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A climate risk assessment of sovereign bonds’ portfolio.

Stefano Battistona, Irene Monasterolob,1

aUniversity of Zurich and FINEXUS Center
bVienna University of Economics and Business, Austria

Abstract

Aligning finance to sustainability requires metrics and methods to price forward-looking cli-

mate risks and opportunities in financial contracts and in investors’ portfolios. Traditional

approaches to financial pricing cannot incorporate the nature of climate risks, i.e. deep un-

certainty, non-linearity, complexity and endogeneity. To fill this gap, we develop a framework

for climate-financial risk assessment and management under uncertainty. We consider a risk

averse investor with an information set given by past market valuation, information on future

climate economic shocks, and utility maximization based on the minimization of the Climate

Value at Risk (VaR) in presence of incomplete markets. We then consider a disorderly pol-

icy transition to 2◦C scenarios that leads to unanticipated shocks in economic trajectories

of fossil fuel and renewable energy sectors, estimated using Integrated Assessment Models.

We model the shock transmission from the change in sectors’ Gross Value Added to firms’

profitability and to sovereign fiscal revenues. We then introduce the forward-looking climate

policy shocks in sovereign bonds valuation introducing scenario- conditioned financial risk

metrics (Climate VaR, Climate Spread). We provide an application to OECD sovereign

bonds of Austrian National Bank’s portfolio. We find that investments’ climate alignment

can strengthen the sovereign fiscal and financial position by decreasing the climate spread.

In contrast, misalignment can negatively affect countries’ economic competitiveness and fi-

nancial stability, and thus the performance of investors who own such bonds. Our analysis

supports investors’ portfolios risk management strategies in the low-carbon transition and

and financial supervisors in the design of prudential risk measures.
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1. Introduction

There is growing awareness of the fact that a timely credible implementation of low-

carbon energy policies (thereafter: climate policies) could contribute to align real and finan-

cial investments to sustainability, and thus to increase the likelihood to achieve the climate

targets. In contrast, a disordered introduction of climate policies could bring new chal-

lenges for economic competitiveness and financial stability. In the European Union (EU),

for instance, firms whose revenues derive directly or indirectly from carbon-intensive ac-

tivities could face significant losses if they are not able to timely adapt to the new policy

scenario. These losses could affect the value of the financial contracts issued by such firms

and cascade to their investors (Stolbova et al. 2018). Thus, shocks on firms and sectors’

performance could lead to volatility of assets prices, with implications on systemic risk if

large asset classes and investors are involved (Monasterolo et al. 2017). Indeed, given the

interconnectedness of today’s business and financial sectors, losses on individual assets and

portfolios can be amplified and cascade along the value chain (Battiston et al. 2017) and

eventually affect countries’ economic performance. Loss in countries’ economic competitive-

ness negatively affects their fiscal position and thus their financial position, via changes in

the value of sovereign bonds and yields (considering the change in investors’ expectations

and reactions to change in market fundamentals).

?This is a first version of a work in progress. The authors are very grateful to the Oesterreichische
Nationalbank - Central Bank of Austria (OeNB) for the support in the collection of the OeNB’s portfolio
data. In particular, we would like to thank Pirmin Fessler, Florian Glantschnig, Andreas Breitenfellner and
Wolfgang Pointner for the collaboration on data collection at OeNB, and Alan Roncoroni (UZH) for the
useful comments on previous versions of the manuscript. IM wants to thank Tom Heller, Gireesh Shrimali,
and John Weyant at Stanford University and for fruitful discussions on the paper during IM’s visiting
research in Stanford in spring/summer 2019. We thank the participants of the European Commission
Sustainable Finance Conference in January 2019, of the Sustainable Finance workshop organized by the
European Commission Joint Research Center in Ispra in July 2019; of the Econometric models of climate
change conference (EMCC IV) in August 2019; of the CREDIT conference in Venice in September 2019 for
the useful comments.
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To prevent cascading climate-related risks, disclosure of climate-related financial informa-

tion was recommended by financial supervisors and regulators (see e.g. the FSB Task Force

on Climate Related Financial Disclosure (TCFD 2018); European Commissions High- Level

Experts Group on Sustainable Finance (HLEG 2018); Network for Greening the Financial

System (NGSF 2018). However, advances on climate risk disclosure are slow and uncoor-

dinated, with implications on mispricing of sovereign climate risks in the value of financial

contracts. This means that investors might accumulate (and trade) exposures to climate

risk via fossil fuels’ related assets, which could become stranded (Battiston et al. 2017, Mer-

cure et al. 2018). Recently, the Central Banks and Regulators’ Network for Greening the

Financial System (NGFS) recognized the need to assess climate risks in investors’ portfolios

to inform risk management strategies for investors and financial supervisors (NGFS 2019).

In this regard, a main barrier is represented by the lack of methodologies to price climate

risks and opportunities in the value of individual financial contracts and in the default

probability of investors’ portfolios. There are good reasons to believe that climate financial

risk pricing cannot be done by applying traditional financial pricing models (e.g. Merton

1974, Black and Scholes 1973, Black and Cox 1976, Duffie and Singleton 1999) because

they cannot integrate the characteristics of climate risk that lead to incomplete markets.

These include deep uncertainty on future climate impacts and related losses, which makes

the reliance on historical data much less relevant to compute probability distribution of

shocks; fat tailed distributions of shocks; the presence of reinforcing feedback loops leading to

potential domino effects and tipping points (Solomon et al. 2009, Weitzman 2009, Ackerman

2017, Steffen et al. 2018). Thus, a main challenge for pricing climate risks and opportunities

in financial contracts regards the need to relax some main assumptions of financial pricing

models to introduce climate ambiguity.

To fill this gap, we develop an approach for climate financial risk assessment under un-

certainty to inform portfolios’ management strategies and prudential regulations. It consists

of a modular methodology to assess climate risks and opportunities in the value of financial

contracts and in the default probability of investors’ portfolio. In this application, we fo-

cus on sovereign bonds issued by OECD countries and purchased by the Austrian National
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Bank (OeNB). In our model, climate shocks consist of a disorderly transition from a feasible

forward-looking climate policy scenario and economic trajectory to another one. The cli-

mate shock affects negatively (positively) high (low)-carbon firms and sectors’ profitability.

Our methodology allows to model the shock’s transmission from the economic sectors’ Gross

Value Added to the value of the bonds issued by the respective sovereign. We develop the

climate spread metric to introduce climate as a source of risk in the 10-years’ bond yields.

We consider a representative risk averse investor with an information set given by past

market valuation and information on future climate economic shocks provided by climate

economic models (e.g. the Integrated Assessment Models (IAM)). The utility maximization

of our investor is based on the minimization of the Value at Risk (VaR) of her portfolio, in

presence of incomplete markets (i.e. her and her competitors’ exposure to climate transition

risks, and the time and type of climate policy introduction). Then, we combine pruden-

tial policies that don’t require the computation of probabilities, with financial risk metrics

applied to variables for which estimates of probabilities are available. This allows to make

decisions retaining the variability in information set and considering investor’s risk aversion

and/or uncertainty. Finally, we assess the largest losses (gains) on OeNB’s portfolio. The

shocks should be interpreted as potential gains (positive) or losses (negative) on individual

sovereign bonds associated to countries disordered transition to a 2◦C aligned economy by

2030. Our modular approach uses forward-looking climate transition scenarios provided by

the climate economic models reviewed by the Intergovernmental Panel of Climate Change

(IPCC) reports (e.g. Allen et al. 2018), and micro-level financial and climate-relevant data

for firms and assets.

The paper is organized as follows. Section 2 provides an overview on the state of the

art on sovereign risk and climate risks. Section 3 describes the novel approach to climate-

financial risk assessment under uncertainty. Section 4 presents the modular methodology,

the analytical solution of the model, and the climate spread. Section 5 discusses the climate

shocks scenarios and Section 6 presents the data. Section 7 discusses the results of the

climate shocks to OeNB’s portfolio, while Section 8 concludes highlighting the implications

for climate risk management and mitigation for central banks and financial regulators.
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2. Review of the State of the Art

In this section, we briefly recall the literature on sovereign bonds’ valuation and on

climate risks, identifying challenges leading to mispricing in financial contracts.

2.1. Traditional sovereign valuation

While a large body of literature on non-defaultable sovereign exist, the geopolitical and

economic events of the end of the 20th century (such as the fall of the Berlin wall and the

disgregation of the former URSS, the 2008 financial crisis and the sovereign debt crisis) led

several scholars to focus on defaultable sovereign bonds (Duffie and Singleton 1999, Duffie et

al. 2003, Gray et al. 2007). More recently, in the aftermath of the Great Financial Crisis, the

worsening of macroeconomic fundamentals and the increase in governments’ debt, relative

to GDP1 lead economists to pay growing attention to default conditions also in high-income

countries, focusing on the role of economic fundamentals and of governance. However the

evidence is not conclusive on what are the dominant conditions for sovereign default. Despite

it is generally considered very difficult to force independent sovereigns to repay outstanding

debts (especially if governments can issue their currency), several empirical studies considers

that sovereigns might be interested in repaying debts. The reason is related to political and

economic costs, such as:

• Being (either partially or temporarily) excluded from the capital market (Kletzer and

Wright 2000) and reputation (Eaton 1996).

• Losing consent or being voted out of office (Broner et al. 2006).

• Potential domestic unrest (Borensztein and Panizza 2009) and overall the domestic

costs of default (Panizza et al. 2009).

• Correction of investors’ expectations about country’s growth, capital outflows, financial

instability, (see e.g. Sandleris, 2008).

1See for instance ECB 2011 report https://www.ecb.europa.eu/press/key/date/2011/html/

sp111104_1.en.html
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On the other hand, scholars focused on the drivers of sovereign bonds’ yield spreads,

highlighting the challenges of assessing major sovereign credit events (Duffy et al. 2003).

The main determinants of sovereign credit risk identified by the literature include several

factors, such as macroeconomic fundamentals (Arellano 2008), liquidity (Favero et al. 2010),

market-related factors (Oliveira et al. 2012) composition of government budget, (Van Land-

schoot 2004), debt-to-GDP, inflation and taxation (Lemmen and Goodhart 1999), fiscal fun-

damentals and government announcements of bank rescue packages (Attinasi et al. 2009).

However, while none of them seem to be dominant across time and countries, scholars also

disagree on the drivers.

2.2. Climate risks and financial evaluation

A recent literature stream has focused on the analysis of financial markets’ reactions to

the climate announcements and climate-related losses, identifying a potential mispricing of

climate-related financial risks.

Morana and Sbrana (2019) consider the case of catastrophe bonds contracts (CAT) and

find that their multiples, i.e. their return per unity of risk, have not incorporated climate-

related risks occurred in the last decade. Indeed, CAT bonds’ multiples have experienced a

steady decline from a value of 8 in the early 2000s to a record low of 2 from 2015 on, while

in the same period, climate-led natural disasters and related losses have increased steadily.

In the case of loan contracts, the evidence is not conclusive. De Greiff et al. (2018) find

that before 2015 commercial banks did not price climate policy risk in the loans terms for

carbon-intensive companies but their behaviour started to change after the Paris Agreement

(PA), despite not at significant levels.

The largest evidence available is for bond contracts. Overall, green and traditional

bonds’ prices are not reflecting the information available to investors (Ehlers and Packer

2017). Zerbib (2019) finds that from 2013 to 2017 the yield of a green bond is slightly lower

than that of a conventional synthetic bond (i.e. a small premium), while Karpf and Mandel

(2018) find, for the US municipal bonds’ market, that the returns on conventional bonds are

on average higher than for green bonds. These differences can largely be explained by their
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fundamental properties and not by the “green” label.

For equity contracts, Monasterolo and de Angelis (2019) detect a change on market beta

for low-carbon and high-carbon indices on the EU and US stock market after the PA, i.e.,

the systematic risk associated to the low-carbon assets and indices has decreased while the

level of systematic risk associated to carbon intensive assets and indices has increased. In

addition, they find that weights of portfolios highly exposed to low-carbon indices increased

after the PA. Ramelli et al. (2018) find that investors reacted to two main policy “shocks”

in 2016, i.e. Trump’s presidential election and the nomination of Scott Pruitt to head

the Environmental Protection Agency (EPA), by rewarding companies in high-emissions

industries, at least in the short run. Yet for the same policy events Wagner et al. (2018)

find that investors rewarded companies demonstrating more responsible climate strategies.

In contrast, Sterner and Mukanjari (2018) did not find unique evidence of equity portfolios’

response the announcement of the US withdrawing from the Paris Agreement. Finally,

Alessi et al. (2019) find evidence of a negative Greenium, i.e. the risk premium for the

green factor, using a set of European individual stocks and the 25 European Fama-French

portfolios.

The role of climate change as a source of risk for sovereign bonds’ valuation has just

started to be addressed by the literature. Crifo et al. (2017) find that high country’s

Environmental Social Governance (ESG) ratings are associated with low borrowing costs

(spread) for short-maturity sovereign bonds in advanced economics. A different discussion

applies to Kling et al. (2018), who focus on the most climate vulnerable low-income countries

(V20) exposed to climate physical risk. In a few cases the authors find a slightly higher cost

of debt. But caveats applies, such as the peculiarity of sovereign bonds’ markets in low-

income countries and the nature of risks (e.g. geopolitical) to consider in the sovereign

valuation.

All these analyses, despite focusing on different types of financial contracts (yet very

restricted in the case of sovereign bonds) and climate risk (mostly policy announcements),

analyse climate-related shocks that have already occurred in the past, and that could have

represented a structural break in the series of prices and performance. An evaluation of
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sovereign risk in the context of forward looking climate transition risk (i.e. the disorderly

introduction of feasible policies that are expected to be introduced in the near future, e.g.

by 2030), considering the current energy transition path of the sovereigns, has not been

carried out yet. Nevertheless, pricing forward-looking climate transition risk along different

yet feasible policy and economic trajectories is important to assess the conditions for losses

on economic competitiveness and countries’ financial stability. This, in turn, is important

(i) for investors, who aim to hedge climate risks in their portfolios, (ii) for governments

to find the fiscal space to support low-carbon investments while preserving macrofinancial

fundamentals, and (iii) for financial supervisors and institutions with a macroeconomic and

financial stability mandate. Indeed, unanticipated climate transition shocks could lead to

asset price volatility and, if large asset classes are involved (Monasterolo et al. 2017) it

might exercise negative consequences on sustainability and financial stability.

3. Climate-financial decision theory under deep uncertainty

Pricing climate in the evaluation of financial contracts and portfolio’s management strate-

gies requires considering a set of conditions that pertain the nature of climate risks. A first

challenge for introducing climate into financial risk evaluation is related to the treatment

of the deep uncertainty that characterizes climate change (Hallegatte et al. 2012). Indeed,

(largest) climate shocks are expected to occur in the long-term (i.e. after 2050, IPCC 2013,

2014) but their exact localization, timing and magnitude (also in terms of economic and fi-

nancial losses) are unknown (Weitzman 2009). In addition, since climate shocks are expected

to be non-linear, their probability distribution cannot be inferred from historical data, and

neither can be approximated by a normal distribution (Ackerman 2017). This means that

the losses associated to future climate shocks cannot be extrapolated from the past, and so

is the performance of the assets exposed to those shocks. However, in traditional financial

pricing models (e.g. Merton 1974 for corporate debt) shocks follow a normal distribution,

are thus risk is calculated via measures of volatility (e.g. beta, Sharpe 1964). Then, in

absence of mitigation measures, climate shocks could trigger tipping points (Vaks et al.

2013), beyond which the elements of a systems could change in a potentially irreversible
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way (Solomon et al. 2009; Steffen et al. 2018), leading to domino effects.

Another source of uncertainty is related to policy makers and financial actors’ reactions

to future climate shocks. First, the decision of individual governments to implement climate

policies coherent with their Nationally Determined Contributions (NDCs) depends both

from internal political factors (citizens’ support, economic growth path, financial stability)

and from their expectations towards other governments’ actions. Then, the announcement

of a government to introduce a specific climate policy may trigger an investor’s reaction,

which depends on the investor’s expectations about the credibility of the policy, i.e. her

climate sentiments (see Dunz et al. 2019 for a review). If investors trust the government,

they would react to that by revising their portfolio’s allocation by increasing (decreasing)

their exposure to low-carbon (high-carbon) assets. However, if large asset classes and large

financial actors (in terms of market share) are involved, and if the reaction takes place in a

short time frame, the effect would most likely be assets’ prices volatility.

Traditional climate economics and financial models miss this circularity (Battiston and

Monasterolo 2018). Thus, they overlook the conditions for endogenously generated drivers

or barriers to the success of climate policies to emerge. Overall, the relation between policy

decisions and investors’ expectations on financial risk deriving from the policies generates the

possibility of multiple equilibria. Therefore, simple political and game theory considerations

could not exclude the endogeneity of default conditions, such as the decision of a government

not to align to the climate targets now and to run the risk of default later. This decision

may be rational for some governments under specific conditions (e.g. when short-term costs

of alignment are high, see e.g. Poland). It is well known that the computation of probability

distributions of shocks is not possible under multiple equilibria. Thus, a traditional Value at

Risk (VaR) strategy can’t be pursued, and no preferable risk investment for investors could

be identified. It follows that the standard approach to financial risk analysis, where most

likely scenario are identified, expected values computed, and financial risk estimated based

on backward looking metrics and historical values of market prices, is not adequate in this

context (Battiston 2019).

Under these conditions, traditional financial pricing models (Merton 1974, Black and
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Scholes 1973, Black and Cox 1976, among the most relevant examples of ex-ante evaluation of

financial contracts) are less relevant. Indeed, they rely on assumptions of normal probability

distribution of shocks, deterministic default conditions, single pricing that is informed by

historical portfolio or asset’s performance, deterministic volatility, and perfect hedging.

Recent literature has applied decision making under uncertainty to the analysis of the

optimal climate policy. On the one hand, Drouet et al. (2015) focus on the choice of the

decision-making criteria (e.g. maximum expected utility versus maxmin expected utility).

On the other hand, Berger et al. (2017) analyse risk aversion towards model uncertainty.

In this paper, we contribute to this stream of research by developing a climate-financial

decision theory under uncertainty. Our approach combines climate economics modelling,

financial risk analysis rooted on network theory, and financial risk pricing under deep un-

certainty. Our approach is modular and is organized in the following steps:

• We select policy relevant 2◦C aligned climate mitigation scenarios that correspond to

a certain level of Greenhouse gases (GHG) emissions’ concentration in the atmosphere

(ref. IPCC 2014);

• We calculate economic trajectories associated to a disorderly transition (P) from the

Business as Usual (BAU, i.e. no climate policy) to a mild or tight climate mitigation

scenario, for fossil fuels and renewable energy sectors and sub-sectors;

• We assess the impact of the shock on firms and sectors’ profitability and we compute

the change in market share and Gross Value Added (GVA) for sectors and firms in

fossil fuels and renewable energy sectors;

• We model the climate shock transmission to government’s fiscal revenues, to the change

in the value of the sovereign bond and its risk associated, by introducing the climate

spread;

• We apply the model to historical sovereign bonds data (10 years maturity) for OECD

countries included in the OeNB portfolio;
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• We calculate the Climate VaR and compute the largest gains/losses on the central

bank’s portfolio via financial network models (Battiston et al. 2017; Roncoroni et al.

2019).

The analytical description and empirical analysis are discussed in the following section.

4. Methodology

We present here the conceptual and analytical blocks of the framework for climate-

financial risk assessment under uncertainty.

4.1. Investors’ information set and risk management strategy

We consider a risk averse investor that aims to assess the climate risk of her portfolio of

sovereign bonds in a context of incomplete information and deep uncertainty (Keynes 1973,

Knight 1921, Greenwald and Stiglitz 1986, Nalebuff and Stiglitz 1983). In this context, future

asset prices are subject to shocks that depend on the sovereign future economic performance,

the risk premia demanded by the market, as well as the climate policy introduction and the

outcome of the energy transition of individual countries.

The information set of the investor and of the market includes two components: sovereign

climate transition shocks (for both fossil fuel based and renewable energy based sectors)

and sovereign idiosynchratic shocks. The investor sets her risk management strategy based

on the computation of the Value at Risk (VaR). The investor considers different feasible

climate policy scenarios (but has no information on the probability associated) for which

she can calculate the impacts (negative or positive) on the market share of fossil fuels or

renewable energy-based sectors and firms. The investor’s risk management objective is to

keep her VaR at a certain target level. The investor is subject to incomplete information

on her (and competitors’) exposure to risk stemming from a disordered transition from a

climate policy scenario to another one, uncertainty on the outcome of the country’s energy

transition, and no information on the probability distribution. Thus, her risk management

strategy is to consider a set of feasible climate transition scenarios that her portfolio should

withstand, and then compute the VaR conditional to those scenarios.
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4.2. Composition of the economy

We consider n countries j whose economy is composed of m economic sectors S. Eco-

nomic activities included in S are based on a refined classification of the Climate Policy Rel-

evant Sectors (CPRS), which was originally introduced in Battiston et al. (2017). NACE

codes (4 digits) are mapped to CPRS (2017), which identifies the main sectors that are

relevant for climate transition risk (fossil-fuel, electricity, energy-intensive, transportation,

buildings). CPRS classification departs from the NACE classification of economic sectors

(at 4 digit level) in so far, it catches the energy and electricity technology of the economic

activity. Its refinement (i.e. CPRS Rev2 2019) provides a more granular classification of the

economic activities in terms of technologies (utility—electricity—wind, solar, gas).

Within S, we focus on the fossil fuel and renewable energy primary and secondary sec-

tors and subsectors, due to the main role thy play in the low-carbon transition via the

energy and electricity supply along the value chain. Firms that compose economic sectors

S are considered as a portfolio of cash flows from fossil fuel and renewable energy activities.

The classification of countries and regions affected by the climate shock is based on the

LIMITS/CD-LINKS aggregation, see Kriegler et al. (2013), McCollum et al. (2018).

Figure 4.1: Climate Policy Relevant Sectors. The figure shows the classification of economic activities by

different degrees of granularity by technology
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4.3. Sovereign climate transition shocks

In the model, the investor knows that the sovereign entities issuing bonds have committed

to achieve certain climate targets, i.e. investments in renewable energy and energy efficiency

(e.g. the EU2030 targets), as stated in their NDCs. Thus, the climate and energy targets of

each countries are assumed to be known by the investor. These targets translate in a share

of energy and electricity produced by renewable energy sources.

However, for each country, the investor does not known if and when the country will

introduce climate policies to foster the alignment of the economy to its targets. She also

does not know along which economic trajectory, which means, the change in energy mix

of the economy that leads to a change in the market share of different renewable/fossil

sub-sectors of the economy and thus the revenues of the firms in those sectors.

The investor does not have priors on the probability of these events and assumes that if

a country implements the low-carbon transition, then it does so by switching from its BAU

scenario to one of the climate policy scenarios described by the scientific community (i.e.

the energy and economic scenarios based on IEA roadmap and IPCC climate scenarios, see

Kriegler et al. 2013, IPCC 2014). This assumption is motivated by the fact that there is

policy and scientific consensus on these climate policy scenarios and their trajectories.

The transition of a country from BAU to a climate policy scenario can occur orderly

or disorderly. Orderly, means here that the introduction of a climate policy is carried out

timely enough for the country to achieve its renewable energy targets and with a public and

predictable schedule. In this scenario, investors can anticipate it and discount the effects on

asset prices of the economic activities affected. For instance, the phasing out of coal-based

electricity plants is announced to happen with a certain schedule, which is maintained and

the market players know that it will be maintained. Thus, they can discount the future

value of investments in assets that have these plants as underlying, accordingly, and they

can price the risk associated to their exposure to financial contracts related to those plants.

In contrast, disorderly means that the transition is carried out at a schedule that is not

predictable by markets and investors, e.g. the government introduces the climate policy

in a late and sudden way, or retroactively revise its policies. In this case, we assume that
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the climate policy shock stemming from a disordered transition is not anticipated (despite

potentially expected) by the investor. This is due to the backward looking nature of the

benchmark considered by asset managers and on which asset managers’ performance (and

thus remuneration) is assessed (Silver 2017). It is common knowledge that asset managers

take investment decisions based on the benchmark in their respective markets (Greenwald

and Stiglitz 1983). Recent research shows that the market benchmark is carbon intensive

(see e.g. Battiston and Monasterolo 2019 for the case of corporate bonds market benchmark

against which the European Central Bank’s corporate bonds purchase (CSPP) has been

assessed).

If the investor cannot anticipate the policy shock, then we can assume that she cannot

discount correctly the effect of a climate policy on the change in asset prices of the economic

activities affected by the transition. A failure to anticipate the climate policy shock leads

to a failure in pricing it correctly. In turn, this has potentially severe implications on price

volatility, on portfolio’s performance and financial stability.

It is important to notice that the assessment of the policy shock could be incorrect even

on average across market participants. The motivation for considering this possibility is due

to the fact that several recent policy events (achievement of Paris Agreement, outcome of

US elections, the US withdrawal from Paris Agreement, Brexit, the outcome of 2018 Italian

elections) have been incorrectly forecast by most observers and investors. Nevertheless,

these events and their incorrect pricing are having long-lasting economic effects (see e.g. the

spread on Italy’ sovereign bonds). This implies that these effects could not be priced in by

market participants, and this possibility should be considered in financial pricing models

of sovereign bonds. Since the experience shows that the possibility that markets do not

anticipate correctly policy events and their economic impact is material, we assume that the

investor wants to include this possibility among her scenarios. For instance, the phasing out

of coal based electricity plants could occur late on the policy agenda, behind the initially

announced schedule (e.g. in Poland), in a situation where market players are thinking that

it won’t happen any longer. This implies that they do not discount correctly the future

value of investments in the assets that have these plants as underlying.
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Today, the information available to policy makers and market players on the trajectories

of future values of economic sectors’ market share comes mostly from Integrated Assessment

Models (IAM). These are (partial or general) equilibrium models, calibrated on the recent

state of the economy and climate targets, and provide trajectories in which the economy

remains in equilibrium along any given trajectory. Thus, moving from a BAU to a climate

policy scenario implies jumping from an equilibrium condition to another one. Moreover,

the levels of output of the sectors of the economy must be consistent one with each other to

reach again equilibrium conditions. The latter feature means that, for instance, a decrease

in electricity generation based on coal has to be compensated by an increase in generation

based on other sources to be consistent with the internal demand. This, in turn, affects

the relative prices. Each trajectory is also consistent with a specific target in terms of

GHG by 2050, and with a specific scenario on the status of international coordination on

climate efforts (McCollum et al. 2018). The trajectories integrate also the estimates of

climate change damages to physical assets in the economy by means of a climate module.

There exists only a limited number (less than 10) of established IAM in the world, run

by independent and internationally recognized scientific institutions. The models consider

a common set of internationally agreed climate policies and emissions scenarios but differ

in the way they define certain output variables and in the data used for the calibration

(e.g. Kriegler et al. 2013, McCollum et al. 2018). There is a consensus in considering the

IAMs’ set of trajectories as the information set available today about the future economic

impact of climate change. Nevertheless, it is increasingly recognized that such models have

some limitations (e.g. in the computation of the trajectories and outputs) that relate to

the model structure and behaviour, and can affect the policy relevance of the outcomes (see

e.g. Battiston and Monasterolo 2018). In our model, the investor takes the trajectories

across IAM models and scenarios as common information set. To simplify the analysis, and

without loss of generality, we restrict the choice to two models (GCAM and WITCH) and

four climate policy scenarios (see section 5).
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4.4. Sovereign default conditions

Based on the motivations discussed in Section 2, we assume here that sovereign bonds

are not risk-free but are instead defaultable (Duffie and Singleton 1999; Duffie et al. 2003).

Following a stream of literature (Gray et al. 2007), we model the payoff of the defaultable

sovereign bond as dependent on the ability of the sovereign to repay the debt out of its fiscal

revenues accrued until the maturity. More in detail, the balance sheet of the sovereign entity

is modelled as follows:

• Assets: net fiscal assets, i.e. the accrued value over time of tax revenues minus expen-

ditures such as investments and subsides;

• Liabilities: debt securities issued as sovereign bonds with the same maturity.

Differently from Gray et al. 2007, we do not consider whether debt is issued in local or

foreign currency, and we do not consider exchange rate risk.

The sovereign default condition is defined as the value of net fiscal assets at the

maturity being smaller than the liabilities (i.e. the face value outstanding of bonds plus,

possibly, the coupons):

Aj(T ) < Lj (1)

where T is the maturity, Aj is the value of net fiscal assets, and Lj are the liabilities of

the issuer j.

In the context of climate change, there is a consensus among scholars and practitioners on

the fact that markets and investors are not yet pricing in all the information available about

climate-related financial risks (see section 2). Therefore, we relax the classic assumptions

of efficient and frictionless markets that is needed in the Merton model (Merton 1974) to

solve the pricing in closed form. Our goal here is to model the mechanism of the shock

transmission channel from fiscal revenue to the value of the sovereign bond, in a market

that is non necessarily efficient. In this regard, we consider the following parsimonious set

of assumptions:

• Commodity prices are constant in the 3 years’ shock duration.
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• The asset value is observable only at the investment time t0 and at the maturity Tj.
2

• The value of the liabilities at Tj is known.

• The asset value at the maturity differs from the initial value because of two types of

shocks: an idiosyncratic shock, and a climate policy shock.

• The idiosyncratic shock distribution at Tj is common knowledge, although individual

shocks cannot be anticipated.

• Individual climate policy shock cannot be anticipated. The magnitude is known, and

calculated from the IAMs trajectories (see Section 4.3, but the probability distribution

is unknown (and thus represents a source of uncertainty).

• In a disorderly transition, investors assume that economic activities in renewable en-

ergy and low-carbon sectors increase in value, while economic activities in fossil fuels

and high-carbon sectors decrease in value. In the absence of information of how id-

iosyncratic shocks and climate policy shocks interact, investors consider the two types

of shocks as independent. Thus, the net effect of a climate policy shock is to shift

the distribution of the idiosyncratic shocks to the left or to the right, depending on

the weight of low-carbon sectors in the current composition of the Gross Value Added

(GVA, see below).

In Section 4.6, we derive the expression of the default probability on the sovereign bond,

conditional to a given climate policy scenario P , as a function of: the initial value of the

assets, the face value of the liabilities, and the distribution of the idiosyncratic shocks. 3

2One way to infer the initial value of the asset from market values is to relating it to the market value of

the liabilities at t0.
3In principle, if the climate policy shocks were assigned the same likelihood, i.e. they are considered to

occur with a uniform probability, we can also write the unconditional probability of default. The same is

true if policy shocks are assigned probability weights estimated from expert judgment.
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4.5. Impact of climate policy shock on macroeconomic conditions: energy and electricity

sectors

We consider the contribution of a sector S to country j’s net fiscal assets and how this

can be affected by changes in the economic performance of the sector S, either negatively or

positively. We then relate the performance of the sector to the change in its market share

as a result of a disorderly climate policy transition scenario.

In a disordered transition, a climate policy shock affects the performance of sectors S

via a change in economic activities’ market share, cash flows and profitability, eventually

affecting the Gross Value Added (GVA) of the sector. The climate policy shock is calculated

at the sector, country and regional level. The country’s GVA composition is available at

NACE 2 digit level from official statistics (e.g. Eurostat). Negative shocks result from the

policy impact on the GVA of sectors based on fossil fuels technology, while positive shocks

result from the impact on the GVA of sectors based on renewable energy technology.

GVAj,el|r = GVAj,el × Shareel|r (2)

where

GVAj,el = Shock on GVA from electricity, (3)

Shareel|r = Share of GVA from renewable sources. (4)

The GVA of country j, GVAj can be decomposed as follows:

GVAj = GVAj,e|f + GVAj,el|f + GVAj,el|r (5)

where

GVAj,e|f = Shock on GVA from primary energy fossil, (6)

GVAj,el|f = Shock on GVA from secondary energy, electricity, fossil, (7)

GVAj,el|r = Shock on GVA from secondary energy, electricity, renewable. (8)
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From an accounting perspective, at the level of an individual firm, it holds true that a

decrease (increase) x in the market share translates in a relative decrease (increase) x in its

sales, as long as market conditions are the same4. Indeed, a body of empirical literature has

found a strong and positive relation between firms’ market-share and profitability (Szyman-

ski et al. 1993; Venkatraman et al. 1990). At similar argument can be made at the level

of countries’ economic sectors, such as their utility sectors. A decrease (increase) x in the

market share in a given region of countries competing on the energy market translates in a

relative decrease (increase) x in its sales. As a result, there is a decrease (increase) in the

tax revenues that the sovereign issuer j collects from the firms operating in that sector in its

country.5 In the case of the energy and utility sectors, this argument is corroborated by the

fact that ownership is very concentrated in both fossil and renewable business. Indeed in

most EU countries there is just a major energy firm (e.g. OMV in Austria, ENI in Italy) and

one major utility firm. Let’s consider two countries j1 and j2, with utility sectors Sj1 and Sj2 ,

each represented by a single firm. Each of the two firms has a certain composition of energy

sources, i.e. an energy mix composed by coal, gas, hydropower, wind, solar photovoltaic

(PV) etc. To simplify the reasoning, we only consider a business line of fossil-based power

generation and a renewable energy-based power generation. Each business line contributes

to the firm’s profits.

Before the policy shock, the utility firm Sj1 has a larger share of power generation from

renewable sources compared to the firm Sj2 in the other country. As a result of the policy

shock, both countries align themselves from the BAU B to a climate policy scenario P . For

the utility firms, this means that they move from a pre-shock energy mix to a post-shock

4More precisely, it holds under the conditions that total demand and prices remain unchanged in the

period considered, and that returns to scale are constant.
5Notice that the value of the net fiscal assets of issuer j depends on the sum of the profits of firms

that are fiscal residents in j. While the tax rate may vary in principle with firms’ size (e.g. total level of

pre-tax profits), in many cases large firms are subject to similar tax rates than smaller firms.Hence, agents

assume that an x% drop in firm’s profits implies the same x% drop in tax revenues. This is a conservative

assumption because when tax rates are progressive, if large firms’ profits decrease substantially, then these

firms would contribute proportionally less to the tax revenue of the country.
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energy mix, in which the renewable energy sources have a larger weight.

As a result of the change in energy mix, there is decrease in the profit of the fossil-based

business line, denoted as πFoss(Sj, P ) < πFoss(Sj, B). This is because some of the active

power plants have to be phased out before the end of their life time. This decrease in

profit is related to the decrease of the value of carbon intensive assets, usually referred to

as ”stranded assets” (Caldecott 2018).

For the renewable-based business line, the same change in energy mix implies instead an

increase in profits, denoted as πRen(Sj, P ) > πRen(Sj, B). Notice that the renewable-based

business line of a country faces not only the domestic demand, previously satisfied by the

fossil-based business line, but possibly also some of the foreign demand, in case the policy

shock results in a decrease in capacity and supply of the utility sector of the other country.

If before the policy shock the renewable energy firm Sj1 operates below its full capacity,

after the policy shock it can increase generation up to the full capacity at no additional cost,

thus increasing profit. Further, the firm can increase its profit by expanding its capacity,

provided that the firm can finance the expansion of its power generation capacity and that

construction time of the new plants is shorter than the duration of the process of alignment

of the economy as a result of the policy shock. The net effect of the change in energy mix on

the profit of a given sector depends on the pre-shock energy mix and the post-shock energy

mix. For instance, sector Sj1 will have a larger post-shock profit compared to Sj2 , denoted

as π(Sj1 , P ) > π(Sj2 , P ), because it starts from a larger pre-shock share of renewable-based

power (everything else being equal). Moreover, Sj2 ’s profit (summed over the two business

lines) could decrease after the policy shock, denoted as π(Sj2 , P ) < π(Sj2 , B), if it is not

possible for Sj2 to more than compensate on the renewable business line the losses on the

fossil business line.

The final impact of the climate policy shock on the net fiscal assets of an issuer j depends

not only on the tax revenues from sector Sj and thus on its profit π(Sj, P ), but also on the

expenses that the issuer country incurs in terms of public investments and subsidies related

to sector Sj.

Modeling explicitly the profit of the firms, the public investments and the subsidies in
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sector Sj, as well as in all the other climate relevant sectors, would require to spell out many

more details, such as the lifetime of the plants, the dynamics of supply and demand as well

as the dynamics of productivity. This task is out of the scope of the present paper. The

consideration discussed earlier in this section lead us to make the assumption that a relative

change in the market share of sector S within the country j, implies a proportional relative

change in the net fiscal assets of issuer j from sector S.

We define a market share shock to sector S under the policy scenario P , estimated based

on IAM model M , and denoted as uj(S, P,M), as follows:

uj(S, P,M) =
mj(S, P,M)−mj(S,B,M)

mj(S,B,M)
. (9)

We define the net fiscal assets related to sector S, denoted as Aj(S), as the difference

between accrued fiscal revenues from sector S and public investments and subsidies granted

by j to the same sector.

The impact of the market share shock (resulting from the policy shock P ) on net fiscal

assets of sector S is thus assumed to imply a change ∆Aj(S, P,M), estimated under model

M , as follows:
∆Aj(S, P,M)

Aj(S)
= χS uj(S, P,M), (10)

where χ denotes the elasticity of profitability with respect to the market share.

The forward-looking trajectories of sectors’ market shares are taken from the LIMITS

IAM scenario database (Kriegler ea. 2013), considering combinations of two models M (i.e.:

GCAM, WITCH) and four climate policy scenarios P , characterized by different Greenhouse

Gases (GHG) emissions targets and way to achieve them 6.

Because, in general, the policy shock affects at the same time several sectors in the

economy of the issuer j, we have to consider the total net effect on the issuer’s net fiscal

assets as follows:

∆Aj(P,M)

Aj
=

∑
S

∆Aj(S, P,M)

Aj(S)

Aj(S)

Aj
=

∑
S

χS uj(S, P,M)
Aj(S)

Aj
, (11)

6See the LIMITS database documentation for more details https://tntcat.iiasa.ac.at/LIMITSDB/

static/download/LIMITS_overview_SOM_Study_Protocol_Final.pdf
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In principle, in our approach, the elasticity coefficient could be estimated empirically for

the specific sectors of the sovereign issuers in the portfolio. In this work, the data to carry

out this estimation was not available. Being our goal to provide an estimation of the upper

bounds of the magnitude of the shocks due to a given climate policy scenarios P (see section

5), where the shock is transmitted to the value of the sovereign bond via the change in

sectors’ market share, GDP and fiscal assets, we have assumed a value of χ constant and

equal to 1 (typical empirical values range between 0.2 and 0.6).

4.6. Climate shock transmission to sovereign fiscal assets and default probability

In order to take into account the joint effect of the idiosyncratic shock and the shock

associated with a climate policy scenario P , the agents model the assets Aj(Tj) of the

sovereign issuer j at time Tj as a stochastic variable described by the following equation,

Aj(Tj) = Aj(t0) + ξj(Tj, P ) + ηj(Tj), (12)

where Aj(t0) is the value of the asset at time t0, ξj(Tj, P ) is the shock observable at time Tj

associated with the climate policy scenario P , and ηj(Tj) is an idiosyncratic shock observable

at time Tj. In line with Gray ea. 2007, the issuer defaults at time Tj, if her assets at the

maturity are lower than her liabilities, as a result of the two shocks, i.e.

Aj(t0) + ξj(Tj, P ) + ηj(Tj) < Lj (13)

where the value of the liability Lj is assumed to be independent of the climate policy scenario

P and of the time.7

In this formulation, for a given policy shock ξj(Tj, P ), the conditioned default probability

of the issuer is the probability that the idiosyncratic shock ηj at time Tj is smaller than a

threshold value θj(P ), which depends on issuer j’s liability and initial asset value at time t0,

and on the magnitude of the climate policy shock ξj on the asset side. Formally, the default

condition reads:

ηj(Tj) < θj(P ) = −ξj(Tj, P )− Aj(t0) + Lj (14)

7This means that the debt cannot be restructured or repurchased by the issuer.
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In case of no policy shock, ξj equals 0 and the default condition becomes:

η(Tj) < θj(B) = −Aj(t0) + Lj. (15)

Notice that the values of the thresholds differ by the magnitude of the policy shock:

θj(P ) = θj(B)− ξj(Tj, P ). (16)

The default probability in absence of the policy shock, i.e. in the business as usual (BAU)

scenario is:

q(B) = P(ηj < θj(B)) =

∫ θj(B)

ηinf

φ(ηj) dηj, (17)

where p(ηj) is the probability distribution of the idiosyncratic shock ηj, and ηinf is the lower

bound of the support of the probability distribution. In contrast, the default probability in

the case of policy shock P is:

q(P ) = P(ηj < θj(P )) =

∫ θj(P )

ηinf

φ(ηj) dηj =

∫ θj(B)−ξj(Tj ,P )

ηinf

φ(ηj) dηj.

The difference between the value of the threshold from BAU to P, i.e. −ξj(Tj, P ) has a

negative sign because it reflects the fact that if the policy shock is negative, default threshold

becomes larger and so does the default probability. Now, the change in default probability

due to a climate policy shock (i.e. a disorderly transition to a given climate scenario P ),

relative to the case of no policy shock B is

∆q(P ) = q(P )− q(B) =

∫ θj(P )

ηinf

φ(ηj) dηj −
∫ θj(B)

ηinf

φ(ηj) dηj. (18)

We then have

∆q(P ) =

∫ θj(P )

θj(B)

φ(ηj) dηj =

∫ θj(B)−ξj(Tj ,P )

θj(B)

φ(ηj) dηj. (19)

Notice that the change in default probability depends on the policy shock ξj(Tj, P ) because

it appears in the lower bound of the integral.8 In order to understand the impact of the shock

8Since all shocks are computed as difference from the same scenario B to the various scenarios P , we

drop the dependence from B.
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on the default probability consider the case of a negative shock on fiscal asset ξj(Tj, P ) < 0.

The larger, in magnitude, is the shock, the larger is the upper extreme of the integral, and

hence the larger is the increase in default probability, resulting from the policy shock P .

In the previous section we have modelled the policy shock as ξj(Tj, P ) as a shock on the

fiscal assets of the issuer. Consistently, we interpret now the shock as ξj(Tj, P ) =
∆Aj(P,M)

Aj(P,M)
.

In virtue of Eq. 11, the shock can be expressed as sum of the shocks on the economic sectors

of the economy j as follows:

ξj(Tj, P ) =
∆Aj(P,M)

Aj(P,M)
=

∑
S

χS uj(S, P,M)
Aj(S)

Aj
. (20)

4.7. Climate shock’s introduction in the pricing of defaultable sovereign bonds

Based on the motivations discussed in Section 2, we consider a defaultable sovereign

bond issued at time t0 and with maturity T . For the sake of simplicity we illustrate the

derivation in the basic standard case of a zero-coupon bond with constant risk free rate,

constant yield and with exogenous recovery rate Rj.

We denote the default probability as q = P(τ < T ), where τ is the time of default. In

case of default, the bond pays a recovery rate Rj, defined as fraction of its face value. The

expected unitary value of the bond at t0 can be written as

vj = e−rf (T−t0)(1− qj + qj Rj) (21)

where rf is the risk free rate. The yield of the bond is defined as

rj = − 1

(T − t0)
log(1− qj(1−Rj)). (22)

The spread of the bond is the difference between the bond yield and the risk free rate rj−rf .

In the previous sections, we have modelled how the the climate policy shock affects the

default probability of the defaultable bonds. Here, we can now derive its impact on the

expected value of the bond and on its yield.

On the one hand, there is no established model to account for a risk premium for climate

policy shocks. On the other hand, there is ambiguous evidence that so far markets have

been pricing climate risk across instruments and asset classes.
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The change in yield can be considered a non-decreasing function f of the climate policy

shock ξ as follows:

∆rj(P ) = rj(q(P ))− rj(q(B)) = −fr(ξj(Tj, P )). (23)

The minus sign highlights the direction of the relationship. Indeed, based on the assumptions

in the model, fr is non decreasing, since a negative climate policy shock ξj(Tj, P ) does not

decrease the default probability q and thus does not decreases yield.

A similar relation holds for the change in value of the bond,

∆vj(P ) = vj(q(P ))− vj(q(B)) = e−rf (T−t0)(1− qj + qj Rj)

= − e−rf (T−t0)(qj(P )− q(B))(1−Rj) = (24)

= fv(ξj(Tj, P )). (25)

We do not aim here to calibrate Equations 23 and 31, as this would require to estimate the

probability distribution φ of the idiosyncratic shocks on net fiscal assets in Equation 4.6.

It is also known that estimating sovereign default probability is problematic because the

default is a rare event compared to the available time series. The aim of the paper, at this

stage, is carry out some estimations of the impact of the climate policy shock on a bond

portfolio based on scenarios.

4.8. Climate VaR of a sovereign bond portfolio

In the previous section we have developed a simple quantitative model of how a future

climate policy shock (due to a disorderly low-carbon transition) can impact on the yield and

the expected value of a sovereign bond, through the channel of its intermediate impact on

the sovereign net fiscal assets and its default probability.

We have distinguished the nature of the policy shock from that of the daily shocks on

the bond market price, which can seen as reflecting the daily adjustments in how the market

as a whole assesses the future fundamentals of the economy and the sovereign risk, without

accounting for the policy shock.
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In the absence of information on how the climate policy and the shocks on market value

interact, we consider the two processes as independent. This is motivated by the fact there

is little evidence of markets having priced in climate policy risk in their evaluation so far and

the fact that we are considering a climate policy shock that leads to a disorderly alignment

of the economy. Given this information set and market conditions, an investor can only

approximate the distribution of future bond market values as the one of today plus the

effect of climate policy shock.

We leave for future work to investigate whether it can be proved formally that, given

the information set, this approximation of the distribution of the sovereign bond value is an

optimal assessment, under some statistical objectives of likelihood.

We can thus express the value of the bonds portfolio as follows:∑
j

Zj(vj(1 + xj) + ∆vj(P )), (26)

where Zj is the numeraire amount invested at time t0 in each bond (at the market value

of t0), vj is the market unitary value of the bond at t0, xj is the shock on market value at

t0 < t < T , ∆vj(P ) is the change in expected value of the bond that would be caused by a

climate policy shock P .

Definition The Value at Risk of the portfolio is defined as the value such that the fol-

lowing expression holds:∫ VaR

dx1, ...dxj, ..., dxn ψ(x1, ..., xj, ..., xn)
∑

j=1,...,n

Zj (vj(1 + xj) + ∆vj(P )) = cVaR, (27)

where cVaR is the confidence level (usually set between 0.5% and 5%), ψ(x1, ..., xj, ..., xn) is

the joint probability distribution of shocks on sovereign market prices.

Notice that joint probability distribution captures the fact that sovereign market prices

can be highly correlated in certain times (as it happened in 2012).

Our model shows that there are strong reasons to expect that a disordered climate

transition (and thus a climate policy shock) would impact the coupon rate and thus the value

of a sovereign bond. However, to our knowledge, based on the literature review performed in
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Section 2, there is no empirical literature on the relation described in Equation 23. Even the

literature on the drivers of sovereign coupon rate in general, outside the context of climate

risk, can’t provide conclusive evidence.

One strategy to carry out a risk analysis in the face of the limited information available

is to consider a first order approximation of Equation 23:

∆rj(P ) = −f(ξj(Tj, P )) ≈ −(f(0) + f ′(0)
∑
S

χS uj(S, P,M)Aj(S)), (28)

as a Taylor expansion (see eq. 13), and to consider a scenario in which:

∆rj ≈ −
ξj(Tj, P )

Aj
= −

∑
S

χS uj(S, P,M)
Aj(S)

Aj
. (29)

∆rj ≈ −
ξj(Tj, P )

Aj
= −

∑
S

χS u
GVA
j (S, P,M)

GVAj(S)

GVAj

. (30)

We then compute the change in value of the bond as

∆vj(P ) = e−rf (T−t0)((1− qj(P ))erj(P ) (T−t0) + qj(P )Rj)+ (31)

− e−rf (T−t0)((1− qj(B))erj(B) (T−t0) + qj(B)Rj) = (32)

≈ e−rf (T−t0)erj(P ) (T−t0) − e−rf (T−t0)erj(B) (T−t0) = (33)

= e−rf (T−t0)(e(rj(B)+∆rj(P )) (T−t0) − erj(B) (T−t0)) = (34)

= e−rf (T−t0)erj(B)(T−t0)(e∆rj(P ) − 1). (35)

Notice that the approximation in the third passage is carried out for small values of qj(B)

and qj(P ). To calibrate the above expression, one can estimate rj(B) as the current market

value of the coupon rate at t0. Since the policy shock has not occurred yet in the real world,

this is indeed the scenario B. Finally the term ∆rj(P )) is taken from the previous Equation

30.

5. Climate policy scenarios and shock trajectories

With the aim to assess the impact of climate policy shocks on central banks’ portfolio,

we select four climate policy scenarios aligned to the 2 degrees C target from the LIMITS
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database and a baseline of no climate policy, described in Table 1. We use the LIMITS

project database (Kriegler et al. 2013) to compute the trajectories of the market shares for

several variables including the output of primary energy from fossil fuel and the output of

secondary energy in the form of electricity both from fossil fuel sources and renewable energy

sources. Then, we estimate the effect of the introduction of market-based climate policies

(i.e. a carbon tax). The two emissions concentration targets chosen under milder and tighter

climate policy scenarios (i.e. 500 and the 450 ppm), determine the amount of CO2 to be

emitted in the atmosphere by 2100 consistently with the 2 degrees C aligned IPCC scenarios

(IPCC 2014). The 500 and 450 ppm scenarios are associated to a probability of exceeding

the 2 degrees C target by 35-59% and 20-41% respectively (Menishausen et al. 2009). Thus,

the choice of specific emissions concentration targets could be considered as a proxy for the

stringency of the global emission cap imposed by potential climate treaty.

A change in climate policy (i.e. in the value of the carbon tax every 5-years time step)

implies a change in the sectors’ macroeconomic trajectory, and thus a change in the market

share of primary and secondary energy sources. The shock in the market share could differ

in sign and magnitude depending on the scenario S, the region R, the model M used and

the sector S. We consider a shock occurring in 2030, affecting the market shares of the

sectors to which OeNB’s portfolio is exposed via sovereign bonds.

6. Data

In this section, we present the datasets used for our analysis.

6.1. OeNB’s portfolio holdings dataset

OeNB’s portfolio contains 1386 entries as of June 2018. Exposures to sovereign bonds

represents the majority of the holdings, followed by corporate bonds and equity holdings,

completed by a small share of other financial products. Each issuer is associated to a country

code and a financial instrument (MiFID asset class), which is in turn associated to a NACE

Rev2 4-digit code and to a weight on the overall OeNB’s portfolio. For less than 3% of the
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Climate policy shock 
scenario 

 

Climate 
policy 

scenario 
 

     Scenario Class Target by 2020   Target between 2020 and 
2100 

Not applicable Base No climate policy None None 

Disorderly switch from Base 
to RefPol-450 

RefPol-450 Countries 
Fragmented, 

Immediate Action 

Lenient 450 ppm: 2.8W/m2 in 2100, 
overshoot allowed 

Disorderly switch from Base 
to StrPol-450 

StrPol-450 Countries 
Fragmented, 

Immediate Action 

Strengthened 450 ppm: 2.8W/m2 in 2100, 
overshoot allowed 

Disorderly switch from Base 
to RefPol-500 

RefPol-500 Countries 
Fragmented, 

Immediate Action 

Lenient 500 ppm: 3.2W/m2 in 2100, 
overshoot allowed 

Disorderly switch from Base 
to StrPol-500 

StrPol-500 Countries 
Fragmented, 

Immediate Action 

Strengthened 500 ppm: 3.2W/m2 in 2100, 
overshoot allowed 

 

Figure 5.1: Table 1: Selected climate policy scenarios from the LIMITS database. Table 1 shows the

four climate policy scenarios considered (plus the Base scenario), i.e. RefPol-450, RefPol-500, StrPol-450,

StrPol-500.

portfolio it was not possible to assign a NACE 4-digit code. We have excluded the contracts

with missing code from the analysis.
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6.2. Classification of sectors of economic activity

The classification of economic sectors NACE Rev2 at 4-digits (Nomenclature statistique

des activités économiques dans la Communauté européenne) by Eurostat provides a detailed

well-established taxonomy of economic activities that is widely used in EU for policy pur-

poses. NACE sectors are listed from A—Agriculture, forestry, and fishing to U - Activities

of extraterritorial organizations and bodies. In principle, it would be possible to associate

the exposure of a specific financial instrument to a specific sector of economic activity with a

level of detail that would allow us to distinguish between carbon-intensive (and thus highly

exposed to climate policies) and low-carbon sectors. However, one important limitation

comes from the fact that the Eurostat classification of economic sectors (NACE Rev2) was

designed for national accounting purposes in a time when climate and sustainability con-

siderations were not considered. As a result, the economic activities are not grouped in

sectors that are relevant for the analysis of the impact of the low-carbon transition. For

instance, some oil companies are classified under Manufacturing while others under Mining

and Quarrying. We address this challenge by carrying out a remapping of the subsectors in

5 sectors that are more relevant for policy purposes (see Battiston et al. 2017).

6.3. Energy data

Data on energy and electricity production and prices by fossil fuel (natural gas, oil,

coal), nuclear and renewable energy technology (hydropower, solar, wind, biomass), country

and year are provided by the British Petroleum (BP)’s Statistical Review of World Energy

2018, and by the IEA’s World Energy Outlook (2018). We use data on energy electricity

production by source and country to estimate the gross value added of each technology and

its share on total electricity production by country. This information is then used to weigh

the impact of climate policy shock on the climate spread and on the sovereign bonds’ value.

7. Results

In this section, we focus on the results of the analysis for the sovereign bonds’ portfolio

of OeNB, for three reasons. First, sovereign bonds represent the largest share of central
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banks’ portfolio’s value (including OeNB’s one). Second, sovereign bonds’ value has been

affected by the introduction of unconventional monetary policies (e.g. the Quantitative

Easing) introduced by several central banks in the aftermath of the last financial crisis and

will likely be affected by the return to normal monetary policy regimes. Third, by focusing

on sovereign bonds, we can introduce the notion of sovereign climate spread and test it

empirically. We show here to what extent the transition from a scenario characterised by

no climate policy to a milder or tighter climate policy could affect sovereign bonds’ value

and yields, via positive and negative shocks, and thus imply gains or losses for OeNB’s

portfolio. We considered, under a climate policy scenarios, the impact of the country’s

debt/GDP ratio, expected economic growth, and also the country’s dependence on fossil

fuel energy and electricity, on the value of the 10-years sovereign bonds’ spread and the

sovereign bond’s value. It is worth remarking that in this exercise, the climate policy shocks

should be interpreted as potential gains and losses on individual contracts associated to a

disordered transition to a mild or tight climate policy scenario by 2030.

Table 7.1 shows the impact of climate policy shocks on the value of sovereign bonds

and sovereign bonds’ yields, i.e. the climate spread, computed with two LIMITS’ IAMs,

i.e. WITCH and GCAM, under a tighter climate policy scenario (StrPol-450). Notice that

positive shocks on the yield correspond to negative shocks on the value of the sovereign

bond. The largest negative shocks on individual sovereign bonds are associated to Australia

and Norway, that indeed show the highest yields (i.e. the climate spread). These shocks

are led by the large contribution to GVA and thus on country’s GDP of fossil fuel-based

primary and secondary energy sources, and by the WITCH IAMs’ forecasted trend of the

market share of these specific sectors in a tight climate policy scenario. In contrast, we notice

positive shocks for sovereign bonds of countries located in Austria and Southern Europe. The

positive shocks are led by the growing shares of renewable energy sources on the GVA of the

energy and electricity sector in those countries, and by the WITCH IAMs’ forecasted trend

of the market share of these specific sectors in the StrPol-450 scenario. Interestingly, EU

and extra-EU countries where nuclear represents a relevant share of electricity production

are subject to positive shocks on sovereign bonds’ value. This is due to the fact that the
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Models’ 
region   

WITCH: 
bond shock 

(%) 

WITCH: 
yield 

shock (%) 

GCAM: 
bond 

shock (%) 

GCAM: 
yield 

shock (%) 
EUROPE 1,30 -0,16 0,13 -0,02 

REST_WORLD -17,36 2,45 n.a. n.a. 

EUROPE 0,84 -0,10 0,03 0,00 

PAC_OECD -5,21 0,67 -18,29 2,61 

REST_WORLD 3,65 -0,44 n.a. n.a. 

LATIN_AM -6,10 0,79 -4,22 0,54 

LATIN_AM -0,50 0,06 -0,34 0,04 

EUROPE 1,24 -0,15 -0,11 0,01 

EUROPE -1,27 0,16 1,18 -0,15 

EUROPE -0,36 0,04 -0,42 0,05 

EUROPE 3,75 -0,45 0,51 -0,06 

EUROPE 1,58 -0,19 1,05 -0,13 

EUROPE 2,64 -0,32 0,47 -0,06 

EUROPE 1,34 -0,16 0,21 -0,03 

EUROPE -0,46 0,06 0,66 -0,08 

EUROPE 0,50 -0,06 -0,07 0,01 

EUROPE 0,78 -0,10 -0,08 0,01 

EUROPE 1,94 -0,24 0,42 -0,05 

EUROPE -1,42 0,18 0,33 -0,04 

PAC_OECD -5,05 0,65 -5,48 0,71 

REST_ASIA -0,48 0,06 -0,50 0,06 

EUROPE 2,60 -0,32 0,58 -0,07 

EUROPE 1,85 -0,23 0,44 -0,05 

EUROPE 2,45 -0,30 0,47 -0,06 

LATIN_AM -6,30 0,82 -2,71 0,34 

EUROPE -5,05 0,65 -0,91 0,11 

REST_WORLD -14,82 2,05 n.a. n.a. 

EUROPE -12,85 1,75 -2,49 0,32 

EUROPE 1,86 -0,23 0,27 -0,03 

REST_WORLD -1,54 0,19 n.a. n.a. 

EUROPE 2,30 -0,28 0,32 -0,04 

EUROPE -0,36 0,05 -0,77 0,10 

REF_ECON -2,63 0,33 -0,01 0,00 

NORTH_AM -4,04 0,52 -1,06 0,13 
 

Figure 7.1: Table 2: Impact of climate policy shocks on the value of sovereign bonds and sovereign bonds’

yields (climate spread) computed with GCAM and WITCH under the tighter climate policy scenario StrPol-

450.

IAMs used forecast large positive shocks on electricity produced from nuclear sources under

all climate policy scenarios.

Table 7.2 shows the magnitude of the climate policy shocks in a milder (i.e. StrPol-500)
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Model Scenario Region Asset Shock (%) 
WITCH LIMITS-RefPol-450 REST_WORLD -0,367 
WITCH LIMITS-RefPol-450 REST_WORLD -0,350 
WITCH LIMITS-RefPol-450 PAC_OECD -0,329 
WITCH LIMITS-RefPol-450 NORTH_AM -0,110 
WITCH LIMITS-RefPol-450 EUROPE -0,078 
WITCH LIMITS-RefPol-450 EUROPE 0,005 
WITCH LIMITS-RefPol-450 EUROPE 0,016 
WITCH LIMITS-RefPol-450 EUROPE 0,018 
WITCH LIMITS-RefPol-450 EUROPE 0,021 
WITCH LIMITS-RefPol-450 EUROPE 0,083 
WITCH LIMITS-StrPol-500 REST_WORLD -0,127 
WITCH LIMITS-StrPol-500 PAC_OECD -0,082 
WITCH LIMITS-StrPol-500 EUROPE -0,024 
WITCH LIMITS-StrPol-500 EUROPE -0,019 
WITCH LIMITS-StrPol-500 LATIN_AM -0,015 
WITCH LIMITS-StrPol-500 EUROPE 0,010 
WITCH LIMITS-StrPol-500 EUROPE 0,011 
WITCH LIMITS-StrPol-500 EUROPE 0,013 
WITCH LIMITS-StrPol-500 REST_WORLD 0,040 
WITCH LIMITS-StrPol-500 EUROPE 0,118 

 

Figure 7.2: Table 3: Magnitude of the climate policy shocks on individual sovereign bonds in a milder (i.e.

StrPol-500) and tighter (i.e. RefPol-450) scenario by region.

and tighter (i.e. RefPol-450) scenario, on individual assets of the central bank’s portfolio

in percentage points (i.e. 1=1%). The areas highlighted in red (green) show the top five

most negative (positive) shocks in the respective climate policy scenarios. For instance, the

shock -0,367% on the whole portfolio results from the exposure to a single sovereign bond
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located outside Europe. In contrast, the most positive shock +0,118%, results from the

exposure to a single sovereign bond’s issuer located in Europe. These results are influenced

by the change in market share of energy and electricity sectors (by fossil fuel or renewable

technology) estimated with the WITCH IAM by 2030. The shocks in market shares result

in a change in GVA of the sector and thus on country’s GDP. Notice that while the two

policy scenarios are relatively close (see Table 1), there are already significant differences in

shocks’ values.

Table 3: Magnitude of the climate policy shocks on individual sovereign bonds in a

milder (i.e. StrPol-500) and tighter (i.e. RefPol-450) scenario by region. Europe refers to

individual countries in the European Union (EU) not disclosed here for supervisory reasons

but available to reviewers uposn request.

8. Conclusion

Aligning finance to sustainability requires the introduction of financial pricing models

and risk metrics that encompass a source of risk not yet considered in financial economics,

i.e., climate. In this paper, we contribute to fill this gap by developing a methodology

for climate-financial risk assessment under uncertainty. Our approach allows to deal with

deep uncertainty and endogeneity of climate transition risk, and financial complexity, thus

complementing traditional financial pricing models. We consider a risk averse investor with

an information set composed of future climate scenarios (but no probability of occurrence

associated), economic trajectories under climate policy scenarios and some estimates of

probabilities, and historic values of data on financial performance of low/high-carbon firms

and sectors. Then, we combine prudential policies that don’t require probabilities (e.g.

min-nax valuation) with financial risk measures applied to variables for which estimates

of probabilities are available. This allows to make decisions retaining the variability in

information set, considering investor’s risk aversion and/or uncertainty.

The manuscript presents the theoretical background, the formalization and application

of our approach, including:
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• The formalization of a model that allows to price climate transition scenarios in the

value of individual sovereign bonds;

• The introduction of the notion of climate spread on 10-years sovereign bonds and its

empirical assessment;

• The computation of overall gains or losses for an investor’s portfolio under mild or

tight climate policy scenarios, by country and sector of economic activity.

Then, we apply the methodology to the sovereign bonds’ portfolio of the Austrian Na-

tional Bank (OeNB).

we find that the timing and credibility of the introduction of climate policies matter for

countries’ economic competitiveness and financial stability. Indeed, countries that started

earlier to align their economy to the climate targets, obtain a strengthened fiscal and financial

position, and negative climate-related yields on the sovereign, i.e. the climate spread. In

contrast, countries whose revenues derive directly or indirectly from fossil fuel based energy

production or consumption, have a positive climate spread and thus higher yields on the

sovereign. This, in turn, negatively affects the value of the sovereign portfolio of investors

exposed to such countries.

Our approach can help investors and financial supervisors to assess the conditions for the

onset of systemic risks in financial markets, and to inform portfolios’ rebalancing strategies

and risk mitigation measures.
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