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ABSTRACT

The composition of cow milk is strongly affected by 
the feeding regimen. Because milk components are rou-
tinely determined using mid-infrared (MIR) spectrom-
etry, MIR spectra could also be used to estimate an 
animal’s ration composition. The objective of this study 
was to determine whether and how well amounts of dry 
matter intake and the proportions of concentrates, hay, 
grass silage, maize silage, and pasture in the total ration 
can be estimated using MIR spectra at an individual 
animal level. A total of 10,200 milk samples and sets of 
feed intake data were collected from 90 dairy cows at 
2 experimental farms of the Agricultural Research and 
Education Centre in Raumberg-Gumpenstein, Austria. 
For each run of analysis, the data set was split into a 
calibration and a validation data set in a 40:60 ratio. 
Estimated ration compositions were calculated using 
a partial least squares regression and then compared 
with the respective observed ration compositions. In 
separate analyses, the factors milk yield and concen-
trate intake were included as additional predictors. 
To evaluate accuracy, the coefficient of determination 
(R2) and ratio to performance deviation were used. 
The highest R2 values (for kg of dry matter intake/
for % of ration) for the individual feedstuffs were as 
follows: pasture, 0.63/0.66; grass silage, 0.32/0.43; 
concentrate intake, 0.39/0.34; maize silage, 0.32/0.33; 
and hay, 0.15/0.16. Estimation of groups of feedstuffs 
(forages, energy-dense feedstuffs) mostly resulted in R2 
values >0.50. Including the parameters milk yield or 
concentrate intake improved R2 values by up to 0.21, 
with an average improvement of 0.04. The results of 
this study indicate that not all ration components may 
be estimated equally accurately. Even if some estimates 
are good on average, there may be strong deviations 

between estimated and observed values in individual 
data sets, and therefore individual estimates should not 
be overemphasized. Further research including pooled 
samples (e.g., bulk milk, farm samples) or variations in 
ration composition is called for.
Key words: dairy cow, feed ration, mid-infrared 
spectrometry, estimation

INTRODUCTION

Mid-infrared (MIR) spectrometry is currently the 
method of choice for measuring milk lactose, fat, and 
protein contents for standard milk recording systems 
all around the world. In past decades, the MIR spectra 
of milk samples have been associated with a variety of 
additional milk- and cow-related parameters, such as 
the fatty acid profile (Soyeurt et al., 2006; Maurice-Van 
Eijndhoven et al., 2013; Ferrand-Calmels et al., 2014), 
major mineral contents (Soyeurt et al., 2009), genetic 
variability of immune-relevant substances in milk 
(Soyeurt et al., 2007), methane emissions (Dehareng 
et al., 2012; Vanlierde et al., 2016), ketone bodies and 
subclinical ketosis (de Roos et al., 2007; van Knegsel et 
al., 2010; van Gastelen and Dijkstra, 2016) energy in-
take (McParland et al., 2015), and body energy balance 
(McParland et al., 2011). As shown by De Marchi et al. 
(2014) and Gottardo et al. (2015), MIR spectrometry is 
an economically viable method for large-scale screening 
of phenotypes of dairy animals.

The feed ration leaves a “fingerprint” (i.e., patterns 
in composition) in milk (Sutton, 1989; White et al., 
2001; Slots et al., 2009; Larsen et al., 2016), and milk 
traits such as fatty acid composition have been success-
fully used to predict ration composition (Coppa et al., 
2015). Other milk components that have been explored 
as potential predictors of diet are carotenoids (Nozière 
et al., 2006) and UV-absorbing compounds in milk that 
are related to polyphenols in the feed ration, which are 
again very specific to the feedstuff (Besle et al., 2010). 
The MIR spectra of bulk milk samples have also proven 
useful in distinguishing between feeding systems with 
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a high proportion of an individual feedstuff (Valenti et 
al., 2013). In this study, we assumed that in a similar 
process the feed ration could be estimated by analyzing 
the infrared spectrum of individual milk samples. The 
aim of this study was to examine whether the propor-
tions and absolute amounts of certain feedstuffs and 
groups of feedstuffs in the rations of lactating dairy 
cows can be estimated using MIR spectra of individual 
milk samples.

In this study, we also aimed to provide basic research 
for the further development of methods for assessing 
the process quality of milk. These methods may enable 
the dairy industry to introduce quality programs such 
as milk from pasture-fed cows or milk produced without 
silage while avoiding expensive investments in on-farm 
inspection of production systems. It may be possible to 
determine the suppliers’ average feed rations by using 
MIR spectra from bulk milk. Another potential appli-
cation of feed composition estimation via MIR spectra 
is the examination of discrepancies between offered feed 
and ingested feed caused by selective feeding behaviors 
in precision feeding systems. Furthermore, the results 
might also be considered in breeding value estimation 
(feeding effects). The infrared spectra of bulk milk are 
used anyway to quantify major milk components. Thus, 
methods using MIR spectra provide technical and eco-
nomic advantages and could support the introduction 
of specific product lines in the dairy industry.

MATERIALS AND METHODS

Animals and Materials

The data in the present study were collected from 7 
unpublished studies at the 2 experimental dairy farms 
(1 organic and 1 conventional) of the Agricultural Re-
search and Education Centre in Raumberg-Gumpen-
stein, Austria (47°31′03″ N, 14°04′26″ E; altitude = 680 
m; average temperature = 7°C; precipitation = 1,014 ± 
63 mm/yr). The dairy herds comprised cows of 5 con-
trasting cow breeds or strains: dual-purpose Simmental, 
Brown Swiss, Holstein Friesian, New Zealand Holstein 
Friesian, and a specific strain of Holstein Friesian se-
lected for superior lifetime milk yield in an alternative 
breeding program. A total of 10,200 individual milk 
samples and feed intake data sets were collected from 
90 cows throughout the data recording period from 
October 8, 2013, to December 12, 2014.

All animals were housed in loose housing systems. 
Forage ration components were provided 2 times/d 
after milking, whereas concentrates were fed individu-
ally using a concentrate transponder with a maximum 
amount of 1.5 kg/visit. The individual forage intake 
of cows fed in the barn was measured using Calan 

gates and by recording offered feed and feed refusals 
at each meal. For all feedstuffs (forages and concen-
trates), DM was analyzed by drying samples at 105°C 
for 24 h. Depending on the experimental groups, 31 
cows were kept on pasture during the grazing season 
(April until October 2014) for 4 to 21 h/d. To quantify 
the feed consumption of these cows, pasture intake was 
estimated indirectly during the grazing season. Pasture 
DMI was calculated based on the difference between 
energy requirement (estimated according to milk yield 
and milk composition, live weight, live weight change, 
and pregnancy status) and energy supply from the 
recorded energy intake in barn (GfE, 2001; Horn et 
al., 2014). The area of the continuously grazed pasture 
was adjusted according to sward height, which was tar-
geted to be 3.7 to 5.2 cm and which was measured once 
weekly with a rising plate meter. The grazed sward 
was dominated by perennial ryegrass (Lolium perenne), 
Kentucky bluegrass (Poa pratensis), and white clover 
(Trifolium repens). Pasture herbage was sampled as 
reported by Starz et al. (2010). A precise description of 
feeding and herd management of cows on pasture can 
be found in Horn et al. (2013).

All feed samples were pooled over 4 wk and sub-
jected to oven drying for DM determination; proximate 
analysis (CP, ether extract, crude fiber, ash) according 
to the guidelines of the Association of German Agri-
cultural Analytic and Research Institutes (VDLUFA, 
2007); and analysis of cell wall contents, NDF, and 
ADF (Van Soest et al., 1991; VDLUFA, 2007) using a 
Foss Fibertec System (Foss, Hillerød, Denmark). Live 
weight of all animals was measured once a week after 
the morning milking. Cows were milked 2 times/d, and 
daily milk yield was recorded electronically in the en-
tire experimental period. Individual milk samples were 
prepared by mixing milk samples from morning and 
evening milkings in equal shares. These samples were 
collected 3 times/wk (organic farm) or each day (con-
ventional farm), and milk fat, protein, lactose, and urea 
contents and SCC were determined. The milk samples 
were preserved using 3 drops of Bronysolv [Bronopol 
MIT/CIT 3:1 (R38 41-43-52/53; S24 2637/39), ANA.
LI.TIK, Vienna, Austria] per 40 mL, as is the stan-
dard practice in performance-controlled Austrian dairy 
farms.

The 10,200 milk samples were sent to an official 
Austrian milk recording laboratory in St. Michael, 
Styria, Austria. One infrared spectrum per analyzed 
milk sample was created using a MilkoScan appara-
tus (MilkoScan FT6500; Foss). Foss software integra-
tor v1.58 for spectral export determined the results. 
Measurement of the MIR spectral data and estimation 
of the milk components were done for every collected 
sample. The Foss MIR spectrum contained 1,060 data 
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points (absorbance rates of infrared light) in the region 
of 926 to 5,012 cm−1. Pretreatment of all MIR spectra 
was done according to Rinnan et al. (2009) and Grelet 
et al. (2016). Spectra of animals that were outliers in 
a parameter were removed from analysis. Outliers were 
defined by surpassing a distance of 3 SD to the popula-
tion mean or not being within the biological optimum 
of the parameter.

As displayed in Table 1, average lactation number of 
cows was 1.9 ± 1.4 and average ECM yield was 20.2 
± 7.0 kg/d. Milk samples contained 4.3 ± 0.7% of fat, 
3.3 ± 0.4% of protein, and 4.6 ± 0.2% of lactose. Cell 
counts showed high variation, with an average of 153 ± 
266 × 103 cells/mL, and urea content was 20.2 ± 10.8 
mg/100 mL. Live weight of experimental cows was 545 
± 98 kg, and average BCS was 2.8 ± 0.4.

The MIR spectrometry estimations were validated 
for DMI of feedstuffs (in kg) and percentages of feed-
stuffs in the total feed ration (in %) for 5 individual 
feedstuffs and 3 groups of feedstuffs. The offered feed-
stuffs were concentrate (Ckg, C%), hay (Hkg, H%), 
grass silage (GSkg, GS%), maize silage (MSkg, MS%), 
and pasture (Pkg, P%). The first group consisted of 
hay and grass silage and was named forages A (FAkg, 
FA%). The second group included hay, grass silage, and 
pasture and was named forages B (FBkg, FB%). The 
third group comprised all energy-dense feedstuffs, spe-
cifically concentrate and maize silage (EDFkg, EDF%). 
In Austria, FA (hay and grass silage) is the most com-
mon dietary basis for dairy farms, especially in winter; 
FB (hay, grass silage, and pasture) is the dietary basis 
for farms that use pasture to a greater extent, which is 
a feeding system worth authenticating in our opinion. 
Concentrates and maize silage (full plant silage, includ-
ing the starchy cobs and seeds) were grouped together 
as EDF because the way it is used maize silage can be 
considered more a concentrate feedstuff than a forage.

The average DMI of the experimental cows was 15.1 
± 4.2 kg of DM, comprising 11.3 ± 3.8 kg of DM for-
ages, 3.3 ± 3.0 kg of DM concentrate, and 2.6 ± 1.7 
kg of DM maize silage (Table 2). The proportion of FA 
(hay and grass silage) in total feed intake was 47.4 ± 
25.0%, with an average intake of 3.2 ± 3.1 kg of DM 
hay and 4.4 ± 3.2 kg of DM grass silage. The FB group 
(hay, grass silage, and pasture) includes the estimated 
2.1 ± 4.6 kg of DMI from pasture and results in 63.3 
± 20.0% of the total feed intake. The EDF adds up to 
5.8 ± 4.0 kg and 36.7 ± 20.0%. Energy concentrations 
per kilogram of DM were 8.47 ± 0.12 MJ of NEL for 
concentrates, 5.88 ± 0.15 MJ of NEL for hay, 5.98 ± 
0.10 MJ of NEL for grass silage, 6.33 ± 0.08 MJ of NEL 
for maize silage, and 6.40 ± 0.22 MJ of NEL for pasture.

As animals in this study were kept on different farms 
and under different dietary regimens, the composi-

tion of the concentrate blends offered varied between 
animals. As shown in Table 3, the average concentrate 
mixture used this study comprised 1.26 ± 1.11 kg of 
barley, 0.55 ± 0.61 kg of corn, 0.39 ± 0.36 kg of soy-
bean meal, 0.39 ± 0.37 kg of rapeseed meal, 0.64 ± 
1.21 kg of wheat, and smaller amounts (<0.25 kg each) 
of dried sugar beet pulp, soybean hulls, peas, triticale, 
oats, and wheat bran. Data in Tables 1, 2, and 3 are 
presented for the whole test population instead of for 
animals from calibration and validation data sets sepa-
rately because calibration and validation data sets were 
randomly reassorted for every run of the procedure. We 
assume that means of the presented data were evened 
out over 400 runs of the procedure.

Statistical Analysis

Software used in this study was SAS 9.4 TS Level 
1M2 (SAS Institute, Cary, NC) for statistical analysis 
and Microsoft Excel (version 14.0.7165.5000; Micro-
soft, Redmond, WA) for descriptive statistics. In this 
study, a partial least squares (PLS) regression model 
was used. The MIR spectrometry estimations of DMI 
(in kg) and proportion of feedstuffs in the total feed 
ration (in %) were cross-validated and validated for 
5 feedstuffs and 3 groups of feedstuffs. Thus, the data 
set of 10,200 samples was divided into a calibration 
data set and a validation data set for each run of the 
PLS procedure. Measures were taken to ensure that 
all samples of an individual animal were exclusively in 
1 of the data sets for each run. Based on preliminary 
analyses, a 40:60 ratio for calibration:validation data 
sets was chosen. These percentages delivered the high-
est average correlations between true and estimated 
values while still ensuring reasonable computing times. 
The composition of these categories of samples was 
completely randomized according to these proportions 
for each of 50 runs. All results obtained by the PLS 

Table 1. Cow- and milk-related data (SD in parentheses) from 10,200 
records from 90 cows

Parameter Mean Minimum Maximum

Lactation number 1.9 (1.4) 1 9
Milk yield (kg/d) 20.0 (7.0) 5.0 47.7
ECM (kg/d) 20.2 (7.0) 1.8 52.8
Milk fat (%) 4.3 (0.7) 2.7 6.4
Milk protein (%) 3.2 (0.4) 2.2 4.3
Milk lactose (%) 4.6 (0.2) 4.0 5.2
Milk fat (kg) 0.84 (0.32) 0.07 1.80
Milk protein (kg) 0.65 (0.24) 0.06 1.37
Cells (1,000/mL) 153 (266) 6 1,000
Urea (mg/100 mL) 20.2 (10.8) 5.0 60.0
Live weight (kg) 545 (98) 301 992
BCS 2.8 (0.4) 1.8 4.1
Back fat (mm) 13.7 (7.8) 7.0 40.1



5414 KLAFFENBÖCK ET AL.

Journal of Dairy Science Vol. 100 No. 7, 2017

procedure that are presented in this study are means 
of these 50 runs conducted for each feedstuff or group 
of feedstuffs. The PLS procedure creates a prediction 
equation by extracting latent variables (LV)—a set 
of explanatory components with the most estimative 
power. The procedure for choosing the adequate num-
ber of LV for each category was adapted from Prinz 
(2015) and McParland et al. (2011). In these articles, 
runs with different numbers of LV were tested and 
the results were compared. Too few variables would 
oversimplify the model, and too many variables would 
overparameterize it; both would lead to a suboptimal 
coefficient of determination in the validation data set 
(R2

val; McParland et al., 2011). When the increase in 
LV no longer resulted in a significant increase in R2

val, 
the number of LV was set at 40. Two indicators of ac-

curacy of the estimates were used: (1) the R2
val, and (2) 

the ratio to performance deviation (RPD), calculated 
by dividing the standard deviation of the mean of the 
observed values by the mean root-mean-squared error 
(RMSE) of the respective feedstuff.

To potentially improve the correlation between ob-
served and estimated values, more factors were added 
to the PLS procedure apart from the absorption rates 
of the MIR spectra. Factors were selected for their 
potential availability to dairy processing plants, which 
might benefit from a method for estimating intake of 
certain feedstuffs in the future, as well as their poten-
tial to improve correlation coefficient in test runs. The 
procedure was supplemented with information on milk 
yield, amount of concentrate fed, and the combination 
of both to examine whether information about these 
factors would improve indicators of accuracy of the es-
timates. The results of the original analysis considering 
only MIR spectra in the set of explanatory variables are 
displayed as variant 1, and the runs with additional ex-
planatory variables are displayed as variants 2 through 
4.

To display the average deviation of the estimated 
values from the mean of observed values, the RMSE 
was calculated. Because this value holds the same unit 
as the estimated values (kg or %) and depends on the 
average of observed values for interpretation, further 
parameters were included. To quantify systematic er-
rors in estimation, mean bias of estimation and slope 
between true and predicted values were calculated. 

Table 2. Observed data (SD in parentheses) on feed intake [in kg of DM (subscript kg) or proportion 
(subscript %)] of experimental animals

Feedstuff1

Intake (kg of DM or %)
Mean energy content 

(MJ of NEL/kg of DM)Mean Minimum Maximum

All feed 15.1 (4.2) 5.0 27.0 6.57 (0.36)
Ckg 3.3 (3.0) 0.0 13.5 8.47 (0.12)
Hkg 3.2 (3.1) 0.0 23.0 5.88 (0.15)
GSkg 4.4 (3.2) 0.0 22.6 5.98 (0.10)
MSkg 2.6 (1.7) 0.0 7.4 6.33 (0.08)
Pkg

2 2.1 (4.6) 0.0 21.4 6.40 (0.22)
FAkg 7.3 (4.4) 0.0 23.0 5.94 (0.10)
FBkg 9.3 (3.4) 1.6 23.0 6.00 (0.17)
EDFkg 5.8 (4.0) 0.0 17.9 7.56 (0.66)
C% 19.9 (15.0) 0.0 65.2  
H% 19.4 (16.0) 0.0 100.0  
GS% 28.1 (19.0) 0.0 100.0  
MS% 16.8 (11.0) 0.0 39.5  
P%

2 15.8 (35.0) 0.0 100.0  
FA% 47.4 (25.0) 0.0 100.0  
FB% 63.3 (20.0) 20.1 100.0  
EDF% 36.7 (20.0) 0.0 79.9  
1C = concentrate; H = hay; GS = grass silage; MS = maize silage; P = pasture; FA = forages A (consisted 
of hay and grass silage); FB = forages B (consisted of hay, grass silage, and pasture); EDF = energy-dense 
feedstuffs (specifically concentrate and maize silage). Subscript kg = kilograms of DMI in feedstuffs; subscript 
% = percentages of feedstuffs in the total feed ration.
2Pasture intake was estimated according to Horn et al. (2014).

Table 3. Feed components (SD in parentheses) in the concentrates

Component
Mean intake 
(kg of DM)

Mean proportion 
(%)

Barley 1.26 (1.11) 32.7 (7.9)
Corn 0.55 (0.61) 19.6 (11.6)
Soybean meal 0.39 (0.36) 10.4 (4.0)
Rapeseed meal 0.39 (0.37) 10.4 (4.0)
Wheat 0.64 (1.21) 10.1 (16.2)
Dried sugar beet pulp 0.22 (0.28) 8.2 (6.5)
Soybean hulls 0.14 (0.21) 5.5 (5.6)
Pea 0.05 (0.22) 1.4 (5.0)
Triticale 0.02 (0.16) 1.1 (5.9)
Oats 0.01 (0.05) 0.3 (1.3)
Wheat bran 0.01 (0.05) 0.2 (1.0)
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Bias was considered to be not significant (at P = 0.05) 
if absolute value of bias − SD × 1.96 < 0. Slope was 
considered to be not significantly different from 1 if 
magnitude (1 − slope) − SD × 1.96 > 0.

RESULTS AND DISCUSSION

The results of the PLS procedure without any ad-
ditional explanatory factors (variant 1) and various sta-
tistical parameters are displayed in Table 4. The R2

val 
ranged from 0.15 in Hkg to 0.66 in P%. Other categories 
with R2

val of 0.50 or higher were Pkg, FAkg, FB%, EDFkg, 
EDF%, P%, FA%, and FB%. The R2

val was below 0.50 in 
all other categories. Bias was not significant and slope 
was not significantly different from 1 in all categories. 
The RPD values ranged from 1.09 for Hkg to 1.71 for 
P%.

Table 5 displays the results of the PLS procedure 
accomplished by adding the factor milk yield at each 
particular testing day (variant 2). Several feedstuffs 
showed R2

val of 0.6 or higher in this variant: Ckg (0.60), 
Pkg (0.63), EDFkg (0.67) P% (0.68), FB% (0.60), and 
EDF% (0.60). Bias was not significant and slope was 
not significantly different from 1 in all categories. The 
RPD values ranged from 1.10 in Hkg to 1.75 in P%.

In variant 3 of the PLS procedure, the factor con-
centrate intake was added in the same manner that 
milk yield was added in variant 2. In this case, analyses 
were not performed for prediction of concentrates and 
EDF. The results are shown in Table 6. The highest 
R2

val values were found for FB% (0.76) and for Pkg and 

P% (>0.6); all remaining R2
val values were below 0.6. 

Bias was not significant and slope was not significantly 
different from 1 in all categories. For RPD, FB% sur-
passed the threshold of 2.00 with 2.04, and Pkg, P%, and 
FA% reached values between 1.50 and 2.00.

The results of variant 4 of the PLS procedure, in 
which the factors milk yield and concentrate were 
added both, are shown in Table 7. The highest R2

val 
occurred in FB% (0.76); Pkg and P% also showed Rval 
values above 0.60. Bias was not significant and slope 
was not significantly different from 1 in all categories. 
For RPD, only FB% surpassed the threshold of 2.00 
with 2.03, and Pkg, FAkg, P%, and FA% reached values 
between 1.50 and 2.00.

Determining thresholds above and below which the 
correlation coefficient and RPD should be to be con-
sidered accurate was difficult because most comparable 
studies have examined certain substances in milk, such 
as mineral content (Soyeurt et al., 2009) or fatty acid 
composition (Soyeurt et al., 2006). The indirect nature 
of this research needs to be considered in evaluating the 
degree of accuracy of prediction. In contrast to research 
investigating actual components in milk samples, we 
looked for a “fingerprint” of the feed ration in the MIR 
spectrum of the milk in this study, which might be 
caused by a variety of milk components depending on 
which feedstuff is considered. Thus, we expected a com-
paratively lower accuracy of estimates for quantities 
and percentages of feedstuffs. Coppa et al. (2015) used 
fatty acid profiles from bulk milk samples to predict 
ration proportions of feedstuffs and yielded a higher 

Table 4. Statistics (SD in parentheses) for the calibration equations (in calibration and validation data sets) developed for the prediction of feed 
ration of lactating dairy cows with no additional factors included in the partial least squares procedure (variant 1)1

Feedstuff2

Calibration

 

Validation

RMSE R2 RMSE Bias Slope R2 RPD

Ckg 1.92 0.56 (0.07)   2.41 −0.06 (0.42) 0.88 (0.17) 0.39 (0.08) 1.24
Hkg 2.44 0.32 (0.05)   2.82 −0.14 (0.37) 0.70 (0.28) 0.15 (0.05) 1.09
GSkg 2.27 0.48 (0.07)   2.55 −0.07 (0.32) 0.90 (0.18) 0.32 (0.06) 1.26
MSkg 1.19 0.53 (0.05)   1.42 0.06 (0.24) 0.83 (0.15) 0.32 (0.07) 1.21
Pkg 2.38 0.69 (0.05)   2.80 0.05 (0.48) 1.02 (0.15) 0.63 (0.04) 1.66
FAkg 2.60 0.61 (0.08)   3.04 −0.15 (0.50) 0.94 (0.13) 0.50 (0.08) 1.44
FBkg 2.44 0.46 (0.02)   2.87 −0.10 (0.42) 0.82 (0.15) 0.29 (0.05) 1.19
EDFkg 2.26 0.66 (0.07)   2.68 −0.07 (0.46) 0.97 (0.11) 0.54 (0.04) 1.48
C% 10.21 0.58 (0.04)   12.65 −0.25 (2.45) 0.86 (0.14) 0.34 (0.08) 1.21
H% 12.77 0.35 (0.06)   14.40 −0.61 (1.90) 0.66 (0.29) 0.16 (0.06) 1.10
GS% 12.24 0.57 (0.05)   13.99 −0.46 (1.94) 0.92 (0.13) 0.43 (0.06) 1.35
MS% 7.70 0.56 (0.04)   9.35 0.07 (1.68) 0.84 (0.18) 0.33 (0.09) 1.20
P% 17.17 0.76 (0.02)   20.37 0.54 (3.33) 1.03 (0.13) 0.66 (0.04) 1.71
FA% 14.12 0.67 (0.02)   16.85 −0.76 (2.87) 0.97 (0.15) 0.54 (0.08) 1.47
FB% 11.02 0.67 (0.04)   13.20 −0.20 (2.21) 0.97 (0.09) 0.55 (0.05) 1.48
EDF% 11.00 0.67 (0.02)   13.30 −0.59 (2.39) 0.95 (0.08) 0.54 (0.05) 1.47
1RMSE = root mean squared error; RPD = ratio to performance deviation (SD/RMSE).
2C = concentrate; H = hay; GS = grass silage; MS = maize silage; P = pasture; FA = forages A (consisted of hay and grass silage); FB = for-
ages B (consisted of hay, grass silage, and pasture); EDF = energy-dense feedstuffs (specifically concentrate and maize silage). Subscript kg = 
kilograms of DMI in feedstuffs; subscript % = percentages of feedstuffs in the total feed ration.
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R2
val (e.g., 0.81 for fresh herbage compared with 0.63 

for pasture in this study).
Target values for the correlation R2

val defined in other 
publications using MIR spectrometry are, for example, 
>0.75 for animal breeding and >0.95 for incorporation 
in milk payment systems (Soyeurt et al., 2011) or 0.66 
≤ R2

val ≤ 0.81 for approximate quantitative predictions, 
0.82 ≤ R2

val ≤ 0.90 for good predictions, and R2
val > 

0.91 for excellent predictions (Karoui et al., 2006). For 
the RPD, Karoui et al. (2006) considered values >10 
to be equivalent to the reference method, values >2 to 
be adequate for analytical purposes, and values <1.5 to 

be indicative of incorrect estimates. For interpretation 
of R2 values in this publication, we referred to more 
comparable studies such as those concerning the predic-
tion of body energy status in dairy cows using MIR 
spectrometry by McParland et al. (2011, 2012), which 
consider estimations with R2

val of between 0.25 and 
0.64 to be reasonably accurate. Vanlierde et al. (2016) 
achieved an R2

val of 0.70 in their prediction of methane 
emissions from MIR spectra and described the resulting 
equation as sufficient for widespread screening in dairy 
herds and useful for the development of management 
and selection strategies.

Table 5. Statistics (SD in parentheses) for the calibration equations (in calibration and validation data sets) developed for the estimation of 
feed ration of lactating dairy cows with milk yield included as an additional factor in the partial least squares procedure (variant 2)1

Feedstuff2

Calibration

 

Validation

RMSE R2 RMSE Bias Slope R2 RPD

Ckg 1.61 0.71 (0.05)   1.92 0.00 (0.31) 0.97 (0.11) 0.60 (0.04) 1.56
Hkg 2.45 0.31 (0.07)   2.80 −0.08 (0.39) 0.68 (0.26) 0.15 (0.06) 1.10
GSkg 2.21 0.45 (0.09)   2.50 −0.13 (0.32) 0.88 (0.13) 0.35 (0.05) 1.29
MSkg 1.16 0.52 (0.11)   1.44 0.03 (0.29) 0.81 (0.16) 0.31 (0.08) 1.20
Pkg 2.35 0.75 (0.02)   2.90 0.12 (0.57) 1.00 (0.21) 0.63 (0.05) 1.60
FAkg 2.46 0.66 (0.03)   3.00 −0.12 (0.43) 0.92 (0.16) 0.53 (0.09) 1.45
FBkg 2.41 0.46 (0.04)   2.79 −0.14 (0.38) 0.84 (0.11) 0.32 (0.04) 1.22
EDFkg 1.94 0.77 (0.04)   2.28 0.04 (0.32) 0.98 (0.08) 0.67 (0.03) 1.74
C% 8.97 0.64 (0.06)   11.16 0.22 (2.14) 0.92 (0.11) 0.50 (0.06) 1.37
H% 12.86 0.31 (0.08)   14.30 −0.46 (1.95) 0.66 (0.25) 0.16 (0.05) 1.11
GS% 12.32 0.55 (0.04)   14.10 −0.31 (2.01) 0.89 (0.14) 0.43 (0.08) 1.34
MS% 7.49 0.57 (0.04)   9.06 0.19 (1.50) 0.85 (0.15) 0.36 (0.06) 1.23
P% 16.82 0.77 (0.02)   19.96 0.41 (3.74) 1.01 (0.18) 0.68 (0.04) 1.75
FA% 14.33 0.65 (0.04)   16.91 −0.52 (2.68) 0.93 (0.13) 0.53 (0.08) 1.46
FB% 10.36 0.71 (0.03)   12.44 −0.48 (2.22) 0.98 (0.08) 0.60 (0.04) 1.57
EDF% 10.50 0.71 (0.02)   12.34 0.24 (1.94) 0.97 (0.07) 0.60 (0.04) 1.58
1RMSE = root mean squared error; RPD = ratio to performance deviation (SD/RMSE).
2C = concentrate; H = hay; GS = grass silage; MS = maize silage; P = pasture; FA = forages A (consisted of hay and grass silage); FB = for-
ages B (consisted of hay, grass silage, and pasture); EDF = energy-dense feedstuffs (specifically concentrate and maize silage). Subscript kg = 
kilograms of DMI in feedstuffs; subscript % = percentages of feedstuffs in the total feed ration.

Table 6. Statistics (SD in parentheses) for the calibration equations (in calibration and validation data sets) developed for the prediction of feed 
ration of lactating dairy cows with concentrate included as an additional factor in the partial least squares procedure (variant 3)1

Feedstuff2

Calibration

 

Validation

RMSE R2 RMSE Bias Slope R2 RPD

Hkg 2.46 0.33 (0.08)   2.87 −0.13 (0.43) 0.67 (0.30) 0.13 (0.06) 1.07
GSkg 2.26 0.44 (0.08)   2.56 −0.11 (0.35) 0.83 (0.19) 0.32 (0.04) 1.26
MSkg 1.16 0.49 (0.13)   1.45 0.07 (0.27) 0.80 (0.14) 0.30 (0.09) 1.18
Pkg 2.34 0.75 (0.02)   2.83 0.14 (0.59) 1.00 (0.22) 0.64 (0.04) 1.64
FAkg 2.60 0.62 (0.06)   3.09 −0.18 (0.49) 0.94 (0.13) 0.49 (0.07) 1.41
FBkg 2.43 0.47 (0.04)   2.82 −0.13 (0.40) 0.83 (0.14) 0.31 (0.05) 1.21
H% 12.58 0.34 (0.07)   14.16 −0.50 (1.90) 0.72 (0.27) 0.19 (0.05) 1.12
GS% 12.00 0.57 (0.06)   13.68 −0.53 (1.96) 0.94 (0.10) 0.46 (0.05) 1.38
MS% 7.42 0.58 (0.04)   8.90 0.45 (1.25) 0.87 (0.13) 0.37 (0.08) 1.26
P% 17.09 0.77 (0.03)   19.59 0.16 (3.59) 0.99 (0.16) 0.68 (0.04) 1.78
FA% 13.74 0.69 (0.03)   16.16 −0.89 (2.97) 0.95 (0.12) 0.57 (0.09) 1.53
FB% 8.05 0.83 (0.02)   9.57 −0.20 (1.56) 0.99 (0.06) 0.76 (0.02) 2.04
1RMSE = root mean squared error; RPD = ratio to performance deviation (SD/RMSE).
2H = hay; GS = grass silage; MS = maize silage; P = pasture; FA = forages A (consisted of hay and grass silage); FB = forages B (consisted of 
hay, grass silage, and pasture). Subscript kg = kilograms of DMI in feedstuffs; subscript % = percentages of feedstuffs in the total feed ration.
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The R2
val for several individual feedstuffs (grass si-

lage, maize silage, and concentrate) ranged between 
0.32 and 0.43; RPD values ranged between 1.20 and 
1.35. Prediction of hay feeding reached relatively low 
values for R2

val (Hkg = 0.15 and H% = 0.16) and RPD 
(1.09 and 1.10), whereas pasture showed relatively high 
R2

val values (Pkg = 0.63; P% = 0.66) and RPD values 
(Pkg = 1.66; P% = 1.71). The relatively good accuracy of 
estimation for pasture intake corresponds with studies 
reporting that pasture has a considerable effect on milk 
composition, in particular on the fatty acid composi-
tion and milk urea content (White et al., 2001; Slots 
et al., 2009; Stergiadis et al., 2015). However, includ-
ing other feedstuffs with a similar effect on milk fatty 
acids (e.g., fresh-cut forage offered in barn) may distort 
estimations of pasture intake. Furthermore, the predic-
tive potential of MIR spectra seemed to be greater for 
groups of feedstuffs than for single feedstuffs.

The effect of adding additional predictor variables to 
the model on estimation accuracy is shown in Table 8. 
When we added milk yield as an additional predictor 
(variant 2), the highest improvements relative to R2

val 
in variant 1 (IR

2) were 0.21 for Ckg, 0.13 for EDFkg, 
and 0.16 for C%. Superior results (P < 0.01) were also 
achieved in FB% (0.05) and EDFkg (0.06). We assume 
that the increase in accuracy for concentrate and EDF 
originates from the close positive correlation of intake 
of high-energy feedstuffs and milk yield.

Including concentrate intake as a predictor (variant 
3) caused strong improvement of accuracy for FB%, 
with an IR

2 of 0.21 and an R2
val of 0.76. Because FB 

comprises hay, grass silage, and pasture, adding con-
centrate intake as a predictor leads to a model that 
contains information on almost all feedstuffs (exclud-
ing only maize silage). Thus, if concentrate intake is 

known, forage intake can be estimated with very high 
accuracy. Other IR

2 values of 0.03 or higher in vari-
ant 3 were observed for MS% and H%; all other values 
were smaller. Variant 4, which includes both milk yield 
and concentrate intake as predictors, produced higher 
R2

val and lower RPD values for almost all feedstuffs and 
groups of feedstuffs considered. The IR

2 was generally 
between 0.00 and 0.06, with the exception of 0.11 for 
FBkg and 0.21 for FB%.

Table 9 shows the average estimated values (in kg 
or %) for a feedstuff when the observed value for the 
respective sample was 0; that is, no amount of the 
feedstuff was fed. These estimations seemed to be bi-
ased compared with the accuracy of prediction over all 
samples, with a mean overestimation of 1.21 ± 1.67 kg 
or 9.23 ± 10.52%. This might be a restriction in the 
potential use of this method as a detector of certain 
feedstuffs (e.g., to see whether grass silage or pasture 
was fed to produce a certain sample of milk). However, 
this inaccuracy seems to be limited to samples with 
observed values of 0 because the correlations over all 
samples are generally promising. In all 4 variants, the 
standard deviation for the correlation Rval was always 
between 0.00 and 0.01, indicating that the high cor-
relations achieved for some feedstuffs and groups of 
feedstuffs are also very consistent over all 50 runs con-
ducted.

Table 9 also shows the 95.0% and 99.0% quantiles of 
the estimated values of those samples, which had an 
observed value of 0. In regard to the potential use of 
this method as a detector of a feedstuff in a ration, the 
values for the respective quantiles might be interpreted 
as thresholds for a certain probability that a feedstuff 
was actually part of the animal’s ration. A similar pro-
cedure seems to be applied by researchers at the Dutch 

Table 7. Statistics (SD in parentheses) for the calibration equations (in calibration and validation data sets) developed for the prediction of feed 
ration of lactating dairy cows with milk yield and concentrate included as additional factors in the partial least squares procedure (variant 4)1

Feedstuff2

Calibration

 

Validation

RMSE R2 RMSE Bias Slope R2 RPD

Hkg 2.42 0.32 (0.13)   2.77 −0.06 (0.38) 0.70 (0.26) 0.17 (0.06) 1.11
GSkg 2.21 0.50 (0.09)   2.49 −0.04 (0.28) 0.87 (0.12) 0.35 (0.05) 1.29
MSkg 1.15 0.52 (0.11)   1.42 0.08 (0.22) 0.81 (0.14) 0.32 (0.06) 1.21
Pkg 2.34 0.75 (0.03)   2.81 0.09 (0.48) 1.01 (0.17) 0.64 (0.04) 1.65
FAkg 2.44 0.68 (0.04)   2.87 −0.21 (0.42) 0.94 (0.13) 0.56 (0.07) 1.52
FBkg 2.26 0.55 (0.04)   2.62 −0.11 (0.37) 0.89 (0.09) 0.40 (0.04) 1.31
H% 12.01 0.35 (0.12)   14.38 −0.44 (1.64) 0.74 (0.27) 0.19 (0.06) 1.10
GS% 11.87 0.56 (0.08)   13.92 −0.88 (1.89) 0.93 (0.12) 0.45 (0.06) 1.36
MS% 7.25 0.54 (0.05)   9.05 0.33 (1.52) 0.84 (0.14) 0.36 (0.07) 1.24
P% 16.82 0.78 (0.02)   19.66 0.51 (3.49) 0.99 (0.15) 0.68 (0.03) 1.77
FA% 13.25 0.70 (0.02)   16.35 −1.29 (3.07) 0.94 (0.12) 0.57 (0.09) 1.51
FB% 7.98 0.84 (0.02)   9.64 −0.09 (1.68) 0.99 (0.06) 0.76 (0.03) 2.03
1RMSE = root mean squared error; RPD = ratio to performance deviation (SD/RMSE).
2H = hay; GS = grass silage; MS = maize silage; P = pasture; FA = forages A (consisted of hay and grass silage); FB = forages B (consisted of 
hay, grass silage, and pasture). Subscript kg = kilograms of DMI in feedstuffs; subscript % = percentages of feedstuffs in the total feed ration.
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private institute Qlip, who have developed a “fresh 
grazed grass indicator.” This method aims to determine 
whether a cow has been fed fresh herbage by analyzing 
the MIR spectra of milk samples. In this method, MIR 
spectra are used to estimate milk composition, which in 
turn is supposed to be an indicator of fresh herbage in 
the animal’s feed ration (Qlip, 2016). The RMSE offers 
a different angle, substantiating our interpretation that 
individual estimations can be rather inaccurate even 

when R2
val is promising. The confidence interval at P 

< 0.05 is ±RMSE × 1.96. For example, the RMSE for 
Ckg in variant 1 is 2.41 kg, meaning that the confidence 
interval for any estimate would be ±4.73 kg, which is 
large considering the average observed concentrate in-
take of 3.31 ± 2.99 kg.

The estimations from 1 run of the PLS procedure 
for FBkg are visualized in Figure 1. The R2

val, bias, and 
slope for this run were similar to the corresponding 

Table 8. Comparison of correlation between predicted and observed values and ratio to performance deviation (RPD; SD/root mean squared 
error) in all 4 variants of the partial least squares procedure1

Feedstuff2

Variant 1

 

Variant 2

 

Variant 3

 

Variant 4

R2
val RPD R2

val IR
2 RPD R2

val IR
2 RPD R2

val IR
2 RPD

Ckg 0.39 1.24 0.60 0.21 1.56            
Hkg 0.15 1.09 0.15 0.00 1.10 0.13 −0.02 1.07 0.17 0.02 1.11
GSkg 0.32 1.26 0.35 0.03 1.29 0.32 0.00 1.26 0.35 0.03 1.29
MSkg 0.32 1.21 0.31 −0.01 1.20 0.30 −0.02 1.18 0.32 0.00 1.21
Pkg 0.63 1.66 0.63 −0.01 1.60 0.64 0.01 1.64 0.64 0.01 1.65
FAkg 0.50 1.44 0.53 0.03 1.45 0.49 −0.01 1.41 0.56 0.06 1.52
FBkg 0.29 1.19 0.32 0.03 1.22 0.31 0.02 1.21 0.40 0.11 1.31
EDFkg 0.54 1.48 0.67 0.13 1.74            
C% 0.34 1.21 0.50 0.16 1.37            
H% 0.16 1.10 0.16 0.00 1.11 0.19 0.03 1.12 0.19 0.03 1.1
GS% 0.43 1.35 0.43 −0.01 1.34 0.46 0.02 1.38 0.45 0.01 1.36
MS% 0.33 1.20 0.36 0.03 1.23 0.37 0.04 1.26 0.36 0.03 1.24
P% 0.66 1.71 0.68 0.01 1.75 0.68 0.02 1.78 0.68 0.02 1.77
FA% 0.54 1.47 0.53 −0.01 1.46 0.57 0.02 1.53 0.57 0.02 1.51
FB% 0.55 1.48 0.60 0.05 1.57 0.76 0.21 2.04 0.76 0.21 2.03
EDF% 0.54 1.47 0.60 0.06 1.58            
1R2

val = coefficient of determination in the validation data set; IR
2 = improvement relative to the R2

val of variant 1. 
2C = concentrate; H = hay; GS = grass silage; MS = maize silage; P = pasture; FA = forages A (consisted of hay and grass silage); FB = for-
ages B (consisted of hay, grass silage, and pasture); EDF = energy-dense feedstuffs (specifically concentrate and maize silage). Subscript kg = 
kilograms of DMI in feedstuffs; subscript % = percentages of feedstuffs in the total feed ration.

Table 9. Mean estimated value for an individual feedstuff or a group of feedstuffs when the observed value was 0, or thresholds for a certain 
probability that a feedstuff was actually part of the animal’s ration

Feedstuff1 n

Estimation

 

Quantile

Mean SD 0% minimum 95.0% 99.0% 100.0%

Ckg 473 1.23 1.56 −3.17 3.81 5.17 6.88
Hkg 325 2.03 1.79 −1.31 6.01 7.23 8.23
GSkg 906 1.13 1.66 −3.19 4.53 6.40 9.77
MSkg 1,132 1.07 0.93 −1.41 2.56 3.19 5.09
Pkg 2,801 0.46 1.86 −5.74 3.45 5.47 14.03
FAkg 871 1.68 2.16 −4.48 5.34 9.21 13.79
FBkg
EDFkg 103 0.89 1.76 −2.70 4.15 5.24 5.56
C% 484 7.87 8.53 −22.10 21.45 35.46 40.07
H% 880 5.89 7.62 −16.89 19.86 26.49 30.67
GS% 634 10.50 11.53 −21.22 31.76 39.11 46.81
MS% 1,074 6.00 6.34 −11.09 17.75 22.15 28.63
P% 3,779 3.89 13.53 −42.69 26.72 42.80 116.48
FA% 356 18.30 17.15 −20.49 41.32 55.50 67.67
FB%
EDF% 127 12.13 10.52 −9.49 30.01 36.26 46.31
1C = concentrate; H = hay; GS = grass silage; MS = maize silage; P = pasture; FA = forages A (consisted of hay and grass silage); FB = for-
ages B (consisted of hay, grass silage, and pasture); EDF = energy-dense feedstuffs (specifically concentrate and maize silage). Subscript kg = 
kilograms of DMI in feedstuffs; subscript % = percentages of feedstuffs in the total feed ration.



Journal of Dairy Science Vol. 100 No. 7, 2017

MID-INFRARED SPECTROMETRY AND FEED COMPOSITION 5419

values averaged over 50 runs. Figure 1 shows the strong 
dispersion of the cloud of estimations across the graph 
linking observed and predicted values, indicating that 
although average estimates might be accurate, indi-
vidual estimates may be far off at times.

Figure 2 was prepared in the same manner as Figure 
1 but illustrates the dispersion of the cloud across the 
graph linking observed and predicted values for the 
individual feedstuff Hkg. The dispersion of estimates 
was extremely strong, especially when the respective 
feedstuffs did not occur in the animal’s diet. However, 
when the feedstuff was part of the ration the accuracy 
of estimations seemed to be significantly higher.

CONCLUSIONS

In this study we explored the options for creating a 
method to estimate the feed ration of dairy cows cheaply 
and accurately using MIR spectra from a standard milk 
recording procedure. The degree of accuracy was not 
the same for different feedstuffs, but estimates for all 
groups of feedstuffs and certain single feedstuffs such as 

pasture, maize silage, and concentrates were promising. 
Further research is needed to determine whether and 
how accuracy of estimation can be increased and how 
the results can be implemented in the development of a 
useful method that is applicable in the dairy industry. 
Although estimations for some categories are good on 
average, individual estimations can deviate strongly. 
Thus, studies examining MIR spectra of repeated 
samples of bulk milk of herds following alternative feed 
regimens and ration compositions are required.
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Figure 1. Amount of the feedstuff group forages B (hay, grass silage, and pasture) in ration (in kg) as observed (x-axis) and predicted (y-
axis). Results from 1 run with Rval = 0.71, RMSEval = 2.38, slope = 0.93, and bias = 0.00. Rval = correlation between observed and estimated 
values in the validation data set; RMSEval = root mean squared error of estimations in the validation data set. Color version available online.
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