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Abstract 

Title of Dissertation: New Methods for the Detection aud 
Interception of Unknown, 
Frequency-Hopped Wavefon11s 

Willia m Edward Snel ling , Doctor o f Philosophy, 1990 

Dissertat ion directed by: Dr. Evagge los Geraniotis , J\ssoc ia.tc Professor , 
Department of Electrical Engineer ing, U11iversity o f Mary la.nd , Co ll ege Park 

Three n ew methods for the detcctioll a nd intercept io n o f frcq 1icncy-hoppcd 

waveforms a.re presented . The first method extend s the opt irn a l, rixed - block 

detect ion m e thod based on the likel ihood ratio to a seq ue nti a l o rr c based o rr tlw 

Sequential Probabil ity Ratio Test (SPRT). The seco nd rn ctl rod is structu red 

a.round a comp ress ive receiver a nd is h ig h ly e ffi c ie rrt yet eas ily irllplcr ne r1t< ·d. 

Tl re third me tlr od is based on th e new co 11 cept of J\n1p lii.udc Di si. rihui.i o 11 

Fun ction (ADF) and res ults i11 a detecto r t hat is ;-1.11 <'xtcrrsiorr of 1.11(' radior11('-

t e r. 

The first method prese nts a de tector st ruct ured Lo rna.ke a decision scque 11 -

tia.lly, tha t is, as ca.ch data e le me nt is co ll ected . Ini t ia lly, a purely scq tl<' r1 i.i, i.l 

t est is derived a nd slr own to req uire fewer data fo r a d<'c is io11. J\ tnr,rc;-1.f.cd 

seq ue ntial rn e tlr ocl is a lso de r ived a nd s how n to red uce Lil<' daL1. ll('<'d<'d fo r c1 

decision while opera.ting und er poo r s ig na l-to-noise rat ios (SN Hs ) . J\ detailed 



performance analysis is presented a.long with numeri cal a nd Mo n t(' C' .1 , a.1 o ana l-

yses of the detectors . 

The second m e thod assumes stationary, colo red Gaussian inte rfc r·<' rl., . ·I . , (.( ctn( 

presents a. de tai led model of the compress ive receiver. A locall y OJ)t inPI <1 t . 
n. (' ,e( -

tor is developed via. th e li kelihood rati o tli eory a nd y ie ld s a refo r<'nce to w hi ch 

prev iou s a.cl ho c schem es a.re compa red . /\ s impli11ed, su bopt inr a l sclw rn<' is 

d eveloped that trades off duty cycle for pe rforina.rr cc, and a. tccl111iqtr <' fo r ('S 

t irna.ting hop frequ ency is developed. The prrforr na nc<' o f tir e optirrr a. l a l!d 

suboptimal de tectors is quantifi ed. Po r the s ubopt im a l scl rc 11r e, Lir e tr;id('-o fr 

w ith duty cycle is s tud ied . The re lia bility o f th e ho p frequ c 11 cy ('St irir ,1.Lo r is 

bounded and traded off again st duty cycle. 

In the third method , a precise defin it io n of t he ADF is g ive n , fro 111 wlriclr 

fo ll ows a. co nvoJutio11aJ relation ship betweerr Ur e /\ DFs o f s ig 11a.l ;-u rd add it.iv(' 

noi se. A techn ique is given for deco nvo lv irr g tlr <' /\DF, wit.I r wlri clr s ig rr ;i l ;i rrd 

noi se cornpon e uts can be separa ted. /\ dctect io11 s tat ist ic bas<'d dir<'c tl y 01 1 Uri s 

deconvol ution techn ique is defin ed and s tati s ti call y cl1 a ra.d<' ri zcd , y ic ldirrg a 

frame wor k on wh ich to synthes ize a detector. Th e cldcdor 's pc rfo rin a rr ce is 

a.n a.Jy7,cd and corn p a.reel with the rad iorncte r. 
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Chapter 1 

Introduction and Background 

1.1 Motivation 

The goal of th e in t ercept rece ive r is Lo detect , idc11Lify, a nd gco loca,Lc host il e 

e lectromagne t ic (EM) so urces and use t hi s inforrn a.L ion Lo co u11Lcr with l•:lcc

tronic Counter Meas ures (ECM) a nd Elect roni c Counte r Cou 11L C' r M<'il s t1res 

(ECCM). For military communi cat io ns, th e rece ive r is expected Lo i11 tcrccpt 

an y one of a se t of target commullication s. Th<' i11L<'r c<' pti o 11 tas k is hi11dned 

by a. d e nse EM e nvironme nt that co ns ists o f o tl1 e r co 111111t111i ca.tio11 s ig 11 ,il s , 

both fri e ndly and hos til e , p oss ibl y j a n1111i11 g o r mas kin g s ig 11 ;-1 ls i11 a.dd it,i o 11 

Lo ever -present no ise interfere nce. Wit h th e ad vf' 11L o f fr cq t1c11 cy- l1 o ppcd a.11d 

oth e r sp read-spectrum cornmu11i cation s, th e searc h bandwidth Ll1r1.t ass m<'s a. 

rea sonable probability o f inte rcept is g reatl y increased, thereby a.gg ravat i11 g 

Llie prob le m of inte rfe re nce, becat1 sc g reate r 1111111 l)(' rs i1. 11d ty pes o f i11tc rf< ' r-



ences obscure the targe t signal. The increased complex ity o f t he inte rcC'pt ion 

problem motiva tes the search for ne w me th ods of detect. ion a nd i11 tc rcc pt io 11 

of freque ncy- hopped waveforms. 

1.2 Target Signals 

Mi li tary and othe r secure cornrnun ica.t io11 s use sprc;-ul-spcct ru111 sig 11 a.li 11 g 

involving some variety of modulation whose purpose is to add a mbig uity o r 

"randornness" to the waveform as a measure aga.in st u11i111. C' nd cd de tC'ct. io n o r 

inter ception. The usual procedure for ra ndomi z, ing the wa vcforlll is pse ud o-

random variation of transmi ss ion t imes (LintC' ho ppi 11 g o r T II ), plt ascs (direct. 

seque nce or DS), or frequ e ncies (freque ncy hoppin g or FI i ). Thi s wo rk co 11 c<·11 -

tra tes so le ly o n tlt e inte rce ption of FIT waveform s that have fo rnt 

where 

x;( t) 

N ,. 

s(t) = L :r;( l) ( I . I ) 
i= l 

equals v'2S' sin (wk,l + O;) fo r i '/ '1i :::; l :::; (i + l ) '/ '1i ; 

is a. fam il y of known frequ e ncies withi11 th e s prca.d-spcc!. rnlll ha.11dwidt.11; 

a. re integer-valued , inde pe nd ent , unifo rml y di sLrilrntcd , ra 11do n1 v,1r1 

a bles ra ng ing in clu sive ly be twcc 11 I ;-rnd /\·; 

2 



{O;} a re continuous, indepe nde nt, uni form ly d ist r ibuted, rando rn vari 

a bles rangin g be tween O a nd 21r th a t re prese nt carri e r ph ase; 

S' is a real cons t ant de noting the average s igna l e ne rgy; 

is a real const ant denoting the epoch, o r time dura ti on , o f ca.c h li op; 

is a pos itive integer de no ting th e nu111bc r o f ho ps d urin g ,ncssa.gc 

transmi ss ion. 

Thi s gener a l model of frequen cy- hopp ed wavcforlll s in c lu des a la rge nulllbe r 

of m odula ti ons such as freque ncy shift key ing (FS I<) a nd rnini111u111 shift k<'y

ing (MSK). Some important modul a ti ons uot in c luded a rc th ose w l1 os<' car

ri e r phase is co rrelated from hop to l1 op , for exa.111pl c 1 co n t inuo us ph ase 1-'S I\ 

(C PFSK). E ve11 for these cases , th ese res ults a ppl y bu t m ay not he o pt i,n a. l. 

1.3 Intercept Receiver Functions 

An interce pt, rece iver extracts, fo r fur t he r proccss 111 g 1 <1 s 111 a ll 1111111l ><' r o f 

candid a te sign als from th e ple th ora. o f s ig na ls i11 a co 1111111111i cat io n ba nd o f 

interes t. Tir e initi al processing s teps th a t di scard s ig 11 a. ls a.r<' called Pru11i11 g 

Func tion s. Afte r pruning, secondary process ing , kn own as feat u re ex tract io n , 

yi e lds inforrnatio n a iding in emitter ide nt ifi cat io n a nd co unL <' rin g. /\ ft n f<'a-

3 



ture extraction, further processing could yield the actual information embed

ded in the communication sign al, but this is peripheral to the primary function 

of the intercept receiver, namely ECM and weapons support, and coriseq ueJ1tly 

will not be explored here. 

1.3.1 Pruning 

Given the freneti c activity in most communication bands, tli e intercept re

ceiver must , early in its processing, choose out of all candidate signals within 

the band a small number of potential target signals. Pm ni ng Functions a.cl1 ieve 

this by eliminating all but the most promising p ros pects for process ing. Prun

ing Functions fall into four categories: Initial Detection , Direct ion Fi r1 cling, 

Frequency Estimation , and Time of Arrival Meas urement. As is ev ident from 

their names , Initial Detection separates potenti al ta rget sig na ls frorn back

ground noise, D.irection Finding class ifies and possibly e lirnin a.tes s ig na ls by 

direction of origin, Frequency Estimation censors sig na ls based 0 11 a 111 casurc

ment of carri er frequency, whil e T ime of Arrival Mca.s 11re n1 ent cliffc rc11ti a.tcs 

between pu lsed signals based on their arrival tirnes . It is useful co 11 ccp tu a. ll y to 

consider the Pruning Fun ctions as independent processes a pplied scparat<'ly, 

but in a practical system these function s a.re usua lly hig hl y co upled in tli a.t, a 

single processing step may accompli sh two or more Pruning Function s. 

4 



Initial Detection separates the candidate signal from the background no,sc, 

usually in the form of a threshold operation applied on a tes t stati stic derived 

from the received waveform. It may be a dedicated operation, meaning that 

the only information gleaned is the presence or nonprcscnce of a communi 

cation waveform, or may yield other information such as the time of arr ival 

(time domain) or the dominant frequency (frequency domain) , or, for feat ure 

detectors, the hop rate. 

The signal direction can be found by using a scanni1Jg narrowbcan1 a ntenn a 

whose scan position at the time of detection determines direction. Diffe rence 

in signal phase from two separate antennas can yie ld the a ngle from wl,i cli 

a candidate signal is emitted; however , thi s interfe rometry technique suffe rs 

from a vulnerabi li ty to coherent interference. 111 a simila r fas hion , Lit e ampl i

tude difference between the same signal rece ived from di ff e ren L a n Len nas or 

antenna-pat terns can determine emiss ion ang le but Lli e LC'clrniquc is even lllorc 

vulnerab le to interferences, coherent or non coherenL. Th e diffe rence betwee n 

the t im es of arrival of different receivers is an a lte rn ative way to dete rmine 

angle. This method seems more directed to rube s igna ls, such as radar , in 

which arrival time is a relatively s imple quantity to rn cas urC' , but it, could he 

applied to more compli cated communi cation signals, by cross corrc l;-1. ti o n for 

instance. 

By es timating the dominant frequency of a candid ate sig nal , narrowba 11 cl 

5 



interferences such as other non-spread-spectrum communi cation signals can 

be identified and rejected. Additionally, the current hop freq uency of t he 

target signal can be determined and subsequently used to nar rowband jam 

the current hop band. The estimated hop frequency also can be used for 

identification processing or information extraction. 

Time of Arrival Measurement can not only determine emi ss ion ang le, as 

previously mentioned, but also can prune. This use is primari ly useful for 

pulse radar signals, in which times of a rrival can detenui 11 e pu lse repetition 

rates and hence associate the intercepted pulse with the emitting radar. For 

frequency-hopped communications, the arrival times of individual hop intervals 

determine the emitters' hop rate and hence di scriminate between target signa l 

and interferers. 

1.3.2 Feature Extraction 

Feature Extraction is the measurement of chara.derizin g feat ures of the 

communication waveforms. Features such as hop ra.te, hop frequency, modu 

lation type, and bit periods serve as examp les. Pc<1,tu rc l•:xt ra.d ion over la ps 

the Pruning hrnctions in that operations such as center frequency cstirn a.tioii 

and time-of-arrival measurements yield uscf ul features. The loose di st in ct ion 

is one of precision and purpose. Measurements ma.de whi le prun in g a rc coarse 

6 
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and serve only to decimate what otherwise would be an unmanageab le number 

of candidate signals, while extracted features are of sufficient accuracy to serve 

the intercept purposes of jamming and identifi cation . 

1.4 Existing Methods 

All aspects and functions of the intercept receiver were described . However , 

this work concentrates solely on initial detection and feat ure extraction a ud 

on feature extraction; only hop frequency est imation wi 11 be ex plored. 

1.4.1 Wideband Energy Detector 

The Wideband Energy Detector ([40] and [45]) is the silllplest to implement 

of all existing detection schemes . Also call ed a radiometer, it is a device for 

measuring the energy of a signal over a prescribed time and bandwidth. A 

typical radiometer (Figure l.l) consists of a bandpass filter foll owed by a 

square law device and an integrator. The bandpass filter , of bandwicltli W ' 

selects the frequency band over whi cli the energy mcasure111r nt is ma.de. The 

square law device and integrator ca.lcul a.t e the energy of thi s ba ndpasscd signal 

over the interval of length T. The ra.<liometer is used to detect sp read-spect rum 

signals by setting the center frequency and bandwidth of t he bandpass filte r 

so that the filter will pass the expected spread-spectrum signal A decision is 
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Co, n pa ra.to r 

BPF 
w 

( )2 

Thres hold 

F igure 1.1: Wide ba nd Ene rgy Detecto r 

Dcc is io 11 

;'.; o 

m a d e by compar in g th e output of th e ra,d iorncLe r t o a thres ho ld . 

A s c an be guessed, the wide ba nd radio 111 ct ri c dcL<'do r is 111 os L crfi c ic 11t w he n 

th e bandwidth exact ly matches th e s pread-sp ect rum ba 11d widtl1 K /71, a.11d tlrc 

integrat ion period matches the tra,11 s mi ss io11 time N1, 'l1, o f Lli f' s prcad -s p f'd rulll 

s ignal. Unde r th ese condition s and for la rge time ba ndwidth ('f'W > I 000 ) 

products, the pe rform an ce of th e wid e band radi o meter is ck scril )('d bel ow fo r 

the case of white-noi se intc rfe re11 ce with s in g le-s ided s pect ra l de nsity N0 a s 

and 

S'T1, ~< -- d -
No - , N,. 

( I . 2) 

( I .J) 

where Q - 1(,) is t he inve rse of th e con1pl c rncnL-1ry (;;1,11 ss ia 11 pro bability di s

tribution and S'T,,/N
0 

is the required s ig 11 a.l-t o- 11 o is<' ra.ti o fo r dctect io 11 w itl1 

probabil ity Po and false-ala rm proba bility l\·. 
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In addition to being the easiest detector to implemeIJt, the wideband en

ergy detector assumes the least known about the spread-spectrum signal. For 

optimal detection of a given spread-spectrum waveform , only the bandwidth 

and message duration need to be known. However, an approx imate knowl 

edge of these parameters degrades performance only slightly. Because the 

performance of the wideband energy detector is invariant to the details of the 

spread-spectrum waveform, it is equall y effective in the detect ion of e ithe r FH ' 

TH, or DS waveforms. It is also useful as a. lower bound on the perfonna.nce 

of other detectors designed around the parti culars of a. g iven spread-spect rum 

waveform. 

1.4.2 Optimal Channelized D etector 

The Optimal Channelized Detector ([45] and [50]) uses a. rnorc precise 

knowledge of a spread-spectrum waveform to achieve pcrforn1a.ncc gain s over 

the Wide band Energy Detector and other detector conrigura.tio11s. 111 the con

text of FI-I waveforms , the message duration and the period and ph ase of the 

pulse epochs are assumed to be known. /\]so assumed to be kn ow n a. re the 

exact frequencies of the pul sed sinusoids that constitute th e indi vidt1 a l "ho ps" 

of the spread-spectrum waveform. T li e signal amp litude re lative to the bac k

ground noise is also assumed to be known. Not known a rc the r('l a.t ivc ph as<' 

between the ind ividual hops and, of course, the pseuclo-ra 11cl o rn cod(' that 

9 



, .. ,,._.,., ... , "'-·--

ChonMI 2 

. . . 

Y L---.-Cho-nnel I( ______.~ 

Figure 1.2: Optimal Channeli zed Detecto r 

produces the hops. 

Thr.,hold 

Decision 
Comporotor 

With these ass umptions and th a t of wliitc-noise interfe re nce, detect ion t he

ory yields the detector shown in Figure 1.2. T his detector cousists of indi vidu a l 

fi lte rs m a tched in time a nd frequency to each of the poss ible pul sed sinu so ids 

component Lo the FI-I waveform. T he envelopes of th e rn a.tcl1ed fi lte r outp uts 

are "emphasized" by normalizing by expected noise ene rgy a nd a pply in g Lite 

zero-order modifi ed Bessel fun cti on of t he first kind l o. T he c111ph a.s ized filte r 

outputs are summed to yield a likelihoo d fun ct ion ove r a sin gle e poch. Th ese 

individual likelihood functions for ea.ch epoch of t he message a.re lllul t ipliccl Lo 

yield the overall likelihood fun ction, from wlii cli a decision ca.n i> <' 111adc via. a 

threshold compa ri son . 

10 



The generali zed performance exp ression for the opt im a.I 111ulti cha.nncl de-

tector cannot be obtained due to an in ab ili ty to specify t he output probabi li ty 

distribution function s . Whe n the numbe r of hops Nh is la. rgf' (e .g ., N1, > JOO) , 

it is possible to closely approx imate the true answer by using Gaussian sta.tis-

tics. This analys is g ives 5'1\ / N0 needed for a given PFA a.n<l Po a.s 

where cl is given before. 

S'Th - ! r' [1 - I< + K e i~. ] 
No - 2 ° ( J. tJ) 

Unfortun ately, however, the Opt ima.I C han 11 e li icd Detecto r is only of aca.-

demi c interest because o f its imp lementat ion comp lex ity a nd its sensitivity to 

the FH waveform para.meters . It is useful prim a ril y fo r estab li shin g a. 11 upper 

bound to the performance of ot he r more illlpl en1enta.b lc a 11 cl robu st clct.<'ctors. 

1.4.3 Suboptimal Channelized D etectors 

Because o f the implem e ntation complexity o f t he Opt.i111al C: ha 1111 c li zccl 

De tector , Subopt ima l C hanneli zed Detecto rs a. re co nsidered. These M<' seve ra l 

classes of detectors th at a.re s irnpliG ca.t io 11 s in vari o us w;.1ys of the Opt.i111;-d 

C ha nneli zed Detector. T hese sirnpliG ca.t. ions a. re li sted below. 

T he combin at ions of a. matched filt e r fo ll owed by a 11 e 11 ve lopc cl<'Lcct.or ,tr< ' 

rep laced by n a rrowba nd ra.diolllcters of ha11clwidtli If'!,,. Thi s s i111pli -

11 
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fication degrades the resulting performance over t hat of the predicted 

performance of the Optimal Channeli zed Detector. However, this per

formance difference would be less in practice, because t he Optimal C han

nelized Detector would not achieve the optimum performa nce due to the 

inevitable mismatch between the actual frequencies received a11d the fre

quencies for which the filters arc matched. Doppler shift and tran smitter 

waveform diversity are the likely culprits of thi s mismatch. 

The emphasizing function is lineari zed. This is ma inly a 11 implementat ion 

simplification. However, the optimality of the Optimal Chann eli zed De

tector depends on a priori knowledge of the amplitude of the FI-I wave

form , which is a parameter of the emphasis. T hus the loss of opt im a lity 

in practi ce is lessened because of the un certainty of the FH waveform 

amplitude. 

Decisions are made at the channel level a nd arc thc 11 co ,n bin cd to forn 1 a 

stati sti c upon which th e final decision is based . T hi s type of detector is 

appealing if a frequency estimate of the detected is a lso (ksi rcd. 

Instead of having a filter for each FH frequency, the e11tirc spread-spcct ruin 

bandwidth is subdivided into coarse suhba11ds. The subb,:tnds most like ly 

to contain th e current hop are selected for <1,pplication of a 11 y o f th e a bove 

channeli zed detector schemes. 

12 
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Decis ion 

Figure 1.3: Autocorrelation Detector 

1.4.4 Autocorrelation Detector 

An Autocorrelation Detector ([29] and [311) is composed of a ba nk of a uto-

correlators, each operating on a subband of th e to ta l spread-s pect rum ba nd

width (Figure 1.3). The autocorreJafors es tima te the a utocorrelat ion y( 7 ) of 

their bandlimited input over the time peri od T. The p ower of each co rre la ti o 11 

is sampled yielding vVi which are weighted with ak and summed to de ri ve tli e 

decision statisti c Y . This is summarized by the equ a ti on 

G- 1 JI, 

Y = I: ak Wk ~ Thres hold . 
k= 1 Ho 

( I.Fi) 

There are three issues con cern ed with the des ign of the a utoco rrc la. ti o 11 

de tector. The firs t is the coarseness of the individ11 a l s11bba.11ds rc la.ti vc to th e 

total spread-spectrum bandwidth. It seems intuiti ve ly appealing to a.ss t,rn(' 

that performan ce would improve by redu cing th e width of thi s subba.11 d up to 

the limits of the FH frequency spacing; l1 owe ve r, 11 0 a. 11 a ly ti cal o r 11 uni <· ri ca.l 
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results confirm this conjecture . The second des ig n iss ue is th e time interval 

ove r whi ch we estimate the auto correlation fun ct io n. The third iss ue in vo lves 

the weights used in th e computa tion of th e d<'c is io n s ta ti s ti c. 

1.5 Hop Frequency Estimators 

As previou sly desc ribed, feature de tectors focus on a p a rti c ul a r tirnc-do 111 a in 

feature of the spread-sp ectrum wa veform. In thi s wo rk , wc dcvclo p a detecto r 

based on th e fea ture hop frequ e ncy. Tlrese de vi ces can do tlr c jo b o f initial 

d e tec tion , but we focu s on th e ir es t ima tion pc rforrn a ncc . T'wo 11 0 1.ewo rtlry 

estimators in the li t erature fit this b illing. The firs t , descr ibed in [:1], is a lll ax

rmurn like lih ood estimator with a s tructure s i,nila r to tir e optinia l detec to r o f 

Figure 1.2, except th a t , in stead of s umn1i11 g the 01 11.pu ts o f <'ac l, clr arn1 c l, it, s<'

lects t he ch a nn e l with tir e output of 1nax in111111 n1<1 g nit11dc. Tl1 c l1 o p frcq1l<'n cy 

corresponding to Uiat channe l is declared tir e cs ti ,nat<· (Fig urc I .4). 'f'lw sec

ond estimator of note, described in [39], is based 0 11 t.11(' firs t o nc but l1as 

redu ced complex ity. In thi s method , wid e band ra.di o ,nctcrs cover t.ll<' sprcad 

spectrum bandwidth in o rd e r to select a sni ;-t/1 nunil w r o f subbnnds tlr a t. rn os t. 

like ly contain th e parti cular hop. Tl1cse subb,rnd s ,H<' ftrrt.ll<'r jHon·ss<·d in to 

fine bands , e na,bling the ultimate select ion of the ba nd with t.l1 e ct rrrc nl. l1 op . 

14 
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1.6 New Methods for Detection and Hop 
Estimation 

1.6.1 Sequential Detector 

In this work, a. new detector is developed ba.sed on the ideas of sequentia l 

detection. It is essentially like the optima.I clia.nnelizcd detector but, instead or 

basing its decision on a.ccumula.ted energy on a. prcdeterrnincd la rge nurnbcr or 

hop dwells, it decides, after ca.ch hop dwell , on the presence or no11prcsence or 

a frequency-hopp ed waveform. Because the detector is based 011 the Seq uenti a l 

Probability Ratio Test (SPRT), the test is optimal in the sense that 11 0 ot he r 

sequential test will make a decision in less time on average U1 a 11 the SPHT 

However, optimality occurs only if tbe signal is present a t a predcterni ined 

SNR. For smaller SNRs, the SPRT actually ca.n pe rf"or rn worse tlia11 a test 

based on a Fi xed Sample Size (FSS). Thi s shortco rni11 g is averted by 1llix ing t li e 

SPRT with the FSS test to create the Truncated Sequential Test (TST). Fro rll 

these results is designed a.n optimal test whose worst-case ave rage decis ion 

time is minimal. Netted are three new dctecton; Lli a t ex ploit the a cl vant c1.ges 

of sequential detection ; the pure SPRT, th e TS'l' , a nd the opt ifll a l T S'/'. 

With each of tli ese techniques, tli e number or sarllpl es needed for a re lia bl e 

decision is dramatically reduced. One way th is detector pc rf"onn a 11 ce gain 
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can y ield a performance gain in the intercep tor itself is th rough clecrea.sccl 

duty cycle. A typical interceptor might scan a par ticula r direction in order to 

determine the presence or absence of communications. I3ecause of the gains 

due to the sequential detector, the scan time is significantly reduced. Another 

way to take advantage of the performan ce gain is Lo acid rob ustness to t li c 

signal parameters . It was already mentioned tha t the decis ion ti rne of tli c 

sequential tests is dependent on the SNR. By hypothes iz i11 g th a t t he signal 

rests in a band of SNRs, a sequential tes t can be des igned U1 a t still outperfor ms 

tes ts based on a fixed sample time. 

1.6.2 Compressive-Receiver-Based Detector and Hop 
Estimator 

The compressive receiver , which simultaneously es tini a.tes freq11 e ncy corn-

ponents over a wide, predetermined band , has pro rni sc as an interceptor witli 

both the simp.licity of a w.ideband device a nd the pc rfo rr11 a ncc of tli c cl1a 1111 f' l

ized devi ce. The use of the compress ive rece iver for i11Lcrccption is a la rgf' ly 

unexplored area with all previous results being superfi cia l a nd ad l1 oe, By 

contrast , two different detectors and a bop frequency cs ti111 a tor arc deve loped 

using an optima l likelihood fun ction approach. T he first, t he locally opt i

m al de tector , is a detector with stru cture s imila r to tl1 e cl1a n11 c Ji 7,cd de tecto r 

but operating on the output of tli e co111press ive rece ive r. It is locally opt i-
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mal, meaning that for signals with low SNR it gives the greates t probability 

of detection for a given probability of false alarm . Because the locally op

timal de tector has an unwieldy structure, it defeats the motivation to use a. 

compressive receiver: simplicity and high performance. Therefore, a t ime

multiplexed detector is used that, at the expense of duty cycle , can achieve 

performance as close to optimal as desired. Both the locally op tima l a nd the 

time-multiplexed detector have hop frequency estimator versions. By choos ing 

as the hop frequency estimate the bop freq uency corresponding to the detec

tor channel with maximum output , a hop freq uency est imator is fo rmed. In 

conclusion, two detectors and a hop freq uency es timator arc developed with 

pe rformance comparable to the channeli zed dev ices but with tlic sitllpli city of 

the broadband devices . 

1.6.3 
Detector Based on the Amplitude Distribution 

Function 

A new idea for detection is developed based on the Arnplit.ucle Distribi, 

tion Function (ADF). The ADF is precisely defin ed as a fun ct ion fro nt whi ch, 

through a sequence of lemmas and theorems, two results a rc estahli sl1 <'d. OJ1e 

result is that the ADF is roughly the average di stribution of a stoclia.8 t ic pro

cess , and the second is that , for signal p lus noise, tli e res ultin g ADF i8 th<' 

convolution of the ADFs of signa l and noise i11<li vidual ly. The co 11 vo li,ti ona.l 
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relationship for signal plus noise motivates the const ruct ion of stat ist ical trans

form, called the deconvolution statistic, that converges to something that is 

arbitrarily close to the signal ADF and hence has potenti al for separat ing sig

nal from noise even for low signal levels. How close the deconvolved ADF 

matches the signal ADF depends on the proper choi ce of the kernel of tlie de

convolution statistic. An optimal detector is presented that direct ly observes 

samples of the deconvolution statist ic, yielding a tes t stati st ic of quadratic 

form. The ADF-based detector is a robust device that is a. generali zat ion of 

the radiometer and is quite immune to the detail s of sp read-spect rum modu-

lation. 

1. 7 Document Organization 

This work is partitioned into five chapte rs. The first chapter presents 

the problem, precisely defin es the type of frequency-l1 opped wa.vcforllls undN 

consideration, and describes the function s of the inte rcep t receive r fro 111 a, 

system viewpoint. It also briefly describes ex isting interception methods in the 

categories of initial detection and hop frequency est imat ion and t hen contrasts 

them with the new methods developed. 

The second chapter describes in deta il t he new seq uenti a l detect ion 111ct,h 

ods. Within thi s chapter , the likel ihood fun ct ion for a sin gle epoch is developed 
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and asymptotically analyzed for a la rge number of hop fr<'qurn c ics. Based on 

this analysis, the synthesis of the PSS test, SP HT , and TST a rr drvelopcd. 

P e rformance equ ations a.re presented a. lo ng wit h th e res ults of m11n c rical and 

Monte Carlo an a lyses . The optima.I TST is described a nd the a.syn1ptotic ef

fi cien c ies, wh ich capture the low-SNR test behavior , arr presented. Fi na ll y, 

conclusions are drawn. 

The third chapte r gives a detai led descripti o n of t he dd<'ct.o r a nd ho p 

frequency est irnator based on a comp ress ive receive r. IL docs t hi s rirst hy 

precisely defining the sign a l and cornpress ive- receivrr !llodc ls a nd t he n us 111 g 

th e m to develop equa.t io us for the output signal con1po1wnt a nd to cl1 a. ra.ctcri;1,c 

stat ist icall y t he no ise at the compress ive-rcceiv Tout.put. W it h t he ddcctio11 

problem tra n s lated to th e output o f the co rnpress ivc rccc iv<' r, lik<' lil 1ood rat io 

theory is ap plied fo r th e low-SN R case to c reate t he locall y opt i111 a. l detecto r . 

A simplified detector , the timc- rnul t ipl excd detecto r, is a lso prese nted a lo 11 g 

w ith a hop frequen cy est imato r. Al l detectors a rc pcr fo rn1 ,u1 C(' a. 11 ,i.l y;1,cd ,111(1 

numeri cal res ults g iven. F in a ll y, con clus io ns a rc dra.wn. 

The fourth chap ter introdu ces th e A I) J<'- bascd detector arn l proceed s with 

a n expos ition o f the rnat hem atica.l tool s ckve loped fo r t he J\ DF, whi cl 1 co ns ist 

o f a seq ue nce of theorems a nd le mm as cul111in at ir1 g in a co nvo lu tiona. l re la 

tion ship between the ADFs o f s ig na. l a nd no ise. 'I'll<' deco nvo lu tio11 s tati s t ic 

is introduced a lo ng wit h fa. lllil y of kernel s to be used in t l1 c stat ist ic . 'I'll<' 
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large- time statistical character of the deconvolution stat ist ic is show n to he 

the basis of the ADP-based detector. Synthesis a. nd pcrfor111,u1cc a na lyses of 

tlie detector are presented and conclusions a rc drawn. 

The fifth chapter summarizes the prev ious chapte rs a.nd hi ghli ghts the i111 -

portant points. It then suggests poss ible extensions to be in vest igated in the 

future and finally coJ1 cludes the document. 
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Chapter 2 

Sequential Detection of Unknown, 
Fast Frequency-Hopped Waveforms 

2.1 Background and Introduction 

The first task in t he intercept. ion of spread -spcct r11n1 co1n111tllli cat.io 11 s 1s 

the detect ion of the waveform. This is a prclud f' to ot her i11tcrccpt io11 pro-

cesses, such as feat ure detect ion, channe l Lrncking, a,11d 111 <'ssagc cxtra.cL io11. 

As a new development toward the clctcctio11 proble ,11 , this cha.pt.er app li es arn l 

extends previously published results in Sf'(]Uf' 11 t ia.l detect io1 1 to Lhc problcn1 of 

tbe optimal detect ion of no11cohc rc11t frcqucncy- li opp<'< I ( Fl I) wavcfor111s. Hy 

using like lih ood fun ct ion met hod s, the prohlclll was so lved in [10] for ;111 1•' 11 

waveform with a kn ow n signa l-Lo-noise ratio (SN H) ,1. 11 d epoc hs wit h lrnow11 

starting times a nd durations. However, in that approac l1 , tlw dccis io 11 w,is 

based on a data segment of fi xed size. !Inc a sf'q11c11Lial c1pproac l1 is takc1 1, 

meaning that whenever a new data clc11w11f. is co ll cctcd, a dcci s io 11 a bout tlw 
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presence or nonpresence of an FH waveform is attempted. If no decision ,s 

reached, another data element is collected. 

The sequential approach to detection has a ri ch hi story. For the bin a ry hy

pothesis problem with discrete-time independent identi call y distr ibuted (i.i.d.) 

data, Wald [48] has derived the optimal sequential test. Th is test is opt. irn a l in 

the sense that no other test can reach a decision of the same N ey rnan -Pearson 

reliability within a shorter average time. T hi s result has been ex tended to con

tinuous time data in references [38] and [6] . Others have suggested tests that 

must make a decision within a prescribed time. T hese a.re the "t run cated" 

tests given in [1], [43], and [44]. Truncation is des irable not onl y for irnple

mentation reasons, but also for improving the performa nce of a sequenti a l tC'st 

when the input statistics differ from those assumed i11 des ig11i11g t he test. In 

particular, Tantaratana and Poor in [43] derive a t run cated seq ue 11 tia.l test for 

i.i.d. Gaussian data with an unknown mean, whi ch is the fo un dat ion o f th e 

results in this chap ter. 

Development of the sequenti al test is begu n by definin g t he observati ons 

model for a compos ite hypot hesis prob le1n. SpC'cifi ca.ll y, give n t he observat ion 

y(t), the problem is one of choosing between Ila, whi ch is the hypothes is th a t 

a n FH waveform is not present , and I-f, ,, whi ch is the hy pot hes is t hat a n Fil 
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waveform is present with an SNR ,' where O < , ' . Exact ly, t he model is 

versus 
Ho : y(t) 

If'Y , : y(t) 

n( l) 

s(t) + n(l) 0 < , ' 
(2 . I ) 

where s(t) is given by (1.1) and n(l) is white Gauss ian noise wit h two-sid <'cl 

spectral density ~ - The hypothesized SN R , ' is rel a.Led Lo t.l1 c ot. h<'r Jll od<'I 

pa rameters by ,' = S 'T,,/ N0 . 

Because a reliab le tes t cannot be devi sed for an FIi waveform with an ar-

bitrarily small SNR, the preceding compos ite hypot hes is problclll is sin1plified 

to a binary hypothes is problem: l-10 ve rsus lf'Y , where I is spec ifi ed as Li l(' 

smallest SNR t hat is to be accura tely detected. T he quantity 1 = S'I ,,/ Nu 

with S being the corres ponding signal energy. The rela.tiv<' SN R 1· = ~ is 

also used . 

Using the above observations ITlOdcl, tll<' design of ;-1. s<'q11c nti a l test for the 

detection of FH signals is a pproached as foll ows. J\ n a.sy 111ptoti u dl y opt.i1ll a. l 

test is deri ved by app lying the likelihood f1111 d io11 theory t.o U, e si111plifi cd 

bin ary hypothesis problem Ho versus ]IT The pa.ra.rndcrs of thi s test. arc 

spec ifi ed to ensure a max imum proba.bilit.y of ddcdion for a. given proh;i.bili t.y 

of fal se a larm. Th is bina ry hypoth es is t<'st is ti1 <' 11 a pplied t.o t h<' ,nor<' ge 11 c r;il 

composite hypothes is problem with a resu lti ng <k grada.ti on in dct<'ct ion tinw 

that is shown to be controll able by prop<'rl y tr11n ca.Li11 g t h<' Lest proccd11rc. 

The derivat ion of the asy mptoticall y optini a.1 Les t. hcg i11 s wit. Ii Lit e d<'r ivat. io11 



of the likelihood function for a single-epoch observation, whi ch is appropriately 

called the Single-Epoch Likelihood Function (SELF). By invoking the central 

limit theorem, Gaussian densities are found that are asymptot ic to the actual 

SELF densities as the number of frequencies becomes large. In determining 

these densities, the SELF's means and variances will be explicitly computed 

under each hypothesis. By next considering individual SELFs as the obse rva

tions, the problem will be reduced to a binary hypothes is prob lem with Gaus

sian i.i .d . observations. This simplification is justified , because each e poch of 

FH waveform ha.s independent statistics and because the SELT• 's stat isti cs do 

not depend on the particular hop frequency. Using these equiva lent observa

tions and their asymptotic densities, the Asymptotic Log-Likelihood Function 

(ALLF) is derived. The ALLF is then used t.o sy nthesize tests fo r the binary 

hypothes is problem. This procedure requires extending the prev iously pub

lished sequential tests to the cases of data with vari ances that clc pcncl on t he 

hypothesis . App lying these results, a Fixed-Sample Size (FSS) tes t. , a, Sequen

tial Probability Ratio Test (SPJlT) , and a T run cated Seq uent.i a.l Tes t (TST) 

are designed. 

Each of t,he three tests is analyzed by ap prox imat ing t he tes t. st a ti s ti c by a. 

Wiener process and then employing the class ical theory of diffu sion, as 0 1it,Jin cd 

in [6] and [l]. This analysis is more genera.I because it. yields the pcrfonn ann' 

of each test to the composite hypothes is problem rather th a n just the bin ary 
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hypothesis problem on which the tes ts are based. T his analysis y ields the 

average decision time of each test as a function of the input SNR, as well as 

the operating characteristic of each test. From these results comes an optimal 

test, whose worst-case average decision time is minimal. Fin ally, a computer 

simu lation confirms these analytical results. 

To furth er extend these results to the case of a test. that was synthes ized 

under the expectation of detecting a.n FH waveform with extremely small SNR, 

an asymptotic analysis of a different sort is undertaken. This a 11 a lys is shows 

how the above tes ts perform for th e compos ite hy pothes is problem a.s th e rnini 

mum reliably detectable SNR of the FH waveform becomes in creas ingly snia ll. 

Numerical res ults for this case are given, but a corresponding cornputer simu 

lation is not possible due to the rate of increase of the number of computa.t io11 s 

required as the SN R diminishes. 

2.2 Likelihood Function: One Epoch 

The statistical test for the composite hypoth esis problem is defined by 

finding an asymptotically opt imal tes t for a binary hypothesis probl<'m a 11 d 

applying that test to the composite case a.11d accepting tli e res ulting degra

dation. This simplified binary problem consists of the two li ypotl1 cses flo, 

where no signal is present , and H~, where a signal is prese11t wit Ii SN H. ,. 
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For thi s binary hypothesis problem , Append ix 2.A contain s a der ivat ion of the 

SELF, which is the likelihood function Ai of the i th -epoch obser vation y(t) for 

iTh < t =::; ( i + 1 )Th· The SELF is expressed as 

(2.2) 

e--r }{ - 1 ( ) 
I< I: Io v'Ff /Pf + Q~ 

k== O 

(2.:~) 

where Io is the zeroth order modified l3essel fun cti on of the first kin d a nd 

2 J( i+l)T1i 
pk = ~ . y(t) COSWk;t cft 

iT1, (2.4) 

Because of the stati stical independence of their res pect ive obse rva t ions, the 

likelihood fun ction of the n-epoch observa tion is then TI?==, Ai, i. e., t he produ ct 

of these individual SELFs. 

The SELF is ni cely mod eled as the config uration of we ll-kllow n dev ices, 

as indicated in Figure 2.1. Th at is, the SELF is cliann elized so tha t each 

channel has a matched fi lter tha t is t uned to a pa rti cul a r hop frequency a nd 

whose output is envelope detected and emphasized by a l3essel fun ct ion non

linearity. The output of each channel, after scaling by e- -r /I<, is surnlllcd to 

produ ce the SELI• . 
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Ma.tclied E nvelope Emphasizing 
Fil ter Det2c tor F11 11 ct, io n 

e iw1t ( '\ 

2 
( ) ../NoTh 

y t ;/ ''c Jdt I< )2 + c )2 fo[ /21( )] 

e -.., 
~ I< >2 + c >2 fu[ /21( )] A · z 

fo[ /Fr( )] 

F ig ure 2 .. 1: B lock Diagra.m of Single-Epoch Lik<'lihood F1111 ct,ion 

2.3 Asymptotic Log-Likelihood Function 

T he Asympto tic Log-Likcl i/1 ood f'u11 cl,io 11 (;\UY) is a.sy 111 pt,ot, ic t,o t,11<' 

n-epoc/1 likelihood fun clion , n:~, A,, a.s U1c nu11i/)(' r or F l/ c/1 ,11111 <' /s lwco 111cs 

large. T li e critica.l idea, behi nd Lhe deriva i io11 of U1c ;\ 1,/,J,' is Uw a.pp lica.tio 11 

of t, he cenlra,[ limit, t heorem Lo y ield ;-i,sy n1piot,i c densit ies fo r t,/w .S ELF fro 111 

which , using an n-epoch collecl ion of SE LJ<'s a.s i-ln cq11i va,lc11t. o l>s(T Va tio 11 sd , 

Ui e J\ LLF will be de terrnined. 

T he SELF (2.3) wa.s computed ,tss un 11 ng a. l> i11 ,1ry /1yp0Uwsis pro l>le111 , 

1. e ., Ho JS lhe li ypot,hes is llrnt, 11 0 Fil wavcforlll is prcse11t,, w/1i le 11-y 1s 1./1 <' 
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hypothesis that an FI-I waveform exists with a known SNR,. The following 

analysis will assume that an FI-I waveform, if present, will have a SNR ,' or 

equivalently an average signal energy S' that is not necessarily eq ual to the 

average signal energy S assumed known in the binary case. T hi s genera li zation 

is not necessary for deriving the ALLF but will be needed to analyze Ui e 

performance of the ALLF in the composite hypothes is problem . 

Proceeding with the derivation of the ALLF, t he central limit, theore rn is 

applied to the SELF to obta in an asymptoti c density under a ll hypot heses, 

0 S , '. The central limit theorem is justifi ed here because the SELF's outpu t, 

is the sum of many channels whose stat istics will be sli own to be nearly in clc

pendent and nearly identical. It will be shown that the degree of dependence 

between channels is determined by the amount of iso la tion between cha nnels, 

which is perfect for minimally spaced channels as is the case ass umed here. It 

a lso will be shown that t he channel means and vari a nces, while different for 

the signal-present and signal-absent cases, arc of a co,n,nensurate 11, a.g nitucl <'. 

2.3.1 Matched Filter Output Statistics 

Because the central limit theorem requires only the u1ea11 a nd vari a nce of 

each channel, only the statisti cs of th e matched filt e r outputs need be dctn-

mined exactly sin ce the SELF's mean and vari a nces can be dcLcrrnin ed froll, 
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these stat ist ics a.lone . Assuming th at th e s ignal prese nt is in the !.:th ch a nnel, 

then the matched filt e r output in the /th chann e l can be found fro m (2.4) ,1,s 

{ ..ji:;, ,; n O + v1 for l = k 
P1 ~ 

~ for l -f:. I.: II/ 

(2.5) 

{ ..ji:;, cos O + (1 fo r l = k 
Q1 ~ 

~ for l -f:. k (t 

(2.G) 

where 
? J(i+l)T,. Li ~ n(t) cosw1 l dl II/ 

iT1, 
(2. 7) 

Li 2 J(i+J)1'1, 

(1 ~ n(l) s in w1l dl. 
iT1, 

Th e matched filt e r outputs for th e no-s ignal - present li ypo tlws is //0 a rc ti!<' 

sp ecial case o f th e above expressions for,' = 0. Two a.ssu ,npt.i o ns were ,n a.dc in 

de t erminin g tl, ese a pproximate ex press io ns fo r tl w n1 at.cll<'d filt e r o u tputs. 'l'li<' 

first assumpt io n is t hat wkTh is la rge a nd equival e n t to requirin g a l,t rge nunil ><' r 

of carri er cycles over a single epo ch. T lw seco nd assumption o f o rtli ogo 11 a ll y 

spa,ced channels [i .e. (wk - w1)T1i/21r is a.11 in tege r] i111plics, i11 cssc 11 c<', t.li a.t Lil<' 

chann e ls a.re iso lated fro m one a 11 o t.h e r. J\11ot.lin co11dit.i o 11 i1npl y i11 g cli ,1 1111 c l 

iso lat io n is wid e s pac ing be tween th e cl1a11n c ls [i .e. (wk - w1) 'f 1, is la rge]. 111 a. 

practi cal impleme ntation , smoot h wind o w fun ctions a lso co uld li a.vc bc•c11 11 scd 

in the matched filt e r implem e ntatio n to ac hi eve t li c c li a 1111 c l iso la. t.i o 11 ,1.ss u1n cd 

h ere. 

Simplified ex pressions for th e m a.tcli ed filt. e r o utp11t.s M<' n·prc·sc11tcd by 

(2.5) a nd (2.6). T11 e s tatistical nature o f t he ir no ise co111po nc·n ts, { 111} a nd 
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{et}, is determined next. From (2.7), it follows th a t the random vari ab les 

{vi}, { et} are Gaussian with zero mean and unity variance. Under the isolated 

channel assumption, it is easy to show that 

£[11mvn ] 

£[vmenl 
£[emenl 

0 
0 
0 

form f- n 
for all m, n 
form f- n 

1 ~ m , n ~ ]{ 
1 ~ m,n ~ J( 

l ~ rn,n ~ K. 

(2.8) 

Thus { vt}, { et} are mutually independent, since tlicy arc Gaussian. These 

relations also determine the joint density of v1 and e1 as 

(2.9) 

The equations (2 .5) and (2.6) and (2.8), along with t he joint density of 111 

and e
1 

(2.9), constitute a complete stat istical descripti on of the matched filte r 

outputs {Pi} and {Qt}. 

2.3.2 SELF Moments 

The stat istics of {Pi} and {Qi} were found in orde r Lo dcLerininc th e 111can 

and variance of the SELF (2.3). The SELF moments a rc needed to a.pp ly Lli c 

central limit theorem and thus ultimately produce the/\ LLF. /\ few co11di tion s 

for the application of the central limit theorem will be establi shed now. Fi rst, 

since the random variables {Pi} and { Qi} arc 1nuLua ll y i11d cpcndcnt , each 

channel output of the SELF is also independent. Furth c rrn orc, th e' clia11n e l 

outputs arc all identically distributed except for th e output of the channe l 

with the signa l present. This parti cular channel output wi ll be s l1 ow11 Lo have 

31 

,, 
H •< 



. ...:-_7/,YVY.O/ ? VY,~./ 7.":7,' 7?'~? 
- 'r'"-~#;.~7.r:...t"~.:w,o>o-:. · -.::.-:r -- ~·..:- -'lr.:.~..,._; -.:;,....,_.....,_. 

a variance compa rable to that of the other chann e l out pu ts a nd thus the cent ra l 

li mit t heorem st ill appli es a nd with it we get a density asy mptoti c to the act ua l 

SELF de nsity. 

To co nt inue , we need expli cit ex press ion s for the mea n a nd vari a nce o r t.h c 

SELF. Ass um ing a signal is present with a re la ti ve SN H. of r = F'h, t.l1 <'n 

the m a tched fi lte r outp uts of t he cha nne l contain ing t he sig na l a rc by ('.LS) 

and (2.6) 

/2Y sin O + I/ / 

/2Y cos 0+(1• 
(2. LO ) 

If / l r and a-; a rc de fi ned to be the mean and vari a nce fo r t hi s cha nne l o ut.p11t. , 

then (2.9) impli es 

(2. I I ) 

(2. 12) 

W ith th e rectangu lar- to-polar conve rsion, P, = p cos </> , (2 1 = p sin </> , a.11 d ,1p

p lying t li e ident ity 

l 12,r fo(a) = - ea cos,f> d<j> 
21r 0 

(:r 1:q 

the in tegral becomes 

/1 r 

(1. I .'J) 
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This integral was evalua ted in [49], §13.31(1 ). T he var ian ce is now eva lua ted 

as follows: 

a; + p,; (2.l 6) 

whi ch becomes with rectangular-to-polar con ve rsion, and app ly i.11 g (2. 13) , 

/00 2 
a; + p,; = e--r' lo pI5 ( /2,p) Io ( ,IF? p) e-T dp. (2. I 8) 

This integral is evaluated by appl ying a formul a from [19], §l l. 41 ( 16) , wl1icl i 

states 

~ fo 1r 1
0 

( [a 2 + b2 - 2abcos </>) d</> = I0(a) !0 (b). (2.1 9) 

Appli catio n of thi s formul a and an intercha nge of in tegra ti ons redu ces t li f' 

integral (2.18) to a simpler integral solved in [49], §13.31 (1 ). T he net res ul t is 

(2.20) 

Summari zing , for a signal in channel l with a SN R , ' , Lli e cha.1111 e l 1JJ ornc 11Ls 

are 

p ,. e-r I 0(2r1 ) 

a 2 
r 

e'" [ ~ [ e-20 '°'' J0 ( l r, sin ~) d,P - IJ (2r,)] . 

where r = ;-:ih. 

(2. 21) 

The a bove calculation s give express ions fo r t he c li a 1111 c l 1110 11 l<' 11 t s fo r a 

channel with a signal present. T he moments for the case of a cba 111 wl wit hout 
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a signal present are special cases of the above with r = 0 and a rc th us denoted 

by µo and 0-6. From (2.21) and the Bessel function identity (2. 13), they arc 

e'Y 
e2'Y [10 (2,) - 1] . 

(2.22) 

Likewise , moments for the [th channel (whenever it conta ins a signal witlt 

strength 
1

) correspond to the above moments with r = 1 a nd a re thus denoted 

As previously mentioned, the application of the centra l limit t heo rem de

pends on the various channel means and vari ances hav ing co rnmeusurate am

plitudes. The relative amplitudes between the moments a.re computed from 

(2.21) and (2.22) and a.re 

µ,. 

µo 
= Io(2r,) (2.23) 

(2.2~) 

Hence, for small assumed SNRs (, -::; 1) , the mean and va rian ce of the cli a niwl 

with a signal present and the mean and vari ance of tli e channds with o ut a. 

signal present a.re within a factor of three of ca.ch othe r. 

Expressions for the mean and va.riance of the SELF a.rC' now i Ill med ia. tC' , 

since the SELF is the sum of all }( channels scal ed by e-'Y //(. The ex prcssions 

are 

e-'Y = - [(J< - 1)11,o+ ft ,. ] 
J( 
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(2.26) 

Here, Mr is the mean of the SELF when a signal of strengt h 1 ' is present a nd 

Mo and 1\1
1 

are written for the special cases of M,., when r = 0 a nd , = 1, 

respectively. The variances V,., Vo, and Vi are defined similarly. 

2.3.3 Derivation of the ALLF 

With the first two moments of the SELF determined , the central limit 

theorem gives approximating densiti es to the SELF, A;, under th e composite 

hypothesis problem. These densities are 

(A;-MQ)2 
-

Ho: A; rv ~e 2Vo 

~ 
versus (A ;-M,·)

2 

H-r' A; rv _1=. e 2Vi· 
,/271' Vr 

(2.27) 

for O < 1 1 :S: 1 

which give a simplified stati st ical cbarncteri za.tion of the SELF. That 1s, th f' 

SELF outputs, {A;} , are Gaussian i.i.d. variables whose Jllcans a 11d variances 

depend on the hypothesis. 

As was the procedure in deriving the SELF, t he Asy mptotic Log-Like lihood 

Function (ALLF) is designed using the simpler bin ary l1 ypot hes is problem . For 

a single-epoch , likelihood function theory a11d (2 .27) impl y a log-likelih ood 

function of 

(2.28) 
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where 

1 ( 1 1 ) 
2 V0 V, 

(2.29) 

(
M1 _ Mo) 
½ Vo 

(2.30) 

Co 
- ---- +In - . 1 (MJ M; Vo) 
2 Vo Vi ½ 

(2.31) 

Independence between observations over different epochs implies th at the ALLF 

up to time n is 
n 

1~, = ~L;. (2.32) 

i=l 

Now that ALLF has been found , its mean and variance wi ll be computed as a 

prelude to investigating its p erformance in the composite hy pothes is p ro blem. 

2.3.4 Moments of the ALLF 

For the analysis that foLlows, it is useful to derive the rnome11ts o f /~; fro rn 

which the ALLF' moments follow trivi ally from (2.32), startin g with t he rn ea.11 

E [L; (A;)] (2.13) 

(2. :J~) 
= 

(2.:3S) 
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which expands in terms of the SELF moments to 

M l Vo -1 [( ~,, )2 ( 2 ,= 2lnV, +(2V,Vo) M,-mo V1 - M,-M1 ) V0 + (V,-Vo)¾ j . 

(2.36) 

Now to compute the variance of L;. 

Vr = Var [L; (A;)] (2.37) 

which upon substitution of (2.28) yields 

(2.39) 

where v = A; - M,. . Proceeding, 

(2.11 0) 

(2.4 1) 

which sirn.plifies to 

v2 ( 1 1 ) 2 
[ ( 1 1 ) (MI Mo) ] 

2 

Vr = _r - - - + I/ - V M,. + V - V, \!, .. 
2 V

0 
v;_ vo 1 1 o 

(2.'12) 

The special cases, r = l and r = 0, of the moments of L; arc res pect ively 

written as Mi a.nd Mo for the means a.nd as Vi and Vo for t he vari ances. 
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2.3.5 

.~ 7/..Y~'.,0/7 V .Y,.-::. /' 7-":"...,77./.Z?' 
_. .;:..=...:,..A,~.;.=":Z---....-~~:.· -.=:- 7 ..... :..--"1,;.,:;,..".;~..-.'lil-"°'-

Summary 

A log- like lihood fun ction for th e binary hy pothes is prob lem, cksignatcd the 

ALLF, has been derived that is asymptotic to the t rue log-like lihood function 

as the number o f channels becomes large. The ALLF was found with t he 

he lp of t he like lihood functi on th eory by co nside ring ;u1 n -c poch co llect io n of 

SELFs as a set of i.i .d. observations assumed Gaussian by the centra l limit. 

theorem. T he Gauss ian assumpt ion was just iG cd by showin g that. eac h SELF 

was t he s um of nearl y independ ell t a nd nearl y ide nt ical ra nd o 111 va ri ;-1.hlcs. 

Various m eans and vari ances were a lso de rived that wi ll pro W' usefu l in future 

di scussion s. T lte ALLF now will be used to des ign a n FSS Lest., ,u1 SJ>HT , allCI 

a TST. 

2.4 Test Design 

The results above redu ced th e proble m of cl ctcct i11 g a11 Fl I waveform Lot.hat. 

of disc riminating between two sets of Gaussia n i.i .cl. da,1,a wit.Ii diffe ren t. 111ca11s 

and varia nces. A Fixed Sample Size (PSS) test, a. Scqurntial 1>robahi li t.y Hat. io 

Test (SPRT) , a nd a Truncated Seq uenti al Test (TST) based on thi s s i111plificd 

mode l will be d iscussed. 
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2.4.1 FSS Test Design 

As the name suggests, an FSS test consists of compari ng a test sta.tisti c 

TL, based on a fixed number of observations L, to a threshold T. Then, if the 

test statistic is greater than T, hypothesis Hi is chosen , whi le a test stat ist ic 

less than T indi cates hypothesis H0 . Symbolically this is 

T { 2". T => Hi 
L < T => 110 . 

(2.13) 

In our case, the tes t statistic is the L-epoch ALLF and the test para.meters L 

and T are specified to correspond to presc ribed false a. la.rm Pp and detect ion 

PD probabilities . To determine L and T , the density of t he 'f't is needed for 

each hypothesis. Although this density equals the non-central x
2 

density, a n 

approximate Gaussian density, derived via the central limit Lli eorern , is used 

instead to yield simplified expressions for the test pa.ra.rncLcrs. T hese densities 

are ( '1'1 - /, Mp )2 

}Jo : TL "' ~ e- 2l Vo 
1 ~ Vo 

versus ( T 1 - i, M 1)
2 

1"'1 : TL ,...., i e- 2 1. v i 
7 J2 1r L Vi 

(2.4'1) 

From these densiti es, Po and PF can be computed in terms of 
/, a.nd T Lo 

yield PF = 1 _ <]> (T~.o. ) and I'D = 1 - <1> (T:;i~1) where <1> -
1 

is the inv<'nw 

of the distribution function of a zero-mea.n, unity-va.ri ance Gauss ian random 

vari able. T hese are solved simul taneously Lo arrive a.L 

L 

[vf p - 1 (1 - Po) - V}<I>- '(l - Pvl]' 

(M1 - M o/ 
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2.4.2 SPRT Design 

Wald's sequential probabili ty ratio tes t (SPRT ) now can be defin ed as a 

test with test statistic Tn, based on n observation s and two thres hold s a a nd 

b. The SPRT works as follows. Upon the nth observation , if 1 ;, is greate r 

than a, then hypothesis }1
1 

is chosen. If 1~, is less than b, then hy pothes is j/0 

is chosen. If, instead, Tn is between a and b, the tes t stati sti c is updated to 

include n + 1 observations and the process is iterated. Sy mbolically t hi s tes t 

is described as 

for each n , T. { 

~ a => H1 
~ b => Ho 

E (a ,b) => take another samp le. 

(2.117) 

The threshold values a and b are assigned to give t he des ired Ney man-Pearson 

probabi lity of detection Pv and probabili ty of false aJann /J,.·. Relationships 

between the t hresholds and t hese probabi lities are giveu by Wald 's a pp rox i-

mations [48] 

a ~ In(;;) (2.118) 

(
1 - Po) 

b ~ In 1 - PF . 
(2 .'1 9) 

2.4.3 TST D esign 
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Truncated Sequential Test (TST) is a hybrid of the above two tests . Specif

ically, TST follows the rules of a sequential test with test statist ic 7~. and with 

thresholds a and b, but has the added feature of forcing a decision at tirne L 

(if no decision has been made) by comparing the test statistic to a threshold 

7 · Symbolically, 

for each n < L, 

> a ==> H1 
< b ==> Ho 

E (a,b) ==> take another sample 

{
> r ==> Hi 

but for n = L, TL -< r ==> Ho. 

(2.50) 

Two relations secure the specifi cation of the TST parameters a, b, L, and 

T . If Pj;, and PD are the actual Neyman-Pearson probabilities for the TST, 

then from [43] 

(2.5 1) 

(2.52) 

where P/SS is the probabi li ty of fa.ls~ alarm for the TST, if L = oo, and 

Pf,PRT is the false-alarm probab ility for the TST , if a = - b = oo. JJ{
5
s ;-u1d 

PfyPRT are defined similarly. Thus the errors of tJ1 e TST can be viewed as a. 

mixture of the errors of an FSS test with parameters l and r and a n S PllT 

with parameters a and b. These inequ alities can be verified by view in g t he 

ALLF T,. as a discrete stochastic process with time index n a.11d cnurncrat ing 
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its sample paths. For instance, a sample path lead ing to a fal se alarm must 

either cross threshold a before th reshold b and before t ime L or be greater 

than threshold T at time L. Since these events also correspond to fa lse a larms 

in either the FSS test part or the SPRT part of t he TST, t he in equ ali ty (2.5 I) 

must follow. 

The above inequalities can be used to specify a TST', whose act ual error 

probabili ties P;., and 1 - Po are less than any specified error probab ili ti es PF 

and 1 - PD . T hus, the TST can be designed by part itioning U1 c bo unding 

errors (1 - PD) and PF among the SPRT and FSS test parts of t he TST and 

then using the appropriate equ ation to compu te t he parameters L, T , a, and b 

for T ST [43]. Specifically, this partitioning is quantified with the introd uct ion 

of two constants, O :S C
1 

< 1 and O :S C2 :S 1, whi ch a rc defin ed as TST 

mixture constants, then 

P FSS 
F 

P SPRT 
F 

C2 (l - Pv) 

(2.53) 

(2.54) 

(
·) r,: r: ) ~.;J ,) 

(2.56) 

for the error probabilities of the FSS test and SPRT parts of t he TST. From t he 

a.hove inequ alities and (2.45), (2.46), (2.48), and (2.49) , t he TST p,uarnet.c rs 
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are determined as follows: 

L 
(2.57) 

T 

(2.58) 

a (
p SPRT) 

ln /J,PRT 
(2.59) 

_ (1 -Pf/RT) 
b - Jn 1 - pf.PRT . 

(2.60) 

Note that (2.51) and (2.52) guarantee that the actual detect ion e rrors 

(2. G l) 

l -P0 :::; I - Po. (2 .62) 

The mixture constants C
1 

and C2 refl ect proport ions of the FSS tes t a nd 

SPRT parts of the TST since, if C1 = C2 = l , a pure FSS test is defin ed, and 

if C
1 

= C
2 

= O, a pure SPRT is defin ed. Cri te ri a fo r choos ing t he rni xturc 

constants will be di scussed in Section 2.G. 

2.5 Performance of Tests 

The problem addressed by the preceding tests ( t he FSS tes t , t li c Sp ltl ', 

43 

'I 

::i 



-

and the TST) is the detection of an FH waveform. The detection of the FI1 

waveform is a prelude to other interception processes, such as feature detection ' 

channel tracking, and message extraction. Here the performance of the tes ts 

in detecting an FH waveform with variab le amplitude and in the presence of 

white Gaussian noise is quantified. 

The three tests were designed under the assumption of binary liypot.li eses. 

These hypotheses a.re Ho (FH waveform is not present) and I--f ,y (FlT waveform 

is present and has SNR 1 ). Of concern here is the performan ce of the three 

tests when the actual SNR 1 ' of the FI-I waveform is more generally O < 1 ' s; , . 

Two parameters characterize a test's performance for a pa rti cular,'. Th e first , 

denoted by E(N/r ,,), is the Average Sample Number (ASN) defin ed a.s the 

average of the number of samples needed to reach a decision. The second 

parameter, denoted by P
0
(r, 1 ), is the Operating Characte ri sti c (O C) defined 

as the probability of declaring the absence of an F!I waveform. Both the J\SN 

and OC are defined as functions of relative SNR r and the ass umed SN ll ,. 

2.5.1 Analysis of FSS Test 

For the FSS test, the ASN is obvious ly L , while the OC can be cktcrn1ined 

by approximating the ALLF at time L by a Gauss ian randorn vari a ble with 
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the same moments. This central-limit-theorem argument produces 

(
r - LMr) 

Po(r, 1 ) = <I> vrv;. (2.63) 

for the OC. 

2.5.2 Analysis of SPRT 

For the SPRT, the analysis is more difficult but can be approached as a 

diffusion problem. Here we approximate the tes t stati sti c by a Wiener process. 

Specifically, if T(t) is a Wiener process with variance function V,. t and rnea11 

function M rt, then the ALLF, Tn, converges weakly to T(t) a t integer times 

t = n, provided n is sufficiently large. This last res tri ction is needed Lo ensure 

that Tn has an approximate Gaussian density as implied by the central limit 

theorem. In terms of the approximati ng Wiener process T(t) , th e probl e111 of 

finding the OC function is now the problem of fi11cliu g th e probability t li a.t T(t) 

will "touch" the lower threshold b before the upper thres hold a. Likew ise , tlw 

problem of finding the ASN is now th e problem o[ findin g tbe average time 

that T(t) first "touches" either threshold (a orb). Thi s time is a lso called Ui e 

average stopping time. Expressions for these quantities a re given in [G] and [I] 

as 

l 
e-2b~ - l M r -::J O 

- 2 b .Mr. e-2 a .Mr. 

Po(r, 1 ) = e Vr - V, · (2.G!J) 

a M,.= 0 -a-b 
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£(N/r, ,) l 
aPo(r,')) + ~: - Po(r,7 )] 

ab 
Vr 

2.5.3 Analysis of TST 

(2 .65) 

The diffusion analysis technique also applies to the TST but is more in-

volved. The ASN is by [6] 

where 

E (N/r, 1 ) = A f\-1r ; :Bn ( e - k,,L - l) 
n=1 n 

Vr1r 
A = (a - b) 2 

Mcb n1ra Mra . n1r b 
B = e Vr sin - - e Vr S I]) --

n a - b a - b 

M 2 V n 21r2 

k 
r + _r __ 

" n = - ?( b)2 · 2V,. ~ a -

The OC function is defin ed by [1] as 

Ai. ( T = ,f"RTLLVMr r) Po(r,1) = 'I' yLIY r 

~ 
2

.Mr. [na- (n- l)b]m (T - LMr - 2[na - (n - I )b]) 
- U e Vr 'I' ,.(Ev,. 

n=l 

.Mr. ( - b) (T - LM ,. - 2n(a - b)) 
+e2 Vr n a q> J[V: 

., [ ( l) l ( 2[nb - (n - l )a] - T + /,M r) 
+e2~ nb- n - a <J> J[V: 

16 
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-e2*.n(b-a)<I> (2n(b - a) - T + LM,.) .;rv; . (2.70) 

Equations (2.63) through (2.70) represent a complete characterization of the 

performance of the FSS test, the SPRT, and the TST. 

The fact that the diffusion technique yields accurate express ions for the 

ASN and OC functions will not be proved here but will be verified be low by 

computer simulation. 

2.5.4 Numerical Results 

The FSS test, the SPRT, and the TST were simulated by the compute r 

to verify the assumptions of the analysis and as an independent measure of 

the relative performance of the three tests. The simu lated detector consisted 

of 512 channels and each test was synthes ized to ensure a probability of fal se 

alarm PF of no more than 1 % and a probability of detect ion Po of at least 99%. 

Here the fairly relaxed probability of fal se a la rrn of 1% was chosen in orde r 

to limit the number of data needed for a decision. Under these specifications ' 

the simulation was run until 1,000 decisions were reached for each of 11 SNH.s 

evenly spaced between O and 1 . The decisions tl1at no FIi wavcforrn was 

present were averaged to es timate the OC, wl1il e the number of observat ions 

taken to reach a decision was averaged to estimate t he /\SN . J\dditiona.ll y, 

the standard deviation of ASN average was meas ured to i11di cate the J\SN 
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estimation error. 

Figure 2.2 and Figure 2.3 are, respectively, the ASNs by simulation and 

by theory when the assumed SNR 1 = 1, while Figu re 2.1 and F igure 2.5 

are the corresponding curves for (1 = 0.3) . As predicted, the ASN is great ly 

reduced, by about 57%, for the SPRT in the regions around , ' = 0 and 1 ' = ,. 

These curves exemplify a general property of the SP RT: to pe rform very we ll 

when the observation statistics are close to those ass umed , but to ex hibit, a 

degraded performance, often to the point of being worse than the FSS tes t ' 

when the observation statisti cs are different. In our contex t, thi s degra.cla,tio11 

is evidenced by a large ASN for the SPRT, when the actual SNR , ' is midway 

between the two assumed values O and , . The TST reduces the /\SN in thi s 

mid-SNR region, as shown by the figures, but it does so at t he ex pense of per

formance in the regions a.round , ' = 0 and , ' = ,. Des pite thi s perforrn a nc<' 

loss , truncation is necessary for implementation reasons. It a lso wi 11 be show n 

that the TST has the desirable property of hav ing a Ii igher detect ion prob

ability than the SPRT at small SNRs aJJd that , tl1 ro ugh optimi zation of t li C' 

mixture constants the TST can regain much of what it ]o:;t in /\SN aro und 
' 

, ' = 0 and 1 ' = 1 . 

Focusing on the OCs (Figures 2.6 and 2.7 for 'Y = I , Figures 2.8 a nd 2.9 

for 
1 

= 0.3),it is obvious that the FSS tes t has sli ghtl y lii gh<'r probo,bili ty of 

detection for small SNRs while t he SPllT has degraded pcrforlll a ncc in t hi s 
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Table 2.1: Comparison Between Theory and Simu la.L ion for,= I 

FSS test SPRT TST ,' 6 ASN 6 oc 6 ASN 6 oc 6 J\SN 6 oc 
0.00 0.00 0.84 -1.19 - 0.03 - 1.47 0.0:J 
0.10 0.00 1.11 - 0.48 2.77 - 0.7G 2.03 
0.20 0.00 0.45 - l.05 l.92 - L. 84 J .02 
0.30 0.00 0.18 1.16 - 0.09 l.1 9 - 0.18 
0.40 0.00 -0.25 1.09 0.89 0.20 - 0.10 
0.50 0.00 0.73 0.60 0. 83 - 0.61 l..'>3 
0.60 0.00 0.22 0.23 0.02 - 0.14 - 0. 15 
0.70 0.00 0.37 - l.47 1.61 -2.35 3.20 
0.80 0.00 -2. 16 - 0.91 2.25 0.76 1.1 7 

0.90 0.00 - 1.33 -l.38 0.83 - 1.88 1.02 
1.00 0.00 - 0. 84 - 1.16 3.50 - 1.38 1.29 

region. Not ice that these test performances arc reve rsed for SN lb c lose t, 0 ,. 

The OCs a lso show that t he TST's actual detection e rrors, f>r a.11d J - / i0 , 

a re with in 79% of th e ir specifi ed bounds, P;., and l - /J0. 

Throughout the a nalysis, various s irnrlifyi 11 g approx i1 rn1.t io 11 s W<'rc 111 ,td< · 

whose accuracies were ha.rd to quantify, csprc ia ll y LIi<' \1\l i<' 1l<'r process ,1.ppro x 

ima tions to the J\LLF. Thus th e compute r simul at io 11 was comp,trcd cpi;uil.i 

tative ly to results pred icted by theory as a validation of assumptio11s 11 1,1.dc. 

Tab le 2.1 for 1 = 1 and Tab le 2.2 for 1 = O.'.! show how we ll th e :; i1111il at.i 0 11 ol' 

th e three tests correspo 11cl s to th e a nalys is. The qu;-wtity 6/\SN is the 11 o rni<1l 

ized diITe re nce be tween the th eoret ical ASN and t he s imul ;-1.tio11 J\SN , wli <·r< ' 

th e norm a li z ing factor is the est im ated stand ard dev iat io n o f tl1 c av<·ra g <· ll s<'d 
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Table 2.2: Comparison Between Theory and Simul at ion fo r , = 0.3 

FSS test SPRT I TST II 

,' I Li ASN Li oc Li ASN I Li oc I Li ASN I Li oc II 

0.00 0.00 - 0.71 -1.92 0.02 - 1.04 2.09 

0.03 0.00 - 0.73 0.32 - 1.75 1.38 - 2. 18 

0.06 0.00 0.34 1.59 - 0.82 - 0.71 - 1.03 

0.09 0.00 0.68 - 0.65 - 0.49 0.07 0.28 

0.12 0.00 - 0.24 - 1.72 0. 33 - 0.11 0.08 

0.15 0.00 - 2.17 -1.09 0.17 - 0.48 0.69 

0.18 0.00 0.91 - 0.96 - 0.19 - 2.32 0.1 6 

0.21 0.00 0.88 - 1.04 - 1.83 - 2.49 - 1.93 

0.24 0.00 0.56 0.98 0.09 0.78 0.43 

0.27 0.00 - 0.18 1.79 2.02 J. 70 2.68 

0.30 0.00 - 0.30 - 0.70 1.67 0.63 0.20 

to es tima te the ASN. The LiASN values show a good correspo ndence bctwc'CJJ 

theory and simulation , since they are within two stand a rd deviat ions 86% or 

the time. The qu antity LiOC is the normali zed d ifference between t he Lli co

reti cal OC and the simulation OC. Here the norma li zing factor is th e st and a rd 

deviation of the OC average, ass uming th at tli c tli co rcL ical OC value is co rrect. 

In other words, the norrna.li zing factor for a theoretica l OC of Pu(,' ) a nd 1,000 

simulation runs is croc == P
0
(,')[1 - Po( , ')]/1000 . Herc a.ga in , in Ta.bks 2. 1 

and 2.2, a good correspondence between theory and simula ti on is ap pa rent. 

T he purpose of the computer simulation was to va lid ate the assump t ions 

made in the sp ecification and analysis of t he three tests: t he F SS test , Lli <' 

SPRT, and the TST. 1he accuracy wi t h whi ch t he ana lysis pred icts qua nti -
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ties measured by simulation, as shown above, substantiates the assumption s 

made. 

2.6 Test Extensions 

The analytical expressions for the ASN and the OC o[ the TST, (2.66 a. nd 

2.70), can be used to determine a TST with an optimum mi xture of FSS a nd 

SPRT parts. Specifically, the maximum ASN with res pect to the SN fl , ' varies 

as a function of the mixture constants C1 and C2. Tliis function is grap hed in 

Figure 2.10. The figure indicates that the optimal TST should have a greater 

mix of SPRT than the value one-half used in Sect ion 2.5, since the maximum 

ASN of smallest value occurs for smaller values of the mixture constants C, a nd 

C2 . The optimal mixture constants were found numeri cally to be C , = 0.28G 

and C
2 

= 0.284. The ASN and OC of the optirnal TST arc shown in Fi gures 

2.11 and 2.12. It is interesting that , by minimizing t!t e rn ax irnuin /\SN , th e 

ASN in the extreme regions about , ' = 0 and , ' = , is also red11 ccd . Thi s 

is believed to be a consequence of the opti rnal TST having a greater Sp HT 

mix than the half-and-half arbitrarily picked for the Sect ion 2.5 si rn11l at ion 

and , therefore, exh ibiting properties closer to a pure SPllT. Of course, if the 

first TST was specifi ed to have a large r SPRT rni x, then optirniza.tion would 

have increased the ASN in the ex treme regions. The optilll a. l TST offers a, 
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Number of Channels = 512 
Pf= .01 
Pd= .99 
gamma= 1 

F igure 2.10: Maxim um ASN versus Test Mixtu re Constants, C1 and C2 
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good compromise between the need to maximize the ASN performance i11 Lil(' 

ex treme regions and the need to minimize the maxirnurn ASN. 

Another extens ion to the prev iously described tes ts is th e robustifi caLio 11 

of the t ests with respect to the assumed SNR 1 . This can be accoinp li sll<'d 

by specifying the assumed SNR I as the worst case, a.nd then c li oos i11 g a 

correspo ndin g minimum probabil ity of de tect ion P1j that is so lllcw hat re laxed. 

T'hi s procedure produces a tes t th a t adequately detects ove r a. broade r ra11 ge 

of SNRs , and it is a way to effect ively use the small er dcLccL ion ti 111es o f til<' 

SPRT and TST. In this way, e ither a TST or a.11 SP 11T ca,n be designed to 

adequately de tect over a broader range of SNRs than ;-111 F'SS test wit.Ii thl' 

same or greater detection time. 

T be described tes ts a lso can be ex tended Lo the slow Fil case. The detecto r 

structure itse lf is optimal under the fa.st FIi assumptio n but is a lso a rcaso 11 -

able subopt imal structure for slow FJT signals. This is es peciall y true wlH·11 

there a.re a large nuniber of hops over a give 11 detcct io11 ti11 1e. l~ve 11 Ll1 011 gh 

tl1e detector itself is suboptimal for slow Flf , a ll the pc rforn1 ;-w cc a 11d dcsig 11 

analysis d eveloped for fast FH appli es directl y. Thi s is lwca11 s<' a ll des ig 11 ,11 1d 

performance analys is depended only on the chi p durat ion bein g kn ow n a nd 

the interference being add itive white Gaussian noise. 
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.<-7 ./.Y~'.JCT./7 ~"/,1/- / 7.."'.'7-' 'l?/? ? 

- 9- '_,;~~;;.6-.-,;.~;_;-;;.=;:..:.:•· --==- ,_- _r,:,;.;.,_ •.,-.~;..-,_=-~ 

Asymptotic Efficiencies 

The previous analysis did not in clude the prrformancc o f thr t.rst.s w l1 c 11 

the assumed SNR I is small. This case wi ll be cxarnin c<l he re. Si ner t he 

ASN and OC a rc fun ctions of both I and the actual SN R , ' , the /\SN and 

OC can be recast as fun ctions of I and t he rcla.t ivr SN H 1· = ~- 'l'<'s L 

pe rform an ce in the dwindling SNR case is ca.pturrcl by the li111i t o f the /\SN 

and O C, as I diminishes whil e r is li e ld constant. for tlw OC , t hi s is a fi11ite 

limit , but the ASN increases without bound . Thu s, rr1tl1cr than colllpa.ri ng t h<' 

ASNs directly, th e limit of th e ASN times 1
2 is computed . 111 oLlwr wo rd s, a 

quantity, identifi ed as the asymptot ic ASN f?(N/r), is dcfi11 rd ,-1s 

(1.7 I) 

The asymptotic ASN is useful because it presrrvcs th e re lat ive d fi c ie 11 c i<'s 

be tween the ASN s as I dimini shes. For ins ta nce , co nside r the J<'SS Lest /\SN , 

[FSS (N/r ,1 ), and the SPRT ASN , E5 1' RT(N/r,1 ) a.11d write 

. [FSS (N/r,,) 
lim . 
"Y-.o [ sPm (N /r , ,) 

t';-ss( N /1 ·) 

l;S I' I?'!' ( N f'r ) 
(2. n ) 

where if55 (N/r) and jJ;SPRT(N/1·) a.re the asy r11ptot ic /\SNs o f the FS S Les t. 

and SPRT, respectively. The asymptoti c O C is s irnpl y dr fir1 cd as 

.?0 ( r) = 1 i m Po ( r , 1 ). 
")'-+ 0 

(2 .7:l) 
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As an aid in evaluating these limits , asymptoti c express ions for moments 

of the single-epoch ALLF derived in Appendi x 2.B a re defi ned as fo ll ows: 

(2.71) 

(2.75) 

where 

;\it ,. !( + 2 (r2 - !) 
J(2 2 

(2. 76) 

!( + 2 
1(2. (2.77) 

Throughout thi s di scussion , the quantity O(,n) represe11ts a.ny fun ction, sa.y 

!(,) , such tha t 

,-n Jim f (,) < oo. 
,_.a 

(2. 78) 

The particular function represented by O(,n ) is dcte rmi11 ed frorn t he context 

of the equation in which it appears. 

To ease the expression of the asymptoti c /\SN and a.sy mptoti c OC, t he 

variables L, f, a, and bare defined . They will be labe led the asy1nptot ic test 

parameters. Depending on the tes t type, they have ex press ions t ha.t co rre

spond to that test type's parameter equ at ions, where M r is re pl a.ced with M,. 

and, like wise, Vr is replaced with V,. . For in stance, the FSS a.sy mp Lot ic test 
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parameters from (2.45) and (2.46) are 

l (2 .79) 

T 

- J -iv_ .fvto) [ J/J /Vt ,<l>-'(l - Pp) - Vi .fvto4> - ' (1 - Po) J . (280) 

By using the asymptotic expressions (2.7~) and (2.75) , wc have proved Llia,t, 

the asymptotic ASN and OC of a particular tes t arc exact ly those of a test, 

with the corresponding asymptotic test paramete rs. !<'or example , t hi s fact 

and (2.63) suggest that for the FSS test the asymptot ic ASN is 

(2.8 1) 

while the FSS test's asymptotic OC is 

_ (f- LM,. ) 
Po(r) = <I> r,;; · 

vLV,. 
(2.82) 

The ASN and OC for the three clirfcrcnt tests arc plotted a nd co rnpa rcd in 

Figures 2.13 and 2.14. The relative re lationship arno ng the tests ' asy n1p totic 

ASNs is almost exactly like that be tween the ASN s fo r , = I and , , = o.:J , 

shown in Figures 2.2 through 2.5. This indi cates t hat the three tests li av<' 

reached their asymptotes, even for , = l. This comrncnt a lso a pplies to Lli <' 

OCs. The usefulness of this asymptoti c analysis, bcyoncl veri fy ing Ll1 ,tt t.lw 

relation ship among tests rema in s the same fo r dirni11ishi11 g SN H,, is th a t it 

simplifies the test parameter relat ionships with res pect, Lo the para1ndcrs 1 
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and r. Thus for each test , we cou ld choose parameters l = L,-2
, 7 r , 

a = a, and b = b and have comparable performan ce for any sma ll ,. This 

feat ure simplifies any adaptation with respect, to I t hat might be aclclecl to 

this detection scheme. 

2.8 Conclusions 

Methods for the seq uenti al detedion of non co lt c rc nt fa.s t Fl I wavdornis 

have been developed. In th e process, Ui e FH waveform is rn od<'l ed to ha.v<' 

an informa tion component that consisted of a ser ies of chi ps with a kn ow n 

constant epoch , where each chip frequ ency is one o f a kn o wn cnsc rnblc o f 

frequencies. In the model, a particular chip frequency is inclc pcncle r1 t ly de

te rm ined by a uniform random variable on th e freq ue ncy <· nsc lll blc. 'l' h<' f•' I I 

waveform is ass umed to have a n add itive whi te-11oi sc co rnpo ne r1t. l~ y a.ss uiniri g 

the modeled FH waveform to be a known SNR, tlic optirnal ddccl.o r based 0 11 

a single-epoch observation (SELF) is developed using likc lihood-f11ncti o 11 th e

ory. SELI• is the sum of many nearly ident ical and nearly ind cpe ndrnt. rand o ill 

var iables and thus has nearly Gauss ian sta ti st ics . Thi s c< ·11tra. l- lillli t. a. rg u,nrnl 

a llows a mulLi -epoch co ll ection of SELPs to be conside red an c<111i va.lrn t scL o f 

Gaussian i.i.d. variables . From these s implifi ed observat ions , a log-lik <'lihoo d 

function (ALLF) is computed that is asyrnptot ic to th e exact, log-like lih ood 
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function as the number of possible hop freq uencies becomes la rge. The ALl,F' 

becomes the test statistic on which three detection tests arc based. Th e tests 

are the FSS test, SPRT, and TST. These arc defin ed to ensu re t ha t dctcctio 11 

errors arc below desired levels. By mod eling the ALLF' as a Wien er proc<'ss, 

diffusion theory yields the performance of the three tes ts not on ly for a n Fl I 

waveform of the assumed SNR but also for all SN lls below the one a.ssu nice! . 

This analysis compares favorably with a computer s imulat io 11 o f Uw df'tedor 

that validates the analysis. The analysis a lso becomes a too l used to ntll n<· r

ically optimize performan ce of the TST, when the ,td ua l FIi SNH. ckvia.tcs 

from that assumed. In order to study the perform a nce of tes ts synth es ized 

by assuming an extremely small FH SNR, exp ress ions for tl1 c asy rnptot ic t<'st 

effici enci es are computed. This asymptoti c analysis a lso y ie lds si 111plifi <,cl test 

parameter expressions applicable to the sma ll SNR case . 

A significant feature of the SPRT ex posed by the a 11 a lys is is that , wit.1 1 ti, <' 

sam e error probabilities , an FH waveform with a g iven SN Jt can h<' clctccl.<'cl 

in less than half the time of the correspond ing FSS tes t . Tl,i s rccl ucti0 11 i11 

de tec tion time is especia lly sign ifi cant for Low Proba bility of In t<'rc<'pt (L P! ) 

appli cations in whi ch the tran smiss io11 · a rc purpose ly short. Fo r tl1e p, 11·c· 

SPRT, de tection time in creases whenever the obse rved SN I( clirfc rs fro, 11 tl1c1.t 

assumed in the test's synthesis. For SNlls midway bctwec11 zero a 11cl tl,c 

d J · · ,·able to the co rrcs1)0 11di11g FSS test,. 'l'li <' assume va ue ,t 1s even compa · 
' 
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TST signifi cantly improves this anomaly while sac rifi cing liWe pe rfo rm a nce 

over tha t of the pure ly sequential test , and wh a t littl e pe rform a nce is Jost is 

largely regained by the optimal TST. The decrease in Lir e detect io n Lirrre o f 

the sequential tes ts can be used to robustify the tes t witlr res pect to Lir e input 

SNR, while maintaining bette r pe rforman ce th a n tha t o f th e no n-robust FSS 

test. The simplified test paramete r expressions derived by asy mpto ti c 11 1d lrocl s 

may be useful for any schemes to adapt these tes ts fo r va ry ing FIi SNH s. Tire 

three t ests and the ir correspond ing des ig n a nd pc rfo r111a.ncc ,ur a.lys is a. lso a ppl y 

Lo the slow FII case . T he de tector structure is s1rl )O pti rn a l fo r s low F 11 bu t, 

it is beli eved th a t the pe rforman ce loss is small , es pec ia ll y for detect io n tirn es 

that include a large number of hops . 

It is appare nt that other simplifi caLio 11 s a.ncl cx tcn sio 11 s to th es<' res ults ,UT 

possible. For in stance, it is ass umed tlra,t the starting tirn e and dura ti on o f th <' 

chip epo ch arc known. This fir s t res triction 111i g ht bc re lax <'d by recldining Li l<' 

SELF to p e rl"orm sli d ing window in tegration instead of th<' integraLe-a nd -clu111p 

operation now performed. T lii s, of course, would deg rncl c the clctecto r 's pe r

forman ce for some va lues of e po ch starting Lime , but prob,, bl y wo uld c xl1ihit. 

a be tte r average p e rforman ce. T he n' arc also poss ible s illlplifi caLi o ns to tli c 

SELF to improve its implementa bi li ty; for example , rcnroval o f the ('lllph as iz

in g function , wou ld make t ir e detector structure s1rl)() ptilll a l but proba bl y still 

asymptoti caJl y opt imal for small ass umed SN Its . Ano Ll 1cr s i111plifi ca,tio 11 co uld 
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be coa rse subba nd prese lection , wh e re t he tot al spread-spect ru m bandwidt lt 

is s ubdivided in to s ubbands , each conta ining a la rge num be r o f c lt ip freq ucn-

c ies . An a lgori t hm then could be used to select a su bset of t he s u b ba.11 ds 

th a t m os t likely wo uld cont ain th e inte rcepted s ig na l. De t a il ed p ro cess ing 0 11 

these prese lected bands then could be do ne with th e met hods described in t it is 

chapte r. 

2.A Derivation of SELF 

Proccecli11 g from Appendi x B of [50] , tli c likc liltood f11n ct io 11 , g iven t hr 

carrie r phase O a nd the channe l k, th e conditi ona l likc lilt ood f11n ct io 11 fo r t he 

ith epoch is 

(2.8:J) 

where Eis the s ingle-e po ch ene rgy of th e FIi s ig 11 a l, i.e., 

(2.s,1) 

But 

E~ S T1,. (2.8.5) 

whi ch , upon substitution into the co nditi o na l likc lilt ood f1111 ct io 11 ('.Un ) a11d 

e xpandin g Ti (t) , y ie lds 

(2.SG) 
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where 

(2.87) 

2 l(i+l)Th 
Qk == ~~ . y(t) sinwkJ dt. 

V IVoTh ,Th 

Taking Expectations with respect to 0 defin es 

A;(y/k) ~ £0 [A;(y / k,O) ] 
(2.88) 

which is the likelihood function conditional only on the channel. This expec-

a ion can be evaluated as t t" 

£0 [A;(y/k ,0)] 

where 'I/; = Arg(Pk + jQk)· Now by the periodicity of the integrand 

by the identity 

Io(a) == _!:__ / 27f eacosOdO 
21r lo 

(2.89) 

(2.90) 

(2.9]) 

(2.92) 

(2.9:3) 

where I
0 

is the zeroth-order modified Bessel function of the first kind . Ta.king 

expectations with respect to the channel k yields the single-epoch likelihood 

function (SELF) 

(2.91) 

A;(y) 

== 
e-'Y i< -1 ( ~ ) - I: Io J2,yPf + Qz · 
J( k==O 

(2.95) 
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2.B 
Asymptotic E x p ressions of the ALLF 
Moments 

W e Wa nt t ) 0 examine th e beh avior o f th e A LLF mo me nts whrn SN h, r 
d i .. 

rn1n 1s hes wl ·1 - . . 11 e t h e re la tive SN R r 1s he ld co ns t a n t. The a.sy lll ptot ic ex pres-

sions d e r i ved I . . . 
1e re e ncap s u la te Uiis beh avior. To de ri ve a.sy rnp tot ic exp ress io ns 

for the . 
m ean a nd va riance of th e ALLF, conside r t he ni ea,11 a.nd vari a nce M,. 

a nd V of Lh . 
r - e s u1g le-epoch ALLF on ly. To t his encl , it will be usefu l Lo de ri ve 

asy rn pt t" 0 
Jc express ion of two fun ct io ns o f th e cl1a. 11 nc l rn o rne nt s : /t ,./17u a 11 d 

a-2/ 2 
,. a-o. St art ing wit h t h e fir s t, express io n a nd s ubstituting (2.2 1) am l (2 .:22) 

fonns 

11; = !5(2r1 ) 

a-5 [lo(2, ) - I]" 

We will n eed a p a rt ia l power ser ies ex pa nsio n o f 10( .1: ), i.e ., 

.?: 2 :1;'1 fi 
fo( x ) = L+ - + -+O(:r ). 

4 61 

(2.96) 

(2 .97) 

He re a nd t h ro ug ho u t t hi s d iscuss io n , t he q ua nt ity O(x") re prese nts a ny fun c

tion, say f( x ), s uc h tha t 

x-n Ji m f(.7: ) < oo. 
x-+O 

(2 .98) 

T h e part ic u la r fun c tion rep rese nted by O(x") is d cLcrrnin ccl frorn t.lw co n text. 

of Lli e e qu a t ion in whi ch it a ppears. \-V it h th e a bove powe r se ri es fo r lu, (2 .96) 
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becomes 

thus 

[l + r 2
, .. y2 + O(-y4 )]

2 

,2 + ¼,4 + 0(,6) 

1 + 2r2
1

2 + 0( 1 4
) ,2 + ¼,,j + 0(,6) 

(2.99) 

(2.100) 

(2.10 1) 

(2. 102) 

(2. 101) 

Now let us evaluate the second channel 1110111e11 L fun ction. Usi ng (2.2 1) a.nd 

(2.97) p lus the power series for ex, after carry ing out Lit e multipli cations we 

get 

(2. IO!J ) 

:~ - [~' + h' + Oh'Jr' { ; f 
[ l - 2, cos¢+ 2,2 cos2 ¢ - ~I cos3 ¢3 + f cos'1 ¢,'1 + 0( ,") l X 

[ l + 4r 2
1

2 sin 2 ! + fr '11 '1 sin 4 ~ + 0(,")] d¢ 
(2. 10:i) 
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a-; = [,2 + 114 + 0( 1 6)]-1 { ]:_ f7' [ l - 2 cos</> 1 a-l 4 nk 

+ (4r2 s in 2 ~ + 2cos2 ¢) 1 2 
- (8r2 cos</>s in

21 + 1 cos
3 <!>) 13 

+ 0 cos'¢+ 8r 2 cos'¢ sin2 f + 4r' sin" ~) -r' + 0( ¢, 75
) ] d f 

(2.106) 

- [ I + 2r2-y 2 + i r'-y' + O(,')] } 

Let f ( </>, 1 5 ) be the particu la r fun ction rep resented by the sy mbo l 0( </>, 1 ") 

unde r the integral, then 

lim ,-5 r J( </>,,5
) = r Ji m ,-5 J( </>,,5

) < 00 
-y--+O lo lo -y--+O 

(2. I 07) 

implying that J; J( <f>, 1
5 ) E 0(, 5

). Th e intcrcha 11 ge o f t he li111i L a 11d in teg ra

tion is justifi ed as fo ll ows. The fun ct ion J (</> ,1
5

) inh e rits continui ty 0 11 Lir e 

compact set { </>, 1 : </> E [O , n ] and , E [O , 1]} from t he intcgra.nd . The refor<' , 

,-
5 f( </>, 1

5 ), which has a. finite limi t at the o rig i11 , is a.lso continuou s 01 1 t hi s 

compact set a nd he nce is bounded , say by B, o n thi s set. The fun ct io n /J is 

integra ble on </> E [O , n], from whi ch the in te rcl1a.ngc fo ll ows by t.l1 c Lc l)('sg u<· 

Dominated Conve rgence th eorem. T he i11 Lerch a.ngc i111pli cs t li a.L (2. 1 OG) ca. 11 

be integra t ed term wi se to yi e ld 

0-2 - I 
_ r = [,2 + 114 + 0(,6)] X 
,....2 ,J vo 

{ [1 + (2r2 + 1),2 + 2r2 ,3 + (¼ + 2r2 + ~,,.·1),,1 + 0(,5)] 

- [ l + 2r2,2 + ~1··1,1 + 0( ,fi)]} 
whi ch s implifi es Lo 

2 

a-; = l + 2r2
1 + 21·21

2 + 0(,:1). 
O"o 
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With these asymptoti c expression s for /l r /CTo and c,;/c,5, we procer.d wit h t he 

derivation of asymptotic express ions for the ALLP mome nts. T he ALLF mca.11 

is expressed in terms of the SELF moments as 

M r = ! ln Vo + [2½ v0r 1 {[M,. - Mo]2 Vi - [Mr - Mi]
2 

Vo+ [Vi - Vo] \I,.}. 
2 Vi 

(2. 110) 

The last three t erms can be evaluated as follow s: 

[ 2]-'{ 2[ 2] 1 CTI fl ,- f',o • CT I 
-, J( - 1 + 2 [ - - - ] /\ - I + 2 
2!<. c,0 CTo CTo c,0 

- !( [!!2_- ~]2 + [I< -J + (T; ] [(T! - t]} 
CTo CTo CTo ao 

(2 . I l I ) 

(2. I 12) 

_ , ( J( + 2 . 2 / ( - !I ) 2 , :i 
- J( + 1(21 + 2/{2 ' + 0(, ). (2 . 11:1) 

Now for the final term. We will need the foll owi ng pown seri es c x pa,11 s io 11 fo r 

ln(x) 

.T2 , 
In ( l + x) = x -

2 
+ 0( :r·1) 
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1 (Vo) 
2 ln Vi 

(2. 115) 

(2.llG) 

_ J_ (-1 _ _!_) 2 0( 3) 
- - J( + 1( 2 J( , + , (2 .] 17) 

combining (2.113) and (2.117) 

M = I<+ 2 (r 2 _ !) 1 2 + 0(,3). 
,. 1(2 2 

(2. 11 8) 

Now to proceed with the variance 

V.2 ( 1 1 ) 
2 

[( 1 1 ) (M 1 Mo) ] 
2 

V,. = - ' - _ - + -:-- - 7, M,. + V, - Vr V,. . 
2 Vo ½ \fa \, 1 0 

(2. ll 9) 

The first term can be evaluated as 

[ 2 l [ 2] ) 2 ~ - l j( - l + O",. 

l~.2 (i_ - I_) 2 = _I I 0"5 2 0"6 
2 Vo V, 21(' [/( - J + :i l (2. 120) 

I {[21 + 0 (,2 )][K+0(,)]}
2 

= 21(2 [ [{ + 0(, )] 
(2. 12 1) 

(2. 122) 

The second term of (2.119) 
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(2. 121) 

= J_ [K + O(,)] { K' [K + O(-y)J' [2-y + 2-y
2 + 0(-y

3
)] [J(-y-' + 0(-y)] 

+ J( [,-1 + i, + 0(,3)] 

(2. 12'1) 

_ 1 [K + 0(, )] . 2 - ](' [I< + 0( "I)]' { [21( + 21( -y + 0(-y2
)] + I< [- 2 - -y + 0(-y

2

)] } (2. 12!\) 

Comb ining (2.122) a nd (2 .126) y ields 

V - r< + 2 2 3 ,. - 1(
2 

'Y + 0( 'Y ). 
(2. 127) 

Summarizing these results 

(2.128) 

!( + 2 2 3 
V,. - ~ 1 + 0(, ). 

(2.12~)) 

79 



Chapter 3 

The Optimal Interception of 
Frequency-Hopped Waveforms via a 

Compressive Receiver 

3.1 Introduction 

T be goa.J of the intercept rece iver is to detect decepti ve c lccLro 111 a,g 11 cL ic 

so urces a.nd foll ow up by extracting waveform feat ures fo r use in t lt c j a 111 -

ming o r exploita.tion of tha.t source. With th e ad ve nt o f frcqu cncy- li o ppcd a nd 

other sprea.d -sp ectrum sign a.ls, the sea.rch ba.nd wid th t ha t. ass ures a reasonab le 

proba.bility of intercept is in crea.sed g reatl y wi t h a corres pondin g i11 cr<'ctsc in 

the compl ex ity o f th e intercep t problem . For t hese cases , wide ba nd in t.creep-

tor s pro ve un a,ccepta.bl e, whil e hi gh-pe rformin g c lt a. nn c li zC'd in te rcept.o rs provc 

virtu a. ll y unirnplc menta.ble . The compress ive receive r, whi ch s i111t1I La.11 co 11 s ly 

es timates frequ en cy components over a wide, set band , h,1.s pro 111i sc as a n in-

Lerceptor with both the simpli city o f a wicl e ba.nd dcv icc a nd t,h (' pn fo rn1 a 11cc 
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of the channelized device. 

The literature is rich with intercept methods for frequency-hopped wave

forms (see [40], [45], [32], [41], and [39]). There are also some analyses of the 

detection performance of the compressive receiver (see [4] and [14]). However, 

very little has been written on the appli cation of the compressive receiver to the 

interception of spread-spectrum signals ([20] is an exception) and even less 011 

the interception of frequency-hopp ed waveforms. To fi_IJ tbc vo id , thi s chapter 

fully develops an optimal and a simplified suboptimal met hod for t he detection 

of frequency-hopped waveforms. The chapter furth er exhibits a structure for 

hop frequency es timation. 

The chapter models the compressive-receiver input as consisting of e ither 

stationary Gaussian noi se of known auto correlat ion or of noise p lus a. hopped 

signal of known hop epoch, unknown ph ase, and energy a.bovc a minimum 

detectable level. Approximate tran sfer relation ships for sig11aJ a nd noise a rc 

developed separately and used to translate the detection problem to a11 eq uiv

alent one on the compressive-receiver output. Likelihood fun ction theory is 

applied to the equivalent problem and yields a locall y op t,imal (i.e. opt irna l 

for small signal-to-noise ratio) detector. The locall y optimal detecto r has an 

unwieldy structure t hat defeats the motivation of using a compress ive rccciv<'r: 

that of simplicity plus high performance. T herefore, a tirne-multiplcxcd detec

tor is developed that, a.t the expense of duty cycle, can achieve perforn1a11 cc 

81 



as close to optimal as desired. Asymptotic stati st ics o f th e detector 's output 

a.re derived and used to quantify pe rform ance. /\ hop freq uency es timator is 

presented a nd its probability of track es timated . 

3.2 Preliminaries 

Several areas need e lucidation before a useful i11trrccpto r can be cl evclopccl , 

in parti cular , a precise stat is ti cal model of the co n1press ivc-rrccivcr inpu t a 11d a 

precise mode l of the compress ive-receiver itself. 111 o rder Lo stat isticall y 111odr l 

the compressive receiver output , transfer rrl a. ti o 11 s liips a rc 11 eeded fo r both thr 

noise and signal. 

3.2.1 Input Signal Model 

The s ign a l 1node l is for a, compos ite hypothesis problc111. Specificall y, g ivc 11 

th e observation y(t) , th e problem is one o f choos i11 g betwee n 110 , which is 

the hypothesis that an FH waveform is not present, a nd !l-y' , whi ch is the 

hypothesis th a t an FH waveform is prese nt with a. 11 SN R , ' g reate r tlta,11 so me 

minimum SNR 1 . Exact ly, the modrl is 

versus 
Ho: y(l) 

ff"/ , : y(l) 

n( l) 

s( l) + n(t) ' < ,' 
(:LI) 

where the frequen cy-hopped signal s( t) is given by ( 1.1) a nd n(t,) is sta. t.i o 11 a. ry, 

colored Gauss ian noi se with vari a nce r7
2 and with a.utoco rrc lat io 11 fun ct io 11 
l 
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Yi(t) h(t) 
Yo(t) 

a(t) 

Figure 3.1: Block Diagram of Compressive Receiver Model 

a; R;(t). The hypothesized SNR ,' is related to the other rnode l param eters 

by,'= S'T
1
i/az, while similarly the minimum SNR , = ST1i /a;. 

Significantly, the signal model all ows for colored noise and is, therefore, 

quite general. Note that the model assumes that a ll signal para.meters except 

amplitude and hop frequency are known. 

3.2.2 Receiver Model 

Figure 3.1 blocks out the compressive- rece iver model. The compress ive 

receiver mixes the input signal y;(t) with a linearly frequency-modu la ted signa l 

a(t) = cos(wot - /3t
2

) 
(3.2) 

that scans downward in frequ ency from w0 Lo Wo - 2/31~. Herc 7 '., is th e sec-u
1 

time. The scanned waveform is input to a pulse compress ion filte r, hence, the 
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name compressive receiver . The filter has impulse response 

h(t) = cos(w0 t + (3 t2
) w(t) (3 .3) 

where w(t) is a weighting function used to minimize energy sp illover between 

signals of different frequencies . The output of the compress ive receiver now 

follows as 

Yo(t) 
(~.1) 

(3.5) 

where 

1' < t < T 
C - - S 

(3.6) 

(3 .7) 

3.2.3 Output due to Signal 

Using (3.2) , (3.3), and the commu ted version of (3. 7), t il e outpu t of t lt e 

compressive receiver can be expressed as 

XO ( t) = it .T ( T) cos ( Wo T - (3 T 2 ) cos [ Wo ( t - T) + (3 ( t - T )2] 'W ( l - T) cl T ( 3. 8) 

t -Tc 

whenever Tc ~ t ~ Ts· Trigonometri c manipu lation leads to 

x (t) = ! cos(w t + (3 t2) it x(r) cos(2(3lr )w(l - r) cir 
0 2 0 t- 1~ 
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+ I sin(w0 t + (3t 2
) j 1 

x(r) sin(2/3tr)w(l - r) dr + E. (3.9) 
2 t-Tc 

Application of Lemma 2 shows that error term 

(3.10) 

where Pw is the positive variation of the window w( l) on l E [O, Tc] and where 

px is the positive variation of the input x(t) on t E [O , Ts] - The definition or 

positive variation appears as Definition 1 in Appendix 3.U . 

The error bound has special meaning when X( t) is a sin e wave or angu lar 

/E/ ~ 2 Pw/JTsTc 
7rWo 

(3.JI) 

which is very small for typical values of wo, Tc, Ts, and /3 . 

3.2.4 Output due to Noise 

As shown in Appendix 3.A (3.95 and 3.99), the nonnaJi zed aulocorrelat io11 

( divided by a;) of the compress ive-receiver output is 

12Tc- /u1/ cos [(wo - 2/Jt + /Ju2)(tt 1 - d)J cos [(wo + /3u2 )ui] 
/iq I 

p.12) 
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The error term c is bounded as 

(3.13) 

where 

1 1 2 2 
B = - + " + 2(3rr + (3rf 2f3Tc 2wo - 2f31s Wo - s Wo - c 

with Pw being the positive variation of w(t) defined by Definition 1 in Appendix 

3.B . 

Under typical operating constraints, the error bound can be simplifi ed fur 

Lhe r. The t e rm 2(3(T~ - Tc) represents the total frequency spa.nncd by the 

compressive filt er, which is very large (typicall y 0 11 the orde r of mega.hertz). 

Additionally, the freq uency w0 is usuall y in the tens to huudreds of 111egall('rl.z 

r ange, hence w 0 >> 106 . These two facts, a. long with the fa.ct. t hat the scan time 

is typically twice the compression time (i.e. r. = 2Tc), impl y that JJ < I/ rn~ .. 

Under these ass umption s, the error is bou n<le<l as 

I I 
1 P,~ 

C < 8/3. 

Of inte rest a.re special cases of the autocorrela.L ion . W hen the input noise is 

white, meaning1 that a;Ri(t) = 8(t)N0 / 2, then the outp ut noise is sL,d.ion a.ry 

1 S in ce the variance o f a white no ise process is und efi ned , a rbit rari ly let a-f = N0 whcrl' 
No is the s ing le-sid ed spectral d ensity o f lhe while no ise procc:ss. This cho ice 111akc t.h l' 
s ig na l- t o- noise ratio , 1 , cons is te nt with ot. her definitio ns in th<' lit.c rat. 11re. 
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L 

and has t 
a u ocorrelation 

(3 .1 G) 

when ever ld l < 7, 
- c, otherwise R0 ( d) = O. If the wi nclow fun ction w is rectan-

g ula r , then 

Ro(d) = i s in [fJ ld~ I~/ - /di)] cos [ldl (w0 + j., 'l ~)] (3.17) 

whe never ldl :S Tc, otherwise Ro(d) = O. Regressing Lo Lli e case o f ge nc r.-i l 

stationary no· . b t . . I · I · tse u now cons1clcnng on ly recta.ng u a. r win e ows, 

where 

1 7',; 
Ro(t,d) = -1 /l;(u 1 - d)g(u 1, l, cl) du, 

8 - Tc 

( . t l ) s in [( fJd - 2fJu 1)(Tc - lu 1 I)] 9 U I , , C , = --'-'----'---'--'-----
(fJcl - 2f}u I) 

X cos [w0d + 2fJ t(u1 - cl) - 2w0 11. 1 + (lid - 2,B rt, )'f ;.J 

(3. 18) 

+ sin [fJcl(1: - lu 1 I)] cos [wo d + 2(Jt(u , - d) + fJd'f ~] . (3. 1 /)) 
fJd 

3.3 Locally Optimal Detector 

We a im to develop a locall y opt imal de tecto r of frcq11C'n cy-li o ppcd wave

forms based o n a co rnpress ive- receivcr out put. h: cy in g 0 11 the fa.ct t li a.t tlic 
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optima l de tector of frequen cy-hopped waveforms integrates cohe rentl y over a. 

s ingle hop pe ri od [41], we conj ecture that an optima ll y co u fi g ured cornpr<'ss iv<' 

rece ive r sliould integrate over a p e riod comme nsurate with th e !t op epoch 7,,. 

But because we a re also interested in the detector 's pe rform a nce in es ti ma till g 

the hop frequen cy, we wa nt to eliminate interfe rence from a.dja.ce11t ho ps. We 

thu s choose Ts = T1i and assume that th e compressive rece iver is sy 11 cl1 ro 11i zcd 

to frequen cy hops . This is not a reaJi s ti c assumpti on in t.h c pure dctcct io 11 

problem but it will lead to an optimal detecto r whose pe rforma nce dcgr;-t(k s 

gracefully upon relaxing thi s ass umption . 

Because the inte rfer ing noi se is typicall y o f 11111 c lt la rger ba nclwidtl1 t lt a. 11 

the hop r a te, t.li c co rrelation be tween !tops is neg li g ible a.ncl so th e opt.irn a. l rrnrl 

tihop de t ecti o n s tati sti c is simply th e s um o[ th e optim a. I s ing le- hop cl cLecti o 11 

s t a ti s ti cs . We thus confine ourselves to th e problem o f us ing th e compress ive 

receiver to optimally de tect , given a.n observa tion period of 7~,, a. s ine w,w<· o f 

unknown amp li tude a.lid ph ase a.lid whose frcqu c 11 cy is CHI C of tltc k11 ow11 ho p 

frequ en c ies . 

Based o n the above assumptions, th e dctect io11 problem is now 

Ho : x;(t) n;(t) 
ve rsus 

H r' : x; (l) V2S s i11 (w1J + 0) + n,( l ) 
(: L:20) 

for 1 < , ' and 'J ~ ~ l ~ 1~. 

de fin ed in Section 3. 2.1. 

Th e l)a.ra.mcLe rs. 0 'V 'V
1 w ·, 11 cl ·11 (t ) ·, < , I, I , k , « , ·i n ,J" ' i l.S 
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By using the results in Sections 3.2.3 and 3.2.4, the detection probl<'rn 

based on t he output of the compressive rece iver is 

versus 
Ho : x 0 (t) 

H'Y , : x 0 (t) 

n 0 (t) 

V25' cos 0 Yc(t ,wk) + V2S' sin O Ys( l ,wk) + n 0 (t) 

(:1.21) 

for , < 1 ' and Tc s; t s; Ts and whe re n 0 ( l) is stat ionary, co lored Ga.ussia. 11 

noi se with autocorre lation fun ct ion R0 (t) as defin ed by (3.12) a nd 

Yc(t , wk) l it - cos(w0 t + j3 t 2
) cos(wkT) cos(2/3LT)w( l - T) dr 

2 t - 1'c 

+ ! sin(w0 l + /3 l 2
) it cos(wkT) sin (2/3lT)w(l - T) dr 

2 t-'I'c 

l t 
:__ cos(wot + /3 l2

) i sin(wkr) cos("2(J!r )w(l - T) cir 
2 t - Tc 

+ ! sin(wol + /3l 2
) it sin(wkr) si11 (2f]LT)w(l - r) rlT. 

2 t - 'I'c 

From [47], th e conditional log- likelih ood fun ct ion for t hi s problc111 bcco11ws 

ln J\[x 0 (t) /w k, 0, 1 ] = 
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(:J.21) 

where t he functions gc(l,wk) an d g,(t,wk) are res pect ively de fin ed by the intc-

g ra l equations 

('.L 25) 

(:L 2G) 

for T~ ~ t ~ T
5

• Since we are interested in a locall y optirna l test (i .e. s111 a ll 

,), we neglect the last term of (3.24) and say 

In A [x0 (t)/w1,:, 0, 1 ] 

(J.27) 

Averaging thi s approx imate likelihood rat io ove r 0 and wk yie lds 

('.3 .28) 

where Io is the modified Bessel functi on of the first kind and zero orde r and 

where the complex-valued fun ct ion G1,:( l) is defirlC'd as 

(:3.29) 
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x 0 (t) 
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Matched Filte r 

G1(/,) 

l 
® 

G2(t) 

l 
® 

lT, dt 
Tc 

lT, dt 
Tc 

{Ts dt 
l1'c 

En vclope-Sq ua.red 
Detector 

12 

12 

Figure 3.2: Locall y Optima.I Single- Epoch Detector 

l 
~ (Ji T1,, 

r 

Consider again th e small , case and note that 10(:r ) ~ J + x 2 /1 for s111 ,tll :r. 

Conjure (3.28) into a locally optimal stati stic 

wh e re the scale factor 1/CJ[Th is added fo r co11 ve11ie 11 cc 111 future a na lyses. 

Figure 3 .2 blocks out (3.30). To complete thf' detecto r, I' is conipa rf'd aga. i11 st, a 

threshold v, whose value de te rmines the probability of fal se ,tla rrn Fr- . (Sect ion 

3.5 shows the exact relationship between v and P,.· .) The sta.ti sti c I bC' ing 

locally opt ima l will , for small signa l-to-noi se ratios, y ie ld the g reatest poss ibl e 

probability of de tect ion, hence it is locall y the mos t powerful Lest i11 L< ' 1"111 s of 
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signal-to-no ise ratio. 

3.4 Time-Multiplexed Detector 

The locall y optimal detector of th e previous sect ion e ffi cie ntly detects 

frequency-hopping waveforms. As will be shown , it ri vals the o ptirna.l detector 

that directly observes the original time waveform. Unfortunate ly, it a lso riva ls 

the opt ima l detector in impleme ntat ion complex ity a nd thus undermin es t he 

a ttractive s implic ity of the compress ive receive r. 1n thi s sect ion , we co nst ru ct 

a de tector based on the locally opt imal detector that m a inta in s s implic ity o f 

impleme ntation for a small performance cos t. 

The time-multiplexed de tector de picted in Fig ure :1.J is both cffi c irn t a nd 

s imple . The detector consist s of a complex filte r whose i111pul sc respo nse ( ,'r,( t ) 

is con s tru cted from the pseudo-sig nal s C1.: (t) by tlw equat io n 

K 

Gdt) = L Gj [Ts- l + (j - l )~T]. (: I.JI ) 
j= l 

The en velope of the filt e r 's squared output is th e n sampled at tilll cs , 

t =Ts+ (k - 1 )~T for I.: = I, · · · , /{ 

then summed a nd scaled by J/a;7,,. to produ ce Lit e test, stati st ic F. It, is easi ly 

s hown that 

(: I.J '.3) 

92 



r 

Complex Envelope-Squared Samp ler/ 
Matched F il ter Detector Accumu lator 
~-"---

t:::,.T 
GE(t ) 

F ig ure 3.3: T i rne-M u !t i plexed Detector 

whi ch by defining 

(3.'.3 tl) 

y ields the alte rn a te ex press ion 

Note th a t (3 .31) transforms (3.34) to 

I\" 

Ch (t) = L Gj [(j - 1.~ )!:::,.1' + t] (3 .3G) 
j= l 

whi ch , for !:::,.T ~ Ts - 1: , implies Gk( t ) = Gk( t) , si nce tlt e (,'is a re 7,crn o ii!,s id<' 

the range 7 ~ S t S T8 • Hence the time-multip lcxccl detector is eq ui vale nt Lo 

locall y opt imal detector for th .is choice of !:::,.T. We a im to show that!:::,.'/' can IH' 

m ade significantl y smaller for a small performa nce cost, tliu s concludin g that 

the timt'-multiplexed detector captures rnost of the detectab ili ty of the locall y 
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optimal detector but maintains the simplicity of the compressive-receiver con-

figuration. 

3.5 Detector Performance Analysis 

In both the locally optimal detector and the time-multiplexed detector , 

the test statistic is the sum of squares of a large number of weak ly correlated 

random variables. Namely, for the locall y opt imal detector, 

2K 

r == I:CJ 
j:=l 

where 

and where hj(t ) is defined as below with 1 ~ m ~ I<, 

Similarily for the t ime-multiplexed detector, the teS
t 

is 

Where 

21< 
~ " '2 
f==~C.i 

j:=1 
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a,nd for 1 :=:; m :=:; 1( , 

h,2m- l (t ) (3.43) 

h ,2m ( i) 9 s ( i , Wm )· 

He re, gc(t ,wm) ~ ~ [cm (t) ] a nd 9s(t ,wm) ~ 8' [Gm (t)]. lu t he ana lys is Lo fol

low , t he hat notat ion will be d ropped sin ce t he results a pp ly to each dcteclor 

in the same way. In other words , to get t he result for t he time- mu lt ip lexed 

<l e t eclor , a.dd hats to t he appropri ate variables . 

Beca use the tes t st a t ist ic is the sum of a la rge number of weakl y co rre-

la.Led ra ndom va ria bles , t he re is reason to beli eve, des pite t he cor rela ti on, t lt a,t 

t he stati s t ic has approx imately Gaussia n d istr ibut ion . We proceed unde r t his 

ass umption with just ifi cat ion to fo llow la te r. To specify the asy mptoti c di s-

t ri bu t ion of r , we need it s mean a nd vari a nce un de r th e signa l-present and 

s ignal-absen t hypotheses . . F'or t his purpose, de fi ne Zj (l) , I :=:; j :=:; 2 1( , a.s 

Z2m - 1(l) = '!Jc(i ,wm ) (:L'1 5) 

'!) s ( l , Wm) ('.HG) 

wi t h m ranging between l and I< , while z_i (t) , fo r 1 :=S j :=:; 2 /{ , is dcfiu cd as 

[T, [l + T ] lrc Ro - 2- , l - r g, (t,,wm ) dr (~H 7) 

[ T' [t + T ] j
1

'c Ro -
2
-, l - T g_.( l , win ) cir (:3 .118) 
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with m also ranging between 1 and K . For the same rcaso JJ as a bove, we defin e 

th e time cross corre lations 

(3.119) 

(:J.50) 

for 1 ~ m , n ~ K. (For the loca lly optima.I detector rnsr , note that ( j,k = (j ,k -) 

Assume now that the signal is at frequency w,. Then 

(1-; = ~ cos O 61- 1,k +~sin O 6 1,k + 7]k ('.l. 5 1) 

where the random variab le O is uniforml y d ist ribu ted on [O , 21r] a nd th e 7/ 1-; S 

are ze ro-m ean G a uss ian wiU1 covarian ces £(77j"/]k) = (i,k · Frorn (J. I :~ 2) in 

Appendix 3. C 

(3.52) 

Wh en averaged over l and summed over k , the rn ea,n of l' if:i 

Use (3.51) and (3.136) to con struct the cova ri a nce between tl 1c jt,li a nd kt.Ii 

terms off when the signal is at frequency w1• The res ult is 

( ') 2 2 
/ ~ 2 ~2 ( /

1
) 2 2 I 

- 2- ',, 2/ - 1,j ',,2/ ,k - - 2- ( 2, ,j ( 21 - 1,k + 1, ( 21- 1,j(21- 1,k ( j ,k 

(T 51) 
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which upon averaging overland summing over j and k, becomes 

(3.55) 

Of course, for the signal-not-present case, the mean and variance are simply 

(3.53) and (3.55) with the signal-to-noise ratio , ' = 0. 

Since the test statistic r has an approximately Gaussian distribution, the 

threshold v and probability of detect ion PD, for a give!l probability of fa lse 

alarm, follow as 

(3.56) 

and 

(
#o<I>- 1 (I - PF) - M'Y, + Mo) 

Pp = I - <I> hi. 
V V'Y, 

(3.57) 

where <I>(x) is the distribution funct ion of the standard Gaussian. 

We now justify the above use of the central limit theorem. First let, 

E~ . . 
[ 

6,1 6,2[( ] 

{2;<",l {21\:,21\" 

(3.58) 

Which is the covariance matrix of the (;s, and 

Eo,,~ [ 61- 1 . • 1cos 0;+(21,, sinO ] 

t O + t r·· sin 0 <.., 21-J,2/( cos <.., 21,2 \ 

(.3.59) 
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whi ch a re 1/ ~ times the means of the ( is unde r tli e conditi on t hat tl w signa l 

has phase O alld frequency w
1
• We note th a t , sin ce 'E is nonnegat ive de fini te 

I 'I' I 

and symmetric, the re exists a square-root ma trix 'E 2 such that 'E
2 

'E
2 = 'E. 

Consider a lso the diagonali zation of 'E- f 'E -
1 
'E -½ = TTAT where 

,\, 0 0 

0 ,\2 0 

A= 
(:U iO) 

0 0 A21,· 

is the matrix of eigenvalues of 'E and Tis a n orthogona l matri x of eige nvecto rs . 

Use the a bove diagon alization and E½ to rewrite the tes t sta.ti s ti c as 

f' = ( G + /2,'Mo,1) 1' A ( G + /2,'Mo,1) (3 .G I ) 

where 

G - r ;: J 
(:J.G2) 

with {gi} indepe ndent, zero mean, unity va.ri ance, a.ncl Gauss ian and wh ere 

6. Mo,1= 
r 

rn 1,o,1 l 
m,'. ,0,1 J 

Th e t est stati s ti c f' is ll OW the sum of squares o r indc r cnclcnt C: a uss ia. 11 va ri -

ab les. Throug h a pplication of the Berry-Essecn Tl1corc 111 (sec [25]) , I', co11-

dit ion ed on O and /, is approximately Gau ss ian di stributed with a.n error 11 0 

more than 1c/CT where 

C 

AS t 2 
. ' I / T/1, i ,0, / + 7 

111 d.X Ai ----'-,
2 
~--

i ,O ,I 81 'm ; ,O,I + 2 
(:~.M ) 

2 /( 

'\"""' \ 2(8 I . • 2 + ')) L-- " ; , 111.;,o,1 ~ · 
(: U i5) 

i = l 

98 



If thi s error bo und is sm all , a fact th at must be establi shed 11umc r ica lly, t hc11 

the C LT appli es uniformly to th e conditio na l di s tributi on o f l' . Tf, in add it ion , 

th e overall mean M'Y, and vari a nce V'Y , rem a in essenti a lly cons ta n t wit h respect 

to land 0, th e n th e C LT appli es to the un conditi on a l di stribution o f r as well. 

T his fact mu s t a lso be es tablished numerically. 

The a b ove a na lys is using th e asymptoti c di s tributi o n o f l' is suppl c 111c 11tcd 

with uppe r- a nd lower- bounding di s tributi o ns. Spec ifi cally, 

where Ai 11a x, >. 11.,_; 11 a re respecti vely th e max irnurn a nd rninimu111 c igc 11 va.lucs o f 

the cova1·1·ar1 c r> ! l t ·v,..ly t,· l1 <' n1 a.x i11J11111 a.11d . , ·e LJ a u c w 1ere e,rn,x , c111 ; 11 a rc rcs pcc 1 , , . 

minimum over a l] e igenvalues of th e ma tri ces 

:S l :S {{ (3 .G 7) 

with 

(:LG8) 

a nd fin a lly wh e re Qm is th e ge ne rali zed Ma rcum Q -fu11 ct io 11 dcfi11 c cl as 

~ , _l (x2 + a2 ) , . l oo (x)m-1 Qm(a. , /3 ) = {3 :i; ; e 2 /,,, _1(m,) d.7 .. p.G9) 

Of inte res t is th a t th e upper bo und equ a ls th e lo w<'r bo 1111cl 0 11 ly whc 11 

th e chann e l o utputs are i.i .d. a nd th e s u111 o f th e squ a re 111 .-1g 11 it.11d c o f t he 
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Figure 3.4: Hop Pregue ncy Estirn a to r 

A 

l 

signal component across the chann els is indep<'nde 11t o f s ig na l phase. 111 ,t 

sen se , the bound s g ive a n in d icati on of how well th e detec to r fit s t ir e i.i.d . 

a ssumption , since th e uppe r bound co rres po nds Lo t he detector di st rib11 t io 11 

unde r tb e i.i .d. a nd ph ase inde pe nd e nce a ssumptio ns, but with ,u1 in c reased 

noi se le vel , whi le th e lowe r bound has th e sa me i11 t e rpre ta ti o 11 , but wit h a. 

d ecrea sed noise level. T hese bounds, whe n ave raged , a.pprox i111a t c Lir e detec to r 

d is tribution , the use fuln ess of whi ch will be s tudi <'d a nd co rnpa r<'d w ith t he 

asymptoti c di s tr ibut ion in Sectio n 3. 7. 

3.6 Hop Frequency Estimator 

The time-mu ltiplexed de tector can be modifi ed to cs ti111 a. te ho p frequ e ncy 

a s d e pided i11 Figure 3 .4. He re, in s tead o f acc u111u la ti11 g sa111plcs of t ir e squc1.r<' 
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envelope, the maximum sample is found as 

IG·l2 = max IG 12 . 
I l ~ / ~ I( I (3 . 70) 

Then Wki is declared the hop frequen cy estimate. 

We need the performance of this maximum likelihood est imator. For t hi s 

purpose, the probabi lity of track PT is de fin ed as the probability that, given 

the presence of a signal, the hop estimate matclws the a.d ual hop freq uency. 

Because of th e lack of symmetry and indepenckn cc between tl1 c sq urtred cnvc·

lope samples, an exact expression of PT that is also computable is very difficult, 

to find, although it can be expressed as a K -dimen sion a.l integral. We wi ll be 

satisfied to tight ly bound PT when it, is la rge. The res ults wi ll be a.crnra.tc 

under the useful operating conditions of the es tima tor. 

Proceeding in this fashion , we will need to define the distribution fun ct ion 

of each sample 

(3. 71) 

and note that its density .h(x) ex ists and will be co rnputccl exact ly lat.er. Now 

suppose the signa l is at hop l ; then the probability tl1a.t IGil 2 is bet.ween :r 

and x + .6.x is approx imately J1(x ).6.x and, given that it, is between these two 

numbers , the probabi lity that it is the maximum , hence co rrec tl y chosen, is 
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approx ima tely 

T1(x ) ~ Pr [koi (1Gkl 2 ~ x)] . 
k f- I 

(3 .72) 

The re fore, upo n le tting .6. x --+ 0 a nd averaging over l , 

1 K Loo Pr = - L J, (x )T,(x ) cl.?;. 
]{ i= I O 

In orde r to produce the promised bounds o n Pr , we will 11 cecl to p rodu ce 

bound s on T1(x ). Us ing De Morga.n 's law , 

(3.7/J) 

] - L P, ( X) + L P2 ( .'J; ) + ... (3.7S) 
s in g les pa irs 

- I - I 

whe re P 1 (.r ) is th e probability that a single sampl e exceeds :r a.11cl , si111ila.rl y, 

P2(x ) is the proba bility that both of a g iven pair o f samples exceed :r. Tli <' 

above expression is use ful , because, for th e case of large .T, th e e ve nts t hat, 

samples othe r than the /th exceed x a.re a.pprox irna t<' ly di sjoint.. 111 thi s ca.s<', 

the firs t two terms of the seri es accura te ly approx i111 a.te '/ 1(.T) . With rno ug li 

t erms, th is se ri es can de termine T1( .1;) to a. 11 y cl cs i reel deg ree of acc uracy a.11d , 

be ing alte rn a tin g, implies bounds on 11(.1:) s in ce the se ri es o ut Lo pos it ive tc r111 s 

is above th e actual probability and , simila rl y, th e seri es out Lo negati ve t.c rn1 s 

is b e low . We will use the firs t three terms of tli e seri es ill ju st thi s way a lo ng 

with (3.71) to write 

(:L7G) 

102 



where 

K 

b1(x) = 1 - E [1 - Fk(x)] 
k = 1 
k f. I 

(3.77) 

K K 
<:1(x) = E E {l-max [A(x),F1(x)]}. (3.78) 

k=1 j=l 
kf.ljf.l ,k 

Ec1 c ua 10ns (3. 73) and (3. 76) now determine 

PT 2: _!_t /00 

f1(x)max[b(.1:),0] dx 
J( 1= 1 lo 

PT ~ I_ t /00 f 1(x) min [b( x) + <: (.1:), 1] d;r 
J( l=I lo 

(3. 79) 

(3.80) 

which, along with explicit expressions for f 1( x) and F,(.1:) below, complete the 

performance analysis of the hop estimator: 

where 

and 

and 

z = [ 
r cos 1> l 
r sin ¢ 

kt [ (zt-I,Zk- l cos O + (21,2k- l sin O l 
M = V L,' l A A • 0 

6i-J,Zk COS O + 61,2k Sill 

following d·.a- . . . upon w erentiatwn 1s 
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where 

y _ . - [ ,/x cos¢> l 
Jx sin ¢> 

(3.8G) 

3.7 Performance Comparisons 

This section graphi cally compares th e performance o f the locally opt ir11 a l 

detector, based on the com press ive- receiver output, to that o f the optima.I 

detector , based o n receive r input. Also evalu ated is th e pcrfor111a11n· o f the 

t im e-multipl exed detector as a fun ct io n of tbc sa.111pling 6'/'. 

The pararnetcrs chosen to make compari sons a. re: 7 ~ = 50 /L S, 1~ = 1000 

µ s, Wo = 21r x 40 Mhz, the minimum hop frequen cy <'q ua. ls 2 Mhz a nd t.11<' 

m ax imum hop freq uen cy eq ua ls '1 M hz, J 00 hop frcq ue 11 cics, a.11d a hop rate o f 

20 Khops/ sec . 

F ig ure 3.5 s hows how the locally optim a l detecto r compa res with tir e o p

timal detector based on the or ig inal observat ions. As ex pected , for low SN Hs 

the locally optimal and the opt irna. l compa re favo r;.1.b ly. 01 1 t he ot he r li ,-u 1d , 

there is about a 3 db d iffe rence bctwc'C11 tli c pcrforrri;1.11 ccs in the hi g h regio 11. 

Two factors a rc responsible . One is th at t!tc a. 11 a. lys is o f t it <' optimal r<'cc ivc r 

used the CLT, a poor model when one cha nn e l do min a.tcs as i11 t he hi g h SN H 

case. It is, in fact, optim is ti c. Anot he r, as cxp la i11 ccl lat.e r, is a 111 ollcli11 g 
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phenome non •] t 1· • ., I 
L 

1
a. ca.n account for up to 3-db e rro r bct w<'e n prec 1cLeu a. 11 c 

a.ctua,l perfo . · · t · 
t ma.n ces . Al so note how the di stribution bo unds a.re pess11111 s 1' 

re la.tive to the CLrr . I . 'T be dt1 e ' o 'li e ·111 a1)1) ro1) ri a. tc1w ss ana ys1s. hi s a. lso may L L 

of the CLT I . . 
w 1en one channe l dom111 a tes. 

Figure 3 6 l h I I "1 ' I · s 10ws ow performance degrades irnmec iate .Y a s ~ Jeco 111 cs 

less tha.n ti · · I rr· I • l e compresswn time Tc. Th is in di cates that a ny tra.c co Je Lwcx·n 

pe rform a n ce• · d d • I J I d · ·· I t · · · an UL.Y cyce wou ld not be wort It 1c eg1<1.ca,, 1o n. 

Figure 3.7 d iffer s from th e p re vious case 111 that th e 11 01se 15 bandpass 

instead f h·t J r· ti d I 1· 0 
w 1 e . t ha.s the same ge nera.I c ha radcr as ar a.s , 1e egrac a ·10 11 

with respect to llT but is approx imate ly 3 db bette r . Thi s is no t an a.d ual 

p erformance difference but a mode ling phenome non. As fa r as no ise a.n a. lys is is 

concern ed , the compressive rece ive r is a, 111ixcr foll owed by a. 11a.rrow ba ndpa.ss 

filt e r. lf the input noi se is white th e re wi ll be u11 co rre la. tccl no ise contributions 
' 

from the sum a.nd difference frequ encies produ ced by th e llli xc r, hen ce th e 

3 db. A more rea li st ic scenario has noi se of unifo rm s pect ra l de ns ity a.c ross the 

analysi s band o f the compressive receive r. In thi s case , th e sum co 11 t rib11ti o 11 

is filtered out. 'T'hi s reasoning a lso exp lains th e cliffcr<'11 cc· bctwcc11 LIi<' o ptinial 

and the locally optima.I de tectors. 
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Multipl excd De tector, Wliite-Noisc Case 
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3.8 Conclusions 

Present ed d f b d ' I , ' were two de tecto rs of frequ ency- hop pe wave orms a.se on " H 

compressi · · 1·1 1·1 I '· ve receive r. T he first was developed by a.ppl y 111g t he 1 ,c I IOOC -rac to 

theory to th b · · I I 11 e O served compress1ve- rece1ver o utput a nd y ic ldcc a oca Y o p-

timal (low SNJ=> ) · 1· ·1 f · I - \, de tector. The seco nd , motiva ted by th e s1mp 1c1 ,y o 1111 P <'-

m enta tio11 w· . t · · · f h r. , 11 t 11 · ·I t I J · ' as a 1me-mult1plexed version o t e 11rsc , 1a , , , n o ug 1 , w CIO I C<' 

of a p a ra.me ter , e ither co uld , a t th e expense of a low d uty cyc le, ac hieve tl l<' 

de tect a bility o f th e firs t o r, a t th e expe nse of degraded pe rfo rll 1ct11 ce, ac lticv<' 

highe r duty cycles . The second detector was m odifi ed into a 111 ax i,nnrn like li -

hood es t · , . f h I 11 I HTJ,hot o . op frequ ency. P erform a nce of bo t! , detect.o rs a. nc , ic io p 

frequen cy , · 
esc 1rna tor were a nalyzed a nd compared . 

The compressive receive r fulfill s its p ro mi se a.s a s imp le, yd l,i g li -pc rfo rlllin g 

inter ceptor. Th e p erformance of th e loca lly optilllal detecto r shows tlt a. t re la

tively little de tectability is Jos t in th e compress ive recciv<'r process ing. Most 

of th e di screp an cy is du e to th e dirfe renc<' in co he rent in tegra ti o n Linw (one

half for t11 e param e te rs used). Furtlt e rn1 orc, fo r a s 111 a. ll p<' rforll1 a. 11 c<' cost , tl l<' 

simpli city of th e compressive- receive r a pp roach ca. 11 be rcta. in <'d hy tl1 <' tirn <'

multiplexed detector. The bop frequ ency es tima tor ;-i.ga.in co rnpa r<'s favo ra bl y 

with the corresponding devi ce th a t used raw input in stead o f co111prcss iv<'

rece iver o u t pu t. 
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3.A Derivation of Compressive-Receiver 
Autocorrelation 

The n ormali zed autocorrelat ion of t he compress ive receiver outpu t is ck -

fined to be 

(:J .87) 

under the restrict io ns that 

'L' < l < T C _ _ S (:3. 88) 

and 

/di • ( 1-, r7, l) 
2 ~ IT)]l) t - c, s - , . (3.89) 

Substitute the expressio n for t he outp ut noi se, (3. 7) , inte rcl1 a. 11 gc cx pC'cta.L ions 

and integration , and use t he definiti on of Lit e no rm a.li%cd input co rrc la.t io 11 ; 

R;(r) = E[n;(t)n;(l + r)J/ a-;, to get 

Ra(l, cl) = 

l Tc Tc 

2 / / R; ( r, - r2 - d) 
a-; lo lo 

cos [wo (, - t-r,) - fl (1 - t-r,) '] ,os [w0r2 + firi ) w(r,) dr, ,Lr, . 

ruJo ) 
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To exploit ti t . . . . b . I 
ie s at1onanty of the input noi se, first transform th e a ove iutegra 

with 

tl1 (:J.91) 

C3.92) 

and then red , th · · · 1· · · ft I · I , uce . e cosm e components w1tb multiple a.pp 1cat1 0 11 s o , 1c 1c e n -

tity 

cos(A) cos(B) = 1/2cos(J1 + /J ) + 1/2cos(/\ - JJ ) 

to form 

Ro(t, cl) 1 {Tc 8 { = 16 1-rc R;(u, - cl) I: 
J= l 

l,2Tc- ltt1 I ('U2 + 1lJ) ('tl2 - 7lJ) } cos(O· +wu2 + (3 -u2)w --- w --- d11,2 du 1 
lu1 I 1 1 1 2 2 2 

(3,9~) 

where Oj, wj, and /3j are given by Tab le 3. J. Use rnore tri go 11 0 111ctry and ,-tpp ly 

Lemma 2 to terms 3- 8 to rewrite the autocorrelation as 

l,
21~- l1q I 

cos [(wo - 2/Jl + (ht2)(u1 - d)] cos [(wo + (:lu2)u i] 
ln1I 

(tl2 + tl1) (ll2 - 7l1) cl } [ W - -- W --- 'U2 f. ,1l1 + ( 
2 2 
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Table 3.1: Coe ffi cients of (3.91) 

II j II 
J J 

l wot - 2(3 t 2 
- [!_ d2 + /3du1 2/3 t 0 2 

0· J w · I /3 ] 

2 - w0 t + 2/3t 2 + %d2 
- (3du1 + /Jui 2wo - 2f3 t /3 

3 - (wo - 2/3 t)(u1 - d) + %ui Wo + (3 d - /J 'll J 
(J 
-
2 

4 - w0 t + 2/3 l2 + %d2 
- (wo + /3d)u1 + % ui Wo - 2/3 t - /3u1 

/3 -
2 

5 (wot - 2(3t)(u1 - d) + %u7 Wo - (Jd + /3u 1 
fJ -
2 

(3 (3 (-J 6 - w0 t + 2/3t 2 + - d2 + (wo - (3 d)'ll1 + - uf wo - '2(J l +/3u 1 -2 2 2 
7 w0 d + 2/3 t( lt 1 - d) /Jd 0 

8 (w0 - 2/3t)d + (-2wo + 2(3 t)u 1 (3 d - 2(311,1 0 

with e rror term 

(3.9G) 

where P~ is the positive vari a tion of w(t) de fin ed by Definition J of Appe ndi x 

3.B. Simplify the e rror bound by minimi z ing cacli tc rn1 , Wj + 2/ij lu, I, witl1 

res pect to u 1 , d, and t , wh ile noting th e res tri ct io ns (:LS8) and (1.89) . T II<' 

result is 

(:UJ7) 

where 

l l 2 2 
B = -/Jr + " /3T + " /3'!, + (J'I , . ( 3. 98) 2 T c 2w0 - L. s wo - L. s wo - c 
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The relation /R(t)/ ~ l to furth er s implifies the bound as 

3.B Bounds on Integrals of Linearly 
Frequency-Modulated Sinusoids 

The firs t bound, Lemma 1, is a tool used only to prove t he second bound , 

Lemm a 2, which is used for der ivations concerning tl1 e output of tl1 c co rn 

press ive receive r: namely, t he derivation of tli c no ise a utoco rrr latio ,1 a nd tl1c 

derivation of a simplified exp ress ion for U1 c output signa l co111ponc 11 t. 

Lemma 1 Unde r th e restrictions that b > a , w > 0, (-J ?: 0, and w + 2(Ja > 0 , 

lib cos(O +wt+ (J t 2
) dt/ ~ 2 

(J . 
a w + 2 a 

(:UOO ) 

Proof 

Define t he function 

Y(O, w, /3 ) = fo
1

1r sin(O +wt+ fJ t2
) dt (T I 01) 

where 

{

- 1 +/1+ 4f3(1r - iJ) 
2(J (J > 0 

7r - 0 
w fJ = 0 

(:l. I 02) 

0 Omod1r. (:l.l o:i) 
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This is simply the integral of sin(O + wl + /3t2
) fro m l 0 to its fi rst zero 

crossing. 

Pre limin arily, three facts need to be proven: fir st , th a t Y(O , w, /3) decreases 

with respect to /3 ; second , that it decreases with res pect tow; a nd U1ird , t ha,t 

with /3 = 0 it decreases with resp ect to iJ. 

B eginning with the first fact we will show th a t Y(O, w, (J ) decreases witl1 

respect to /3 by proving its partial de riva tive to be negative. Ernploy t he cha in 

rule to ge t 

5Y(O, w, /3 ) l 1
" 2 - 2 ------'---------'- = l cos(O + wl + /J l ) dl. 

5/3 . 0 
(:J. I 0/4) 

Le t x = t/l 1r a11d observe that /J i; = 1r - iJ - wl 1r; tl1 e 11 

5Y(O,w, /J ) . 3 f1 .2 - - . 2 . 
d/3 = l1r Jo x cos[O + wl ,r .'C + (1r - 0 - wl ,.. ):i. J d.T. (J.1 o.s) 

To tightly bound th e above integ ral , find its suprc rnu111 by observing tl1 a t fro ,11 

wl 1r > 0 follows O + wl 1r .'C + (1r - O - wl ,r ):r 2 > 1r.,: 2 0 11 .r E [O , I], fro,11 wl1i cli 

l la X2 
COS [o + Wi 1r :C + (1r - 0 - Wl 1r )x2] d.1: < fol ;i;

2 cos (1r.,:°2 ) d:i: (:UOG) 

upon noting that the cosme argument is always within th e rcg,0 11 [O , 1r], a 

region where th e cosin e decreases . S ubstitution u = .r 2 y ie lds 

(:LI 07) 

l 

< 2- ~ la cos( 1ru ) du 0 (:l . 108) 
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after observing that u ½cos(1ru) ::S r½ cos(1ru) on u E [0 , 1]. T he fun ction 

Y(O,w,(3) is decreasing with respect to (3 2 0, sin ce (3.105), (3 .106), and 

(3.108) imply that the partial derivati ve of Y(O, w , (3 ) wi t b respect to (3 is 

negative . 

The second preliminary fact, that Y(O ,w,/3 ) decreases with respect tow, 

will be proven similarly by applying the chain rule to compute 

8Y(0 w (3) lot" - . 2 '' = t cos(O+wl+ f3 t ) dl. 
8w o 

(3. 109) 

A . gam let x = t/t observe that (J l2 = 1r - 0 - wt 1r , and apply Lhe sam e 
'If ' 'If 

rea · somng leading to (3.106); then 

8Y(0 w (J ) la1 
· ' ' < t; x cos( 1rx

2
) dx = 0. 

ow 0 

(3. 110) 

The partial derivative oY(0,w,(J)/8w < O implies the promi sed result . 

The third preliminary fact , that Y(w, 0, (J ) dec reases with res pect to 0, 

follows because 0 = 1r - wt1r implies 

t" - cos () + l 
Y(O, w, O) = Jo sin(O + wt) dl = w · 

(3. 1 Ll ) 

The fact that iJ E [O , 1r) , a region on whi ch the cosine decreases, clearl y dc rnon-

strates that Y( 0, w, (J) also decreases . 

Now with the preliminary facts established , consider J; cos(O +wl + (J l
2

)dl 

and le t {
77

.}~ 1 · ·d . th zer·os of the integrand on (a, b) . In other wo rds, 
i i=I )e, 1n or er , e 

115 



__ .,,,_ --- - _, _.,,, ___ ------ -

a < q,_, < q; < b and, whenever t E ( a, b) , cos( 0 + wt + flt') = 0, if and only 

if t = q; for some i (if there are no zeros then scl qr = b)- llccomposc t.hr 

integral into subintegrals between t,he zeros and get 

ll cos(0 +wt+ flt') dtl = l~(-1)'«1 
where 

e· 
' 

= 1(0-i,w+Z(Ja,(J ) fori = O 

= 1' (0, w + 2(J17;' /3) 
for O < i < n 

for i = n. 

(3.112) 

(3.J11) 

~ 1 (0, W + 2/31]n, (J) 

Since the e;s ace an altcrnat.ing seqnencc of e lements whose magnitude, after 

the first e lernen t decreases ' ' 

ll cos(O +wt+ flt') dtl c'. rnax(r.0
, e r) 

p.1 1,1) 

Use the fad that Y(O,w, (3) decreases with respect t,o f3 t,o rnax imizc <'o, C t 

by pulling fl = O. Next, maximize with crspccl to lir e other ,rgurncnl.s to 

show ·) 

rnax( e
0

, e
1

) ~ Y(O ,w + 2(3a,O) = ~. w + 2/Ja 

(J. 1 I .'i) 

The conclusion of the lernrna now follows fro1n (3 .11 -1) and (3.LI~). 

Definition 1 Given the partition P = [ a = lo < tr -- -t,,_ r, t,, = b], I he po.,i

tive variation of x(t) on [a , b] is 

n 
l \ = sup ~[x(l;) - x(l;_ 1)j+ + x(at + .r(bt 

(:LI I Ci) 

p i=l 
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as t e value r, if r > 0, and th e value zero, otherwise. where r+ h h 

Ill 10n 2 Given the partition P = [ a = t0 < t 1 · • · tn- l , ln = b], th e nega-Defi ·t· . . 

tive va . t. f ( . ria zon o x t) on [a, b] i.s 

n 
Nx = inf I:[x(ti) - x(ti-1)r + x(at + x( b) -

P i=l 

(3.117) 

where r- has th e value r , if r < O, and the value zero, olherwise. 

A function is said to be of bounded variation if both its positive and neg

ative variations are finite . 

Lemma 2 Under th e restrictions that b > a, w > 0, w + 2(3a > 0, a.nd tha.l 

x(t) and y(t) are piecewise continuous and of bounded variation on [a ,b], 

l
b 

2 
. 2PxP.v 

a cos(O +wt+ (Jt )x(t)y(t) cit ~ w + 2~a 
(3.118) 

where Px and Py are the positive variations of x(t) and y(t) . 

Since the fun ction x(t), is of bounded variation, it is integrab le imp ly ing 

that f · b' · . f · · ·· (t) - ""n ·(t· )I ' 
01 

ar 1trary E > O, there ex ists a step unct1011 Xs - L..-i= ' .'r , - 1 [t, _ , ,t;] 

with corresponding partition [a= to < ti · · · ln- 1, t,,_ = b], such 
th

a.t 

lb lx(t) - Xs(t) I dt < <:. 
(3.119) 

The step funct ion represented above is t,l1e sum of nonoverl appi11g steps. We 

Want to reconstruct it as the sum of overlapping steps with tl1 e property Lha.t 
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the accurnulat d b . . . - l cl h .. 
e a solute amplitudes of the steps are rrnrurna. We O t rs 111 

an iterated f l 
as lion by ordering the step a mplitudes Po = .1;(tio) ~ · · · PJ- I = 

x(ti ) 
J-1 ' 

PJ === 0, PJ+i :::: x(t ) ... < p = :r (t ) wit lr tir e zero amplitude 11+1 - n / tn 

included d I.; / 
a n defining the incremen ts lJ = [Pj-1, PJl · Starting with Ur e ·t , 

st
ep, a n in c re t l · . k ( )] cl " I l" · men J 1s cons idered "open" if lj E [O , Li~u :r l; a n ' osc< 

otherwise WJ . . . t I , / lcfi 11 c · lenever a n rnc rement /J t ransd,1011s fro m open ° c osec, < , 

a step of amplitude rk, j :::: .C(lJ) and of durat io 11 dk,.; ra11g i11 g from t1. to tire 

time wh e n th , · ti I 
· c in cre ment was la.st opened . Proceeding i11 t lri s 1n,u 11 re r, , res ,cp 

fun ction now Jras the form 

n n 

Xs( t) = LL rk,j r[lk,lk-dk ,11 

)=Dk=O 

upon se tting r ·k,j :::: 0 for previously und efin ed values. 

(3 . 120) 

At each stage in the iterat io n, not ice tlra.t tir e sum of t ir e le 11gt lr s of incr<'

m ents e ither op e ned or closed is eq ual to the variation of tl1 e s tep fu 11 ct io n 

at that po.int , implying that "£}"=a 1.k,J = .?;(tJ) _ .?;(t _;_, ). Not ice a lso tlra.t a n 

increment; opened by an in crease/decrease in t he s tep fun ct io 11 u-w be closed 

on ly by a future oppos ite dec rease/ in c rease, rn eani11 g every step is uniqiI<'ly 

associated with a, point of in crease. These facts 111 <',u r t lr a.t 

n n n 

;:;:rk,j 
)=Dk=O 

.Z:f.1:(t;) - x(L;_1)]+ + [.r(tu)J+ 
i=l 

(3. 121) 

< PX (3. 122) 

where th e last relatio n follows from th e definition of positive variation . P rop-
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e rly d efine c . d . d . 
I an r1 m terms of rk · tk a 11d k 1· to wntc 

1J' ' I 

m 

X 3 (l) = L Ctf(Ti _ 1,Ti] 
(:3.l23) 

1= 1 

with "rn. . 
L..,1==1 Ct S: Px and J: lx(t) - x

3
(t) ldt < t. A s imi la r step fun ct ion ex ists 

for Y(t) , namely, 

n 

Ys(l) = I)1l[1L1- 1,11.il ( 1. 12'1) 

l= l 

with " n b b 
L..,1 == 1 I S: Py and fa ly(t) - Ys(l) ldt < C. 

With these two s tep funct ion s in han d , compute 

1b sin(O+wt+,Bt 2 )x(t)y(t) ell = 1b sin(O+wt+ !Ji2 )xs( l)y ., (t) dt+ c(l) CL1 25) 

where le(t)I S: c(Mlxl + J\!{IYI) + t2, M1.1:I = supt l:i:( i.)I < CXJ, a.11<l MIYI 

s upt ly(t) I < CXl . Putting (3.123) and (3.124) i11to (:L!2.5) y ie ld s 

rn. n b 

~ ~ bk c1 1 s in(O +wt+ /Jl2
) l(Ti _1,Ti]n[ak _ 1,11k] dl . (:L1 26) 

Apply ing Lemma 1 and maximizing t. hc bound by rep lacin g t he starting Lirnc 

for each s te p with t he worst case a form s 

1b 2 /J JJ 
cos(O + wl + fi l2 )x( l)y(t) dl :S: ·\fi - c( l ) 

a w+~ a 

a nd the le mma is proved. 
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3.C Moments between Squares of 
Correlated Gaussian Random Variables 
with Random Phase Component 

We ha ve in t hi s sect ion two random va ri ab les 

p O' COS O + (J S i n 0 + II (1. 128) 

Q 1 cos O + Ii s i 11 0 + 11 

wh er e t h e r ando m variable O is un ifor m ly J is t ri b11 tecl on t he 0 11 [O , 21r] a 11 d th e 

Gaussia n r a ndom va ri a b les 11 a nd T/ a rc ,1cro-mca.n wit h covar ia nces a-~, a-~, 

a n d a-~ri · We wan t to compute t he mea n a 11 d va rian ce o f JJ 2 , t he 111 <'il. 11 a 11 cl 

va ri ance of .P2, and t h e covar ian ce betwcc 11 P 2 a 11 d Q 2 . 

Our calcu la tion s w ill be ass is t ed by a fo rn1ul a of t he gc 11 cra l fo urt h 11 10111<'11!, 

b e tween t h e Gaussian random varia bles :i: 0 , :i; 1 , :i: 2 , a 11 d :r 3 wi t.Ii 11 1c,u1 s 111 ; 

£ (.x;) a n d covaria nces a-;j = £ [(.x; - mi) (.x1 - m 1)]. T he for 111ul a is 

(:u :w ) 
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We will now compute the mean of P 2 and Q 2 . Equation (3 .128) impli<'s 

£[P
2
/0) = a

2 cos 2 0 + /32 sin 2 0 + 2a/3 cos O sin O + O"; (3 . 1.31) 

which , upon averaging over 0, becomes 

0'2 /32 
£ [P2) = _ + _ + (72_ 

2 2 V 

(.3. I :32) 

Sim ila rly, 

(.3.13:J) 

Onward to the covariances . Equat ions (.3.128) , (:U29) , ;wd (3. no) iniply 

lhat 

+ 40";'7( a cos O + /3 sin 0)(-y cos O + 6 sin 0) + O",;( a cos O + ff s in 0)
2 

+ (acos0+/3s in0)2(,cos0+6sin0) 2 (:LI :J1) 

which, upon averaging over 0, becomes 

(.'$. /.l'3 ) 

W ith (3 .132), (3 . 133), and (3.135) , we co11 clude t,/1 ;-ii 

cov[P2, Q2] = 20";\ + 20";1/(a, + /36) + j(n-2,2 + p2i52 - ,i/32 - cr2J2) + jn/ f,b 

(.'J. I :JG) 
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which specializes to 

(3. 137) 

(3.138) 

3.D Derivation of Upper and Lower 
Bounding Distributions for the Sum of 
Squares of Correlated Gaussian 
Random Variables with Random P hase 

Component 

Theorem 1 D efin e th e n-dimensional vector pT ~ [P1 , · · · , Pn] to have co111.-

P0 n ents 

p; £ a; cos O + b; sin O + w;, ] ::; i ::; n 
(3.139) 

wh ere each a; and b; is a constant
1 

0 is a uniformly dis tributed random va1"iablr 

on [O , 27rL and { w;};~
1 

is a sequence of zero-mean Ga ussian random va1·iablcs 

with · · · I · I P d Ji d an invertible covariance matrix E. T 1,en, wzl 1, e inc as, 

wh ere >-max
1 

).min are respectively the ma.:rimum and m,inim:urn eigen valu es of E 

and wh ere e m a x, Cm.i n are respectively the maximum and minimurn eigenvalu es 

of the matrix 

cu1 1) 
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with 

(3. 142) 

and, finally , where Qm is th e generalized Marcum Q-funchon defin ed as 

n.14 :1) 

Proof 

The proof con sis ts of three parts. [11 th e fir st pa.rt , Lite condi t ional proba bil 

ity Pr[PTp _::; k/0] is exp ressed as a n integral of a 111ultidi111c 11 s io 11 a l Gauss ia.11 

d en sity over a spheroid centered at t he ori g in. Upon transforn1aJ,ion with 

a decorrelat ing matrix, Lb e region of integration becomes c llipsoicl a. l a nd t he 

Gauss ian den sity becomes independent with each of its marginal densities hav

ing uni ty vari ance . Then through e igenvalue analysis , the e llipso id a l region o f 

integ ra tion is insc ribed and circum scrib ed with sph ero id s y ie lding co rrcs po 11 d-

ing boun ds on the integral T he second pa.rt o f the proof shows t hat. t h<' 

integral of an independent Gaussia n distr ibu tion over ,w a.rbit.ra.ry sphe roid 

d ep ends on ly on the m agni t ud e of th e mean vector a.11d dec reases wit.Ii res pect. 

to it. T hi s fact will enable furth e r bou nd in g in t. hc t hird pa. rt. a fte r co111p11t.in g 

t he minimum a nd rna.x imum of Lit e rn ea.11 a.s a fun ction of 0. J\ 11 aJtcrc ffcct will 

be the re mova l of O dependence in t he bound s a ll ow ing th e ir d irect ap pli ca.t io 11 

to t h e un conditi ona l probability Pr[PTP _:s: k]. Next t. !tc bo unds, which a. re 

st ill expressed as integral s, are evalu ated in c losed fo rm via. Lite gc 11 cra. li zcd 
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Marc um Q -function. 

Part I 

By apply ing th e expression for a mu/1,i va,riate Ga,ussicw density , l /, c cond i

tional probabi Ii ty 

where 

C - [ cos OJ 
- sin O · 

(:J .115) 

TJ 1 T l - 1 1e matrix E - 2 with th e properly E -2 E - 2 = ,E is g ua,ra11tccd lo rx is l , 

smce Eis an invertible covarian ce ma trix. Furlh errnorc, for t/, c s,u,,c rca,son, 

there · t T · ex 1s s an orthogonal matrix T, such t,J1 ;-i/; ,E = T AT, wl, c rc A 1s a. 

d iagonal matrix of eigenvalues of E. We ca,n no w de fin e t,/, e trans(orm at,io 11 

X - r'r' - 1 p r · 
- L., 2 , . rom whi ch follows 

(.'J.1 1(; ) 

where 

(3 ./ 1/7) 

Now · r, · · , srn ce L., 1s an invertib le covarin,nce n,a.lri x , ca.cl, enlry o( A ( i.r . e1gc 11 -

values of E) is positive . Hen ce 

(.l/!18) 
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from whi ch 

Pr [PT p s; k/0] :2:: J__ fr r e-HX- Mo([X - Mo] dX 
21r [X X ~k/ >.max ] 

(3 .149) 

and 

Part II 

We aim to show that for a given r 
' ' 

R ~ J__ fr e - HX - M([X -MJ cLX 
21r [X T X ~r] . 

(3 .151) 

depend l . s on Y on the rnagrntude of M and decreases as /M/ gets la rger. 

There exi sts an orthogonal matrix U, such that UM = [/M/ , 0, ···, Of. 

The m at· · U · · h I I · t t i t . I cl u x 1s simply a change of ort onorm a )a.sis o one 1a in c u cs 

M//M/ as its first m ember. Now Y = UX transforni s (3.1 51) to 

R = 2~ fryry s•) e- ½(,,-1M1)'-JL::~, ,? dY . (3 .1 52) 

As Promised for a given r , (3.152) depends on ly on the magnitude of M , hence 

the notation R( /M/) . 

We now show that R( /M/) decreases wit h respect to the lll ag11itude of 

M by showing that , for a ny positive in crement 6/M/ , tl1 c co rres po 11di11g 

difference 6R(/M/) ~ R( /M/ + D. /M/ ) _ R( /M/ ) is negative. 
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M a ke the respective subst itu tions z1 = Y1 - jMj , Z i = '!J i, for 2 ~ i ~ n, to 

R( jMj ) and z
1 

= y
1 

- jMj -6 jMj , z ; = Yi, for 2 ~ i ~ n, to R( IMI + 6. fMj) . 

Then 

(3. 151) 

wh ere the sets G and H are 

(3. 15tl) 

( 1. J !)5) 

Cancel out the common points of G a nd If t hen 

(:J. l !)G) 

Le t Vi = -z1 - 2 jMj - 6. jMj , v; = Zi , for 2 ~ i ~ n , i11 th e second integ ra l 

a bove; then JI ,....., G is mapped to C ,....., JI a.ncl the in tegrals ca.11 be co 11 1hi1wd 

to y ie ld 

CL 157) 

The coordin ate z 1 is in C,....., H , if a.nd o nl y if 

n 

(z1 + fMf) 2 + 26.jM j(zi + jMj) + (6. jMf )
2 + L ::.; ~ r (:J. 158) 

.; =,. 

a nd 

n 

(z1 + jMj )2 + I: z; > r . (:J. 159) 
i=2 
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Upon s ubtracting both relat ions, z 1 must sat is fy 

6IMI 
Z 1 <-IMI--· 2 

(3 .1 60) 

U sing this relationship in (3.157) implies that 6R(IMI) < 0, meaning that 

R(IMI) decreases with inc reasing magnitude of M . 

Part III 

Further bound (3.14.9) and (3.150) by respect ively maxi 111i 1/, in g a nd 11 11n1 -

mizing magnitude of the mean over th e ra.nd oin ph a.se 0. From (3. 1'17), the 

m agnitude of the mean is 

(1 . 161) 

following from the fad th a t T , being o rth ogo na l, sat is fies TTT = I . The 

matrix A T17- 1 A, be ing symmetric, ensures that it can be dia.go11ali 7,ed 111 a ki11 g 

1Mol2 = [cos 0, s in O]UT [ Cm ax O ] U [ c~s {) ] 0 e 11,i 11 s1110 

whe re U is a.11 orthogonal ma.trix a.nd c11 ,ax a.nd c,11 i11 a. re tl1 c c igc 11va. lucs o f 

ATE- 1A. Since U is orthogonal, it rota tes the pl a. 11 c by sornc a.11 g lc <f>. This 

m eans that 

[ 
cos( 0 - </>) ] 
sin (O-</> ) 

C3. !G3) 

a nd hen ce that 
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The eigenvalues e a nd e . a rc nonnegati ve si11 cc ATE- ' A has a. sq uare 
111a x n11n 

root , na m ely, 17 -½ A . T his fact , a.long with (3 .161), implies 

(3. 165) 

Use (3.165) a nd (3.152) to dedu ce from (3 .150) and (3 .1 '19) the bo unds 

(:LI GG) 

< - e -2 0,~2 Y, -2 y 1 - y C1n1n dY . 1 fr l -.;:--'" 2 l ( / -:- ) 2 

27r [YTY :S k) ,\ m;.,] 

(3. 1 G7) 

The .integrals in the a bove bound s a.re simplifi ed by showing th a t they 

are the di stribution fun ctions , e va luated res pect ive ly at /...:/ A.mx a.11d k/ ,\min of 

the sum of n non-central x2 ra ndom va ri a bles with no 11 cc11Lra. lity Cmax , <' ,11i11 · 

An expli c it express ion for thi s di stribution is givc 11 in ['15] a nd leads Lo t he 

conclusion of th e th eore m: 
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Chapter 4 

The Detection of Frequency-Hopped 
W-aveforms via the Amplitude 

Distribution Function 

4.1 Background and Motivation 

Th e unfri endly d e tection and intercept.ion of sec ure cornniuni ca.t.ion s is o 

topic of much curre nt research. Secu re cornrnuni ca.L ions usuall y in volve so nic 

vari e ty of spread -s pectrum modulation , whose purpose is to aci d a. rnbi g uit.y 

or "randomness" to the communi cation waveform i-1.S a. rnca.s ure aga.i11st. u11 -

intended d e tection or interception . The usual procedure for ra.11cl o r11i z ir1 g t.hc 

waveform is pseudo-random va.r ia. t.ion of tra.J1srn iss io 11 t.inl<'s (t.irnc hop ping), 

phases ( direc t sequ e nce), or freque ncies (frequ ency hopping) . T he drvclop

m e nt of a m e thod to detect frequ e ncy- hopped wavcforn is is t. he suhj ect o f t hi s 

ch a pter. 
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The use of the Amplitude Distribution Function (ADF') for detection is 

a n ew idea with potenti a lly m a ny diverse a.pp li cations. ll owcvcr, a ltl1 ougli 

th is work foc uses sole ly o n the detection of frequency-hopped wave forms, t lr r 

general ADF technique can be applied to related a reas such as radar or sona r 

detect ion. The centra l idea of the technique is that the ADF' of a n observed 

s ignal in additive noi se is the convo lution between tire individual A DFs of 

s igna l a nd noi se. vVe have s hown through the use o f deconvolutio11 teclrniques 

that the s ig nal component can be sepa.ratcd a nd thus dctcctrd evcJJ for s rll a ll 

signal levels. 

There a rc previous works that, in essence, use th e J\DF' (sec [2GJ, [15], [:3 11], 

and [361) but none has g ive n a. precise definition a nd rn a.t l1 ern at ica. l drvclop

ment like those o ffered here. Moreover, to our kn owledge tlrcrc is no refe re nce 

that directly uses the ADF idea for detection. 

The J\DF i11cli catcs the time fract ion tl1at a wa.vcforr11 is below a g iven a 111 -

plitude, much like a probability di s tribution fun ct io n meas ures tlw proha.bility 

that a random var iab le is be low a, g ive 11 valur. Prev io us rcsea.rc: li crs !, ;-we used 

th is concept but failed to give a precise definition of tl1 c ;\ l)F a.s it a pplies 

to both de terministic and s to chastic s ig nal s. Our clcfi11ition is g iven, for a ny 

s ign a l X(t), as 

l 
Fx(a) = )~~ TE{,C[t: X( t ) ~ a, 0 ~ t < Tl} ( ,f. I ) 
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r--'• . 

X(t) 

Figure 4.1: De finiti on of /\OF 

wher e £ is set fun ction g iving length. F ig ure 4. 1 illu st rates th at t he /\ DF is 

simply Lhe Lime fraction L] 1a,t, X(l) is be low a g ive n thres hold a. Wit h thi s 

d efiniti on, we h a ve proved that , und e r very genera. I co nditi ons, t he J\J)F o f 

signal plu s noi se is tli e convolution o f the s ignal /\OF a.nd t he no ise /\ DF 

individua lly. This result would not l1 ave been poss ible without a. definiti o n 

that app li ed to both de terminis ti c a.nd stocl1as ti c s ig na ls. 

Th e ad f or amp litude dens ity functi o n is tlw den s ity, if it exists, i111plicd 

by the A OF. There is, of course, a corresponding co11 vo lutio na l relat io 11 ship 

be tween the ad [ of signal a nd no ise and the indi vidual a.elf 's o f s ig na l a.11(1 

noise . Some examples exemplify thi s convo lutio na l re l,1 ti o 11 ship a.nd hi11t at 

the potential o f th e AOF in s ig n a.I detect io n. Fig ure (11.2 ) s l1 ows the /\ I) F 
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Figure 4.2: The adf of Madu lated Sine Wave and No ise 
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of a modulated srne wave (the signal), the ADF of 1J oisc, a nd the ADF of 

signal p lus noise. The mam point he re is that the ADF' of a sine wave is 

invariant , under most phase and freq uency modu lations, but these a rc cxa.ct ly 

the modu lat ions used to thwart a potent ia l inte rceptor. Therefore, tl 1c 111 ost 

typical spreading mod ul a tions will not dcgra.de t he performance of an ADF 

de tector. A lso of interest is t he complex ADF, t hat is, the two-d i111cnsiom1.I 

distribution in amp li tude of the s ignal's in -phase (I) and <Jua<lraturc phase (Q) 

components (F ig ure 4 .3). 

Bot h of the la.st two examples illust rate tli e convo lu t ionaJ sp read ing of tl 1c 

ADF due to add iti ve noise. Like a photograph ta.ken whil e Lit e carn cr;-1, is out 

of foc us, noi se smears th e signal pa rt o f the J\DF . Dy a tccltni quc bo rrowed 

from image processing , t he p ictu re (i.e ., ADP) can be rdocusccl to reveal t. l1 c 

und er ly ing p ict ure detail ( i.e., s igna l). Dcconvo lu tio11, as t hi s process is ca. ll ccl , 

(see [2]) involves convolving the p ict ure witl1 a kern el funct.i o 11 k( :r) that has 

been spec ia ll y constructed from noi se deta. i Is. Fig ure 4 ,1J shows th e rcs u It of 

t he process, an out-of-focus picture be fore a. 11 d a. ft.er deconvo lu t ion. 

Our orig in a l idea a llows the d irect a.pp li ca.t io11 o f t he cleco 11 volu t ion tech 

ni q ues to s ig na l de tect ion . Suppose a noisy s ig 11 a.l X(l), o bserved ove r t.l 1c 

interval T , is tran sformed into t he fun ct io n 1\(.1;) by 

' 1 T 
Fx(x) = T la /,;[.1: - X(l)]dt. (4.:2) 
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F ig ure 1.4c Deconvolution App lied to Out-of-Focus Picture 
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where k(.x) is the deconvolution kernel. We have shown that, for large '/ ', 

Fx(x) converges directly to the deconvolved ADI•. For this reason, we call 

this the "Deconvolution Statistic". Furthermore, we have shown that samples 

of the Deconvolution Statistic a.re approximately jointly G,wss ian, Lo which 

well -known op Limal de tection techniques apply. 

In s ummary, our approach consisted of precisely defining the J\ DF a.nd 

proving the existence of an intuitive relation ship between sig na l a.nd noise , 

that of con volut,ion. Borrowing techniques fronr im ;-1.gc processing, we sli ow<'d 

that, th e eff ccts of lh c 11oise could be sepa rated from the signa l by a. process 

called deconvolution. By transforming t,/ic observed wa.vcform , we gener,1tcd 

a random process that converges direct ly Lo the deconvolved J\ OF a.nd 11 pon 

wlii ch standard detection techniques apply. 

4.2 Mathematical Tools for the ADF 

The J\DF, as defin ed here, is an original concept and thus needs a. firi11 

mathema.Lical foundation. This section precisely dcfin cs the J\ DF in a. way 

Lha.t, applies eq ually well to de terminis ti c a.nd s tocl1a.stic sig nals. Tl1is ha.s ic 

definition is extended to include the concepts of a. joint J\J)F a nd the not ion of 

amplitude independen ce, a notion a.na.logous to indcpcndc11 cc in prob;-1bi li ty. 

By way of a sequence of lemmas and theorems, two significa.JJL rcs11lts a.r<' 



es tabli shed. T he firs t is th e already promi sed res ult th a t th e ADF of sig na l 

plus n oise is th e convolution of the signal ADF with the no ise J\DF. Thi .s is 

prove d uude r th e very gene ra] cons traint t ha t th e seco nd de riva ti ve o f th e 11 o isf' 

a utocorrela tion exis t s a nd is finite a t Lime diffe rence zero . The re ma ining res ul t 

of signifi can ce is a linkage be tween th e J\ OF a nd th e in s t a nta neo us pro babili ty 

distributio ns o f the s ig nal plus noi se. We begin with a prec ise de fini t io n o f tlw 

ADF. 

Definition 3 Th e Amplitude DistnJmt ion Puncti:on (J1DF), writt en Fx(a) f or 

a s toch astic prncess X ( t) , is 

F'x(a) = i~~ ;,£ {.C [t : X (t) ~ a , 0 ~ t < TJ} 

wh ere .C is a set Junction giving length. Jldditi:onally, th e lim it must r.risl frn 

all a. 

If the s ig na l is de termini s tic, th en th e de finiti o n o f th e J\DF redu ces to 

1 
l "x (a) = )~~ T {.C[t: X(t) ~ a, 0 ~ t < TJ} . 

Th e ADF is not a di s tribution fun c ti o n in tli c .s tri c t seIJ sc bcca11 se its <·x 

trem c values a rc no t necessarily o ne o r zero n.nd it 111 ay no t be rig l1t -co11ti11uo 11 s. 

Fo r example, Lli c functi o n 

S (t) = { _: for O < t mod 
for othe r t 
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has ADF identically equal to 1/2. Conside r a lso Llie fun ct ion 

{ 
1 f. or O < t mod 1 :S l /2 

S(t) -- -1 for other t. 
( '1 .G) 

Its ADF is 

{ 

0 for oo < a < - 1 

Fs(a) = 1./2 for - ] :Sa :S l 
] for l < a 

( '1 . 7) 

whi ch is ri g ht-continuous at - 1 and left-continuous at J. The ADF, not ,wees-

sarily be ing a true di s tribution, creates proble ms in situations whi ch require a.11 

ADP-induced measure, for instance, the Lebesgue-St ie ltj es integ ral 111 t.l1 csc 

cases, we use the ri ght-continuo us extension o f th e ADF, de fin ed as 

F"(a) = lim F(x). 
1·-+a+ 

( '1.8) 

Analogous Lo the j oint probability fun ct ion of ra ndo m vari a bles, there ex ists 

a join t ADF of two differe nt stochast ic processes, de fin ed as fo ll ows: 

Definition 4 Th e jo int A ])]1 , wrill en F'x ,Y ( a , b) for sloch.aslic 7n ·occssr·s X ( l ) 

and Y(t) , is 

F'x ,v(a , b) = )~~ ~E {.C [t: X(t) :Sa and Y(t) :S b, 0 :S l < 7']}. ('1.9) 

This definiti on will be used to de fine t he fo ll owing co ncept o f a.111plitt1dc ind e-

pcndence, analogo us to tha t of in dependence between rancl o rn va.ri a.bles. 

Definition 5 Two stochastic processes X( l) and Y(t) an' amplitude ind epen

dent , if their joint ADF is the product of th e ADF Joi · each process . In olhr'J' 
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words 
' ( 4 .10) 

We now will show a relationship between the ADF of stationary Gaussian 

noise and its instantaneous probability distribution, thus enabling the estab-

0 mor e directly applicable results. lishment f . . . 

Lemma 3 Let Y(t) be a stationary, zero-mean, Gaussian process with anto-

correlation R(t) , such that -R"(O) < oo; then, fm' any measurable set A , 

£ { £ [ t : Y ( t) ~ a, t E A]} == <I> ( :J £ A 
(4.11) 

is the distribution function of a standard Gausswn random variable where <I> · . . . . 

and ao = {"iif!f;. 

Th e proof for Lemma 3 is included in Appendix 4 .A. 

In words, the above lemma means that. the average t.irnc that the noise 

Process · b 1 · J · ·1 · t f t · is e ow the threshold a on the set. A ,s equa to t 1e pcrccn , o ,in,c 

at th · . · · · · t· 1· , I , t I f t I t e nmse process JS below a at any single point tunes , ,c eng , 1 o , 1c sc 
th 

A. Th· · · . 'J . I 
15 

result implies that the ADF of stat ionary Gaussian noise JS 1 ent,ca 

to it . s In Stantaneous distribution. 

With the help of the previous results, we now can prove an1plitndc inde

pendence between a deterministic signal and stationary Gaussia,11 noise, whose 
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autocorrelation has finite second derivative at time difference zero. This result 

will be necessary to prove the convolutional relationship between signal and 

add. · itive noise. 

T heorem 2 Let S ( t) be a deterministic signal and let N ( t) be a st0,lionary, 

zero-mean Gaussian process with autocorrelation R(t) such that - R"(O) < oo; 

then S(t) and N(t) are amplitude independent. Stat ed symbolically) 

Fs,N(a,b) == Fs(a)FN(b). 
( 4 .12) 

P roof 

By Lemma 3 
' 

£ {£ [t: S(t) :Sa and N(t) :Sb, 0 :St< Tl} 

£ {c [t. N(t) C: b, t Es;;' n [O,T)]} 
(4.13) 

(4.l4) 

where s-;1 = [t : S(t) :Sa]. Hence the joint ADF of S(l) and N(t) is 

( 4 .15) 

(4.1G) 

nnp 1 · _ . . s ( ) · d N ( t) Ying the amplit ude mdependencc of t an · 
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We now can prove the most important result of this section, that of convolu 

tion b t e ween the ADFs of signal and add itive noise. The idea of deconvolution 

and the deconvolution stat ist ic rest firmly on this result. 

et S t) and N ( t) be arnpli.tude independent and let either F N 01· Theorem 3 L ( . . . 

Ps be t' con inuous; then the ADF of Y(t) = S(t) + N(t) is 

( 1.17) 
Fy(a) 

= 1: Fs(a - n) dFlv(n) 
(4.18) 

where F* d F* F s an 'N are the right-continuous extensions of Fs and 'N · 

The pro ff' . . . . 0 or T heorem 3 1s given rn Appendix 4.B. 

The next theorem is a general statement a.bout the ADF of signal with 

add't' 1 ive noise and its instantaneous distribution. Alternatively, thi s 1,beorem 

could have served as the definition of the ADF' but then there wo uld be 

tech · · I n1cal difficulties in determining the ADFs of pure ly deterministi c s1gna s. 

Theorem 4 Let Y(t) = S(t) + N(t) and let Fs be right-contin·,wus; th. en, if 

either F N or Fs is continuous, the ADF oJY(t) is 

Fl, (a) = lim ~£ { [1' /~ [a - S(t)J} dl. 
T--+ oo 1 Jo 

(1 .19) 

The proof ·f ' rl'h . . 1 d d . A . . cl 1' X 4 C 01 eorem 4 1s rnc u e rn ppen · · 
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4.3 Deconvolution Statistic 

As s hown in t he p revious sect io n , the AD F o f s ign a.I plu s noise is t he A DF 

of th e sig na l con volved with t he A DF of t he no ise. W hat wa.s exact ly show n 

is t hat 

fo r X (t) = S(t) + N( t ) where N( t ) is a sta ti onary Gauss ia n process 

wit h a.utocorrela.t ion R(t ) sat isfy ing - R"(O) < oo a nd where S(l) 

is a. deterministic s ig na l with de fin ed ADF; t hen F:..: = Fs * FN 

where F'x, Fs, a.nd FN a.re t he res pect ive A D Ps o f X( l ), S(l), a.nd 

N( t ). 

T o a pply t hi s res ult in t he constru ction o f a. detec tor, we will a.ss unw fro lll 

h e rein tha t th e a.hove restri ctions a. re met a.ncl t hat t hC' noise, s ig na l, a.nd 

o bse rvat ions h ave de ns it ies de fin ed as .fx ~ d Fx( .1:) /d:i:, .fs ~ r(fs/da, all(I 

f N i dFN/ da. T hese de nsiti es will be called th e a 111 pli t ucl c density fun ct io ns 

(adf ) . We will , fo r reasons expl a ined late r, m a.kc t he rest ri ct ion t hat t he noise 

a utocorrelat io n is ze ro after some duration ( i. e. R(l) = 0, for l g rC'atc r t.l1 a. 11 

som e T1). T hi s is a. suffi cient but p robab ly not necessary co ndi t ion fo r t he 

asy mpto ti c stati s ti cal char acteri zati on o f th e detect ion stati st ic. 

If the adf o f the observed s ig na l cou ld sorn el1 ow be 111 ca.s urccl or cst illl a.ted , 

th e n by deconvolutio n th e signa l component could be sC' pa.ra. ted fro n1 t he 11 o is<' 
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comp 
onent and hence detected. An understanding of decon volution is prereq-

uisite to d . . . . . . un erstandmg of how the deconvolution stati sti c effects thi s separa-

tion. 

In general to deconvolve , take a function that, is the convolution of two 

unctions and convolve it again with a kernel functi on whose net. effect different f . . . . . . 

JS to undo the first convolution. As such, convolution of the kernel [unction 

e ongmal convolving (unction should result in a delta function. The 
with th .. 

iott o a kernel function with thos property is usua y oot possib\c 
construct· · f · · · 11 

Y an so some approxllnat10n must be rn ade. exactl d . . 

To use the idea of deconvolution in a detection scheme, the adf could be 

measured · . · · · } · d ti I d using standard density estunation tec 1niques an · 1en con vo ve 

ernel function to separate signal frorn noise. with a k .. . 

direct a . . . pproach, that of the deconvolution stati sti c 

fx( x ) :::: ~ f k[x - X(t)] dt 
T lo 

x 1s the deconvolution kernel. 

But there 1s a more 

( 11. 20) 

where k( ) . 

The usefulness of this statistic is that , as T gels large, it converges uni -

forml · · I f · · · · 1 1 Y m probability to the desired convolutioo of the kerne uuction wit 1 t 1c 

adf of tt ti b C · L ue observations. In a sense, the statisti c ,naps ,e o sccva ,ons '" o 

another domain , the amplitude domain. The problcm of detect. ion is now one 

on this new dom · d f l ·n 
1
·t 1· 5 approached in a classical manner . 

am an rom 1ere1 , , 
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4.3.1 Deconvolution Kernel 

We want to const ruct a kernel with the property that when it is convolved 

with the noi se adf, a function closely approximating the delta fun ct ion results. 

The approach is to solve the equivalent problem after Fourier transformat ion, 

that is, to find a function that when multipli c'C! by the Fou ri er t,ra.11 s forrn of 

the noi se adf yields a constant. It is shown below th a t t hi s can be done only 

approximately. 

Proceeding by T heorems 3 and 4, the noise has ad f 

(4.21) 

wh e re a6 = R(O). The l•ouri er transfo rm of the noise adf is 

( 4. 22) 

From the convolution a l re lat ionship between noise a nd signa l, the transforn 1 

of the obsc rva.tion adf is Cx(w) = CN(w )Cs(w) . From thi s relat ionship , we 

might be led Lo construct a kerne l wit h cha ra.cLeri sti c fun ct ion I /CN (w ), but 

thi s proves fruitl ess sin ce the inverse Fou ri er tra nsforrn docs not ex ist.. In stead , 

if before Fourier inve rsion, we multiply l/CN(w) wit h window functi on 

2 (dw) cos -
2 ' 

7r 7r 
-- < w < - d > 0 

d - - d ' ( 4.'.2:l) 

we th e n get a fam il y of kern e ls kd(x) in dexed by d with t he property t hat 
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kd * fN( x ) -----t o(x) as d -----t O, hence convolution with kd(:r) can approximate, 

to an a rbitrary accuracy, perfect deconvo lution. 

Appli cation of the above strategy with eq ua tions (4 .22) a nd (4.23) produ ces 

1 f"'" 1 (0) 2 (d) (:E0) kd(.r ) = ; lo e 2 d cos 2 cos d d0. ( 1.24) 

The quantity d, wh ich controls tbc amo unt of deconvolut ion, is ca.lkd tl1 e 

deconvolution index. 

4.3.2 Statistical Characterization 

In order to set up the detect ion problem , we need at leas t a.11 asy n1p tot ic 

s tatisti cal cl1asacteri za.Lion of tl1 c deconvo lution stati st ic. Spccifi o dly, we want 

to show that samples of the deconvolution stati st ic a rr a.syrn ptot ically jointly 

Gau ssian for la rge T , and we want its asymptoti c rn can and vari ance. 

As for t he jo intly Gaussian prope rty, conside r sarnples of t he deconvolu tio n 

s tati s ti c 

J T 
Z i = 7' la k [.1:i - X(t)] dl ( 4. 2!)) 

for some fini tc seque nce { .r;} ;'~ 1 . J n order to prove tlu-d, tl1c z;'s a rc jo intly 

Gau ssia n , it is s uffici e nt to prove tha t L:' Ci Z i is Ga.uss ia.11 for arbit rary con

stants ci . Re write 

n I m 

L Cj Zi = L 12.i + L l 2j- I (4 .2G) 
j = J j = I 
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where 

1 1max(T,kT1 ) n - ~ c;k [x; - X(t)] dl 
T (k - l) T , i== 1 

( tl.27) 

r2~J 
( 1.28) 

( ti .29) 

1n 

It is easily seen that the J,js are ; ndcpenden t and the l, j - , 's arc i ndcpcndcn t 

Hence , for larg·e T each SLtI11 °"I 12. aud °"m I {z .; i , is indi viduall y a.sy inp-' · ' , L-j== I J ' L-1 == ., - . 

totically Gauss ia n. Fucther·mo.-e, even though the snnrs a r·c correlated, the 

overall sum is approx imately Gauss ia n, since each compo nent sum is Ga.us-

sian. He nce, samples of the deconvolution stat isti c arc jointly Gauss ia n. 

As for th e mean ' 

J.l ( X) £ [.f x(.r) ] 
( ti .:30) 

1 { '] ' } TE 11.: [x - X( t)] 
( ,1. :~ I ) 

~ k * .fx (;i:) for large T 
( ti .:3:2 ) 

with the last step following from Theorems 3 a.nd 4. 

As for the variance , 

£{[]x(x) - J.t( x) ][.fx(v ) - /t(y)]} 
(,1.:n) 
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1: 1: k(x _ v)k(y - w)h(v, w, T) dvdw - ,,(x)µ(y) 

where 

1 lT lT 1 -+M ":EM d d (4.35) 

h(v,w,T) -
- -e 2uol>. s l 
T2 0 0 27f0"6~ 

~ = [1 - p2(s - t)] 
('J.3G) 

M [ v - 5( s) l ( 4 .'.J7) 

w-S(l) 

E [ - p(: - l) 
- p(; - l) l ( 4 .38) 

p(s - t) 
R(s - t) (t1.:rn) 

0"6 

We want Lo s how that the varia.11ce goes to zero a.s the integra.Li on ti11w 7' 

goes to infinity from whe nce it follow s that the detect ion stat ist ic conve rges , 

in probability, to its m ean. To this end, a.ssurne T > '/'1 a.nd rew rite 

h(v, w, T) 
(4 .110) 

wh e re the region s with in the square, Q = [s, t : 0 ~ s ~ T, 0 ~ t ~ 'I'] , a r<' 

[s, t : s - t ~ Ti] n Q 



(4.113) 

The ai·ea of D.i · 1 I 2TT d , . CT2 > o the in tcgTand is bou ndcd by 1s ess t 1an 1 an , 101 o , ' 

l/2n-a-J. Furthe rmo re~= 1 in reg ion Dz . Hence, 

2T L T __ , [v-S(s)]2 / T -2;z [w-S(t)J2 f (/4./4/4) 
h( v, w, T) < - ' + . I e 2u5 ds lo e O ( t . 

- T 2n-a-JT 2 lo o 

Now assuming k( x) is integrab le, we have from ( 4 .44) and (11.32) t li at CT
2
(.r, !I) -> 

0 for la rge T, as conjectured. 

T he fact that samples o f the decon vo lutio 11 stati s ti c a rc asy mptot ically 

j ointly Gauss ia n , a nd the express ions of its rncan ,1.nd va.ri ,tn cc wi ll be necessary 

for the de tec tor de velopment, below . 

4.4 ADF-Based Detector 

Using tb c fac t that samples of de tect ion s tatist ic a rc a.sy rnptot ically jointly 

Gauss ia n, a class ical de tec to r can be constrnctcd t hat observes tit <' a. rnplitudc 

domain . We ass ume the or ig in a l observed wa.ve f orm to be of t he form X ( L) = 

V2S'sinwot + n(t) , for O ~ t ~ T , where n(l) is white noise of spect ra.I 

den s ity Na/2, S ' is t he average sig nal energy, a nd w0 /27r is u11kn ow n frcq 11cn cy 

in th e ba nd [J~ - W/2, .fc + W/2]. Tn t hi s se t.L ing, Lir e dctcc tio 11 problc rn 

is one of choos ing be tween f/0 (s ig na l abse nt ) a. nd l/ 1 (s ig 11 a.l present wit.Ir 

SNR, , ' = S '1'/N0 ~ 1 = ST/N0 ). Befo re we a pply o ur de tecto r, we fi lter 

the observations with a. bandpass filter to produ ce Ll1 c w,i.vcfo rrll V(!,) (sc<' 
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X(t) BPF Y(t ) 
-

~ 

{ z;} 
Detect ion L 

f e, W 
l 1T - k[x - Y( t )] dt L/ ----4 I-- --.. 

T o Sta ti st ic 

Figure 4.5: ADF-Dased Detector 

F ig ure 4 .5). T hi s fi lter has uni ty gain wit hin t he bandw idt h W a.nd has center 

freque ncy l e- It fur t her has response such t he noise has a utocor re lat ion R(t) 

wit h R(t) = 0 fo r l g reate r t ha n some T1. 1 We next t ra.nsfo rn1 t he outp ut. 

of t he fi lter in to the am pli tu de domai 11 v ia t he deconvolu t ion stat ist ic. The 

new de tection problem beco mes, a fter sarnp ling, one of dec iding bctw<'e JJ t l1 c 

p resen ce and absence of a signal given {z; = f v( .1:; )} :'=r As shown earli e r, tl1 c 

z;'s are jointly Gauss ian and have mea ns (1.32) , 

µ-y ,(x ;) = 
{ 

p(x;) , signa l absent 

p * r(.1:; ), s igna l p rese nt. 
( 1 .1,'.i) 

whe re 

p(x ) (-1.4 (i) 

r(.1: ) 
1 
- J2S' - ;c2 , ;r: 2 < 2S' 
7r 

( 1.17) 

an d covari a nces a-y ,(x ;, ;c_i ) defin ed by (4.:M) wit h 

R(t ) = N0 W(l - W l ), - 1 < Wt < I 

S( l ) = V2S's i11 wt . 
1

T his fil ter is not rea li zable exactly bu t can be a pproxim a. tr d to a n a rb itra ry ck g rce. 

( 1.,19) 
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The R(t) used he re is a first approximation to the one desc ribed earli er . Be-

cause of this , there will be a small amp litude variation in th e signa l with 

respect to frequ ency that wi ll be ignored in th e a na lys is to follow. T he above 

analys is comple tely characterizes the asymptotic joint. stat istics of sa.rnplcs of 

the deconvolution stati stic. 

We now use classical methods to design a detector 011 th e amp litude do

main. The philosophy assumes that both t, hc noise and signa l a.rnp li tudcs arc 

know1 rI'l d · · · · · · I . I ' I' · · 
1

· . Jen un e r tlu s cond1 t 1o n, a n opt.1mt1rn detector rs sy nt. 1rs 1zec. o 1c-

lax this unreali s ti c assumpt io n, we will assume t hat th e noise level is known or 

m eas ured and th at the s igna l leve l is above t li a.t used in the detecto r 's synt he

sis. T hi s will be suboptimum in genera. I but in t he important. low-signa.J -icvel 

case, performan ce will approac h the optirnurn. 

We can now, via th e likelihood rati o [47], dc line th e opt i111 a l test stati st ic 

as 

(!1.50) 

where 

Ry = 
(4 }i J) 

and 

(,1..52) 
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In order to evaluate the performance of this detector, we note that, s in ce 
I 

Ry is nonn egative-definite and symmetric, there ex ists a matrix m such that 
T I 

I 1 ()f 
o-2n- 'n:2 = 

Use this fad and the diagonaJi zat ion ir,,y , R:1~ = Fly. 

to rewrite the test statisti c as 

L = (G + M 'Y ,,o )T J\'Y,,o(G + M 'Y,,o) - (G + M , ,,,fA,,,,(G + M , ,,,) ('1.53) 

where 

G = l -~' ] 
92 

( ,1 .5'1) 

with {gi} in dependent, zero mean, and unity vari ance a nd where 

l 1 r 

/ t11 
( .?: 1 ) - fl , ( :7; I ) 1 

m, .1 ,'Y' ,"I 
6 . ']' -½ . 

M "I ' ~ - . = T I R I • • 
' ' . "I ,, ' . 

m,n,"f','Y µ 1 ,(:1:n) - /t ,(.1:n) 

(,1..55) 

We note that (G+M , )TA , (G+M, ) is a. suin of squares of in<lcpcnclcnt , ,'Y "I ,"I , ,, 

Gauss ian variables . We now have, through app li cation of the Bcrry-L•'.sscrn 

Theorem (see [25]), that this te rm is approx imate ly Ga.uss ia.n di stributed with 

an error of no more than 4c/ <7 whe re 

C 

2'1m,;_,,,, + 7 
max >.i,, ',, ,1 2 ? 

m,; ,'Y ' ,"I + ~ 

n 

I:>-;,"/,,,( t1m,;,"1,,, + 2)-
( ti .S7) 

i= ' 

For each parti cular detection problem and for ca.ch value of SNH., th is error 

bound determines the validity of the CLT a. rgu n1c 11L. J\ssun1i 11 g the ho und is 

small, then L itself must be approximately Gaussian, being thc sum of two 
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Gauss ian di s tributed random vari a bles . T he di s tri but ion a nd he nce perfor

m an ce o f L is determined by its mean a nd vari ance as computed be low. T he 

mean is 

M .,.,,.,. = f f,\ ,.,.,,o(ml,.,.,,o + I) - >. ;,.,. 1,.,.(m?,,,,, + 1)] ( 1.58) 
i= I 

whi le the vari an ce is 

(1.59) 

Sin ce the tes t s t a t is t ic L has an approxima te ly Gauss ia n d istribut io n, t he 

t h resh old v a nd proba bili ty of de tect io n Po, for a g iven pro ba bil ity of fa.l sc 

a larm, fo ll ow as 

v = ~4>- 1(1 - PF) + M o,, (,1.fiO) 

and 

where <l>(.1; ) is t he d is tribut io n funct io n of t he s ta nda rd G,w ss ia n. 

4.5 Conclusions 

T he ADF was in trodu ced a nd s hown to be ro 11 g lily I. li e average pro l1abi lity 

di s tr ib u tion of a ra ndom pro cess. Because t he J\ l)J,' is o rig in a l, a 1J1 a tl lf'1J1 a ti ca l 
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. . ,. . :,, .. ~ ~ ,, ··t , ' ' ;~:· ' ~ ': ~ , ' . . ' < • • , I' • 

a ion was laid consisting of a sequence of definitions, lemmas, and theo-found f 

' e most s1gmficant of which was the fad that the ADF of signal plus rems th . . 

e convo ut1on of the ADF of signal and the ADF of noi se taken sepa-noise is th l . . . 

rately. The technique of deconvolution used in image processing was the germ 

fro m whence emerged the deconvolution statistic, a statistical transform that 

mapped a stochastic process into the amplitude domain. It was shown that 

by prope . h . b t . I 
1 

c 01ce of a kernel any degree of separation etween t 11 e noi se an( 

signal . · components cou ld be obtained. for the particular problern of detecting 

a modulated sinusoid in stationary Gaussian noise, a detector was developed 

arouud the detection statistic. The detector's performance was analyzed and 

e with that of a radiometer. compar d . . . . 

The use of the ADF in detection has room for many new developrnents 

In juS
t 

its mathematical development, not to mention specific appl.ications in 

detect" d d t ion theory. For instance, the basic results possibly could be ex ten e 
0 

non-Gaussian and nonstationary noise. In te rms of the deconvolu tion stati st ic, 

the class of ke rnels used was very narrow. The in vestigation of various kernels, 

especially tl d -11g would be in itself a worthwhile 
10se use in image process1 , 

undertaking. Within the class of kernels presented, the choice of an opti ,ml 

kernel f "b l t · t or var·i·ous l f d t t· ·oblerns would be a poss1 e op1c ,o 
c asses o e ec wn p1 

Pursue. Finally, the most fertile ground f o, the application of the A I) F to 

detec ti . . · on cou ld be the detection of noise 1n noi se. 

153 



) ) 

4.A Proof of Lemma 3 

We first consider the sets A which are finite half open in tervals. Of 1,bese, 
' 

it is n ecessary to consider only the inte rval [O , T), since Y(t) is s ta tion a.ry. 

Partition A = [O, T) into n subintervals 

[ ) T .T) B; = ( i - l - , z -
n n 

fori = l , . . . , n (1.62) 

and defin e the set Y,,,-1 = [t: Y(t) ~ a]. Observing Ll1a.t th e length of th e set 

~-I n A is the sum of the lengt hs of th e sets J~,- 1 n Bi , we can write 

E [£0~- 1 n A)] = f_r [£(~,- , n Di )] 
i= l 

since Y(t) is s tationary. Now defin e th e following three events: 

No tice that 

C is th e event that Y(t) < a, for some l E fJ, 
Dis the event that Y(t) ~ a, for a ll L E lJ, 
E is th e event that Y(t) crosses a on B1. 

(4 .6J) 

( 1.61) 

(1.(Vi) 

where ID is the indi cator of the e ve nt D. To uncle rsta.JJd thi s re lat io nship , 

consider the case that the sample path V(t) is in JJ, 111 <· ,wi11 g Ll1at it is 11 ot 

above a during the ent.ire interval 1]1 • IL follow s th a t the a.111ou 11t of ti111c tl1at 

it is not above a, i.e. £(Ya-I n Bi), equal s the lengt h o f /-J1 , whi ch is 7'/n. 
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I I 

Upon taking expectat ions of t hi s re la t ion sh ip , 

( 4 .G6) 

> T £(Io) 
n 

T = - Pr(D) 

( 1.67) 

n 

= T {P r[ Y(O) ~ a] - P r[E a nd ( V(O) ~ a)]} (4 .68) 

n 

since the prnbabili ty that Y(t) is not a bove level a over· t he interval Ur is 

exactly the probabi li ty tha t Y (0) is not above a and, undN t.l ris cou<lition, 

Y( t) does not crnss a. Now, s ince P r[E a nd (Y(O) '.c a)] is less than or equal 

to P r (E), we h ave 

(4 .69) 

In an analogous manner, we can prnd nce a conr pk ,oentar·y inequali ty hy 

o bser ving t h a t 
( 4. 70) 

T hi s ineq uali ty fo llows by co nside ring Lwo cases. \,V lw 11 t he sa n1 p lc pa.Lil ),. (l ) 

is in C , m ea ni ng Lh a.t it is be low a so rnct iine d urin g t he interva l IJ, , t he 

amo unt of time t hat it is n oL above a is not greate r t li a. n t he lengt h of IJ, or 

T / n . Altern at ively, whene ver Y(t) is not in C, it is not abo ve a for 1/,Cro t ime. 

Takin g expectations of thi s ineq uali Ly y ie lds 

T 
< - £ (le ) 

n 
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T 
-Pr(C) 
n 

(4.72) 

T - {Pr[Y(O) ::; a] - Pr[E and (Y(O) ~ a)]} (4 .73) 

n 

since the . . . . . . . probab,bty that Y(t) ,s below level a for some tnne durrng the interval 

c Y t e probability that Y(O) is not below a but crosses a during the 
B1 is exa tl h 

a 1 plus the probability that Y(O) is below a inifolly. Now, since 
interv 1 B 

0 2: a] is Jess than or equal to Pr(E) , we have Pr[E and Y( ) 

T £ [.c(Y;
1 
n B

1
) ] ::; - {Pr[Y(O) ::; a] - Pr(E)}. (4.74 ) 

n 

on 4.69) and (4.74) applied to (4.64) imply Equati ( 

T {Pr[Y(O) s: a] - Pr( E)} < £ [.c ( v;' n B,) I $ r {Pr[Y(O) $ a] + Pr(E)} 
(1.75) 

thus 

£ [.c (y-1 n B
1

) ] == Pr[Y(O) ::; a]T 
( 1. 76) 

( 4. 77) 

if lim n--. oo Pr( E) ---t O. 

In order to prove that limn-oo Pr(E) - o, we define I.he counting process 

N.(t) as the number of crossings of the threshold a by the process Y(l) on the 

interval [O, t). By Chebyshev's inequality, 
(4. 78) 
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- -- I I 

(1.79) 

but from [16], ( 4 .80) 

where a ' = - R(O)"- Upon leLUng n _ 00 , t.he Jasl two equations imply 

Pr(E) -t 0. Now that the result 

£ [£(Y; 1 n A)] = <T> (:J [A 

(4.81) 

has been pro vc n [o ,. A, a n interva l , i L can be ext.end cd Lo an Y ft n i le scl as 

follows. Let A be a set of finite lcnglh ; then for auy c > 0 Lh e,·e cx i
5

ls a finilc 

set of interval s {Ld~=l such th a t 

and 

(see [35]). Hence, 

f_ 

< - 2 

Taking expecta tions a nd a pply ing the result fo r i11Lcrva.ls 

But 
E I ( 

£A - - < ~ £ l ; < £ /\ + -
2 ~ 2 

i = I 

157 

(tl. 82) 

( 4 .81) 

(,1.85) 

('1.8G) 



implying 

<I>(;~) £A - t: ~ £ [£(Y
0

-
1 n A)] ~ <1> (:J £A+ c. (4.87) 

But , s ince E is an arbitrary posit ive number, we have for a set /\ with finite 

length, 

(-1 .88) 

To ex tend to the case in whi ch /\ is not of finite lengt h, writ<' J\ = U~ o/\i , 

where the Ai's a rc d isjoint and of finite length; then 

00 

£ [£(Ya- I n A)] = I:£ [£(r:,-' n J\i)] 
i=O 

(-1 .89) 

( -1.90) 

(~ ( ;~ ) £/\. 
(-1. 91) 

4.B Proof of Theorem 3 

Without loss of generality, assume Fs is cont inuous. To prove t he result , 

we wish to compute 

(4.92) 

where 

Y
0

- I = [ l : S (l) + N ( l) ~ a] . 
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-

( s-m
2 

< s 2 < ... < s 2 ) where -m +1 m , 

{ 

-00 

Si= i/: 
for i = - m

2 

[or - m2 < i < m
2 

for ·i = m
2

, 

(tl .9'1) 

Continue by definiug the sets 

Ai = [t: N(t) '.o a - s; and Si- I < S(t) '.o s;] 

( 4 .95) 

( ,1.96) 

A/ - [t : N(t) '.o a - Si- I and Si- I '.o H(t) < Si] 

for i = - m' + 1, · · ·, m'. Observe that Ai C Y0- ' , because S(t) + N(t) '.o a 

whenever N(l) :=::; a - s; a nd Si- 1 < S(l) :S 5i· Jicn cc, 
( '1 .97) 

n LJ A;- C ya- '· 
i:::: 1 

Furthermore ' n 

y - 1 C LJ /\+ a , 

because -f · t I 
, °' any t whe1·e N( t) + S(t) '.o a, there cXJSts au , "' · "" rnugc 

-m' '.o i '.o m
2

, such that Si-I :=; S(t) < Si implying N(I.) '.o a - S i· l!ccansc 

{ A;)~-m'+I and { At) ;:'_.,,+i arc di sjoint, ( 4.97) a nd ( 4 .98) i,nply thal 

I: ,;,£ {L [/\ ;- n [O , 'f')]} 
( '1 .99) 

i::::-m2 + 1 

I: ),£ {L [/\; n [O , 'f')j} - (ii . 100) 

i::::-m2 +1 

Now notice that 
( '1. l O l ) 
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SinceS(t) and N(t) are amplitude independent, Fs is continuous, and Fs( +oo) 

Cl 
=== lim p ( ) ~ s--+oo s s and Fs(-oo) == lim 8 _._00 Fs (s), it follows that 

}~°c!, ~ E {c [ Ai n [O, T)]} = FN ( a - s,) [ Fs( ,, ) - Fs(s,_,) I 
(4 .l02) 

Similarly, 

By definin t · · · I · l · · g wo particular step functions , the above 1esu ts wit 1 equat ion 

( 4-lOO) and ( 4.99) form a relationship between the ADF of S(t) + N( t) and 

th . s o t 1e two step functions. The step · unct ions <1.1e e integral f l . 1· . . . 

( 4 .101) 

Fiv(a - s) 

( 4.105) 

FJ(a - s) 

whenever· 
8

. ) d (4 n(

1

) b ,-1 < s <:; s,. Upon passing T to oo, (4.100 an · ·"" ccomc 

with the ·d · . . · · ) (4 J 02) · d (4 103) ai of th e above defirntions and ( 4.101 , · , ,1.1i • ' 

1: F',(a - s) dFs(s) <:; Fv(a) <:; 1: F;!;(a - s) dFs(s) 

(4.106) 

Proceed by . J . . . .d fi d tl t p- ·•rid p•N+ converge weak ly to FN 
en argrng man n , 1a , N "· 

Which c . . oupled with ( 4.106), imp li es that 

(4.L07) 

( 4. LOS) 
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where the last eq uation, following from the continuity of f"s, proves the first 

convolu tion . Note that the intercha,nge between limit and integrati on is just i

fied in the last operation, because the integrals have essrntiall y all mass within 

a bounded domain, upon which the integrand is bounded between 7,ero and 

one. Note a lso that, if FN is not continuous , then F")j or F''iv rn ay converge 

to some fun ct ion that differs from FN at a countable number of po ints, but 

lu cki ly the hypothesis that Fs is continuous ma.kes ( 4. 106) in varia.nt to the 

limit value of Fiv and F")j at these problem points. 

The comple mentary convolution is obtained by integ rating t he product 

m easure clF5(s) x clFN(n) over the half pl ane lJ ~ [s,n : s+n ~ a]. Procccd

rng , we obtai J1 wi th the he lp of Pubin i's theo rem 

or , altern a tive ly, 

imply ing 

r cLF;(s) X dFN(n) l,1 

(4.109) 

1-: FN(a - s) dF~(s) (11.l l O) 

( 4. l I l ) 

( 4 . 11 :l) 
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The co t' . -n muity of F's and ( 4.108) yields 

which · with ( 4.113) 

F'y(a) = 1: FN(a - s) dF5(s) 

F'y(a) 1: F5(a - n) dF;.;(n) 

= 1: F5 (a - n) dF;.;(n) 

( 4.114) 

(4.115) 

(4.116) 

contmu,ty of F
5

. Equation (4.!16), the remaining convolu tional ,·cla· by the · . 

tionshi · P, is now proven. 

4.C Proof of Theorem 4 

Begin by I · · · · -· f t i · I se ectrng an mteger m and construct ing a part1t1on o 1c ,ca 

line ( s -m2 < 8 -m2+1 < · · · < Sm2 ) , where 

S; = { ~: 

for i == - rn
2 

for - rn,2 < i < rn
2 

for i = m
2

. 

('1.117) 

Continue b . Y definrng the sets 

~ [t - - . . ~i- . 
s;-i < S(t) ~ s;] 

(tJ .]1 8) 

' ~ - m 
2 
+ 1, . .. , m 2. The sets (3.} partition the real line into d isjoi nl for · 

subsets tl . , 1erefore 
' 

1 FN[a - S(t)] dt = ~ f FN[a - S(t)] dl 
(o,71 L....,; I:: n(O Tl i:=:-m2 +1 - • ' 

('J.119) 
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Furthermore, s i11 ce FN is in creas ing, 

( 1 .1 20) 

and 
(!J .J 2J) 

Divide ( 4. 120) by 1', lake expcclat ions, and e nlarge T; then, ""U "g Lbal 

Fs(+CX) ) ~ lirns-+oo Fs(s) and Fs(-oo) £ lim s__.- oo Fs (s) irnp lies 

,!i_,11,!, ~£ { J.' F ,v [a - S( l)] dl} ? ic!+, f'JV( a - s;) [I',( s;) - l•S( -5;- , )J -
( '1. I 22) 

Ope rate s imilarly on (1.]2t) and 

i:==-m2 +1 ( '1 . I 23) 

In order to express (4.122) a nd (4 .1 23) in co nvolutiona.1 fo rJll , define t he two 

s tep function s 

( '1. I 2'1) 

l"N(a-s) 

('1. 1:2G) 
l~(a-s) 

whe ne ve r s;-1 < s :=::; s;. S ince Fs is r1.ssurned to be a.t lea.st. ri ght-co 11 t.i11uo11 s, 

it fo llows from ('1 .1 22) a ud (!J.123) th a. t 

!
00 Fiv(a - s) dl"s (s) :=::; )irn ~£ { f FN[a - S(l)] dl} 

- oo T-+ oo 1 .Jo 

('1. l:2G) 
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and hen ce 

J_oo F'-( ) dF"( ) < 1 0000 FN+(a - s) di's'"(s ). - oo N a - S S S 
(1.127) 

Finish the proof by enlarging m a 11d find that F;:; and F/; converge weak ly 

to FN whi ch , coup led with ( 4.127), implies 

] { T } :}.!_.~ TE /4 l "N [a - S(t)J dt 1: FN ( a - s) d F5 ( :5) ( 1 . J 28) 

}~,( (l) (1. 129) 

wh e re th e final s tep follow s from Theorem 3. Note th a t th e inte rchange be-

tween l1·n1-1·t d · · I 1 1,· b '/·1 · an rntegrat1011 is jus tified in t 1c ii.S L op e ra 10 11 , ecause 1, e lll -

tegra ls have essentially a. I/ mass within a bo u11dcd dornai11 upo n which the 

integr ar I· b cl ·r1, · ' ic is oun ed be tween zero and one. Note also th a t , 1 'N is 11 0 ,, co11 -

tinuous t/1e11 p+ 1·- f . 'I ' 1·rr 1· / ' ' · · · N or 'N may converge to sorne 11nct1on ,, 1c1. ,, c 111 c rs ron 1 'N 

at a countable number of points; but for this case, Fs is hypot hes ized to be 

continuou s 1·nal·· (4128) . · / 1· · I 1· 1,- 11 ·+ ''/ , ,ing . 1nva.ria.11t to L 1e 1m1L va. 11 c o 'N a nc 'N a,, 1, ,csc 

Problem points. 
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Chapter 5 

Concluding Remarks and Extensions 

5.I Summary and Remarks 

In the first chapter, Uie general sett ing for t li e i11tercepLion proble11 1 was de

scribed. A br ie f expos it ion 011 Lhe fun ct ion of t he intercept receiver was g iv<'II , 

emphasiz ing U1 e function s of ini tial dcteclio11 and feature dctedio11 t/iat arc 

pertine nt, to this work . A brie f desc ription of ex ist ing detecto rs wa.s prcse rit<'d 

with a qualitative, and in some cases quantitative, pe rfo rrna.nce eval11 a.tio 11 . 

T li ese were the radiometer, t he optirna.J c:/1an 11 c: liz<'d dckdor wit h vario 11 s 

s uboptiu1a/ s implifi cat ions, a nd t/1 e autocorrc /,d,io11 detector. Of cxisti11g f<'n.

t ure d e tectors of hop frequen cy, a maximum /ike /i/1 ood rcc<' i ver wa.s desc ribed 

along witli a re lated receiver emp/oyi11g co urse s ubba nd sc /cct io 11 . The ddec

tors prese nted in this work were th en bricny described a.II( / related Lo cxisti 11 g 

detectors. T J1ey were a seq uenti a l detector, two detectors and a /1op frcq11<'11cy 
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est1·rnat b d I · · . a rid " ,r1 0 4 her detector based 0 11 or ase on t 1e compressive rece1ve1, " L 

the ne w con cept of t he amplitude di s tribution fun ction. 

In th e second chapter, methods for t he seq uential detect ion of no11 co l1 e r

e nt fas t FH wavefo rms were developed . In the process, tli e FTf waveform was 

mode led to h a ve an informat ion component , which co11 s isted of a series of 

chips with a kn own constant epo ch where each chip freq uc 11 cy was one of a. 

known en semb le o f frequencies . In tl1 e model, a. pa rticu la r chip frequc 11 cy was 

indep e ndeutly determined by a uniform ra.ndorn vari ab le on th e frcq ue rr cy e ri 

semble . Th e FlT waveform also wa.s assumed to have an add iti ve wlii te-11 oisc 

component. By ass uming the mode led FIJ waveform was of a k11 own SN I? , t he 

optima l detector based o n a sing le-epoch observat ion (SELF) was deve loped 

using likelih ood-fun ct ion t heo ry. SE U ;, wa.s t he sun, of n1 a 11 y nearly idc11tical 

and nearl y indepe ndent random variab les a.nd t hus had nea rly Gauss ia 11 sUi.t is

t ics. This central -li mit argument a.Jlowed a Jllulti -epoch coll ect ion of SE LFs to 

be con s idered a n equivalent set of Gauss ia n i.i .d. vari ab les. Fron1 these s irn

plifi ed obser vat io ns, a log- like lihood fun ct ion (J\ LLP) was co 111 putccl tha.t w;-1.s 

asymptot ic to th e exact log- likelihood fu11 ct io 11 , a.s the 11111 11bc r of possible l1 op 

freq ue ncies becam e large . The ALLF became tl1 c tes t s tat is tic on wlticl1 tl1rec 

de t ection tes ts were based. The tes ts were tl1 c FSS test , th e SPRT, a nd the 

TST. T h ese were defin ed to ensure t ha t detcctio11 e rro rs were below des ired 

level s. By mode ling t he ALLF a.s a Wiener process, diffu sio 11 t.l1 co ry y iclclccl 
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the p £ er ormanc f th h 
e o e t ree tests not only for an FH waveform of the assumed 

· 
0 

1e test p erformance for all SNRs below the one assumed. This SNR, but als tl 

avora y wit 1 a computer simu at1on o t 1e etector a nd analysis compared f bl . l . I . f I d 

a i ated the analysis. The analysis also became a tool used to opt imize thus v l"d 

Y t 
1
e performance of the TST when the actual FII SNR deviated numericall 1 

fro m 
th

e one assumed. In order to study the performance of tests synthesized 

by assu · . . mmg an ex tremely small FH SNR, express10ns for the asymptot ic test 

effi · . cienc1es · · I · 11 d · 1·r. <l were computed. T hi s asymptotic analys is a so y1e c e s1rnp 111 e 

t m eter express10ns appli cable to the srnalJ -SNJl case. est para . . . 

A significant feature of the SPRT exposed by the analysis is that, with the 

same error probabili ties, an FH waveJorm with a given SNR can be detected 

in less t l1 - . . d . . an h alf the t
1111

e of the corresponding FSS test. T hi s re uction 111 

detection t' · b b']' f I t · t (I Pl ) ime is especially signifi cant for Low Pro a 
I 

ity 
O 11 

eicep J -

applicatio l . . J I· ·t r. ti SPJ")' I' ns, w 1ere the transmissions are purpose Y s 10
1 

· 
1
•or -ie pure \, , 

detection t· . . SNn d·rr d f ti t ime rn creased whenever the observed J\, 
111

ere rorn ' ,a. ' as-

sumed · I I 
1
n the test's synthesis. And for SN!ls midway between zero anc t 1c 

assun, d · FSS tcs l.. T he 
e value, it was even comparable to the correspo

11
<lin g 

TST significantly improves this anomaly, while sacrifi cing J;ttle performance 

over tha t of the p l t· I t j wl· atever little performance is Jost, the 
ure y sequen ,ia. ·es L; 1 

p •mat TST largely regains. The decrea.se in the detcctioo t ime of the se-
0 t' 

que nti al tests c b I b t'f ti· e tes t witl1 res pect t,o the inpu t SN H 
an e usec to ro us 1 Y 1 · 
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while m a in taining bet ter performa nce than tha t of the non-robuSt FSS LeSL 

T he s implified test pa ra.me te r expressions de ri ved by asy mptoti c met hods may 

be useful for an y schemes to ad a pt these tes ts for vary ing FU SNRs. T he three 

tes t s a nd th eir corresponding des ign and pe rform a nce a nalys is a lso a pply Lo 

t h e s lo w-PH case. The detector structure is subo ptimal for slow Fll , but it is 

be li e ved that the pe rforma nce Joss is sma.11 , es pecia lly for detect ion Limes that 

include a la rge number of hops . 

In t he third cha pte r, two detectors of frequency-hopped wavcforrn s ba.sed 011 

Lh c co mpress ive receiver were presented . T he firs t was developed by apply ing 

like lih ood r a ti o theory Lo the observed compress ive-receiver output a nd yie lded 

a locally optimal (low-SNR) detector. The second , motiva ted by simplicity of 

impl e me nta tio n , was a Lime- multiplexed version of the first th a t , through Lit e 

choi ce of a para.m e te r , could either , a. t the ex pense of a. low duty cycle, ac hieve 

Lh e d e tectability of the first or could , a t the ex pense of degraded pcrfon11 a. 11 c(', 

achie ve higher duty cycles . The second detector was modifi ed into a. ma.x i mum 

Ii kelihood es timator of hop freque ncy. Doth detecto rs a nd the hop frequency 

es tim a tor were performa nce an a lyzed and compa red . 

The compress ive receiver ful11ll ed its promi se a.s a. simple, yet high-pcrfonnin g 

inter ceptor. The p e rforman ce of the loca ll y optim a.I de tector shows Lha.L rela.

Lively little de tectability is lost by the process ing of the compress ive receiver. 

Mos t of tbe di scre pancy is due Lo the difference in coherent, inlcgra.ti o11 t ime 
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(one half for the parame te rs used). Furthermore, for a small p erform ance 

cost ' the simplicity of the compressive-receiver approach can be retained by 

the time-multiplexed de tec tor. Al so , the hop frequency es tima tor again com

pares favorably with th e corresponding de vi ce that used raw input in SLeacl of 

com · pressive- rece iver output. 

In th e fourth chapter , a ne w idea. in detection , tlrat of tir e Arnplitudr 

DiStribution Function (ADF) wa.s iritrodu cecl. Tire A DP is roug lrly th e a.ve ragc 

probability di s tribution of a rand om process. Beca use th e ADF is orig in a l, 

a mathe rna.ti cal fouJJdation wa.s la.id consis ting of a. seq1r cnce of definiti ons, 

lemmas, and tli eorerns, the most significant of whi clr was tir e fact that tir e ADP 

of signal plu s noi se is the convolution of the ADF of sign a. I and tir e A DP of noise 

taken sepa rate ly. The teclrniqu e of deconvolution 11 scd in image process ing 

was th e ge rm from whi ch e me rged tlw Deconvoluti on Statis tic , a sta ti stical 

transform tha t mapped a s tochas ti c process into tir e amplitude clorna.in. IL 

was shown that by proper choi ce of a kern e l any dcg rer of sc pa.ra.tion between 

the noise and signal components could be obtain ed . Por th e parti cul a r problrm 

of de tecting a modulated sinusoid in s tation a ry G,w ss ian noise , a detec t.or was 

developed a.round the Detection Statis ti c. Tir e de tector 's pc rforrn a. 11 cc was 

analyzed and compared with a. radiomete r. 
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5.2 Extensions-Directions for Future Work 

In applying sequential detection to interception, other simplifications and 

ext · ensions are possible. For instance, it was assumed that the starting time 

10
n o the chip epoch were known. This first rest riction might be 

and durat" f . 

relaxed by redefining the SELF to perform sliding window integration instead 

egrate-and-dump operation now performed. This, of course, would 
of the int 

degrade th 
e detector 's performan ce for some values of epoch starting time, 

ou d probably exh1b1t a better average performance. There arc also but it w J , .. 

possible s· 1·fi · · · · J I ·1·t A imp r cations to the SELF to improve its 1mp ementa)l I Y· - mong 

these co ld b ld I u · e the removal of the emphasizi ng function , which wou ma ,c 

the <let . ector structure suboptimal but it probably sti ll would be asymptoti-

cally o t" Id b P Imai for small assumed SNRs- Another simplification cou c coarse 

Subband d · I I · · I I" prese lection, where the total spread-spectrum ban wic t ' " su " r-

vided . t . f. , , . , A in ° subbands, each containing a large number of chrp rcqucne<CS- n 

algorithm could be used to select a subset of the subbands most likely to con

tain th · I I t d bands 
e rntercepted signal. Detailed process ing on t 1ese prese cc c 

then co ld b . . I . . ·I· u e done with the methods described 1n t 
11

s wo i ' · 

There . , . . I t I d ·11 the use of the con1pres-
are m a ny rema1111ng avenues to Je ,rave e 

1 

· 

sive receiver to interception. We provided many results applying to freq uency· 

hopped waveforms, but the essence of these ideas can apply to other spread-
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spectrum modu lations as weU. But even in realm of frequency- hopp ed wave

forms, much work remains to be done . For instan ce, a locall y optima.I detector 

was de ri ved consisting of a bank of filt ers opera.t ing on t he com press ive- receiver 

o utput. From th e filte r res pon ses in th is configurat ion was formed t he filter 

response for the t ime-mu ltiplexed detecto r. The direct deri vat ion of thi s fil 

ter res ponse using some opt imality criterion over t he class of ex pected signals 

mi ght b e a promi sing endeavor. T he extension of the detectors to a. mu ltihop 

obser vat ion period was la rgely ignored. We simply a.ssurned tha t rcs,il ts of the 

individu a l detecto rs wou ld be combined , a.s if t hey were independent. lier<.' 

the issue of p e r fo rm ance versus overl ap between data. windows is one to be po

tentially explored. We showed how t he compressive receiver could be used to 

es timate hop freque ncy. Other types of feat ure detecto rs such a.s th e hop-ra.tc 

d e tectors or t he carrie r freque ncy detectors a lso could be pursued. 

The use of the ADF in detect ion , bc i11 g a new idea., has roo11 1 for nliu1y 

ne w d e ve lopme11ts in just its m a.t hern a.t ica.l devclopllle 11 t, not to mc 11 t io11 spe

c ifi c a pplicatio 11 s in detection th eo ry. For in sta.11 ce, tl w basic r('sul ts could ])(' 

ex tended to non-G au ssian a.nd 11onsta.tiona.ry noise. In te rms of t he Deconvo

lu t ion Stat istic, t he class of kern els use<l was ve ry narrow. The i11 vest iga.t io11 of 

var io us ke rn els, espec iall y those use<l in image process in g, would he, by itsf• lf, 

a. worthwhi le unde rtaking. Within the class of k<' rncl s presented , t he choice of 

a n opt ima l ke rnel for various classes of detect ion problc111s is a poss ible area 
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to purs ue. F ina lly, th e m ost fertile ground fo r t he appli cat ion o f the J\ DF to 

de tec ti o n could be th e detectio n of noise in noise. 

5.3 Final Remarks 

Th. 1 · · . · ti' d , I JJ11·1ent of new detect ion is wo r < represents a s1g rnfica.nt step 111 ie eve 0 

and interception techniques for spread-s pectrum waveform s a.Jl d frequ ency-

hopped wavefor m s in p arti cul ar. With th e tlJree new detecto rs a nd t he li op 

freq · ·1 1.1 l Armed witl, - uen cy es tima tor presented , ma ny new tra1 s were u a.,.;ec · 

the i'dea o·f t· l d t t· a 11 ex1·s t1·11 g OJ)t 1·1T1c·1,l cl(-~tcc to1· using, a fi xed , .· seq ucn ia e cc 10 11 , -

number of sampl es was ex tended , wi t h irnproved pc rforrn a 11 cc rcs ultill g. T hi s 

useful and eclect ic endeavo r brought prev ious t li cord ical and pra.ct icaJ res ult s 

on se que nti a l de tec tion into th e contex t o f inte rception. Tli e second detector 

and hop frequ en cy estima tor sol ved th e problem of how to apply e ffect ively 

the com p ressive rece ive r to inte rceptio n. Th e firn1 n1 a. tl1 c n1 a ti ca.l dcvcloprrw11 t 

s ta rkJy cont ra.s ted with pre vi o us ad hoc a tt acks on th e proble111 . O ut of tl,i s 

work also cam e some m a themati cal res ults of ge ne ra. I inU:res t ; ,unong th <'s<' 

we re bounding di s tribution s on the sum of squ ares of Ca.uss ia.n ra.nd o n1 vari 

a bles a nd an ex tension o f th e Ri e rna.nn -Le besguc Lcmn1 a to integra ls of linca.rly 

frequen cy-mo dula ted sinusoids. A brand new iclf'a. in dctf'ct io 11 was co 11 cf' iv<'d , 

yi eldin g yet an o ther new de tecto r. The o ri g in a l idea 111 c lcl cd tl1 c image process-
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ing technique of deconvolution to those of density est ima,tion, The dcLeclor 

th
us devcloped was quite independent of the detail s of signal modulaLion. 

While there is much presented here, there is sLil l much to be done. TherC' 

are other int · · · I 1 erceplors to be analyzed a.nd new detect ion techniques to be ceve -

oped. A 1 
s s ue 1 , the area of sp read-sped rum interception will y ield new res ults 

for man . . 
Y Yea1 s to come. 
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