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ABSTRACT
A system of boundary-domain integral equations is derived from the bidimensional
Dirichlet problem for the diffusion equation with variable coefficient using a novel
parametrix different from the one widely used in the literature by the authors
Chkadua, Mikhailov and Natroshvili. Mapping properties of the surface and volume
parametrix-based potential-type operators are analysed. Invertibility of the single
layer potential is also studied in detail in appropriate Sobolev spaces. We show
that the system of boundary-domain integral equations derived is equivalent to the
Dirichlet problem prescribed and we prove the existence and uniqueness of solution
in suitable Sobolev spaces of the system obtained by using arguments of compact-
ness and Fredholm Alternative theory. A discussion of the possible applications of
this new parametrix is included.

KEYWORDS
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1. Introduction

Boundary Domain Integral Equation Systems (BDIES) are often derived from a wide
class of boundary value problems with variable coefficient in domains with smooth or
Lipschitz boundary: cf. [7] for a scalar mixed elliptic Boundary Value Problem (BVP)
in bounded domains with smooth boundary; cf. [9] for the corresponding problem in
unbounded domains with smooth boundary; cf. [23] for the mixed problem in Lipschitz
domains. Nevertheless, most of these results only concern three dimensional problems
and thus the theoretical work concerning the derivation of BDIES for two dimensional
boundary value problems is still being developed.

Let us note that Boundary Domain Integral Equations (BDIEs) represent a gen-
eralisation of the Boundary Integral Equations (BIEs) which are popular due to the
reduction of dimension from the domain in which the BVP is defined to its bound-
ary. However, this reduction in dimension only applies to homogeneous BVPs with
constant coefficients. As soon as we include variable coefficients or not homogeneous
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problems, the integral equations are defined not only in the boundary but also in the
domain of the BVP. Still, one can transform domain integrals into boundary integrals
in order to preserve the reduction of dimension using the methods shown in [1]. This
method is also able to remove various singularities appearing in the domain integrals.

Also, reformulating the original BVP in the Boundary Domain Integral Equation
form can be beneficial, for instance, in inverse problems with variable coefficients, see
[5].

In order to obtain BIEs, a fundamental solution is required. However, fundamental
solutions are not usually explicitly available for problems with variable coefficients and
therefore the concept of parametrix is introduced, see [7]. A parametrix (see formula
(8)) preserves a strong relationship with the corresponding fundamental solution of
the analogous BVP with constant coefficient. Using this relationship, it is possible to
derive further relations between the surface and volume potential type operators of
the variable coefficient case with their counterparts from the constant coefficient case,
see, e.g. [7, Formulae (3.10)-(3.13)], [24, Formulae (4.6)-(4.11)].

A parametrix is not unique. For example, the family of weakly singular parametrices
given by

P y(x, y) = P (x, y; a(y)) =
−1

4πa(y)|x− y|
, x, y ∈ R3,

for the operator

Bu(x) :=

3∑
i=1

∂

∂xi

(
a(x)

∂u(x)

∂xi

)
, x ∈ R3,

has been extensively studied in [7,9,20].
Note that the superscript in P y(x, y) means that P y(x, y) is a function of the variable

coefficient depending on y. In this case, the operator B differentiates with respect to
x and the parametrix includes the variable coefficient with respect to y.

On the other hand, the parametrix

P x(x, y) = P (x, y; a(x)) =
−1

4πa(x)|x− y|
, x, y ∈ R3, (1)

was introduced for the operator B in [25,26] to derive BDIEs for the mixed problem
for the operator B on a bounded and connected domain with smooth boundary. These
results were extended to Lipschitz domains in [23]. Nevertheless, in this paper, we are
rather interested in investigating an analogous parametrix for the two dimensional
case.

There are some preliminary results, see [2,3,13], for the analogous operator of B in
two dimensions, which in this paper we denote by A

Au(x) :=

2∑
i=1

∂

∂xi

(
a(x)

∂u(x)

∂xi

)
. (2)

In these works, they consider the Dirichlet, Neumann and mixed Dirichlet-Neumann
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problems for the operator A and they use the parametrix P y(x, y) given by

P y(x, y) = P (x, y; a(y)) :=
1

2πa(y)
log|x− y|, x, y ∈ R2, (3)

to derive systems of BDIEs.
In [4], the parametrix given by (3) was employed for deriving a system of boundary-

domain integral equations equivalent to the Dirichlet problem for the operator A. Fur-
thermore, the authors in [4] highlight that there is not much research in the literature
related to numerical solution of boundary-domain integral equations in 2D obtained
by the method presented in this paper. They show that it is possible to obtain linear
convergence with respect to the number of quadrature curves, and in some cases, ex-
ponential convergence. Moreover, there is analogous research in 3D which shows the
successful implementation of fast algorithms to obtain the solution of boundary do-
main integral equations, see [15,28,29]. Therefore, we believe this method brings new
techniques to solve inverse boundary value problems with variable coefficients that can
be computationally implemented in an efficient fashion.

In this paper, we explore the family of parametrices for the operator A of the form

P x(x, y) = P (x, y; a(x)) =
1

2πa(x)
log|x− y|

which can be useful at the time of studying BDIES derived from a BVP with a system
of PDEs with variable coefficient as illustrated in [25, Section 1]. In particular, the
work presented in this paper, will provide a method to obtain an equivalent system
of BDIEs even when the single layer potential is not invertible. Although, there is
some preliminary work related to BDIEs in two dimensional domains, see [13], this
only relates to the family of parametrices P y(x, y) and therefore, the corresponding
analysis for the family P x(x, y) in two dimensions is a problem that remains open,
and thus is the main purpose of this paper. This study aims to continue the work in
[13,23] and will motivate the study of BDIEs for the Stokes system in 2D.

In order to study the possible numerical advantages of the new family of paramet-
rices of the form P x(x, y; a(x)) with respect to the parametrices already studied, it is
necessary to prove the unique-solvability of an analogous BDIES derived with this new
family of parametrices which has not yet been done for the bidimensional Dirichlet
problem for the diffusion equation with variable coefficient.

The theoretical study of parametrices which include the variable coefficient depend-
ing on different variables is helpful at the time of deriving BDIES for boundary value
problems for systems of PDEs. For example, the parametrix for the Stokes system in
three dimensions involves the variable viscosity coefficient with respect to x and also
with respect to y, see [24].

The main differences between the different families of parametrices are the relations
between the parametrix-based potentials with their counterparts for the constant coef-
ficient case. Notwithstanding, the same mapping properties in Sobolev-Bessel potential
spaces still hold allowing us to prove the equivalence between the BDIES and the BVP.

An analysis of the uniqueness of the BDIES is performed by studying the Fredholm
properties of the matrix operator which defines the system.
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2. Preliminaries and the BVP

Let Ω = Ω+ be a bounded simply connected domain, Ω− := R2 r Ω̄+ the complemen-
tary (unbounded) subset of Ω. The boundary S := ∂Ω is simply connected, closed and
infinitely differentiable, S ∈ C∞.

Let us introduce the following partial differential equation with variable smooth
positive coefficient a(x) ∈ C2(Ω):

Au(x) :=

2∑
i=1

∂

∂xi

(
a(x)

∂u(x)

∂xi

)
= f(x), x ∈ Ω, (4)

where u(x) is an unknown function and f is a given function on Ω. It is easy to see
that if a ≡ 1 then, the operator A becomes ∆, the Laplace operator.

We will use the following function spaces in this paper (see e.g. [17,18] for more
details). Let D′(Ω) be the Schwartz distribution space; Hs(Ω) and Hs(S) with s ∈ R,
the Bessel potential spaces; the space Hs

K(R2) consisting of all the distributions of
Hs(R2) whose support is inside of a compact set K ⊂ R2; the spaces consisting of

distributions in Hs(K) for every compact K ⊂ Ω−, s ∈ R. We denote H̃s(Ω) the

subspace of Hs(R2), H̃s(Ω) = {g ∈ Hs(R2) : supp(g) ⊂ Ω}.
We will make use of the space, see e.g. [7,10],

H1,0(Ω;A) := {u ∈ H1(Ω) : Au ∈ L2(Ω)}

which is a Hilbert space with the norm defined by

‖ u ‖2H1,0(Ω;A):=‖ u ‖
2
H1(Ω) + ‖ Au ‖2L2(Ω).

For a scalar function w ∈ Hs(Ω±), s > 1/2, the trace operator γ±( · ) := γ±S ( · ),
acting on w is well defined and γ±w ∈ Hs− 1

2 (S) (see, e.g., [18,19]). For u ∈ Hs(Ω),
s > 3/2, we can define on S the conormal derivative operator, T±, in the classical
(trace) sense

T±x u :=

2∑
i=1

a(x)γ±
(
∂u

∂xi

)±
n±i (x),

where n+(x) is the exterior unit normal vector directed outwards the interior domain
Ω at a point x ∈ S. Similarly, n−(x) is the unit normal vector directed inwards the
interior domain Ω at a point x ∈ S.

Furthermore, we will use the notation T±x u or T±y u to emphasise the variable of
differentiation. When the variable of differentiation is obvious or is a dummy variable,
we will simply use the notation T±u.

Moreover, for any function u ∈ H1,0(Ω;A), the canonical conormal derivative T±u ∈
H−

1

2 (Ω), is well defined, cf. [10,18,19],

〈T±u,w〉S := ±
∫

Ω±
[(γ−1ω)Au+ E(u, γ−1w)]dx, w ∈ H

1

2 (S), (5)

where γ−1 : H
1

2 (S) −→ H1
K(R2) is a continuous right inverse to the trace operator
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whereas the function E is defined as

E(u, v)(x) :=

2∑
i=1

a(x)
∂u(x)

∂xi

∂v(x)

∂xi
,

and 〈 · , · 〉S represents the L2−based dual form on S.
We aim to derive boundary-domain integral equation systems for the following

Dirichlet boundary value problem. Given f ∈ L2(Ω) and ϕ0 ∈ H
1

2 (∂Ω), we seek a
function u ∈ H1(Ω) such that

Au = f, in Ω; (6a)

γ+u = ϕ0, on ∂Ω (6b)

where equation (6a) is understood in the weak sense, the Dirichlet condition (6b) is
understood in the trace sense.

By Lemma 3.4 of [10] (cf. also Theorem 3.9 in [19]), the first Green identity holds
for any u ∈ H1,0(Ω;A) and v ∈ H1(Ω),

〈T±u, γ+v〉S := ±
∫

Ω
[vAu+ E(u, v)]dx. (7)

The following assertion is well known and can be proved, e.g., using the Lax-Milgram
lemma as in [30, Chapter 4].

Theorem 2.1. The boundary value problem (6) has one and only one solution.

3. Parametrices and remainders

We define a parametrix (Levi function) P (x, y) for a differential operator Ax differen-
tiating with respect to x as a function on two variables that satisfies

AxP (x, y) = δ(x− y) +R(x, y). (8)

where δ(.) is a Dirac-delta distribution concentrated at 0, while R(x, y) is a remainder
possessing at most a weak (integrable) singularity at x = y.

For a given operator A, the parametrix is not unique. For example, the parametrix

P y(x, y) =
1

a(y)
P∆(x− y), x, y ∈ R2,

was employed in [7,21], for the operator A defined in (4), where

P∆(x− y) =
1

2π
log|x− y|

is the fundamental solution of the Laplace operator. The remainder corresponding to
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the parametrix P y is

Ry(x, y) =

2∑
i=1

1

a(y)

∂a(x)

∂xi

∂

∂xi
P∆(x− y) , x, y ∈ R2.

In this paper, for the same operator A defined in (4), we will use another parametrix,

P (x, y) := P x(x, y) =
1

a(x)
P∆(x− y), x, y ∈ R2, (9)

which leads to the corresponding remainder

R(x, y) = Rx(x, y) = −
2∑

i=1

∂

∂xi

(
1

a(x)

∂a(x)

∂xi
P∆(x, y)

)

= −
2∑

i=1

∂

∂xi

(
∂ ln a(x)

∂xi
P∆(x, y)

)
, x, y ∈ R2.

Note that the both remainders Rx and Ry are weakly singular, i.e.,

Rx(x, y), Ry(x, y) ∈ O(|x− y|−2).

This is due to the smoothness of the variable coefficient a.

4. Volume and surface potentials

The parametrix-based logarithmic and remainder potential operators are respectively
defined, similar to [7,25] in the 3D case for y ∈ R2, as

Pρ(y) :=

∫
Ω
P (x, y)ρ(x) dx

Rρ(y) :=

∫
Ω
R(x, y)ρ(x) dx.

The parametrix-based single layer and double layer surface potentials are defined
for y ∈ R2, y /∈ S, as

V ρ(y) := −
∫
S
P (x, y)ρ(x) dS(x),

Wρ(y) := −
∫
S
T+
x P (x, y)ρ(x) dS(x).

We also define the following pseudo-differential operators associated with direct
values of the single and double layer potentials and with their conormal derivatives,
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for y ∈ S,

Vρ(y) := −
∫
S
P (x, y)ρ(x) dS(x),

Wρ(y) := −
∫
S
TxP (x, y)ρ(x) dS(x),

W ′ρ(y) := −
∫
S
TyP (x, y)ρ(x) dS(x),

L±ρ(y) := T±y Wρ(y).

The operators P,R, V,W,V,W,W ′ and L can be expressed in terms of the volume
and surface potentials and operators associated with the Laplace operator, as follows

Pρ = P∆

(ρ
a

)
, (10)

Rρ = ∇ · [P∆(ρ∇ ln a)]− P∆(ρ∆ ln a), (11)

V ρ = V∆

(ρ
a

)
, (12)

Vρ = V∆

(ρ
a

)
, (13)

Wρ = W∆ρ− V∆

(
ρ
∂ ln a

∂n

)
, (14)

Wρ =W∆ρ− V∆

(
ρ
∂ ln a

∂n

)
, (15)

W ′ρ = aW ′∆
(ρ
a

)
, (16)

L±ρ = L̂ρ− aT±∆V∆

(
ρ
∂ ln a

∂n

)
, (17)

L̂ρ := aL∆ρ. (18)

The symbols with the subscript ∆ denote the analogous operator for the constant
coefficient case, a ≡ 1. Furthermore, by the Lyapunov-Tauber theorem (cf. [14,16] and
more references therein), L+

∆ρ = L−∆ρ = L∆ρ.
These relations are closely related with the parametrix. Clearly, if we change the

parametrix, these relationships will change. For example, if we use the parametrix
P y(x, y) instead of P x(x, y) in the single layer potential V , then with P y(x, y) a factor
of 1/a(y) will come outside of the operator, i.e. V y = 1/a(y)V∆(x, y). A list of all the
potential relations for the parametrix P y(x, y) can be found in [7, Equations 3.10-3.13].
Although, some of the relations may become more complicated with the parametrix
investigated in this paper, in particular with the relation (14), the authors still consider
necessary to analyse parametrices of the form P x(x, y) since some PDE systems, as
obtaining BDIEs for the Stokes system in three dimensions requires a rather more
complicated parametrix involving the two variable coefficients one with respect to x
and one with respect to y. This is discussed further in the introduction of [25] and
also in more detail in [24].

Using relations (10)-(18) it is now rather simple to obtain, similar to [7], the mapping
properties, jump relations and invertibility results for the parametrix-based surface and
volume potentials, provided in theorems/corollary 4.1-4.6, from the well-known prop-
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erties of their constant-coefficient counterparts (associated with the Laplace equation).

Theorem 4.1. Let s ∈ R. Then, the following operators are continuous,

P : H̃s(Ω) −→ Hs+2(Ω), s ∈ R, (19)

P : Hs(Ω) −→ Hs+2(Ω), s > −1

2
, (20)

R : H̃s(Ω) −→ Hs+1(Ω), s ∈ R, (21)

R : Hs(Ω) −→ Hs+1(Ω), s > −1

2
. (22)

Corollary 4.2. The following operators are compact for any s > 1
2 ,

R : Hs(Ω) −→ Hs(Ω),

γ+R : Hs(Ω) −→ Hs− 1

2 (S),

T+R : Hs(Ω) −→ Hs− 3

2 (S).

Theorem 4.3. Let s ∈ R. Then, the following operators are continuous:

V : Hs(S) −→ Hs+ 3

2 (Ω),

W : Hs(S) −→ Hs+ 1

2 (Ω).

Theorem 4.4. Let s ∈ R. Then, the following operators are continuous:

V : Hs(S) −→ Hs+1(S),

W : Hs(S) −→ Hs+1(S),

W ′ : Hs(S) −→ Hs+1(S),

L± : Hs(S) −→ Hs−1(S).

Theorem 4.5. Let ρ ∈ H−
1

2 (S), τ ∈ H
1

2 (S). Then the following operators jump
relations hold:

γ±V ρ = Vρ,

γ±Wτ = ∓1

2
τ +Wτ,

T±V ρ = ±1

2
ρ+W ′ρ.

Theorem 4.6. Let s ∈ R. The following operators

V : Hs(S) −→ Hs(S),

W : Hs(S) −→ Hs(S),

W ′ : Hs(S) −→ Hs(S).

are compact.
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5. Invertibility of the single layer potential operator

It is well-known that for some 2D domains the kernel of the operator V∆ is non-zero,
which by relation (12) also implies that the kernel of the operator V is also non-zero
for the same domain (see e.g. [12, Remark 1.42(ii)], [30, proof of Theorem 6.22], [13]).

Since the boundary integral operator V has the non-trivial kernel on some two
dimensional domains, we have to consider the boundary integral operator in suitable
spaces. Thus in order to have invertibility for the single layer potential operator in
two dimension, we define the following subspace of the space H−

1

2 (S) (see, e.g.,[30,
Eq. (6.30)],

H
− 1

2
∗ (S) :=

{
φ ∈ H−

1

2 (S) : 〈φ, 1〉S = 0
}
,

where the norm in H
− 1

2
∗ (S) is the one induced by the norm in H−

1

2 (S).

Theorem 5.1. Let ψ ∈ H−
1

2
∗ (∂Ω) satisfies Vψ = 0 on ∂Ω, then ψ = 0.

Proof. Relation (12) gives Vg = V∆g
∗, where g = g∗/a. The invertibility of V then

follows from the invertibility of V∆, see references [11, Theorem 2.4], [8, Theorem 3.5]
and [13, Theorem 4].

Theorem 5.2. Let Ω ⊂ R2 have the diameter diam(Ω) < 1. Then the single layer

potential V : H−
1

2 (∂Ω)→ H
1

2 (∂Ω) is invertible.

Proof. The proof is similar to the ones in [13] but for the different parametrix (9) we

have the relation (12) and the invertibility of the operator V : H−
1

2 (∂Ω) → H
1

2 (∂Ω)
also follows.

Remark 1. If the diam(Ω) ≥ 1, then one could consider rescaling the original bound-
ary value problem, see e.g. [6].

6. Third Green identities and integral relations

In this section we provide the results similar to the ones in [7] but for our, different,
parametrix (9).

Let u, v ∈ H1,0(Ω;A). Subtracting from the first Green identity (7) its counterpart
with the swapped u and v, we arrive at the second Green identity, see e.g. [18],∫

Ω
[uAv − vAu] dx =

∫
S

[
uT+v − v T+u

]
dS(x). (23)

Taking now v(x) := P (x, y), we obtain from (23) by the standard limiting procedures
(cf. [27]) the third Green identity for any function u ∈ H1,0(Ω;A):

u+Ru− V T+u+Wγ+u = PAu, in Ω. (24)
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If u ∈ H1,0(Ω;A) is a solution of the partial differential equation (6a), then, from
(24) we obtain:

u+Ru− V T+u+Wγ+u = Pf, inΩ; (25)

1

2
γ+u+ γ+Ru− VT+u+Wγ+u = γ+Pf, on S. (26)

For some distributions f , Ψ and Φ, we consider a more general, indirect integral
relation associated with the third Green identity (25):

u+Ru− VΨ +WΦ = Pf, in Ω. (27)

Lemma 6.1. Let u ∈ H1(Ω), f ∈ L2(Ω), Ψ ∈ H−
1

2 (S) and Φ ∈ H
1

2 (S) satisfying the
relation (27). Then u belongs to H1,0(Ω,A); solves the equation Au = f in Ω, and the
following identity is satisfied,

V (Ψ− T+u)−W (Φ− γ+u) = 0 in Ω. (28)

Proof. The proof follows word for word the corresponding proof in 3D case in [25].

Lemma 6.2. Let either Ψ∗ ∈ H−
1

2 (S) and diam(Ω) < 1, or Ψ∗ ∈ H−
1

2
∗ (S). If

VΨ∗(y) = 0, ∀y ∈ Ω, (29)

then Ψ∗ = 0.

Proof. Taking the trace of (29) gives

VΨ∗(y) = V4
(

Ψ∗

a

)
(y) = 0, y ∈ Ω,

If Ψ∗ ∈ H−
1

2 (S) and diam(Ω) < 1, then the result follows from invertibility of the

single layer potential given by Theorem 5.2. On the other hand, if Ψ∗ ∈ H−
1

2
∗ (S), then

the result is implied by Theorem 5.1.

7. BDIE system for the Dirichlet problem

We aim to obtain a segregated boundary-domain integral equation system for Dirichlet
BVP (6). Let us denote the unknown conormal derivative as ψ := T+u ∈ H−

1

2 (S) and
we will further consider ψ as formally independent of u in Ω.

To obtain one of the possible boundary-domain integral equation systems we employ
identity (25) in the domain Ω, and identity (26) on S, substituting there the Dirichlet
condition and T+u = ψ and further considering the unknown function ψ as formally
independent (segregated) of u in Ω. Consequently, we obtain the following system (A1)
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of two equations for two unknown functions,

u+Ru− V ψ = F0 in Ω, (30a)

γ+Ru− Vψ = γ+F0 − ϕ0 on S, (30b)

where

F0 = Pf −Wϕ0. (31)

We remark that F0 belongs to the space H1(Ω) in virtue of the mapping properties
of the surface and volume potentials, see Theorems 4.1 and 4.3.

The system (A1), given by (30a)-(30b) can be written in matrix notation as

A1U = F1,

where U represents the vector containing the unknowns of the system,

U = (u, ψ)> ∈ H1(Ω)×H−
1

2 (S),

the right hand side vector is

F1 := [F0, γ
+F0 − ϕ0]> ∈ H1(Ω)×H

1

2 (S),

and the matrix operator A1 is defined by:

A1 =

[
I +R −V
γ+R −V

]
.

We note that the mapping properties of the operators involved in the matrix imply
the continuity of the operator A1.

Let us prove that BVP(6) in Ω is equivalent to the system of BDIEs (30a)-(30b).

Theorem 7.1. Let f ∈ L2(Ω) and ϕ0 ∈ H
1

2 (S).

i) If some u ∈ H1(Ω) solves the BVP (6), then the pair (u, ψ)> ∈ H1(Ω)×H−
1

2 (S)
where

ψ = T+u, on S, (32)

solves the BDIE system (A1).

ii) If a couple (u, ψ)> ∈ H1(Ω) × H−
1

2 (S) solves the BDIE system (A1), and
diam(Ω) < 1, then u solves the BVP and the functions ψ satisfy (32).

iii) The system (A1) is uniquely solvable.

Proof. First, let us prove item i). Let u ∈ H1(Ω) be a solution of the boundary
value problem (6). Since u solves the BVP (6), then in particular, u satisfies the PDE
Au = f . This implies that Au ∈ L2(Ω) and thus, u ∈ H1,0(Ω;A). As u ∈ H1,0(Ω;A),

then the conormal derivative T+u is well defined and T+u ∈ H−
1

2 (S). Therefore, we
can define ψ := T+u. Then, it immediately follows from the third Green identities
(25) and (26) that the couple (u, ψ) solves BDIE system (A1).
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Let us prove now item ii). Let the couple (u, ψ)> ∈ H1(Ω) × H−
1

2 (S) solve the
BDIE system (A1). Taking the trace of the equation (30a) and subtracting it from the
equation (30b), we obtain

γ+u = ϕ0, on S. (33)

Thus, the Dirichlet boundary condition in (6b) is satisfied.
We proceed using the Lemma 6.1 in the first equation of the system (A1), (30a),

which implies that u is a solution of the equation (6a) and also the following equality:

V (ψ − T+u)−W (ϕ0 − γ+u) = 0 in Ω.

By virtue of (33), the second term of the previous equation vanishes. Hence,

V (ψ − T+u) = 0, in Ω.

Lemma 6.2 then implies

ψ = T+u, on S. (34)

Item iii) immediately follows from the uniqueness of the solution of the Dirichlet
boundary value problem Theorem 2.1.

Lemma 7.2. (F0, γ
+F0 − ϕ0) = 0 if and only if (f, ϕ0) = 0

Proof. Indeed the latter equality evidently implies the former, i.e., if (f, ϕ0) = 0 then
(F0, γ

+F0 − ϕ0) = 0. Conversely, supposing that (F0, γ
+F0 − ϕ0) = 0, then taking

into account equation (31) and applying Lemma 6.1 with F0 = 0 as u, we deduce that
f = 0 and Wϕ0 = 0 in Ω. Now, the second equality, γ+F0 − ϕ0 = 0, implies that
ϕ0 = 0 on S.

Theorem 7.3. If diam(Ω) < 1, then the operators

A1 : H1(Ω)×H−
1

2 (S)→ H1(Ω)×H
1

2 (S), (35)

A1 : H1,0(Ω;A)×H−
1

2 (S)→ H1,0(Ω;A)×H
1

2 (S), (36)

are invertible.

Proof. To prove the invertibility of operator (35), let A1
0 be the matrix operator

defined by

A1
0 :=

[
I −V
0 −V

]
.

As a result of compactness properties of the operators R and γ+R (cf. Corollary 4.2),
the operator A1

0 is a compact perturbation of operator A1. The operator A1
0 is an upper

triangular matrix operator and invertibility of its diagonal operators I : H1(Ω) −→
H1(Ω) and V : H−

1

2 (∂Ω) −→ H
1

2 (∂Ω) (cf. Theorem 5.2). This implies that

A1
0 : H1(Ω)×H−

1

2 (S) −→ H1(Ω)×H
1

2 (S)
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is an invertible operator. Thus A1 is a Fredholm operator with zero index. Hence the
Fredholm property and the injectivity of the operator A1, provided by item iii) of
Lemma 7.2, imply the invertibility of operator A1.

To prove invertibility of operator (36), we remark that for any F1 ∈ H1,0(Ω;A) ×
H

1

2 (S) a solution of the equation A1U = F1 can be written as U =
(
A1
)−1F1,

where
(
A1
)−1

: H1(Ω) × H
1

2 (∂Ω) → H1(Ω) × H−
1

2 (∂Ω) is the continuous inverse
to operator (35). But due to Lemma 6.1 the first equation of system (A1) implies

that U =
(
A1
)−1F1 ∈ H1,0(Ω;A) × H−

1

2 (S) and moreover, the operator
(
A1
)−1

:

H1,0(Ω;A)×H
1

2 (S)→ H1,0(Ω;A)×H−
1

2 (S) is continuous, which implies invertibility
of operator (36).

8. Conclusions

In this paper, we have considered a new parametrix for the Dirichlet problem with
variable coefficient in two-dimensional domain, where the right hand side function is
from L2(Ω) and the Dirichlet data from the space H

1

2 (S). A BDIEs for the origi-
nal BVP has been obtained. Results on the equivalence between the BDIES and the
BVP have been shown along with the invertibility of the matrix operator defining the
BDIES.

Now, we have obtained an analogous system to the BDIES (A1) of [7,25] with a new
family of parametrices which is uniquely solvable. Hence, further investigation about
the numerical advantages of using one family of parametrices over another will follow.

With the introduction of the new parametrix P x(x, y) the parametrix potential re-
lations, Formulae 10-18 change with respect to the parametrix P y(x, y). Some become
more complicated, in particular relation (14) whilst others become easier, e.g. rela-
tion 16 or remain similar, e.g. 10 or 12. Most of these relations, with the parametrix
P x(x, y), keep the variable coefficient inside of the integral as opposed as the analo-
gous potential relations for the parametrix P y(x, y) in which the variable coefficient
appears outside of the integral.

Nonetheless, the authors consider necessary to analyse parametrices of the form
P x(x, y) since obtaining BDIEs for some PDE systems, such as the Stokes system in
three dimensions, requires a rather more complicated parametrix involving two variable
coefficients: one with respect to x and one with respect to y. This is discussed further
in the introduction of [25] and also in more detail in [24]. Therefore, the analysis of
the parametrix P x(x, y) could be seen as an intermediate step towards the study of
parametrices involving, not only a(x) or a(y) but both.

Furthermore, the study of BDIEs for PDE systems with variable coefficients is still
at a very early stage. To the best of the knowledge of the authors, parametrices for the
Maxwell equations, for instance, have not yet been constructed. The results provided
in this paper can be advantageous at the time of constructing a parametrix for that
system as one can compare the differences between parametrices of the form P y(x, y)
and P x(x, y).

Analogous results could be obtained for exterior domains following a similar ap-
proach as in [9].

Further generalised results for Lipschitz domains and non-smooth coefficient can also
be obtained by using the generalised canonical conormal derivative operator defined
in [19,20] and following a similar approach as in [23].

One could also relax the regularity of the BVP prescribed data, for example con-

13



sidering f ∈ H−1(Ω). This will be the main focus of our next papers.
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(Birkhäuser): Boston, (2015), 163-175.

[14] Gonzalez O. A theorem on the surface traction field in potential representations of Stokes
flow. SIAM Journal on Applied Mathematics. (2015), Vol.75, No. 4, 1578-98.

[15] Grzhibovskis R., Mikhailov S.E. and Rjasanow S.: Numerics of boundary-domain integral
and integro-differential equations for BVP with variable coefficient in 3D, Computational
Mechanics, 51, 495-503 (2013).

[16] Gunter N. M.: Potential Theory and Its Applications to Basic Problems of Mathematical
Physics, Frederick Ungar, New York, 1967.

[17] Hsiao G.C. and Wendland W.L.: Boundary Integral Equations. Springer, Berlin (2008).
[18] McLean W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge

University Press (2000).
[19] Mikhailov S.E.: Traces, extensions and co-normal derivatives for elliptic systems on Lip-

schitz domains. J. Math. Anal. and Appl., 378,(2011) 324-342.

14



[20] Mikhailov S.E.: Analysis of Segregated Boundary-Domain Integral Equations for BVPs
with Non-smooth Coefficient on Lipschitz Domains, Boundary Value Problems, Wol
2018:87, 1-52.

[21] Mikhailov S.E.: Localized boundary-domain integral formulations for problems with vari-
able coefficients, Engineering Analysis with Boundary Elements, 26 (2002) 681-690.

[22] Mikhailov S.E., Mohamed N.A.: Iterative solution of boundary-domain integral equation
for BVP with variable coefficient, in Proceedings of the 8th UK Conference on Boundary
Integral Methods, ed. D. Lesnic (Leeds University Press, 2011), 127-134.

[23] Mikhailov S.E., Portillo C.F.: Analysis of boundary-domain integral equations based on
a new parametrix for the mixed diffusion BVP with variable coefficient in an interior
Lipschitz domain, J. Integral Equations and Applications,(2019).

[24] Mikhailov S.E., Portillo C.F.: Analysis of Boundary-Domain Integral Equations to the
Mixed BVP for a compressible stokes system with variable viscosity, Communications on
Pure and Applied Analysis, 18(6)(2019): 3059-3088.

[25] Portillo C.F.: Boundary-Domain Integral Equations for the diffusion equation in inhomo-
geneous media based on a new family of parametrices, in Complex Variables and Elliptic
Equations, (2019).

[26] Mikhailov S.E., Portillo C.F.: A New Family o Boundary-Domain Integral Equations for
a Mixed Elliptic BVP with Variable Coefficient, in Proceedings of the 10th UK Conference
on Boundary Integral Methods, (Brighton University Press, 2015).

[27] Miranda C.: Partial Differential Equations of Elliptic Type, 2nd edn. Springer, (1970).
[28] Ravnik J., Tibaut J.: Fast boundary-domain integral method for heat transfer simulations.

Engineering Analysis with Boundary Elements, 99 (2019), 222-232.
[29] Sladek J., Sladek V., Zhang Ch.: Local integro-differential equations with domain elements

for the numerical solution of partial differential equations with variable coefficients. Jour-
nal of Engineering Mathematics 51, (2005), 261–282.

[30] Steinbach O.:Numerical Approximation Methods for Elliptic Boundary Value Problems.
Springer (2007).

15


