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Abstract

Vector autoregression (VAR) models are widely used models for multivariate time
series analysis, but often suffer from their dense parameterization. Bayesian methods
are commonly employed as a remedy by imposing shrinkage on the model coefficients
via informative priors, thereby reducing parameter uncertainty. The subjective choice of
the informativeness of these priors is often criticized and can be alleviated via hierarchi-
cal modeling. This paper introduces BVAR, an R package dedicated to the estimation of
Bayesian VAR models in a hierarchical fashion. It incorporates functionalities that permit
addressing a wide range of research problems while retaining an easy-to-use and transpar-
ent interface. It features the most commonly used priors in the context of multivariate
time series analysis as well as an extensive set of standard methods for analysis. Further
functionalities include a framework for defining custom dummy-observation priors, the
computation of impulse response functions, forecast error variance decompositions and
forecasts.
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1. Introduction

Vector autoregression (VAR) models are widely used in multivariate time series analysis
across various disciplines (e.g., Crespo Cuaresma, Feldkircher, and Huber 2016; Enders and
Sandler 1993; Wild, Eichler, Friederich, Hartmann, Zipfel, and Herzog 2010). Popularized by
Sims (1980), VAR models have become a staple of empirical macroeconomic research (Kilian
and Lütkepohl 2017). However, the large number of parameters and the limited temporal
availability of macroeconomic datasets may lead to over-parameterization problems (Koop
and Korobilis 2010), that can be circumvented via a Bayesian approach. Informative priors
impose additional structure on the model and shrink it towards parsimonious, yet proven,
benchmarks. The result are models with reduced parameter uncertainty and significantly
enhanced out-of-sample forecasting performance (Koop 2013). The choice of these priors and
their informativeness poses a challenge and remains the fulcrum of discussion and criticism.
Giannone, Lenza, and Primiceri (2015) provide a data-based, theoretically grounded approach
of setting prior informativeness in the spirit of hierarchical modeling. They alleviate the
subjectivity of setting hyperparameters and demonstrate remarkable performance in common
analyses. BVAR is the first R package implementing these hierarchical Bayesian VAR models
and provides a complete and easy-to-use toolkit for estimation and analysis.
The field of Bayesian statistical software is a vivid one – increasing computational power
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has given rise to Markov chain Monte Carlo (MCMC) methods. Established software built
on Gibbs sampling, a variant of the Metropolis-Hastings algorithm, include BUGS (Lunn,
Thomas, Best, and Spiegelhalter 2000; Lunn, Spiegelhalter, Thomas, and Best 2009) and
JAGS (Plummer 2003). Stan (Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt,
Brubaker, Guo, Li, and Riddell 2017), an imperative probabilistic programming language for
statistical models, uses the No-U-Turn Sampler (Hoffman and Gelman 2014), a variant of
Hamiltonian Monte Carlo method, for improved robustness and efficiency. These packages
provide flexible and extensible tools for Bayesian inference and are available cross-platform
with interfaces to several languages (e.g., to R and Python). A range of other packages provide
similar or more specific implementations of MCMC algorithms – including PyMC3 (Salvatier,
Wiecki, and Fonnesbeck 2016) for Python and MCMCglmm (Hadfield 2010), greta (Golding
et al. 2018) as well as bvarsv (Krueger 2015) for R. Integrated nested Laplace approxima-
tion (Rue, Martino, and Chopin 2009) is an alternative approach to approximate Bayesian
inference with significant computational advantages, that is widely used in spatial modeling
(see e.g., Blangiardo, Cameletti, Baio, and Rue 2013; Bivand, Gómez-Rubio, and Rue 2015)
and has an R implementation in R-INLA (Rue, Martino, Lindgren et al. 2015). Despite this
variety of software for Bayesian inference, there are no comprehensive options dedicated to
Bayesian VAR modeling. The vars (Pfaff 2008) package represents a cornerstone in the field
of frequentist multivariate time series analyses with R, offering a complete set of VAR-related
functionalities. However, currently there exists no equivalent for paradigmatically different
Bayesian VAR models, in spite of their popularity.
Aforementioned packages cover a wide range of possible applications and provide powerful
and efficient tools for modeling and subsequent analysis. However, work with Bayesian VARs
is frequently done via ad hoc MATLAB and R scripts. As a result, code gets recycled and
pieced together frequently, without any central repository or version control facilitating re-
producibility (Ram 2013), while many other scripts are only ever used once. In this paper
we present BVAR, a software package for R that reconciles the advantages of more complete
toolkits for Bayesian inference and the specificity of ad hoc scripts. The package implements
the hierarchical modeling approach proposed by Giannone et al. (2015) to choose the informa-
tiveness of commonly used priors. The current version implements functionalities for a range
of common analyses and allows for the use of existing frameworks, such as coda (Plummer,
Best, Cowles, and Vines 2006) for MCMC diagnostics.
BVAR is licensed under the GNU General Public License 3 and is openly available on the
Comprehensive R Archive Network (CRAN, https://cran.r-project.org/package=BVAR)
and on GitHub (https://github.com/nk027/bvar).
The remainder of this paper is structured as follows. Section 2 describes the econometric
framework. Section 3 provides an overview of the BVAR package and Section 4 demonstrates
its use with an example. Section 5 concludes.

2. Econometric framework

In this Section we briefly introduce VAR models in the Bayesian context and outline the
approach to hierarchical prior selection proposed by Giannone et al. (2015). For a detailed
explanation and more information on Bayesian estimation of VAR models we refer to Koop
and Korobilis (2010) and Kilian and Lütkepohl (2017).

https://github.com/nk027/bvar
https://cran.r-project.org/package=BVAR
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2.1. Model specification

VAR models are a generalization of univariate autoregressive (AR) models and are commonly
resorted to as tools for investigating the effects of economic shocks. They are based on the
notion of dynamic behavior between lagged values of all variables in the model. A VAR model
of finite order p may be referred to as VAR(p) model and can be expressed as:

yt = ao + A1yt−1 + · · · + Apyt−p + εt with εt ∼ N (0, Σ) (1)

where yt is an M × 1 vector of endogenous variables, a0 is an M × 1 vector of constants,
Ap is an M × M matrix of coefficients and εt is a M × 1 vector of exogenous shocks. The
number of coefficients to be estimated is M +M2p and hence rises drastically with the number
of included variables and/or lags. This is referred to as the curse of dimensionality and is
especially problematic for frequentist estimation. In the Bayesian setting prior beliefs are
imposed on the model parameters, circumventing the curse and allowing for larger models with
significantly improved out-of-sample prediction accuracy to be estimated (see e.g., Bańbura,
Giannone, and Reichlin 2010; Koop 2013).

2.2. Prior specification

Properly informing prior beliefs is critical and naturally open to criticism. Giannone et al.
(2015) propose setting prior parameters in a data-based fashion, i.e., by treating them as
additional parameters. They do so by integrating out the marginal likelihood (ML) of the
model and using it as a decision criterion for exploring the parameter space. In their paper the
authors theoretically ground this approach and show its accuracy in the estimation of impulse
response functions. Via empirical examples Giannone et al. (2015) also demonstrate that
forecasting accuracy is superior to standard VAR models, performing as well as factor models.
Their approach has since been used extensively (see e.g., Alquist, Kilian, and Vigfusson 2013;
Miranda-Agrippino and Rey 2015; Altavilla, Giannone, and Lenza 2014).
They consider prior distributions of the commonly used Gaussian-inverse-Wishart family:

β|Σ ∼ N (b, Σ ⊗ Ω) (2)
Σ ∼ IW(Ψ, d) (3)

where b, Ω, Ψ and d are functions of a lower-dimensional vector of hyperparameters γ. Due
to the conjugacy of Equations 2 and 3 the ML of the model can be computed efficiently in
closed form as a function of γ (see Giannone et al. 2015, p. 439). In their paper the authors
consider three specific priors – the so-called Minnesota (Litterman) prior, which is used as a
baseline, the sum-of-coefficients prior and the single-unit-root prior.
The Minnesota prior (Litterman 1980) essentially imposes the hypothesis that individual
variables all follow random walk processes. This parsimonious specification typically performs
well in forecasts of macroeconomic time series (Kilian and Lütkepohl 2017, p. 356) and is often
used as a benchmark to evaluate accuracy. It is characterized by the following moments:
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E[(As)ij |Σ] =
{

1 if i = j and s = 1
0 otherwise

cov ((As)ij , (Ar)kl|Σ) =





λ2 1
sα

Σik
ψj/(d−M−1) if l = j and r = s

0 otherwise

The key parameter is λ and controls the tightness of the prior, i.e., it weighs the relative
importance of prior and data. For λ → 0 the prior is imposed exactly, while as λ → ∞
the posterior estimates will approach the ordinary least squares (OLS) estimates. Governing
the variance decay with increasing lag order, α controls the punishment of more distant
observations. Finally, ψ controls the prior’s standard deviation on lags of variables other
than the dependent.
Refinements of the Minnesota prior are often implemented as additional priors trying to
"reduce the importance of the deterministic component implied by VAR models estimated
conditioning on the initial observations" (Giannone et al. 2015, p. 440). The first of these, the
sum-of-coefficients (SOC) prior (Doan, Litterman, and Sims 1984), imposes the notion that
a no-change forecast is optimal at the beginning of a time series. It is implemented via Theil
mixed estimation by adding artificial dummy-observations on top of the data matrix, which
are constructed as follows:

y+

M×M
= diag

(
ȳ

µ

)

x+
M×(1+MP )

= [0, y+, . . . , y+]

where ȳ is a M × 1 vector of the averages over the first p observations of each variable. The
key parameter µ controls the variance and hence the tightness of the prior, i.e., for µ → ∞
the prior becomes uninformative. For µ → 0 the model is pulled towards a form with as many
unit roots as variables and no cointegration. This motivates the single-unit-root (SUR) prior
(Sims 1993; Sims and Zha 1998), which allows for cointegration relationships in the data. The
prior pushes the variables either towards their unconditional mean or towards the presence
of at least one unit root. Its associated dummy observations are:

y++

1×M
=

ȳ

δ

x++
1×(1+Mp)

=
[1

δ
, y++, . . . , y++

]

where ȳ is again defined as above. Similarly to before δ is the key parameter, governing the
tightness of the SUR prior.
Setting the parameters of these priors has been discussed extensively and a number of heuris-
tics have been proposed (see e.g., Litterman 1980; Doan et al. 1984; Bańbura et al. 2010).
Giannone et al. (2015) note that from a Bayesian perspective this choice of parameters is
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conceptually identical to the inference on any other parameter of the model. They show that
it is possible to treat the model as a hierarchical one, with the marginal likelihood of the
data, given the prior parameters, available in closed form for VAR models with conjugate
priors (Giannone et al. 2015, p. 437). Estimating these hyperparameters via maximization of
the ML is an empirical Bayes method with clear frequentist interpretation (Giannone et al.
2015).

3. The BVAR package

BVAR implements the hierarchical approach of Giannone et al. (2015) into R (R Core Team
2019) and hands the user an easy-to-handle and flexible tool for modeling hierarchical Bayesian
VAR models. It can be primarily seen as a toolkit for modern, (macro-)economic multivariate
time series analysis. Its hierarchical approach to prior selection serves as a safeguard against
problematic parameter choices. Due to its ease of use and flexible nature BVAR is ideal for
economic analyses in the fashion of Bańbura et al. (2010) or Koop (2013) and may be used
for consistency checks of similar models written in single-use scripts. It can also serve as an
introduction to the Bayesian paradigm in multivariate economic time series modeling.
The package has no dependencies outside base R and mvtnorm (Genz, Bretz, Miwa, Mi,
Leisch, Scheipl, and Hothorn 2019) and is thus available cross-platform and even on minimal
installations. It is implemented in native R for transparency and in order to lower the bar
for contributions and/or adaptations. Regardless, a functional approach to the package’s
structure facilitates future ports of computationally intensive steps to e.g., C. The complete
documentation, helper functions to access the multitude of settings and use of standard
methods for analysis make the package easy to operate, without sacrificing flexibility.
BVAR features extensive customization options regarding priors to be employed, their pa-
rameters and their hierarchical treatment. The Minnesota prior is used as baseline; all of
its parameters are adjustable and can be treated hierarchically. Options to include the SOC
and/or SUR priors are also readily available. Furthermore, the flexible implementation al-
lows users to specify their own custom priors, as long as they are implemented via Theil
mixed estimation, i.e., as dummy-observation priors. Appropriate starting values for hy-
perparameters are obtained from optim() (R Core Team 2019), using the limited-memory
BFGS quasi-Newton method. Further options are devoted to the MCMC and specifically the
Metropolis-Hastings (MH) algorithm. Naturally, the number of burned and saved draws are
adjustable and thinning may be employed. To properly explore the posterior distributions
the proposal range of prior parameters is vital and can thus be set individually. Suitable
acceptance rates may be achieved by enabling automatic proposal rate adjustments during
the burn-in phase, with variable target and adjustment rates.
The primary application for Bayesian VAR models is the structural analysis of (macro-
)economic systems using impulse response functions (IRF). These functions serve as a rep-
resentation of shocks hitting the economic system and are used to analyze the reaction of
the model’s variables. The exact propagation of these shocks is of great interest, but proper
identification is necessary, in order for them to be interpretable in a meaningful way. BVAR
currently features two of the most common identification schemes – namely short-term zero
restrictions and sign restrictions. The former is also known as recursive identification and
is achieved via Cholesky decomposition of the variance-covariance matrix Σ (see Kilian and
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Lütkepohl 2017, Chapter 8). This approach is computationally cheap and achieves exact
identification without the need for too much theory-based presumptions about variable be-
havior. Only the order of the variables is pivotal, as contemporaneous reactions of certain
variables are limited. Sign restrictions (see Kilian and Lütkepohl 2017, Chapter 13) are an-
other popular means of identification, that is available in package, following the approach of
Rubio-Ramirez, Waggoner, and Zha (2010). This identification scheme makes some presump-
tions about the behavior of variables following a certain shock necessary. With increasing
dimension of the model this may quickly become challenging. Additionally, identification via
sign restrictions comes at the cost of increased parameter uncertainty and a loss of precision
for resulting IRF. Another question that can be tackled using VAR models is which variables
drive the path of a certain variable after a shock. To help analyze this, forecast error variance
decompositions (FEVD) are implemented. They allow for a more detailed structural analysis
of the processes determining the behavior of the economic system. Bayesian VAR models also
perform very well in forecasting exercises. They have proven to be superior to many other
methods (see e.g., Carriero, Kapetanios, and Marcellino 2009; Koop 2013), without needing
to induce particular restrictions on the parameters of the model like structural models. At the
time, BVAR can be used to conduct unconditional forecasts that rival the ones obtained by
factor models (Giannone et al. 2015). Conditional forecasts or scenario analyses, i.e., where
the future path of one or more of the endogenous variables is assumed to be known, will be
implemented in the future.
Estimation of Bayesian VAR models using the package can easily be customized via a vari-
ety of helper functions and arguments. The default values were chosen to provide a sensible
starting point and allow for step-by-step adoption of the package. Analyses are readily ac-
cessible to R users – options for plotting traces, densities, residuals, forecasts and impulse
responses are available alongside implementations of generic functions, including summary(),
predict(), irf() and many more. Final and intermediate outputs are provided in an id-
iomatic format and feature print() methods for a transparent research process. As a result,
existing frameworks may be used for further analysis – e.g., coda (Plummer et al. 2006) for
checking convergence properties or ggplot2 (Hadley 2016) for plotting.
In addition to the features introduced above BVAR includes the FRED-QD dataset (Mc-
Cracken and Ng 2016), licensed under a modified Open Data Commons Attribution License
(ODC-BY 1.0). It constitutes one of the largest databases for macroeconomic variables de-
scribing the US economy in the post-war period and is perfectly suited to multivariate time
series analyses. The dataset features 248 macroeconomic indicators on a quarterly basis, going
back as far as Q1 1959, 234 of which are included in the package. It is updated on a regular
basis, with the version currently included in the package ranging until Q4 2018. FRED-
QD lends itself to studies of a wide range of economic phenomena and is regularly used in
benchmarking exercises for newly developed models (e.g., Huber, Koop, and Onorante 2019).

4. An applied example
In this Section we demonstrate the functionalities of BVAR with a short, applied example,
using a subset of the included FRED-QD dataset (McCracken and Ng 2016). We go through
a typical workflow of (1) preparing the data, (2) configuring priors and other aspects of the
model, (3) estimation of the model, and finally (4) assessing outputs and plotting results.
Further possible applications and examples are available in the Appendix.
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4.1. Data preparation

The main function bvar() expects input data to be coercible to a numeric matrix, without any
missing values. We retrieve six time series from the FRED-QD database – real gross domestic
product (GDP) in billions of 2012 dollars, industrial production as an index, total non-farm
employment in thousands of persons, the average weekly hours worked in the goods-producing
industry, the consumer price index (CPI) for urban consumers as well as the effective federal
funds rate in percent. As we want to end up with stable AR processes we transform all
variables, except the federal funds rate to achieve stationarity. For GDP and CPI we use
yearly log-differences, for industrial production, non-farm employment and the average weekly
hours quarterly ones. Figure 1 provides an overview of the transformed time series.

R> set.seed(42)
R> library("BVAR")
R> data("fred_qd")
R> df <- fred_qd[, c("GDPC1", "INDPRO", "PAYEMS",
+ "CES0600000007", "CPIAUCSL", "FEDFUNDS")]
R> for (i in c("GDPC1", "CPIAUCSL"))
+ df[5:nrow(df), i] <- diff(log(df[, i]), lag = 4) * 100
R> for(i in c("INDPRO", "PAYEMS", "CES0600000007"))
+ df[2:nrow(df), i] <- diff(log(df[, i]), lag = 1) * 100
R> df <- df[5:nrow(df), ]
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Figure 1: Transformed time series under consideration.

Naturally this selection can be extended with other variables from FRED-QD or other sources.
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Also see Chapters 2 and 19 in Kilian and Lütkepohl (2017) for more information on variable
transformation.

4.2. Prior setup and further configurations

After preparing the data we need to specify priors, as discussed in Section 2, and adjust other
configurations of the model. Note that functions related to the ex-ante setup have the prefix
bv_. Thus users have a quick and easy way of accessing options and their documentations,
which facilitates their use and lowers entry barriers for new users. Methods and functions for
analysis in contrast, stick closely to idiomatic R.
As noted, the Minnesota prior is used as a baseline and its key parameter λ is included
in the hierarchical modelling exercise per default. We use bv_minnesota() to specify prior
distributions for the parameters λ and α, as well as upper and lower bounds for proposal
values. Following Giannone et al. (2015) the distributions are Gamma densities and the
bounds are used to discard implausible or impossible values, that are drawn from the Gaussian
proposal distribution used in the MH step. The argument var specifies the prior variance on
the constant term of the model and is generally set to be rather diffuse, i.e., to a large value.
We leave Ψ to be set automatically to the square root of the innovations variance after fitting
AR(p) models to the variables.

R> mn <- bv_minnesota(
+ lambda = bv_lambda(mode = 0.2, sd = 0.4, min = 0.0001, max = 5),
+ alpha = bv_alpha(mode = 2, sd = 0.25, min = 1, max = 3),
+ var = 1e07)

With the SOC and SUR priors we also include the two pre-constructed dummy-observation
priors. The priors of the key parameters are also assumed to be Gamma distributed and
specification works in the same way as for λ and α. Creation of custom dummy-observation
priors is done similarly via bv_dummy(), only requiring an additional function to construct
the observations (see Appendix A for a demonstration).

R> soc <- bv_soc(mode = 1, sd = 1, min = 1e-04, max = 50)
R> sur <- bv_sur(mode = 1, sd = 1, min = 1e-04, max = 50)

Once the priors are specified we provide them to bv_priors(), making use of the ellipsis
argument (...) for any dummy-observation priors. Via the argument hyper we choose
which prior parameters should be treated hierarchically. Its default setting "auto" includes
λ and the key parameters of all provided dummy-observation priors, which is equivalent to
providing the character vector c("lambda", "soc", "sur") in our case. Prior parameters
not included in the hierarchical step are treated as fixed and set equal to their mode parameter.

R> priors <- bv_priors(hyper = "auto", mn = mn, soc = soc, sur = sur)

Adjustments to the calculation of IRF or forecasts can be made via the functions bv_irf()
and bv_fcast(). The horizon to consider can be adjusted for both. FEVD are calculated in
an extra step for the IRF and may be toggled via fevd. Identification of the shocks is toggled
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via identification; it is then performed via Cholesky decomposition unless sign restrictions
are provided (see Appendix B for an example). To skip calculation of either and speed up
estimation, the argument may be set to NULL; both can be calculated ex-post as well.

R> irfs <- bv_irf(horizon = 12, fevd = TRUE, identification = TRUE)
R> fcasts <- NULL

Finally, we adjust the MH step to achieve a suitable acceptance rate and thus, explore the pos-
terior distributions of the model’s parameters properly. This is done via the bv_metropolis()
function with the primary argument scale_hess, a numeric scalar or vector used for scaling
the inverse Hessian that is used to draw proposals for hierarchically treated parameters. This
can be complemented by setting adjust_acc = TRUE, enabling automatic scale adjustment
during the burn-in period. Automatic adjustment is done iteratively by acc_change percent
until an acceptance rate between acc_lower and acc_upper is reached.

R> mh <- bv_metropolis(scale_hess = 0.005, adjust_acc = TRUE,
+ acc_lower = 0.25, acc_upper = 0.35, acc_change = 0.02)

This variety of available settings allows users to tailor their models and all of their components
to individual needs. This is necessary for addressing an extensive set of different research
questions. However, much simpler and quicker utilization is possible as well – the default
settings should suffice for a wide range of applications. This enables users to (1) focus on
critical parts of their model and (2) use BVAR with ease and gradually fine-tune their models.

4.3. Estimation of the model

At the core of BVAR is its main function bvar(). After preparing the data and optionally
adjusting the various settings of the model it is ready to be estimated. Besides the objects with
settings, we provide the number of lags to include in our model and some options regarding
the MCMC iterations. In n_save we define the total number of iterations, in n_burn we set
the number of initial iterations to discard and via n_thin we denote the denominator of the
fraction of draws to store. Furthermore, verbose = TRUE prompts printing of intermediate
results and enables a progress bar during the MCMC step.

R> run <- bvar(df, lags = 5, n_draw = 25000, n_burn = 10000, n_thin = 1,
+ priors = priors, mh = mh, fcast = fcasts, irf = irfs, verbose = TRUE)

Optimisation concluded.
Posterior marginal likelihood: -1123.907
Parameters: lambda = 0.52; soc = 0.9; sur = 0.69

|====================================================| 100%
Finished after 2.58 mins.

The return value of the function is an object of class bvar – a named list with several outputs.
These always include the primary parameters of interest, i.e., posterior draws of the VAR
coefficients, posterior draws of the variance-covariance matrix and posterior draws of the
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hyperparameters that were treated hierarchically. Other content includes the values of the
marginal likelihood for each draw, optimized starting values of the prior parameters obtained
via optim, prior settings provided and the ones set automatically, as well as the original call
to the bvar function. A variety of meta information is included as well, e.g., the number of
accepted draws, the variable names and the time spent calculating. Some outputs are only
appended if they were actually calculated – namely IRF, FEVD and forecasting results.

4.4. Assessing the results

BVAR provides print(), plot() and summary() methods for objects of type bvar and deriva-
tives. The print() method provides some meta information, details on hierarchically treated
prior parameters and results of optimization via optim(). The summary() method mimics its
counterpart in vars (Pfaff 2008) and includes information regarding the log-likelihood of the
estimated model, the coefficients of the VAR model and the variance-covariance matrix of its
residuals. These are also available via standard methods for logLik(), coef() and vcov().
Further standard methods, such as fitted(), density() and residuals() are available.
The assessment of IRF, FEVD and forecasting results works similarly and is discussed later
on.

R> summary(run)

Bayesian VAR consisting of 231 observations, 6 variables and 5 lags.
Time spent calculating: 2.58 mins
Hyperparameters: lambda, soc, sur
Hyperparameter values after optimisation: 0.517, 0.897, 0.686
Iterations (burnt / thinning): 25000 (10000 / 1)
Accepted draws (rate): 4997 (0.333)

Numeric array (dimensions 31, 6) of coefficient values from a BVAR.
Median values:

GDPC1 INDPRO PAYEMS CES0600000007 CPIAUCSL FEDFUNDS
const 0.522 0.278 0.034 0.138 0.063 -0.308
GDPC1-lag1 0.867 0.051 0.036 0.036 0.015 -0.058
INDPRO-lag1 0.210 0.495 0.054 0.072 0.091 0.096
PAYEMS-lag1 0.616 0.482 0.782 0.295 0.090 0.422
CES0600000007-lag1 -0.181 0.047 -0.024 -0.198 -0.069 0.070
CPIAUCSL-lag1 -0.216 -0.049 -0.032 0.019 1.156 -0.054
FEDFUNDS-lag1 0.004 -0.123 -0.036 -0.007 0.140 1.047
GDPC1-lag2 0.009 0.031 0.010 -0.051 -0.052 0.103
INDPRO-lag2 -0.059 -0.124 -0.065 -0.055 -0.043 -0.105
PAYEMS-lag2 0.065 -0.211 0.013 -0.096 -0.004 0.225
CES0600000007-lag2 0.083 0.105 0.039 -0.004 -0.019 0.081
CPIAUCSL-lag2 0.147 -0.112 0.027 -0.027 -0.183 0.178
FEDFUNDS-lag2 -0.212 -0.118 -0.030 -0.101 -0.053 -0.305
GDPC1-lag3 -0.075 0.022 -0.017 0.015 0.016 0.030
INDPRO-lag3 0.109 0.162 0.027 0.014 -0.004 0.043
PAYEMS-lag3 -0.160 -0.208 -0.017 -0.160 0.059 -0.018
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CES0600000007-lag3 -0.038 -0.033 -0.006 0.032 -0.076 -0.082
CPIAUCSL-lag3 0.034 -0.003 -0.005 -0.036 0.015 0.005
FEDFUNDS-lag3 0.133 0.168 0.040 0.063 0.056 0.216
GDPC1-lag4 -0.160 0.038 0.009 0.017 0.070 -0.003
INDPRO-lag4 -0.144 -0.097 -0.025 -0.013 -0.022 -0.093
PAYEMS-lag4 -0.186 -0.060 0.005 -0.084 -0.024 -0.214
CES0600000007-lag4 -0.132 -0.050 -0.014 -0.037 -0.032 -0.003
CPIAUCSL-lag4 -0.044 0.081 0.009 0.039 -0.194 -0.070
FEDFUNDS-lag4 0.027 0.031 0.008 0.055 -0.111 0.011
GDPC1-lag5 0.136 -0.054 -0.009 -0.026 -0.039 -0.010
INDPRO-lag5 0.037 0.025 0.008 -0.014 -0.009 0.018
PAYEMS-lag5 0.055 0.158 0.045 0.016 0.037 0.118
CES0600000007-lag5 -0.054 -0.060 -0.023 0.025 -0.002 0.018
CPIAUCSL-lag5 0.052 0.082 0.011 0.001 0.159 0.045
FEDFUNDS-lag5 0.044 -0.004 0.003 -0.022 -0.028 -0.065

Numeric array (dimensions 6, 6) of variance-covariance values from a BVAR.
Median values:

GDPC1 INDPRO PAYEMS CES0600000007 CPIAUCSL FEDFUNDS
GDPC1 0.546 0.479 0.108 0.181 0.030 0.112
INDPRO 0.479 1.254 0.216 0.318 0.072 0.313
PAYEMS 0.108 0.216 0.065 0.071 0.024 0.058
CES0600000007 0.181 0.318 0.071 0.233 0.032 0.082
CPIAUCSL 0.030 0.072 0.024 0.032 0.298 0.101
FEDFUNDS 0.112 0.313 0.058 0.082 0.101 0.560

Log-Likelihood: -944.9026

Convergence is essential for the stability of MCMC algorithms and hence requires special
attention. Beside a suitable acceptance rate of the MH step, trace and density plots of
parameters are commonly used to assess convergence. The plot() method provides both
plots for the ML and hierarchically treated parameters by default (see Figure 2). Note that
burnt draws are not included and parameter boundaries are plotted as dashed gray lines. The
plotting method also provides a type argument to choose between traces, densities or both, as
well as arguments to subset plotted hyperparameters (vars) or plot coefficient values instead
(vars_response and vars_impulse). See the code below for an example with λ and Figure
3 for the corresponding plot. Visual inspection of Figures 2 and 3 indicate convergence of the
key hyperparameters. No glaring outliers are recognizable and there is moderate shrinkage
imposed by the Minnesota prior, as most of λ’s probability mass is in the range between 0.45
and 0.60. However, one might want to employ additional convergence diagnostics. This is
facilitated via a method for coda’s (Plummer et al. 2006) generic as.mcmc() function. See
Appendix C for an illustration of the use of further diagnostics, e.g. across multiple chains.

R> plot(run)

R> plot(run, type = "full", vars = "lambda", mfrow = c(2, 1))
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Figure 2: Trace and density plots of all hierarchically treated parameters and the ML.
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Figure 3: Trace and density plots of λ, the key parameter of the Minnesota prior.

Structural analysis through interpretation of impulse responses is facilitated by BVAR in a
straightforward fashion. The generic function irf() can be used to retrieve or compute IRF
from a bvar object. The resulting object has methods for plotting, printing and summariz-
ing itself. The plot() method has options to subset the plots to specific impulses and/or
responses via name or position. An example can be seen below, with the associated output
in Figure 4.

R> plot(irf(run), vars_impulse = c("GDPC1", "FEDFUNDS"),
+ vars_response = c(1:5))

Forecast error variance decompositions constitute another important tool for structural anal-
ysis. FEVD draws are provided as an array in the bvar object. One way of summarizing
them is computing the median over all saved draws and time periods, as demonstrated below
using the generic function fevd().

R> fevd(run)

Numeric array (dimensions 6, 6) of FEVD values from a BVAR.
Median values:

GDPC1 INDPRO PAYEMS CES0600000007 CPIAUCSL FEDFUNDS
GDPC1 0.8457 0.0254 0.0050 0.0020 0.0315 0.0821
INDPRO 0.5393 0.3530 0.0040 0.0033 0.0281 0.0544
PAYEMS 0.3811 0.1033 0.1181 0.0080 0.0878 0.2860
CES0600000007 0.3963 0.1171 0.0275 0.2346 0.0271 0.1747
CPIAUCSL 0.0532 0.0313 0.0058 0.0029 0.8236 0.0683
FEDFUNDS 0.0927 0.0601 0.0059 0.0045 0.1739 0.6521
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Figure 4: Impulse responses of GDP growth, industrial production, non-farm employment,
average weekly hours worked and CPI inflation and to an aggregate demand shock (left panels)
and a monetary policy shock (right panels). Grey lines denote 16th and 84th credible sets.

To aid in forecasting exercises BVAR provides a predict() method with associated methods
for plotting, printing and summarizing. Calculation of forecasts is possible within bvar() itself
or ex-post, using predict(). In both cases settings are provided through bv_fcast(), al-
though the ellipsis argument may be used for the latter. In the example below we add forecasts
to our bvar object from before, by assigning the output of predict() to run[["fcast"]].
We then use the plot() method to visualize forecasts for two of the contained variables, by
providing their names (alternatively their positions) to vars. See Figure 5 for the associated
output.

R> run[["fcast"]] <- predict(run, horizon = 8)
R> plot(predict(run), vars = c("GDPC1", "FEDFUNDS"),
+ orientation = "vertical")

Both predict() and irf() either retrieve existing forecasts or IRF or calculate them based
on stored iterations in the provided bvar object. As such they can be used to compute results
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Figure 5: Unconditional forecasts for GDP growth and the federal funds rate. Grey lines
denote 16th and 84th credible sets.

using different settings without the need for re-estimating the whole model. Furthermore,
the argument conf_bands allows the adjustment of credible intervals surrounding the me-
dian forecast / IRF, that are used in other methods. See the example below for an ex-post
calculation of IRF with increased horizon and adjusted credible intervals. The result is then
plotted and can be seen in Figure 6.

R> plot(irf(run, conf_bands = 0.05, horizon = 20, fevd = TRUE),
+ vars_impulse = c("GDPC1", "FEDFUNDS"), vars_response = c(1:5))

This concludes the brief demonstration of the current functionality via an applied example.
Further methods are available and described in the package documentation.
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Figure 6: Ex-post computed impulse responses of GDP growth, industrial production, non-
farm employment, average weekly hours worked and CPI inflation to an aggregate demand
shock (left panels) and a monetary policy shock (right panels) for a horizon of 20 quarters.
Grey lines denote 5th and 95th credible sets.
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5. Conclusion

This article introduced the BVAR package that implements hierarchical estimation of Bayesian
vector autoregressions in R. It offers a flexible, yet structured and transparent way to assess
a wide range of research questions in the field of multivariate time series analysis. By mit-
igating the need for subjective choices, regarding prior specifications it counteracts some of
the main criticism of Bayesian methods in general. Through the provision of several methods
and functionalities the package allows for the quick assessment of various model outputs.
With the aid of an applied example we illustrated the usage of the package and explained its
implementation and configuration.
BVAR has a lower cost of entry than more general software for Bayesian statistics and includes
tools for subsequent analysis of generated VAR models. It is useful for a range of issues and
may be applied to a wider range of research questions than similar packages focussing on
Bayesian VAR modelling. The idiomatic implementation in R makes the package easy to use
and extensible.

Computational details

The results in this paper were obtained using R 3.6.1 with BVAR 0.2.1 and the mvtnorm 1.0-
11 package as singular dependency. The machine used is an Apple MacBook Pro Mid-2012
running MacOS High Sierra Version 10.13 with an Intel Core i7-2.9 GHz and 8 GB RAM. The
scripts used were also tested on a machine running Ubuntu 18.04 with an Intel i7-7500U and
16 GB RAM. R itself and all packages used are available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/.
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A. Construction of custom dummy priors
This Section demonstrates the construction of custom dummy priors using bv_dummy. As an
exemplary case the SOC prior is reconstructed without using the helper function bv_soc().
Most importantly, bv_dummy() has to be provided with a function to construct artificial
observations. This function takes three parameters – the data in matrix format, an integer
with the number of lags and the current value of the prior parameter. The function then
returns a list with two numeric matrices, X and Y with artificial observations to stack on top
of the data matrix and the lagged data matrix. For the SOC prior this follows the procedure
stated in Section 2.2 and is done as follows:

R> add_soc <- function(Y, lags, par) {
+ soc <- if(lags == 1) {diag(Y[1, ]) / par} else {
+ diag(colMeans(Y[1:lags, ])) / par
+ }
+ Y_soc <- soc
+ X_soc <- cbind(rep(0, ncol(Y)),
+ matrix(rep(soc, lags), nrow = ncol(Y)))
+ return(list("Y" = Y_soc, "X" = X_soc))
+ }

This function is then passed to bv_dummy() via the argument fun. Similar to the construc-
tor functions of the other prior parameters, values determining their prior distribution and
suitable boundaries need to be provided as well. The output is then passed to the ellipsis
parameter of bv_priors() with a name.

R> soc <- bv_dummy(mode = 1, sd = 1, min = 0.0001, max = 50, fun = add_soc)
R> priors_dum <- bv_priors(hyper = "auto", soc = soc)

The resulting object is then provided to the main function bvar, which extends the VAR with
the new dummy prior. Draws of this prior are stored similarly to ones of the Minnesota prior
and can be analyzed in the same way.

B. Identification via sign restrictions
In this Section we show how to perform identification of the VAR via sign restrictions. For
the sake of conciseness the example below is reduced to include only three variables, a subset
from the ones utilized in the main part of the paper.
The variables under investigation constitute a prototypical monetary VAR model – covering
GDP growth, CPI inflation and the federal funds rate. The variables and the transformations
applied are equal to the ones described in Section 4.1.

R> data("fred_qd")
R> df <- fred_qd[, c("GDPC1", "CPIAUCSL", "FEDFUNDS")]
R> for(i in c("GDPC1", "CPIAUCSL"))
+ df[5:nrow(df), i] <- diff(log(df[, i]), lag = 4) * 100
R> df <- df[5:nrow(df), ]
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To identify impulse responses via sign restrictions one has to come up with suitable signs
corresponding to the expected responses of all variables following a shock from any variable.
These expectations are usually formed by and derived from economic theory. To apply this
kind of identification in BVAR the argument sign_restr of the function bv_irf() has to be
provided with a matrix of such sign restrictions. An element SRij of this matrix is then set to
1 (−1) if the contemporaneous response of variable i to a shock from variable j is an increase
(decrease). For an agnostic view 0 is assigned to an element, imposing no restrictions on the
sign of the contemporaneous reaction. The sign restrictions may also be visualized using the
associated print method.

R> signs <- matrix(c(1, 1, 1, 0, 1, 1, -1, -1, 1), ncol = 3)
R> irf_signs <- bv_irf(horizon = 12, fevd = TRUE,
+ identification = TRUE, sign_restr = signs)

The resulting object is then provided to the main function bvar(), which calculates impulse
response functions based on suitable shocks. These shocks are drawn following an algorithm
proposed by Rubio-Ramirez et al. (2010), which increases computation time. Outputs are
again accessed in the usual way and include information on the chosen sign restrictions. Fig-
ure 7 provides a visualization of obtained impulse responses. As can be discerned, shocks
identified via sign restrictions allow for contemporaneous effects between all variables, other
than ones identified by recursive identification. Furthermore, the instantaneous impacts are
in accordance with the sign restrictions. However, one should note that the credible sets sur-
rounding the median impulse response tend to get inflated, due to the additional uncertainty
introduced by drawing random orthogonal matrices.

R> run_signs <- bvar(small_VAR, lags = 5, n_draw = 25000, n_burn = 10000,
+ priors = priors, mh = mh, fcast = fcasts, irf = irf_signs)
R> print(run_signs)

Bayesian VAR consisting of 231 observations, 3 variables and 5 lags.
Time spent calculating: 2.24 mins
Hyperparameters: lambda, soc, sur
Hyperparameter values after optimisation: 0.743, 0.388, 0.29
Iterations (burnt / thinning): 25000 (10000 / 1)
Accepted draws (rate): 3739 (0.249)

R> print(irf(run_signs))

Impulse response object from `bvar()`.
Horizon: 12
Identification: Sign restrictions
Chosen restrictions:

Shock to
Var1 Var2 Var3

Response of Var1 + 0 -
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Var2 + + -

Var3 + + +
FEVD: TRUE
Variables: 3
Iterations: 15000

R> plot(irf(run_signs))
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Figure 7: Impulse responses from a prototypical monetary VAR using sign restrictions to
achieve identification.
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C. Convergence assessment and parallelization

Bayesian methodology relies heavily on the convergence behavior of parameters. BVAR pro-
vides several functions and methods to facilitate assessing convergence. In this Section we
present these functionalities and the use of coda (Plummer et al. 2006), which specializes in
output assessment from Markov Chain Monte Carlo (MCMC) simulations.
First and foremost, the convergence of bvar objects can be assessed visually with the plot()
method (see Figure 2). By default the method plots traces and densities of the marginal
likelihood and hyperparameters, which can be narrowed down via the vars argument. The
arguments vars_response and vars_impulse can be used to assess the behavior of specific
coefficients. Furthermore, the method can be used to plot the results of multiple chains, i.e.
bvar objects, by providing a list of them to the chains argument. The need for multiple
chains makes parallelization attractive, which we demonstrate using the parallel (R Core
Team 2019) package. We replicate the run object from the main part of the paper thrice and
use the four resulting chains to assess the convergence of λ:

R> library("parallel")
R> n_cores <- 3
R> cl <- makeCluster(n_cores)
R> runs <- parLapply(cl, list(df, df, df),
+ function(x) {
+ library("BVAR")
+ bvar(x, lags = 5,
+ n_draw = 25000, n_burn = 10000, n_thin = 1,
+ priors = bv_priors(soc = bv_soc(), sur = bv_sur()),
+ mh = bv_mh(scale_hess = 0.005, adjust_acc = TRUE, acc_change = 0.02),
+ irf = bv_irf(horizon = 12, fevd = TRUE, identification = TRUE),
+ fcast = NULL, verbose = FALSE)
+ })
R> stopCluster(cl)
R> plot(run, type = "full", vars = "lambda", chains = runs)
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Figure 8: Plots of λ for separate runs.



Nikolas Kuschnig, Lukas Vashold 25

A quick inspection of Figure 8 indicates proper convergence of the parameter. However,
visual assessment may be not sufficient. One may want to evaluate the convergence behavior
of parameters by means of diagnostic statistics, such as the one proposed by Geweke (1992).
The coda (Plummer et al. 2006) package provides an implementation of this statistic, that
evaluates convergence of a chain by testing for equality of means within certain parts of a
Markov chain. To evaluate our chain we prepare our bvar object by calling the as.mcmc()
method on it. This method works similarly to plot, including the same arguments vars,
vars_response and vars_impulse to subset hyperparameters or coefficients:

R> library("coda")
R> run_mcmc <- as.mcmc(run)
R> geweke.diag(run_mcmc)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

ml lambda soc sur
1.47292 1.11516 0.01498 -0.19418

The values displayed constitute standard Z-scores and indicate proper within-chain conver-
gence of all three hyperparameters. Still, one may be interested in the behavior across chains.
One diagnostic to properly assess between-chain convergence was proposed by Gelman and
Rubin (1992) and is also available in coda (Plummer et al. 2006). This diagnostic relies on
multiple chains, leading us to use runs, the list of bvar objects we created earlier. Note that
the chains should not differ in priors or other settings. To apply the gelman.diag() function
we need to convert our objects to an mcmc.list object – we do so by providing our list of
bvar objects to the chains argument of the as.mcmc() method:

R> runs_mcmc <- as.mcmc(run, chains = runs)
R> gelman.diag(runs_mcmc, autoburnin = FALSE)

Potential scale reduction factors:

Point est. Upper C.I.
ml 1.01 1.02
lambda 1.00 1.00
soc 1.00 1.00
sur 1.00 1.00

Multivariate psrf

1.01
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