
Programming a Microcontroller to Drive a Fisher &
Paykel SmartDrive™ Washing Machine Motor to Power a

Go-Kart.

 Andy Fendall
Waikato Institute of Technology

Andy.Fendall@wintec.ac.nz

ABSTRACT

Microcontrollers are one of the basic building blocks of the “Internet of Things”. In this paper, I describe the tools and

processes needed to program a STM32F302R8 microcontroller to drive a Fisher & Paykel SmartDrive™ brushless direct

current motor. The motor is used to power a go-kart. The STM32F302R8 is an ARM® Cortex®-M4 microcontroller,

programmed with the “C” programming language. The F&P SmartDrive™ motor is a brushless direct current motor, which

relies on a microcontroller unit to provide commutation for the coils.

Keywords: Microcontroller, C Programming, Internet of Things, Programming Embedded Devices

1. INTRODUCTION
The Fisher & Paykel SmartDrive™ washing machine motor

(Fisher & Paykel Appliances Ltd, 2019) is a brushless direct

current (BLDC) motor, driven by a microcontroller in a

washing machine. It is a good choice of motor to replace a

petrol engine in a go-kart because of its low cost, ready

availability at recycling centres, and high torque. BLDC motors

typically run at 90% efficiency and produce maximum torque

at zero rpm. With a 48vdc power supply from four 12AH lead

acid batteries in series, it can provide about one kilowatt of

power while drawing about 20 amps. This setup gives over an

hour of running between charges.

The drawback of BLDC motors is that they require a

microcontroller to switch the current at the correct time and in

the correct direction though two of the three sets of coils (three

phases). It is also needed to control the speed of the motor by

providing pulse width modulation to the output MOSFET

transistors. On the positive side, having decided to use a

microcontroller, it can also provide control logic, and drive an

LCD display. An STM32F302R8 microcontroller

(STMicroelectronics International N.V., 2019) was chosen

because it comes mounted on a demonstration board with a

built-in debugger for a little over $20. Considerably cheaper

than an Arduino. (RS Components Ltd, 2019) It can be mated

with a Motor Controller demonstration board at a cost of about

$100. (RS Components Ltd, 2019)

While demonstration software is provided by

STMicroelectronics for the microcontroller demonstration

board and motor controller board combination, the software did

not work with the SmartDrive™ motor. The author was

therefore forced to program the microcontroller from the

beginning, without the benefit of a previously written working

program.

2. WHAT THE PROGRAM NEEDS TO

DO
The microcontroller needs to be programmed to: -

• Process several digital inputs.

• Measure the voltage on several analogue inputs.

• Output digital signals to turn display LEDs on and

off.

• Produce 3 pulse width modulated signals to control 3

gate drivers which, in turn provide the necessary

signals to control the output MOSFET transistors.

• Build a bitmap picture for the LCD display and

output it in the correct format.

• Provide some control logic.

• Produce telemetry and output it in asynchronous

serial format via a UART.

• Instantly switch the MOSFETS off, if the over

current state is detected.

To start with, the primary function of the microcontroller is to

drive a brushless DC motor. Three Hall Effect sensors, located

on the stator, provide information about the position of the rotor

which contains embedded ferrite magnets. This is in the form

of a three-digit code. The microcontroller reads these signals in

response to a signal change. A switch statement is used in the

program to provide the right combination of digital signals to

switch three gate drivers into one of six possible configurations.

As the magnets pass a set of three coils, all six steps are

processed to drive the output MOSFET transistors to switch the

This quality assured paper appeared at the 10th annual conference of Computing

and Information Technology Research and Education New Zealand

(CITRENZ2019) and the 32nd Annual Conference of the National Advisory

Committee on Computing Qualifications, Nelson, NZ, Oct. 9-11, during ITx 2019.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wintec Research Archive

https://core.ac.uk/display/237195285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

current through the coils. The current sets up a magnetic field

in each coil which either pushes or pulls each magnet.

The speed of the motor is controlled by a potentiometer

connected to an analogue to digital converter peripheral, built

into the microcontroller. The program averages the digital

output to remove noise and the result is used to control pulse

width modulation generated by a three-channel timer

peripheral built into the microcontroller. The higher the voltage

produced by the potentiometer, the wider the pulses (longer

duty cycle) which are fed to the gate drivers, and the higher the

voltage applied to the coils in the motor.

Other analogue inputs are used to measure the voltage available

to the motor controller, the current drawn by the coils, and the

temperature measured at the output transistors and on the motor

itself.

The motor controller board provides hardware sensing of the

current. If the current exceeds about 30 Amps a pin on the

microcontroller is driven high. The program instantly detects

this over current state and shuts the motor down for a period of

two seconds, saving the MOSFETS from instant annihilation.

A flashing LED indicates the overcurrent state.

Two switches are used to control the motor. One is an on/off

switch and the other is used to switch between forward and

reverse directions. Another Timer peripheral is used to trigger

reading the state of the switches every tenth of a second. Two

LEDs are used to display the “on” state of the motor and the

“reverse” state. The program provides control logic so the

motor will not enter the reverse state from the forward state

until the speed of the motor has dropped to zero.

To avoid the motor controller going into the over current state

when the go-kart is climbing a steep hill, another function of

the program is to provide proportional control of the current. If

the current exceeds a threshold, it is held close to 20 Amps by

proportionally reducing the duty cycle of the pulse width

modulation.

The current is also limited to stop the motor controller going

into the over current state when the speed control is suddenly

increased to full throttle. Another function in the program fixes

this by only allowing the pulse width modulation duty cycle to

increase in proportion to the speed of the motor.

The speed of the motor is measured in revolutions per minute

(rpm). It is calculated over a period lasting a tenth of a second,

by counting the number of six step cycles and applying a scale

factor.

The LCD Display displays the speed of the go-kart in

kilometres per hour, scaled from the motor rpm. It also displays

the battery voltage and current drawn, as well as the motor

temperature and the temperature of the output MOSFETS. The

program uses font maps to construct a bitmap, stored in an

array. The contents of the array are then clocked out to the LCD

Display along with command sequences. This process happens

twice a second to refresh the screen.

Finally, telemetry is assembled, consisting of motor on state,

motor reverse state, voltage, current, motor rpm, output stage

temperature and motor temperature. The data is concatenated

into a JSON string and output from the UART peripheral. It can

be viewed in a terminal emulator window on a laptop via a USB

cable, but future work could enable the telemetry to be

uploaded to a cloud server using a radio link.

3. THE STRUCTURE OF THE

PROGRAM
The main program starts by initialising the clock tree of the

microcontroller, followed by the NVIC (Nested Vector

Interrupt Controller), DMA (Direct Memory Access), ADC

(Analogue to Digital Converter), timers, GPIO pins and UART

(Universal Asynchronous Receiver Transmitter). It then goes

into an infinite loop. The only code in the loop is for

constructing the bitmap for the LCD display and then

transmitting the bits from two GPIO pins connected to the

display. This is a long running task but is not time sensitive.

The most time sensitive task is to read the state of the three Hall

Effect sensors and switch the PWM timer outputs to the gate

drivers. This is triggered by one the Hall effect sensor pins

transitioning from low to high, or high to low. This raises an

interrupt which is handled by an Interrupt Service Routine

(ISR). The code in the ISR does the work of selecting one of

six combinations of outputs to the three gate drivers. This ISR

gets the highest priority, controlled by the NVIC, which means

that all other code execution is halted and transferred to the

stack while the ISR is being processed. This results in very low

latency in switching the current to the motor coils.

The next most time sensitive process is to transfer the output of

the ADC. The ADC uses DMA to write the output of its

conversions to an array. The Conversion Completed call-back

handles the interrupt generated by the ADC and the code copies

the contents of the array to other arrays for averaging.

The Timer Period Elapsed call-back handles the interrupt given

the third highest priority, which is raised every tenth of a

second. This code reads the state of the on/off and reverse

switches and applies some control logic. It averages the various

outputs of the ADC and calculates the length of the duty cycle

of the pulse width modulation, which controls the speed of the

motor. In doing this calculation it considers current limiting

necessitated by high current draw or low RPM.

Another timer generates an interrupt ever half second which is

also handled by the Timer Period Elapsed call-back at a lower

priority. It sets a flag (global variable) which signals to the main

program to start the display refresh process.

The lowest priority interrupt is used to trigger the UART to

transmit the telemetry string.

4. TOOLS USED AND DESIGN

PROCESS
The microcontroller is mounted on a STM32 Nucleo-F302R8

demonstration board with a built-in debugger. The debugger

connects to a laptop for programming using a USB cable, which

also supports asynchronous serial communication with the

microcontroller. The author’s preferred IDE is Microsoft

Visual Studio. Fortunately, a third-party company supplies an

extension to Visual Studio called VisualGDB (Sysprogs OÜ,

2019) which sets up a new project with the Hardware

Abstraction Layer (HAL) source files for the specified

microcontroller. It automatically loads the microcontroller

flash memory with the executable program and supports step

by step debugging and real time graphical monitoring of

variables.

The initialisation code for the microcontroller peripherals is

generated by another software application, from

STMicroelectronics, called STM32CubeMX

(STMicroelectronics International N.V., 2019). The

application provides a well laid out graphical user interface,

allowing the user to select pins on the microprocessor for each

particular purpose and set up peripherals such as the GPIO pins,

the ADC controller, NVIC, DMA, Timers and UART. The

application generates “C” source code which can be imported

into a new VisualGDB embedded project in Visual Studio. The

configuration of the peripherals can be changed in the

STM32CubeMX application and the code re-generated without

losing any existing code.

The only drawback with the STM32CubeMX generated code

is that it initialises each of the various peripherals but does not

start them. For that another line of code for each peripheral is

required. A second missing line of code is also needed for each

interrupt handler to receive the call-back from the interrupt

controller. The functions are included in the HAL library but in

each case, for the novice there is no hint of what the function

could be called. Resorting to the manual for the microcontroller

only leads to further confusion, because of the huge amount of

detail provided. Fortuitously, electronics engineer Carmine

Noviello has recently written a book called Mastering STM32

(Noviello, 2019) which is pitched at beginners and contains

plenty of example code. The missing functions and their

parameters were retrieved from the book along with a good

understanding of how the code works.

5. CONCLUSION
The author has shown that it is possible to program an STM32

microcontroller to provide commutation for and control a

Fisher & Paykel SmartDrive™ washing machine motor. The

washing machine motor can power the go-kart up to 12 km/h

on the flat and drive a 108kg payload up a 1:5 slope.

In future work the author intends to add a GPS receiver and

radio transmitter to the project to remotely monitor the location

of the go kart and gather telemetry. This would add the project

to the “Internet of Things”.

6. REFERENCES
Fisher & Paykel Appliances Ltd. (2019, June 30). Smartdrive

Technology. Retrieved from Fisher & Paykel

Appliances Ltd:

https://www.fisherpaykel.com/nz/company/innovati

on/smartdrive-technology.html

Noviello, C. (2019, June 30). Mastering STM32 book.

Retrieved from Carmine Noviello:

https://www.carminenoviello.com/mastering-stm32/

RS Components Ltd. (2019, June 30). STMicroelectronics

Nucleo Board, Power MOSFET Evaluation Board X-

NUCLEO-IHM08M1. Retrieved from RS

Components Ltd Web site: https://nz.rs-

online.com/web/p/processor-microcontroller-

development-kits/1513007/?sra=pmpn

RS Components Ltd. (2019, June 30). STMicroelectronics

STM32 Nucleo-64 MCU Development Board

NUCLEO-F302R8. Retrieved from RS Components

Ltd Web site: https://nz.rs-

online.com/web/p/processor-microcontroller-

development-kits/8112277/?sra=pmpn

STMicroelectronics International N.V. (2019, June 30).

Nucleo-F302R8. Retrieved from STMicroelectronics

Web site: https://www.st.com/en/evaluation-

tools/nucleo-f302r8.html

STMicroelectronics International N.V. (2019, June 30).

STM32CubeMX. Retrieved from STMicroelectronics

International N.V. Web site:

https://www.st.com/content/st_com/en/products/dev

elopment-tools/software-development-tools/stm32-

software-development-tools/stm32-configurators-

and-code-generators/stm32cubemx.html

Sysprogs OÜ. (2019, June 30). VisualGDB. Retrieved from

Sysprogs OÜ:

https://visualgdb.com/?features=embedded

