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Josselyne, José, Sammy, Iván and Gus. Also thanks to those whom gave me their

direct or indirect support and now are gone.



Summary

Pedro Antonio Limón Dı́az.
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Number of pages: 91.

Objectives and study method: This thesis aims to design and to develop a

platform that is capable to guide, control a system orientation as well as the position

for a missile. The system designed can be also extrapolated to an unmanned aerial

vehicle. The platform designed will help to generate tools to define the orientation

and position of a vehicle by acquiring data from an inertial measurement unit in real

time.

To confirm the platform operation, a co-simulation technique Hardware-In-

The-Loop is used. By using this technique, it is possible to divide the platform into

the following modules:

1) Sensor module. This module is composed by an accelerometer, gyroscope, mag-
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netometer, barometer, temperature sensor (that are co-integrated in the same

board) and an IR camera.

2) Flight computer module. This module has a distributed system architecture.

One side is composed by a commertial development FPGA board for data

acquisition, a personal computer for processing and displaying data results.

Contributions and conclusions: The developing process is to perform a sim-

ulation that, separately, communicates the sensor module block with the flight com-

puter module. Once confirmed the data acquisition and the processes, we will pro-

ceed to co-integrate all the algorithms into a main one and test the platform with all

the instruments. Additionally, we add a communication module that is co-integrated

with a radio frequency transceiver to reinforce a wireless communication.

A detailed process to implement the embedded system within the FPGA board

is included. The specifications for each element used as the sensor, flight computer

and communication modules with a comprehensive description of the system gener-

ation are shown. Finally, the results of the test, conclusions and recommendations

for future work are addressed.

Signature of assesor:

Mario Alberto Garćıa Ramı́rez, PhD



Chapter 1

General Introduction

1.1 Description of the problem

Nowadays, the development of high speed either algorithms and computers for mil-

itary applications has been increased to a steady step for last decades. Modern

materials, high speed processors and state-of-the-art maths have helped in the de-

velopment of several unmannered aerial vehicles such as drones or missiles. The

issue that we are addressing in this research work is based on the development of a

low cost, reconfigurable flight computer to control an earth to air missile.

In order to develop the system, we were focused on foreseen for many de-

velopment boards based on a set of reconfigurable devices on the market such as

Raspberry Pi, Arduino, Beagle, FPGA, etc. These boards can be programmed to

perform a specific task. It is possible to design and to develop embedded systems.

These specific tasks can perform almost any function or control several sets of arrays.

Within the whole range of sensors, we must define those that integrate an inertial

measurement unit. In a similar way, the FPGA board selected have the capabil-

ity and resources to support data management (acquisition and transmission) and

real-time processing for the missile or remote probe requirements.

A set of sensors and a reconfigurable FPGA development board to design and

1



Chapter 1. General Introduction 2

to develop a platform based on a navigation and control system are required. The

data acquisition should serve as a support tool to provide among other for complex

task orientation to a missile. It must be confirmed by a wireless communication.

This platform will have the ability to acquire and to store data from a set of sensors

in order to process them.

1.2 Hypothesis

The resources that a FPGA development board has are suitable for data acquisition

as well as for data processing. Those can be implemented within a flight computer

in order to control quite a few di↵erent system such as those that can drive a missile.

Thus, we will confirm that the selected FPGA board can work with a set of sensors

by using a set of di↵erent communication protocols. As a consequence, we will have

a robust platform that can be modified with either an array of sensors or boards

with broader capabilities by following a similar methodology. The reason for using

a FPGA board is because compared with the other programmable boards this can

work in parallel on assigned tasks and can be programmed remotely.

Those whom are interested into replicate this work should have a basic back-

ground in inertial navigation, avionics and electronics. It is due to the designer

must understand the use of new tools for the development of an embedded system

focused on navigation and proper understanding of the results. While updating for

the use of new devices, strengthening the foundation in electronic knowledge and

not being close mind to a single tool for designing platforms based on embedded

systems. It will allow us to develop far more complex systems by using the tools

that are currently being used.
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1.3 Methodology

1. Documentation, classification and delimitation of the missiles.

2. Study of the basis for inertial navigation.

3. Search and selection of possible electronic instrumentation to be used in the

sensor module.

4. Literature review and configuration of the selected FPGA board.

5. With the resources of the FPGA board and devices, we will design the first

scheme of instrumentation for data acquisition.

6. Simulation and testing of the devices separately.

7. Integrated platform test with the sensor module and the flight computer mod-

ule.

8. Analysis of mathematical functions such as quaternions in order to implement

it to find the position and location of the navigation platform.



Chapter 2

Background

2.1 Introduction

Every technological artifact has a story to tell. This chapter recapitulates the key

events in which missiles have been introduced, features, classification, contribution to

other areas as well as the country in which they were developed. On the other hand,

we have the revolution of modern electronics that is performed by the transistor

invention and the development of integrated circuits that are used in reconfigurable

systems. Finally, some definitions that will be used throughout this research work

are described to identify them.

2.2 Missiles

2.2.1 Rockets and missiles

The key di↵erence between a rocket and a missile should be stated. A rocket is

a vehicle that is accelerated by a flow of particles (working fluid) in the opposite

direction according to the second law of Newton [2]. So far, almost all rockets

4
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use gases, which are produced in the combustion chambers as the working fluid.

Meanwhile, a missile is a rocket-powered vehicle and it is directed by a guidance

system [2].

Missiles usually carry an explosive charge that can be directed towards a target.

Figure 2.1 shows the di↵erence between the emblematic rockets used for Apollo

missions and the di↵erent types of surface-to-air and air-to-air missiles that are

being manufactured by di↵erent nations.

(a) (b)

Figure 2.1: Examples of di↵erent types of rockets and missiles. 2.1(a) Rockets used in space

missions between 1960 and 1973. 2.1(b) Di↵erent air-to-air and surface-to-air missiles.

The discovery of a rocket takes us back to the middle of the Twelfth Century

in China, when some fireworks accidentally turned out of its course and exploded

when landing, leaving a crater on the ground. As a result of this accident, the idea

of using these tools for military purposes was developed [2]. In the middle of the

Thirteenth Century, the Arabs and Europeans were the first who used this technique

as a military form. The first written reports that refer to rockets were found in the

Fourteenth Century. So, most of the European civilizations knew and used rocket

technology during the Fifteenth Century [2].

It was until the mid-Seventeenth Century that rockets were first mentioned

in European and Chinese military manuals. In the late Eighteenth Century, the

first conventional rocket appears in India and was used against the British. A few

years later, the British, adapted the rocket created in India for European use [2].
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The British military forces used this adaptation against the Danish, French and

American settlers. Given the success, the rocket was modified for being used in

rescue operations and whaling. In the mid-Nineteenth Century, a British marine

developed the first spin-stabilized rocket. Then, the rockets that used gunpowder as

fuel began to decrease as the “tube” artillery improved [2].

In the beginning of the Twentieth Century, without knowing the work of each

other, a Soviet scientist, an American engineer and a German physicist mentioned

almost at the same time the multistage rockets using propellant as fuel. The Ameri-

can engineer, Robert Goddard, built and flew the first propellant rocket. The success

of this experiment, engineers, supported by government funds, invented stable and

storable liquid propellants, better solid boosters and key technologies that would

serve as a base for missiles. On the other hand, German engineers implement again

rocket artillery for military use, that is how they revolutionized this technology with

the creation of cruise missile V1 (Vergeltungswa↵e 1) and the ballistic missile V2

(Vergeltungswa↵e 2) [2].

At the end of the Word War II, some German engineers allied with the former

Soviet Union Republic (USSR) and the United States (USA) began with the devel-

opment, construction and testing of high-altitude research rockets. Sometime later,

researchers armed the first operational combat aircraft and the first positive result

for an air-to-surface missile was given during a war between Taiwan and China. At

the same time, ex-USSR launched Sputnik I, the first artificial satellite to orbit the

Earth and the first intermediate-range ballistic missile (IRBM) became operational

and China acquired missile technology from ex-USSR [2].

Ex-USSR launched the first manned spacecraft. Meanwhile, USA made oper-

ational ballistic missiles of intercontinental range and tested flights for the rocket

Saturn V [2]. At the time of Vietnam War, the first sustained use of surface-to-air,

air-to-air and air-to-surface guided missiles in combat was confirmed. The first real

achievement in the space race was when USA sent the first man to the moon in
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July 1969. In the early 70’s, USA developed the first independently targeted reentry

vehicle (MIRV). ex-USSR exported FROG and Scuad missiles in order to verify re-

sults in actual combat and China made the first test flight of its first intercontinental

ballistic missile.

The Apollo mission ended with a last landing on the Moon but for continuing

the space race and made it a profitable business, USA launched the space shuttle

program. Ex-USSR left the space race and its attempt to put a man on the Moon

after several failed missions where spacecraft resulted in partial or completed de-

struction. By the end of the decade, the European Space Agency made its first

successful flight of its space vehicle Ariane. While the first orbital flight tests for

the shuttle program were made, small conflicts started and with them, the impact

of tactical missiles in the modern era of wars appeared.

The catastrophic combination of the shuttles Challenger and Columbia, in 1986

and 2003, respectively, set new goals in the research of how far the humans could

reach. A natural satellite was no longer seen as a target but other planets. China,

India, Pakistan, Iran and North Korea expanded their nuclear programs and with

them, the research of the system that integrated a missile [2]. These nations have

continuously tested missiles in small conflicts with the continuous improvement of

the technological advances they represent.
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2.2.2 Classification of missiles

The missiles can be classified by the place of release, type, applications and guidance

system. The classification of the launch site can be an air-to-air, air-to-surface,

surface-to-air or surface-to-surface type. The kind of artifact comprises the division

between ballistic and cruise missiles. The use can be dissuasive (preventive) or

persuasive (on target). The guidance system is divided into programmable passive,

semi-active, active and remote control [1, 2].

Similarly, the cruise missiles types are sub-classified according to their speed

and these can be subsonic, transonic, supersonic or hypersonic. The ballistic missiles

are sub-categorized by their range such as short range (SRBM), intermediate-range

(IRBM), intercontinental (ICBM), from a submarine launched (SLBM) and antibal-

listic (ABM) [1]. The missiles with programmable guidance system have an inertial

guidance as a main system which can also be sub-classified. The passive guidance

systems may use heat detecting or terrain comparison [1]. The semi-active guidance

systems use a laser and a radar or a ground based guide system. Missiles with ac-

tive guidance systems are guided by commands [1]. Finally, missiles with remote

guidance systems are guided by radio or wires to set the direction [2].

We can observe on a schematic diagram in Figure 2.2 closely, the given classi-

fications. It should be noted that there are missiles with a combination of categories

and depending on the target, the systems are changed for performance [1, 2].

2.2.3 Sections of a missile

The main components in a missile are warhead, flight computer, flaps, rudders and

engines [1]. The warhead is the designed space containing the explosive material [2].

The flight computer is the brain of the missile, it contains the inertial navigation

system and the electronic assistant to guide the missile to the target. The flaps
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Figure 2.2: Missile classification and division.

and the rudders stabilize the missile during flight and redirect its trajectory. In the

engine, the ignition stage, which gives take o↵ power and speed during flight (that

can be made of more than one stage), can be found [1].

This thesis is purely focused on the flight computer and to illustrate it. Figure

2.3 shows a supersonic, surface-to-air, passive IR homing missile named Chaparral,

where the highlighted part is where the flight computer is located with its respective

electronic, computer and sensor devices [1].

2.3 Integrated Circuits

To understand how important a reconfigurable board is, we must describe the road

that integrated circuits had passed through years until today and demonstrate its
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Figure 2.3: Parts of a Chaparral missile [1].

importance. An integrated circuit (IC), also known as microchips, are tiny chips in

which we can find a large number of electronic devices (micro size) that interact with

each other, mainly diodes and transistors. In special cases, passive components are

added (such as resistors and capacitors). ICs are manufactured with a material called

semiconductor. The first e↵ect of a semiconductor was registered by Michel Faraday.

He discovered that the rise of the temperature e↵ect in the silver sulfide increased

electrical conductivity. In other words, the temperature rises in the majority of the

semiconductors and it raises the density of charge carriers contained in it, improving

its conductivity. That is how the e↵ect of the thermistors is explained [9].

Ferdinand Braund, a German scientist, discovered that in a crystal of lead

sulfide with a thin metal wire tip, current flowed in one direction. This was the

discovery of the rectification e↵ect in the interface between metal and some crys-

talline materials. This device found an application in the beginning of the 1900s in

radios and the set of signal detector will be found. The colloquial name of the detec-

tor is “cat’s-whisker”. Diodes are electronic devices that perform the rectification.

William J. Hammer added another electrode a hot light bulb filament then, John

Fleming used this base to create the “oscillation valve” unidirectional that converts

an AC current of the radio signal into DC current. The rectifier contact point of

Braund performs the same function by using semiconductors, without thermionic

properties [27].

The engineer Greenleaf W. Pickard tested hundreds of samples of mineral to

evaluate their properties for rectification [27]. Silicon crystals produced the best
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results [9]. Although crystal rectifiers allow radios at the time to operate with a

little consuption of power source, predictable operation of vacuum tubes replaced

them in most applications and peaked during the World War II because of its ability

to operate in microwave frequencies. Vacuum tubes are composed of three elements:

a thermionic cathode, a grid of parallel wires and a plate or anode. Figure 2.4

illustrates how these elements were incorporated before being introduced into the

vacuum tube made of glass or metal. Lee De Forest was the inventor of the vacuum

tube but it had a huge superficial resemblance to an invention of John Ambrose

Fleming, motive enough to deny the Novel Prize to De Forest. However, the invention

of Fleming could not amplify signals [7]. The American Telephone and Telegraph

Company (AT&T) faced patent expiration that Alexander Graham Bell invented, as

a solution Vail propused the transcontinental communications. Thus AT&T acquired

the patent of the triode vacuum tube.

Figure 2.4: Triode form and its elements.

Russell Ohl began studying the use of silicon rectifiers as radar detectors [27].

The result was that the amount of pure silicon is directly related to the detection ca-

pability. Ohl also noted that the di↵erent parts of the crystal have opposite electrical

e↵ects when it was tested with a “cat’s-whisker” probe [27]. Ohl and his colleague

Jack Sca↵ found a barrier into the plate which marked a split in the silicon with two
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di↵erent types of impurities. They called these regions n-type (negative) and p-type

(positive). The surface of these connections is called “pn junction”. Nowadays, the

pn junction is the most common way to rectify signals in the electronics industry and

it is the main element in the design of electronic devices. With this, Ohl discovered

the photovoltaic e↵ect that feeds solar cells today.

During World War II, the semiconductor technology gave a breakthrough.

Radar receivers required solid state rectifiers to detect and convert microwave sig-

nals at higher frequencies, a great advantage over vacuum tubes. Researches during

this event yielded the result that silicon and germanium would be the semiconduc-

tor elements dominant in the area. At the end of WWII, Mervin Kelly, director of

the research area at Bell Telephone Laboratories (belonging to AT&T), created a

department dedicated solely to this science. Bill Shockley was put in charge of the

department and hired Walter Brattain and John Bardeen. Its creation, the transis-

tor, is considered the greatest invention for humanity since the wheel. Figure 2.5(a)

shows the first point-contact transistor manufactured by Bardeen and Brattain. Ad-

vances made the transistor smaller, useful and practical as the Bell Labs “Type A”

transistor 2.5(b).

(a) (b)

Figure 2.5: First transistors produced as a result of the successful test results. 2.5(a) First point

contact transistor. 2.5(b) “Type A” transistor. [33]
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The di↵erence, at functional level, between the vacuum tubes and the transistor

is that the first are based on the ability of electrons to travel freely in the vacuum

with any energy and compared with vacuum tubes, transistors had a high initial cost.

Transistors are based on free movement of electrons through semiconductor. The

reasoning which Shockley gave on the junction transistor was thanks to the fortuitous

discovery of Ohl in 1940. Shockley discovered the “minority carrier injection” a

critical phenomenon for the operation of the junction transistor, a sandwich of three

layers of n-type and p-type semiconductor separated by pn junctions. This concept

serves in all “bipolar” transistors today [14].

Bell Labs organized the first transistor symposium which lasted nine days.

This symposium was attended by over 100 representatives from 40 companies among

them General Electric, RCA, Texas Instruments (TI) and Sony [27]. Bell Labs built

a computer completely made by point-contact transistor for the Air Force which

consumed less than 100 Watts. Later, it was fitted on an airplane. Bell Labs did

not follow the research with silicon but TI. Bell Labs announced the creation of the

first solar cell. With a new technique to work the purity of the silicon transistors,

TI launched a mass production sales and silicon transistors would be the preferred

semiconductor material in industry.

After some di↵erences, Shockley broke relations with Bell Labs and founded

Silicon Valley. Sometime later some workers of Shockley resigned over di↵erences

in their ways of working and new companies emerged as Fairchild (company that

innovated the transistor with the bases of Silicon Valley), Advanced Micro Devices

(AMD) and Intel (companies for high-level devices). The manufacturing process

“step-and-repeat” was created and today it is a process particularly used in semi-

conductors with connections less than 0.1 micrometers. Leo Esaki developed a new

diode that its current decreased as the tension increased causing a “negative resis-

tance”. He called it the tunnel diode [10].

As a consequence of such knowledge, Autonetics developed the first digital



Chapter 2. Background 14

control system and guidance device for a ballistic missile. Figure 2.6 shows the inside

of the flight computer put on the ballistic missile Minuteman I. The guidance system

was divided in many sections, each connected to each other in order to complete the

a common task. Each section worked with capacitors, resistences and an occasional

TTL (mostly an NOR gate).

Figure 2.6: Interior of the first guidance system computer of a ballistic missile [33].

RCA created the first transistors fabricated within a chip. Later, the shift

register and logic gates CI were developed [11]. The most important innovation in the

history of semiconductors industry came when a scientist in Fairchild introduced to

the market the planar transistors. The method used for the manufacture of ICs is still

in use until today. A new way to treat the wafer to protect the impurities improving

electrical characteristics. TI adapted very quickly to the planar technique and by

1961 announced its first family of fully integrated circuits. Fairchild researchers

presented progress of these chips and various miniaturizations that would help in a

future to incorporate passive devices on the chip [11].

The aerospace industry and the Air Force were the first to spare no expense

in smaller, faster and low-power transistors because the low-cost transistors were

relatively slow. The guidance computer of the Apollo missions was the first most

significant project for digital IC. It was a computer developed by the MIT and built

by Raytheon, each system used 4000 IC (NOR gates). The first ICs into orbit were
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aboard the interplanetary probe surveillance of the NASA and were created by TI

as its first planar family of IC. Later, TI won a contract with Autonetics Division of

North American Aviation to design 22 tailored circuits for the guidance system of

Minuteman II missiles [11, 27].

RCA laboratories were CMOS pioneers and together with the manufacturing

Somerville developed the first IC of these transistors. Its first orientation was for

the aerospace industry before moving on to commercial applications. Because of

its smaller size and lower power consumption than bipolar transistors, almost all

microchips produced today use MOSFET technology. CMOS provide the best so-

lution to manage density issues resulting for packing thousands of transistors on an

IC. The first mass production lines of IC were for the integrated version of discrete

diode transistor logic (DTL). It is not until the late 60s that Transistor-Transistor

Logic (TTL) takes popularity in the logic configuration and became the favorite for

the following decades [12, 26].

TI, inspired by the work of Logo and successful military high profile design (the

Phoenix missile), developed the TTL SN7400 family plastic packaged and low cost

for industrial customers. Hybrid mounted circuits one or more passive components

on an IC and ceramic substrates are interconnected by wires or conductive traces

[15, 26]. Circuits with specific functions that could not be co-integrated by technical

or economic reasons use monolithic IC and continued to be classified as hybrids.

IBM changed the whole concept of computing to develop Solid Logic Technology

(SLT) [16]. Two approaches to the production of large volumes of personalized

designs, gate arrays and standard cells were developed. They are commonly known

as application specific integrated circuits (ASIC). ASCI was born as a solution from

IBM and TI to the problems generated by computers of the Air Force [15].

TI introduced the TTL 74S family using Shottky diodes to manage the change

of state of a gate in an average time of 3 ns. Its brothers, the 74LS family, replaced

the 7400 family o↵ering the same speed but removing some of the power consump-
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tion [16]. These IC are used in universities to date. Radiation Inc. introduced to

market the first programmable ROM (PROM) 512 bits in 1970. These devices al-

low designers to make changes in laboratories. Intel introduced its erasable PROM

(EPROM). The 2048-bit EPROM could be reused many times. Designers of IC had

the idea of integrating the central processing unit (CPU) functions of a computer

in a handful of chips called micro processing unit (MPU). The idea was to integrate

8-bit ALUs. The first of its kind was the MP944 assigned to mainframe data from

an F-14A and was manufactured by AMI [16].

A System-On-Chip (SOC) is an IC incorporating all electronic components,

including analog devices and circuitry required to implement a system on a single

chip [5]. The first SOC was in a digital wristwatch, everything was communicated

by a CMOS IC Intel 5810. Many vendors chose to change the ASIC for SOC in

embedded systems allowing handheld video games, communications data, computer

peripherals, etc. Some logic semiconductor designers had the idea that smaller and

faster PROMs could create products intended specifically for reprogrammable logic.

Based on this idea and on migration induced by avalanche of PROMs, designer Bill

Sievers created the first FPLA (Field Programmable Logic Array) that would be

known to history as the first programmable logic array (PLA) could be electrically

programmed in the field. Architecture PLA is more rational when making connec-

tions.

The range of applications extended when AMD used the CMOS technology for

lower power consumption, adapting reprogrammable EPROM CMOS based devices

compatible with computers and schematic support I/O designed by Altera. Other

companies such as Xilinx, Actel and QuickLogic were born and they are the first com-

panies to enter the market Field Programmable Gate Array (FPGA). These types

of devices are known as Programmable Logic Devices (PLD). FPGA architecture

allows applications to run higher degree of di�culty. Over the years other repro-

grammable low-cost devices in an IC were added and became popular by o↵ering

resources, including Arduino, Raspberry Pi and Beagle Board. For their capabilities,
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easy programming, high degree of control, low power consumption, easy replacement

and personalized approach to digital logic we can find these PLDs in production lines

of assembly plants, supercomputers, satellites, links to microprocessors and more [8].

2.4 Nomenclature

2.4.1 Guidance system

From the control’s point of view, the guidance system has the function to find the

appropriate compensation network to be placed in series with the plant in order to

achieve an interception. From a material point of view, it is an electrical and/or me-

chanical system that drives the vehicle. For missile specifications, the system varies

according to the desired task, the size of the missile and the available technology [1].

The purpose is to determine and to decide the dynamics of the flight path

(physical action) based on knowledge of the guiding capacity of the vehicle and

chosen objectives to achieve for a specific target e�ciently. The system main function

is to mathematically co-integrate the separate functions of the hardware navigation

and flight control system. To facilitate the reach of the target, the feedback control

principles are used into the guidance system for better maneuvering. The system is

designed to use a initially stabilized tracking program (e.g. seeker).

2.4.2 Navigation system

A navigation system is a set of components that provide position, speed and altitude

for a guided vehicle with respect to the target. The information provided helps to

establish the flight path according to a law of direction, in order to achieve the

objective of the flight mission [1].
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The guidance system in a missile includes sensors, a flight computer and a set

of control components. The flight main goal is to reach a target. Accelerometers

and gyroscopes are the sensors that are configured as an inertial system and feed

data during the flight.

2.4.3 Embedded system

An embedded system is a combination of hardware, software and in some cases

the inclusion of mechanical components designed to perform a specific function.

Embedded systems commonly have features such as low manufacturing cost, e↵ective

use of components, improved performance of the task and a low power consumption

[5]. Figure 2.7 shows the components distribution and general interconnection of an

embedded system. Those are [25]:

1. Processor (µP, µC, DSP, FPGA)

2. Memory (InstMem, DataMem)

3. Buses (communication between components)

4. Peripherials (standar devices or customized interfaces)

2.4.4 FPGA

Field Programmable Gate Array (FPGA) is an array of logic blocks surrounded by

input and output blocks (some with a general purpose and others with a specific

purpose) programmable and connected through reprogrammable interconnections

[5]. Among the advantages of an FPGA board, we can mention that the IC is

reprogrammable, the designs are fast, high gate density, run any logic function,
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Figure 2.7: Distribution and interconnections of the components of a general embedded system

[25].

process in parallel, have the ability to update their functionality and have a variety

of communication languages with several softwares [5].

The high cost and low availability on the market are the main disadvantages of

the FPGA boards. The most technical disadvantage is that they have a slow setting

time. Table 2.1 shows a comparison of the main features of PLDs basic model for

each brand.

2.4.5 Hardware-In-The-Loop simulation

The Hardware-In-The-Loop (HIL) simulation is a technique in which a system, par-

tially or completely, is subjected to a larger system that simulates an environment

with controlled and measurable variables. HIL simulation o↵ers advantages that

other methods of analysis and testing do not provide. Among these advantages we

can apoint the opportunity to investigate the same machine thoroughly on multiple

occasions, the test conditions are faithful to nature and it reduces the cost and in-

creases the risk to find hidden flaws in the hardware before causing damage to the

functional system.
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Arduino Raspberri Pi Beagle Board FPGA

Model UNO Model B Rev. C4 Spartan 3-E

Operative Linux, Android, Linux,

System ⇥ RISC OS Windows CE, Linux

RISC OC

Programming C, C++ Python, C, Basic Python, C, etc. VHDL, C,

Language C++, Vivado

Sequential X ⇥ X ⇥

Architecture 8 bits 32 bits 32 bits 32 bits

Processor ATMEGA BCM2835 TI DM3730 Atmel

328 (ARM) (ARM) AT90USB2

Clock 16 MHz 700 MHz 720 MHz 25/50/100 MHz

Frequency

RAM 2 kB 256 MB 256 MB 256 MB

ROM 32 kB SD 256 MB 256 MB

flash

ADC 6 8 Internal Internal

Security ⇥ ⇥ X X
Cost 220 MXN 980 MXN 1900 MXN 2100 MXN

Table 2.1: Comparative characteristics of the comertial PLDs.

In some cases, the focus of HIL simulation adds the transient response of the

system even without be entirely built. This technique has the potential to expose

the full extent of the interactions to be gained in the final system. A HIL simulation

consists of three main parts: a piece of system hardware to simulate, actuators that

respond to disturbances and an interface that provides a part of the system with

the actuators. Figure 2.8(a) shows the schematic design of the distribution prior

mentioned elsewhere, which is a general scheme for any HIL simulation. On the

other hand, Figure 2.8(b) is the specific scheme of HIL simulation applied to this
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(a)

(b)

Figure 2.8: Schemes of the HIL simulation. 2.8(a) Genereal scheme of a HIL simulation. 2.8(b)

Scheme of the HIL simulation to use.

work.
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Development of the modules

3.1 Introduction

There are an endless number of electronic devices that can be used depending on the

needs of the project to develop. There are high and low costs, high and low preci-

sion as well as boards with several integrated sensors or separated sensors, di↵erent

protocol communication, etc. This chapter refers to the parts of the sensor module,

the communications module and the computing module for integrated assembles the

HIL simulation.

3.2 Sensor module

To assemble the sensor module, we have two options, find a card that already inte-

grates the necessary sensors for the inertial measurement unit or obtain the sensors

separately and make an arrangement to guide their axes in the same direction. We

chose the card that has an integrated IMU (GY-81), shown in Figure 3.1.

22
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(a) (b)

Figure 3.1: Flight control sensor GY-81 module. a) Front view. b) Back view.

3.2.1 Accelerometer

The accelerometer is a device that is widely used to measure the inclination and vi-

bration, if the application is static. When the application is dynamic, the usefulness

of the accelerometers is to determine the translational acceleration of the system.

Accelerometers are based on one of three principles: piezo resistive, piezoelectric or

capacitive transduction. GY-81 module contains a BMA180 accelerometer sensor

and is of capacitive type (see Figure 3.2) [28]. The main advantages of capacitive

accelerometers are easy mounting in a system and low temperature dependency. It

is manufactured with microelectromechanical systems technology (MEMS). It is a

digital sensor. Therefore, the output will be a↵ected by an increase or a decrease in

the numerical value. The accelerometer uses the communication protocol I2C [28].

To measure the dynamic acceleration we need to stablish a relation between

the sensor output that the sensor has when a known acceleration is aplied and a

rule of three stablished; e. g. if one sensor axe is placed in the same direction of

the gravity and it is know that the value delivered by the sensor will be the gravity

value, the acceleration in the system can be calculated by the equation (3.1). It is
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Figure 3.2: Capacitive accelerometer [17].

clear that both values can be either analog or digital. The main di�culty of this type

of sensing is the noise due to the vibration of the system. It is considered that an

inertial sensor with low cross sensitivity is a sensor with improved performance. It is

helpful to have the units of the measurement in G at the time of the simulation, the

data acquisition of the accelerometer facilitates the conversion to this measurement.

a =
9.81 ⇤Xcurrent

XG
(3.1)

Where:

Xcurrent Current value of an sensor axis.

XG The value derivered by the sensor in the position of G.

3.2.2 Gyroscope

The gyroscope is an instrument that links the relative rotation with a voltage. The

gyroscope in GY-81 module is ITG3205. Despite being excited by an inertial force,

gyroscopes benefit from Coriolis forces of rotational movements. ITG3205 consists
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of a body that has symetry in its rotation, i.e., the mass of the sensor is moving at

a velocity
�!
V and when a force moment is applied to the system, it rotates at an

angular velocity
�!
⌦ . The combination of linear and rotational movements generate

the Coriolis force that is perpendicular to the initial linear movement shown in

Figure 3.3. The gyroscope is a solid state sensor. The angles have symmetry with

the BMA180 and are similarly to MEMS technology. ITG3205 architecture contains

a pair of masses in reciprocating linear motion in tune [31]. This architecture has the

ability to integrate into systems with first variable capacitance transduction. The

ITG3205 uses a protocol I2C to communicate with the microcontroller [31].

Figure 3.3: Representation of the Coriolis force [17].

As most of MEMS sensors, gyroscopes are not free of residual stresses in the

microstructure generated at potting. These e↵orts, though minimal, slightly change

the properties of the sensor output when at rest and reading sensitivity. These

changes should only be considered when the result expected have high accuracy.

Otherwise, it should be ignored. The temperature would have little influence on the

sensor output. ITG3205 has a linear behavior at the output, to obtain a value of

the angular velocity is necesary to use the equation (3.2).
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! = S(Vcurrent � Vresting) (3.2)

Where:

! is the angular velocity.

S sensitiveness.

Vcurrent current value.

Vresting resting value.

3.2.3 Magnetometer (compass)

The magnetometer sensor is responsible for quantifying the intensity and direction of

a magnetic field. The transduction principle of magnetometers are diverse and vary

according to the technology used by the manufacturer. To measure the magnetic

field, some of them use Hall e↵ect magnetometers and some others the Lorenz force

or piezo resistive principle [30]. The magnetometer in GY-81 plate is HMC5883L.

The three-axis magnetometer is aligned with the accelerometer and the gyroscope.

The HMC5883L is solid state-based and manufactured with MEMS technology. It

takes measurements using Hall E↵ect. Figure 3.4 shows how the Hall e↵ect works.

When a current flows in an axis, the voltage is perpendicular created to the current

flow. When a magnetic field is applied perpendicular to the voltage and current

planes. The more perpendicular the applied field, the greater the output voltage.

The equation (3.3) calculates a voltage produced by the Hall e↵ect over an axis. In

order to establish communication, the protocol used by HMC5883L is I2C [30].

E = BIL sin(✓) (3.3)

Where:

B = applied magnetic field
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Figure 3.4: Base architecture of a magnetometer [17].

I = applied electric current

L = a constant for the Hall crystal material.

✓ = angle between magnetic field and active Hall device element.

In the case of navigation systems, magnetometers measure the earth’s mag-

netic field. The utility is to easily implement an electronic compass system. The

main disadvantage is its sensitivity. The readings are very susceptible to external

disturbances, e.g., the magnetic fields generated by the system or some object that

attracts magnetism. The isolation of the sensor is the recommended solution for

avoiding erroneous readings.

3.2.4 Barometer and thermometer

The barometer is the instrument used to measure atmospheric pressure. The at-

mospheric pressure can help to calculate an estimated altitude, as they are directly

related by Ec. (3.4). The GY-81 module includes a BMP085 barometer. It is a solid

state sensor, manufactured with MEMS technology and it is a piezo resistive sensor.

Measurement is initially analog. Then it goes through an ADC and is communicated

using a protocol I2C [29].
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altitude = 44330 ⇤ (1� (
p

p0
)

1
5.255 ) (3.4)

The BMP085 also provides a sensory temperature value. According to the

program within the system, the reading is very precise to the decimal value. The

sensitivity is large, which means that if the system overheats, the sensor will take a

reading considered by the emitted heat. It is advisable to put the BMP085 outside

for proper environmental reading.

3.2.5 Camera

The most ideal way to obtain images in a hybrid embedded system is through a TTL

camera. Two TTL cameras manufacturer by LinkSpire are available for embedded

applications, the LS-Y201 and the SEN11610. The LS-Y201 camera is a module

containing a high resolution camera of 2MP. It captures images by using the serial

port Universal Asynchronous Receiver-Transmitter (UART). The images taken are

in JPEG format. The SEN-11610 camera has, in addition to the same features as

the LS-Y201, a light sensor and infrared LEDs to capture images in the dark [32].

The Figure 3.5 shows the between the two cameras. Both cameras are low-

cost, compact and easy to program, have low power consumption and di↵erent image

resolutions. For versatility, we used the SEN-11610. Also, the particular ability to

take pictures depending on the lighting makes it suitable for application in the

system.

3.3 Communication module

Communication via radio frequency (RF) allows wireless communication between

the sensor module and the module of the flight computer. The module is divided
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(a) (b)

Figure 3.5: Serial TTL compatible cameras. 3.5(a) LS-Y201 Camera RS232 serial

communication. 3.5(b) SEN-11610 infrared camera serial communication RS232.

into two, the transmitter and the receiver. The transmitter part will be integrated in

the sensor module while the receiver is taking a ground-based communication with

the PC module flight computer.

3.3.1 Transceivers

TB387 is a wireless transparent data-transmission module based on 2.4GHz fre-

quency band. The module supports most basic AT commands: baud rate, ID num-

ber, frequency settings and inquiries, factory settings, version information. When

the module is in transparent data transfer mode, the user transmit data, frame num-

ber data module, add packaged rowcount and then automatically transmit at reliable

range, the module will automatically re-transmit data to ensure successful transmis-

sion. The working voltage is 3.3V-5.5V. TB387 has a RS232 interface (3.3V/5V TTL

level), a frequency range between 2402 and 2482MHz. The transparent transmission

mode baud rate could be at 2400, 4800, 9600 (Default), 14400, 19200, 38400, 57600,

115200, 12800 or 25600bpm. The maximum distance range is 400m. TB387 is a
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device that can be embedded in any project that would need wireless transmission

with any PLD.

Figure 3.6: TB387 UART RF wireless transceiver module.

3.3.2 Serial-USB converter

Included in the wireless module kit, it is CH340G series USB interface integrated

circuit. The CH340G is an USB bus adapter that provides serial or parallel interfaces

over the USB bus. The CH340G integrate circuit provides common modem signals

to allow adding a UART to a computer. Amoung the CH340G features contains a

full-speed USB interface, compatible with USB 2.0 interface, it supports 5V and 3.3V

operation, a RS232, RS422 and RS485 with external level shifting components and

supports all existing applications by using serial ports without the need of changing

the existing code. The device is embedded within the ground station.
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3.4 Processing module

The module of the computer flight is divided into two stages, the stage of data

acquisition as well as the processing section and display stage. The FPGA board

will be responsible for making the acquisition data from the sensors module, then

the information will be transferred to a PC for post-processing and being displayed.

3.4.1 Developing system

We can find the Artix 7 FPGA development board as an IC to be coupled to a SOC.

Another way to find it is as 7-segment displays assembled in ready-to-be-programmed

and input/output general purpose LEDs, among other cards. The Digilent Nexys

4, Figure 3.7, card has LEDs, switches, GPIO, audio and video connector; push

buttons, 7-segment display, SD memory reader, among others [19]. It has a 100

MHz clock oscillator and programs that can be charged by using the USB/JTAG

port depending on the configuration that we give to the jumpers. Table 3.1 makes

a comparison between the characteristics of the di↵erent families Xilinx 7.

Artix-7 Family Kintex-7 Familia Virtex-7 family

Logic Cells 215K 478K 1955K

Block RAM 13 Mb 34 Mb 68 Mb

Transceivers 16 32 96

Memory Interface 1066 Mb/s 1866 Mb/s 1866 Mb/s

I/O pins 500 500 1200

I/O Voltage
1.2V, 1.35V, 1.5V,

1.8V, 2.5V, 3.3V

1.2V, 1.35V, 1.5V,

1.8V, 2.5V, 3.3V

1.2V, 1.35V, 1.5V,

1.8V, 2.5V, 3.3V

Table 3.1: Comparative characteristics between Xilinx 7 families.
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Figure 3.7: FPGA development board Nexys 4 by Digilent

3.4.2 Computer system

The personal computer (PC) is a Hewlett-Packard (HP) Pavilion model. It is loaded

with a 64-bit Windows 8.1 operating system Single Language and Intel (R) processor

CORE (TM) i5-4210U 2.4 GHz. It is recommended to have an Inter (R) processor

over an AMD (R) since at the time of loading the software from Xilinx Inc. They

have greater stability to support the installation and when execution of the program

and it must be at least CORE i5 model.



Chapter 4

Simulation

4.1 Introduction

This chapter aims to describe the steps to follow in order to design a platform that

is subsequently used for testing the functionality and simulations. To explain it,

we divide this chapter into two sections. First, we describe the steps to generate

the embedded system within the FPGA development board and in this way, we can

use the necessary resources for the acquisition and communication of them. The

next one describes how to load the program in C language within the FPGA board.

We assemble the FPGA board, the sensor module and a power supply on a printed

circuit board. Finally, for processing and data visualization, we make an interface

in LabVIEW software.

4.2 Data acquisition

The microprocessors available for use in Xilinx FPGA boards with Xilinx EDK soft-

ware tools can be divided into two. There are soft-core microprocessors (MicroBlaze)

and the hard-core embedded microprocessor (PowerPC). We focus on the soft-core

microprocessors because it is the one we use. The MicroBlaze is a virtual micropro-
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cessor that is built by combining blocks of code called cores inside a Xilinx FPGA.

The beauty to this approach is that we only end up with as much microprocessor as

we need. We can also tailor the project for the specific needs (i.e.: Flash, UART,

General Purpose Input/Output peripherals and etc.). It allows us to balance the

required performance of the target application against the logic area cost of the soft

processor.

The MicroBlaze processor is a 32-bit Harvard Reduced Instruction Set Com-

puter (RISC) architecture optimized for implementation in Xilinx FPGAs with sep-

arate 32-bit or more instruction and data buses running at full speed to execute

programs and access data from both on-chip and external memory at the same time.

The MicroBlaze core is organized as a Harvard architecture with separate bus in-

terface units for data accesses and instruction accesses. The stack convention used

in MicroBlaze starts from a higher memory location and grows downward to lower

memory locations when items are pushed onto a stack with a function call. Writing

software to control the MicroBlaze processor must be done in C/C++ language.

Using C/C++ is the preferred method by most people and is the format that the

Xilinx Embedded Development Kit (EDK) software tools expect. The EDK tools

have built in C/C++ compilers to generate the necessary machine code for the

MicroBlaze processor.

The MicroBlaze processor is useless by itself without some type of peripheral

devices to connect to and EDK comes with a large number of commonly used pe-

ripherals. The processor system by EDK is connected by On-chip Peripheral Bus

(OPB) and/or Processor Local Bus (PLB), so your custom peripheral must be OPB

or PLB compliant. EDK uses Intellectual-Property Interface (IPIF) library to im-

plement common functionality among various processor peripherals. Using the IPIF

module with parameterization that suits our needs will greatly reduce our design

and test e↵ort [25].
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Xilinxs Platform Studio (XPS) allows us to control the hardware and software

development of the MicroBlaze system. It includes an editor and a project manage-

ment interface for creating and editing source code and a Software tool flow con-

figuration options. Software Development Kit (SDK) is an integrated development

environment, complimentary to XPS, that is used for C/C++ embedded software

application creation and verification. SDK is built on the EclipseTM open-source

framework. According to the mentioned above and in the previous chapter, the HIL

final scheme implemented is depicted in Figure 4.1. Figure 4.2 shows the set of con-

nections between the modules just to know how they are embedded and how they

are divided into the ground station and the flight computer [25].

Figure 4.1: HIL final scheme implementation.

The Appendix A details the process to implement the embedded system in the

EDK software. The instructions are based on [18, 19, 20, 21, 23, 24]. Meanwhile the

appendix B describes step by step how to include the C program into the FPGA

board for the data acquisition. Eventhough the programming language is C, the

instructions to interact with the FPGA board need to be commands that the board

understand and that comands are in [22].
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Figure 4.2: Final embedded system for the HIL simulation.

4.2.1 PCB Development

In order to proceed to the stage of validation and testing, we implement the com-

ponents needed for a ground station and the flight computer. Then, we proceed to

improve all the implementations and, taking account a power source, we elaborate

a printed circuit board (PCB) so we can integrate all the components of the sen-

sor module and the transmitting antenna. The PCB has the features to be placed

together with the Nexys 4. The final printed design of the PCB is shown in Fig.

4.3. After polishing the PCB, the components that integrate the flight computer are

welded, leaving the PCB as shown in Figure 4.4.

4.3 Data processing

In flight processing and post-processing navigation, the components sensed by the

IMU have to be transformed onto a reference coordinate system. To introduce the
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Figure 4.3: Back view of flight computer printed circuit board.

Figure 4.4: Frontal view of flight computer printed circuit board.

object motions into a computerized system there are several representation to char-

acterized rotation, kinematics and orientation of an object in the space. The most

common representations are through the Euler angles and quaternions. However

there are other representations as Rodrigues parameters.

4.3.1 Euler angles

Euler angles represent the orientation of a body relative to a reference system “x y z”

or relative to another rigid body [4, 6]. The rotations that describe the orientation
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in space of a body in terms of Euler angles are:

� (roll) denotates a rotation of X axis.

✓ (pitch) denotates a rotation of Y axis.

 (yaw) denotates a rotation of Z axis.

We give an example of an Euler angle orientation in Figure 4.5 by [4]. By using

notations such as ( )3, (✓)2, (�)1, we can specify the Euler angles and the axes of

sequential rotations which denotes a rotation of (OXYZ) by angle  OZ, resulting in

the intermediate orientation, (OX Y Z ), followed by a rotation by angle ✓ about OY ,

(OX Y Z ), and then a final rotation by angle � about OX , to produce the new

orientation (OX Y Z ). The rotation matrix to get the Euler angles is referred

in equation (4.1), this is a general equation and it is applied when the vehicle can

move and rotate in the direction of the 3 axis [1, 3]. The Euler angles of the roll,

pitch and yaw can be determinated from the values of the rotation matrix according

to the inverse transformation in Eq. (4.2).

Figure 4.5: Schematic diagram of the Euler angle orientation.
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C =

0

BBB@

cos ✓ cos cos ✓ sin � sin ✓

(sin� sin ✓ cos � cos� sin ) (sin� sin ✓ sin � cos� cos ) sin� cos ✓

(cos� sin ✓ cos + sin� sin ) (cos� sin ✓ sin � sin� cos ) cos� cos ✓

1

CCCA

(4.1)

� = tan�1 c23

c33

✓ = � sin�1
c13

 = tan�1 c12

c11

(4.2)

where cij represent the element (i,j) of C.

Euler angles are not unique. There are certain orientations that can not be de-

terminate by the rotation matrix and it becomes singular an useless. In a commercial

aircraft this does not cause a problem. However, when dealing with fighter aircrafts,

missiles or spacecrafts it is di↵erent because they can have vertical attitudes [4, 6].

4.3.2 Quaternion

The quaternion is a special set composed of four mutually dependent scalar param-

eters, q0, q1, q2, q3, such that the last three form a vector called vector part and it

were discovered by W. R. Hamilton. It is represented in the Ec. (4.3). The first

part, q0, represents the scalar part. This constraint of the Ec. (4.4) implies that

the quaternion yields only three independent, scalar parameters, as in the principal

angle/Euler axis or the Euler angle attitude representations[1, 3]. Since the four ele-

ments of the quaternion satisfy the constraint equation, it can be said that attitude

orientations vary along the surface of a four-dimensional unit sphere without any

singularity [4]. Hamilton also discovered that the multiplication of the quaternions

is not commutative, but it is associative and distributive when adding, it is checked

in Ec. (4.5).
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q =

8
>>><

>>>:

q1

q2

q3

9
>>>=

>>>;
(4.3)

q

2
0 + q

2
1 + q

2
2 + q

2
3 = 1 (4.4)

ij = k = �ji, jk = i = �kj, ki = j = �ik (4.5)

In practice, quaternions are more useful as a means of representing navigation

and orientation. The representation of relative orientation using Euler angles or

rotation matrix are easy to develop and to visualize, but require computationally

intensive trigonometric function evaluations when derived from the rotation matrix

[4]. In other words, for a computer is more demanding to process the data acquired

and make operation of a matrix of 3⇥3 than in a vector of 1⇥4. Therefore, using

quaternion instead of Euler axis makes a shorter code allowing less storage space.

Also the singularity problem, mentioned above, occurs when describing attitude

kinematics in terms of Euler angles and therefore it is not an e↵ective method for

vehicles that can move in a vertical direction. Similarly, by implementing filters,

such as Kalman, the mathematical operation are reduced and it is easier to calculate

predictive motion or possibly for spacecraft an input vector.

The quaternion was calculated by taking a benchmarks from the accelerome-

ter and the magnetometer in order to generate the rotation matrix (Euler angles,

equation (4.1)). To make this possible data acquired from accelerometer and mag-

netometer is transformed into a vector of 1⇥3 while the benchmarks are taken as

the first acquisition of these sensors. Once the previous points are set, the execution

of the program is as follows:
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Divide the accelerometer vector into its norm

r1 =
acc vector

k acc vector k (4.6)

Calculate the cross product of Ec. (4.6) and magnetometer vector

X = r1 ⇥mag vector (4.7)

Divide the resulting vector of Ec. (4.7) between its norm.

r2 =
X

k X k (4.8)

Calculate the cross product of resulting vector of Ec. (4.6) and Ec. (4.7)

r3 = r1 ⇥ r2 (4.9)

Divide the accelerometer reference into its norm

s1 =
acc ref

k acc ref k (4.10)

Calculate the cross product of the resulting vector of Ec. (4.10) and the mag-

netometer reference

qu = s1 ⇥mag ref (4.11)

Divide the resulting vector of Ec. (4.11) between its norm

s2 =
qu

k qu k (4.12)

Calculate the cross product of resulting vector of Ec. (4.10) and Ec. (4.12)

s3 = s1 ⇥ s2 (4.13)

By adding the results as a product of the transposed Ecs. i.e. (4.6), (4.8) and

(4.9) with (4.10), (4.12) and (4.13) respectively, a 3⇥3 matrix results and the

transpose is the rotation matrix, just as Ec. (4.14) shows:

C = rot mat = [r1T ⇤ s1 + r2T ⇤ s2 + r3T ⇤ s3]T (4.14)
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We can calculate the quaternion elements from the elements of the rotation

matrix according to Ec. (4.15)

q0 = ±1
2

p
1 + C11 + C22 + C33

q1 =
C23 � C32

4q0

q2 =
C31 � C13

4q0

q3 =
C12 � C21

4q0

(4.15)

4.3.3 Interface

The interface, in which we can see the results of the acquiring data, it is made in

LabVIEW. In order to obtain a better performance, all the charts and matrices

are displayed in an individual screen as show in Figure 4.6. The blue chart is for

modifying the serial communication characteristics. The green chart graphs and

displays the altitude (in meters) and the pressure (in Pascal) values. The yellow

chart contains a thermometer to illustrate the temperature and display its value in a

numeric form (in Celsius degrees). The three charts of below graph each axis of the

accelerometer (in G), gyroscope (in rad/s) and magnetometer respectively. Lastly,

there are three matrices, the first displays the quaternion, the second the rotation

matrix and the third Euler angles (radians) of the roll, pitch and yaw.
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Figure 4.6: LabVIEW interface.
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Results and discussion

The experiments were set in order to get information in real time according to the

simulation for a missile system. The experiments were performed by lifting and

lowering the flight computer. These tests were done in the Channel 22 antenna

located at the top of the hill “El Mirador”. The flight computer has a mass of 290

grams and it was raised to a height of 30 meters. The antenna structure generates

a Faraday cage e↵ect making the communication cleaner and the only disturbance

is caused by the engine of the air-conditioner of the building.

Figure 5.1 is divided in three graphs. The upper graph indicates the pressure,

the graph in the middle shows the temperature and the graph below depicts the

altitude. According to Ec. (3.4), pressure and altitude graphs shown in Figure 5.1.

It states that the atmospheric pressure is inversely proportional to the altitude (for

greater pressure, lower altitude). These two graphs indicate that the flight computer

began in an altitude of 1114 meters, then it was gradually lifted to a middle height

of maximum reached and it stood there for a couple of minutes. The next lifting

helped the computer flight to reach the maximum height (1142 meters). Then, it

was slowly descended to the midpoint. Once at this stage, it was lifted faster than

the first time and returned to the initial height. These movements lasted for about

14 minutes because in previous experiments the power source capability was about

15-16 minutes. At the beginning of the experiments, the flight computer was at
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ground floor aside of the ground station and the engines. The initial temperature

was at 30 C due to the heat emanated from the engines and as the computer flight

moved away from the engines the temperature dropped gradually until it reached

the ambient temperature which was at 24 C.

Figure 5.1: Data from the accelerometer indicating the motion of each axis.
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Three conditions were taken in this test to interpret the data gotten by the

accelerometer. The inclination produced in the flight computer due to the center of

gravity not being centered; the rope used has a high elasticity coe�cient and the

position of the sensor. The IMU was centered as Figure 4.4 shows. In the beginning,

the flight computer was leveled to the floor making the X and Y axis to stand near

to zero and Y-axis opposite to the center of the Earth so the reading gave a value

near to 2 as seen in Figure 5.2. These initial values mean that the frame if X and Y

axis was almost in parallel with the ground and the Y axis was pointing to the sky.

When the flight computer started to lift, the inclination in the X-axis changed

to an average of -0.7, Y-axis to an average of -0.2 and the Y-axis increased its value

to an average of -1.8. These moves indicate that the axes were not leveled and the

positive side had a direction opposite to the floor. Each time the rope was pulled

to be lifted, the movement produced acceleration in the direction of the rope and

as the three axes had certain value to that direction. All of them reacted but not

at the same amplitude. As the rope had a high elasticity coe�cient at the time of

finishing pulling, the computer flight descended with a spring-like e↵ect. It could be

said that each time the rope was pulled, it generated acceleration to the direction

of the rope (becoming a positive acceleration) and between each pull an opposite

acceleration was generated by a spring-like e↵ect becoming a negative acceleration.

Due to the center of gravity is not coupled to the time the computer flight

was lifted, the three gyroscope axis presented similar angular velocity, especially

X-axis and Y-axis. Figure 5.3 makes proof of this. The two physical actions that

produce the angular movement are the yanks to lift the flight computer and the

pounding of the wind. Seen from the ground station, if the flight computer rotated

in counterclockwise the angular velocity was positive but if rotated in clockwise the

velocity would be negative. By the conditions, in the beginning of the test the yanks

produced the first angular movements; however, as the experiment progressed the

wind began to blow continuously causing that the flight computer moved like a pen-

dulum. The pendulum movement caused the flight computer positive rotated on its
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Figure 5.2: Data from the accelerometer indicating the motion of each axis.

axis while the tension of the rope made it back into position. These two movements

produced the undulations in the axes graphs. The reason why the amplitude of

Z-axis is greater than X and Y axes is because the rotation is mostly concentrated
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on this axis.

Figure 5.3: Data taken from the gyroscope indicating the angular velocity in each

axis.

The magnetic field preset a constant disturbance generated by the building

engines that are near the ground station. Figure 5.4 shows the magnetic field flow
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Figure 5.4: Data taken from the gyroscope indicating the disturbance of the magnetic

fiel that each axis receive.

that each axis of the magnetometer received. The sinusoidal shape of each axis is

due to the rotation that the flight computer made over the Earth magnetic field flow

that pass through the area. The reason that some waver are smaller than other is
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because even though the flight computer was rotating on its axis, the movement was

not considered enough to increase the amplitude of the value.

During the test, some images were taken but due to the disturbance in the

transmission produced by engines. Therefore, some acquired data presented corrup-

tion in its code when it was received at the graound station. This corruption or

disturbance produced a line code longer, shorter or none. In the images are three

types of bars representing each of the disturbances. If the bar has colors that do not

match, it means that the code line was longer. If the end of the bar is in black, the

code line was shorter. If the bar is countiniusl in gray color, the code line was not

transmitted. A total of 8 images were taken but the code of the eighth was inter-

rupted. The camera is capable of take pictures with a resolution of 640⇥480 pxs,

320⇥240pxs or 160⇥120pxs [32]. The transmitted code size is directly related to the

resolution of the image. For practical purposes, the images taken in the experiment

were in 320⇥240pxs, which is the standard resolution.

The first image that the camera took occurred when the flight computer was

at ground floor. The image in Figure 5.5 was taken at an altitude of 1130 m at

the beginning of the first stage. Figure 5.6 was taken during the second lifting at a

height of 1132 m. Figure 5.7 shows the flight computer standing at the mid-height

for the second time and the altitude marked 1123 m. Figure 5.8 was taken while

the flight computer made the final descent and it was taken at a height of 1138 m

as last image.
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Figure 5.5: Image 1, 16 meters from floor.

Figure 5.6: Image 2, 18 meters from floor.
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Figure 5.7: Image 3. 10 meter from floor

Figure 5.8: Image 4, 24 meter from floor.
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Conclusions and future work

6.1 Conclusions

By considering that the project (design, development and material selection) started

from scratch, and given the results obtained, we can validate that a developed FPGA

board performs data acquisition of navigation sensors as well as images and then

transfer them through a wireless communication module to a ground station for

processing. For a 14 minutes test, the ground station received 4183 data from each

sensor of which 4165 data were correctly sent. The transmission had an e�ciency of

99.57% on the acquisition and data transmission with a frequency of 293 data per

minute. The computer flight weight was very light, 290 grams; thereby the results

of the HIL simulation were more precise. Also it is considered that the assembly

of the flight computer was handmade. As a consequence, a few of the signals and

processes could produce noise at the time of the acquisition.

By regarding the sensors, the camera was the only sensor which had an error

while sending the data and it was expressed by sending larger or shorter lines of

code seen in the ground station. By considering its precedence, the communication

module had a considerable e�ciency in spite of being near an engine that produced

disturbance. The results were displayed in real time in a LabVIEW interface and
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stored either in an .xls or .txt file. With this information, a quaternion was generated

and the value of the quaternion changed as a function of the received information.

The power supply supported a considerable time during acquiring and transferring

data. However, also it should be mentioned that the camera IR LEDs were not

in used. With higher quality sensors, data acquisition would be faster and more

accurate.

By using a computer-based mathematical process, the results and some points

of the next section, we can work with PWM signals to manipulate servo motors

and thus expand the HIL simulation by adding these servos as the missile wings

controllers.

6.2 Future work

A thesis work is always evolving, changing and improving, what is proposed in this

paper is that way. One way to confirm that we are in the right path is by writing the

same program but in a VHDL code and compare results in the data transmission

speed and the di�culty to interact with the FPGA board. We could add a GPS to

complement the sensor module, it would provide information of the route by which

the missile traveled. We can also set the camera to take pictures faster or enable it

to take video, but if it is not possible then we have to find and install an appropriate

camera for this task.

Now then, if the flight computer orients the direction that the missile has and

will have, it will have to direct the trajectory, and for doing that the missile needs

actuators. In a flying missile, those actuators would be the wings or flats that are

luckily controlled by servo motors, which are controlled, at the same time, by PWM

signals generated within the flight computer. To calculate the position that the

servos should have to guide the missile is necessary to calculate an estimate position

of the target and with a Kalman filter the flight computer can archive this.
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We must not forget that the sensors can be exchanged for others with higher

quality or other communication protocol. Another module that could be improved

is the flight computer. We can change the FPGA board by one with better resources

and in turn build a PCB that contains the FPGA chip and the peripherals used for

the tasks. At the same time, both the communication and the power modules can

be improved by modules that transmit cleaner signals and with longer transmission

distance meanwhile we can replace the power source with battery cells and a smaller

electronic arrangement to regulate the current consumed by the sensor module and

the flight computer.

Last but not least, the flight computer must be inserted into a compartment

of the missile body, it should be attached to a chasing to resist the accelerations and

movements caused by the missile. The modules must be distributed such that the

space they occupy is the required, should not alter the center of gravity and have an

interaction with the FPGA board equally e�cient. By doing this, we can test with

flying vehicles for interaction with the actuators (servos) and measuring the time it

takes for the processing module to calculate a new route and take action to follow

that new route.



Appendix A

Implementation of the embedded

system

To create a project file using XPS of the EDK software is necessary to follow the

next instructions:

1.- Excecute as administrator XPS version installed in the computer. The XPS

main window would like figure A.1.

2.- Click on Create New Project Using Base System Builder and the as-

sistant window will appear. The project files must be the closest to C:\, it is

recomended no more than 3 carpets. Select AXI System and the assistant

window shoul be like A.2. Click OK.

3.- In the Base System Builder screen select Create a System for a Custom

Board and the option in Board Configuration sould be enable.

Select Architecture - artix7

Select Device - xc7a100t

Select Reference Clock Frequency - 100.00 MHz

Select Package - csg324

Select Speed Grade - -1

Select Reset Polarity- Active High
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Figure A.1: Xilinx Platform Studio main window.

Select Single MicroBlaze Processor System

SelectOptimization Strategy - Throughput. Figute A.3 shows the previus

steps. Click Next and the Processor, Cache, and Peripheral Configu-

ration auxiliar will appear.

4.- In the Base System Builder - Processor, Cache, and Peripheral Con-

figuration panel select Local Memory Size - 32 KB. Click in Add De-

vice... and the Add IO Devices for Generic Board will be displayed.

Select IO Interface Type - UART

Select Device - RS232

Click OK

Change Include Peripherals for microblaze 0 - RS232 - Baud Rate -

19200. Figure A.4 shows the panel modified.

click Finish and after several seconds the Xilinx Platform Studio editor

window will appear.

5.- In the Xilinx Platform Studufio editor the first thing to do is to add the left

peripherals which are other UART port, an I2C interface and a timer/counter.
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Figure A.2: Window to create a XPS project using BSB wizard.

To add a second UART port which will communicate with the camera, focus

in IP Catalog

Deploy the option Communication Low Speed

Left click on AXI UART (Lite) Select Add IP. Select Yes.

Select UART Lite Baud Rate - 38400

Select Parity Type - Odd. Figure A.5 shows how the options of the UART

port for must be. Click OK

Click OK.

To add port available of process the communication I2C: Deploy the option

Communication Low Speed

Left click on AXI IIC Interface

Select Add IP. Select Yes. We left the characteristics as they are, figure A.6.
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Figure A.3: Base System Builder for an AXI flow.

Select OK

Select OK

To add an inter timer/counter to the delays that the program should have:

Deploy the option DMA and Timer

Left click on AXI Timer/Counter

Select Add IP. Select Yes. Figure A.7 shows the configuration we need to

make the timer/counter a delay.

Select OK

Select OK

6.- Now the ports are connected to MicroBlaze and available but not addressed in

the externat ports. To see the name of the external ports select the tab Sys-
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Figure A.4: Base System Builder - Processor, Cache, and Peripheral Configuration

panel.

tem Assembly View - Ports, There would be the characteristics of each

port as figure A.8 shows.

To relate the name of the ports with the output addresses that the FPGA

board has [19] select the tab Project

Select UCF File: data\system.ucf

Write the code that relates the external ports with the output addresses that

is shown in Appendix C.

7.- Click on Generate BitStream (Figure A.9) to create a BIT file cointaining

the hardware design to be inported to SDK. The process would take several

minutes.

8.- Click onExport Design (Figure A.10), the window Export to SDK/Launch

SDK will appear (Figure A.11). Select Export & Launch SDK. The next
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Figure A.5: Second UART port configuration.

Figure A.6: I2C port configuration.
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Figure A.7: Timer/Counter configuration.

Figure A.8: Ports caracteristics.
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Figure A.9: Generate BitStream button.

window to appear is Workspace Launcher and it is to indicate the direction

in which we will keep the programs to run on the board, it is recomended

to save the programs in the same folder created for the embedded system, as

shown in Figure A.12.

Figure A.10: Export Design button.

Figure A.11: Export to SDK/Launch SDK window.
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Figure A.12: Workspace Launcher window.

After this steps a new window will appear to implement the C program into

the FPGA board.



Appendix B

Implementation of the C

program

The new window is calledC/C++ - project hw platform/system.xml - Xilinx

SDK, Figure B.1.

Figure B.1: Xilinx SDK main window.

The following steps describes the procedure to create and later to program the

FPGA board with a program that acquire data from the IMU and the camera.

1.- Click on File - New - Application Project.
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2.- The window to select the project features will appear, select a name for the

project (preferably other one di↵erent than written in the storage folder) and

click Next, Figure B.2(a).

The next part of the window is to choose the template to generate a fully-

functioning application project. Select Empty Application and clock on

Finish, Fugure B.2(b).

(a) (b)

Figure B.2: New Project window. a)Selecting the name and the lenguage of the

programs. b)Selecting an empty application to crate multiple files.

3.- In the project explorer will appear two new files. Deploy the folder with the

C. Right click on src folder.

Select Next and click on File

The new file will be the library to get access to the ROM memory within each

sensor of the IMU.

Write i2clib.h

Click on Finish.

On the Project Explorer, doble click on project 0 - src - i2clib.h, wait a

moment and a new lash will appear.
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Write the code that is on Appendix D.

Save the changes in the file.

4- In the project explore, right click on src folder.

Select Next and click on File

The file created is the one that contain the main program. Writemain project.c

Click on Finish

Doble cick on project 0 - src - main project.c

Write the code in the Appendix E.

Save all the changes.

5.- To program the FPGA with the programs, click on Xilinx Tools - Program

FPGA

In the new window verify that the direction of the system.bit is the correct

and click on Program.

To run the program, go to Run - Debug Configuration and a new window

will appear, Figure B.3.

Select project 0 Debug.

Open the tab STDIO Connection.

If want to see the results in the console panel of Xilinx SDK enable the option

Connect STDIO to Console choose the correct serial communication port

and the baud rate correspondent. Click on Apply. Click on Run
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Figure B.3: Run configuration window.



Appendix C

Direction of the ports within

the FPGA

# Clock signal

NET “clk” LOC = “E3” — IOSTANDARD = “LVCMOS33”; #Bank = 35, Pin

name = IO L12P T1 MRCC 35, Sch name = CLK100MHZ

NET “clk” TNM NET = sys clk pin;

TIMESPEC TS sys clk pin = PERIOD sys clk pin 100 MHz HIGH 50%;

# Buttons

NET “RESET” LOC = “V10” — IOSTANDARD = “LVCMOS33”; #Bank = 14,

Pin name = IO L21P T3 DQS 14, Sch name = BTND

# Pmod Header JA

NET “axi uartlite 0 RX pin” LOC = “D18” — IOSTANDARD = “LVCMOS33”;

#Bank = 15, Pin name = IO L21N T3 A17 15, Sch name = JA9

NET “axi uartlite 0 TX pin” LOC = “E18” — IOSTANDARD = “LVCMOS33”;

#Bank = 15, Pin name = IO L21P T3 DQS 15, Sch name = JA10

# Pmod Header JB

NET “axi iic 0 Scl pin” LOC = “T9” — IOSTANDARD = “LVCMOS33”; #Bank

= 14, Pin name = IO L24P T3 A01 D17 14, Sch name = JB9

NET “axi iic 0 Sda pin” LOC = “U11” — IOSTANDARD = “LVCMOS33”; #Bank

69
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= 14, Pin name = IO L19N T3 A09 D25 VREF 14, Sch name = JB10

# Pmod Header JC

NET “RS232 Uart 1 sin” LOC = “J2” — IOSTANDARD = LVCMOS33; #Bank

= 35, Pin name = IO L22N T3 35, Sch name = JC9

NET “RS232 Uart 1 sout” LOC = “G6” — IOSTANDARD = LVCMOS33; #Bank

= 35, Pin name = IO L19P T3 35, Sch name = JC10



Appendix D

Code reading of sensors EPROM

#include “xparameters.h”

#include “xutil.h”

#include “xiic.h”

#include “xiic l.h”

writeI2C(u8 DISP ADD, u8 reg DISP, u8 data){

cu8 Data Send[2];

Data Send[0] = reg DISP;

Data Send[1] = data;

XIic Send(XPAR AXI IIC 0 BASEADDR, DISP ADD, Data Send, 2, XIIC STOP);

};

readI2C(u8 DISP ADD, u8 reg DISP, u8 *Data Rec, u8 lenght){

u8 Data Send[1];

Data Send[0] = reg DISP;

XIic Send(XPAR AXI IIC 0 BASEADDR, DISP ADD, Data Send, 1, XIIC STOP);

XIic Recv(XPAR AXI IIC 0 BASEADDR, DISP ADD, Data Rec, lenght, XIIC STOP);

};
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Main program

//Libraries

#include “xparameters.h”

#include “xutil.h”

#include “stdio.h”

#include “xtmrctr.h”

#include “xuartlite.h”

#include “xuartlite l.h”

#include “i2clib.h”

#include “math.h”

//Global variables

#define icc add XPAR AXI IIC 0 BASEADDR

#define bar add 0x77

const unsigned char OSS = 3;

short M o g[3], Measures bmp[11], Measures bma[4], Measures itg[3], Measures hmc[3];

short Ref[6];

long P[2], UT[2];

unsigned long UP[2];

int a=0x0000, k=0, count=0, EndFlag=0, StartFlag=0;
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int ph[42];

Xuint8 MH,ML;

XIic IicInstance;

XTmrCtr DelayTimer;

void delay(Xuint32 time);

void SendResetCmd();

void SendTakePhotoCmd();

void SendReadDataCmd();

void SendReadCmd(); //Extra al Arduino

void SendImage640(); //Extra al Arduino

void SendImage320(); //Extra al Arduino

void StopTakePhotoCmd();

void init bma();

void GetMeasures();

void PrintMeasures();

void References();

//Delay function in milliseconds

void delay(Xuint32 time){

XTmrCtr SetResetValue(&DelayTimer, 1, time * 100000);

XTmrCtr Start(&DelayTimer, 1);

while (!(XTmrCtr IsExpired(&DelayTimer, 1)))

XTmrCtr Stop(&DelayTimer, 1);

}

//Camera commands

void SendResetCmd(){

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x56);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);
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XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x26);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

}

void SendTakePhotoCmd(){

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x56);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x36);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x01);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

}

void SendReadData(){

MH = a / 0x100;

ML = a % 0x100;

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x56);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x32);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x0C);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x0A);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, MH);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, ML);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x20);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);
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XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x0A);

a+=0x20;

}

void SendReadCmd(){

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x56);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x34);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x01);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

}

void StopTakePhotoCmd(){

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x56);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x36);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x01);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x03);

}

void SendImage640(){

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x56);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x31);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x05);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x04);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x01);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x19);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);
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}

void SendImage320(){

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x56);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x31);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x05);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x04);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x01);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x00);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x19);

XUartLite SendByte(XPAR AXI UARTLITE 0 BASEADDR, 0x11);

}

//Get barometer and temperature measures

bmp085(short *Measures bmp, long *UT, unsigned long *UP, long *P){

u8 data read[22];

u8 read data[2];

u8 dataread[3];

int ac1, ac2, ac3, b1, b2, mb, mc, md;

unsigned int ac4, ac5, ac6;

long b3, b5, b6, x1, x2, x3;

unsigned long b4, b7;

readI2C(0x77, 0xAA, data read, 22);

Measures bmp[0] = ((short)data read[1]) | ((short)data read[0])⌧8; //ac1

Measures bmp[1] = ((short)data read[3]) | ((short)data read[2])⌧8; //ac2

Measures bmp[2] = ((short)data read[5]) | ((short)data read[4])⌧8; //ac3

ac4 = ((short)data read[7]) | ((short)data read[6])⌧8; //ac4

Measures bmp[3] = ((short)data read[7]) | ((short)data read[6])⌧8; //ac4

ac5 = ((short)data read[9]) | ((short)data read[8])⌧8; //ac5
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Measures bmp[4] = ((short)data read[9]) | ((short)data read[8])⌧8; //ac5

ac6 = ((short)data read[11]) | ((short)data read[10])⌧8; //ac6

Measures bmp[5] = ((short)data read[11]) | ((short)data read[10])⌧8; //ac6

Measures bmp[6] = ((short)data read[13]) | ((short)data read[12])⌧8; //b1

Measures bmp[7] = ((short)data read[15]) | ((short)data read[14])⌧8; //b2

Measures bmp[8] = ((short)data read[17]) | ((short)data read[16])⌧8; //mb

Measures bmp[9] = ((short)data read[19]) |((short)data read[18])⌧8; //mc

Measures bmp[10] = ((short)data read[21]) | ((short)data read[20])⌧8; //md

ac1 = Measures bmp[0];

ac2 = Measures bmp[1];

ac3 = Measures bmp[2];

//ac4 = Measures[3];

//ac5 = Measures[4];

//ac6 = Measures[5];

b1 = Measures bmp[6];

b2 = Measures bmp[7];

mb = Measures bmp[8];

mc = Measures bmp[9];

md = Measures bmp[10];

writeI2C(0x77, 0xF4, 0x2E);

delay(5);

readI2C(0x77, 0xF6, read data, 2);

UT[0] = ((long)read data[1]) | ((long)read data[0])⌧8;

writeI2C(0x77, 0xF4, (0x34 + (OSS⌧6)));

delay((2 + (3⌧OSS)));

readI2C(0x77, 0xF6, dataread, 3);

UP[0] = (((unsigned long)dataread[2]) | ((unsigned long)dataread[1])⌧8 | ((un-

signed long)dataread[0]⌧16)) � (8-OSS);

x1 = (((long)UT[0] - (long)ac6)*(long)ac5) � 15;

x2 = ((long)mc ⌧ 11)/(x1 + md);



Appendix E. Main program 78

b5 = x1 + x2;

b6 = b5 - 4000;

// Calculate B3

x1 = (b2 * (b6 * b6) / 4096) / 2048;

x2 = (ac2 * b6) / 2048;

x3 = x1 + x2;

b3 = (((((long)ac1)*4 + x3)⌧OSS) + 2) / 4;

// Calculate B4

x1 = (ac3 * b6)�13;

x2 = (b1 * ((b6 * b6) / 4096)) / 65536;

x3 = ((x1 + x2) + 2) / 4;

b4 = (ac4 * (unsigned long)(x3 + 32768))�15;

b7 = ((unsigned long)(UP[0] - b3) * (50000�OSS));

if (b7 < 0x80000000)

P[0] = (b7⌧1)/b4;

else

P[0] = (b7/b4)⌧1;

x1 = (P[0] / 256) * (P[0] / 256);

x1 = (x1 * 3038) / 65636;

x2 = (-7357 * P[0]) / 65636;

P[0] += (x1 + x2 + 3791) / 16;

}

//Initialize accelerometer

init bma(){

u8 data read[2];

writeI2C(0x40, 0x10, 0xB6);

delay(10);

writeI2C(0x40, 0x0D, 0x10);

writeI2C(0x40, 0x37, 88);
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readI2C(0x40, 0x20, data read, 1);

writeI2C(0x40, 0x20, (data read[0] & 0x0F));

readI2C(0x40, 0x35, data read, 2);

writeI2C(0x40, 0x35, ((data read[0]& 0xf1))—0x04);

}

//Get accelerometer measures

bma180(short *Measures bma){

u8 data read[6];

readI2C(0x40, 0x02, data read, 6);

Measures bma[0] = ((short)data read[0]) | ((short)data read[1])⌧8;

Measures bma[1] = ((short)data read[2]) | ((short)data read[3])⌧8;

Measures bma[2] = ((short)data read[4]) | ((short)data read[5])⌧8;

}

itg3200(short *Measures itg){

u8 data read[6];

readI2C(0x68, 0x1D, data read, 6);

Measures itg[0] = ((short)data read[1]) | ((short)data read[0])⌧8;

Measures itg[1] = ((short)data read[3]) | ((short)data read[2])⌧8;

Measures itg[2] = ((short)data read[5]) | ((short)data read[4])⌧8;

}

//Get magnetometer measures

hmc5883l(short *Measures hmc){

u8 Data Read[6];

readI2C(0x1E, 0x03, Data Read, 6);

Measures hmc[0] = ((short)Data Read[1]) | ((short)Data Read[0])⌧8;

Measures hmc[1] = ((short)Data Read[3]) | ((short)Data Read[2])⌧8;

Measures hmc[2] = ((short)Data Read[5]) | ((short)Data Read[4])⌧8;
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}

GetMeasures(){

bmp085(Measures bmp, UT, UP, P); //Barometer

bma180(Measures bma); //Accelerometer

itg3200(Measures itg); //Gyroscope

hmc5883l(Measures hmc); //Magnetometer

if (M o g[0] <= 0)

Measures itg[0] = Measures itg[0] - M o g[0];

else

Measures itg[0] = Measures itg[0] + M o g[0];

if (M o g[1] >= 0)

Measures itg[1] = Measures itg[1] - M o g[1];

else

Measures itg[1] = Measures itg[1] + M o g[1];

if (M o g[2] <= 0)

Measures itg[2] = Measures itg[2] - M o g[2];

else

Measures itg[2] = Measures itg[2] + M o g[2];

}

PrintMeasures(){

xil printf(“a%db%dc%dd%de%df%dg”

“%dh%di%dj”

“%dk%dl%dm”

“%dn%do%dp”

“%dq%dr%ds%dt%du%dv”,

Measures bmp[4], Measures bmp[5], Measures bmp[9], Measures bmp[10],

UT[0], P[0],
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Measures bma[0], Measures bma[1], Measures bma[2],

Measures itg[0], Measures itg[1], Measures itg[2],

Measures hmc[0], Measures hmc[1], Measures hmc[2],

Ref[0], Ref[1], Ref[2], Ref[3], Ref[4], Ref[5]);

}

//Accelerometer and magnetometer references

References(){

delay(500);

bma180(Measures bma);

Ref[0] = Measures bma[0];

Ref[1] = Measures bma[1];

Ref[2] = Measures bma[2];

hmc5883l(Measures hmc);

Ref[3] = Measures hmc[0];

Ref[4] = Measures hmc[1];

Ref[5] = Measures hmc[2];

}

//Main program

int main(void){

//Local Variables

int i, Status, x;

int ans rd[10], ans rst[55], ans tp[10], ans stp[10];

//Initialize delay’s timer

XTmrCtr Initialize(&DelayTimer, XPAR AXI TIMER 0 DEVICE ID);

XTmrCtr SetOptions(&DelayTimer, 1, XTC DOWN COUNT OPTION);

//Initialize i2c

Status = XIic Initialize(&IicInstance, XPAR AXI IIC 0 BASEADDR);
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if (Status != XST SUCCESS){

return XST FAILURE;

xil printf(“\r\nFAIL \r\n”);

}

else

xil printf(“\r\nSuccess \r\n”);

XIic Start(&IicInstance);

init bma();

writeI2C(0x68, 0x16, 0X1f);

writeI2C(0x1E, 0x02, 00);

//gyroscope’s o↵set measure

for(x=0; x<=20; x=x+1){

itg3200(Measures itg);

M o g[0]= M o g[0] + Measures itg[0];

M o g[1]= M o g[1] + Measures itg[1];

M o g[2]= M o g[2] + Measures itg[2];

delay(20);

}

M o g[0] = M o g[0] / 20;

M o g[1] = M o g[1] / 20;

M o g[2] = M o g[2] / 20;

References();

SendImage320();

xil printf(“v”);

for(i=0;i<5;i++){

ans tp[i] = XUartLite RecvByte(XPAR AXI UARTLITE 0 BASEADDR);
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if (i != 4){

if (ans tp[i]<=0x0F)

xil printf(“0”);

xil printf(“%x”, ans tp[i]);

}

else{

if (ans tp[i]<=0x0F)

xil printf(“0”);

xil printf(“%xcmd\r\n”, ans tp[i]);

}

}

while(1){

GetMeasures();

PrintMeasures();

//print(“Reset Command\r\n”);

xil printf(“v”);

SendResetCmd();

for(i=0;i<46;i++){

ans rst[i] = XUartLite RecvByte(XPAR AXI UARTLITE 0 BASEADDR);

if (i != 45){

if (ans rst[i]¡=0x0F)

xil printf(“0”);

xil printf(“%x”,ans rst[i]);

}

else{

if (ans rst[i]¡=0x0F)

xil printf(“0”);

xil printf(“%xcmd\r\n”, ans rst[i]);

}
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}

//4 sec delay

for(x=0; x<45; x++){

GetMeasures();

PrintMeasures();

xil printf(“\r\n”);

delay(5);

}

GetMeasures();

PrintMeasures();

//print(“Take Photo Command\r\n”);

SendTakePhotoCmd();

xil printf(“v”);

for(i=0;i<5;i++){

ans tp[i] = XUartLite RecvByte(XPAR AXI UARTLITE 0 BASEADDR);

if (i != 4){

if (ans tp[i]<=0x0F)

xil printf(“0”);

xil printf(“%x”, ans tp[i]);

}

else{

if (ans tp[i]<=0x0F)

xil printf(“0”);

xil printf(“%xcmd\r\n”, ans tp[i]);

}

}

GetMeasures();
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PrintMeasures();

//print(“Read Command\r\n”);

SendReadCmd();

xil printf(“v”);

for(i=0;i<9;i++){

ans rd[i] = XUartLite RecvByte(XPAR AXI UARTLITE 0 BASEADDR);

if (i != 8){

if (ans rd[i]<=0x0F)

xil printf(“0”);

xil printf(“%x”, ans rd[i]);

}

else{

if (ans rd[i]<=0x0F)

xil printf(“0”);

xil printf(“%xcmd\r\n”, ans rd[i]);

}

}

//print(“Photo\r\n”);

while(EndFlag==0){

if(StartFlag==0){

SendReadDataCmd();

count=37;

for(i=0;i¡42;i++)

ph[i] = XUartLite RecvByte(XPAR AXI UARTLITE 0 BASEADDR);

delay(4);

for (i=6;i<37;i++)

if ((ph[i-1]==0xFF)&&(ph[i]==0xD8))

StartFlag=1;

GetMeasures();
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PrintMeasures();

if(StartFlag==1){

for (i=5;i<37;i++){

if (ph[i]<=0x0F)

xil printf(“0”);

xil printf(“%x”,ph[i]);

}

}

xil printf(“cmd\r\n”);

}

if(StartFlag==1){

SendReadDataCmd();

count=37;

for(i=0;i<42;i++)

ph[i] = XUartLite RecvByte(XPAR AXI UARTLITE 0 BASEADDR);

delay(4);

for (i=6;i<37;i++)

if ((ph[i-1]==0xFF)&&(ph[i]==0xD9)){

StartFlag = 0;

EndFlag = 1;

count = i+1;

}

GetMeasures();

PrintMeasures();

for (i=5;i<count;i++){

if (ph[i]<=0x0F)

xil printf(“0”);

xil printf(“%x”,ph[i]);

}

xil printf(“cmd\r\n”);
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}

}

//4 sec delay

for(x=0; x<45; x++){

GetMeasures();

PrintMeasures();

xil printf(“\r\n”);

delay(5);

}

GetMeasures();

PrintMeasures();

//print(”Stop Command\r\n”);

StopTakePhotoCmd();

xil printf(“v”);

for(i=0;i¡5;i++){

ans stp[i] = XUartLite RecvByte(XPAR AXI UARTLITE 0 BASEADDR);

if (i != 4){

if (ans stp[i]<=0x0F)

xil printf(“0”);

xil printf(“%x”, ans stp[i]);

}

else{

if (ans stp[i]<=0x0F)

xil printf(“0”);

xil printf(“%xcmd\r\n”, ans stp[i]);

}

}

EndFlag=0;



Appendix E. Main program 88

//4 sec delay

for(x=0; x<45; x++){

GetMeasures();

PrintMeasures();

xil printf(“\r\n”);

delay(5);

}

}

}
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