dilation procedures. The intensity 

threshold in 3dAutomask was brain size-dependent and varied between 0.4 and 0.65. A dilation step 

was applied afterwards with a 3D kernel of a 3x3x3 box centered on the target voxel to compensate for 

the intensity drop at the bottom of the brain. In consequence, the dilation was equally applied on top of 

the brain, which is closer to non-brain tissues, possibly overlapping fat or muscle tissue. To understand 

how impactful overlapping could be, metrics were computed after following the entire processing pipe-

line described in the Section 3.3 using an unsupervised dilated mask in one dataset. The parametric maps 

were visually compared with the ones obtained with the manually drawn mask.  

 

3.4.3. Bias field correction 

Before registration, it is a common procedure to remove the bias field signal and uniformize the 

intensity distribution across the image that has suffered variations induced by MRI inhomogeneities 

during the scan. Here, the use of a surface coil induced a gradient in the signal’s amplitude of images 

that was a function of depth from the coil placed above the cortex. It explains the brighter signal in 

regions closer to the coil and the darker signal in regions further. By correcting the induced-bias, the 

subsequent steps are not affected by corrupted voxel values.  

Since the correction of the bias field in anatomical data was not included in the pipeline, it was one 

of the optimization strategies. Bias field correction was performed after brain extraction, because other-

wise the algorithm would account for other tissues to normalize the overall intensity. It was performed 

by the FSL tool FAST (FMRIB’s Automated Segmentation Tool) that uses a hidden Markov random 

field associated to the expectation maximization algorithm [115]. Visual evaluation was carried out.  

 

3.4.4. FA atlas-based registration of dMRI data 

In neurodegenerative diseases there is frequently enlargement of the brain ventricles over time, even 

though the nature of this process remains unclear. On the one hand, inflammation could cause the ob-

struction of the intraventricular foramen, which allows the CSF to reach the brain ventricular system, 

and the gradual reduction of CSF drainage. On another hand, the degeneration of hypothalamic cells 

could result in the caving in of tissue, leading to the taking over of CSF over the free space left [10].  

In consequence, it is common to be faced with a disease group with greater ventricle sizes than the 

CTL group, which constitutes a problem in terms of registration because regions around the ventricles 

of the disease group are shifted uncontrollably [116]. This issue affected this project and caused ROIs 

to be misaligned in the diffusion data. The registration approach failed to spatially normalize the struc-

tures around the oversized ventricles, especially the fimbria, as can be seen in the Figure 3.13.  

Misalignment naturally affected diffusion metrics because the tissue-label correspondence was no 

longer accurate. For instance, considering that water diffusion within the ventricles is isotropic, FA is 

much lower in the ventricles (FA≈0.1) than in the white matter tracts (FA≈0.5). Thus, partial volume 

effect of white matter tracts with CSF would have a lower average FA and generally a suboptimal sen-

sitivity to true differences in tensors. Accordingly, preliminary results showed that partial volume effect 

was reflected as group differences in FA in the fimbria unlikely to correspond to true differences. 

Several studies have in that regard tried to find ways to guarantee that registration was successful 

both in resolving topology variability and exact alignment of the very fine structures. Although manual 

edition of atlas labels is a helpful approach in particular situations, an automatic solution must be 

achieved for larger amounts of data in order to be an unbiased, efficient and low time-consuming pro-

cess. Approaches including affine alignment of DTI maps across datasets [117], extreme DOF non-

linear registration [118] or tractography-based registration [119] have been proposed, but failed. 
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Figure 3.13: Comparison between STZ (A) and CTL (B) rat brain ventricles at 13 weeks after injection in different coronal 

planes (columns). 

  

A newly attempt to overcome all these flawed approaches is called tract-based spatial statistics 

(TBSS) [120]. It aims to solve the alignment and smoothing issues, while being fully automated and 

without requiring pre-specifications of tracts of interest. This is achieved by projecting the FA map from 

each dataset onto a mean FA skeleton in such a way that each skeleton voxel takes the FA value from 

the nearest relevant tract center. FA was proposed because it is computable voxel-wise and a vastly used 

marker for tract integrity with scalar values independent of the local fiber orientation [118] 

In this project it was not reliable to create a skeletonized mean FA, since in this longitudinal study, 

ventricles become larger over time. Hence, an FA template image was used instead. An FA template 

was available in the template WHS, i.e. the same stereotaxic space as the template atlas [106]. Taking 

into consideration the TBSS method, FA data was registered into the FA template, replacing the con-

ventional anatomical registration described in the Figure 3.8 in the Section 3.3.4. The inverse transfor-

mation was calculated and co-registration between diffusion and with FA data was carried out, so that 

the template atlas was transformed into each diffusion dataset space. Naturally, this diffusion-trans-

formed atlas was different than the one obtained after anatomical registration, because the dataset/tem-

plate image correspondence of FA data and anatomical data is also different. 

While FA reveals differences across space, it does not reflect any information regarding direction. 

On the contrary, CCFA maps are direction-dependent as they visualize each x (CCFAx), y (CCFAy) 

and z (CCFAz) diffusion directions separately by reading the coordinates of the largest eigenvalue. 

Hence, the procedure described above was also tested with a CCFA template image and CCFA data in 

each direction. The different template images are shown in the Figure 3.14 and compared to the respec-

tive corrected diffusion parametric maps.  

 

 
Figure 3.14: Different parametric maps (columns) obtained from the pipeline (upper row) and the respective images availa-

ble in WHS template space (lower row). 
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In order to evaluate the best registration procedure, a quality measure was defined. Since the outcome 

of registration in this project was the labelled atlas, the best way to quantify the misalignment of each 

procedure was to calculate the tensors metrics over the ROIs extracted from those atlases and apply the 

white matter filter FWM given by the Equation 5.1. The ratio R between the number of voxels filtered by 

the white matter cut-off and the total number of voxels of each ROI partially determines how much the 

white matter label is aligned to the underlying tissue, since the filter excludes voxels that contain CSF.   

This ratio is given by the Equation 5.3 and the higher it is, the less voxels are being excluded from 

image analysis and the less voxels are overlapping the ventricles. However this ratio does not quantify 

partial volume effect with gray matter regions. During registration, while different transformations try 

to push away the labels from the ventricles, they might force such distortions that the labels end up being 

pulled into the gray matter, which is concerning as well. Since it was too restrictive to narrow down the 

values of the diffusion metrics to exclude gray matter, visual inspection was always required.     

 
𝑅 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙𝑠 𝑘𝑒𝑝𝑡 𝑎𝑓𝑡𝑒𝑟 𝐹𝑊𝑀

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙𝑠
 [5.3] 

In a total of 30 (14 CTL and 16 STZ) datasets, linear and non-linear registration between FA, CCFAx, 

CCFAy and CCFAz data was performed. Diffusion metrics were calculated over the ROI labels ex-

tracted from each resulting atlas and finally, R was estimated for each ROI in each dataset. It was aver-

aged in CTL and STZ groups for each registration procedure and compared between each other and with 

the conventional anatomical registration procedure. Statistical analysis of the diffusion metrics was com-

puted using the labels resultant from the best method chosen for each ROI, using the statistical tests 

described in the following Section 3.5 where p-values were compared. The ultimate goal was to under-

stand whether alignment of tissue-label correspondence was significantly impactful for data analysis. If 

existing significant differences between and within groups were improved to a more powerful statistical 

significance (lower p-values), the misalignment caused by oversized ventricles would be minimized and 

the respective registration procedure would be integrated into the pipeline to obtain the final results.  

 

3.4.5. Evaluation of the initial values in the WMTI-Watson model 

After estimating WMTI-Watson model parameters, the filter in the Equation 5.1 was applied to en-

sure that only biologically acceptable values participated in the statistical analysis. However, it was 

noticed in the Figure 3.12 that a substantial amount of voxels were being filtered out in that process, 

with an average of 58±4% of voxels being removed from analysis. This means that these results were 

not entirely reliable and, in addition, tensors and model metrics were being averaged out in fairly differ-

ent ROIs. In this case, the outranged values could not have been caused by partial volume effect due to 

misalignment of structures, because the excluded voxels had unphysical parameter values regardless 

containing white matter, gray matter or CSF. In fact, this could be an issue with the model fitting while 

solving the system of Equations 4.31-35.  

In order to understand what was causing the model to fail in so many voxels, only one option could 

be changed within the model estimation. Thus, retaining the mathematical solution 𝐷𝑎 > 𝐷𝑒,∥, different 

initial values were tested. If the model was diverging because of the starting estimates, other combina-

tions of starting values would provide parameters within the filter conditions. Since the model estimation 

was one of the most time-consuming steps in the pipeline, only two voxels were selected to undergo 

model fitting: one voxel where the model has worked and another from the same dataset were the model 

has failed. The selected voxels are shown in Figure 3.15 where f has not been properly estimated in the 

“unfitting” voxel.  
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Figure 3.15: “Fitting” (upper row) and “unfitting” voxels (lower row) capturing the corpus callosum in three different rep-

resentations (columns): corrected diffusion image (A and D), FA parametric maps (B and E) and f parametric maps (C and 

F). 

 

For a deeper understanding, multiple initial values for each parameter were selected to produce dif-

ferent combinations at each iteration within a nested for loop. These included  𝑓0 = [0.1: 0.2: 0.9], 

𝐷𝑎0
= [0.4: 0.6: 2.8] , 𝐷𝑒,║0

= [0.4: 0.6: 2.8], 𝐷𝑒,ꓕ0
= [0.3: 0.4: 1.9] and 𝜅0 = [1: 2: 11]. Each itera-

tion corresponded to a different set of initial values and for each, a set of parameters was calculated in 

each voxel. Histograms were produced for each parameter after all combinations, with a sample of 

54𝑥6 = 3750 iterations. 

 

3.5. Statistical analysis of diffusion metrics 

Taking all data into consideration, a 4D data matrix was ultimately obtained to compute statistical 

tests. Either for health reasons or data corruption, not all data acquired were eligible for analysis. From 

the 18 (10 STZ + 8 CTL) rats that underwent injection, 1 (STZ) died before the 2 weeks assessment, 

and 2 (1 STZ + 1 CTL) were sacrificed before the 21 weeks assessment because of weight loss. One 

poor quality STZ dataset at 6 weeks was excluded because of a problem with the coil during the scanner. 

In addition, several datasets were excluded from the analysis because of incorrect acquisition. 2 STZ 

and 2 CTL datasets at 2 weeks were discarded, as well as other 2 STZ and 2 CTL datasets at 6 weeks 

and at 21 weeks. Since 8 (4 STZ and 4 CTL) rats were not scanned at 21 weeks in time for the statistical 

analysis of this project, a total of 45 datasets were included in the tests to be described. The reformulated 

experimental timeline with all datasets included in the analysis is presented in the Figure 3.16. 

 

 
Figure 3.16: Updated experimental timeline with the datasets included in statistical tests. Due to poor data quality or health 

reasons, some rat brains could not be included in all time points.  
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Unfortunately, at 21 weeks after injection the sample of datasets was not statistically powerful and 

these three datasets were not included in the tests. Nevertheless, these datasets were included in the 

visualization boxplots to provide the tendency of values in the last time point.  

Statistical analysis approaches were explored considering that this project aims to address white mat-

ter microstructure in two different manners: how STZ rats evolve over time, compared with CTL rats, 

and how both groups differ at each moment in time. Thus, two different statistical tests were carried out 

in Matlab. The mean and standard deviation values of each of the 12 metrics were averaged over each 

of the 4 ROIs labels for each dataset. Study groups and time points were averaged so that statistical tests 

to compare the means in different populations were computed. At each time point, two-tailed t-tests 

were computed to evaluate the differences in the mean of each metric and in each ROI between groups. 

The null hypothesis was that the STZ and the CTL groups at each time point came from independent 

random normal distributed samples with equal means at a 5% significance level. Within each group, a 

one-way ANOVA assessed the variance in the mean of each metric and in each ROI over the experi-

mental timeline. The null hypothesis was that the samples at 2, 6 and 13 weeks of each group were 

drawn from populations with the same mean at a 5% significance level.  

 

3.6. Additional diffusion analysis strategies 

In addition to the strategies proposed to optimize the existing pipeline, two new approaches to ana-

lyse the available data were proposed as well. The strategies proposed are described in the subsequent 

sections and aim at complementing the statistical analysis of the diffusion metrics with new spatio-

temporal information that would ideally support the results obtained from the Section 3.5. Both these 

approaches were developed from scratch and were carried out with the intention of being the starting 

point for new projects.   

 

3.6.1. Gray matter analysis for correlation with white matter metrics 

Gray matter atrophy has been a reported manifestation of AD, alongside with white matter degener-

ation, in several icv-STZ rat studies [8]–[10]. A study has shown that white matter degeneration is an 

intermediate event between early amyloid deposition and late gray matter atrophy [121]. However, it 

remains unclear what trigger white matter degeneration and whether this is immediately anterior to gray 

matter atrophy or they are independent.    

Even though a mathematical model for gray matter is lacking, gray matter microstructure can be 

evaluated with DTI and DKI. In order to disclose the spatio-temporal relationship between white matter 

degeneration and gray matter atrophy, tensors metrics were averaged over gray matter regions: ACC, 

RSC, hippocampus, PPC and MTL. These regions were selected according to their functional associa-

tion with white matter ROIs and to the existing literature [8]–[10], [12], [20]. Labels are represented in 

the Figure 3.17, where the connection between gray matter and white matter ROIs becomes clear. The 

mean DTI and DKI metrics in the gray matter were averaged by study groups and time points.  

 

 
Figure 3.17: Gray matter ROIs in two coronal planes.  
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In the preliminary results, the diffusion metric that showed more significant differences across all 

white matter ROIs was the MK. Therefore, MK in the white matter ROIs was studied as a function of 

the MD in the gray matter ROIs, because this metric is the easiest to predict in such an isotropic medium. 

Among all the ROIs selected herein, diffusion alterations in the cingulum were expected to be related to 

alterations in the RSC and the ACC, alterations in the corpus callosum to alterations in the PPC and the 

MTL and alterations in the fornix and fimbria to alterations in the hippocampus. Thus, scatter plots of 

the variables were computed between the ROIs potentially related. For instance, the MK in the cingulum 

was plotted against the MD in the RSC and so on for the other five relationships. These relationships 

were studied in two ways: variables were divided into time points across all study groups and into study 

groups across all time points. Except for the datasets at 21 weeks after injection across time points, all 

datasets were included in the gray matter analysis.  

The preliminary results have shown that white matter degeneration was reflected by low MK values 

in the STZ group. This would be related to gray matter atrophy in ROIs firstly affected by AD, such as 

the hippocampus. In the CTL group the opposite would be expected. Gray matter atrophy is supposed 

to be translated into high MD and structural development is characterized by low MD. The separation 

of the scatter plots into time points would ideally characterize the temporal degeneration.   

 

3.6.2. Tractography for quality assessment of metrics 

Tractography is one of the most widely used techniques to study the brain connectome because of its 

ability to assess its microstructure. However, the idea of this subproject was to take advantage of avail-

able data. The goal was to reconstruct tracts corresponding to the ROIs of this project and to obtain 

metrics from them. Tractography-derived metrics were expected to have a spatio-temporal pattern sim-

ilar to the diffusion metrics, that would confirm the reliability of the reconstructed tracks. According to 

the literature, constrained spherical deconvolution of FODs is a better solution than DTI-based tractog-

raphy, since it minimizes image noise and resolves crossing fibers, as long as there is high b-value 

diffusion direction sampling [88]. Hence, due to the comprehensive tutorials available, MRtrix 3.0 tools 

were used to perform spherical deconvolution of diffusion data. 

Since this subproject was an experiment and occurred at the end of the traineeship, there was no time 

to include more than 8 (4 STZ and 4 CTL) datasets. Preliminary results showed that at 6 weeks after 

injection, study groups showed almost no differences, whereas at 13 weeks there were numerous differ-

ences between groups. From each time point, 2 datasets belonging to each group were selected and were 

included in the tractography processing pipeline, that was developed from scratch. Evidently, results 

were not statistically powerful but, nevertheless, a tendency could already be perceived.   

Even though diffusion data were already corrected, tractography required isotropic data before com-

puting FODs in order to improve software performance. Images were then upsampled to their minimum 

voxel size, 0.18x0.18x0.18 mm3, using the MRtrix function mrresize. As ROI labels were used as seeds, 

atlases were upsampled as well. The first stage of spherical deconvolution was to estimate the response 

function 𝑅(𝜃) for each dataset, based on diffusion signals and gradient information. The tournier algo-

rithm was used within the dwi2response tool of MRtrix as it combines the provided b-values and direc-

tions to improve angular resolution [122]. The FOD function 𝐹(𝜃, 𝜙) was then estimated by spherical 

deconvolution as given by the Equation 4.37. For this purpose, response functions and the diffusion data 

were inputted in the dwi2fod tool of MRtrix to calculate spherical harmonics coefficients [123].  

An FOD dataset is shown in the Figure 3.18 and accurately represents tracts directions. The body of 

the corpus callosum is shown in the x-direction, the external capsule in the y-direction and the cingulum 

in the z-direction. Moreover, the fimbria is imaged in pink which means that its tracts are oriented in the 

x- and z-directions to meet the fornix in the midline of the brain. The random arrow directions in the 

ventricles further confirms the accuracy of the estimated FOD.   
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Figure 3.18: FOD dataset represented with arrows that characterize the fiber orientation. Orientation is defined by arrow 

color and FOD magnitude by arrow size.   

  

 To compare datasets, correspondence between FODs was necessary [89]. All FOD datasets were 

used to create a study-specific unbiased FOD template with the MRtrix function population_template. 

To build the template, all datasets were considered representative of the population, even though clear 

differences arose in the ventricles size of the STZ group, as previously shown in the Figure 3.13. This 

tool used each FOD dataset to output the deformation field that transforms a specific dataset into the 

general template. These warps were afterwards used to spatially normalize FOD datasets and transform 

them into the new template space. The same warp was applied to masks, labelled atlases and to the 

diffusion-weighted images as well, for visualization purposes. Transformations were enabled by the 

MRtrix function mrtransform [89]. Registration outcomes are shown in the Figure 3.19.  

 

 
Figure 3.19: Registration of FOD datasets (A) to a template generated from original data (B). In C) the FOD datasets was 

transformed into the generated template space.  

 

To finally achieve 3D reconstruction, MRtrix provided a tool with multiple algorithms available, 

named tckgen. From algorithms using deterministic methods such as FACT or path-integral methods, to 

different choices of probabilistic methods, the tool enabled the generation of streamlines and provided 

user-controlled parameters. The algorithm chosen was the iFOD2 that allowed for smoother streamlines 

with a 2nd order integration [124]. Here, a streamline was more probable to follow a path where the FOD 

amplitude was large whereas it may rarely traverse orientations where the FOD was small. 

Four different local tractographies were computed with each ROI label as a seed. The seed could be 

instead selected as a set of coordinates, which would not be ideal for an automated process for a larger 

sample. The remaining parameters, such as the number of streamlines, the step size, the FOD amplitude 

cutoff for terminating tracks and the minimum length of streamlines, were chosen based on a trial-and-

error approach, which was conclusively ROI-dependent. The algorithm seeded streamlines randomly 

within the given label mask until the desired number of streamlines was reached, as long as other criteria 

met the parameters inputted.  

Following tracks generation, a good track isolation required tracking editing techniques that use re-

gion masks to include or exclude streamlines from the tractogram. In practical terms, using tckedit 
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MRtrix tool, inclusion regions and exclusion regions were defined, displaying all streamlines that trav-

erse inclusion regions and excluding any streamlines that traverse exclusion regions. Although it is a 

knowledge-based technique, unwanted contributions can be reduced by placing more seeds. Naturally, 

editing tracks depends on the ROI as well. While the corpus callosum had such a great amount of fiber 

connections and requires more filtering, the cingulum was much straighter forward to isolate. The more 

the branching patterns and orientations a region shows, the more difficult it is to isolate it from other 

regions inherently associated anatomically. In this case, manual intervention was necessary. 

With each tract of interest well defined, it was possible to compute statistics on the streamlines in-

cluded. mrstats from MRtrix provided a histogram of the lengths of each streamline of each tract. Even 

though streamline-based metrics were limited to the parameters selected in the track generation process, 

they apply equally to all datasets and thus, they were relatively unbiased. Additionally, AFD was finally 

estimated for each tract, using the afdconnectivity function from MRtrix.  

Length of streamlines and AFD were averaged for each track of interest for each dataset. A plot of 

the average AFD divided by the average length of streamlines were computed for each track of interest, 

including all 8 datasets. The AFD was normalized because the datasets of the different time points were 

not the same rats. The normalized AFD was expected to decrease in the STZ group over time because 

of white matter degeneration confirmed by the microstructural results, and to be constant or to increase 

in the CTL group. In addition, at each time point, AFD would be higher in the CTL group than in the 

STZ group.  
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4. Results 

 

This chapter is divided into the Section 4.1 that describes the results obtained from testing the pipe-

line optimization strategies; the Section 4.2 that describes the final results from the statistical tests, com-

puted after applying the successful optimization procedures to the existing pipeline; and the Section 4.3 

that describes the results from the additional analysis strategies. In fact, the Sections 4.1 and 4.3 describe 

how the final longitudinal study was improved in terms of reliability and reproducibility.   

 

4.1. Optimization strategies to the existing pipeline 

The alterations proposed to the existing pipeline are described in detail in the Section 3.4 and the 

way they affect the processing pipeline is herein described quantitatively or by visual inspection. Several 

times the subprojects relied on the preliminary results to evaluate the potential improvements. Once 

these improvements were verified and considered an additional value to the analysis, the methodology 

was integrated in the pipeline described in the Section 3.3. For each strategy proposed, a final statement 

declares whether the methodology was implemented in the existing pipeline.   

  

4.1.1. Improvement of white matter labels in the template atlas 

After manually changing the 255-label template atlas, the final version had 276 tissues and more 

accurate white matter regions. The before (A) and after states (B) of the template atlas are shown in the 

Figure 4.1. The mathematical difference between both (C) is equivalent to the overall changes made.   

In the anterior slice of the original rat brain template atlas, red arrows show voxels without an as-

signed label. The improvement consisted in filling in these voxels, especially near white matter regions, 

such as the internal capsule and the fimbria (arrow on the left hand-side) and the corpus callosum, cin-

gulum and the RSC (arrow on the right hand-side). The blue circle evidences the separation into cingu-

lum and corpus callosum, that have led to important findings as different tracts in previous studies [8], 

[9], [19], [34]. In the posterior slice, red arrow points at one of the several new labels drawn, namely the 

hippocampal fissure. The blue circle shows the separation between corpus callosum and external cap-

sule, which is different from the human brain and often confounded.  

Main changes were made on the corpus callosum and fimbria. The improved template atlas allowed 

for an improved atlas in the diffusion space of each dataset and thereby more reliable labels of the ROIs. 

Ultimately, diffusion metrics were less affected by partial volume effect and became more representative 

of the microstructure. This new template atlas was therefore integrated in the registration pipeline.   

 

 
Figure 4.1: Differences between the initial and improved template atlas with particular focus on the white matter regions in 

two coronal planes (rows). Red arrows and blue circles highlight the main differences between both.  
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4.1.2. Semi-automatic brain extraction 

For anatomical extraction of the brain, bet2 and 3dSkullStrip software were evaluated by trial and 

error and the different stages of the optimization method are represented in the Figure 4.2. The first 

column corresponds to the whole head anatomical image and the second and third columns correspond 

to the extracted brain resulting from bet2 and 3dSkullStrip tools, respectively.  

In the first attempt to use these tools, data were unedited in terms of intensity or distortion correction. 

Both tools showed a poor segmentation of brain tissue in the inferior part of the brain, possibly caused 

by an accentuated drop in the signal from top to bottom since the coil was placed on top of the head. In 

order to improve the signal in the inferior portion of the brain, the gross variability in intensity distribu-

tion was removed and tools were tested using the corrected image. Their performance showed that 

whereas bet2 was extracting muscle tissue above and laterally, 3dSkullStrip was clipping too much the 

edges. Conversely, bet2 was able to envelop the bottom of the brain, while 3dSkullStrip stopped the 

surface expansion in the midline of the brain. 

All results considered, it was more important to remove non-brain tissue, as evidenced by the blue 

circle than to capture the spinal trigeminal tracts, pointed out by the red arrow. Therefore, the 3dSkull-

Strip performance was more appropriate in this case and indeed reduced the time consumption in this 

pipeline stage. It was integrated in the pipeline after image reconstruction.  

 

 
Figure 4.2: Comparison between two different tools (columns) for brain extraction before (upper row) and after (lower row) 

intensity correction of anatomical data. The red arrow and blue circle represent the advantages of the corresponding tool. 

  

Regarding brain extraction in diffusion data, the 3dAutomask tool was tested, as shown in the  Figure 

4.3. The original unedited diffusion image of one rat at 13 weeks after injection is represented in A). 

The most significant parameter in this tool was the intensity threshold level (thr) and thus, three increas-

ing threshold levels in B), C) and D) showed a gradual removal of the head tissues around the brain 

(blue circles), at the expense of a poor extraction of the bottom of the brain.  

To make up for this, an increasing amount of dilation steps were used, in E), F) and G) with the 

highest threshold level (thr=0.65). Apparently, it improved the extraction of the bottom of the brain, 

while keeping less non-brain tissue than lower threshold levels. When compared with the manually ob-

tained extracted brain in H), both images seem reasonably similar (green circles), except for the presence 

of a thin layer of non-brain tissue around the extracted brain.   
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Figure 4.3: Comparison between different parameters for the brain extraction in diffusion data. The circles represent the 

main differences between parameters. 

 

To understand how impactful the layer resulting from unsupervised brain extraction (thr=0.65 and 3 

dilation steps) can be, the image in G) underwent all the processing pipeline described in the Section 

3.3. until tensors metrics were calculated. The Figure 4.4 shows the comparison between the denoised 

eddy-corrected images (A and B) and the MK parametric map (C and D) resulting from the pipeline 

computed the manually edited mask and the mask from G). 

In the corpus callosum, different values of the diffusion signal in the exact same voxel were found 

using both masks, which means that noise and distortion corrections accounted for the voxels outside 

the brain to normalize the diffusion image. This had an effect in DTI and DKI measurements, with a 

difference in MK of roughly 0.18, which is highly significant considering the usual differences in MK 

between groups and time points within a ROI.  

 

 
Figure 4.4: Comparison between manual extraction and the 3dAutomask tool with thr=0.65 and 3 dilations in the corrected 

diffusion signal (upper row) and the MK parametric map (lower row) in the corpus callosum. 

 

Therefore, for this method to be integrated into the existing pipeline, there was still need for post-

processing of the extracted brain, to ensure the head tissues were removed from the analysis and the 

parametric maps were as reproducible as possible. It was still less time-consuming to combine the 3dAu-

tomask tool with thr=0.65 without dilation and manually fill in the bottom of the brain. As seen in D) in 

the Figure 4.3, there was no overlapping of non-brain tissue on top of the head. This semi-automatic 

approach was therefore implemented in the existing pipeline. 
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4.1.3. Bias field correction 

The difference between the original unedited anatomical image (A) and the bias field corrected image 

(B) is represented in the Figure 4.5. In the original anatomical data, it is clear a gradient of signal atten-

uation as a function of distance from the coil, i.e. less signal in the bottom of the brain. In turn, the 

corrected image shows deep brain structures with similar intensities to the cortex. With a better contrast 

between structures in both anterior and posterior planes, this additional step affected positively the reg-

istration and therefore was integrated within the existing pipeline.    

 

 
Figure 4.5: Difference between the original anatomical image and after bias field correction in two coronal planes (rows). 

 

4.1.4. FA atlas-based registration of dMRI data 

As an attempt to minimize the effects of enlargement of ventricles in the metrics, the registration 

procedure was repeated with different image modalities for posterior diffusion co-registration and com-

pared with the standard anatomical registration used by the existing pipeline for each ROI. In the first 

stage of this strategy, only linear registration was computed to compare four different methods (FA, 

CCFAx, CCFAy and CCFAz linear registration) between them and with anatomical registration. The 

average ratio of voxels kept in each ROI after the white matter filter is shown for each method in the 

Table 4.1 for CTL and STZ rats, being R a measure of the alignment between labels and the underlying 

structures. A higher ratio means a lower amount of voxels that contain CSF and therefore a potentially 

better alignment. In the Figure 4.6 the differences between methods are shown for each ROI. 

 

R 
Anatomical     

Registration 

Linear Registration 

FA CCFAx CCFAy CCFAz 

CC 
STZ 0.9537 0.9517 0.9489 0.9662 0.9195 

CTL 0.9743 0.9765 0.9763 0.9830 0.9626 

CG 
STZ 0.9937 0.9961 0.9976 0.9980 0.9678 

CTL 0.9906 0.9941 0.9964 0.9994 0.9800 

Fimbria 
STZ 0.6650 0.7073 0.7506 0.6879 0.7683 

CTL 0.8834 0.9055 0.9330 0.8748 0.9167 

Fornix 
STZ 0.9625 0.9640 0.9609 0.9604 0.9515 

CTL 0.9485 0.9668 0.9603 0.9705 0.9563 

Table 4.1: Average R calculated after 5 different linear registration procedures for each ROI in each study group. CC: cor-

pus callosum, CG: cingulum.  
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Figure 4.6: Comparison between the ROIs extracted from atlases resulting from different registration procedures (columns) 

in a STZ dataset in three coronal planes (rows). 

 

The cingulum was the ROI whose voxels were generally less excluded after filtering and the one 

with less differences between CTL and STZ groups throughout all methods. Even though CCFAy was 

the best linear registration method for both study groups, the ratio difference between CCFAy and ana-

tomical registration was only 0.4% in the STZ group and 0.8% in CTL group. Thereby, since the cingu-

lum was barely affected by partial volume effect, there was no need to change the protocol in this case.  

The fornix did not change considerably from one method to another, with the highest ratio difference 

of 1.3% between methods in the STZ group. The best apparent methods at pushing the fornix label out 

of the CSF were the linear FA registration in the STZ group and the linear CCFAy registration in the 

CTL group. Nevertheless, it remained unclear whether any of the procedures did improve the spatial 

normalization of the structure, since there was no consistency across methods. The fornix might not 

have been affected by partial volume effect, but only challenging to register because of its small size 

and low signal. Incoherent changes in the fornix shown by the preliminary results supported the decision 

to continue using conventional anatomical registration to obtain this ROI’s label.  

The corpus callosum was highly affected by the hypersized ventricles, since the STZ group always 

had a lower ratio than the CTL group across the methods. The CCFAy was the map with higher R, which 

was partially expected, since this ROI links the two hemispheres and therefore it mainly diffuses in the 

x- and y-directions. Accordingly, CCFAy and CCFAx had a ratio difference in module of only 1.7% in 

the STZ group. Considering that CCFAy was the only method better than the anatomical registration 

with a ratio difference of 1.2%, it was the method chosen for this ROI to undergo non-linear registration. 

Lastly, as expected, the fimbria was clearly the most affected ROI by ventricle enlargement, with the 

largest ratio difference between groups of 21.8% in the anatomical registration. This means that in the 

STZ group, an average of 82 in 186 voxels was being dramatically left out of the analysis because of 

misalignment issues. Strong improvements were shown by CCFAz in the STZ group and CCFAx in the 

CTL group. In this case, it was noteworthy that even the CTL group underwent partial volume effect 

without having enlarged ventricles, because of the simple fact that the fimbria is closer to the ventricles 
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than any other ROI considered in this study. The ratio difference in the STZ group between CCFAz and 

CCFAx was 1.8%, whereas in the CTL group was 1.6%. After taking a close inspection to the overlaid 

labels in diffusion data, the CCFAz was the method selected to undergo non-linear transformation. 

Hence, the corpus callosum and the fimbria were the most affected ROIs by misalignment caused by 

enlarged ventricles. Non-linear registration was performed with the respective affine matrix as a starting 

estimate for CCFAy and CCFAz data, respectively. The comparison between linear and non-linear reg-

istration in each ROI is shown in the Table 4.2 for CTL and STZ groups and in the Figure 4.7. The 

cingulum and the fornix were not further considered in the analysis. 

 

R Anatomical      

Registration 
Registration 

Linear Non-linear 

CCFAy CC 
STZ 0.9537 0.9662 0.9843 
CTL 0.9743 0.9830 0.9847 

CCFAz Fimbria 
STZ 0.6650 0.7683 0.8199 
CTL 0.8834 0.9167 0.8524 

Table 4.2: Average R calculated after linear and non-linear registration of the method selected for the corpus callosum (CC) 

and the fimbria in each study group.  

 

 
Figure 4.7: Comparison between the ROIs (rows) extracted from atlases resulting from linear and non-linear registration 

(columns) of the method selected in the first stage in a STZ dataset.  

 

Except for the CTL group in the fimbria, all non-linear methods overpassed linear registration. In the 

STZ group, the fimbria had a ratio difference between linear and non-linear registration of 5.2% and the 

corpus callosum of 1.8%. Visual inspection confirmed a preference for the non-linear procedure in both 

ROIs, as seen in the green circles. 

Since non-linear CCFAy and CCFAz registration showed improved ratios in the corpus callosum 

and the fimbria, respectively, statistical tests were performed to have a quantification of such improve-

ments. From the preliminary results, t-tests showed more significant differences and therefore only these 

were computed herein. The comparison between differences in metrics obtained in labels from anatom-

ical registration and from the potential improved registration procedure is presented in the Table 4.3 for 

the corpus callosum and in the Table 4.4 for the fimbria. In these tables, p-values are representative of 

the differences between groups at each time point.  
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p-values t-test 
Anatomical               

Registration 
Non-linear CCFAy     

Registration 

CC 

𝑫𝒂 2 weeks 0.0048 0.0181 

𝑫𝒆,║ 6 weeks 0.0460 >0.05 

FA 13 weeks >0.05 0.0002 

AD 13 weeks 0.0237 0.0035 

MK 13 weeks 0.0395 0.0006 

AK 13 weeks 0.0352 0.0013 

RK 13 weeks >0.05 0.0034 

f 13 weeks >0.05 0.0429 

Table 4.3: Comparison between t-tests computed in the preliminary results and with CCFAx in the corpus callosum (CC). p-

values quantify differences between groups at each time point in diffusion metrics. 

 

p-values t-test 
Anatomical               

Registration 
Non-linear CCFAz         

Registration 

Fimbria 

MD 2 weeks 0.0322 0.0081 

RD 2 weeks 0.0061 0.0008 

𝑫𝒂 2 weeks 0.0146 0.0172 

FA 13 weeks 0.0040 0.0057 

MD 13 weeks >0.05 0.0154 

RD 13 weeks 0.0124 0.0022 

MK 13 weeks 0.0033 0.0096 

RK 13 weeks 0.0072 0.0234 

f 13 weeks 0.0237 0.0379 

Table 4.4: Comparison between t-tests computed in the preliminary results and with CCFAz in the fimbria. p-values quantify 

differences between groups at each time point in diffusion metrics. 

 

p-values with lower orders of magnitude are highlighted in green in these tables and with higher 

orders of magnitude in red. In all cases, there are new differences in metrics that were not significant in 

the preliminary results. In the corpus callosum, there was one difference in a metric that lost power with 

non-linear registration. However, not only most significant changes were improved by one or two orders 

of magnitude, but new significant changes were evident as well. Overall, it seemed that the alignment 

of the corpus callosum was optimized with non-linear CCFAy registration, leading to increased statisti-

cal power in the results. The results in the fimbria were equally great, with one difference in a metric 

that lost power after non-linear CCFAz registration, but with several metrics differences being im-

proved. In the most dramatic case of partial volume effect, the ratio of voxel kept in analysis increased 

from 66.5% to 82.0%. Therefore, CCFAy and CCFAy template atlases were added to the registration 

pipeline, where optimization was guaranteed.  

 

4.1.5. Evaluation of the initial values in the WMTI-Watson model 

Several initial values were set in the estimation of the WMTI-Watson model. Each combination of 

initial parameters corresponded to a different iteration that provided a single vector of parameter values 

for the “fitting” and “unfitting” voxels. The parameter values obtained are shown in the histograms in 

the Figure 4.8 for a total of 3750 iterations. The first row is the distribution of parameters in the “fitting” 

voxels while the second row is the distribution in the “unfitting” voxel. 
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Figure 4.8: Histograms of each WMTI-Watson model parameter (columns) in two different voxels (rows) with 3750 combina-

tions of initial values. The window of each parameter comprises parameter values considered to be biophysically reasonable.  

 

In the “fitting” voxel, most iterations, i.e. most combinations of initial parameters, led to the same 

range of solutions. These were, as expected, within the acceptable range of biophysical values that pass 

the criteria for the model to work. However, way less combinations led to that range of solutions in the 

“unfitting” voxel. The iterations that actually worked in this voxel, i.e. where parameters were within 

the biophysically acceptable values, led to a distribution different from the one in the “fitting” voxel. 

This means that the parameters cannot be represented as a function of the initial guesses because no 

combination of values improves the estimation and therefore the problem must lie within the data. 

When an optimization solver completes its task, it sets an exitflag, whose integer value encodes the 

reason the solver has stopped. While successful outcomes set a positive exitflag, unsuccessful outcomes 

set a negative. When this value is equal to zero, it means that the fitting has reached its computational 

limit. Accordingly, the exitflags of each iteration for each voxel are shown in the Table 4.5. It is note-

worthy that there were no successful iterations within the “unfitting” voxel.  

 

Exitflags -2 0 1 

“Fitting” voxel 
 

Number of     

iterations 

1294 879 1577 

   “Unfitting” voxel 
 

1803 1947 0 

              Table 4.5: Number of iterations with each exitflag value for each voxel 
 

Despite having several diffusion encoding directions that allow for the overestimation of the model, 

there might be an additional bias in data provided that different b-values were used in acquisition with 

different sampling directions each. Whereas a 14 T magnetic field might improve the signal amplitude, 

it also increases vibration in turn. The fast EPI acquisition contributes to a high image distortion as well 

and in general, rat data quality is not as accurate as desired.  



 

49 

 

Moreover, the FOV was narrow because of the rat head size, which decreased the SNR. For instance, 

SNR in the “fitting” voxel is roughly 16 whereas in the “unfitting” voxel is 9. This might explain the 

reason that more than half of the voxels of the ROIs are not accounted for in the analysis. Since changing 

the initial values was shown to have little impact in the parameters’ values in the “unfitting” voxel, 

nothing can be done within this project regarding the high exclusion of values in model estimation unless 

different image resolution is pursued. Thus, any strategy was applied to the existing pipeline and this 

issue can only be addressed by changing data acquisition parameters.     

 

4.2. Statistical analysis of diffusion metrics using the optimized pipeline 

Herein, the results of the statistical tests described in the Section 3.5 are shown. The tests were com-

puted on diffusion metrics extracted after implementing the proposed optimization methodologies de-

fined in the Section 3.4 and tested in the Section 4.1. The strategies confirmed to show satisfactory 

results in terms of efficiency of computation, data quality and reliability of metrics were included.  

 

4.2.1. Tensor-derived metrics results 

The most relevant significant differences in the mean values of the metrics derived from the DTI and 

DKI tensors are shown in the Figure 4.9. Other differences were significant, but the metrics represented 

in these boxplots were considered to capture the fundamental significant differences in these metrics. 

All the metrics boxplots and significant p-values are shown in the Appendix A.  

 

 
Figure 4.9: Boxplots of DTI and DKI derived metrics. Significant differences between study groups at each time point are 

shown in red and within groups over time in green. *: p<0.05, **: p<0.01 and ***: p<0.001. 



 

50 

 

It is noticeable that there were more significant differences between groups at each time point than 

over time. Nevertheless, while at 2 weeks and 13 weeks after injection, there were differences between 

groups, at 6 weeks there were no differences between groups at all.  

The differences between groups at 2 weeks after injection were only showed in the fimbria and for-

nix. Interestingly, there were only significant differences in the fimbria at 2 weeks in the radial direction, 

whereas in the fornix significant differences were found in the axial direction. In the fimbria, the STZ 

group had higher RD at 2 and 13 weeks than the CTL group, and in the fornix the STZ group had lower 

AD at 2 weeks than the CTL group. At 13 weeks after injection, in addition to the fimbria and the fornix, 

the corpus callosum and the cingulum showed significant differences as well. In the STZ group, FA was 

significantly lower in these ROIs than in the CTL group. Across the whole brain, there were significant 

differences between groups in the MK at 13 weeks. STZ rats showed a significantly lower MK than the 

CTL rats. Moreover, MK metrics were significantly lower over time in the STZ group between 2 weeks 

and 13 weeks after injection in the cingulum and the fimbria.  

 

4.2.2. WMTI-Watson model metrics results 

The most significant differences in the mean values of the metrics derived from the estimation of the 

WMTI-Watson biophysical model are shown in the Figure 4.10 and Figure 4.11. Other differences were 

significant, but the metrics shown in these boxplots were considered to capture the fundamental differ-

ences in these metrics. All the metrics boxplots and significant p-values are shown in the Appendix A.  

 

 
Figure 4.10: Boxplots of WMTI-Watson model parameters. Significant differences between study groups at each time point 

are shown in red and within groups over time in green. *: p<0.05, **: p<0.01 and ***: p<0.001. 
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Figure 4.11: Boxplots of WMTI-Watson model parameters. Significant differences between study groups at each time 

point are shown in red and within groups over time in green. *: p<0.05. 

 

There were less significant differences in the model derived parameters, which might be due to the 

high amount of voxels being excluded from analysis by the filter in the Equation 5.2. as assessed in the 

Section 4.1.5. As in the previous metrics, there were more significant differences between groups than 

over time and no significant differences in metrics were reported at 6 weeks. At 2 weeks, the STZ group 

had lower 𝐷𝑎 than the CTL group in the corpus callosum and in the fimbria.  

At 13 weeks, 𝐷𝑎 in the STZ group was also lower than the CTL group in the corpus callosum, but 

not at 6 weeks after injection. In contrast, there were only changes in 𝑓 at 13 weeks across all the ROIs 

except for the fornix. 𝑓 was lower in the STZ group than in the CTL group. In addition, between 2 weeks 

and 13 weeks there was a significant decrease in 𝑓 in the STZ group. Finally, 𝐷𝑒,║ was significantly 

lower in the STZ group than in the CTL group in the fimbria at 2 weeks after injection, and between 6 

weeks and 13 weeks it decreased significantly in the corpus callosum.   

 

4.3. Additional diffusion analysis strategies 

Herein are shown the results from the new approaches to analyse diffusion data presented in the 

Section 3.6. These were complementary strategies to the information obtained in the previous section 

and were not subjected to the conventional statistical analysis. Rather than improving the processing 

pipeline, it provides the study with additional information about the microstructure that is expected to 

complement the spatio-temporal pattern found in the white matter diffusion metrics. In case these results 

supported the analysis, these methodologies could be improved in the domain of new projects. 
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4.3.1.  Gray matter analysis for correlation with white matter metrics 

According to the preliminary results, MK decreases significantly over time in the STZ group and it 

is often significantly higher in the CTL group than in the STZ group. This was an expected tendency 

because MK quantifies the complexity of the structure, i.e. a higher MK corresponds to a more devel-

oped tract microstructure. This in turn corresponds to a lower MD. As to evaluate how gray and white 

matter are spatially and temporally affected in terms of microstructure, scatter plots of the MK in the 

white matter vs MD in the gray matter were computed and they are shown in the Figure 4.12. Only three 

of the six relations were found to be relevant.  

 

 
Figure 4.12: Scatter plots of the relationship between degeneration in the white matter and gray matter. This analysis was 

carried out across groups (upper row) and over time (lower row) between regions known to be relevant to AD and anatomi-

cally connected. CG: cingulum, CC: corpus callosum. 

 

Regarding results across groups, it is noticed that higher MK in the white matter corresponds to lower 

MD in the gray matter in the CTL group in the first two relationships. Generally, the CTL group has a 

higher MK and therefore a lower MD, while the STZ group has a lower MK and a higher MD. However, 

a few datasets do not follow this tendency as they belong to different time points after injection. At 2 

weeks, toxicity has not immediately affected all rats and at 6 weeks, there is recovery in STZ rats which 

might explain why some of the datasets have such a high MK or such a low MD. In addition, a higher 

MK can also represent inflammation as was reported in the treated group in previous studies.  

Over time, the relationship between the cingulum and the RSC is representative of the expected re-

sults. At 2 weeks after injection, the cingulum shows a high MK and RSC a low MD, while at 6 weeks 

the cingulum shows a high MK and RSC shows an even lower MD. This refers to the potential recover 

period reported in the literature. At 13 weeks after injection, lower MK of the cingulum corresponds to 

higher MD of the RSC, which represent STZ datasets. Interestingly, the dataset with lower MD is a CTL 

rat at 13 weeks, meaning a situation of full development. 
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In the fornix vs hippocampus, the relationship is not as clear at 13 weeks, but in general results are 

similar and consistent with the results shown in previous sections and with the view that the hippocam-

pus is one of the firstly affected regions in AD. In the corpus callosum versus PPC, at 2 weeks the 

relationship is nothing as expected, with CTL and STZ rats having high MK and high MD. This might 

be meaningful regarding the time and speed at which each tract is affected. In fact, the corpus callosum 

only showed differences in DTI and DKI metrics later in the timeline.  

The spatial pattern of these results is consistent with the interpretation of the preliminary results of 

diffusion metrics. With such a huge amount of data available, the information about the gray matter is 

highly promising. Statistical tests could be computed to reach correlations between regions in space and 

time, providing a new understanding of the progression of AD-like features in the icv-STZ model. A 

model of the microstructure that could extend to the gray matter would be useful in the interpretation of 

changes that were here shown to be a two-edged knife.    

 

4.3.2. Tractography for quality assessment of metrics 

In this context, tractography was performed in order to isolate the 3D tracts of interest and analyse 

the spatio-temporal pattern of AFD in each tract. After computing FODs and performing FOD registra-

tion to the created template, tracks were generated and edited. The automatic generation of tracts was 

complemented with manual editing and the resultant tracts of interest are shown in the Figure 4.13. 

 

 

Figure 4.13: Isolation of tracks of interest after track generation using ROI-editing techniques and manual correction. SSC: 

somatosensory cortex, CC: corpus callosum. 

 

Because of the wide structure of the corpus callosum, three different views were shown to facilitate 

its interpretation. In A), there are seeds in the corpus callosum and external capsule, which is an exten-

sion of this white matter tract, at both hemispheres. Here, it is clear the connection between the basal 

ganglia and the somatosensorial cortex through the corpus callosum and the external capsule. In B) is 

shown another known connection between the motor cortex and the corpus callosum, more posterior 

than A). C) is the complete corpus callosum tract used for metrics estimation. It connects both sides of 
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the brain with multiple ramifications into the cortex. D), E) and F) are the other tracts of interest used in 

the analysis. The cingulum in D) viewed from top consists in two bundles of fibers that traverse the 

brain from front to back, right above the corpus callosum. E) is the fornix from a lateral perspective, 

which forms a C-shaped structure and is connected to the fimbria in F) in the midline of the brain. SSC: 

Somatosensory cortex.  

AFD was estimated in the tracks of interest and averaged for each dataset. Plots of the averaged AFD 

normalized by the average streamlines’ length are shown in the Figure 4.14. 

 

 
Figure 4.14: Plots of the normalized AFD in each tract of interest at each time point. CC: corpus callosum, CG: cingulum. 

 

The cingulum is the track with AFD closer to expected because the AFD in the STZ group is lower 

than in the CTL group at all time points. However, the AFD in the CTL group is decreasing with time. 

The fornix might also be representative because the AFD in the CTL group increases abruptly, but the 

corpus callosum and the fimbria show random tendencies. AFD datasets were clearly not consistent with 

each other nor with the diffusion metrics. This may be due to problems with the processing while creat-

ing the FOD template or during registration of FOD datasets. It was extremely hard to have an automatic 

procedure to isolate tracts and, in some cases, manual editing was necessary. Especially because of 

partial volume effect, the corpus callosum and the fimbria were very different from one dataset to an-

other, as mirrored in the AFD plots.  

Even though none of these metrics were conclusive and track editing has been time-consuming, the 

isolation of tracks was successful considering that this project started with no previous knowledge and 

a completely new processing pipeline had to be learnt. In the future, tracks should be obtained exclu-

sively manually. The metrics extracted from them will clarify whether the processing methodology is 

being correctly followed or if adjustments to the FOD estimation or track generation should be consid-

ered. Naturally, a larger sample is required to provide statistical validation, however this is counter-

productive since a larger sample asks for a more automatized procedure. A lot of work needs to be done 

in this regard and, even though the results of the pipeline were not quite as planned, this assessment can 

be helpful to further develop the methodology. Tractography would be an excellent tool to avoid partial 

volume effect in the estimation of tensors and model metrics if instead of using labels extracted from 

atlases, tracks were used as 3D binary masks.   
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5. Discussion 

 

5.1. White matter microstructural patterns 

In this project, white matter microstructure was assessed longitudinally in icv-STZ rats. Voxel-based 

analysis was computed by calculating DTI and DKI tensors whose extracted metrics are sensitive to the 

underlying changes of the tracts of interest. In addition, parameters were derived from the WMTI-Wat-

son biophysical model of diffusion. The spatio-temporal pattern of these metrics in each ROI was com-

pared between STZ and CTL groups by statistical analysis, where most of the significant differences 

were found between groups at given time points, rather than over time. Regardless, it was possible to 

infer how degeneration of white matter might be evolving after icv-STZ injection and the results were 

consistent with previous studies of this animal model.    

Tensors metrics showed significant differences between groups in the fimbria and fornix as early as 

2 weeks after injection. Whereas differences in the radial direction suggest inflammation or demye-

lination in the fimbria, changes in the axial direction suggest intra-axonal injury of the fornix. From the 

model, STZ rats showed lower intra-axonal diffusivity at 2 weeks in the fimbria and corpus callosum, 

which is indicative of axonal damage. In addition, lower perpendicular extra-axonal diffusivity in the 

STZ group at 2 weeks suggests lower extra-cellular crowding in the fimbria. This result was counter-

intuitive because of the potential inflammation of this tract suggested by tensor metrics. 

At 6 weeks, there were no reports of group differences in any of the metrics, which corresponds to a 

well-established trend in the icv-STZ model. The presence of a recover period normally follows early 

acute damage and precedes definite chronic axonal loss. Accordingly, at 13 weeks tensors metrics 

showed intense significant differences in all ROIs, mainly manifested by lower anisotropy and com-

plexity in STZ rats. This suggests fiber dispersion and degeneration, respectively, in all tracts after the 

recover period. Importantly, the STZ group showed lower complexity over time in all ROIs between 2 

weeks after injection and 13 weeks. Model parameters confirmed axonal loss with lower water volume 

fraction at 13 weeks. Thus, the corpus callosum and the cingulum have shown to be affected later in the 

disease, while the fimbria and fornix were primarily affected, as reported in other studies [8], [9].  

This project confirms that while axonal injury was reported by DTI and DKI sensitive measures, the 

modelling of white matter provided specificity to the underlying changes, allowing for more precise 

interpretations of changes within the icv-STZ brain microstructure. Axonal injury was specifically trans-

lated into intra-axonal damage at 2 weeks after injection and into axonal loss at 13 weeks after injection, 

which is consistent with the non-monotonic changes reported in the icv-STZ model [10]. The Figure 

5.1 shows the final timeline of the patterns found. 

 

 
Figure 5.1: Interpretation of spatio-temporal pattern of diffusion metrics obtained by DTI, DKI and the biophysical model. 
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Unfortunately, the “21 weeks” time point was not statistically powerful by the time of analysis and 

a tendency of future results was not clear. New datasets have been acquired and will undergo image 

processing and analysis soon. Diffusion metrics between groups are expected to be highly different at 

this time point as degeneration has been confirmed at 13 weeks after injection. However, longitudinal 

changes may not arise because both groups start being affected by ageing which might confound micro-

structural metrics.  

 

5.2. Consistency with previous studies 

In parallel with this project, analysis of functional connectivity of the rat brain was computed as well. 

At 2 weeks after injection, significantly lower brain connectivity in the STZ group was found between 

the hippocampus and the ACC [125]. It is noteworthy that the fimbria and fornix are connected to the 

hippocampus and also showed differences at this time point in the microstructural assessment. In addi-

tion, gray matter analysis showed degeneration of the hippocampus early in the disease. Accordingly, a 

previous study has reported neuronal loss at the septum at 4 weeks, which has cholinergic projections 

to the hippocampus [8]. NFT changes were found in the hippocampal area at 12 weeks, followed by the 

presence of diffuse Aβ plaques at 24 weeks in a recent study [9].  

Regarding the potential recovery at 6 weeks, a study of the cognitive performance of the icv-STZ 

model has shown early sudden deficits at 4 weeks after injection, followed by a compensatory process 

up to 12 weeks and a slow progressive chronic decline from 12 weeks on. In the functional connectivity 

analysis, there was also no group differences affecting the default mode network at this time point [125]. 

This was considered a critical point in which pathological processes could not be compensated any 

longer [9] and was confirmed by this study of the white matter microstructure.  

Effectively, at 13 weeks after injection, the PPC showed lower connectivity with the visual cortex in 

the STZ rats than CTL rats [125]. PPC is anatomically connected to the corpus callosum which showed 

lower diffusivity at this time point as well. Moreover, the functional connectivity between the ACC and 

the RSC, regions linked to the cingulum, showed to vary differently over time. STZ rats showed de-

creased ACC-RSC connectivity between 2 and 13 weeks after injection, while this connectivity in-

creased in CTL rats. Furthermore, other studies have reported thinning of the corpus callosum and cin-

gulum in later time points [8], [9]. Gray matter analysis did not reveal a relationship between degenera-

tion of the corpus callosum and atrophy of the PPC at any of the time points. Nevertheless, STZ and 

CTL groups showed different patterns in this relationship which might indicate that the PPC was atro-

phied before the corpus callosum was degenerated at 13 weeks. Contrarily, a relationship between cin-

gulum degeneration and RSC atrophy was pronounced, even though the STZ rats have not shown sig-

nificant microstructural differences in the cingulum at 2 weeks.  

There are several relations between the project here reported and other studies that refer to different 

biomarkers. Not only this fact supports the credibility of this experimental animal model, but it also 

marks the importance of studying the individual impact of each hallmark on the progression of neuro-

degeneration.  
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5.3. Optimization strategies 

Despite being useful in the interpretation of microstructural changes, as aforementioned, the WMTI-

Watson model might not have reached its full potential because of insufficient data quality. Estimation 

performance might have been compromised by the presence of imaging artefacts incapable of being 

removed by the processing pipeline. These artefacts affected the fitting of the model’s equations in such 

a way that nearly 60% of the white matter voxels had unphysical values and were excluded from statis-

tical analysis to avoid influencing the results. This means that there might be other significant differences 

within model parameters or the existing differences might be even more powerful.  

Along with the WMTI-Watson model unfitting, statistical results were partially affected by ventricle 

enlargement, typical of neurodegenerative diseases, which was one of the principal issues within the 

processing pipeline. Simultaneously, the strategy proposed for overcoming the spatial misalignment 

caused by the oversized ventricles was the most successful of the pipeline alterations. The fimbria was 

dramatically affected by partial volume effect with CSF, with 33% of the fimbria label voxels being 

removed from diffusion metrics analysis because they did not pass the white matter filter imposed by 

diffusion metrics intervals. A different registration approach effectively reduced this value to 18% in 

the STZ group. The corpus callosum benefited as well from this methodology, as the white matter filter 

reduced the voxels removed from 5% to 2% in the STZ group. Non-linear transformation of CCFA data 

had a direct impact in the statistical power of longitudinal changes between and within groups by provid-

ing lower p-values by at least one order of magnitude in most of existing differences in metrics. Thus, 

the improvements in the misalignment issues allowed for more reliable metrics. 

Another technique that might be able to minimize partial volume effect is tractography. Within this 

project there was not enough time to use the reconstructed tracts to recalculate diffusion metrics and 

compare with the ROI-based analysis. Nevertheless, the tracts representing the ROIs of this study were 

semi-automatically isolated and validated by the anatomical connections encountered. Even though 

AFD measures were not consistent with the main results, the pipeline needs further development and a 

larger sample is required. Once the pipeline is approved, tractography might bring along new opportu-

nities for analysis of the microstructure and connectivity.  

Apart from the exploratory analysis of the model that did not allow for its estimation optimization, 

all other strategies proposed were successful and therefore implemented in the pipeline to obtain the 

final results. Namely, correspondence between atlas labels and the underlying structure was improved, 

time-consuming steps of the pipeline were semi-automated ensuring the same performance as manual 

processing and noise induced by MRI inhomogeneities was reduced.  
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6. Conclusion 

 

The icv-STZ model was once again validated with the use of MRI derived biomarkers as it has shown 

brain alterations consistent with the ones previously reported. It constitutes an excellent model of spo-

radic AD because it reflects alterations commonly found in the human brain. The time and speed at 

which tracts are affected was different and at later time points more tracts were affected. While rats have 

rarely been assessed with DWI because of the lower image resolution and presence of noisy artefacts, 

this pipeline was able to extract measures longitudinally and spatially distributed as predicted. The 

model parameters combined with tensors metrics offer a unique set of tools for a fairly specific inter-

pretation of changes in diffusion data.  

With a relatively large sample, this project takes part in a soon-to-be interdisciplinary study of the 

rat brain that will allow to establish the pattern of white matter degeneration, reduced functional con-

nectivity, amyloid deposition, brain atrophy and cognitive impairment in function of time after injection 

and brain location. Apart from DWI assessment, rs-fMRI data have been acquired and processed as 

aforementioned, FDG-PET data have already been acquired and histological staining are currently being 

processed. Cognitive performance assessment will be done as well to correlate all the information about 

any type of alterations occurring in rat brain. This will hopefully lead to significant progress in the 

understanding of the very first pathological changes within the brain and their propagation over time 

until clinical evidence arises, in rats developing AD-like features after brain glucose metabolism disrup-

tion. Once the early mechanisms are well characterized and investigations clarify the primary cause of 

the cascade, detection will be possible before symptoms are evident, opening a window for early treat-

ment and AD incidence reduction.  

Overall, the engineering approach was considered helpful for this study as most of pipeline strategies 

adjustments were valuable for estimating more reliable diffusion metrics. Two projects here initiated 

might also be further developed for correlation with all data in current acquisition and/or processing 

within the study. It is recommended to update the processing pipeline occasionally with the most state-

of-art techniques to keep up with other studies and provide trustworthy information for the knowledge 

of AD and neurodegenerative diseases.   

This traineeship met the requirements for the project here presented, as the main task of obtaining 

the longitudinal pattern of white matter microstructure in the icv-STZ rat was completed. Further ad-

vances to the processing pipeline were accomplished and the project outcomes were presented to the 

public at several occasions, as shown in the Appendix B in the Section 8.2. 
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8. Appendices 

 

8.1. Appendix A 

After processing all data using the optimized pipeline, metrics were averaged over ROIs and dis-

played in boxplots over time and divided into study groups (blue: STZ, black: CTL). The patterns of the 

metrics were assessed by two statistical tests that compared means between study groups at each time 

point and over time within each study group. p-values resultant from these statistical tests were used to 

quantify the significance of differences in metrics. In the Section 4.2 the boxplots with the fundamental 

differences were presented in the Figure 4.9, Figure 4.10 and Figure 4.11. Here, all boxplots of DTI 

(Figure 8.1), DKI (Figure 8.2) and model derived metrics (Figure 8.3 and Figure 8.4) are shown, as 

well as the p-values from the t-tests (Table 8.1) and ANOVAs (Table 8.2).  

For instance, the first row of the Table 8.1 means that at 2 weeks after injection there is a very sig-

nificant difference in the mean FA in the fimbria between the STZ and the CTL groups (p<0.01). In the 

respective boxplot in the Figure 8.1, the mean FA in the STZ group is considerably lower than in the 

CTL group. In the Table 8.2 the first row of the table means that within the STZ group, the mean MD 

in the cingulum is significantly different between the “2 weeks” and the “13 weeks” time points 

(p<0.05). In the respective boxplot in the Figure 8.1, the mean MD in the STZ group is considerably 

lower over time. The same is inferred to other significant differences.  
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CTL STZ 

 
Figure 8.1: Boxplots of the metrics derived from DTI (columns) averaged by study groups and time points in each ROI (row). 

Significant differences between and within study groups are shown in the Table 8.1 and Table 8.2. Fundamental differences 

are shown in the Section 4.2.1.  
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CTL STZ 

 
Figure 8.2: Boxplots of the metrics derived from DKI (columns) averaged by study groups and time points in each ROI (row). 

Significant differences between and within study groups are shown in the Table 8.1 and Table 8.2. Fundamental differences 

are shown in the Section 4.2.1.  
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Differences between STZ and CTL groups at each time 

point in tensors metrics 

Time point ROI Tensors metrics p-value 

2w 
Fimbria 

FA 0.0051 

RD 0.0023 

Fornix AD 0.0003 

13w 

CC 

FA 0.0005 

AD 0.0096 

MK 0.0005 

AK 0.0028 

RK 0.0024 

CG 

AD 0.0017 

MK 2.5540e-05 

RK 0.0002 

Fimbria 

FA 0.0008 

MD 0.0058 

RD 0.0006 

MK 0.0013 

AK 0.0224 

RK 0.0048 

Fornix 
MK 0.0489 

AK 0.0182 

Table 8.1: Significant differences (p<0.05) between study groups in metrics derived from DTI and DKI in each ROI and at 

each time point.  

 

Differences within each group over time in tensors metrics 

Study group ROI Tensors metrics p-value 

STZ 

CG 

MD 0.0491 

MK 0.0087 

RK 0.0273 

Fimbria MK 0.0086 

Fornix 

FA 0.0211 

AD 0.0115 

AK 0.0385 

CTL 

CC 
MK 0.0440 

RK 0.0278 

CG 
MK 0.0320 

RK 0.0402 

Table 8.2: Significant differences (p<0.05) over time in metrics derived from DTI and DKI in each ROI and within each 

study group.  
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CTL STZ 

 
Figure 8.3: Boxplots of two metrics derived from the model (columns) averaged by study groups and time points in each 

ROI (row). Significant differences between and within study groups are shown in the Table 8.3 and Table 8.4. Funda-

mental differences are shown in the Section 4.2.2. 
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CTL STZ 

 

Figure 8.4: Boxplots of remaining three metrics derived from the model (columns) averaged by study groups and time points 

in each ROI (row). Significant differences between and within study groups are shown in the Table 8.3 and Table 8.4. Funda-

mental differences are shown in the Section 4.2.2. 
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Differences between STZ and CTL groups at each time 

point in model metrics 

Time point ROI Model metrics p-value 

  2w   

CC   𝑫𝒂   0.0224   

  Fimbria   

𝑫𝒂 
  0.0043   

𝑫𝒆,⊥ 
  0.0387   

  13w   

  CC   

f   0.0109   

𝑫𝒂   0.0270   

𝑫𝒆,║ 
  0.0349   

  CG  f 0.0004   

  Fimbria   

f   0.0103   

𝑫𝒆,║ 
  0.0319   

Table 8.3: Significant differences (p<0.05) between study groups in metrics derived from the model in each ROI and at each 

time point.  

 

Differences within each group over time in model metrics 

Study group ROI Model metrics p-value 

STZ 

CC 𝑫𝒆,⊥ 0.0273 

CG f 0.0233 

Fornix 𝑫𝒆,║ 0.0252 

CTL Fimbria 𝑫𝒂 0.0383 

Table 8.4: Significant differences (p<0.05) over time in metrics derived from the model in each ROI and within each study 

group.  
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8.2. Appendix B 

In the course of this project, the work developed was published and presented at multiple occasions. 

A chronological list of conference abstracts is here described with brief synopsis of each.   

 

[1] 27th Annual Meeting and Exhibition – ISMRM, 2019, Montreal, Canada 

 

Title: Longitudinal characterization of white matter degeneration in a rat model of brain glucose 

hymetabolism and sporadic Alzheimer’s disease 

Date of submission: November 2018 

Authors: Catarina T. Pereira1, Ting Yin2, Yujian Diao2, Analina R. Silva2, Ileana O. Jelescu2 
1Faculdade de Ciências da Universidade de Lisboa, Portugal; 2Centre d’Imagerie Biomédicale, École 

Polytechnique Fédérale de Lausanne, Switzerland 

Presentation: Accepted for a digital-poster presentation and presented by Ting Yin in May 2019 

 

Synopsis: Impaired brain glucose consumption is a possible trigger of Alzheimer’s disease (AD). 

Animal models can help characterize each contributor to the cascade independently. Here we use the 

intracerebroventricular-streptozotocin rat model of AD in a first-time longitudinal study of white matter 

degeneration using diffusion MRI. Diffusion and kurtosis tensor metrics reveal alterations in the cingu-

lum, fimbria and fornix. The two-compartment WMTI-Watson biophysical model further characterizes 

the cingulum damage as axonal injury and loss - consistent with previous histopathological studies. 

White matter degeneration induced by brain glucose metabolism disruption can bring further insight 

into the role of this mechanism in AD. 

 

[2] 27th Annual Meeting and Exhibition – ISMRM, 2019, Montreal, Canada 

 

Date of submission: November 2018 

Title: Spatio-temporal alterations in functional connectivity in a rat model of brain glucose 

metabolism disruption and sporadic Alzheimer’s disease 

Authors: Yujian Diao1, Catarina T. Pereira2, Ting Yin1, Rolf Gruetter1, Analina R. Silva1, Ileana 

O. Jelescu1 
1Centre d’Imagerie Biomédicale, École Polytechnique Fédérale de Lausanne, Switzerland; 2Facul-

dade de Ciências da Universidade de Lisboa, Portugal 

Presentation: Accepted for a digital-poster presentation and presented by Yujian Diao in May 2019 

 

Synopsis: Impaired brain glucose consumption is a possible trigger of Alzheimer’s disease (AD). 

Animal models can help characterize each contributor to the cascade independently. Here we perform a 

first-time longitudinal study of brain connectivity in the intracerebroventricular-streptozotocin rat model 

of AD. We report altered brain circuitry as early as two weeks in regions notoriously affected by AD 

(cingulate cortices, posterior parietal cortex and hippocampus), and widespread gradual breakdown of 

connectivity with time. The changes in brain connectivity induced by glucose metabolism disruption 

can bring further insight into the role of this mechanism in AD. 
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[3] 25th OHBM Annual Meeting, 2019, Rome, Italy 

 

Date of submission: December 2018 

Title: Longitudinal changes in microstructure and functional connectivity in a rat model of Alzheimer 

Authors: Catarina T. Pereira1, Yujian Diao2, Ting Yin2, Analina R. Silva2, Rolf Gruetter2, Ileana 

O. Jelescu2 
1Faculdade de Ciências da Universidade de Lisboa, Portugal; 2Centre d’Imagerie Biomédicale, École 

Polytechnique Fédérale de Lausanne, Switzerland 

Presentation: Accepted for a paper-poster presentation and presented by myself in June 2019 

 

Synopsis: Impaired brain glucose consumption is a possible trigger of Alzheimer’s disease (AD). 

Animal models can help characterize each contributor to the cascade independently. Here we use the 

intracerebroventricular-streptozotocin rat model of AD in a first-time longitudinal study of white matter 

microstructure and brain connectivity using diffusion MRI and resting-state functional MRI, respec-

tively. Diffusion and kurtosis tensor metrics reveal alterations in the cingulum, fimbria and fornix. The 

two-compartment WMTI-Watson biophysical model further characterizes the cingulum damage as ax-

onal injury and loss - consistent with previous histopathological studies. We further report altered brain 

circuitry as early as two weeks in regions notoriously affected by AD (cingulate cortices, posterior 

parietal cortex and hippocampus), and widespread gradual breakdown of connectivity with time. These 

biomarkers can bring additional insight into the role of these mechanisms in AD. 


