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ABSTRACT  

The use of positive allosteric modulators (PAM) of α7 nicotinic receptors is a promising 

therapy for neurodegenerative, inflammatory and cognitive disorders. Flavonoids are 

polyphenolic compounds showing neuroprotective, anti-inflammatory and pro-cognitive 

actions. Besides their well-known antioxidant activity, flavonoids trigger intracellular 

pathways and interact with receptors, including α7. To reveal how the beneficial actions 

of flavonoids are linked to α7 function, we evaluated the effects of three representative 

flavonoids -genistein, quercetin and the neoflavonoid 5,7-dihydroxy-4-phenylcoumarin- 

on whole-cell and single-channel currents. All flavonoids increase the maximal currents 

elicited by acetylcholine with minimal effects on desensitization and do not reactivate 

desensitized receptors, a behaviour consistent with type I PAMs. At the single-channel 

level, they increase the duration of the open state and produce activation in long-

duration episodes with a rank order of efficacy of genistein > quercetin ≥ neoflavonoid. 

By using mutant and chimeric α7 receptors, we demonstrated that flavonoids share 

transmembrane structural determinants with other PAMs.  The 7-PAM activity of 

flavonoids results in decreased cell levels of reactive oxygen species. Thus, allosteric 

potentiation of α7 may be an additional mechanism underlying neuroprotective actions 

of flavonoids, which may be used as scaffolds for designing new therapeutic agents. 
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1. INTRODUCTION 

The 7 nicotinic acetylcholine receptor (nAChR) is one of the most abundant nAChRs 

in the brain and is a promising drug target for neurological, neurodegenerative, 

inflammatory and cognitive disorders. It is a pentameric neurotransmitter-gated ion 

channel (pLGIC) that contains an extracellular domain (ECD), which carries the agonist 

binding sites at subunit interfaces; a transmembrane domain (TMD), which comprises 

the pore and it is formed by four -helices of each subunit (TM1-TM4); and an 

intracellular domain. Between ECD and TMD there is a structural transition zone that is 

essential to couple agonist binding to channel opening (Bouzat et al., 2004). 7 

responds to acetylcholine (ACh) by opening an intrinsic ion channel which triggers 

rapid membrane depolarization and calcium influx (Dajas-Bailador and Wonnacott, 

2004). It also triggers signal transduction pathways and the release of calcium from 

intracellular stores (Bouzat et al., 2018; Corradi and Bouzat, 2016; Egea et al., 2015; 

Guan et al., 2015; Kabbani and Nichols, 2018). 7 is highly expressed in hippocampus, 

cortex and several subcortical limbic regions; and it is involved in cognition, sensory 

processing information, attention, and working memory (Lendvai et al., 2013; Thomsen 

et al., 2010; Uteshev, 2014). Decline of 7 activity has been associated with 

Alzheimer’s disease and schizophrenia (Buckingham et al., 2009; Dineley et al., 2015; 

Guan et al., 2000; Kadir et al., 2006; Kalmady et al., 2018; Ma and Qian, 2019; 

Thomsen et al., 2010; Tregellas and Wylie, 2019). 7 is also present in non-neuronal 

cells, where it plays a key role in immunity, inflammation and neuroprotection (Dineley 

et al., 2015; Egea et al., 2015; Park et al., 2007; Shen and Yakel, 2012; Shytle et al., 

2004). 

Enhancement of 7 activity is therefore emerging as a therapeutic strategy for 

neurological and inflammatory disorders (Changeux and Taly, 2008; Corradi and 

Bouzat, 2016; Dineley et al., 2015; Uteshev, 2014). Positive allosteric modulators 

(PAMs) are promising therapeutic tools because they maintain the temporal and spatial 

characteristics of the endogenous activation and are more selective than agonists 

(Bouzat et al., 2018; Chatzidaki and Millar, 2015; Corradi and Bouzat, 2016; Yang et 

al., 2017). Based on their effects on macroscopic currents, PAMs have been classified 

as type I PAMs, that mainly enhance agonist-induced peak currents; and type II PAMs, 

that also decrease desensitization and recover receptors from desensitized states 

(Bertrand and Gopalakrishnan, 2007; Chatzidaki and Millar, 2015). 

On the other hand, there is increasing epidemiological and experimental data 

showing that dietary intake of flavonoids confers protection against multiple chronic 

diseases, improves cognitive performance and reduces the incidence of age-related 
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neurological decline (Bakoyiannis et al., 2019; Ebrahimi and Schluesener, 2012; 

Flanagan et al., 2018; Gildawie et al., 2018; Spencer et al., 2009; Vauzour et al., 2015). 

Flavonoids are potent antioxidant and anti-inflammatory agents and have shown 

neuroprotective effects in vitro and in vivo (Bakhtiari et al., 2017; Dajas et al., 2013; 

Spencer et al., 2012; Vauzour et al., 2015). Consequently, they are considered as 

potentially beneficial for age-related phenomena and neurodegenerative diseases, 

including Alzheimer’s and Parkinson’s diseases (Bakhtiari et al., 2017; Bakoyiannis et 

al., 2019; Ebrahimi and Schluesener, 2012; Kujawska and Jodynis-Liebert, 2018; Rossi 

et al., 2008; Spencer et al., 2012). 

Flavonoids are polyphenolic compounds ubiquitously present in plants. They 

are derivatives of 2-phenyl-benzo-γ-pyrone, consisting in a 15-carbon skeleton that 

comprises two phenyl rings (A and B), linked together by an oxygen-containing pyrone 

ring (C) (Fig. 1A). According to the IUPAC, flavonoids are classified into flavonoids, 

isoflavonoids and neoflavonoids depending on the position of the B-ring in the 

benzopyrone moiety (Heim et al., 2002) (Fig. 1A). On the basis of the oxidation state of 

the C-ring, the hydroxylation pattern, and the substitution of the 3-position, flavonoids 

are also grouped into six subclasses named as flavanols, flavanones, flavones, 

isoflavones, flavonols and anthocyanins (Corcoran et al., 2012; Panche et al., 2016). 

Some benefits of flavonoids have been mainly atributted to their antioxidant 

capacity that includes direct effects (free radical scavenging and metal chelating 

activities) and indirect effects (modulating enzymes such as xanthine oxidase and nitric 

oxide synthase) (Dajas et al., 2013). However, flavonoids also exert other effects that 

reinforce their antioxidant and neuroprotective role, including modulation of signalling 

pathways, transcription factors and gene expression (Bakhtiari et al., 2017; 

Bakoyiannis et al., 2019; Dajas et al., 2013; Ebrahimi and Schluesener, 2012; 

Flanagan et al., 2018; Spencer et al., 2012; Vauzour et al., 2015; Williams et al., 2004). 

Moreover, in vivo beneficial effects of flavonoids take place at lower doses than those 

required for their direct antioxidant activity, indicating that additional mechanisms 

involving signalling processes may be implicated in their actions (Dajas et al., 2013; 

Flanagan et al., 2018; Spencer et al., 2012; Williams et al., 2004). Among these 

processes, flavonoids have been shown to directly modulate neurotransmitter 

receptors and ion channels (Goutman et al., 2003; Hanrahan et al., 2011; Huang et al., 

1999; Huang and Dillon, 2000; Johnston, 2015; Lee et al., 2007, 2005; Shin et al., 

2010).  

There are a few reports regarding their effects on 7, specifically showing that 

genistein and quercetin enhance the macroscopic currents of 7 elicited by ACh 

(Grønlien et al., 2007; Lee et al., 2010). Interestingly, the positive modulatory effects of 
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flavonoids seems to be specific for 7 among pLGICs since genistein inhibits GABAA 

(Huang et al., 1999), glycine (Huang and Dillon, 2000), 5-HT3A, 42 and 34 

receptors (Grønlien et al., 2007); and quercetin inhibits 5-HT3A (Lee et al., 2008, 2005), 

glycine (Lee et al., 2007), GABAA (Goutman et al., 2003; Kim et al., 2015), muscle 

nAChR (Lee et al., 2011c), 34 (Lee et al., 2011b), 42 (Goutman et al., 2003), and 

910 receptors (Lee et al., 2011a).  

Even though 7 cholinergic signalling and flavonoids are both clearly involved in 

cognition, memory and neuroprotection as well as in the modulation of inflammatory 

processes, only a few studies have focused on the molecular mechanisms underlying 

the effects of these polyphenolic compounds on 7 activity. 

Here by using whole-cell and single-channel current approaches combined with 

mutagenesis, we have deciphered the molecular modulation of human 7 by flavonoids 

with distinct position of the B-ring in the benzopyrone moiety: the isoflavone genistein 

and the flavonol quercetin, previously reported as 7-PAMs (Grønlien et al., 2007; Lee 

et al., 2010), and the neoflavonoid 5,7-dihydroxy-4-phenylcoumarin, whose activity on 

7 is unknown. We have also demonstrated that the 7-PAM activity of flavonoids 

constitutes a novel and additional molecular mechanism by which they exert their 

antioxidant and neuroprotective role. 

Overall, by providing novel information on 7 potentiation by flavonoids, our 

study contributes to the understanding of the mechanisms of their biological activities 

as well as their clinical relevance. Potentiation of 7 implies an additional process by 

which these polyphenols may be beneficial for neurological and inflammatory 

disorders.  
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2. MATERIALS AND METHODS 

2.1. Drugs. Acetylcholine, 5-hydroxyindole (5-HI) and 5,7-dihydroxy-4-

phenylcoumarin were purchased from Sigma-Aldrich (St Louis, MO, USA). PNU-

120596 (N-(5-chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)-urea) was 

obtained from Tocris Biosciences (Bristol, UK). PNU-282987 [N-[(3R)-1-

azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride], NS-1738 (N-(5-chloro-2-

hydroxyphenyl)-N'-[2-chloro-5-(trifluoromethyl)phenyl]urea), genistein (4',5,7-

trihydroxyisoflavone) and quercetin (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-

4-one) were purchased from Santa Cruz Biotechnology (Dallas, Texas, USA). -

bungarotoxin (-Bgt) was from ThermoFisher Scientific (MA, USA). Stock solutions 

were prepared in water (ACh, 5-HI and -Bgt) or DMSO (PNU-120596, NS-1738 and 

flavonoids).  

2.2. Expression of 7 receptors in Xenopus laevis oocytes. Adult female 

Xenopus laevis were purchased from Nasco (WI, USA). Xenopus care and 

experimental procedures were in accordance with the UK Home Office regulations and 

were approved by the Animal Use Committee of Oxford Brookes University. Stage V 

and VI Xenopus oocytes were prepared as previously described (Carbone et al., 2009; 

Mazzaferro et al., 2011), and then injected with 2-20 ng of human 7 subunit cDNA 

(GenBank accession no X70297.1) into the nucleus in a volume of 23.0 nL, using a 

Nanoject Automatic Oocyte Injector (Drummond, Broomall, USA). To favour the fast 

expression of 7, its cDNA was co-injected with 1-2 ng of chaperone NACHO cDNA 

(GenBank accession no BC050273.1) (Gu et al., 2016; Nielsen et al., 2018). Injected 

oocytes were incubated until use at 18 ºC in Barth’s solution (88 mM NaCl, 1 mM KCl, 

0.33 mM Ca(NO3)2, 0.41 mM CaCl2, 0.82 mM MgSO4, 2.4 mM NaHCO3, 10 mM 

HEPES) supplemented with 0.1 mg/mL streptomycin, 1000 U/mL Penicillin and 100 

μg/mL amikacin (pH 7.5 with 5 M NaOH). Oocytes were used for electrophysiological 

recordings one to two days after injection (Carbone et al., 2009; Mazzaferro et al., 

2011; Nielsen et al., 2018). 

2.3. Electrophysiological recordings in Xenopus laevis oocytes. Oocytes were 

impaled by two microelectrodes filled with 3 M KCl (0.5–2.0 MΩ) and voltage-clamped 

at –60 mV using HiClamp, an automated two-electrode voltage-clamp recording 

system (Multi Channel Systems, Reutlingen, Germany) (Rego Campello et al., 2018). 

Data were captured and analyzed with Data Mining software (Multi Channel Systems, 

Reutlingen, Germany). All experiments were carried out at room temperature. The 
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oocytes were continuously perfused by Standard Oocyte Solution (SOS) containing 

100 mM NaCl, 2mM KCl, 1.8 mM CaCl2, 1mM MgCl2 and 5 mM HEPES (pH 7.4 with 5 

M NaOH). ACh was dissolved directly in SOS. The experimental flavonoid solutions 

were prepared from the stock solution with a final DMSO concentration lower than 0.8 

% (v/v). We have previously shown that DMSO concentrations below 1 % do not affect 

7 activation properties (Andersen et al., 2016, 2013). The recordings were performed 

in different oocytes (n indicates the number of independent experiments) and for each 

condition, at least three different batches of oocytes from distinct Xenopus laevis 

animals were used for experiments (N indicates the number of batches of oocytes). 

To study the activity of different flavonoids, responses were evaluated following 

co-application and preincubation protocols. Flavonoids were co-applied with ACh at a 

concentration close to its EC20 (30 μM) for 7 receptor as described previously (Nielsen 

et al., 2018). The peak current responses were normalized to the responses elicited by 

ACh EC20 alone in the same oocyte (control current). A control current was elicited 

before and after each current in presence of agonist and flavonoid. For all the 

conditions, a 3-minute wash period allowed a total recovery of control currents. 

Concentration–response curves for flavonoids were fitted by a non-linear least-squares 

algorithm according to the equation: 

𝐼 =  𝐼𝑚𝑎𝑥/[1 +  (𝐸𝐶50/𝑥)𝑛] 

in which Imax is the maximum obtainable peak current; EC50 is the concentration of the 

agonist and flavonoid that elicits 50% of the maximum obtainable peak current; x is 

flavonoid concentration and n is the slope factor. 

2.4. Expression of 7 in BOSC23 cells. Receptors were transiently expressed in 

BOSC23 cells, which are modified HEK 293T cells (kindly provided by Dr. Sine, Mayo 

Clinic, USA). To discard mycoplasma contamination, cells were tested by 4,6-

Diamidino-2-phenylindole (DAPI) staining and fluorescence microscopy. The receptors 

were human 7 wild-type (7 WT); human 7 quintuple mutant (7 TSLMF), which 

carries five point mutations in the transmembrane domain (S223T, A226S, M254L, 

I281M and V288F) (DaCosta et al., 2011) and is insensitive to PNU-120596; and the 

high conductance form of the chimeric receptor containing the extracellular domain of 

human 7 and the transmembrane domain of the mouse 5-HT3A receptor (7-5HT3A) 

(Bouzat et al., 2004). Cells were transfected by calcium phosphate precipitation with 

the subunit cDNAs alone or together with the chaperone Ric-3 cDNA (GenBank 

accession no. NM_024557.5) for 7 WT and 7 TSLMF (Andersen et al., 2013; Bouzat 

et al., 2008; Nielsen et al., 2018). GFP cDNA was incorporated during transfection (5 % 
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of total cDNA amount) to allow identification of transfected cells in green. All 

transfections were carried out for about 8-12 hours in DMEM (Gibco) with 10 % FBS 

(Internegocios) and were terminated by exchanging the medium. Cells were used for 

whole-cell and single-channel recordings two to three days after transfection at which 

time maximum functional expression levels are usually achieved (Andersen et al., 

2016; Bouzat et al., 2008, 1994; DaCosta et al., 2015, 2011; Nielsen et al., 2018). 

2.5. Whole-cell recordings from BOSC23 cells. Macroscopic currents were 

recorded in the whole-cell configuration at -50 mV as described previously (Andersen 

et al., 2016; Bouzat et al., 2008; Corradi et al., 2009). The pipette was filled with 

intracellular solution (ICS) containing 134 mM KCl, 5 mM EGTA,1 mM MgCl2, and 10 

mM HEPES (pH 7.3). The extracellular solution (ECS) contained 150 mM NaCl, 1.8 

mM CaCl2, 1 mM MgCl2, and 10 mM HEPES (pH 7.3). Agonist responses (control 

currents) were obtained by a pulse of ECS containing the agonist. The PAMs and 

flavonoids were dissolved in ECS from DMSO stock solutions. The final concentration 

of DMSO used to solubilize PAMs and flavonoids was lower than 0.1 % (v/v).  

Responses were evaluated following co-application protocols, where a 1.5-s 

pulse of ECS containing ACh and flavonoid was applied. The duration of the recording 

was 2.0 s. For all conditions, an 8-s wash period allowed total recovery of control 

currents. The temporal parameters were selected considering the typical kinetics of α7 

macroscopic currents in BOSC23 cells (Andersen et al., 2016; Corradi et al., 2009; 

DaCosta et al., 2011). 

To evaluate the recovery of desensitized receptors by flavonoids or other 

PAMs, ACh was applied continuously for a 3.0-s period; 1.2 s after the beginning of the 

ACh-pulse, the tested compound was simultaneously applied during the remaining 1.8 

s in order to show the effects on desensitized receptors. In all cases, an 8-s wash 

period allowed total recovery of control currents. 

The solution exchange time was estimated by the open pipette protocol and 

ranged from 0.1 to 1.0 ms (Andersen et al., 2016; Corradi et al., 2009). Currents were 

filtered at 5 kHz and digitized at 20 kHz using an Axopatch 200B patch-clamp amplifier 

(Molecular Devices, CA, USA) and acquired using WinWCP software (Strathclyde 

Electrophysiology Software, University of Strathclyde, Glasgow, UK). The recordings 

were analysed using the ClampFit software (Molecular Devices, CA, USA). Each 

current represents the average from three to five individual traces obtained from the 

same cell, which were aligned with each other at the maximum peak. Currents were 

fitted by a double exponential function according to the equation: 
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𝐼(𝑡) =  𝐼𝑓𝑎𝑠𝑡 [𝑒𝑥𝑝(−𝑡/𝜏𝑓𝑎𝑠𝑡)] + 𝐼𝑠𝑙𝑜𝑤[𝑒𝑥𝑝(−𝑡/𝜏𝑠𝑙𝑜𝑤)] + 𝐼∞ 

in which t is time, Ifast and Islow are the amplitude for each component, I is the steady 

state current value, and fast and slow are the fast and slow decay time constants, 

respectively. The net charge was calculated by current integration (Papke and Papke, 

2002). fast and slow were expressed as absolute values because these constants are 

independent of the expression level of α7 in each cell. In contrast, the peak current and 

the net charge responses were normalized to the responses elicited by ACh in the 

same cell (control currents) because they vary with the expression level of α7.  

2.6. Single-channel recordings in BOSC23 cells. Single channels were recorded 

in the cell-attached patch configuration (Bouzat et al., 2008). Each patch corresponds 

to a distinct cell (n indicates the number of independent experiments). For each 

condition (different receptors or drugs), three or more cell transfections from distinct 

days were performed for the recordings (N indicates the number of cell transfections).  

For 7 WT and quintuple mutant, the bath and pipette solutions contained 142 

mM KCl, 5.4 mM NaCl, 1.8 mM CaCl2, 1.7 mM MgCl2 and 10 mM HEPES (pH 7.4). 

Only for the chimeric receptor 7-5HT3A, the bath and pipette solutions were free of 

magnesium and with low-calcium concentration (0.2 mM CaCl2), in order to minimize 

channel block by divalent cations as previously described (Andersen et al., 2016; 

Rayes et al., 2005). Flavonoids (5-100 μM) were added to the pipette solution with 

ACh. Thus, single channel activity was recorded in the continuous presence of the 

drugs. The typical recording time was between 5 and 10 minutes. The final 

concentration of DMSO used to solubilize flavonoids was lower than 0.1 % (v/v). This 

DMSO concentration does not affect 7 activation properties (Andersen et al., 2016, 

2013). ACh was solubilized directly in the pipette solution. Single-channel currents 

were digitized at 5-10 μs intervals and low-pass filtered at a cut-off frequency of 10 kHz 

using an Axopatch 200B patch-clamp amplifier (Molecular Devices, CA, USA). The 

single-channel currents were recorded at -70 mV membrane potential that allows a 

good signal-to-noise ratio. Analysis was performed with the program TAC (Bruxton 

Corporation, Seattle, WA, USA) with the Gaussian digital filter at 9 kHz (Final cut-off 

frequency 6.7 kHz). Events were detected by the half-amplitude threshold criterion 

(Bouzat et al., 2004). To determine channel amplitude, events were tracked regardless 

of current amplitude and amplitude histograms were then constructed. Open-time 

histograms were fitted by the sum of exponential functions by maximum likelihood 

using the program TACFit (Bruxton Corporation, Seattle, WA, USA). Bursts of channel 

openings were identified as a series of closely separated openings preceded and 
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followed by closings longer than a critical duration, which was taken as the point of 

intersection between closed components as previously described (Andersen et al., 

2016, 2013; Bouzat et al., 2008; Nielsen et al., 2018). Critical durations were defined 

by the intersection between the first and second briefest components in the closed-time 

histogram for bursts of 7 (200-400 µs) and second and third closed components for 

bursts of 7 TSLMF (1-4 ms) and 7-5HT3A (2-5 ms), activated by ACh alone. In 

presence of flavonoids, the critical time was defined between the second and the third 

closed components for bursts of 7 (1-5 ms). For 7 TSLMF and 7-5HT3A, the 

critical times did not show differences in absence or presence of flavonoids together 

with ACh. The longest duration closed components from the closed-time histograms 

were not analyzed because of their intrinsic variability that depends on the expression 

level of 7 in each cell. 

2.7. Measurement of Reactive Oxygen Species (ROS) production. BOSC23 

cells transiently expressing human 7 WT were seeded at 3x104 cells per well in clear-

bottom, black walled, 96-well plates (Nunc, 165305, Thermo Fisher Scientific) 

previously coated with Poly-L-ornithine (Sigma Aldrich, St Louis, MO, USA) and 

allowed to attach to the bottom of the wells for 24 h. Then, cells were exposed to 

different treatments (agonist, -Bgt, flavonoids and distinct combinations) for additional 

12 or 24 h in DMEM free of FBS. -Bgt was added 2 h before the other compounds to 

allow complete blockade of 7. Subsequently, the cells were washed twice with PBS 

and incubated with 10 μM 2′,7′-Dichlorofluorescein diacetate (DCFDA) (Santa Cruz 

Biotechnology, Dallas, Texas, USA) for 20 minutes at 37 ºC. After incubation, loaded 

cells were washed twice with PBS. The DCF fluorescence intensity is proportional to 

the amount of ROS generated intracellularly (LeBel et al., 1992).  

Fluorescence images were acquired with a Nikon Eclipse TE 2000 fluorescence 

microscope (Nikon Instruments Inc., Melville, USA). The fluorescence intensity was 

measured by a microplate reader (Fluroskan Ascent FL, Thermo Scientific) at an 

excitation wavelength of 485 nm and an emission wavelength of 538 nm. The signals 

were acquired at 1 min-intervals over a period of  30 min (Bian et al., 2015). Since DCF 

can produce artifactual signal amplification upon light exposure by oxidation, 

normalization dividing by fluorescence at time zero is not appropriate. Thus, the rate of 

ROS increment as a function of time was calculated because this rate is solely 

described by the level of cellular ROS (Koopman et al., 2006; Sepúlveda et al., 2013). 

During the kinetic assay, dye controls (probe solution alone) and positive controls 

(adding 1 mM H2O2 to control loaded cells) were assessed in order to verify the correct 
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performance of the probe (Bian et al., 2015; Sepúlveda et al., 2013). All assays were 

performed in at least three individual experiments, each comprising three to six 

replicates. 

2.8. Statistical analysis. Data are presented as mean ± SEM or mean ± SD as 

appropriate. Data sets that passed the Shapiro-Wilk test for normality and the Levene 

Median test for equal variance were analysed using two-tailed Student’s t-test for 

pairwise comparisons or OneWay ANOVA followed by Bonferroni’s post-hoc tests for 

multiple comparisons. All the tests were performed with SigmaPlot 12.0 (Systat 

Software, Inc.). Statistically significance differences were established at p-values<0.05 

(p<0.05*, p<0.01**, p<0.001***). When post-hoc tests were applied, the p-values for 

the comparison among groups were indicated in the corresponding Figures or Tables. 

The number of independent experiments (n) and the number of batches of oocytes or 

cell transfections (N) were indicated in the Tables or under Results. 

Concentration-response curves were determined by nonlinear regression fits to 

the Hill equation using Prism 5.0 (GraphPad, San Diego, CA). ROS production curves 

were fitted by linear regression using Prism 5.0 (GraphPad, San Diego, CA). 
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3. RESULTS 

3.1. Flavonoids enhance ACh-induced macroscopic currents recorded from 

Xenopus laevis oocytes expressing 7. 

 

The effects of representative flavonoids from distinct classes differing in the 

position of the B-ring in the benzopyrone moiety were first assessed in oocytes 

expressing human 7: quercetin as a flavonol (B-ring in position 2, flavonoid group), 

genistein as an isoflavone (B-ring in position 3, isoflavonoid group), and 5,7-dihydroxy-

4-phenylcoumarin as a neoflavonoid (B-ring in position 4, neoflavonoid group). For 

convenience, we referred to these compounds as Que, Gen and Neo, respectively (Fig. 

1A).  

In the presence of ACh, a large inward current was detected in oocytes 

expressing human 7, whereas no currents were detected from oocytes injected with 

1-2 ng of NACHO cDNA alone (n=17). Co-application of Gen, Que or Neo with 30 μM 

ACh enhanced the macroscopic currents evoked by ACh in a concentration-dependent 

manner (Table 1, Fig 1A). Full decay of 7 currents either in the absence or presence 

of the flavonoids occurred during the duration of the pulse (20 s) (Fig. 1A).  

Preincubation of the oocytes with the flavonoid solution for 10 s before the co-

application step also induced potentiation of the ACh-elicited currents by the three 

flavonoids in a concentration-dependent manner. During the preincubation time with 

flavonoids alone, currents were not evoked at any of the concentrations tested, thus 

discarding an agonist role for these compounds.  

We generated concentration-response curves for the flavonoids applied under 

the two protocols, co-application with and without preincubation (Fig. 1B). The results 

showed that the three types of flavonoids have α7-PAM activity, which was evidenced 

by a statistically significant increase of the peak currents evoked by ACh (1.5 - 2-fold) 

(Gen [t(20)=-39.799, p<0.001 for co-application and t(30)=-94.400, p<0.001 for 

preincubation + co-application], Que [t(14)=-45.659, p<0.001 for co-application and 

t(14)=-26.264, p<0.001 for preincubation + co-application] and Neo [t(18)=-48.488, 

p<0.001 for co-application and t(16)=-67.500, p<0.001 for preincubation + co-

application]) (Fig. 1B and Table 1).  

There were no statistically significant differences in the EC50 values [t(25)=-

0.617, p=0.543 for Gen, t(14)=1.330, p=0.205 for Que and t(17)=0.526, p=0.606 for 

Neo] and in the degree of potentiation [t(25)=-1.095, p=0,284 for Gen, t(14)=-1.053, 

p=0.310 for Que and t(17)=0.231, p=0.820 for Neo], for each flavonoid between the 

two protocols thus indicating that co-application with the agonist is sufficient for 
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flavonoid activity. The rank order of potency for potentiation in the co-application 

protocol was Gen ~ Neo > Que [F(2)=7.614, p=0.002<0.01]. With the preincubation 

protocol, EC50 values did not show significant differences [F(2)=1.699, p=0.200]. 

Therefore, we conclude that the rank order of potency among flavonoids was Gen ~ 

Neo ≥ Que (Table 1). 

The rank order of efficacy, measured by the increase in the peak currents, was 

Gen > Que ~ Neo for both protocols [F(2)=28.276, p<0.001 for co-application and 

F(2)=33.958, p<0.001 for preincubation + co-application] (Table 1). 

Together, these findings indicate that the three types of flavonoids increase the 

current amplitude elicited by the agonist, consistent with their actions as PAMs 

(Bertrand and Gopalakrishnan, 2007; Bouzat et al., 2018; Chatzidaki and Millar, 2015; 

Faghih et al., 2008; Williams et al., 2011).  

 

3.2. Flavonoids act as type I PAMs of 7 expressed in mammalian cells. 

 

 To determine whether flavonoids behave as PAM type I or II, we determined 

their effects on the desensitization of 7 receptors expressed in BOSC23 cells. While 

oocytes are ideal for drug screening, they are not suitable for determining 

desensitization rates for receptors that show fast kinetics, such as 7. Due to their 

smaller size, mammalian cells allow higher temporal resolution, which in turn leads to a 

more accurate determination of the kinetic parameters (Corradi and Bouzat, 2016). 

Rapid application of ACh to BOSC23 cells expressing human 7 elicited 

macroscopic currents that reached the peak in about 5-10 ms and decayed in the 

presence of the agonist due to desensitization. Current decays were fitted by two 

exponential components, fast (30-50 ms) and slow (500-1000 ms).  

  The distinct effects of a typical type I PAM (5-HI, (Zwart et al., 2002)) and type II 

PAM (PNU-120596, (Hurst et al., 2005)) were clearly distinguished from ACh-elicited 

macroscopic currents. 5-HI increased significantly only peak currents whereas PNU-

120596 also decreased current decay rates (Fig. 2A). 

To test flavonoids on whole-cell currents, we chose a concentration of 50 M 

based on the concentration-response curves in Xenopus oocytes showing maximal 

activity at this concentration. Macroscopic currents recordings were performed by co-

applying agonist and flavonoids for two main reasons. First, there were no differences 

in the maximal effects of flavonoids on Xenopus oocytes between both protocols 

(preincubation plus co-application or co-application alone). Second, since Gen and 

Que can act as tyrosine kinase inhibitors, co-application of flavonoids and ACh reduces 
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the time needed for kinase inhibition and therefore the possibility of modifying the 

phosphorylation state of the receptor (Grønlien et al., 2010, 2007; Huang et al., 1999; 

Huang and Dillon, 2000).  

In the presence flavonoids (50 µM), the maximal currents elicited by 100 μM 

ACh increased but the decay time constants did not show any statistically significant 

change (Fig. 2A, Table 1), which confirmed that they are type I PAMs, in agreement 

with previous reports for Gen (Grønlien et al., 2007) and Que (Lee et al., 2010). 

For Gen, the peak current increased 1.4 times [t(14)=-3.839, p=0.002<0.01] 

and the net charge, 1.9 times [t(14)=-4.151, p<0.001] respect to the control (Table 1). 

No significant differences in the decay time constants were observed in the presence of 

Gen (Table 1) compared to the corresponding controls in its absence (fast=53 ± 21 ms 

and slow=1062 ± 739 ms) [t(14)=-0.240, p=0.814 for fast and t(14)=1.225, p=0.241 for 

slow].  

For Que, the peak current increased 1.2 times [t(10)=-3.602, p=0.005<0.01] 

but the net charge did not show a significant increase respect to the control 

[t(10)=0.875, p=0.402] (Table 1). The decay time constants in the presence of Que 

(Table 1) did not show significant differences with the corresponding control values 

determined in the absence of Que (fast=47 ± 10 ms and slow=1235 ± 694 ms) [t(12)=-

1.096, p=0.294 for fast and t(12)=1.535, p=0.151 for slow]. 

For Neo, the peak current [t(12)=-4.725, p<0.001] and the net charge [t(12)=-

3.969, p=0.002<0.01] were statistically significantly increased respect to the control 

(1.2 times and 1.9 times respectively, Table 1). In contrast, the decay time constants 

in the presence of Neo (Table 1) did not show significant differences with respect to 

those determined in its absence (fast=42 ± 7 ms and slow=1037 ± 653 ms) [t(12)=0.880, 

p=0.396 for fast and t(12)=-0.135, p=0.895 for slow]. 

Although the increase in the peak currents elicited by 100 μM ACh was not 

statistically different among flavonoids [F(2)=4.755, p=0.093], the trend in the rank 

order for potentiation was the same as that established by concentration-response 

curves obtained using Xenopus oocytes: Gen > Que ~ Neo.  

Altogether, the results indicate that none of the flavonoids affect the decay 

rates, but they increase the net charge. Also, in the presence of the flavonoids the ratio 

of the changes in net charge/peak current is close to 1 (Table 1), as expected for type I 

PAMs (Andersen et al., 2016; Papke and Papke, 2002). 

We also evaluated the ability of flavonoids to reactivate desensitized receptors 

since this is a property that differentiates type I from type II PAMs (Andersen et al., 

2016; Chatzidaki et al., 2015; Collins et al., 2011; Young et al., 2008). Figure 2B shows 
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that during continuous application of ACh (100 μM) 7 remained desensitized. A pulse 

of extracellular solution (buffer) with no drugs applied to the desensitized receptors did 

not elicit any significant response (0.11 ± 0.07-fold respect to the control current, n=5; 

N=4, Fig. 2B). In contrast, 1 μM PNU-120596 reactivated desensitized receptors as 

evidenced by a robust current, which is kinetically different from the original ACh-

induced current due to slower decay rate. Compared to the original responses, 

reactivated currents by 1 μM PNU-120596 showed 10 ± 8-fold increase in the maximal 

amplitude and a profound increase in the net charge (2088 ± 1767 %) (n=4, N=4). Type 

I PAMs lacked the ability to recover desensitized currents or they elicited very small 

currents. The recovered peak currents were 0.55 ± 0.16-fold for 2 mM 5-HI (n=7, N=5) 

and 0.57 ± 0.13-fold for 10 μM NS-1738 (n=6, N=3) respect to the original currents 

(Fig. 2B). For flavonoids, the reactivated currents were 0.40 ± 0.24-fold for Gen (n=5, 

N=5), 0.34 ± 0.13-fold for Que (n=5, N=5) and 0.39 ± 0.09-fold for Neo (n=4, N=4) (Fig. 

2B).  

Thus, we conclude that the three flavonoids cannot produce significant 

reactivation of desensitized 7 receptors, which is in line with their classification as 

type I PAMs.  

 

3.3. Deciphering 7 potentiation by flavonoids at the single-channel level.  

 

To decipher the allosteric modulation of flavonoids at the molecular level, we 

performed cell-attached patches in the presence of 100 µM ACh and flavonoids (5 µM-

100 µM) (Table 2 and Fig. 3). In the absence of flavonoids, single-channel currents 

activated by 100 μM ACh appeared mainly as brief and isolated openings or as several 

openings in quick succession, known as bursts (Table 2 and Fig.3). The open time and 

burst duration histograms were described by the sum of two exponential components 

(Fig. 3A).  

In the presence of Gen, openings elicited by ACh were markedly prolonged and 

coalesced into long-duration bursts (Fig. 3). Potentiation became evident in the 

complete range of concentration evaluated, even at a concentration as low as 5 μM 

(Table 2). The open duration histograms in the presence of Gen were described by 

three exponential components whereas the burst duration histograms were fitted by 

three exponential components for 5-10 μM Gen and by four exponential components 

for 25-100 μM Gen (Fig. 3A). The maximal potentiation was reached at 25 µM. At 25-

100 M Gen, the mean open and burst durations were 6-fold and 35-fold longer than 

in absence of the flavonoid, respectively (Table 2, Fig 3A). The differences in the 
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degree of potentiation among Gen concentrations were determined by the One-Way 

ANOVA test [F(4)=18.882, p<0.001 for open and F(4)=42.421, p<0.001 for burst]. 

For Que, no changes were observed at 5 μM and potentiation became evident 

at 10 μM, which is in line with the lower potency compared to Gen determined by 

concentration-response curves. The open and burst duration histograms in presence of 

Que at potentiating concentrations were fitted by three exponential components (Fig. 

3A). At 10 μM, the mean open and burst durations increased slightly but the increase 

was statistically significant. The maximal increase in mean open (3-fold) and burst 

durations (10-fold) was reached at 25 μM (Table 2, Fig. 3A). The differences in the 

degree of potentiation among Que concentrations were determined by the One-Way 

ANOVA test [F(4)=25.842, p<0.001 for open and F(4)=55.755, p<0.001 for burst].  

For Neo, potentiation became evident at 10 μM as an increase in the burst 

duration but not in the open duration. At 25-50 M, potentiation reached the maximal 

level with an increase of 2-fold and 8-fold in the mean open and burst durations, 

respectively (Table 2, Fig. 3A). The open and burst duration histograms in presence of 

Neo at potentiating concentrations were fitted by three exponential components (Fig. 

3A). At 100 μM Neo, there was a decrease in potentiation that was evidenced as a 

reduction of the mean burst and open durations. This observation may be explained by 

additional channel blocking by high Neo concentrations. The differences in the degree 

of potentiation among Neo concentrations were determined by the One-Way ANOVA 

test [F(4)=7.848, p=0.001 for open and F(4)=14.686, p=0.005<0.01 for burst]. 

In summary, the comparison of the maximal effects among the different 

flavonoids at 50 μM shows that Gen induces the highest increase in open and burst 

durations and that the apparent efficacy rank order, measured as the increase in open 

and burst durations, is Gen > Que ≥ Neo, similar to the rank order obtained from 

concentration-response curves in oocytes [F(2)=71.330, p<0.001 for open and 

F(2)=23.134, p<0.001 for burst] (Fig. 3B). 

We also evaluated if flavonoids affect single-channel amplitude. For 7 in the 

absence of PAMs, there is a wide range of channel amplitudes because the brief open 

channel lifetime does not allow full resolution. However, in the presence of PAMs or if 

only events longer than 0.3 ms are considered, it is possible to resolve the full 

amplitude of the channel that is 10 pA (10.03 ± 0.32 pA, n=5, N=5) (Andersen et al., 

2013; Nielsen et al., 2018). In the presence of 50 μM flavonoid and 100 μM ACh, the 

highest and major amplitudes were 10.19 ± 0.51 pA for Gen [t(8)=-0.612, p=0.557, 

n=5, N=4], 9.78 ± 0.31 pA for Que [t(7)=1.175, p=0.278, n=4, N=3] and 10.26 ± 0.23 pA 

for Neo [t(7)=-1.251, p=0.251, n=4, N=4]. Thus, flavonoids do not modify the single-
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channel amplitude. Moreover, flavonoids allow complete resolution of the channel 

amplitude due to their capability of increasing the mean open and burst durations.  

 

3.4. Structural determinants of 7 potentiation by flavonoids  

 

In order to provide further information about how flavonoids allosterically 

modulate 7, we explored the action of Gen, Que and Neo on the 7-5HT3A chimera, 

which carries human 7 sequence up to the beginning of the TM1 domain and mouse 

5-HT3A sequence thereafter (Andersen et al., 2016; Bouzat et al., 2004; Rayes et al., 

2005). Whereas Gen and Que were shown to negatively modulate 5-HT3A receptors 

(Goutman et al., 2003; Grønlien et al., 2010; Lee et al., 2008, 2005), both flavonoids 

exert the opposite effect on 7 receptors. Thus, the use of the chimeric receptor 

constitutes a good approach to identify the structural determinants of potentiation. 

While Gen slightly inhibited the mean open and burst durations, Que and Neo 

did not affect 7-5HT3A channel properties (Table 2, Fig. 4). Thus, none of the three 

flavonoids (50 μM) act as PAMs of 7-5HT3A chimeric receptors. These results 

suggest a prominent role of the 7 TMD or of the ECD-TMD interface to allow 

potentiation by flavonoids.  

Previous studies have shown that simultaneous mutations of five 

transmembrane residues in 7 receptors inhibit potentiation by type II PAMs, proposing 

this region as a PAM binding site (DaCosta et al., 2011; Young et al., 2008). However, 

type I PAMs such as NS-1738 may bind to this transmembrane site as well (Collins et 

al., 2011). We therefore sought to explore flavonoid actions at the quintuple mutant 7 

(7 TSLMF).  

Neither of the flavonoids (50 µM) potentiated 7 TSLMF, even more, Gen 

decreased significantly the mean open duration (Table 2, Fig. 5). Thus, the five amino 

acids in the transmembrane domain seem to be essential for flavonoid potentiation. 

These results reveal that although the three flavonoids behave as type I PAMs, 

they share the same structural determinants for potentiation located in the 

transmembrane domain as the prototype type II PAM, PNU-120596.  

 

3.5. 7 activation and potentiation by flavonoids decrease ROS intracellular 

levels 

 

Given the possibility that 7 potentiation is involved in the neuroprotective role 

of flavonoids, we evaluated how their antioxidant effects are linked to 7 signalling.  
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We measured intracellular ROS levels using DCFDA and tested changes 

mediated by exposing cells to flavonoids, to the specific 7 agonist PNU-282989 

(Bodnar et al., 2005; Hajos et al., 2004) and to the agonist/flavonoid combination for 24 

h. For these experiments, the concentration of flavonoids was 50 μM, at which the 

maximal potentiation of 7 receptor was achieved, and the concentration of PNU-

282987 was 10 μM, as previously used in different in vitro and in vivo systems (Di 

Cesare Mannelli et al., 2015; Hu et al., 2009; Navarro et al., 2016, 2015; Parada et al., 

2013, 2010; Tsoyi et al., 2011; Zanetti et al., 2016). The initial treatment duration was 

24 h in order to ensure the activation of intracellular signalling pathways described for 

7 and the tested flavonoids (Boadi et al., 2016; Dajas et al., 2013; Godoy et al., 2017; 

Parada et al., 2013, 2010; Qian et al., 2015; Tsoyi et al., 2011; Williams et al., 2004). 

Fluorescence images were taken after 24-h incubation under the different conditions. 

The treatments with 50 μM flavonoid, 10 μM PNU-282987 or their combination 

decreased the DCF fluorescence observed in cells in each visual field compared to the 

control group pre-treated with DMSO (Fig. 6A). 

In order to accurately quantify ROS levels, we determined the rate of intracellular 

ROS generation by measuring the slope of DCF fluorescence as a function of time and 

normalizing it to that of the control condition (Fig. 6B-C) (Koopman et al., 2006; 

Sepúlveda et al., 2013). We also incorporated two additional controls: a dye control 

(probe solution alone) and a positive control (1 mM H2O2) to verify the correct 

performance and response capacity of the probe (Bian et al., 2015; Sepúlveda et al., 

2013). The linearity of the increase in fluorescence was maintained during the 30-min 

measurement, and the set of points were fitted by linear regression (r2  0.96-0.99, Fig. 

6B).  

Consistent with the well-known antioxidant capacity of flavonoids, the intracellular 

ROS production was significantly reduced in cells treated with flavonoids for 24 h 

compared to non-treated cells [t(8)=7.840, p<0.001 for Gen, t(8)=12.010, p<0.001 for 

Que and t(8)=7.016, p<0.001 for Neo, n=5, N=5 for each condition] (Fig. 6B-C). Under 

our experimental conditions, there were no differences in ROS levels between Gen, 

Que and Neo [F(2)=0.381, p=0.691]. Interestingly, when 7 was activated by 10 μM 

PNU-282987, ROS levels also decreased respect to the control condition [t(20)=7.911, 

p<0.001, n=11, N=11, Fig. 6B,C]. Although PNU-282987 is considered a selective 7 

agonist, to further verify that it was mediating the effect through 7, we pre-treated the 

cells with the specific antagonist -Bgt (500 nM) for 2 h before the addition of 10 µM 

PNU-282987 (Fig. 6A-C). Under this condition, no statistically significant differences 

were found respect to the control condition [t(16)=1.614, p=0.126, n=9, N=9, Fig. 6B-
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C], as also observed by fluorescence microscopy (Fig. 6A). Thus, given that -Bgt 

blocked the decrease in ROS levels exerted by PNU-282987, we confirmed that the 

effect is mediated through 7. As an additional control, we also showed that -Bgt 

alone did not affect ROS production [t(16)=-1.191, p=0.251, n=9, N=9, Fig. 6A-C].  

 In cells treated for 24 h with 10 μM PNU-282987 combined with 50 μM flavonoid, 

the intracellular ROS levels decreased significantly respect to the control [t(8)=6.840, 

p<0.001 for PNU + Gen, t(8)=8.602, p<0.001 for PNU + Que and t(8)=8.431, p<0.001 

for PNU + Neo, n=5, N=5 for each condition, Fig 6]. However, no significant differences 

were found between the conditions containing flavonoids in the absence or presence of 

PNU-28298 [F(6)=1.932, p=0.110]. 

With the aim of dissecting the flavonoid 7-PAM effect from its potent antioxidant 

effect independent of 7, which may govern the observed decrease in ROS production 

at 24 h, we applied two different approaches. In one, we reduced the flavonoid 

concentration (from 50 M to 10 M) and in the other we also reduced the time of 

exposure to the flavonoid (from 24 h to 12 h). We performed this set of experiments 

only for Gen since this flavonoid is the most effective as an 7 PAM.  

Reducing Gen concentration from 50 M to 10 M in the 24 h-treatment showed 

that Gen was still capable of decreasing ROS production compared to the control 

condition [t(12)=18.120, p<0.001 n=3, N=3]. The decrease exerted by 10 M Gen 

(20%) was slightly lower compared to that of 50 M (50%) [t(6)=2.859, 

p=0.029<0.05, n=3, N=3]. Then, we combined 10 M Gen, whose antioxidant action 

independent of 7 was submaximal at 24 h, with 10 M PNU-282987 and we observed 

a more pronounced decrease in ROS levels than those exerted by either 10 M Gen 

[t(4)=-5.604, p=0.005<0.01, n=3, N=3] or 10 M PNU-282987 [t(10)=2.883, 

p=0.016<0.05, n=9, N=9). Nevertheless, in the combined treatment the maximal 

achieved reduction in the ROS generation rate was similar to that obtained in presence 

of 50 M Gen (alone or with PNU-282987) [F(2)=0.472, p=0.637]. Thus, it seems that 

under these conditions similar minimal ROS levels can be reached either by the 

antioxidant activity of Gen independent of 7 or by the combination of its antioxidant 

activities mediated and not by 7. 

To unmask even more the effect of Gen dependent of 7, we reduced the time of 

exposure from 24 h to 12 h. With 12-h treatment, the antioxidant activity of Gen was 

neither detected at 10 M nor at 50 M since ROS generation rate was not different 

from that of the control condition [t(12)=-1.716, p=0.112, n=7, N=7 for 10 M Gen and 

t(12)=-1.145, p=0.275, n=7, N=7 for 50 M Gen] (Fig. 6D-E). In contrast, incubation of 
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cells for 12 h with 10 M PNU-282987 reduced ROS production in a statistically 

significant manner [t(12)=-1.145, p=0.0172<0.05, n=7, N=7], although the decrease 

was lower than in the 24 h treatment [t(16)=2.429, p=0.0273<0.05, Fig. 6C,E). 

Interestingly, 12-h co-incubation with PNU-282987 and Gen (10 M or 50 M) 

produced a significant decrease in the ROS levels compared to the control condition 

[t(12)=9.052, p<0.001, n=7, N=7 for PNU + Gen 10 M and t(12)=9.849, p<0.001, n=7, 

N=7 for PNU + Gen 50 M]. The reduction was even more pronounced than that 

induced by PNU-282987 alone [t(12)=3.154, p=0.00832<0.01, n=7, N=7 for PNU + 

Gen 10 M and t(12)=3.523, p=0.00420<0.01, n=7, N=7 for PNU + Gen 50 M], thus 

demonstrating that the 7-PAM activity of Gen enhanced cell protection. We confirmed 

that the Gen effect was mediated through 7 since it was blocked by -Bgt (500 nM) 

[t(4)=-0.804, p=0.466, n=3, N=3 for PNU + Gen 10 M + -Bgt and t(4)=-0.942, 

p=0.399, n=3, N=3 for PNU + Gen 50 M + -Bgt, Fig. 6E). The effects determined by 

the kinetic assays were in line with those determined by fluorescence microscopy (Fig. 

6D). 

Overall, this set of experiments revealed that the effects of Gen on ROS 

production take place earlier through its activity as an 7 PAM than through its activity 

mediated by 7-independent mechanisms.   
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4. DISCUSSION 

 

Despite their common neurological and neuroprotective effects, the interactions 

between flavonoids and 7 have been poorly explored. Here, by using a single-channel 

approach we have elucidated, for the first time, the molecular mechanisms of the 

flavonoid-induced potentiation of 7 receptors. Previous studies have shown that 

flavonoids such as Gen (Grønlien et al., 2010, 2007) and Que (Lee et al., 2010) 

potentiate 7 macroscopic currents through a type I PAM mechanism. We confirmed 

these observations and identified a neoflavonoid as a novel 7 PAM. Our findings 

clearly demonstrate that the type I PAM actions of all flavonoids tested increase the 

open channel lifetime and induce activation in bursts, thus modulating 7 kinetics. 

We studied three different classes of flavonoids differing in the position of the B-

ring in the benzopyrone moiety. Que is a flavonol that constitutes the major component 

of flavonoids dietary intake and exhibits the most prominent antioxidant and anti-

inflammatory activity (Bakhtiari et al., 2017; Spencer et al., 2012). Gen is an isoflavone 

abundant in soy, which improves short and long term memory, supresses inflammatory 

pathways and oxidative stress, and may be involved in some estrogenic-receptor 

signalling pathways (Bakhtiari et al., 2017; Ganai and Farooqi, 2015; Spencer et al., 

2012). The compound 5,7-dihydroxy-4-phenylcoumarin (Ulubelen et al., 1982) is a 

neoflavonoid, which is the less explored class of flavonoids. The unique structure and 

popularity of neoflavonoids in traditional medicine have made them attractive 

pharmacological compounds. In this regard, the tested Neo is an inhibitor of cAMP 

phosphodiesterase (Kusano et al., 1991), and an antioxidant (Veselinović et al., 2014), 

anti-bacterial (Veselinović et al., 2015) and anti-melanogenic agent (Veselinović et al., 

2017). 

4.1. Pharmacological characterization of flavonoids at the macroscopic and 

single-channel level 

Flavonoids enhance agonist-induced peak currents without significantly 

affecting current decay rates and do not reactivate desensitized receptors. At the 

single-channel level, they increase the open-channel lifetime and induce activation in 

bursts, which are composed by several openings in quick succession, indicating that 

they do affect 7 kinetics as described for other type I PAMs (Andersen et al., 2016). 

The comparison of flavonoid potencies by the EC50 values determined from 

macroscopic recordings shows that Gen and Neo are more potent than Que. 

Regarding efficacy, Gen is the most efficacious 7 PAM, as based on the increase of 

the maximal current and open and burst durations. Gen, Que and Neo increase 6, 3 
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and 2 times, respectively, the mean open duration and 35, 10 and 8 times, 

respectively, the mean burst duration. However, the changes at the macroscopic level 

are less pronounced. A similar lack of correlation has been reported for NS-1738 

(Andersen et al., 2016). Thus, it appears that the burst duration is the most sensitive 

parameter to quantify the potentiating effects, which, in turn, highlights the importance 

of analysing single-channel kinetics for a better understanding of the mechanistic 

changes (Nielsen et al., 2018). In this context, and based on the increase of the burst 

duration, the rank order for 7 potentiation among several type I PAMs is NS-1378 ≥ 

Gen ≥ 5-HI > Que ≥ Neo. 

In our study, the maximal level of potentiation was achieved by simultaneous 

application with the agonist, in contrast to an earlier study which needed preincubation 

with the flavonoid (Lee et al., 2010). This difference may be due to the differences in 

the solution exchange rate of the perfusion system employed for recording in Xenopus 

oocytes. Although Que and Gen are tyrosine kinase inhibitors (Akiyama et al., 1987; 

Glossmann et al., 1981) and changes in 7 phosphorylation may affect its function 

and/or cell expression (Charpantier et al., 2005; Cho et al., 2005), the rapid modulatory 

effects by flavonoids on 7 and on other pLGICs have been shown to be independent 

of tyrosine kinases (Grønlien et al., 2007; Huang et al., 1999; Huang and Dillon, 2000; 

Lee et al., 2010). In our hands, the fact that co-application of flavonoids with ACh 

rapidly affects 7 function in a reversible manner and that a receptor carrying 

mutations at a PAM binding site, not involving phosphorylation sites, is insensitive to 

flavonoid potentiation, supports a direct allosteric effect.  

Our results also show that the position of the B-ring in the benzopyrone moiety 

does not change the main mechanism by which flavonoids act in 7. However, it may 

be involved, together with different hydroxylation patterns, in the slight differences in 

efficacy and potency observed among flavonoids. Moreover, all tested flavonoids carry 

hydroxyl substitutions in positions 5 and 7 in the A-ring that were identified as 

necessary to afford neuronal protection (Dajas et al., 2013; Echeverry et al., 2010). 

 

4.2. Structural determinants of flavonoid PAM activity 

The binding site(s) for 7 PAMs have not been unequivocally identified from 

crystal structures of 7 in complex with PAMs. Several PAMs, including type II PAMs 

(PNU-120596 and TQS) and type I PAMs (ivermectin and LY-2087101) have been 

proposed to bind to transmembrane site(s) (Collins and Millar, 2010; Young et al., 

2008), which may be shared by allosteric modulators displaying very distinct 

pharmacological effects (Gill-Thind et al., 2015; Gill et al., 2013; Pałczynska et al., 
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2012). However, other binding sites in the ECD and/or the ECD-TMD interface have 

been proposed for type I PAMs (Bertrand et al., 2008; Grønlien et al., 2007; 

Targowska-Duda et al., 2018). The 7-5HT3A receptor has been extensively used as a 

model of 7 ECD as well as to dissect the main domains involved in drug modulation. 

In accordance to previous observations, we found that this chimeric receptor is not 

potentiated by flavonoids, although it is sensitive to other type I-PAMs, such as 5-HI 

(Andersen et al., 2016; Grønlien et al., 2010; Williams et al., 2011).  

The lack of flavonoid potentiation in 7-5HT3A indicates that other domains than 

the ECD are required for potentiation. Further dissection of the amino acids involved 

was obtained from the quintuple mutant 7 TSLMF, which is not potentiated by the 

three classes of flavonoids, indicating the involvement of the transmembrane cavity in 

flavonoid modulation. This receptor also shows significantly reduced potentiation by 

type II PAMs (PNU-120596 and PAM-2) and by the type I PAM NS-1738, but full 

potentiation by 5-HI (Andersen et al., 2016; DaCosta et al., 2011).  

It is important to note that Gen not only does not potentiate the chimeric and 

mutant receptors, but it also reduces the open and burst durations, suggesting that it 

acts as an allosteric negative modulator (NAM) of both 7-5HT3A and the mutant 7 

TSLMF. This result agrees with reports showing that PAMs can turn into negative 

modulators in mutant receptors. For example, mutations in the transmembrane region 

(S223M, M254L and S277V) convert ivermectin from PAM into a NAM (Collins and 

Millar, 2010). In agreement, 7 TSLMF receptor contains two of these mutations 

(S223M and M254L) and is inhibited by Gen. 

The fact that Que and Neo neither potentiate nor inhibit the chimeric and mutant 

receptors while Gen inhibits them may rely on different interactions due to their slight 

differences in chemical structures. Our work opens doors for further work deciphering 

the basis underlying the inhibitory effect of Gen.  

We demonstrated that flavonoids exhibit a macroscopic type I PAM profile, 

induce changes in single-channel properties similar to some type I PAMs (Andersen et 

al., 2016), and require structural determinants of the transmembrane domain as type II 

PAMs and some type I PAMs (NS-1738 and ivermectin). Thus, our work provides 

additional information regarding 7 modulation and confirms that the prototypical type I 

(5-HI) and type II (PNU-120596) PAMs may show the extreme behaviors of a wide 

range of allosteric modulators. The classification of type I and type II appears to be an 

oversimplification resulting mainly from macroscopic observations, which highlights the 

importance of characterizing the molecular mechanisms at single-channel level. 
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4.3. Antioxidant activity of flavonoids through α7-PAM activity 

 

We determined the interrelation between 7 modulation and flavonoids in ROS 

levels, which are involved in aging and neurodegeneration (Schieber and Chandel, 

2014). Activation of 7 by a selective agonist (PNU-282987) decreases the ROS 

generation rate, in line with reports describing antioxidant and anti-inflamatory effects 

of 7 on different cellular systems (Parada et al., 2013, 2010; Tsoyi et al., 2011). In 24 

h-treatment,  co-application of flavonoids with the agonist reduces the intracellular ROS 

production but to an extent similar to that achieved by flavonoids alone at the maximal 

concentrations.This observation may be explained by a common mechanism for 

antioxidation mediated by flavonoids and 7-activation which has reached its maximal 

level in our system and/or by the predominance of the flavonoid antioxidant capacity 

independent of 7 at this prolonged time of treatment, thus obscuring the antioxidant 

effect triggered by 7 activation. 

The reduction of Gen exposure to 12 h allowed us to separate the antioxidant 

effects of Gen independent of α7 from those dependent of α7. Although the antioxidant 

activity of Gen alone is not detected at 12 h, the flavonoid potentiates the reduction in 

ROS levels mediated by 7 activation, indicating that its action as type I PAM also 

constitutes a mechanism of antioxidation. These results also revealed the importance 

of 7 potentiation by flavonoids as an additional mechanism underlying their 

neuroprotective role because the effects from their allosteric modulatory action occur at 

an earlier stage than those related to their solely antioxidant action independent of 7. 

It is important to note that the antioxidant effect mediated by 7 activation takes 

place only in transfected cells, while the flavonoid antioxidant effects independent of 

7, occur in all cells. Thus, the difference between both conditions may be 

underestimated and therefore, the contribution of 7 signalling could be even higher 

than here determined. Nevertheless, the significant reduction in ROS generation levels 

in cells treated with the 7 selective agonist alone supports our model for measuring 

the effects mediated by nAChR activation. 

The dual ionotropic/metabotropic activity of 7 is responsible for its role in 

neuroprotection. Mainly, the neuroprotective effects depend on NF-κB inhibition, which 

has an antiinflammatory action, and on the pathway Jak2/PI3K/Akt leading to activation 

of Nrf-2, a transcription factor primarily responsible for cellular defense against 

oxidative stress (Parada et al., 2013; Tsoyi et al., 2011). Flavonoids also downregulate 

NF-κB pathways and modulate several signalling cascades, including PI3K/Akt that 

leads to upregulation of Nrf-2 (Dajas et al., 2013; Williams et al., 2004). It is possible 
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that 7 through both its ionotropic and metabotropic responses triggers more rapidly 

these common pathways than flavonoids alone. In the presence of flavonoids, the more 

sustained activation of 7 leading to higher calcium-influx potentiates the 7-triggered 

intracellular pathways that mediate antioxidation. Thus, positive modulation on 7 may 

represent a spare mechanism by which flavonoids exert their antioxidant activity and, 

therefore, their neuroprotective role.    

 

4.4. Therapeutic impact of flavonoids acting as α7 PAMs 

 

Previous studies have explored the selectivity of flavonoids on different LGICs, 

showing a positive effect only on 7 and an inhibitory effect on most neurotransmitter 

receptors, including GABA-, serotonin-, ACh-, glycine- and glutamate-activated 

receptors (Goutman et al., 2003; Grønlien et al., 2007; Huang et al., 1999; Huang and 

Dillon, 2000; Lee et al., 2011a, 2011c, 2011b, 2008, 2007, 2005; Shin et al., 2010). 

This strict selectivity for potentiation may result in a promising feature for therapy. 

Furthermore, modifications of flavonoid structure have allowed different 

pharmacological effects on GABA receptors (Hanrahan et al., 2011; Wasowski and 

Marder, 2012). This demonstrates that not only the natural flavonoids, but also the 

synthetic ones, exhibit a high potential for therapeutic development.  

The advantages of PAMs over agonists for therapy are the maintainance of the 

temporal and spatial pattern of the endogenous neurotransmitter, higher selectivity for 

binding into allosteric sites, reduction of tolerance due to 7 desensitization and 

neuroprotective action (Bertrand and Gopalakrishnan, 2007; Bouzat et al., 2018; 

Chatzidaki and Millar, 2015; Faghih et al., 2008; Uteshev, 2014; Williams et al., 2011). 

Nevertheless, there is a controversy about the possible cytotoxicity of PAMs due to the 

high increase in intracellular calcium levels (Ng et al., 2007; Liu et al., 2009; Williams et 

al., 2012; Guerra-Álvarez et al., 2015; Uteshev, 2016). Type II PAMs are the most 

controversial due to their ability to potentiate 7 currents with high efficacy, decrease 

desensitization and reactivate desensitized receptors (Guerra-Álvarez et al., 2015; Hu 

et al., 2009; Ng et al., 2007; Uteshev, 2016; Williams et al., 2012). Type I PAMs may 

be less cytotoxic than type II PAMs because potentiation is lower and receptor 

desensitization still occurs, which acts as a filter against excessive stimulation (Guerra-

Álvarez et al., 2015; Hu et al., 2009; Ng et al., 2007; Williams et al., 2012). Therefore, 

the use of flavonoids is a promising therapeutic strategy for enhancing 7 function, 

because they do not change the desensitization rate and do not reactivate desensitized 

receptors.  
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As natural compounds with a broad spectrum of beneficial pharmacological and 

biological activities, including their role as 7 PAMs reported here, flavonoids are 

suitable candidates for the treatment of multifactorial diseases. We here evaluated the 

action of unmetabolized flavonoids but it has been shown for several compounds that 

the conjugated and derivatives forms of polyphenols have similar or greater bioactivity 

interacting with the same signalling pathways (Kawai, 2018; Unno et al., 2017). 

The intake of flavonoids in the diet ranges from 60 to 350 mg/day (Johnston, 

2015), reaching high nanomolar-low micromolar concentration levels in in vivo studies, 

which are correlated with those showing effects in vitro (Krasieva et al., 2015; Schaffer 

and Halliwell, 2012). Interestingly, some polyphenols are concentrated in neural tissue, 

and therefore the achieved concentration may be higher (Kalt et al., 2008; Milbury and 

Kalt, 2010). The effects of flavonoids as 7 PAMs occur at the low micromolar range 

and, therefore, at clinically achievable concentrations. Furthermore, the beneficial 

actions of these natural compounds may be due to a synergic effect of the multiplicity 

of flavonoids ingested in the diet. 

 

5. CONCLUSIONS 

 

The α7 nicotinic receptor participates in cognition, neuroprotection and inflammation and 

its potentiation is emerging as promising therapeutic strategy for neurological and 

inflammatory disorders. On the other hand, flavonoids are plant polyphenolic compounds 

showing neuroprotective, anti-inflammatory and pro-cognitive actions. Besides their well-

known antioxidant activity, flavonoids trigger intracellular pathways and interact with 

receptors, including α7. We here identified a neoflavonoid as a novel α7 PAM and 

deciphered the molecular mechanisms underlying the PAM actions of three classes of 

flavonoids. They potentiate macroscopic responses without affecting receptor 

desensitization, increase open-channel lifetime and induce channel activation in 

episodes of successive openings, thus modulating α7 kinetics. Flavonoids share 

transmembrane structural determinants with other non-structurally related PAMs. 

Besides the well-described antioxidant actions of flavonoids, the enhancement of 7 

activation has also a functional role reducing the ROS generation rate in human cells. 

Thus, allosterically potentiation of α7 is proposed as an additional mechanism underlying 

the neuroprotective actions of flavonoids, which, in turn, may be used as scaffolds for 

designing new therapeutic agents. The identification of novel candidate PAMs as well as 

the understanding of their actions at the molecular level are required for the still ongoing 

development of these promising therapeutic compounds. 
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FIGURE LEGENDS 

Figure 1. Effects of flavonoids on macroscopic currents of human 7 evoked by 

ACh in Xenopus oocytes.  

(A) Left: Chemical structures of flavonoids: Genistein (Gen), Quercetin (Que) and 5,7-

dihydroxy-4-phenylcoumarin (Neo), showing the benzopyrone moiety (A and C-rings) 

and the position in which B-ring is located for each class. Right: Representative traces 

of macroscopic currents evoked by ACh at a concentration corresponding to EC20 (30 

µM) alone (control currents, grey) and together with the flavonoid at different 

concentrations (experimental currents, coloured traces, co-application protocol). 

Currents were recorded from Xenopus oocytes at 60 mV holding potential using 

HiClamp.  

(B) Concentration-response curves obtained from macroscopic currents elicited by 

ACh (30 µM) in the presence of different concentrations of Gen (red), Que (blue) and 

Neo (green) were fitted by nonlinear regression to the Hill Equation, as described in 

Materials and Methods. The two plots correspond to different protocols: co-application, 

in which flavonoids were applied with the agonist (left) or preincubation plus co-

application, in which cells were preincubated for 10 s with the flavonoid and then the 

flavonoid was applied together with the agonist (right). Data points are mean values ± 

SEM. EC50 values, maximal potentiation, Hill slope and the number of independent 

experiments (n) and batches of oocytes (N) are shown in Table 1. 

 

Figure 2. Potentiation and recovery from desensitization of human 7 by 

flavonoids and typical PAMs.  

(A) Macroscopic currents were recorded in the whole-cell configuration from BOSC23 

cells expressing human 7. Top: Representative whole-cell 7-currents evoked by 

ACh (black traces) and ACh co-applied with the prototype type I PAM (5-HI) and type II 

PAM (PNU-120596) (grey traces). Bottom: Representative whole-cell 7-currents 

elicited by ACh (black traces) and by ACh co-applied with a given flavonoid (grey 

traces). The horizontal bars over the currents indicate the application of agonist alone 

(black) or together with PAMs or flavonoids (grey). Holding potential: 50 mV. 

(B) Recovery of 7 from desensitization by PAMs and flavonoids was assessed. 

Continuous exposure of 7 to ACh (100 µM) results in 7 desensitization. After 

reaching the steady state current in the continuous presence of ACh, cells were 

exposed to a pulse of buffer alone or containing different drugs: type II PAM (1 μM 

PNU-120596) and type I PAMs (2 mM 5-HI and 10 μM NS-1738) (left) and flavonoids 

Gen, Que and Neo (50 μM) (right). The traces shown are representative for each 
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condition. The control currents evoked by ACh (black traces) were normalized among 

the different conditions for comparison of the reactivated currents (grey traces). The 

horizontal bars over the currents indicate the application of agonist alone (black) or 

together with buffer or drugs (grey). Holding potential: 50 mV. 

 

Figure 3. Single-channel current profile of 7 in the presence of flavonoids.  

Single-channel currents were recorded in the cell-attached configuration from BOSC23 

cells expressing human 7.  

(A) Left: Typical traces of 7 channel currents in the presence of 100 M ACh alone or 

combined with 50 M Gen, 50 M Que and 50 M Neo. Channel openings are shown 

as upward deflections. Right: Representative open and burst duration histograms for 

each condition. Membrane potential: -70 mV. Filter: 9 kHz.  

(B) Mean open (open) and burst (burst) durations in presence of 50 M Gen, 50 M Que 

and 50 M Neo. The data correspond to the duration of the slowest component of each 

corresponding histogram. Data are plotted as mean ± SD. The n (number of 

independent experiments) for each condition was: (-) n=5, Gen n=5, Que n=4 and Neo 

n=4. The number of cell transfections (N) for each condition is shown in Table 2. 

Statistical significance among groups was determined by OneWay ANOVA followed by 

Bonferroni’s post-hoc tests for multiple comparisons. The symbol * indicates 

differences with control without flavonoid, # indicates differences with Gen condition 

and & indicates differences with Que condition. ns indicates no significant differences 

among the conditions. For all the cases, the number of symbols (one, two or three) 

indicates different significant p-values independently of the type of symbol (For 

instance, p<0.05*, p<0.01**, p<0.001***). 

 

Figure 4. Effects of flavonoids on chimeric 7-5HT3A receptors at the single-

channel level.  

(A) Left: Typical traces from single-channel recordings of chimeric 7-5HT3A in the 

presence of 500 μM ACh alone or combined with 50 μM Gen, 50 μM Que or 50 μM 

Neo. Channel openings are shown as upward deflections. Right: Representative open 

and burst duration histograms for each condition. Membrane potential: -70 mV. Filter: 9 

kHz. 

(B) Mean open (open) and burst (burst) durations in presence of 50 μM Gen, 50 μM Que 

and 50 μM Neo. The data correspond to the duration of the slowest component of each 

corresponding histogram. Data are plotted as mean ± SD. The n (number of 

independent experiments) for each condition was: (-) n=5, Gen n=4, Que n=5 and Neo 
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n=4. The number of cell transfections (N) for each condition is shown in Table 2. 

Statistical significance was determined by two-tailed Student’s t-test. The symbol * 

indicates statistically significant differences with control without flavonoid. 

 

Figure 5. Effects of flavonoids on the quintuple mutant 7 TSLMF at the single-

channel level.  

(A) View of the -helices TM1, TM2 and TM3 with the five mutations that make 7 

insensitive to PNU-120596 (DaCosta et al., 2011). 

(B) Left: Typical traces from single-channel recordings of 7 TSLMF in the presence of 

100 μM ACh alone or combined with 50 μM Gen, 50 μM Que and 50 μM Neo. Channel 

openings are shown as upward deflections. Right: Representative open and burst 

duration histograms for each condition. Membrane potential: -70 mV. Filter: 9 kHz. 

(C) Mean open (open) and burst (burst) durations in presence of 50 μM Gen, 50 μM Que 

and 50 μM Neo. Data are plotted as mean ± SD. The number of independent 

experiments (n) for each condition was: (-) n=5, Gen n=4, Que n=5 and Neo n=4. The 

number of cell transfections (N) for each condition is shown in Table 2. Statistical 

significance was determined by two-tailed Student’s t-test. The symbol * indicates 

comparison with control without flavonoid. 

 

Figure 6. Effects of flavonoids on intracellular ROS production.  

24-h treatment (A-C) (A) Representative fluorescence images of the effects on 

intracellular ROS levels after 24 h treatment with flavonoids alone (50 M), 10 M 

PNU-282987 (selective agonist), 500 nM -Bgt (selective antagonist), 10 M PNU-

282987 plus 500 nM -Bgt, and flavonoids (50 M) plus 10 M PNU-282987. The DCF 

fluorescence was observed under an inverted fluorescence microscope. Scale bar: 50 

μm. 

(B) The plot shows the mean curves describing time course of ROS production for 

each condition after 24 h-treatment fitted by linear regression: control, 50 μM Gen, 50 

μM Que, 50 μM Neo, 10 μM PNU-282987, 500 nM -Bgt, 10 μM PNU-282987 + 500 

nM -Bgt, 10 μM PNU-282987 + 50 μM Gen, 10 μM PNU-282987 + 50 μM Que and 10 

μM PNU-282987 + 50 μM Neo. The curves corresponding to the positive control with 

H2O2 (added at time zero of the assay) and to the dye control (solution of the probe 

alone) are also shown. Data are plotted as mean ± SEM, normalizing the slope of each 

condition to the slope of the control condition. For clarity reasons, we refer to PNU-

282987 (7 selective agonist) as PNU in the figure.  
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(C) The bar chart shows the normalized DCF slope (ROS generation rate) obtained 

from the previous plot in the different conditions after 24 h-exposure. Data are plotted 

as mean ± SD. The number of independent experiments (n) were: DMSO control n=11, 

Gen n=5, Que n=5, Neo n=5, PNU-282987 n=11, -Bgt n=9, PNU-282987 + -Bgt 

n=9, PNU-282987 + Gen n=5, PNU-282987 + Que n=5 and PNU-282987 + Neo n=5. 

The number of cell transfections (N) coincides with the number of independent 

experiments (n) for each condition. The symbol * indicates comparison to the DMSO 

control by two-tailed Student’s t-test. For clarity reasons, we refer to PNU-282987 (7 

selective agonist) as PNU in the figure. The slope corresponding to cells treated with 

H2O2 is shown for comparative purposes. 

12-h treatment (D-E) (D) Representative fluorescence images of the effects of 50 M 

Gen, 10 M PNU-282987, 10 M PNU-282987 + 50 M Gen and 10 M PNU-282987 

+ 50 M Gen + 500 nM -Bgt on intracellular ROS levels after 12 h treatment. The 

DCF fluorescence was observed under an inverted microscope. Scale bar: 50 μm. 

(E) The bar chart shows the normalized DCF slope (ROS generation rate) in the 

different conditions after 12 h-exposure. Data are plotted as mean ± SD. The number 

of independent experiments (n) were: DMSO control n=7, 10 M Gen n=7, 50 M Gen 

n=7, PNU-282987 n=7, PNU-282987 + 10 M Gen n=7, PNU-282987 + 50 M Gen 

n=7, PNU-282987 + 10 M Gen + -Bgt n=3 and PNU-282987 + 50 M Gen + -Bgt 

n=3. The number of cell transfections (N) coincides with the number of independent 

experiments (n) for each condition. The symbol * indicates comparison to the DMSO 

control, by two-tailed Student’s t-test. For clarity reasons, we refer to PNU-282987 (7 

selective agonist) as PNU in the figure. 
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TABLES 

Table 1. Pharmacological and kinetic effects of flavonoids on human 7 

receptors expressed in Xenopus oocytes and in BOSC23 cells. 

 Protocol Genistein Quercetin Neoflavonoid 

Macroscopic currents from 7 expressed in Xenopus oocytes 

EC50 (μM) 
Co-app 9.36 ± 0.81 15.39 ± 2.03

##
 9.64 ± 0.66

&&
 

Pre + Co-app 10.15 ± 0.79 11.45 ± 0.52 9.15 ± 0.63 

Hill Slope 
Co-app 2.98 ± 0.34 2.12 ± 0.23 3.16 ± 0.34 

Pre + Co-app 2.53 ± 0.20 2.33 ± 0.19 4.04 ± 0.58 

Max  
Potentiation 

Co-app 2.08 ± 0.09*** 2.13 ± 0.07*** 1.46 ± 0.03*** 
### &&&

 

Pre + Co-app 2.18 ± 0.05*** 2.30 ± 0.14*** 1.45 ± 0.02*** 
### &&&

 

% Max  
Potentiation 

Co-app 208 ± 9*** 213 ± 7*** 146 ± 3*** 

Pre + Co-app 218 ± 5*** 230 ± 14*** 145 ± 2*** 

n 
Co-app 11 8 10 

Pre + Co-app 16 8 9 

N 
Co-app 4 3 3 

Pre + Co-app 4 3 3 

Macroscopic currents from 7 expressed in BOSC23 cells 

Current Peak (times) Co-app 1.38 ± 0.28** 1.25 ± 0.17** 1.25 ± 0.14*** 

Net Charge (times) Co-app 1.91 ± 0.62*** 1.18 ± 0.25 1.86 ± 0.30** 

Net Charge/Peak Co-app 1.45 ± 0.61 0.95 ± 0.14 1.51 ± 0.34 

fast (ms) Co-app 56 ± 20 61 ± 32 37 ± 11 

slow (ms) Co-app 728 ± 218 771 ± 397 1089 ± 769 

n Co-app 8 7 7 

N Co-app 4 4 4 

 

Top: Macroscopic currents recorded from Xenopus oocytes expressing human 7. ACh 

concentration: 30 μM. Values are mean ± SEM.  Data was estimated from 

concentration-response curves shown in Figure 1B. The maximal potentiation was 

calculated as (IACh EC20+PAM) /IACh EC20 and compared with the respective control current 

by two-tailed Student’s t-test. Significant differences are indicated with the symbol *. 

Statistical analysis among the different flavonoids was conducted using OneWay 

ANOVA followed by Bonferroni’s post-hoc tests for multiple comparisons. The symbols 

# and & indicate significant differences comparing with Gen and Que, respectively. For 

all the cases, the number of symbols (one, two or three) indicates different significant 

p-values independently of the type of symbol (For instance, p<0.05*, p<0.01**, 

p<0.001***). N is the number of batches of oocytes used for experiments and n 

corresponds to the number of independent experiments carried out, each from different 

oocytes. 

Bottom: Macroscopic currents recorded from BOSC23 cells expressing human 7. ACh 

concentration: 100 μM. Values are mean ± SD and they correspond to values relative 
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to the control in the same cell (peak current and net charge) or absolute values (decay 

time constants, ) as described in Materials and Methods. Statistical analysis was 

conducted by two-tailed Student’s t-test comparing with the respective control 

macroscopic current in absence of flavonoid (p<0.05*, p<0.01**, p<0.001***). n 

corresponds to the number of independent experiments, each from different cell 

patches, and N indicates the number of cell transfections.  
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Table 2. Single-channel parameters of 7, 7-5HT3A and 7 TSLMF receptors in 

the presence of flavonoids. 

Receptor Flavonoid 

Flavonoid 
concentration 

(M) 
open (ms) 

t-test for 

open 
burst (ms) 

t-test for 

burst 
n N 

7 

- - 0.27 ± 0.01 - 0.35 ± 0.02 - 5 5 

Genistein 5 1.10 ± 0.05*** t(7)=-36.887 3.21 ± 0.26*** t(7)=-30.430 4 3 

Genistein 10 1.08 ± 0.07*** t(7)=-27.384 4.00 ± 0.26*** t(7)=-62.792 4 3 

Genistein 25 1.62 ± 0.04*** t(7)=-65.784 13.62 ± 3.53*** t(7)=-31.400 4 3 

Genistein 50 1.59 ± 0.22*** t(8)=-26.279 12.24 ± 3.75*** t(8)=-27.586 5 4 

Genistein 100 1.54 ± 0.17*** t(8)=-31.600 10.92 ± 0.97*** t(8)=-72.828 5 4 

Quercetin 5 0.24 ±0.03 t(7)=2.008 0.31 ± 0.06 t(7)=1.436 4 4 

Quercetin 10 0.55 ±0.11* t(7)=-5.687 1.44 ± 0.45* t(7)=-5.556 4 4 

Quercetin 25 0.76 ±0.25*** t(8)=-7.252 2.89 ± 1.12*** t(8)=-5.068 5 3 

Quercetin 50 0.78 ±0.12*** t(7)=-15.252 3.33 ± 0.38*** t(7)=-40.133 4 3 

Quercetin 100 0.76 ±0.04*** t(7)=-23.996 2.81 ± 0.44* t(7)=-12.557 4 4 

Neoflavonoid 5 0.27 ± 0.12 t(7)=0.0182 0.39 ± 0.17 t(7)=-0.545 4 3 

Neoflavonoid 10 0.25 ± 0.10 t(7)=0.458 1.11 ± 0.15* t(7)=-11.585 4 3 

Neoflavonoid 25 0.54 ± 0.10*** t(7)=-8.769 2.00 ± 1.01* t(7)=-3.717 4 4 

Neoflavonoid 50 0.57 ± 0.06*** t(7)=-11.277 2.66 ± 0.37*** t(7)=-30.545 4 4 

Neoflavonoid 100 0.39 ± 0.13 t(7)=-2.022 1.36 ± 0.71* t(7)=-3.220 4 4 

7-5HT3A 

 -  - 5.26 ± 0.30 - 12.35 ± 3.00 - 5 4 

Genistein 50 2.32 ± 0.34*** t(7)=13.812 6.06 ± 1.89** t(7)=4.237 4 3 

Quercetin 50 4.54 ± 1.00 t(8)=1.580 10.36 ± 2.08 t(8)=1.302 5 3 

Neoflavonoid 50 4.52 ± 1.00 t(7)=1.606 13.21 ± 3.73 t(7)=-0.385 4 3 

7 TSLMF 

- - 1.26 ± 0.43 - 1.98 ± 0.74 - 5 4 

Genistein 50 0.42 ± 0.11** t(8)=4.195 1.43 ± 0.42 t(8)=1.446 5 4 

Quercetin 50 1.28 ± 0.30 t(7)=-0.066 1.69 ± 0.67 t(7)=0.607 4 3 

Neoflavonoid 50 0.77 ± 0.04 t(7)=2.239 1.51 ± 0.47 t(7)=1.092 4 3 

 

Single-channel currents were recorded from cells expressing human 7 wild-type 

(activated by 100 μM ACh), 7-5HT3A (activated by 500 μM ACh) or the quintuple 

mutant 7 TSLMF (activated by 100 μM ACh) in the absence or presence of flavonoids. 

open and burst correspond to the slowest components of the corresponding histograms. 

Values are mean ± SD. n: number of independent experiments, each from different cell 

patches. N: number of cell transfections. Statistical significance was determined by 

comparing the mean value in the presence of the flavonoid respect to the mean value in 

absence of the flavonoid by two-tailed Student’s t-test. The resulting t-values are shown 

in the Table and p-values are indicated as p<0.05*, p<0.01**, p<0.001***. 


