
New Stable Inverses of Linear Discrete Time Systems and Application to Iterative
Learning Control

Xiaoqiang Ji

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2019

© 2019
Xiaoqiang Ji

All rights reserved

ABSTRACT

New Stable Inverses of Linear Discrete Time Systems and Application to Iterative

Learning Control

Xiaoqiang Ji

Digital control needs discrete time models, but conversion from continuous time, fed

by a zero order hold, to discrete time introduces sampling zeros which are outside the unit

circle, i.e. non-minimum phase (NMP) zeros, in the majority of the systems. Also, some

systems are already NMP in continuous time. In both cases, the inverse problem to find the

input required to maintain a desired output tracking, produces an unstable causal control

action. The control action will grow exponentially every time step, and the error between

time steps also grows exponentially. This prevents many control approaches from making

use of inverse models.

The problem statement for the existing stable inverse theorem is presented in this work,

and it aims at finding a bounded nominal state-input trajectory by solving a two-point

boundary value problem obtained by decomposing the internal dynamics of the system.

This results in the causal part specified from the minus infinity time; and its non-causal part

from the positive infinity time. By solving for the nominal bounded internal dynamics, the

exact output tracking is achieved in the original finite time interval.

The new stable inverses concepts presented and developed here address this instability

problem in a different way based on the modified versions of problem states, and in a

way that is more practical for implementation. The statements of how the different inverse

problems are posed is presented, as well as the calculation and implementation. In order to

produce zero tracking error at the addressed time steps, two modified statements are given

as the initial delete and the skip step. The development presented here involves: (1) The

detection of the signature of instability in both the nonhomogeneous difference equation and

matrix form for finite time problems. (2) Create a new factorization of the system separating

maximum part from minimum part in matrix form as analogous to transfer function format,

and more generally, modeling the behavior of finite time zeros and poles. (3) Produce

bounded stable inverse solutions evolving from the minimum Euclidean norm satisfying

different optimization objective functions, to the solution having no projection on transient

solutions terms excited by initial conditions.

Iterative Learning Control (ILC) iterates with a real world control system repeatedly

performing the same task. It adjusts the control action based on error history from the

previous iteration, aiming to converge to zero tracking error. ILC has been widely used

in various applications due to its high precision in trajectory tracking, e.g. semiconductor

manufacturing sensors that repeatedly perform scanning maneuvers. Designing effective

feedback controllers for non-minimum phase (NMP) systems can be challenging. Applying

Iterative Learning Control (ILC) to NMP systems is particularly problematic. Incorporating

the initial delete stable inverse thinkg into ILC, the control action obtained in the limit as the

iterations tend to infinity, is a function of the tracking error produced by the command in the

initial run. It is shown here that this dependence is very small, so that one can reasonably

use any initial run. By picking an initial input that goes to zero approaching the final time

step, the influence becomes particularly small. And by simply commanding zero in the first

run, the resulting converged control minimizes the Euclidean norm of the underdetermined

control history. Three main classes of ILC laws are examined, and it is shown that all ILC

laws converge to the identical control history, as the converged result is not a function of

the ILC law. All of these conclusions apply to ILC that aims to track a given finite time

trajectory, and also apply to ILC that in addition aims to cancel the effect of a disturbance

that repeats each run.

Having these stable inverses opens up opportunities for many control design

approaches. (1) ILC was the original motivation of the new stable inverses. Besides the

scenario using the initial delete above, consider ILC to perform local learning in a trajectory,

by using a quadratic cost control in general, but phasing into the skip step stable inverse for

some portion of the trajectory that needs high precision tracking. (2) One step ahead control

uses a model to compute the control action at the current time step to produce the output

desired at the next time step. Before it can be useful, it must be phased in to honor actuator

saturation limits, and being a true inverse it requires that the system have a stable inverse.

One could generalize this to p-step ahead control, updating the control action every p steps

instead of every one step. It determines how small p can be to give a stable implementation

using skip step, and it can be quite small. So it only requires knowledge of future desired

control for a few steps. (3) Note that the statement in (2) can be reformulated as Linear

Model Predictive Control that updates every p steps instead of every step. This offers the

ability to converge to zero tracking error at every time step of the skip step inverse, instead

of the usual aim to converge to a quadratic cost solution. (4) Indirect discrete time adaptive

control combines one step ahead control with the projection algorithm to perform real time

identification updates. It has limited applications, because it requires a stable inverse.

Contents

List of Figures iii

List of Tables vi

Acknowledgements vii

1 Introduction 1

2 The Zeros of Discretized Systems 7

2.1 Introduction . 7

2.2 Types of Zeros . 8

2.3 Instability of Inverse Problems due to NMP Zeros 9

3 Stable Inverse Theorem 11

3.1 Introduction . 11

3.2 Stable Inverse Theorem Scheme . 12

4 New Results for Stable Inverses of Discrete Time Systems 19

4.1 Introduction . 19

i

4.2 The System and Its True Inverse . 21

4.3 New Stable Inverses . 31

4.4 Apply Stable Inverse Theorem in a Linear Discrete Time System 61

4.5 Conclusions . 65

5 Iterative Learning Control for Linear Discrete Time Non-Minimum Phase

Systems 67

5.1 Introduction . 67

5.2 Iterative Learning Control Laws . 73

5.3 A New Stable Inverse Based Iterative Learning Control 75

5.4 Analytical and Numerical Results . 77

5.5 Stable Inverse Theorem Based Iterative Learning Control 89

5.6 Conclusions . 91

Conclusion 95

References 99

Appendix A Numerical Results on ILC of Time Varying Systems 107

A.1 Introduction . 107

A.2 On ILC of Linear Time Varying Systems 108

A.3 Investigation of P Matrix of LTV Systems 112

ii

List of Figures

Figure 4.1 Unstable inverse control action . 23

Figure 4.2 The smallest singular value and the nest to smallest singular value as a

function of the dimension of p . 29

Figure 4.3 The singular values of matrix P compared to discrete magnitude

frequency response . 29

Figure 4.4 Magnitudes of the components of last output singular vector of P , also

shown magnitudes of reciprocal of zero and zero location to the kth power with

pole excess 3 . 30

Figure 4.5 Magnitudes of the components of last input singular vector of P , also

shown magnitudes of reciprocal of zero and zero location to the kth power with

pole excess 3 . 30

Figure 4.6 The actual output using Longman-JiLLL FS on y∗(t) = 0.25 ∗

[1− cos(2πt)]2 . 51

Figure 4.7 The control input producing output in Figure 4.6 51

iii

Figure 4.8 The control input using Longman-JiLLL NS on y∗(t) = 0.25 ∗

[1− cos(2πt)]2 . 52

Figure 4.9 Logrithm of error magnitude at all time steps using Longman-JiLLL NS 52

Figure 4.10 The ”clean” control inverse solution on y∗(t) = 0.25 ∗ [1− cos(2πt)]2 . 59

Figure 4.11 The actual output error using Figure 4.10 60

Figure 4.12 The solution space of the ”clean” stable inverse 60

Figure 5.1 Matrix entries of Vd2V T
d2 showing the influence of initial input

components of u0 on control action . 85

Figure 5.2 Logrithm of Magnitude of matrix entries Vd2V T
d2 85

Figure 5.3 Illustration of how the value of γ accumulates as time steps progress . . 86

Figure A.1 Magnitude of components of first three output singular vectors of LTI

P matrix . 113

Figure A.2 Magnitude of components of first three input singular vectors of LTI P

matrix . 114

Figure A.3 y∗1(t) = e

(
(t−m1)

2

2σ2

)

. 115

Figure A.4 y∗2(t) = e

(
(t−m2)

2

2σ2

)

. 115

Figure A.5 y∗3(t) = e

(
(t−m3)

2

2σ2

)

. 116

Figure A.6 The desired output y∗1(t) and time varying coefficients 117

Figure A.7 The resulted first three input singular vectors linearized about y∗1(t) . . . 117

Figure A.8 The resulted first three output singular vectors linearized about y∗1(t) . . 118

Figure A.9 The desired output y∗2(t) and time varying coefficients 118

Figure A.10 The resulted first three input singular vectors linearized about y∗2(t) . . . 119

iv

Figure A.11 The resulted first three output singular vectors linearized about y∗2(t) . . 119

Figure A.12 The desired output y∗3(t) and time varying coefficients 120

Figure A.13 The resulted first three input singular vectors linearized about y∗3(t) . . . 120

Figure A.14 The resulted first three output singular vectors linearized about y∗3(t) . . 121

Figure A.15 The desired output y∗4(t) and time varying coefficients 121

Figure A.16 The resulted first three input singular vectors linearized about y∗4(t) . . . 122

Figure A.17 The resulted first three output singular vectors linearized about y∗4(t) . . 122

Figure A.18 The desired output y∗5(t) and time varying coefficients 123

Figure A.19 The resulted first three input singular vectors linearized about y∗5(t) . . . 124

Figure A.20 The resulted first three output singular vectors linearized about y∗5(t) . . 124

Figure A.21 The desired output y∗8(t) and time varying coefficients 127

Figure A.22 DFT of th 10th input singular vector of the constant coefficients system

compared to the linearized system with periodic coefficients 128

Figure A.23 The desired output y∗9(t) and time varying coefficients 128

Figure A.24 DFT of th 30th input singular vector of the constant coefficients system

compared to the linearized system with periodic coefficients 129

Figure A.25 The desired output y10∗(t) and time varying coefficients 129

Figure A.26 DFT of th 30th input singular vector of the constant coefficients system

compared to the linearized system with periodic coefficients 130

Figure A.27 1st, 20th and 60th column of time varying P matrix linearized about y∗6(t)131

Figure A.28 1st, 20th and 60th column of time varying P matrix linearized about y∗7(t)131

Figure A.29 Input-out singular vector pair associated with σmin of P6 132

Figure A.30 Input-out singular vector pair associated with σmin of P7 133

v

Figure A.31 The updated singular values of P6d . 133

Figure A.32 The updated singular values of P7d . 134

List of Tables

2.1 Asymptotic zero locations outside and on the unit circle 9

vi

Acknowledgements

Now is approching the end of my incredible journey as a PhD student at Columbia

University. I am extremely grateful as well as proud at this moment. I would like to thank

many people who made this adventure happen.

First, my deepest gratitude goes to my academic advisor Prof. Richard W. Longman,

for your continuous support, patience, and immense help, and it is you who truly introduced

me to the world of academic research. Our weekly meetings forged me with the attitudes

towards my life and have been always providing a direction when I got lost.

I would like to extend thanks to the other members of my dissertation committee, Prof.

Raimondo Betti, Prof. Homayoon Beigi, Prof. Nicolas W. Chbat and Prof. Fred R. Stolfy,

for participating in my defense. And special thanks to Prof. Minh Phan, Prof. Matei

Ciocarlie, and Prof. Qingze Zou for helping me proposing the research topics. I would

also thank the Department of Mechanical Engineering at Columbia supporting my studies.

I would like to thank my parents for your unconditional love have made this study

possible. I am also greatly thankful to my girlfriend for everything. I thank all my lab

members Dr. Zhu, Dr. Li, Dr. Song, Dr. Vicario, Dr. Prasitmeeboon, Dr. Yao, Tianyi and

vii

Ayman.

Finally, I thank myself...

viii

Chapter 1

Introduction

Motivation and Background

Typical feedback control systems do not do what you ask them to do. The concept of

bandwidth is created to describe up to what frequency such a system will do something

reasonably close to the command. Various control approaches aim to fix this problem, and

produce zero tracking error following the commanded trajectory. These include Iterative

Learning Control (ILC), Repetitive Control (RC), one step ahead control, indirect adaptive

control, etc. Each aims to produce that input command that produces the desired output,

i.e. solve the inverse problem. To implement such control laws, one must use discrete time

models which represent the continuous world with inputs coming through a zero-order hold.

Assume a one time-step delay through the system, since the time lag from change in input

at a given time step to the first time step influenced in the output should be one. Thus, new

zeros are introduced during the discretization, and these are termed sampling zeros. When

two or more zeros have thus been introduced, at least one zero is outside the unit circle for

1

reasonable sample rates, making a non-minimum phase system (NMP) in References [1]

and [2]. The inverse problem makes these zeros into poles, producing an unstable control

action. References [1] and [2] tell the asymptotic locations of the zeros introduced as the

sample time interval tends to zero, for each value of pole excess (relative degree), i.e. the

number of poles minus the number of zeros. Of course, the original continuous time system

might be NMP, and then the image of the zero(s) in the right half of the s-plane will be

mapped outside the unit circle in the z-plane. Such zeros are termed intrinsic zeros, and

again they make the inverse problem unstable.

There is an existing stable inverse theory developed to address this problem in

References ([3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]). The stable inverse

concepts presented and fully developed in this thesis address this instability problem in a

different way. References [3] and [4] studied the problem for continuous time, nonlinear,

NMP systems, aiming to produce a stable non-causal inverse mapping. Researches try

to use the concept in the context of Iterative Learning Control (ILC). Reference [8]

developed the relationship of adjoint-type ILC and stable inversion. Reference [9] designs

a new inversion-based algorithm which works for both minimum and non-minimum phase

systemswith gain and time-constant uncertainty. Reference [11] aiming at the ILC problem,

which examine sampling zeros only, and do not ask for zero error on the output for the

first few steps. Reference [12] studies the convergence of stable inverse of sampled-data

system to the continuous-time counterpart. Reference [15] proposed optimal state-to-state

transition to shorten the preactuation time.

The author and co-workers developed a set of new stable inverses, and the concepts

presented in References [16], [17] and [18] and fully developed in this dissertation address

2

this instability problem in a different which ismore practical for implementation. Analytical

and numerical on the various ways in which these results can be employed in control system

design are presented including ILC.

Iterative learning control (ILC) is a relatively newmethod of control that aims to achieve

zero tracking error of a finite time tracking maneuver that is repeated. The original ILC idea

dates back to the late 1970s when Uchiyama introduced the concept on high-speed motion

control of a robot arm following a desired trajectory through iterative trials in Reference

[19]. In addition to a considerable amount of journal and conference papers, there are also

major surveys, books, and special issues in References ([20], [21], [22], [23], [24], [25],

[26], [27], [28], [29], [30], [31], [32], [33]). ILC has been applied in a wide range of areas.

According to the survey performed in Reference [28], the top three application fields are

robots, rotary systems and process control including batch/factory/chemical process. Take

computer disk drives for example. The data are written while the disk is rotating so there

is vibration which results in some high frequency wiggles in the tracks. In order to read

data on a disk, a control system follows these tracks on the disk. At the factory, ILC is

used on each track to improve the accuracy when the control system follows the track, so

that the storage can be increased. There are also applications to spacecraft operations for

repeated scanning maneuvers of fine pointing equipment. The learning process can learn to

compensate for both repeating effects from structural flexibility, and deterministic control

system error is response to time varying tracking commands. There is the potential for high

precision pointing control achieved through a learning process.

ILC stores data from the previous run, so that it is a digital control method solving a

discrete-time inverse problem. The real world for digital control systems is governed by

3

ordinary differential equations, but the digital controller creates the forcing function applied

to this equation, updating it each sample time. Each update is continuously applied to the

differential equation until a new update arrives from the controller - called a zero-order hold.

If one looks at the solution to the differential equation at the sample times, one can make a

linear difference equation that has identical solution to the differential equation. Reference

[20] proves that the process of converting to a difference equation model introduces the

forcing function at additional sample times, enough to make the most recent output time

step in the equation be one step ahead of the most recent forcing function input time step.

When the discretization introduces three or more additional terms, and the sample rate is

reasonable, the characteristic polynomial of the forcing function side of the equation will

contain a root or roots that are larger than one in magnitude. This makes the discrete-

time inverse problem unstable for a majority of digital control systems in the world. The

implication is, if one wants to have perfect tracking of a desired discrete-time trajectory

at all time steps, the control action needed is unstable, and grows exponentially with time

steps. The inverse problem error must be zero at the sample times, but between sample

times the solution of the differential equation (after some initial time steps) is growing in

magnitude exponentially, and alternating in sign each time step. Of course, this exponential

error growth when perfectly following the discrete-time desired trajectory does not address

the initial intended problem of finding the input to accurately follow the desired continuous

time output.

4

Thesis Outline

Chapter 2 gives the problem statement and calculation for the existing stable inverse

theorem. Chapter 3 develops a series of new stable inverses based on the modified problem

statements satisfying different objectives. Chapter 4 applies the stable inverse ideas on ILC

design problems.

5

This page intentionally left blank.

6

Chapter 2

The Zeros of Discretized Systems

2.1 Introduction

Digital control systems typically contain a system governed by a differential equationwhose

input comes through a zero-order hold. One designs to make the sampled output perform

well, after converting the plant Laplace transfer function to its equivalent z– transfer

function, or equivalently convert the plant differential equation to an equivalent difference

equation that has no approximation, i.e. the difference equation solution is exactly the same

as the differential equation solution at the sample times. Poles and zeros in the Laplace

transfer function are mapped into poles and zeros in the z-transfer function. In the design

process, it is important that one wants to know the locations of these zeros, which is studied

by References [1], [2], [34] and [35].

The mapping of zeros locations in the s-plane to the z-plane is interesting while the

mapping of poles is a simple easily understood manner, each pole in the z-plane is only a

function of the location of the pole in the s-plane. Reference [34] studies that the locations

7

of mapped zeros are not only a function of the locations of the s-plane zeros, but also a

function of the poles of the system.

2.2 Types of Zeros

There are two types of zeros when one converts a continuous time transfer function G(s)

fed by a zero-order hold to the corresponding discrete time transfer function G(z). When

the zero-order hold input is updated at the start of a time step, one should see a change in

the output sample at the end of the time step. This means that the most advanced time step

in input should be one less than the most advanced time step in output. Thus, new zeros are

introduced during the discretization, and these are termed sampling zeros. Reference [1]

gives the locations of the zeros introduced by the discretization as the sample time interval

T tends to zero, as a function of the pole excess in the original Laplace transfer function,

i.e. the numbder of poles minus the number of zeros. These are presented in Table 2.1.

They are all on the negative real axis (corresponding to Nyquist frequency). Odd pole

excesses introduce an even number of zeros, half of which are inside the unit circle and the

other half are outside the unit circle, located at the reciprocals of those inside. Even pole

excesses introduce an odd number of zeros, and this extra one is asymptotically located at

-1. Note that when two or more zeros have been introduced, at least one zero is outside the

unit circle for reasonable sample rates, making a non-minimum phase system in Reference

[3].

When there are zeros in the continuous time transfer functionG(s), there are images of

these zeros in G(z) called intrinsic zeros. Of course the original continuous time system

8

Table 2.1: Asymptotic zero locations outside and on the unit circle

Pole Excess Zero Locations
2 -1.0000
3 -3.7321
4 -9.8990, -1.0000
5 -23.2039, -2.3225
6 -51.2184, -4.5419, -1.0000
7 -109.3052, -8.1596, -1.8682
8 -228.5110, -13.9566, -3.1377, -1.0000
9 -471.4075, -23.1360, -4.9566, -1.6447
10 -963.8545, -37.5415, -7.5306, -2.5155, -1.0000
11 -1958.6431, -59.9893, -11.1409, -3.6740, -1.5123

might be non-minimum phase, and then the image of the zero in the right half of the s-plane

will be mapped outside the unit circle in the z-plane.

2.3 Instability of Inverse Problems due to NMP Zeros

Very often, discrete time systems have zeros outside the unit circle, i.e. sampling or intrinsic

non-minimum phase zeros. This means that the inverse problem is unstable, i.e. finding

the input necessary to produce the desired output results in a control action that grows

exponentially in magnitude with time. For example, as shown in Table 2.1, a system

with pole excess of 3 has a sampling zero at -3.7321 asymptotically as sample rate tends

to infinity, then the solution to the homogeneous difference equation consists a constant

determined by initial conditions times -3.7321 (using the asymptotic value) to the kth power,

where k is the time step number. This solution indicates that control action requited growing

exponentially and alternating in sign every time step, and the actuator will hit saturation

after not that many time steps. Of course, control system designers would be happy to

design systems that produce zero tracking error, but his is prevented by this instability.

9

Instead, control systems fail to produce the desired output as demonstrated by the achieved

system bandwidth.

10

Chapter 3

Stable Inverse Theorem

3.1 Introduction

For Non-Minimum Phase (NMP) systems, the required inputs found through standard

inversion tend to be unbounded as described in the previous chapter, and cannot to be used

in practice. There is an existing stable inverse theorem for NMP systems originated from

References [3], [4], [5] and [6], which yield bounded inputs for output-tracking problems.

Future information of the reference output trajectory is needed for the stable inversemethod,

which ensures stability by giving up causal characteristic, hence it is non-causal. Non-

causal stable inverse is calculated offline given the need of the whole future information,

Reference [6] proposed the preview-based stable inverse method in order to calculate the

solution online using a finite time window rather than the whole trajectory.

11

3.2 Stable Inverse Theorem Scheme

The stable inverse theorem as applied to linear systems, can be described as follows

Problem Statement

Consider a Single-Input-Single-Output(SISO) linear system

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

(3.1)

where x(t) ∈ Rn, u(t) ∈ R and y(t) ∈ R are the state, input and output trajectories.

Define the desired reference output trajectory yd(t) satisfying y
(i)
d ∈ L1∩L∞, i = 0, 1, ..., r

where r is the relative degree of the system, i.e. the smallest positive integer such that

CAr−1B ̸= 0.

Definition in References [3], [4], [5] and [6] For the system Equation 3.1, let the finite

time reference trajectory yd(t), t ∈ [ti, tf] to be tracked, if there exists a nominal input-

state-output trajectory [uref (t), xref (t), yref (t)] which

• Satisfies the system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋref (t) = Axref (t) + Buref (t)

t ∈ (−∞,+∞)

yref (t) = Curef (t)

(3.2)

12

• Yields the desired output exactly:

yref (t) = yd(t), t ∈ [ti, tf] (3.3)

• uref (t), xref (t), and yref (t) are bounded for t ∈ (−∞,+∞) and satisfy

uref (t) → 0, xref (t) → 0, yref (t) → 0, t → ±∞ (3.4)

then the input uref (t) is defined as the stable inverse input of the desired output yd(t).

Computation

The relative degree of the system Equation 3.1 is r, then keep differentiating the output till

the input appears as follows

dry(t)

dtr
= CArx(t) + CAr−1Bu(t) = Axx(t) + Byu(t) (3.5)

For the inverse problem, the input can be written as

u(t) = By
−1
(
y(r)(t)− Axx(t)

)
(3.6)

where By is invertible since the well-defined relative degree assumption. In the ideal case,

the stable inverse u(t) could be found by substituting Y (r)(t) = Y (r)
d (t) such that the exact

output tracking could be achieved. Define the outer state as the function of the output and

13

its derivatives till (r − 1)th order

ξ(t) =

[
y(t)

dy(t)

dt
· · · dr−1y(t)

dtr−1

]T
(3.7)

namely, ξi(t) = CAi−1x(t), i = 1, 2, ..., r. Choose the inner states η(t) appropriately, such

that the system state is decomposed into outer and inner states through an invertible linear

transformation as follows ⎡

⎢⎢⎣
ξ(t)

η(t)

⎤

⎥⎥⎦ = T1x(t) (3.8)

Then the system Equation 3.1 could be rewritten in the new coordinates as

ξ̇(t) = Â1ξ(t) + Â2η(t) + B̂1u(t)

η̇(t) = Â3ξ(t) + Â4η(t) + B̂2u(t)

(3.9)

where

Â = T1AT1
−1 =

⎡

⎢⎢⎣
Â1 Â2

Â3 Â4

⎤

⎥⎥⎦ , B̂ = T1B =

⎡

⎢⎢⎣
B̂1

B̂2

⎤

⎥⎥⎦ , Ĉ = CT1
−1 (3.10)

Substituting Equation 3.9 to Equation 3.6, get

u(t) = By
−1
(
y(r)(t)− Aξξ(t)− Aηη(t)

)
(3.11)

where
[
Aξ Aη

]
= AxT

−1
1 (3.12)

14

To maintain the output tracking give the desired output yd(t), the input could be written

u(t) = By
−1
(
yd

(r)(t)− Aξξd(t)− Aηη(t)
)

(3.13)

since the outer state ξ(t) is the function of the output only.

Substitue Equation 3.13 to the second equation of Equation 3.9, then one constructs the

internal dynamics represented by

η̇(t) = Âηη(t) + B̂ηYd(t) (3.14)

where

Âη = Â4 − B̂2By
−1Aη, B̂η =

[
B̂2By

−1 Â3 − B̂2By
−1Aξ

]
, Yd =

⎡

⎢⎢⎣
y(r)d (t)

ξd(t)

⎤

⎥⎥⎦

(3.15)

[6] stats that finding the inverse input-state trajectory is equivalent to finding bounded

solution to the system’s internal dynacmis as Equation 3.14. If a bounded solution ηd(t)

could be found, then the stable inverse control is found through Equation 3.12 by replacing

η(t) with ηd(t). The eigenvalues of the internal dynamic matrix coincide with the zeros of

the original system Equation Equation 3.1. There exists a linear transformation T2 such that

the internal dynamics can be decoupled into the stable inner state equation and the unstable

15

inner state equation

⎡

⎢⎢⎣
η̇ds(t)

η̇du(t)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣
Âηs 0

0 âηu

⎤

⎥⎥⎦

⎡

⎢⎢⎣
ηds(t)

ηdu(t)

⎤

⎥⎥⎦+

⎡

⎢⎢⎣
B̂ηs

B̂ηu

⎤

⎥⎥⎦Yd(t) (3.16)

where

⎡

⎢⎢⎣
ηds(t)

ηdu(t)

⎤

⎥⎥⎦ = T2ηd(t), T2B̂η =

⎡

⎢⎢⎣
B̂ηs

B̂ηu

⎤

⎥⎥⎦ , T2ÂηT
−1
2 =

⎡

⎢⎢⎣
Âηs 0

0 Âηs

⎤

⎥⎥⎦ (3.17)

Then the bounded solution to the internal dynamics can be found by a forward causal

integration for the stable inner state part, while a backward non-causal integration for the

unstable inner state part

ηds(t) =
∫ t

−∞ eÂηs(t−τ)B̂ηsYd(τ)dτ

ηdu(t) = −
∫∞
t e−Âηu(τ−t)B̂ηuYd(τ)dτ

(3.18)

After solving for the internal dynamics, then the stable inverse control solution can be found

in these coordinates.

Implementation

Of course one cannot perform these integrals from minus infinity to plus infinity. Instead,

start the forward integral from time (ti−δti) instead ofminus infinity, and start the backward

integral from (tf +δtf). Pick δti large enough that it is beyond the settling time of the zeros

in the left half plane, considered as poles. Pick δtf large enough that it is beyond the settling

16

time of the zeros in the right half plane treated as poles, and going backward in time. As

δti and δtf tend to infinity the computation converges to the desired stable inverse solution.

When these are not infinite, then the stable inverse obtained produces approximate tracking.

How approximate is determined by how far beyond the settling times when these integrals

start.

The above can be reformulated for discrete time systems in which case it handles both

intrinsic sampling NMP zeros. In place of derivatives of the desired trajectory one uses

analogous time shifts. The differentiability requirements of the desired trajectory no longer

apply because the action is spread out over steps. Without the specified continuity in the

time domain, the discrete time solution may require rather large wiggles. For particularly

fast sample rates, these can be beyond the actuator limits, but the mathematics is happy to

compute the results.

17

This page intentionally left blank.

18

Chapter 4

New Results for Stable Inverses of

Discrete Time Systems

4.1 Introduction

Typical feedback control systems do not do what you ask them to do. The concept of

bandwidth is created to describe up to what frequency such a system will do something

reasonably close to the command. Various control approaches aim to fix this problem,

and produce zero tracking error flowing the commanded trajectory. These include Iterative

Learning Control (ILC), Repetitive Control (RC), one step ahead control, indirect adaptive

control, etc. Each aims to produce that input command that produces the desired output,

i.e. solve the inverse problem. To implement such control laws, one must use discrete time

models which represent the continuous world with inputs coming through a zero-order hold.

Assume a one-time step delay through the system, since the time lag from the change in

19

input at a given time step to the first time step influenced in the output should be one. Thus,

new zeros are introduced during the discretization, and these are termed sampling zeros.

When two or more zeros have thus been introduced, at least one zero is out the unit circle

for reasonable sample rates, making a non-minimum phase system. The inverse problem

makes these zeros into poles, producing an unstable control action. References [1] and [2]

tell the asymptotic locations of the zeros introduced as the sample time interval tends to

zero, for each value of pole excess (relative degree), i.e. the number of poles minus the

number of zeros. Of course, the original continuous time system might be non-minimum

phase, and then the image of the zero(s) in the right half of the s-plane will be mapped

outside the unit circle in the z-plane. Such zeros are termed intrinsic zeros, and again they

make the inverse problem unstable.

There is an existing stable inverse theorem developed to address this problem as

presented in the previous chapter. The author and co-workers have developed a series of

new stable inverses presented in this chapter address this instability problem in a different

way, and in a way that is more practical for implementation. There are seven new stable

inverse laws, three for each of the modified problem statements. One factors the matrix

P into a product of a matrix or matrices for the zeros outside, times a matrix related to

all poles and zeros that are inside the unit circle. These stable inverses are referred to as

Longman JiLLL stable inverses, where JiLLL refers to people who have contributed to the

results: Xaioqiang Ji, Te Li, Yao Li, and Peter LeVoci. The notation for each stable inverse

is Longman JiLLL FI, NI, FS, NS – FI for solution of the initial delete problem factored, NI

for not factored, and FS for solution of the skip step problem factored, NS for not factored.

And the last stable inverse solution is referred as the ”clean” solution. See References [36],

20

[16], [37], [18], [38], [39], [40] and [41].

4.2 The System and Its True Inverse

Suppose we are given a continuous time transfer functionG(s) or equivalently a state space

differential equation, having a zero-order hold input, and we convert it to a discrete time

transfer functionG(z) or a discrete time difference equation. Consider single-input, single-

output systems expressed as nth order difference equation

y[k+n]+a1y[k+(n−1)]+ · · ·+any[k] = b1u[k+(n−1)]+b2u[k+(n−2)]+ · · ·+bnu[k]

(4.1)

Or equivalently, with a time backward-shift operator z−1{f(k)} = f(k − 1), one gets

[1 + a1z
−1 + . . .+ anz

−n]{y(k + n)} = [b1 + . . .+ bnz
−(n−1)]{u(k + n− 1)} (4.2)

In the contest of linear discrete time-invariant systems, use of the z−1 {·} operator and the

z-transform variable can often be done interchangeably. We term the roots of the right hand

side polynomial in the bracket as the zeros, and correspondingly the roots of the left hand

side as poles. Generically, the discretization process will introduce the number of extra

zeros needed to produce the power n− 1 in the right hand polynomial.

Equivalently, the state realization of Equation 4.1 is

x(k + 1) = Ax(k) + Bu(k); y(k) = Cx(k) (4.3)

21

with

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · ·

... 0
.

0
... · · · 1

−an −an−1 · · · −a1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C =

[
bn bn−1 . . . b1

]
(4.4)

where A ∈ Rnxn, B ∈ Rnx1, C ∈ R1xn. By iterating the solution of Equation 4.1 through

p time steps, one could package the relationship between the p-step input history and the

p-step output history

y = Pu+ Āx(0) (4.5)

where u = [u(0) u(1) · · · u(p− 1)]T , y = [y(1) y(2) · · · y(p)]T , and x(0) is

an initial condition, Ā is and observability matrix, and P is a lower triangular Toeplitz

matrix

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CB 0 · · · 0

CAB CB · · · 0

...
...

CAp−1B CAp−2B · · · CB

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Ā =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CA

CA2

...

CAp

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.6)

Note that in Equation 4.5, the output can be divided into two parts, the zero state response

Pu, and the zero input response Āx(0).

Then the true unique solution to the inverse problem is given as

u∗ = P−1
[
y∗ − Āx0

]
(4.7)

22

0 5 10 15 20

Time step index

-10

-5

0

5

10

S
ig

n

 l
o

g
 s

c
a

le

Figure 4.1: Unstable inverse control action

where y∗ denotes the desired output trajectory. The inverse P−1 is guaranteed to exist since

all the eigenvalues of matrix P are CB > 0. This is nonzero as a result of the assumption

of one time-step delay through the system.

For the purpose of illustration, consider a third order continuous time systemG(s) with

pole excess of three, and it is a reasonable model of the input-output relationship for all

axes of a robot at NASA Langley Research Center. Two zeros are introduced during the

discretization process. References [1] and [2] tell that one zero is inside and unit circle

and the other one is outside, with asymptotical location -3.7321 as the sample time interval

tends to zero. Thus, when aim to solve the inverse problem, there is one term in the solution

of the corresponding homogeneous equation as c(−3.7321)k, and could be interpreted as

that the needed control action grows exponentially alternating sign each time step. This is

shown in Figure 4.1 computed for 100Hz sample rate and a simple desired trajectory. The

23

instability presented here, must lie in P−1 matrix. Equation 4.5 gives

∥u∗∥ ≤
∥∥P−1

∥∥ ∥∥y∗
∥∥+

∥∥P−1
∥∥ ∥∥Āx0

∥∥ (4.8)

where ∥·∥ denotes the vector norm and the corresponding matrix norm. We know that as

the dimension p increases, u∗ grows exponentially, and this growth must be the result of this

inverse matrix. Suppose the systemmatrixA is diagonalizable as: A = MΛM−1, whereM

is the the square matrix whose columns are eigenvectors of A and Λ is the diagonal matrix

whose diagonal elements are the corresponding eigenvalues, i.e. Λii = λi, i = 1, 2, ..., n

and |λmax| < 1 because we consider only asymptotically stable systems. Then

∥∥Āx0

∥∥ ≤
p∑

k=1

∣∣CAkx0

∣∣

≤
p∑

k=1

∣∣CMΛkM−1x0

∣∣ =
p∑

k=1

∣∣C̄Λkx0

∣∣

≤
(
nmax

i

∣∣C̄i

∣∣ ·max
i

|x̄0_i|
)
·

p∑
k=1

|λmax|k = µ |λmax| 1−|λmax|p
1−|λmax|

(4.9)

It is clear that Āx0 has an upper bound independent of dimension p. The y∗ is the norm of the

desired output trajectory which we are free to pick so that it avoids any exponential growth

with time. If A is not diagonalizable, the use of Jordan form gives us a similar result. We

conclude that the instability of the solution in Equation 4.7, i.e. the exponential growth in

the required control action producing the desired output trajectory must the matrix inverse

norm. We are free to pick the matrix norm as that induced by the Euclidian vector norm,

i.e. ∥P−1∥ = σ−1
min, where σmin is the least singular value of P matrix. In other words, as

the dimension of matrix P increases, σmin decays exponentially.

24

Properties of Matrix P

The singular value decomposition of matrix P = USV T has various special properties.

• Reference [42] presents the relationship between singular values and singular vectors

of matrix P and the frequency response of the system whose transfer function is

denoted by G(z). Its frequency response version is G(eiωT) = M(ω)eiθ(ω). For

p step long signal u, the Discrete Fourier Transform (DFT) can be used to find its

frequency content

U (eiω0n) =
p−1∑
k=1

u(k)(eiω0n)
−k

ω = (2π/p)n = ω0n, n = 0, 1, . . . , p− 1

(4.10)

Define z0 = eiω0 , Un = U (eiω0n) = U (zn0), and the DFT matrix is

H =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(z0o)
0 (z0o)

−1 · · · (z0o)
−(p−1)

(z1o)
0 (z1o)

−1 · · · (z1o)
−(p−1)

...
...

(zp−1
o)0 (zp−1

o)−1 · · · (zp−1
o)−(p−1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.11)

The Inverse DFT is generated using H−1 = (1/p)(H∗)T , where the superscript

asterisk denotes the complex conjugate. Now, assuming zero initial conditions,

y = Pu. Multiplying on the left byH on both sides, and insertingH−1H in front of

u produces

Y = EU ; E = (1/p)HP (H∗)T = ĤP (H∗)T (4.12)

25

Then E gives the relationship between the frequency components of the input and

the frequency components of the output. The H∗ represents H with the complex

columns and rows normalized to unit length: Ĥ = (1/p)H , Ĥ−1 =
(
Ĥ∗
)T

. As

trajectory gets long, the E converges to the systems frequency response given by

E = diag

(
M0eiθ0 M1eiθ1 . . . Mp−1eiθp−1

)
(4.13)

Since all of the attenuation or amplification information is contained in Mn and Σ,

by deleting both, the phase information can be determined as

diag

(
eiθ0 eiθ1 . . . eiθp−1

)
= ĤUV T

(
Ĥ∗
)T

(4.14)

One observes that these singular vectors are close to being sinusoids, and one can

identify the frequency by taking the DFT of the vector. Because these vectors also

have to handle transients from the zero initial conditions, there are some end effects.

• Steady state frequency response would require two identical singular values for each

frequency. Often, the DFT of the singular vectors has a pea with only one frequency

in it, every other vector, and the DFT of the next vector has two frequencies in the

peak mixing the last frequency and the next frequency.

• Reference [43] shows that the ith input singular vector is equal to plus or minus the

ith output singular vector in reverse time order. So the phase of these two vectors has

to be chosen so that this process produces the correct phase change for the associated

frequency.

26

• As the number of time steps p is finite, the singular values and singular vectors need

not perfectly represent the frequency response, bu the magnitude response remains

very good to relatively small values of p. One can create a circulant form of matrix

P , by using the first column shifted downward with entries that leave the matrix at

the bottom, entering at the top, filling up the upper triangular part of the matrix. The

singular value decomposition of this matrix precisely gives the steady state frequency

response. It has eliminated the influence of starting from zero initial conditions

associated with the original P .

The Signature of Instability in the System Matrix

Figure 4.2 shows the smallest singular value and the next to the smallest singular value of

P as a function of the size p of this matrix, i.e. the number of time steps in the desired

trajectory. The next to the smallest singular value after the dimension gets above 10

becomes the steady state magnitude frequency response for the highest frequency visible

in p time steps of data. The last singular value is not related to frequency response. Instead

it has the slope shown by the solid line, given by the reciprocal of the absolute value of the

outside zero location to power p. Note that after dimension about 35, Matlab is no longer

able to compute the singular value due to word length limitations. One can use the slope to

extrapolate to find the true value.

Figure 4.3 shows all singular values of matrix P for the 3rd order problem sampled at

100Hz. Note that there is a singular value that is very small near the bottom right corner

of the plot. This corresponds to the zero location outside the unit circle. The remaining

27

singular values that use the same symbol are shown and compared to the solid at the discrete

frequencies one can see in p time steps. Notice that there is very little difference between

theses, so that one can recognize the singular value related to the zero location.

Figure 4.4 shows the output singular vector in U associated with the zero. The plot

shows the absolute value of the vector components versus time step, on a dB scale. This

vector is associated with early time steps in the output. Note that the decay of these

components with time, match the decay of the reciprocal of the absolute value of the zero

location to the power of the time step. Figure 4.5 shows the corresponding input singular

vector which grows with the slope of the absolute value of the zero location to the power

of the time step. This means that to fix an error component on the output singular vector

that is near the beginning of the trajectory, one needs to apply a control that can be small

at the start but grows exponentially with time. This is the unstable inverse, seen in singular

value space. Again, notice that Matlab has numerical error from the finite word length

that prevents accurate computation of these components when the values reach a numerical

zero. These plots give clean examples. For a 7th order pole excess there will be 3 zeros

outside, and Matlab can distinguish the individual slopes only up to a matrix size of about

10 by 10, and after that strange distortions occur.

Conclution: The signature in the P matrix of one zero outside the unit circle, with

corresponding instability of the inverse system, is (1) A linear decay on a log scale of a

singular value as a function of matrix size p. (2) A corresponding pair of input and output

singular vectors which have opposite slopes, with the input singular vector growing linearly

with time step on a log scale. If we find a system “inverse” with the property that it produces

zero error at the time steps addressed, and has no singular values and singular vector pair of

28

0 10 20 30 40 50

Dimension of P

-600

-400

-200

0

d
B

smallest s.v.
second smallest s.v.

1/(3.3104)p

Figure 4.2: The smallest singular value and the nest to smallest singular value as a function
of the dimension of p

0 10 20 30 40 50

Singular value index/frequency(Hz)

-400

-300

-200

-100

0

d
B

Figure 4.3: The singular values of matrix P compared to discrete magnitude frequency
response

29

0 10 20 30 40 50

Time step index k

-600

-400

-200

0

d
B

output singular vecor

1/(3.3104)k

Figure 4.4: Magnitudes of the components of last output singular vector of P , also shown
magnitudes of reciprocal of zero and zero location to the kth power with pole excess 3

0 10 20 30 40 50

Time step index k

-400

-200

0

200

400

600

d
B

input singular vecor

(3.3104)k

Figure 4.5: Magnitudes of the components of last input singular vector of P , also shown
magnitudes of reciprocal of zero and zero location to the kth power with pole excess 3

30

the above kind, then we have generated a zero error stable inverse to the unstable inverse

problem.

4.3 New Stable Inverses

We can consider two kinds of inverse problems. (1) Given a desired p time-step trajectory

starting from a given initial condition, find the needed input p time-step history to produce

this output. This is a batch computation made before running the control system. (2) The

second version tries to address the problem of making a control system give perfect tracking

in real time to whatever command one wants to make in the next time step.

Since the actual solution to (1) for large classes of systems gives an unstable control,

something must be relaxed about the statement of the problem in order to produce a stable

inverse. What aspects are relaxed is different for the different stable inverses discussed

here. Regarding (2), some discussion is given of different approaches trying to make steps

toward somehow using the solution for (1) to address (2).

The new stable inverse results described here, define the stable inverse problem

differently. All problems posed in discrete time. The emphasis is on addressing the non-

minimum phase zeros introduced by discretization, but the methods developed work on

intrinsic zeros as well (with some differences in the properties of the solutions regarding

relationship to frequency response).

31

The Problem Statement

• Initial Problem Statement. Given a SISO discrete time system, given the initial

condition x(0), and given a desired p time-step output history y∗(k) for k = 1, 2, ..., p,

find the input history u(k) for k = 0, 1, ..., p − 1 that will produce this output. The

time delay through the system is assumed to be one time step, simple modifications

treat other delay values.

• Modified Problem Statement No.1 (Initial Delete). Find the input history u(k) for

k = 0, 1, ..., p − 1 that produces desired output history for k = 1 + no, 2, ..., p. The

number no is the number of zeros of the discrete time transfer function outside the

unit circle. The first modified problem statement is called initial deletion method,

and the second below is called the skip step method. One way to consider the second

method is: given a desired trajectory p steps long, in the case of a single zero outside

the unit circle, double the sample rate but only ask for zero error at the original sample

times. Control updates are made every time step at the doubled rate. If the number

of zeros outside is 2, then introduce two sample times between each of the original

sample times. One can think of this as creating a generalized hold that involves one

or more extra zero order holds each times step.

• Modified Problem Statement No.2 (Skip Step). Let p = (no+1)p∗ where p∗ is the

number of original time steps, and p is the number of time steps after introducing no

steps between each of the original time steps. Find input history at all time steps u(k)

for k = 0, 1, ..., p− 1, to produce zero error at the original time steps, y∗(k(no + 1))

for k = 1, 2, ..., p∗.

32

A Factorization of the System Maitrx P

In order to develop the stable inverses, we first create a factorization of the system matrix

P = POPI (4.15)

where the PI matrix models all dynamics of zeros inside the unit circle in and all of the

poles of Equation 4.1, since it is assumed asymptotically stable. Matrix PO models all

zeros outside, which can be sampling zeros, intrinsic zeros, or both.

The Simplest Case: One Zero Outside the Unit Circle To understand the nature of

these matrices, consider a 3rd order discrete time system, which is the simplest system for

which one encounters the problem of an unstable inverse due to sampling zeros,

y(k+3)+ a1y(k+2)+ a2y(k+1)+ a3y(k) = b1u(k+2)+ b2u(k+1)+ b3u(k) (4.16)

On the right-hand side, two sampling zeros have been introduced during the discretization

process. [1],[2] indicates that one zero is inside the unit circle and the other one is outside

for reasonable sample rates, with asymptotic locations -3.7321 and its inverse as the sample

time interval tends to zero. One can convert Equation 4.16 to its equivalent state realization,

and find the corresponding P matrix where

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0

0 0 1

−a3 −a2 −a1

⎤

⎥⎥⎥⎥⎥⎥⎦
, B =

⎡

⎢⎢⎢⎢⎢⎢⎣

0

0

1

⎤

⎥⎥⎥⎥⎥⎥⎦
, C =

[
b3 b2 b1

]
(4.17)

33

Write Equation 4.16 in the above operator form so that the zero’s polynomial can be factored

[1 + a1z−1 + a2z−2 + a3z−3]{y(k + 3)} = [b1 + b2z−1 + b3z−2]{u(k + 2)}

= b1[(1− zOz−1)(1− zIz−1)]{u(k + 2)}
(4.18)

where zO denotes the zero outside the unit circle, i.e. with magnitude greater than one, and

zI denotes the zero outside. Note that b2 = −b1(zI + zO) and b3 = b1zOzI .

To produce the PI matrix that models the zero inside and all poles, while matching the

coefficients of u(k), we define difference equation

[
z3 + a1z

2 + a2z
1 + a3

] {
y
I
(k)
}
= b1(−zO)(z − zI) {u(k)} (4.19)

where y
I
is an intermediate artificial output. To convert this difference equation to state-

space form, again define an intermediate variable ȳI(k) which is the solution of

[
z3 + a1z

2 + a2z
1 + a3

]
{ȳI(k)} = u(k) (4.20)

This is converted to state space form using the state definition

xI(k) =

⎡

⎢⎢⎢⎢⎢⎢⎣

ȳI(k)

ȳI(k + 1)

ȳI(k + 2)

⎤

⎥⎥⎥⎥⎥⎥⎦
(4.21)

Then the solution to difference Equation 4.19 is written in terms of these state variables by

34

superposition

yI(k) = b1(−zO)ȳI(k + 1) + b3ȳI(k) (4.22)

Note for the future use, that the actual output is

y(k) = b1ȳI(k + 2) + b2ȳI(k + 1) + b3ȳI(k) (4.23)

Hence, the state space realization of Equation 4.19 is

AI =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0

0 0 1

−a3 −a2 −a1

⎤

⎥⎥⎥⎥⎥⎥⎦
, BI =

⎡

⎢⎢⎢⎢⎢⎢⎣

0

0

1

⎤

⎥⎥⎥⎥⎥⎥⎦
, CI =

[
b3 b1(−zO) 0

]
(4.24)

This differs from the original P matrix for the system which has one time-step delay with

diagonal terms CB nonzero. From Equation 4.16 the PI matrix must have two time steps

delay meaning that CIBI is zero (which can be checked using Equation 4.23). Hence,

PI =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CIAIBI 0 . . . 0

CIAI
2BI CIAIBI

.

... 0

CIAI
pBI . . . CIAI

2BI CIAIBI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.25)

and the inverse of PI is guaranteed to exist.

35

Compare Equation 4.18 and Equation 4.19, by superposition one has

y(k) = −(1/zO)(z − zO) {yI(k)} , y(k) = yI(k)− (1/zO)yI(k + 1) (4.26)

In matrix form,

y = POyI , PO =

⎡

⎢⎢⎢⎢⎢⎢⎣

−1/zO 0

1
. . .

0
. . . −1/zO

⎤

⎥⎥⎥⎥⎥⎥⎦
(4.27)

where PO is a bi-diagonal Toeplitz matrix, y and y
I

are full time histories of

sequences. Before proceeding, observe the relationship between initial conditions

xO =

[
y(−2) y(−1) y(0) u(−2) u(−1)

]T
of y(k) for Equation 4.18 that

are prescribed for the original physical system, and the initial conditions xIO =
[
yI(−2) yI(−1) yI(0) u(−2)

]T
of yI(k) in Equation 4.19 as related to xO, and

x̄IO =

[
ȳI(−2) ȳI(−1) ȳI(0)

]T
of ȳI(k) in Equation 4.20 also related to xO.

Combining Equation 4.21 and Equation 4.23, setting k = 0, 1, 2, ... and solving recursively

36

for ȳI(1) and ȳI(2) in Equation 4.20, produced the relationship between x̄IO and xO as

x̄I0 = X̄I
TX · x0

X̄I
TX = T̃−1

1 T̃2

T̃1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

b3 b2 b1

−a3b1 b3 − a2b1 b2 − a1b1

b1a1a3 − a3b2 b1a1a2 − a3b1 − a2b2 b1a21 − a2b1 − a1b2 + b3

⎤

⎥⎥⎥⎥⎥⎥⎦

T̃2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 −b1 0

0 0 1 a1b1 − b2 −b1

⎤

⎥⎥⎥⎥⎥⎥⎦

(4.28)

Note from the right hand side of this equation, that the initial conditions y(−1) and u(−2)

are interchangeable, as well as the initial conditions y(0), u(−2) and u(−1). Similarly, one

could relate x̄IO and xIO as

x̄IO = X̄I
TxI · xI0

X̄I
TxI =

⎡

⎢⎢⎢⎢⎢⎢⎣

b3 b1(−zO) 0

0 b3 b1(−zO)

b1(−zO)a3 b1(−zO)a2 b3 + b1zOa1

⎤

⎥⎥⎥⎥⎥⎥⎦

−1 ⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 b1zO

0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦

(4.29)

With the relations above, one could always set the corresponding initial conditions, given

the initial conditions prescribed by the original physical problem.

General Case: More Than One Zero Outside the Unit Circle Consider a general

nth order system as in Equation 4.1 and Equation 4.2. Among the n− 1 zeros of the right

37

hand side polynomial, let the numbder of zeros inside the unit circle bem, then the number

of zeros outside is n− 1−m, including sampling zeros, intrinsic zeros, or both. We do not

consider the case of zeros on the unit circle. We now generalize the factorization of matrix

P to handle multiple zeros outside the unit circle.

• Factor the polynomials in the right hand side of Equation 4.2 grouped into factors

with zeros outside, and factors with zeros inside

[
zn + a1z

n−1 + . . .+ an
]
{y(k)} = b1

m∏

i=1

(z − zO_i)
n−1−m∏

i=1

(z − zI_i) {u(k)}

(4.30)

• Define an artificial intermediate output yI of the systemmatrixPI modeling dynamics

of all zeros inside the unit circle and all poles. And keep the coefficients of u(k)

unchanged,

zn + a1zn−1 + . . .+ an] {yI(k)}

= b1
m∏
i=1

(−zO_i)
n−1−m∏

i=1
(z − zI_i) {u(k)}

= cm+1u[k + (n−m− 1)] + . . .+ cn−1u[k + 1] + bnu[k]

(4.31)

This is equivalently expressed in difference equation from as

y[k + n] + a1y[k + (n− 1)] + . . .+ any[k]

= cm+1u[k + (n−m− 1)] + . . .+ cn−1u[k + 1] + bnu[k]

(4.32)

38

The PI matrix relating y
I
= PIu is

PI =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CIAm
I BI 0 . . . 0

CIA
m+1
I BI CIAm

I BI
.

... 0

CIA
p+m−1
I BI . . . CIA

m+1
I BI CIAm

I BI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.33)

where

AI =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · ·

... 0
.

0
... · · · 1

−an −an−1 · · · −a1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

CI =

[
bn · · · cm+1 0 · · ·

]

(4.34)

• To develop PO, from Equation 4.30 and Equation 4.31, write

y(k) =

m∏
i=1

(z − zO_i)

m∏
i=1

(−zO_i)
{yI(k)} =

m∏

i=1

(− 1

zO_i
z + 1) {yI(k)} (4.35)

39

In matrix form,

PO =
m∏
i=1

PO_i

=
m∏
i=1

⎡

⎢⎢⎢⎢⎢⎢⎣

− 1
zO_i

0

1
. . .

0
. . . − 1

zO_i

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 0

... . . .

dm
.

1
.

.

0 1 dm · · · d1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Cp×p

(4.36)

As a result, PO is the matrix product of a number of bi-diagonal Toeplitz matrices,

one for each of them zeros outside the unit circle, each POi models the dynamics of

the corresponding ith zero, which could be complex or real.

Of course, the inverse P _1
I exists and does not have any instability associated with

it. This then can cancel everything inside the unit circle, and it is the treatment of the

zeros outside that must handle the issue of creating a stable inverse. Note that this section

established the existence of the factorization. Note that one may compute the factor for the

zeros outside from the known P and PI , using PO = PP _1
I .

40

The Stable Inverse Law for Initial Delete using Factored Form

(Longman-JiLLL FI)

This stable inverse address the following class of problems. The discrete time system of the

form of Equation 4.1, Equation 4.2 is an asymptotically stable single input, single output

system, with n− 1 zeros,m > 0 of them are outside the unit circle and there is no zero on

the unit circle. This means that the inverse problem for zero error at all time steps produces

an unstable control action. The zeros outside can be sampling zeros or intrinsic zeros, or

both, and can be either real or complex.

Instability of the control action is immediately known from the right hand side of

Equation 4.2 when there is a zero outside the unit circle. The solution of the homogeneous

equation that must be solved for the control contains a term that is a constant times the zero

location to the power of the time step. In the inverse of the Toeplitz matrix the instability

can be observed in several ways as discussed in Reference [38], but the most obvious and

fundamental is the change in the minimum singular value of the matrix P as the dimension

of P increases by one. As discussed in relation to Equation 4.8, the inverse must have a

singular value that increases every time the matrix dimension is increase. If this increase

in singular value with dimension of P is dliminated, then the instability of the inverse has

been addressed.

For a system with m zeros outside the unit circle, the stable inverse method presented

this section will produce a stable inverse that produced zero error at all time steps except

for the first m time step. The error at these time steps is determined by a pseudo-inverse

of an underspecified set of equations, with corresponding minimum norm properties of the

41

appropriate variable history.

Computation Produce the factorization P =
m∏
i=1

PO_iPI where the index number i

starts from 1 at the right. Delete the first i initial rows and i − 1 initial columns in POi

matrix to produce POdi , and delete the same number m rows from the beginning of the

desired trajectory to form y∗
d
. The the stable inverse is given by

u = P−1
I

m∏

i=1

P †
Od_i

[
y∗
d
−
(
Āx(0)

)
d

]
(4.37)

where the index number i from 1 at the left and P †
Od_i is the Moore-Penrose pseudo-inverse

of POdi .

• Casem = 1: Form = 1, PO is of the form as in Equation 4.35. Then

POd =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 −1/zO 0

.

0 1 −1/zO

⎤

⎥⎥⎥⎥⎥⎥⎦
∈ C(p−1)×p (4.38)

Take the product of POd with its conjugate transpose PH
Od to form a tri-diagonal

Toeplitz matrix PT

PT = POdP
H
Od =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 1/zOz∗O −1/z∗O 0

−1/z∗O
.

. −1/z∗O

0 −1/z∗O 1 + 1/zOz∗O

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C(p−1)×(p−1)

(4.39)

42

Reference [44] presents the eigenvalues and associated eigenvectors for such a tri-

diagonal matrix, and has the potential to be generalized by [45], [46], and [47].

Here we sketch the calculation. Let λ represent an eigenvalue of PT and q the

corresponding eigenvector with components q =

[
q1 q2 . . . qp−1

]T
. From the

definition of the eigenvalue problem PT q = λq, we could form a system of equations

and combine into one single difference equation by setting q0 = qp = 0.

− 1

z∗O
qk−1 +

(
1 +

1

zOz∗O
− λ

)
qk +

(
− 1

zO

)
qk+1 = 0, k = 1, ..., p− 1 (4.40)

The solution to Equation 4.40 is qk = C1mk
1 + C2mk

2 where m1, m2 are roots of
(
− 1

zO

)
m2 +

(
1 + 1

zOz∗O
− λ
)
m +

(
− 1

z∗O

)
= 0 and it can be proven that these two

cannot be equal. C1 andC2 are arbitrary constants satisfying the boundary conditions

C1 + C2 = 0 and C1m
p
1 + C2m

p
2 = 0. Use these equalities to get the relation

(
m1
m2

)p
= 1 and knowing the productm1m2 = 1, we solve for roots

m1 = eijπ/p, m2 = e−ijπ/p, j = 1, 2, ..., p− 1 (4.41)

The relation between rootsm1,m2 andλ seen fromEquation 4.40 produces the closed

from of p− 1 eigenvalues

λj =
(
1 + |zO|−2)+ 2|zO|−1 cos

jπ

p
, p = 1, 2, ..., p− 1 (4.42)

43

and it is clear that all eigenvalues of PT are bounded by

(
1− |zO|−1)2 < λj <

(
1 + |zO|−1)2, j = 1, 2, ..., p− 1 (4.43)

It is well known that the singular values σj of POd and the eigenvalues λj of PT (the

product of POd and its conjugate transpose) are related by σj =
√

λj . Hence, all the

singular values of POd are bounded as

(
1− |zO|−1) < σj <

(
1 + |zO|−1) , j = 1, 2, ..., p− 1 (4.44)

and both lower and upper bounds are independent of the dimension p of matrix P .

Rearrange Equation 4.34 and û = PIu, to produce

û = P †
Od

[
y∗
d
−
(
Āx(0)

)
d

]
(4.45)

Then û is bounded according to

∥û∥ =
∥∥∥P †

Od

[
y∗ −

(
Āx(0)

)
d

]∥∥∥

≤
∥∥∥P †

Od

∥∥∥
∥∥∥y∗

d

∥∥∥+
∥∥∥P †

Od

∥∥∥
∥∥(Āx(0)

)
d

∥∥ =
∣∣σ−1

min

∣∣
(∥∥∥y∗

d

∥∥∥+
∥∥(Āx(0)

)
d

∥∥
)

<
(
1− 1

|zO|

)(∥∥∥y∗
d

∥∥∥+
∥∥(Āx(0)

)
d

∥∥
)

(4.46)

Then Bounded-Input-Bounded-Output stability theorem for asymptotically stable

time invariant systems shows that ∥u∥ is bounded as well. There is no exponential

growth with dimension.

44

• Case: for anym To generalize the above analysis, simply use

∥û∥ ≤
m∏

i=1

∥∥∥P †
Od_i

∥∥∥
(∥∥∥y∗

d

∥∥∥+
∥∥(Āx(0)

)
d

∥∥
)

(4.47)

where the norms
∥∥∥P †

Od_i

∥∥∥ for the matrices with deleted entries as described above,

all have upper bounds. Hence, ∥u∥ is bounded, and the stable inverse presented in

Equation 4.37 is proven to work in general.

• Examine the result of overestimation NMP zeros: For each POi , if the number

of initial rows and columns deleted are greater than i and i − 1 respectively, ∥û∥

decreases.

The Stable Inverse for Skip Step using Factored Form

(Longman-JiLLL FS)

The stable inverse method presented in this section considers systems starting from

continuous time and fed by a zero order hold. The approach addresses the same class of

problems as described above having m zeros outside the unit circle in discrete time. This

inverse suggests that you start with a given sample rate for which you want to have zero

error following a desired trajectory at each time step. Then increase the sample rate by

introducing m extra time steps between each of the original time steps. One makes use of

the continuous to discrete conversion at the higher sample rate. For the control action there

are m new sample times between the initial condition time step, and the first of the original

output sample times. These m extra time steps with their extra control inputs between each

time step for which one seeks zero tracking error, can be thought of as a form of generalized

45

hold.

Computation Using the state space model of the system at the faster sample rate,

form the Toeplitz matrix P . Then create the factorization P = POPI . Remove the rows

of PO matrix so that only the rows associated with the original sample times remain and

denote the result with subscript d. And remove the same rows of the desired trajectory to

form y∗
d
. Then the stable inverse is given as

u = P−1
I P †

Oa

[
y∗
a
−
(
Āx(0)

)
a

]
(4.48)

where P †
Oa is the Moore-Penrose pseudo-inverse of POd. Note that for JiLLL FS one uses

the pseudo-inverse of the product of matrices given by POd, in contrast the what was done

in JiLLL FI that used a product of pseudo-inverses of matrices for each zero separately.

Proof The deletion of the rows of PO using the expression in Equation 4.36 gives

POa =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 dm . . . d1 0

1 dm . . . d1

.

0 1 dm . . . d1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
p

(m+1)×p

(4.49)

Define PB as the product of POa and its conjugate transpose

PB = POaP
H
Oa =

(
1 +

m∑

i=1

|di|2
)
I ∈ R

p
(m+1)×

p
(m+1) (4.50)

46

where 1 +
m∑
i=1

|di|2 are the eigenvalues of PB. Then
(
1 +

m∑
i=1

|di|2
)1/2

> 1 are the singular

values of POa, i.e. σmin > 1. Using û in the form of Equation 4.45 with new upper bound

of
∥∥∥P †

Od

∥∥∥ = σ−1
min < 1, established that ∥û∥ is bounded, indicating that the control action

∥u∥ is bounded.

The Stable Inverse Law for Initial Delete and Skip Step using

Non-Factored Form (Longman-JiLLL NI, NS)

Stable inverse FI given by Equation 4.37 was obtained using the pseudoinverse, and

analogously for stable inverse FS with Equation 4.48. The resulting control action

minimizes ∥PIu∥2 for the corresponding deletions. Again consider one zero outside for

simplicity.

Now consider Equation 4.15 for the two different kinds of deletions. The NI and NS

stable inversion laws are given by

u = P †
d

[
y∗
d
−
(
Āx(0)

)
d

]
(4.51)

For NI only one initial row is deleted from P to form P †
d , and for NS all odd rows are

deleted.

Given the extra control variable(s) available in each case compared to the number

of equations to be satisfied in Equation 4.15, the pseudoinverse finds that solution that

minimizes ∥u∥2. This is enough to make the needed conclusion, but to make it evident

consider the following.

47

Write the SVD of Pd

Pd = U

[
S 0

]
V T = U

[
S 0

]
⎡

⎢⎢⎣
V T
1

V T
1

⎤

⎥⎥⎦ = USV T
1 , P = V1S

−1UT (4.52)

using locally defined U , S, and V . Define c =
[
y∗
d
−
(
Āx(0)

)
d

]
so the problem considered

is Pdu = c. Write this using the decomposition above

U

[
S 0

]
⎡

⎢⎢⎣
V T
1

V T
2

⎤

⎥⎥⎦ u = c,

[
S 0

]
⎡

⎢⎢⎣
V T
1 u

V T
2 u

⎤

⎥⎥⎦ = UT c (4.53)

or V T
1 u = S−1UT c, V T

2 u = γ, where γ can be any vector. Then

u =

[
V1 V2

]
⎡

⎢⎢⎣
S−1UT c

γ

⎤

⎥⎥⎦ = V1S
−1UT c+ V2γ (4.54)

or

∥u∥22 =
[
V1S

−1UT c+ V2γ
]T [

V1S
−1UT c+ V2γ

]
= cT

(
P †
d

)T
P †
d c+ γTγ (4.55)

By considering all possible γ, one obtains all possible solutions of the underdetermined set

of equations. The γ
′s are components on V2 while the first term are components on V1.

The columns vectors in each are mutually orthogonal. Therefore the minimum norm of u

is obtained when γ is the zero vector, i.e. when using the Moore Penrose pseudoinverse in

Equation 4.52.

48

Our objective is to have a stable inverse solution for NI and NS. Equation 4.51 says γ

equal to the zero vector gives the minimum possible Euclidean norm of control u to satisfy

for both initial and skip step deletion. Solutions FI and FS from factorization therefore,

have a nonzero γ while NI and NS have a zero value of γ. The stable inverse control action

for FI and FS were bounded independent of the value of p and satisfied the stable inverse

conditions for the matrix model. Since the NI and NS control actions are smaller than FI

and FS, the NI and NS must also create stable inverses.

Motivation and Comparison of the Factored and Non-Factored Forms: Consider

the Initial Delete method. Conside the desired trajectory y∗(t) = 0.25[1− cos(πt)]2, one

second long, sampled at 50 Hz. Since FI and NI produce zero error for all time steps except

the first (for n0 = 1), the first equation one might ask is, how different is the control action

and the output at this time step. The answer is, they are the same to computational accuracy,

16 digits. The difference between the two results γ which is the scalar γ = −5× 10−4 for

G(s) =
(

a
s+a

) (ω2
n

s2+2ξωn+ω2
n

)
sampled at 50Hz with a = 1.4, ξ = 0.5, ωn = 27. This γ

multiplies column vector V2 of Pd. This is the same except for the sign as the corresponding

column vector for P . Figure 4.4 plots the absolute value of each time step k of V2. The

initial straight line plotted 2.9p−k. Clearly Matlab is unable to compute initial steps, but

they canbe approximated by linear extrapolation of the straight line after aligning the plots.

This gives the first time step value as 2.09 × 10−23. Hence, it sould require having a γ of

similar size in order to influence the output at the first time step. Vector V2 is a unit vector,

and the last time step component is −0.94 at k = 50. This implies that V2γ can have a

small influence on the control action of FI compared to NI toward the end of the trajectory.

49

Of course this influence is undesirable because it increases the control action without any

benefit. The conclusion is that one should use NI. The FI development can be though of as

step in the proof of the useful stable incerse NI.

Consider the Skip Step method, and again use the 3rd order system for the purpose of

illustration. Figure 4.6 gives the ouput produced by FS introducing skip steps between

the original steps. Clearly, there is undesirable behavior at the newly introduced time steps.

Figure 4.7 shows the corresponding control input history. Not only are the big changes from

time step to time step objectionable, but the magnitude of the control action is particularly

large reaching a maximum value of 446. Figure 4.8 presents the control action when using

NS, which appears well behaved and reaches a maximum of 1.185. Figure 4.9 shows show

the corresponding output error history using NS, with the error at the addressed time steps

being at the level of numerical zeros 10−15 or 10−16 while the error at the unaddressed time

steps being around 10−6 or 10−7. One is tempted to try to compare this with the error one

would have if one used only one zero order hold input from addressed step to addressed

step as control people normally do, instead of two such holds. Of course this comparison

is not possible, because the solution is unstable, and between the time steps the maximum

error is growing exponentially.

It is possible to create a formula explaining the behavior in Figure 4.6, telling how the

output at the inctroduced intermediate time steps is related to the two neighboring addressed

time steps. Consider

y∗
d
= POdPIu, u = P−1

I P †
Ody

∗
d

(4.56)

deleting all odd numbered time steps. Let p = 6 and use this control to find what happens

50

0 0.5 1

Time(s)

0

0.5

1

O
u

tp
u

t

Actual ouput
Desired ouput

Figure 4.6: The actual output using Longman-JiLLL FS on y∗(t) = 0.25 ∗ [1− cos(2πt)]2

0 0.5 1

Time(s)

-500

-250

0

250

500

u
F

S

Figure 4.7: The control input producing output in Figure 4.6

51

0 0.5 1

Time(s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

u
N

S

Figure 4.8: The control input using Longman-JiLLL NS on y∗(t) = 0.25 ∗ [1− cos(2πt)]2

0 0.5 1

Time(s)

-18

-14

-10

-6

lo
g

|e
N

S
|

Figure 4.9: Logrithm of error magnitude at all time steps using Longman-JiLLL NS

52

at the between time steps, by replacing POd by the odd numbered rows instead of the even

numbered rows POE to find the ouput at the even numbered rows y∗
E
. Then

y∗
E
= POEP

†
Odu

∗
d

α = −zO
(z2O+1)

, β = 1

(z2O+1)

(4.57)

where

POE =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 −zO 1 0 0 0

0 0 0 −zO 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦

P †
Od =

⎡

⎢⎢⎢⎢⎢⎢⎣

α β

α β

α β

⎤

⎥⎥⎥⎥⎥⎥⎦

T

, y∗
E
=

⎡

⎢⎢⎢⎢⎢⎢⎣

α

α α

α α

⎤

⎥⎥⎥⎥⎥⎥⎦
y∗
d

(4.58)

The conclusion is that the output at the even time steps is the following function of the even

time steps just before and just after

y (2k + 1) = α [y (2k) + y (2k + 2)] (4.59)

For zO = −2.90, α = 0.307, at the peak in Figure 4.9 both addressed sample times have

values near unity, at the between sample times the output is predicted to be 0.6 instead of

unity. Note that if α = 1/2, then this would correspond to linear interpolation. However,

for a zero outside the unit circle α > 1, and the further outside the unit circle, the larger

the error. This produces the sawtooth behavior of the output tracking using the FS stable

inverse.

53

The ”Clean” Stable Inverse Solutions

This section presents the ”clean” version of stable inverse solutions, and the reason being

referred as ”clean” will be explained later. Consider the same 3rd order system governed

by Equation 4.16 with two zeros,z1 and z2. Given the case of two sampling zeros, one of

them is outside the unit circle, and the other one is inside. However, the approach presented

in this chapter could handle more general cases. This time we start from an autoregressive

exogenoues ARX model representing the same system. To be more precise, we study the

model as arecursive equation, and the first output observed is y(1) controlled by u(0), we

need to know the 5 initial conditions y(−2), y(−1), y(0), and u(−2), u(−1) to start the

54

recursion.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a3 a2 a1

.

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

a1
. . .

a2 a1 1

a3
.

.

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(−2)

y(−1)

y(0)

y(1)

y(2)

y(3)

...

y(p)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b3 b2

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1

b2
. . .

b3 b2 b1

.

.

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(−2)

u(−1)

u(0)

u(1)

u(2)

...

u(p− 1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.60)

55

Denote locally as

[
AIC A

]
⎡

⎢⎢⎣
y
IC

y

⎤

⎥⎥⎦ =

[
BIC B

]
⎡

⎢⎢⎣
uIC

u

⎤

⎥⎥⎦ (4.61)

As a result, we model the same system equivalent to P matrix model and Equation 4.16 as

AICyIC + Ay = BICuIC +Bu

Ay = Bu+
(
AICyIC − BICuIC

)

y = (A−1B) u+ y
u=0

with the connection to P matrix model as P = A−1B, and Āx(0) =
(
A−1AICyIC − A−1BICuIC

)
. Note that we decompose the response of the system into

two separate parts, where Pu = A−1Bu models the zero initial condition response, and

the rest part y
u=0

models the intial input response, i.e. excited only by the nonzero initial

conditions. Given the community property of lower triangular Toeplitz matrices, reorder as

y = BA−1u+ y
u=0

(4.63)

Before proceeding, let’s review the instability hidden in the inverse solution. Reference

[41] initiated it in the form of

u(k) = up(k) + c1(z1)
k + c2(z2)

k (4.64)

56

where up(k) is a particular solution, c1 and c2 are arbitrary constants determined by initial

conditions. References [1], [2] point that if these are two sampling zeros, z1 is aymptotially

approaching −3.7321 as sample time T approaching zero, where z2 is approaching the

reciprocal of z1. For the issue of inverse stability, what one really wants it c1 = 0 such that

the exponentially growing term is gone. Generally speaking, one is intereted in finding a

systematic way to find a solution with c1 = 0, or c2 = 0, or both to be zero.

Driven by the idea above, we delete the first 2 rows (elements) aiming to free 2 degrees

of freedom of initial time steps to pick those 2 coefficients c1 and c2

y
dd

= BddA
−1u+ y

u=0,dd
(4.65)

For the output tracking problem, substitute the prespecified desired output trajectory y∗, the

stable inverse solution we claim is

u∗ = AB†
dd

(
y∗
dd
− y

u=0,dd

)
(4.66)

Statement This ”clean” stable inverse has no components on the solutions of the

corresponding homogeneous equation, i.e. c1 = c2 = 0.

Justification

• Case 1: z1 ̸= z2 In this case,Bdd as a p−2 by pmatrix modeling an underdetermined

system of linear equations, having z1 and z2 as the same roots of the characteristic

polynomial from the starting time step to the end, i.e. with no ending effects in the

57

finite time problem. And the two linearly independet solutions of the homogeneous

equation, c1(z1)k and c2(z2)k, k = 1, 2, . . . , p span the 2-dimensional null space of

matrix Bdd. Hence, any items involving these 2 transient terms in the input space

map zero components in the ouput space. Simple checks could be done by (1) pre-

multiplying Bdd on the solution gives the component-wise zero vector; (2) project

(z1)k or (z2)k on the 2 basis singular vectors in the null space resulting the orthogonal

projection.

• Case 2: z1 = z2 In this case, the solution to the homegeneous equation is in the form

of c1(z1)k+c2k(z1)k. Similarly, these 2 linearly independent solutions are guaranteed

to span the 2-dimensional null space of Bdd.

Comments

• There is an infinite number of solutions satisfying this underterminedARX system of

linear equations, and the Penrose-Moore pseudo-inverse solution picks the minimum

Euclidean norm of Au, and gives zero tracking error for the rest (p − 2) time

steps of the desired trajectory y∗(k), k = 1, 2, . . . , p. Figure 4.10 and Figure 4.11

illustrates the required control solution trying to follow the desired output y∗(t) =

0.25 ∗ [1− cos(2πt)]2 and the resulting actual output error.

• This stable inverse solution contains only the particular solution part with no transient

terms satisfying the homogeneous equation, which is illustrated in 4.12.

• The algorithm is independent of the source of NMP zeros, could handle both sampling

or intrinsic zeros. Since we start from anARXmodel with no prior knowledge where

NMP zeros come from. And this makes the algorithm easy to calculate without the

58

Figure 4.10: The ”clean” control inverse solution on y∗(t) = 0.25 ∗ [1− cos(2πt)]2

necessities developing a state space model.

• Initial deleing the number of initial steps to be deleted is equal to the number of zeros

is enough to get the ”clean” solution, however, over-deletion might be due to the

over-estimate of the order of the system or over-deletion on the upper bound of th

zeros is also permitted.

Generalization The algorithm presented in Equation 4.66 could be easily generated

to achieve different objectives. Note that we remove all of the transient terms satisfying the

homogeneous equation by initial deleting the first time steps euql to the number of zeros

freeing the corresponding number of null space. This might over beat the issue of inverse

stability, since consider Equation 4.16 is the discretized model containing only sampling

zeros, i.e. one NMP zero z1 = zO and one MP zero z2 = zI . We could achieve the goal

of removing only the exponentially growing term c1(zO)k without asking the removal of

59

Figure 4.11: The actual output error using Figure 4.10

Figure 4.12: The solution space of the ”clean” stable inverse

60

c2(zI)k, by initial deleting the 1st row (element) in the model. We factorize B = BOBI

where the bi-diagonal matrix BO models the NMP the finite-time dynamics of zO, and BI

models zI . Then the solution is

u∗ = AB−1
I B†

Od

(
y∗
d
− y

u=0,d

)
(4.67)

Note that this solution is same as the one by FI, and we have another interpretaiton of the

solution.

4.4 Apply Stable Inverse Theorem in a Linear Discrete

Time System

It is of the author’s interest and for the purpose of comparison, to appy the existing stable

inverse theorem on the same 3rd order discrete time system as Equation 4.16. Given the

problem setup, we are solving, if possible, a state space model with the reference triplet

input-state-output trajectory
(

x∗(k) u∗(k) y∗(k)

)
satisfying

⎧
⎪⎪⎨

⎪⎪⎩

x∗(k + 1) = Ax∗(k) + Bu∗(k)

y∗(k) = Cx∗(k)

k ∈ Z (4.68)

61

Note that we assume a onte time-step delay from input to output, however, more general

cases could be easily inferred, the corresponding inverse system is

⎧
⎪⎪⎨

⎪⎪⎩

u∗(k) = (CB)−1 [y∗(k + 1)− CAx∗(k)]

y∗(k + 1) = y∗(k + 1)

k ∈ Z (4.69)

and exact tracking is maintained. References [48] and [49] introduced a transformation T1

such that ⎡

⎢⎢⎣
ξ(k)

η(k)

⎤

⎥⎥⎦ = T1x(k) (4.70)

where

T1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

b3 b2 b1

1 0 0

0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦
(4.71)

by appropriately defining

ξ(k) = y(k), η(k) =

⎡

⎢⎢⎣
ȳ(k)

ȳ(k + 1)

⎤

⎥⎥⎦ (4.72)

and ȳ(k) and ȳ(k+1) defined in Equation 4.21. Then follow the procedure as described in

the Chapter 3, state dynamics could be rewritten in these new coordinates as

⎡

⎢⎢⎣
ξ(k + 1)

η2×1(k + 1)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣
Â1 Â2

Â3 Â4

⎤

⎥⎥⎦

⎡

⎢⎢⎣
ξ(k)

η2×1(k)

⎤

⎥⎥⎦+

⎡

⎢⎢⎣
B̂1

B̂2

⎤

⎥⎥⎦ u(k) (4.73)

62

where

Â1 =
b2−a1b1

b1
, Â2 =

[
−a3b1 − b3(b2−a1b1)

b1
b3 − a2b1 − b2(b2−a1b1)

b1

]
,

Â3 =

⎡

⎢⎢⎣
0

1
b1

⎤

⎥⎥⎦ , Â4 =

⎡

⎢⎢⎣
0 1

− b3
b1

− b2
b1

⎤

⎥⎥⎦ , B̂1 = b1, B̂2 =

⎡

⎢⎢⎣
0

0

⎤

⎥⎥⎦

(4.74)

For the inverse problem, to find the reference control input written in these new states, if

possibly bounded

u(k) = (CB)−1

⎡

⎢⎢⎣y(k + 1)− CAT−1
1

⎡

⎢⎢⎣
ξ(k + 1)

η2×1(k + 1)

⎤

⎥⎥⎦

⎤

⎥⎥⎦ (4.75)

The statement now is that, given the desired p time-step trajectory, finding the required

input-state trajectory is equivalent to finding bounded solutions to the system’s internal

dynacmis which is

η2×1(k + 1) = Aηη2×1(k) + BηY
∗
2×1(k) (4.76)

where

Aη = Â4, Bη =

⎡

⎢⎢⎣
0 0

0 1
b1

⎤

⎥⎥⎦ , Y ∗
2×1(k) =

⎡

⎢⎢⎣
y∗(k + 1)

y∗(k)

⎤

⎥⎥⎦ (4.77)

Apply the eigen-decomposition Aη = UηΛηU−1
η on the internal dynacmis system whose

poles codincide with the zeros of the original 3th order system to decouple the minimum

63

and non-minimum phase zeros, i.e. the stable and unstable internal dynamics as

⎡

⎢⎢⎣
η̂u(k + 1)

η̂s(k + 1)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣
λO 0

0 λI

⎤

⎥⎥⎦

⎡

⎢⎢⎣
η̂u(k)

η̂s(k)

⎤

⎥⎥⎦+ B̂η

⎡

⎢⎢⎣
y∗(k + 1)

y∗(k)

⎤

⎥⎥⎦ (4.78)

where

η̂2×1(k) = U−1
η η2×1(k), B̂η = U−1

η Bη =

⎡

⎢⎢⎣
B̂η,u

B̂η,s

⎤

⎥⎥⎦ , λO = zO, λI = zI

Uη =

⎡

⎢⎢⎣

b2+
√

b22−4b1b3
2b3

− b2
b3

b2−
√

b22−4b1b3
2b3

− b2
b3

1 1

⎤

⎥⎥⎦

(4.79)

It is obvious that the stable part of internal dynamics is evolved forward in time, while its

unstable part backward in time, and could be calculated as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η̂∗s(k) =
∞∑
j=0

zjIB̂η,s

⎡

⎢⎢⎣
y∗(k − j)

y∗(k − (j + 1))

⎤

⎥⎥⎦

η̂∗u(k) = −
∞∑
j=1

1
zjO
B̂η,u

⎡

⎢⎢⎣
y∗(k + j)

y∗(k + (j − 1))

⎤

⎥⎥⎦

(4.80)

Note that as shown above, the desired internal state can be computed by stable inverse of

the system by substituting the desired trajectory to maintain exact tracking. The input to

the system required is then computed using Equation 4.75.

64

4.5 Conclusions

The skip step stable inverse is important for many potential extensions of the inverse idea to

various control methods. The stable inverse results allow one to preplan a desired trajectory

and then perform it. Themajority of control theory aims for some form of a real time control

law. Skip step forms a basic ingredient toward bridging from batch to real time. If one can

incorporate batch stable inverse ideas, then the first approach is to ask if it is possible to

do short batch updates sequentially, in which case the initial delete approach is not natural.

Some investigations are in progress aiming to extend the use of the stable inverse concepts

in References [18], [50], [51], [52], and [53].

• Iterative Learning Control. ILC was the original motivation for the development

of the stable inverse concepts presented here. ILC attempts to converge to the full

inverse control action. Hence, it is very often trying to converge to an unstable control

action. Often in applications people do not realize. The instability may not be evident

for many iterations, and could also be stabilized by the analog to digital converters.

For a slow sample rate it can become evident earlier, and then people wonder what

is wrong. We created NI to address this problem. Reference [18] explains why ILC,

without actually applying the NI inverse, without making any use of the prescribed

pseudoinverse, nevertheless converges to the right answer when using initial deletion.

Reference [51] considers ILC to perform local learning in a trajectory, by using a

quadratic cost control in general, but phasing into the skip step stable inverse for

some portion of the trajectory that needs high precision tracking.

• p-Step Ahead Control, Linear Model Predictive Control, and Indirect Adaptive

65

Control. One step ahead control uses a model to compute the control action at the

current time step to produce the output desired at the next time step. Before it can

be useful, it must be phased in to honor actuator saturation limits, and being a true

inverse it requires that the system have a stable inverse. Referene [52] generalizes

this to p-step ahead control, updating the control action every p steps instead of every

one step. It determines how small p can be to give a stable implementation using

skip step, and it can be quite small. So it only requires knowledge of future desired

control for a few steps. Note that his can be reformulated as Linear Model Predictive

Control as Reference [54] that updates ever p steps instead of every step. This offers

the ability to converge to zero tracking error at every time step of the skip step inverse,

instead of the usual aim to converge to a quadratic cost solution. Indirect discrete time

adaptive control [55] combines one step ahead control with the projection algorithm

to perform real time identification updates. It has limited applications, because it

requires a stable inverse. Reference [53] presents a first pass at developing indirect

discrete time adaptive control that does have this requirement.

66

Chapter 5

Iterative Learning Control for Linear

Discrete Time Non-Minimum Phase

Systems

5.1 Introduction

In routine feedback control the input command is the desired output. The actual output is a

convolution integral of the forcing function – essentially never equal to the command. If it

were equal, the control system designers would be solving an inverse problem. Iterative

Learning Control (ILC) addresses this in discrete time by iterating in the real world to

converge to that command producing the desired output, adjusting it each run based on

previous run error. For a majority or real world systems, this asks to solve an ill-conditioned

inverse problem, one whose exact solution is unstable and completely undesirable. For a

67

simple robot example performing a one second maneuver, the condition number of the

matrix to be inverted is 1052, although the matrix is guaranteed full rank. This is typical

of discrete time inverse problems in digital control. Numerical methods such as Tikhonov

regularization, fail to get zero tracking error at any time step. The author and co-workers

have developed a stable inverse discussed in the previous chapter, i.e. the Initial Delete,

that produces zero tracking error at all steps except the first step for the robot problem, or

more generally, the first time steps. This can be thought of a new kind of regularization

for lower triangular Toeplitz matrices of Markov parameters. This chapter examines how

to apply the new stable inverse las to ILC. Three main ILC laws are shown to converge

to a solution completely determined by the control applied in the initial run that starts the

iteration. This dependence is very small, so one can reasonably use any initial run. But

by picking an initial input that goes to zero approaching the final time step, this influence

becomes particularly small. And simply commanding zero in the first run, gives an optimal

inverse minimizing the Euclidean norm control action associated with zero tracking error

at all time steps but the first. The error in the initial time step is studied and shown to be

well behaved.

Feedback control systems aim to execute whatever command is given to them. Thus,

given the differential equation for the output as a function of the input command, the control

law is aiming to solve an inverse problem. There is always considerable error which can be

characterized by the control system bandwidth. Plotting the response to sinusoidal inputs,

when the amplitude of the output sinusoid has decayed to 70

ILC stores data from the previous run, so that it is a digital control method solving a

discrete-time inverse problem. The real world for digital control systems is governed by

68

ordinary differential equations, but the digital controller creates the forcing function applied

to this equation, updating it each sample time. Each update is continuously applied to the

differential equation until a new update arrives from the controller - called a zero-order hold.

If one looks at the solution to the differential equation at the sample times, one can make a

linear difference equation that has identical solution to the differential equation. Reference

[1], [2] prove that the process of converting to a difference equation model introduces the

forcing function at additional sample times, enough to make the most recent output time

step in the equation be one step ahead of the most recent forcing function input time step.

When the discretization introduces three or more additional terms, and the sample rate is

reasonable, the characteristic polynomial of the forcing function side of the equation will

contain a root or roots that are larger than one in magnitude. This makes the discrete-time

inverse problem unstable for a majority of digital control systems in the world.

The implication is, if one wants to have perfect tracking of a desired discrete-time

trajectory at all time steps, the control action needed is unstable, and grows exponentially

with time steps. The inverse problem error must be zero at the sample times, but between

sample times the solution of the differential equation (after some initial time steps) is

growing in magnitude exponentially, and alternating in sign each time step. Of course,

this exponential error growth when perfectly following the discrete-time desired trajectory

does not address the initial intended problem of finding the input to accurately follow the

desired continuous time output.

Mathematically, the discrete-time inverse problem is asking to invert an ill-conditioned

matrix. We note that the lower triangular Toeplitz matrix of Markov parameters is

guaranteed full rank analytically, indicating that the inverse exists. Numerical methods that

69

aim to address this kind of problem include Tikhonov regularization. This is unapplealing,

since it will not produce zero error at any of the sample times. We comment that the stable

inverse solution presented here could be of use in numerical methods as an alternative to

Tikhonov regularization. Another numerical approach is to set the small singular value(s)

producing the ill-conditioning to zero, then use a pseudo-inverse. This is unapplealing for

the same reason. In this paper we wish to do better.

There is a theory established for stable inverses in References [3], [4], [5], [6], [8], [9],

[10], [11] and [13]. Reference [13] outlines the scheme of stable inverse theorem based

ILC, and relates the gradient based algorithm searching the optimal solution to ILC law in

iteration domain, but it makes use of pre- and post- extension of the original finite time

desired output, as simlarly done in Reference [56]. Reference [9] introduces a band filter

sovling for NMP systems, and justifies its better performance than a low pass filter, by

constructing the optimization problem in frequency domain. Reference [57] studies the

unsatisfyng results done by gradient-based optimization algorithm caused by zero dynamics

of system. Reference [8] shows that there is no direct relation between ILC law using

adjoint system and stable inverse. Reference [11] proposed a non-causal ILC law based on

the structure of error and control action observed in previous iteration.

We wish to take advantage of the JiLLL NI result when using ILC, but it is not

reasonable to perform the pseudoinverse step with ILC. Making use of this step would

simply find an inverse of the model, and ILC seeks to iterate with the world and solve the

inverse problem iteratively in the real world, not a model of the world. ILC can be very

effective. In experiments performed on the robot, the tracking error was decreased by a

factor of 1000 in 12 iterations with the world, and this factor if far below the error level

70

of our model of the world and it approaches the reproducibility level of the hardware. The

ILC laws make use of a model, but must be sufficiently robust to model error that they still

produce convergence.

To start an ILC iteration, one first applies some input to the system and observes the

output. Since we are concerned with control systems the most logical input is the desired

output. To match ILC to the JiLLL NI inverse, the ILC updates will not consider the output

error at the first time step or first few time steps, the number being the number of non-

minimum phase zeros in the transfer function. Then the output at these time steps becomes

a function of the command given during this first run. This chapter studies this in detail. It

is concluded that three main classes of ILC laws converge to the same control action, given

the same initial run. The influence of the initial run, introduces a small component on the

unstable solution, but it is so small that it does not exhibit any instability in the p time steps

of the given trajectory. It is also shown that if one decides to command zero during the first

run, then the converged solution is the same as the JiLLL NI solution, giving the minimum

norm control action for the first time step.

The authors and co-workers developed a set of stable inverses as described in the

previous chapter. We consider JiLLL NI here. In this paper we illustrate with a simple 3rd

order system that models the input-ouput relationship of each axis of a Robotics Research

Corporation robot. Then, given a p-time step desired output, JiLLL NI gives a p-time

step input that produces zero error at all time steps except the first step. The first step

is determined by a minimum Euclidean norm input action. The unstable behavior produced

by the ill-conditioning is eliminated. When we apply the approach to the ILC problem, the

first step instead is the result of the command given in the initial run. We comment that

71

for a one-second desired trajectory for the robot link, sampled at 100Hz sample rate, the

condition number of the matrix to be inverted is of the order of magnitude of 1052. We

also comment that Matlab is not able to compute this condition number. We need other

techniques to estimate this number. We reiterate, the matrix is analytically guaranteed to

be full rank, the inverse is guaranteed to exist.

We wish to take advantage of the JiLLL NI result when using ILC, but it is not

reasonable to perform the pseudoinverse step with ILC. Making use of this step would

simply find an inverse of the model, and ILC seeks to iterate with the world and solve the

inverse problem iteratively in the real world, not a model of the world. ILC can be very

effective. In experiments performed on the robot, the tracking error was decreased by a

factor of 1000 in 12 iterations with the world, and this factor if far below the error level

of our model of the world and it approaches the reproducibility level of the hardware. The

ILC laws make use of a model, but must be sufficiently robust to model error that they still

produce convergence.

To start an ILC iteration, one first applies some input to the system and observes the

output. Since we are concerned with control systems the most logical input is the desired

output. To match ILC to the JiLLL NI inverse, the ILC updates will not consider the output

error at the first time step or first few time steps, the number being the number of non-

minimum phase zeros in the transfer function. Then the ouput at these time steps becomes

a function of the command given during this first run. This paper studies this in detal. It is

concluded that three main classes of ILC laws converge to the same control action, given

the same initial run. The influence of the initial run, introduces a small component on the

unstable solution, but it is so small that it does not exhibit any instability in the p time steps

72

of the given trajectory. It is also shown that if one decides to command zero during the first

run, then the converged solution is the same as the JiLLL NI solution, giving the minimum

norm control action for the first time step.

5.2 Iterative Learning Control Laws

ILC is a rather new type of control that adjusts the command to a feedback control system

repeatedly performing a desired task under a repeating disturbance. The command is

adjusted after each run, based on the error observed in the previous run, and the aim is

to achieve zero error ej(k) = y∗(k)− y
j
(k) tracking the repeated desired trajectory as the

repetition number j tends to infinity. There have beenmany ILC approaches developed, and

References [33], [28], [29] and [58] give good perspective on the ILC field that developed.

Each repetition starts from the same initial condition. A general linear learning control law

is given by

uj+1 = uj + Lej (5.1)

where L is a matrix of learning gains. By the use of a difference operator, one can write the

error propagation equation

ej+1 = (I − PL)ej (5.2)

where I is the identity matrix.

The simplest control law implements the following concept, if the output as a given

time step in the previous run was two units too small, add two units to the command in this

run, at the appropriate time step. Note that we assume a one time-step delay from input to

73

output, we add two units to the command one step before the error considered. Also, in the

spirit of classical control, we can insert a scalar learning gain φ so that instead of asking

for 2 units more, we ask for 2φ. This is sometimes referred to as P type ILC as defined by

Reference [20]. Perhaps being a bit less aggressive and asking for less change in the next

iteration can have some benefit. As a result, the learning gain matrix is a p by p identity

matrix multiplied by this scalar learning gain. Many are not aware of the extreme behavior

that this ILC can exhibit, and this phenomenon is studies by References [59], [60]. Here,

we consider three other main laws. And refer to the first law investigated in Reference [61]

as the P Transpose Law (or the Contraction Mappling Law),

L = φP T (5.3)

and it is a contraction mapping in the sense of the Euclidean norm of the tracking error from

iteration to iteration. The second law investigated in Reference [62] is the partial isometry

law formed from the singular value decomposition of the P = USV T matrix according to

L = φV UT (5.4)

Here U and V are unitary matrices whose columns (and rows) represent unit vectors in

p dimensional space and these vectors are orthogonal. And people also choose to pick

the learning gain matrix in such a way as to minimize a quadratic cost each iteration that

controls the learning that controls the learning transients in References [63] and [57]. We

comment that by picking the quadratic cost weights appropriately, all three laws can be

74

presented by the quadratic cost law as in Reference [64]. The quadratic cost function that

uses a single scalar weight r, results in the following learning law L

Jj+1 = eTj+1ej+1 + rδj+1u
T δj+1u ; L =

(
P TP + rI

)−1
P T (5.5)

where the difference operator δjξ = ξj − ξj−1 holds for any quantity ξj . Using any of these

laws in Equation 5.2, one concludes that the error history converges to zero tracking error

as j tends to infinity, for all possible intial runs, if and only if all eigenvalues of (I − PL)

are less than one in magnitude. If all singular values of (I−PL) are less than one, the error

convergesmonotonically with iterations in the sense of the Euclidean norm. For sufficiently

small gain φ or large r, each of these laws is guaranteed to converge monotonically to zero

tracking error at all time steps, whichmeans it converges to the unstable solution in Equation

4.7.

5.3 A New Stable Inverse Based Iterative Learning

Control

Behavior of ILC When Solving the Ill-Conditioned Problem

The mathematics of ILC says it converges to the P inverse solution. Properties of this

solution are that it has zero error at every time step, control action alternates in sign every

time step and grows in matnitude exponentially, and produces errors in the solution of the

differential equation that grow exponentially in magnitude between successive time steps.

75

Such a solution defeats the purpose of asking for zero error. References [65], [66], [67],

[68], [69], [70], [71] and [72] study the conversions of adaptive control to the learning

control problems. It is expected that if two major goals are achived, i.e. the system

model converges to the true model and meantime zero tracking error is achieved at all time

steps, the control converges to the inverse model solution. Reference [73] gives a unifying

understanding of the stability boundary for convergence to zero tracking error, and of a

stability condition by using frequency response allowing dynamic and inverse dynamic

control laws.

Sometimes these bad properties are not observed when ILC is applied to the real world.

Often, the error decreases reasonbly fast, but it seems to have finished converging at a

disappointing error level far from the zero error promised by the mathematical analysis.

References [40], [39], [74] explain this phenomenon, saying that the iterations have not

yet converged, and that with enough iterations one will see the instability appearing, and

the error at sample times decaying further. This means that one may have improved the

error level, but the iteration process is poised to become unstable. In practice, this phase of

the convergence process may not be observed because the iterations are terminated before

actually reaching convergence, or because the finite word length in the analog to digital and

digital to analog converters does not allow accumulation of the learning signal.

Modifying ILC Laws to Aim for A Stable Inverse

Reference [39] applied the idea presented in References [36] and [41] to ILC. Given a third

order disrete time system, one deletes the first initial row to form Pd, picking L = φP T
d

76

for the modified P Transpose Law, L = φVdUd
T for the partial isometry law where Vd and

Ud are the singular vector matrices of Pd, and L =
(
Pd

TPd + rI
)−1

Pd
T for the quadratic

cost law. These ILC laws are updating the control action for all p time steps, but ask for

zero error at only the addressed time steps remaining after deleting the initial row (or rows

whose number is equal to the number of non-minimum phase zeros). Reference [41] asks to

pick the extra freedom by picking a minimum norm solution, but the ILC approach simply

applies whatever command one wishes for the first iteration, and then starts using any of the

above control laws. The questions addressed here are: Howwell will this work? What final

error level is produced? Does it make a difference which law we use? How significantly is

the final error level affected by our choice of the initial run, etc?

Extensive numerical experience shows that no matter how one chooses the control

action in the initial iteration, one could always achieve zero tracking error on the time steps

remaining after deleting the chosen initial steps. After using the modified ILC laws, the

final level of the control action and also the unaddressed error at the first time step, are

insensitive to the choice of the control action in the initial run. This may appear counter-

intuitive, and we seek to explain this phenomenon.

5.4 Analytical and Numerical Results

We established without asking for zero error for the first (or first few) time steps allows one

to create solutions to the inverse problem that are stable. There are of course an infinite

number of solutions to the underspecified set of equations, one of which is the original

inverse solution which we do not want. The Moore-Penrose pseudoinverse was used in the

77

stable inverse chosen above, and seen to eliminate the unstable inverse issue. In section

5.4.1 we obtain an expression for the set of all possible inverse solutions, all expressed in

terms of a parameter γ that indicates the difference between any given solution and the

Moore-Penrose solution.

ILC cannot make use of the Moore-Penrose pseudoinverse as a learning law during its

iterations. ILC aims to get to zero tracking error in the real world, not in our imperfect

model of the world, by iterative adjustments of the system input using world response data.

ILC starts with an initial run, applying whatever one chooses, for example, as the input to

the control system, one logically would ask for the desired output. The authours’ group

has investigated three main classes of ILC laws in References [61], [62] and [75] and term

these as P transpose law, partial isometry law and quadratic cost law. Reference [64] shows

that all the above laws can be unified in one general formulation. In section 5.4.2 we show

that the converged solution for the ILC laws is dependent of the choice of the input for the

initial run. And we show that all three ILC laws converge to the same solution when using

the same initial run, i.e. the same value of γ.

Section 5.4.3 shows the dependence of the final converged control action u(k) on the

choice of the input for the initial run is very small. Hence, ILC easily converges to a very

well behaved solution after deleting the requisite number of initial rows. It is also shown

that if the input in the initial run is zero, or if it is made zero near the end of the initial run,

then ILC essentially converges to the Moore-Penrose pseudoinverse solution.

Onemight expect to need very precise choice of the initial conditions to ensure the value

of C2 is sufficiently small to avoid unstable behavior. From this thinking the results here

are counter-intuitive. It becomes evident that the choice of initial run needed to produce

78

anything close to the unstable behavior of the system inverse is something that one would

never think of using. Section 5.4.4 examines that the influence of the initial run on the

converged error on the unaddressed time step is very small.

The γ Parameter Set of All Possible Solutions to the Underspecified

Equations

First, consider some properties of a generalized inverse of a rectangular matrix Pd modeling

an underdetermined system after the deletion of the first row(s) in P , i.e. for the 3rd order

system, there is onemore control action than the number of errors being addressed. Partition

the SVD of matrix Pd using the system y∗
d
= Pdu for simplicity and considering one zero

outside the unit circle

y∗
d
= Ud

[
Sd 0

]
⎡

⎢⎢⎣
V T
d1

V T
d2

⎤

⎥⎥⎦ u (5.6)

Denote V T
d u = û, then û1 = V T

d1u = Sd
−1Ud

Ty∗
d
,

û2 = V T
d2u = γ

, and γ could be any scalar as it lies in the null space. Then converting to the original u

space, one gets

u =

[
Vd1 Vd2

]
⎡

⎢⎢⎣
Sd

−1Ud
Ty∗

d

γ

⎤

⎥⎥⎦

= P †
dy

∗
d
+ Vd2γ

(5.7)

79

The first term represents the Moore-Penrose pseudo-inverse result minimizing the

Euclidean norm of the control action. The second term gives all possible solutions by

choice of all possible values of γ. The pseudo-inverse solution given by JiLLL NI, is a

particularly attractive solution since it produces the smallest possible Euclidean norm of

the control to accomplish the zero error at the time steps addressed. Of course there also

exists a γ producing zero error at all time steps, i.e. producing the true inverse solution of

Equation 4.7, which contains the exponentially growing unstable control action.

The γ Values for Each ILC Law as a Function of the Initial ILC Run

Since we use modified ILC laws to conerge to one of these solutions that give zero error at

addressed steps, it is of interest to know what γ value is produced upon convergence as a

function of u0 for each choice of ILC law.

P Transpose Law: Plug L = φVdUT
d , then the control action updates according to

uj+1 = uj + φP T
d ej,d = (Ip − φP T

d Pd)uj + φP T
d (yd

∗ − dd), where the subscript d denotes

deleting the first row or entry in a matrix or a vector. Apply the SVD of matrix Pd and

partition V T
d ej+1 into the part that learns and the part not being updated in the iteration

process, and one calculates the decoupled solution for the control action in the new space

⎡

⎢⎢⎣
Vd1

T

Vd2
T

⎤

⎥⎥⎦ uj+1 =

⎡

⎢⎢⎣
Ip−1 − φS2

d 0

0 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣
Vd1

T

Vd2
T

⎤

⎥⎥⎦ uj + φ

⎡

⎢⎢⎣
Sd

0

⎤

⎥⎥⎦UT
d

(
y∗
d
− dd

)
(5.8)

80

Denote Vd1
Tuj+1 = ũd,j+1,M = Ip−1 − φS2

d andWd = φSdUT
d (y

∗
d − dd), then the learned

control action in the new space is governed by

ũd,j+1 = Mũd,j +Wd (5.9)

whose solution is

ũd,j = M jũd,0 + (Ip−1 −M)−1 (I −M j
)
Wd (5.10)

Since one is free to pick the learning gain φ in matrix M , we consider φ = 1/σmax is a

reasonable choice where σmax denotes the maximum singular value of the P matrix. As the

iteration number j goes to infinity, the learned part of the control action expressed in the

converted space converges to

ũd,j = S−1
d UT

d

(
y∗
d
− dd

)
(5.11)

Meanwhile, solving for the unlearned part and convert it back to the original space produces

u∞ = P †
d

(
y∗
d
− dd

)
+ Vd2V

T
d2u0 (5.12)

Comparing Equation 5.12 to Equation 5.7, we conclude that γ = V T
d2u0 for this learning

law.

81

Partial Isometry Law: The control updates according to uj+1 = uj + φVdUT
d ej,d.

Perform the same operation as above, i.e. partitioning the converted control ũj = V T
d uj

into the learned and the unlearned parts as ũd,∞ = V T
d1uj and ũf,∞ = V T

d2uj . Then one

obtains 5.8 with minor changes from S2
d , Sd to Sd, 0 respectively. After performing the

same calculation for the learned and the unlearned parts and converting back to the original

space, one concludes that the value of γ is identical for this ILC law as for the P Transpose

Law, and the converted control history is therefore also identical.

Quadratic Cost Law: The control updates as uj+1 = uj + φ(P T
d Pd + rI)−1P T

d ej,d.

Given the identity (X + Y)−1 = X−1 − X−1Y (I +X−1Y)−1X−1 and the use of

SVD of Pd = Ud

[
Sd 0

]
V T
d , the inverse term in the middle can be expressed as

(
P T
d Pd + rI

)−1
= Vddiag

(
(s21 + r)−1 . . . (s2p−1 + r)−1 r−1

)
V T
d , where si denotes

the ith singular value in matrix Sd. Then plug into the control updating equation and

again convert to the ũj space, and partition to the learned ũd,∞ and unlearned ũf,∞

by premultiplying uj with V T
d1 and V T

d2. One gets a modified version of 5.8 with

φS2
d changed to diag

(
s21(s

2
1 + r)−1 . . . s2p−1(s

2
p−1 + r)−1 0

)
, and φSd changed to

diag

(
s1(s21 + r)−1 . . . sp−1(s2p−1 + r)−1 0

)
. Again, one gets the same control

action as 5.11 and the same value of γ.

It is interesting to note that when the iteration number goes to infinity, the control actions

produced by all three ILC laws are identical, given by JiLLL NI pseudoinverse solution,

plus the same term as a function of the initial iteration’s choice of command.

82

The Influence of the Initial Run on the Converged Final Control

History

For the 3rd order discrete-time system, Vd2 is a unit vetor withmagnitudes of the components

growing linearly on a log scale as shown in Figure 4.4. Consider a one-second length

trajectory, and 100 Hz sample rate, then the magnitude of the first component has an

approximate magnitude of 10−50 based on linear extrapolation, since Matlab is not able

to compute this number. Then it grows exponentially up to the magnitude of 10−1 for the

last component. Therefore the latter part of u0 contributes more to the value of γ = V T
d2u0.

For a reasonable choice of the control action (the initial command) u0, pre-multiplying it

by a unit vector with such a property, one sees no reason to think that the resulting value of

γ could be large.

Also note, that onemultiplies γ by Vd2 to produce the influence on the converged control

action. Hence, the influence of u0 on the control action is given by multiplying this initial

control history by the outer product Vd2V T
d2. Figure 5.1) gives a carpet plot of the matrix

entries vs. row and column number, on a linear scale. Obviously, only the last five entries

in the rows and columns have much influence on the converged control action. Figure 5.2

further illustrates this where the magnitudes of the matrix entries given on a log scale. The

planar surface in the back corner of the plot ending at the 100 by 100 entry, represents correct

matrix entries. As the row entries are decreased the carpet plot leaves the planar surface

when the computed entries get below approcimately 10−16 to 10−17, and the same happens

for the column entries. This corresponds to the fact that Matlab is unable to compute these

entries accurately. When both the rows and the columns are too far from the back corner

83

of the plot, Matlab has trouble in two ways, the computed matrix entries are all stuck in the

range of 10−33.

Consider some of the implications:

• If one wants γ to precision of 4 significant digits, the last 5 components in Vd2 is

enough. For purposes of illustration, consider that u0 has all components equal to

unity. Figure 5.3 shows the accumulation of γ, adding the terms of the inner product

γ = V T
d2u0 together, progressing from step one to the final step. When entry p is

reached one has the actual value of γ. Note that only the last few time steps matter.

Because the entries in Vd2 alternate in sign, the figure also gives the corresponding

result if one makes all entries in u0 have unit magnitude and alternate sign. But this

does not produce a significantly different result.

• Therefore, one could use any desired input during the initial run, e.g. aiming to

get close to zero error at all addressed time steps from the start, but then make the

command decay to near zero for the last 5 entries. Then the final converged control

action would be very close to the Moore-Penrose pseudoinverse.

• Alternatively, if possible, one could simply use the initial command as identically

zero, in which case any of the ILC laws will converge to the Moore-Penrose

pseudoinverse, corresponding to the minimum Euclidean norm control action to

produce zero error at the addressed time steps.

84

0
-0.4

0

0

Column Index

50

1

Row Index

50
100100

Figure 5.1: Matrix entries of Vd2V T
d2 showing the influence of initial input components of

u0 on control action

-40
100 100

-20

0

Column Index Row Index

50 50

0 0

Figure 5.2: Logrithm of Magnitude of matrix entries Vd2V T
d2

85

0 25 50 75 100

Time Step Index

-1

-0.5

0

0.5

1

1.5
Const. ones input
Alter series input

Figure 5.3: Illustration of how the value of γ accumulates as time steps progress

The Influence of the Initial Run on the Converged Error of the

Unaddressed First Time Step

The methods used here have avoided the difficulty of inverting an ill-conditioned matrix

and avoided the use of an unstable control action. But this was accomplished at the expense

of not being able to get zero error in the first time step. It is of interest to ask what happens

to the error for this time step(s). The final level of error is given by e∞ = y∗ − Pu∞ − d,

which produces zero at all time steps but the first which gives

e∞(1) = y∗(1)− Pfu∞ − d(1)

= y∗(1)− PfP
†
d

(
y∗
d
− dd

)
− d(1)− PfVd2V T

d2u0(5.13)

where Pf =

[
CB 0 · · · 0

]
is the first row in the P matrix. The first three

terms on the right hand side are pre-determined by system dynamics, the desired command

86

trajectory, and the repeated disturbance during the iteration process. The only free choice

is u0. Again it is premultiplied by the matrix whose entries are studied. But this time it is

further premultiplied by the Pf matrix of all zeros except for CB. Recall that the discrete-

time B is roughly equal to the continuous time B times the sample time interval, in this

case 0.01 sec. So CB should not be a large number. It is very difficult to move this initial

value of the error, but it also seems true that the error is not likely to be a large number.

Previously we discussed the unstable inverse from the point of view of the initial

conditions determining the coefficient of C2 of the unstable solution (−3.104)k. From

this point of view one might think that one would have to be very careful with the initial

condition in order to make the unstable term be near zero. Let us investigate if there is any

need to be careful.

• First, observe how hard it is to influence the error at the first time step, and still

maintain zero error at later steps. The additional initial control action∆u0 necessary

to make a change ∆e∞(1) satisfies

∆e∞(1) = −PfVd2V
T
d2 (∆u0) = −(CB) · Vd2(1) ·∆γ (5.14)

Numerically, Equation 5.13 says that in order to make one unit change ∆e∞(1) in

the first time step error, ∆γ must have a magnitude of approximately 1057 with a

negative sign in front.

• To produce a given desired change in ∆e∞(1) there needs to be a correspondingly

87

large change in the control action given by

u∞
′ = P †

d

(
y∗
d
− dd

)
+ (γ +∆γ)Vd2 (5.15)

.

• It is conceivable that the Moore-Penrose pseudoinverse contains a nonzero value of

C2 when minimizing the Euclidean norm of the control action, but the value must be

of the order of 1
/
(z2)

k so that no large control is accumulated from this term in p

time steps. One might prefer to have C2 identically zeros, if one could find a way to

do this.

• The instability of the control input producing zero error at the addressed time steps

is then included in the Vd2γ term in Equation 5.12. Since Vd2 is a unit vector, in order

for the unstable history in the Vd2 vector to have substantial influence on the control

history, one needs a substantial value for γ, i.e. one needs a substantial component

of u0 on Vd2.

• For a given magnitude u0 the maximizing choice is to pick the initial input to be equal

to Vd2, i.e. pick an unstable control input. One is not likely to do this, but in addition

this only produces a value of V T
d2Vd2 = 1. Therefore, one also needs to make the

control u0 to be a large number multiplying Vd2, in order to generate an initial input

that has substantial instability observed within the given p time steps of the problem.

88

5.5 Stable Inverse Theorem Based Iterative Learning

Control

In this section, the stable inverse theorem based ILC approach is sketched according to [13],

for the purpose of comparison of differences and similarties. Because the stable inverse

problem is defined on the infinite time interval (−∞,+∞), the authors pre- and post-

extended the original finite time desired output trajectory yd(t), t ∈ [0, T] as

yr(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈ (−∞, t0]

r1(t), t ∈ [t0, 0]

yd(t), t ∈ [0, T]

r2(t), t ∈ [T, tf]

0, t ∈ [tf ,+∞]

(5.16)

where

r1(t0) = 0, r1(0) = yd(0), r1(T) = yd(T), r1(tf) = 0 (5.17)

r1(t), r2(t) are continuously differentiable. Then the problem of finding the stable inverse

solution maintaining the exact output trajectory which satisfies the system

⎧
⎪⎪⎨

⎪⎪⎩

ẋj(t) = Axj(t) + Buj(t)

yj(t) = Cxj(t)

(5.18)

where xj(t) ∈ ℜn, uj(t) ∈ ℜ, yj(t) ∈ ℜ, could be converted to an optimal tracking problem

89

as

min
u

J(u) = 1
2

∫ +∞
−∞ eT (t)e(t)dt

s.t. e(t) = yr(t)− y(t)

y(t) = Pu(t)

u(±∞) = 0, x(±∞) = 0, y(±∞) = 0

(5.19)

Now using continuous time Lagrange multipliers λ(t) and gradient-based optimization

algorithm to solve Equation 5.18. Define the Hamiltonian H(x, u,λ, t) as

H(x, u,λ, t) =
1

2
(yr − Cx)T (yr − Cx) + λT (Ax+Bu) (5.20)

The first-order necessary condition gives the costate equation as

λ̇(t) = −∂xjH[xj, uj,λ, t] = −ATλ(t) + CT (yr(t)− yj(t)) (5.21)

Tomake the performance index J(u) sliding towards in the decreasing direction, the control

action based on the counterpart in the previous repetition updates along the direction

δuj = −∂ujH[xj, uj,λ, t] = −BTλ(t) (5.22)

Then the control action when the iteration number j → ∞ would converge to the stable

inverse theorem based solution as modeled

uj+1(t) = uj(t) + φzj(t) (5.23)

90

where φ is learning rate, and zj(t) could be solved by

⎧
⎪⎪⎨

⎪⎪⎩

λ̇j(t) = −ATλj(t) + CT (yr(t)− yj(t))

zj(t) = −BTλj(t)

(5.24)

constraint by the boundary conditions λj(±∞) = 0. Again, as mentioned previously in the

stable inverse theorem section, this calculation needs two integrals from both−∞ and+∞,

or by an infinite summation in discrete time scenario. Reference [8] points out that there

is no direct relation between ILC law using adjoint system as outlined above, and stable

inverse theorem. However, they both converge to the same solution when one chooses the

control action of the initial run as zero, which coincides with the solution done by JiLLL

NI. The author here finds this is the most interesting part of this comparison.

5.6 Conclusions

The JiLLL NI solution to an inverse discrete-time control problem produces zero error at all

time steps except the first few (one step for example the 3rd order problem (or pole excess

3), 2 time steps if the problem were 5th order, 3 if it were 7th order). The inverse problem is

inverting the associated difference equaiton, which has a zero(s) outside the unit circle that

becomes an unstable pole(s) outside the unit circle. The resulting difference equation that

must be satisfied has a solution of the associated homogeneous equation that is an arbitrary

constant(s), determined by initial conditions, times the unstable solution(s). In order to have

a stable inverse, it would seem necesary to set the initial conditions very precisely so that

there would be a zero coefficient multiplying the unstable solution. We show that this is

91

not necessary, and in fact it is very hard to set initial conditions that exhibit the instability.

JiLLLNI gives a p time step control history producing the desired output at all time steps

but the first (or first few). Then the control action at the first time step is determined by the

Moore-Penrose pseudoinverse. ILC wants to similarly converge to zero error, but cannot

use this pseudoinverse solution because it seeks zero error in the unknown world model,

instead of our model of the world. The set of all possible pseudoinverses is established. It

is determined that all 3 ILC laws converge to the same pseudoinverse solution, when given

the same initial input used in the first ILC iteration. It is determined what choice of the

initial run is required to produce the actual unstable inverse for all time steps, and also it

is determined what kind of initial run is needed to result in any significant unstable control

action. It is clear that one would never pick such an initial input history.

If one wants to reduce the very small influence of a reasonable initial run on the ILC

converged zero error control history, one can make the initial control action decay to zero

for the last few time steps. If one wants to go further, and have ILC converge to the Moore-

Penrose minimum Euclidean norm solution, then one can give a zero command to the

control system for the entire first run. In this case, the ILC converges to the minimum

Euclidean norm control solution of the Longman Stable Inverse JiLLL NI.

Since the ILC does not consider the error in the first time step, the error at this time

step is studied. One might worry that something wild must be done at this time step in

order to produce the stable inverse for the remaining steps. It appears that this not the case.

Furthermore, requesting any significant change in the error at this first time step while

keeping the remaining errors zero, requires introducing unstable control time histories.

The final conclution is that all three ILC laws will converge to well behaved and very

92

useful solutions to the inverse control problem using any reasonable intial runs, and that the

ill-conditioning and the instability of the inverse model are eliminated.

93

This page intentionally left blank.

94

Conclusion

This work develops a series of new stable inverses of linear discrete time systems. Having

a stable inverse to make use of, this addresses a basic problem and has the potential to

address difficulties in many control design problems. The work was motivated by solving

the inverse instability issue in Iterative Learning Control (ILC) problems.

Typical feedback control systems do not do what you ask them to do. The concept of

bandwidth is created to describe up to what frequency such a system will do something

reasonably close to the command. Various control approaches aim to fix this problem, and

produce zero tracking error following the commanded trajectory. These include Iterative

Learning Control (ILC), Repetitive Control (RC), one step ahead control, indirect adaptive

control, etc. Each aims to produce that input command that produces the desired output,

i.e. solve the inverse problem. To implement such control laws, one must use discrete time

models which represent the continuous world with inputs coming through a zero-order-

hold. The exact discrete time equivalent, giving the same output at sample times as the

differential equation, very often has Non-MinimumPhase (NMP) zeros, including sampling

zeros, or intrinsic zeros, or both. This means that the inverse problem is unstable, i.e.

95

finding the input necessary to produce the desired output results in a control action that

grows exponentially in magnitude with time.

With the knowledge of asymptotic locations of sampling NMP zeros, this work picks

a representative discrete time model of a robot at NASA Langley Research Center. The

analysis starts from detecting the instability in a discrete time difference equation model

and a finite time matrices model, including a state space model and an ARX model. Then

creates a factorization of systems matrices, modeling finite time dynamics of the input-

output linear mapping of the discrete time system as the analogy to a transfer function.

Based on two versions of the modified problem statements, a series of new stable inverses

are developed. Then apply the new stable inverse ideas to solve the instability issue in

ILC problems, justifying that all major learning laws converge to the same well behaved

and useful solutions as well as being insensitive to the choice of control action in the

initial iteration to start the learning procedure. This work also studies the commonalities

and differences between the existing stable inverse theorem, and its application on ILC

problems.

Applications of new stable inverses include. (1) ILC was the original motivation for the

development of the stable inverse concepts presented in this work. ILC attemps to converge

to the full inverse control action. Hence, it is very often trying to converge to an unstable

control action. Often in applications people do not realize. The instbiality may noe be

evident for many iterations, and could also be stabilized by the analog to digital converters.

For a slow sample rate it can become evident earlier, and then perople wonder what is

wrong. This work creates stable inverse methods to address this problem. This work also

explains why ILC, without actually applying the stable inverse, without making any use of

96

the prescribed pseudoinverse, nevertheless converges to the right answer when using initial

deletion for all major ILC laws, at meantime insensitive to the choice of control action at the

intial iteration. (2) ILC design with local learning: Imagine a factory robot repeatedly starts

from a home position, going to a newly arrived object where it performs a high precision

task, and then returns home. High accuracy tracking is only needed for the task part of

the trajectory. One could consider using a quadratic cost control in general, but phasing

into the skip step stable inverse for some portion of the trajectory that needs high precision

tracking. (3) One step ahead control is a digital feedback control law that aims to produce

zero error every time step, and one of the major limitation is the inverse instability for any

system with the relative degree of three or more. One could apply the stable inverse idea

by increasing the sample rate to produce the equivalent of a generalized hold between the

original sample times, and study the tracking error between the original sample times. (4)

Indirect discrete time adaptive control creates a law promising to converge to zero tracking

error in real time. The basic indirect adaptive control relies on the one-step ahead control

law followed by the projection algorithm to update the model based on the current inverse.

The asymptotic stability of the inverse of the system required by convergence condition is

not satisfied in a majority of systems one would like to control. Preliminary study has been

done to solve this issue by applying stable inverse ideas. (5) Note that one could reformulate

the above control design problems as Linear Model Predictive Control that updates a batch

of time steps instead of every step. This offers the ability to converge to zero tracking error

at every time step of the skip step inverse, instead of the usual aim to converge to a quadratic

cost solution.

There are still more things to explore in the future and some of them are ongoing. (1)

97

The author intends to generalize stable inverses to multi-input, multi-output (MIMO), linear

time varying or nonlinear discrete time systems. (2) Examine in a more detailed level on

errors in between sample times to evaluate overall performance, via the study on the degree

of freedom at initial time steps driving the system onto the desired state trajectory. (3)

Make the current study on indirect adaptive control on real-time via the enhancement on

stable inverses. (4) Generalize the stable inverses on systems with partial prior knowledge

of system dynamics.

98

References

[1] K.Astrom, Hagander, P., and Strenby, J., 1980. “Zeros of sample systems”.
Proceedings of the 19th IEEE Conference on Decision and Control, pp. 1077–1081.

[2] Blachuta, M. J., 1997. “On zeros of sampled systems”. In American Control
Conference (Albuquerque, NM, 07), Vol. 5.

[3] Devasia, S., Chen, D., and Paden, B., 1996. “Nonlinear inversion-based output
tracking”. IEEE Transactions on Automatic Control, 41(7), 07, pp. 930–930.

[4] Hunt, L. R., Meyer, G., and Su, R., 1996. “Noncausal inverses for linear systems”.
IEEE Transactions on Automatic Control, 41(4), 04.

[5] Hunt, L. R., and Meyer, G., 1997. “Stable inversion for nonlinear systems”.
Automatica, 33(8), pp. 1549–1554.

[6] Zou, Q., and Devasia, S., 1999. “Preview-based stable-inversion for output tracking
of linear systems”. ASME Journal of Dynamic Systems, Measurement and Control,
12, pp. 625–630.

[7] Qingze Zou, 2007. “Optimal preview-based stable-inversion for output tracking of
nonminimum-phase linear systems”. In 2007 46th IEEE Conference on Decision and
Control (Dec), pp. 5258–5263.

[8] Kinosita, K., Sogo, T., and Adachi, N., 2002. “Iterative learning control using adjoint
systems and stable inversion”. Asian Journal of Control, 4(1), pp. 60–67.

[9] Cai, Z., Freeman, C., Rogers, E., and Lewin, P., 2007. “Reference shift iterative
learning control for a non-minimum phase plant”. In American Control Conference
(New York, NY, 07), pp. 558–563.

99

[10] Koshy, G., Verhaegen, M., and Scherpen, J., 1999. “Stable inversion of mimo linear
discrete time non-minimum phase systems”. In Proceedings of the 7th Mediterranean
Conference on Control and Automation (07), pp. 267–281.

[11] Jeong, G.-M., and Choi, C.-H., 2002. “Iterative learning control with advanced output
data”. Asian Journal of Control, 4(1), 03, pp. 30–37.

[12] T.Sogo, 2002. “Stable inversion for nonminimum phase sampled-data systems and
its relation with the continuous-time counterpart”. In Proceedings of the 41st IEEE
Conference on Decision and Control, 2002. (Dec), Vol. 4, pp. 3730–3735 vol.4.

[13] S.Liu, and T.Wu, 2003. “Stable-inversion based iterative learning control for non-
minimum phase systems”. Control Theory and Applications, 20, 12.

[14] Ye, L., Zong, Q., and Wang, F., 2017. “Tracking control of nonminimum phase
systems: an overview”. Control Theory and Applications, 34, 02.

[15] Zhang, Y., and Liu, S., 2016. “Non-causal stable inversion based on optimal state to
state transition”. Control Theory and Applications, 33, 12.

[16] Ji, X., and Longman, R. W., 2019. “New results for stable inverses of discrete
time systems”. In Proceedings of the 19th Yale Workshop on Adaptive and Learning
Systems (New Haven, CN, 06), Narendra, ed., pp. 558–563.

[17] Ji, X., and Longman, R. W., 2017. “Proof of two new stable inverses of discrete time
systems”. AIAA/AAS Astrodynamics Specialist Conference, August.

[18] Ji, X., and Longman, R., 2018. “The insensitivity of the iterative learning control
inverse problem to initial run when stabilized by a new stable inverse”. In
Modeling, Simulation and Optimization of Complex Processes: The 7-th International
Conference on High Performance Scientific Computing (Hanoi, Vietnam, 03),
H. Bock, E. Kostina, X. Phu, and R. Rannacher, eds., Springer.

[19] UCHIYAMA, M., 1978. “Formulation of high-speed motion pattern of a mechanical
arm by trial”. Transactions of the Society for Instrumentation and Control Engineers,
14, pp. 706–712.

[20] Arimoto, S., Kawamura, S., and Miyazaki, F., 1984. “Bettering operation of robots
by learning”. Journal of Robotic Systems, 1(2), pp. 123–140.

[21] CRAIG, J., 1984. “Adaptive control of manipulators through repeated trials”. In
Proceedings of the American Control Conference (06), pp. 1566–1573.

100

[22] MOORE, K., 1999. “Iterative learning control - an expository overview”. Applied
and Computational Controls, Signal Processing, and Circuits, 1(1), pp. 151–241.

[23] XU, J., 2002. “The frontiers of iterative learning control - part i”. Journal of Systems,
Control and Information, 46(2), pp. 63–73.

[24] XU, J.-X., 2002. “The frontiers of iterative learning control - part ii”. Journal of
Systems, Control and Information, 46(5), pp. 233–243.

[25] BRISTOW, D., THARAYIL, M., and ALLEYNE, A., 2006. “A survey of iterative
learning control”. IEEE Control Systems Magazine, 26(3), pp. 96–114.

[26] MOORE,K., 1993. “Iterative learning control for deterministic systems”. InAdvances
in Industrial Control (London, U.K, 07), Springer, ed.

[27] MOORE, K., and XU, J.-X., 2003. Linear and Nonlinear Iterative Learning Control.
Springer, Berlin.

[28] MOORE, K., and XU, J., 2000. “Editorial: Iterative learning control”. International
Journal of Control, 73(10).

[29] BIEN, Z., and XU, J.-X., 1998. Iterative Learning Control: Analysis, Design,
Integration and Applications. Kluwer, Boston.

[30] Longman, R. W., 2000. “Iterative learning control and repetitive control for
engineering practice”. International Journal of Control,Special Issue on Iterative
Learning Control, 73, pp. 930–954.

[31] Longman, R. W., 2010. “On the theory and design of linear repetitive control
systems”. European Journal of Control, Special Section on Iterative Learning
Control, 16, pp. 447–496.

[32] CHEN, Y., and WEN, C., 1999. Iterative Learning Control: Convergence,
Robustness, and Applications. Springer, London.

[33] AHN, H.-S., and BRISTOW, D., 2011. “Special issue on iterative learning control”.
Asian Journal of Control, 13(1).

[34] Zhou, W., and Longman, R.W., 2018. “Root locus of zeros of discrete time systems as
a function of sample rate”. In Advances in the Astronautical Sciences (07), Vol. 162.

101

[35] Zhang, T., and Longman, R. W., 2018. “Repetitive control design for the possible
digital feedback control configurations”. In Advances in the Astronautical Sciences
(07), Vol. 129.

[36] Ji, X., and Longman, R., 2018. “Proof of two stable inverses of discrete time systems”.
In Advances in the Astronautical Sciences (Columbia River Gorge, Stevenson, WA,
07), Vol. 162, pp. 123–136.

[37] Ji, X., and Longman, R. W., 2019. “New stable inverses of discrete time systems”. In
Advances in the Astronautical Sciences (Portland, Maine, 07).

[38] Longman, R., and Li, T., 2017. “On a new approach to producing a stable inverse of
discrete time systems”. In Proceedings of the 18th Yale Workshop on Adaptive and
Learning Systems (New Haven, CN, 07), Narendra, ed.

[39] Li, Y., and Longman, R. W., 2008. “Addressing problems of instability in intersample
error in iterative learning control”. In Advances in the Astronautical Sciences (07),
Vol. 129.

[40] Li, Y., and Longman, R. W., 2010. “Using underspecification to eliminate the
usual instability of digital system inverse models”. In Advances in the Astronautical
Sciences (07), Vol. 135.

[41] LeVoci, P., and Longman, R., 2004. “Intersample error in discrete time learning and
repetitive control”. In Proceedings of the 2004 AIAA/AAS Astrodynamics Specialist
Conference (Providence, RI, 08), pp. 1967–1985.

[42] Chen, K., and Longman, R., 2003. “Creating short time equivalents of frequency
cutoff for robustness in learning control”. In Advances in the Astronautical Sciences
(07), Vol. 114, pp. 95–114.

[43] Song, B., and Longman, R. “Circulant zero-phase low pass filter design for improved
robustification of iverative learning control”. In Advances in the Astronautical
Sciences, Vol. 156, pp. 2161–2180.

[44] Smith, G., 1978. Numerical Solution of Partial Differential Equations. Clarendon
Press, Oxford.

[45] Longman, R., and Juang, J., 1988. “A variance based confidence criterion for era
identified modal parameters”. In Advances in the Astronautical Sciences (), Vol. 65,
pp. 581–601.

102

[46] WEN-CHYUAN, Y., and SUN, C. S., 2008. “Explicit eigenvalues and inverses of
tridiagonal toeplitz matrices with four perturbed corners”. The ANZIAM Journal,
49(3), p. 361–387.

[47] Bristow, D. A., and Singler, J. R., 2009. “Analysis of transient growth in iterative
learning control using pseudospectra”. In Proceedings of the Symposium on Learning
Control at IEEE CDC 2009 (Shanghai, China, 08), Vol. 136.

[48] Isidori, A., and Byrnes, C. “Output regulation of nonlinear systems”. IEEE
Transactions on Automatic Control, 35(2), pp. 131–140.

[49] Isidori, A., 1985. Nonlinear Control Systems. Springer, London.

[50] Zhu, J., and Longman, R., 2017. “Repetitive model predictive control based on
markov parameters”. In Proceedings of the 2017 AAS/AIAA Spaceflight Mechanics
Conference (San Antonio, TX, 02), pp. 267–281.

[51] Zhu, J., and Longman, R., 2018. “Iterative learning control design with local
learning”. In Advances in the Astronautical Sciences (08), Vol. 162, pp. 47–61.

[52] Wang, B., and Longman, R., 2018. “Generalized one step ahead control made practical
by new stable inverses”. In Proceedings of the AIAA/AAS Space Flight Mechanics
Conference (Kissimmee, FL, 01), pp. 123–136.

[53] Wang, B., and Longman, R., 2018. “On the development of indirect adaptive p-
step ahead control of systems with unstable discrete time inverse”. In Modeling,
Simulation and Optimization of Complex Processes: Proceedings of the International
Conference on High Performance Scientific Computing (Hanoi, Vietnam, 03),
H. Bock, E. Kostina, X. Phu, and R. Rannacher, eds., Springer, pp. 123–136.

[54] Chen, K., Longman, R., and Phan, M., 2006. On the Relationship Between Repetitive
Control and Model Predictive Control. Keystone, CO, Aug.

[55] Goodwin, G. C., Ramadge, P. J., and Caines, P. E., 1980. “Discrete-time multivariable
adaptive control”. IEEE Transactions on Automatic Control, AC-25, pp. 449–456.

[56] Gao, F., and Lonamgn, R., 2013. “Examing the learning rate in iterative learning
control near the end of the desired trajectory”. In Proceedings of the AAS/AIAA
Astrodynamics (07).

103

[57] Amann, N., Owens, D., and Rogers, E., 1995. “Robustness of norm-optimal iterative
learning control”. In Proceedings of International Conference on Control (Exeter,
UK, 07), pp. 1119–1124.

[58] AHN, H.-S., CHEN, Y., and MOORE, K., 2007. “Iterative learning control: brief
survey and categorization”. IEEE Transactions on Systems, Man, and Cybernetics-
Part C: Applications and Reviews, 37(6), pp. 1099–1122.

[59] Longman, R., Alnajjar, K., and Ji, X., 2014. “Comments on how a new engineering
field develops: A case study from iterative and repetitive control”. In Proceedings
of the 2nd International Conference on Intelligent Technologies and Engineering
Systems (12), J. Juang, C. Chen, and C. Yang, eds., Vol. 293, Springer, pp. 1273–
1279.

[60] Walker, M., Ji, X., and Longman, R., 2018. “The extreme behavior of the simplest
form of iterative learning control”. In Proceedings of the 2018 AAS/AIAA Spaceflight
Mechanics Conference (07).

[61] Jang, H., and Longman, R. W., 1994. “A new learning control law with monotonic
decay of the tracking error norm”. In Proceedings of the Thirty-Second Annual
Allerton Conference on Communication, Control and Computing (Monticello, IL, 09),
pp. 314–323.

[62] Jang, H., and Longman, R. W., 1996. “Design of digital learning controllers using a
partial isometry”. In Proceedings of the Thirty-Second Annual Allerton Conference
on Communication, Control and Computing (07), Vol. 93, pp. 137–152.

[63] Frueh, J. A., and Phan, M. Q., 1988. “Linear quadratic optimal learning control (lql)”.
In Proceedings of the 37th IEEE Conference on Decision and Control (Tampa, FL,
12), pp. 678–683.

[64] J. Bao, R. L., 2010. “Unification and robustification of iterative learning control laws”.
Advances in the Astronautical Sciences, 136, pp. 727–745.

[65] Beigi, H., 1997. “Adaptive and learning-adaptive control techniques based on
an extension of the generalized secant method”. Intelligent Automation and Soft
Computing Journal, 3(2), pp. 171–184.

[66] Avrachenkov, K. E., Beigi, H., and Longman, R. W., 2002. “Updating procedures for
iterative learning control in hilbert space”. Intelligent Automation and Soft Computing
Journal (Special Issue on Learning and Repetitive Control), 8(2).

104

[67] Beigi, H., Li, C., and Longman, R. W., 1991. “Learning control based on generalize
secant methods and other numerical optimization methods”. In Sensors, Controls and
Quality Issus in Manufacturing (12), Vol. 55, pp. 163–175.

[68] Beigi, H., 1992. “A parallel network implementation of the generalized secant
learning-adaptive controller”. In Proc. of Canadian Conference on Electrical and
Computer Engineering (Toronto, Canada, 9), Vol. 2, pp. 1–4.

[69] Avrachenkov, K., Beigi, H., and Longman, R., 1999. “Operator-updating procedures
for quasi-newton iterative learning control in hilbert space”. In IEEE CDC (Phoenix,
AZ, 12).

[70] Beigi, H., 1992. “An adaptive control scheme using the generalized secant method”.
In Proc. of Canadian Conference on Electrical and Computer Engineering (Toronto,
Canada, 9), Vol. 2, pp. 1–4.

[71] Avrachenkov, K. E., and Longman, R. W., 2003. “Iterative learning control for over-
determined, under-determined, and ill-conditioned systems”. International Journal
of Applied Mathematics and Computer Science, 13, pp. 113–122.

[72] Longman, R., Peng, Y., Kwon, T., Lus, H., Betti, R., and Juang, J., 2011. “Adaptive
inverse iterative learning control”. Journal of the Chinese Society of Mechanical
Engineers, 32(6), pp. 493–506.

[73] Elci, H., Longman, R. W., Minh Phan, Jer-Nan Juang, and Ugoletti, R., 1994.
“Discrete frequency based learning control for precision motion control”. In
Proceedings of IEEE International Conference on Systems, Man and Cybernetics
(Oct), Vol. 3, pp. 2767–2773 vol. 3.

[74] Li, Y., and Longman, R., 2010. “Characterizing and addressing the instability of the
control action in iterative learning control”. In Advances in the Astronautical Sciences
(07), Vol. 136, pp. 1967–1985.

[75] S. J. Oh, R. L., and Phan, M. Q., 1997. “Use of decoupling basis functions in learning
control for local learning and improved transients”. Advances in the Astronautical
Sciences, 96, pp. 651–670.

[76] Yao, H., and Longman, R. W., 2010. “Frequency response based repetitive control
design for linear systems with periodic coefficients”. In Advances in the Astronautical
Sciences (), Vol. 136, pp. 727–745.

105

This page intentionally left blank.

106

Appendix A

Numerical Results on ILC of Time Varying
Systems

A.1 Introduction
Systems for which one might want to apply ILC to obtain high prevision tracking, can have
time varying coefficients. Two cases can apply. One is that the systemmodel is simply time
varying. A second situation applies when one wants to use ILC designed for linear systems
to apply to nonlinear systems. One can linearize the nonlinear model around the desired
trajectory that is a function of time, and this produces time varying coefficients. The linear
range around the desired trajectory can be large enough to make this approach effective. If
not, one may seek to repeatedly linearize about trajectories during the iterations.

For constant coefficient LTI systems, the Toeplitz matrix of Markov parameters is well
studies in the previous chapters. The purpose of this Appendix is to examine how these
properties are modified as a time variation is introduced into the coefficients. We study the
various classes of time variation. And for the basic laws of contraction mapping, partial
isometry, and quadratic cost learning updates can in theory be used directly with time
varying systems but no one has addressed the issue of what happens to the troublesome
singular values associated with zeros of linear transfer functions outside the unit circle for
constant coefficient systems are transformed by time variation. The investigation here seeks
whether the methods obtained still address the issue of instability of the inverse.

A.2 On ILC of Linear Time Varying Systems

The Repetition Domain Model
Consider a general linear time varying state variable difference equation model

{
xj(k + 1) = A(k)xj(k) + B(k)uj(k)
yj(k + 1) = C(k + 1)xj(k + 1) + v(k + 1)

(A.1)

107

Similarly, by repeatedly writing Equation A.1 for successive values of time step k, and
substituting previous equations into the current equation, one can get the convolution sum
solution to the difference equation

⎧
⎨

⎩
xj(k + 1) =

k∏
i=0

A(i)x(0) +
k∑

i=0

[
k∏

l=i+1
A(l)

]
B(i)uj(i)

yj(k + 1) = C(k + 1)xj(k + 1)
(A.2)

equivalently in matrix as

P =

⎡

⎢⎢⎢⎢⎢⎣

C(1)B(0) 0 · · · 0

C(2)A(1)B(0) C(2)B(1)
.

...
... . . . 0

C(p)

[
p−1∏
i=1

A(i)

]
B(0) C(p)

[
p−1∏
i=2

A(i)

]
B(1) · · · C(p)B(p− 1)

⎤

⎥⎥⎥⎥⎥⎦

AO =

⎡

⎢⎢⎢⎢⎢⎣

C(1)A(0)
C(2)A(1)A(0)

...

C(p)
p−1∏
i=1

A(i)

⎤

⎥⎥⎥⎥⎥⎦

(A.3)

Relating Nonlinear Ordinary Differential Equations to P Matrix
Consider a general nonlinear ordinary differential equation of the form

{
˙̄x(t) = f (x̄(t), ū(t))
ȳ(t) = Cx̄(t)

(A.4)

Suppose that we have a set of functions u∗(t), y∗(t), x∗(t) satisfying these equations, and
we would like to have Equation A.4 linearized about these functions. Define the deviations
from the desired solution by

u(t) = ū(t)− u∗(t), x(t) = x̄(t)− x∗(t), y(t) = ȳ(t)− y∗(t) (A.5)

Note that we will be integrating these differential equations across a sample time, and that
if the input comes through a zero order hold, both u(t) and ū(t) would be constants during
such an interval. Linearzing the right hand of Equation A.4 about the desired trajectory

labeleq : a6

{
f (x̄(t), ū(t)) ≈ f (x∗(t), u∗(t)) + ∂f

∂x̄(t)

∣∣∣
∗
x(t) + ∂f

∂ū(t)

∣∣∣
∗
u(t)

˙̄x(t)− ẋ∗(t) = f (x̄(t), ū(t))− f (x∗(t), u∗(t))
(A.6)

Therefore, the linear variational differential equations become
{

ẋ(t) = AC (x∗(t), u∗(t)) x(t) + BC (x∗(t), u∗(t)) u(t)
y(t) = Cx(t)

(A.7)

108

where
AC (x∗(t), u∗(t)) =

∂f

∂x̄(t)

∣∣∣∣
∗

BC (x∗(t), u∗(t)) =
∂f

∂ū(t)

∣∣∣∣
∗

(A.8)

Now convert the liner time varying state space differential equation to a difference equation,
giving the solution to Equation A.7 at sample times t = kT where k is an integer and T ia
the sample time interval. The state transition matrixΦ (t, kT) is the square matrix solution
of

Φ̇ (t, kT) = AC (x∗(t), u∗(t))Φ (t, kT) (A.9)

on the interval kT −τ − (k+1)T starting from the initial conditionΦ (kT, kT) = 1. Then
the solution of Equation A.7 is given as

x(t) = Φ (t, kT) x(kT) +

∫ t

kT

Φ (t, τ)BC (x∗(τ), u∗(τ)) u(τ)dτ (A.10)

Setting t = (k+1)T and using the fact that the input is constant over a sample time interval
produces the desired time varying difference equation

⎧
⎪⎪⎨

⎪⎪⎩

xj(k + 1) = A(k)xj(k) + B(k)uj(k)
yj(k + 1) = C(k + 1)xj(k + 1) + v(k + 1)
A(k) = Φ ((k + 1)T, kT)

B(k) =
∫ (k+1)T

kT Φ ((k + 1)T, τ)BC (x∗(τ), u∗(τ)) dτ

(A.11)

Of course in the linearized time varying difference equationmodel, the resultant coefficients
are varying with time, for simplicity in this paper, we choose coefficients A(k), B(k) as
piecewise constants with reasonable sampling rate.

A Linearization Example
As an example of linearization, consider a first order nonlinear system in continuous time
domain

ẏ(t) + k1y
3(t) + k2y(t) = u(t) (A.12)

Suppose we know the command u∗(t) that produces the output y∗(t) and we wish to
linearize the equation about this input-output pair. Then the nonlinear term can be written
linearized for small deviations from y∗(t), as y3(t) = (y∗(t))3 + 3(y∗(t))2 (y(t)− y∗(t)).
The linearized equation becomes

ẏ(t) +
[
3k1(y

∗(t))2 + k2
]
y(t) = u(t)− k1(y

∗(t))3 + 3k1(y
∗(t))3 (A.13)

This is a linear differential equation with time varying coefficient, and it has a repeating
forcing term, and the function about which it was linearized. If the command input comes
in through a zero order hold, it would be held constant from one time step to the next,
and one could recomputed the linearized equation, and convert to a difference equation,
but with the repeating forcing term on the input to the equation rather than on the output.
This forcing function produces a particular solution to the linear equation which could be
computed as a convolution sum. One can then delete the forcing term to the difference

109

equation, and substitute the particular solution for the output disturbance v(k), to complete
getting the equation into the form used in Equation A.11. Or equivalently, we could write
y(t) = y∗(t) + ∆y(t) and u(t) = u∗(t) + ∆u(t) and convert the equations to use the
deviations ∆y(t), ∆u(t) as variables. In this case the linearized equation takes the form

∆ẏ(t) +
[
3k1(y

∗(t))2 + k2
]
∆y(t) = ∆u(t) (A.14)

This form has the same time varying coefficient on the left hand side, but the “disturbance”
forcing term is no longer present on the right. Then use the linearization method described
in the last section, and combine the results of Equation A.11 and Equation A.3 producing P
matrix. The purpose of this chapter is to investigate the property of this resultant P matrix
presenting the dynamics of time varying systems. Note that, the coefficients of the system
itself could be also time varying, here we consider the situation where the coefficients are
dependent at time since linearized system of the original nonlinear system, and the nominal
output trajectory is function of time. And it might cause some trouble for some systems for
some desired trajectory, like the eigenvalues ofA(k) are greater than one, which makes the
system P matrix unstbale.

A.3 Investigation of P Matrix of LTV Systems
In this section, the authors investigate the “distortion” to the properties of linear time
invariant P matrix listed above in the last section. Systems for which one might want to
apply ILC to obtain high precision tracking, can have time varying coefficients. Two cases
can apply. One is that the system model is simply time varying. A second situation applies
when one wants to use ILC designed for linear systems to apply to nonlinear system. One
can linearize the nonlinear model around the desired trajectory that is a function of time,
and this produces time varying coefficients. The purpose of the paper is to investigate the
second situation. The linear range around the desired trajectory can be large enough to
make this approach effective. If not, one may seek to repeatedly linearize about trajectories
during the iterations.

The Distortion of Input-Output Singular Vector Pairs

The expectation of the input-output singular vector pairs of the LTI P matrix, as discussed
in Chapter 3 and shown in Figure A.1 and Figure A.2. The author is in interested in
investigating the systematic pattern of distortion on these singular vector pairs due to the
variation on different part of desired y∗(t). Use the linearized time varying system modeled
as Equation A.14, and we choose a first set of different desired output trajectories y∗1(t),
y∗2(t), y∗3(t) as

y∗i (t) = e

(
(t−mi)

2

2σ2

)

(A.15)

where m1 = 0.3, m2 = 1.0, m3 = 1.7, and σ = 0.1. Basically, this set of the resired y∗(t)
is a Gaussian distribution function without the normalizing factor and with different means

110

0 40 80 120 160 200

Row index

-0.1

-0.05

0

0.05

0.1

M
a

g
n

it
u

d
e

1
st

2
nd

3
rd

Figure A.1: Magnitude of components of first three output singular vectors of LTI P matrix

0 40 80 120 160 200

Row index

-0.1

-0.05

0

0.05

0.1

M
a

g
n

it
u

d
e

1
st

2
nd

3
rd

Figure A.2: Magnitude of components of first three input singular vectors of LTI P matrix

111

0 0.5 1 1.5 2

Time(s)

0

1

2

3

M
a
g

n
it

u
d

e

Figure A.3: y∗1(t) = e

(
(t−m1)

2

2σ2

)

and the same standard deviation, which are depicted in Figure A.3, Figure A.4, Figure A.5.
We choose each desired y∗(t) as two seconds long with 100 sampling rate.

Observation 1: Figure A.6, Figure A.7, Figure A.8, Figure A.9, Figure A.10, Figure
A.11, Figure A.12, Figure A.13, Figure A.14 show the first set of the desired output
trajectories y∗1(t), y∗2(t), y∗3(t), and their corresponding linearized time varying system
coefficients, Ad(k) and Bd(k), since we want to investigate properties of P matrix, the
coefficients are in discrete time, althoughBd(k) here is not easily visible. And also present
the first three singular vectors U and V . It could be seen that for the desired output in the
same ”shape” with concentration on different parts of the trajectories, i.e. the ”bump” is at
the start, in the middle and in the end. . For some systems, might lead to the time variation
on the system coefficients on their corresponding part of the period. Compared to the first
three singular vectors of linear time invariant P matrix, we might also expect that there
should be some variation on the input-output singular vector pairs on their corresponding
part, respectively. And if the time variation is reasonably small, the rest time histories of the
singular vectors remain similar shape to the undistorted ones. At the same, the input-output
singular vector pairs no longer remain the reversed time order pattern.

Observation 2: Compared to the desired output y∗1(t), Figure A.15, Figure A.16,

Figure A.17 linearized about the desired trajectory y∗4(t) = sin(7πt)e

(
(t−m1)

2

2σ2

)

. The
authors want to mimic the wavelet basis functions with the mother basis with the Gaussian
distribution function coupling with some other sinusoidal functions representing different
localized frequencies. We have reasons to believe that after linearizing the desired output

112

0 0.5 1 1.5 2

Time(s)

0

1

2

3

M
a

g
n

it
u

d
e

Figure A.4: y∗2(t) = e

(
(t−m2)

2

2σ2

)

0 0.5 1 1.5 2

Time(s)

0

1

2

3

M
a

g
n

it
u

d
e

Figure A.5: y∗3(t) = e

(
(t−m3)

2

2σ2

)

113

0 50 100 150 200

Time step index

0

1

2

3

M
a

g
n

it
u

d
e

yd
Ad
Bd

Figure A.6: The desired output y∗1(t) and time varying coefficients

0 40 80 120 160 200

Row index

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

M
a

g
n

it
u

d
e

1
st

2
nd

3
rd

Figure A.7: The resulted first three input singular vectors linearized about y∗1(t)

114

0 40 80 120 160 200

Row index

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

M
a

g
n

it
u

d
e

1
st

2
nd

3
rd

Figure A.8: The resulted first three output singular vectors linearized about y∗1(t)

0 50 100 150 200

Time step index

0

1

2

3

M
a

g
n

it
u

d
e

yd
Ad
Bd

Figure A.9: The desired output y∗2(t) and time varying coefficients

115

0 40 80 120 160 200

Row index

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

M
a

g
n

it
u

d
e

1
st

2
nd

3
rd

Figure A.10: The resulted first three input singular vectors linearized about y∗2(t)

0 40 80 120 160 200

Row index

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

M
a

g
n

it
u

d
e

1
st

2
nd

3
rd

Figure A.11: The resulted first three output singular vectors linearized about y∗2(t)

116

0 50 100 150 200

Time step index

0

1

2

3

M
a

g
n

it
u

d
e

yd
Ad
Bd

Figure A.12: The desired output y∗3(t) and time varying coefficients

0 40 80 120 160 200

Row index

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

M
a

g
n

it
u

d
e

1
st

2
nd

3
rd

Figure A.13: The resulted first three input singular vectors linearized about y∗3(t)

117

0 40 80 120 160 200

Row index

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

M
a

g
n

it
u

d
e

1
st

2
nd

3
rd

Figure A.14: The resulted first three output singular vectors linearized about y∗3(t)

with different frequencies, leading to the system coefficients have components of different
frequencies. And for input-output singular vector pairs, we might expect more “wiggles”
in terms of distortion on the corresponding part of the time histories.

The Distortion of the Singular Value Decomposition for Linearly
Changing Desired Trajectories

Observation 3: Figure A.18, Figure A.19, Figure A.20 show the systematic results
of linearizing about the desired output Y ∗

5 (t) = 4t, a linearly time increasing trajectory. It
could be observed that when the system coefficients changemonotonically, the input-output
singular vectors, instead of well “distributed” along the whole time trajectories, they may
flat out to zero sooner. And it might be due to the fact of causality of P matrix, as discussed
earlier, for the case of a LTI P matrix, each column is the unit pulse response starting at
different time step.

The Distortion of the Singular Value Decomposition for Linearied
Systems with Periodic Coefficients
There exists a nice description of the finite time influence on frequency response behavior.
A very important property of the steady state frequency response of a linear time invariant
system is that a singular frequency input produces a single frequency in the output. Clearly
these are not pure sinusoids. In order to associating frequencies with the singular vectors,
one could take the discrete Fourier transform of the singular vectors in to determine what
frequency they correspond to, and alsowhat singular value is associatedwith that frequency.

118

0 50 100 150 200

Time step index

0

1

2

3

M
a

g
n

it
u

d
e

yd
Ad
Bd

Figure A.15: The desired output y∗4(t) and time varying coefficients

0 40 80 120 160 200

Row index

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

M
a

g
n

it
u

d
e

1
st

2
nd

3
rd

Figure A.16: The resulted first three input singular vectors linearized about y∗4(t)

119

0 40 80 120 160 200

Row index

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

M
a

g
n

it
u

d
e

1
st

2
nd

3
rd

Figure A.17: The resulted first three output singular vectors linearized about y∗4(t)

0 50 100 150 200

Time step index

0

2

4

6

8

M
a

g
n

it
u

d
e

yd
Ad
Bd

Figure A.18: The desired output y∗5(t) and time varying coefficients

120

0 40 80 120 160 200

Row index

-0.2

-0.1

0

0.1

0.2

M
a

g
n

it
u

d
e

1
st

5
th

30
th

Figure A.19: The resulted first three input singular vectors linearized about y∗5(t)

0 40 80 120 160 200

Row index

-0.3

-0.2

-0.1

0

0.1

0.2

M
a

g
n

it
u

d
e

1
st

5
th

30
th

Figure A.20: The resulted first three output singular vectors linearized about y∗5(t)

121

And take a closer look, if we take the DFT of the columns for the columns and use the largest
magnitude entry as the frequency, the mapping of columns to frequency number follows:
1, 2, 2, 3, 3, 4, 4, …. There are important situations in which periodic coefficient linear
systems arise discussed in Reference [76]. A large class of such systems result when one
wants to apply iterative learning control in nonlinear system. Linearizing about the desired
trajectory results in linear equations with periodic coefficients. One developed the inverse
of the steady state frequency response of the system and used it as a compensator to update
the command for a feedback control system. An important new aspect is that unlike constant
coefficient system where a single frequency input produces the same single frequency in
the output, the periodic coefficient problem can have multiple harmonic and subharmonics
in the output. For simplicity, if there is one frequency in the periodic coefficient, we could
see the effect is that it produces the sums and differences of every frequency in the input or
output respectively. If there are more than one frequency in the coefficient, we would have
more sums and differences. The authors try to relate this phenomenon to the distortion of
the singular vectors upon the time variation on the constant coefficients. For the purpose
of illustration, consider a first order nonlinear system

y′(t) + ay2(t) = bu(t) (A.16)

and then linearize about the desired trajectory to get linearized time varying system

∆y′(t) + 2ay∗∆y(t) = b∆u(t) (A.17)

To see the updated singular vectors, we first choose y∗8(t) = 20 ∗ [−1 + 0.5 ∗ sin(4πt)]
with one single relatively low frequency components, and then y∗9(t) = 20 ∗ [−1.1 + 0.5 ∗
sin(16πt)] containing higher frequency component. And then take DFT of the columns of
singular vector matrices.

Observation 4: The left part of Figure A.21 shows the desired trajectory y∗8(t) with
single low frequency component and periodic coefficients of the linearized system. The
solid line in the Figure A.22 is DFT of the 10th singular vector of U of the original system
with constant coefficients. From previous experience, it is reasonable since we use the
largest magnitude entry as the frequency, and the number of column 10 maps to 6 Hz. It is
interesting to see that, the 10th singular vector of the time varying system has the largest
magnitude at 6 Hz as well, however, it also contains relatively big magnitude at both 4 Hz
and 8 Hz, as the sum and difference of the original frequency 6 Hz and the 2 Hz frequency
component contained in the periodic coefficients introduced during the linearization about
the desired output which contains one single frequency. Figure A.23 and Figure A.24 show
the similar phenomenon except that we choose y∗9(t) to linearize about which contains one
single higher frequency 8Hz. In DFT of the 30th singular vector ofU of the linearize system
with periodic coefficients, we observe that besides the largest magnitude entry representing
the dominant centered frequency 16 Hz, also two spikes at 8 Hz and 24 Hz, again the sum
and difference of original 16 Hz and 8 Hz component contained in the periodic coefficients.
Note that similar behavior could be seen in the singular vectors ofV . Nowwhat if we choose
y10∗(t) = y∗8(t) + y∗9(t), the combination of previous two trajectories to linearize about,

122

0 20 40 60 80 100

Time step index

-30

-25

-20

-15

-10

-5

0

5

M
a

g
n

it
u

d
e

yd
Ad
Bd

Figure A.21: The desired output y∗8(t) and time varying coefficients

since now it contains more than one single frequency. Again, shown in Figure A.25 and
Figure A.26, the largest magnitude entry is at 16 Hz, and the secondary largest magnitude
entries are at 14 Hz and 18 Hz, corresponding to the components of coefficients regarding
to y∗8(t) whose magnitude is greater than y∗9(t), and then two relatively large entries at 8 Hz
and 24 Hz, corresponding to y9 ∗ (t). It is interesting to note there are also some other spike
in between the sums and differences.

Investigation of the Stable Inverse Methods for the Modified SVD
The basic laws of contractionmapping, partial isometry, and quadratic cost learning updates
can in theory be used directly with time varying systems, but no one has investigated on
the issue of what happens to the troublesome singular values associated with zeros of linear
transfer functions outside the unit circle for constant coefficient systems are transformed by
time variation. The purpose of this section seeks to know if the anomalous singular values
defined above still exist, if so, do the methods summarized in Chapter 4 still address the
issus of instability of the inverse. With the method discussed in the last section, we consider
the 3rd order nonlinear system y′′′(t) + (2ξ1ω1 + a) y′′(t) + (ω2

1 + 2ξ1ω1a) y′(t) + y2(t) +
aω2

1y(t) = aω2
1u(t) with the nonlinear term y2(t), and linearize about some desired output

trajectory, giving the linearized time varying system model

∆y′′′(t)+(2ξ1ω1 + a)∆y′′(t)+
(
ω2
1 + 2ξ1ω1a

)
∆y′(t)+

(
2y∗(t) + aω2

1

)
∆y(t) = aω2

1∆u(t)
(A.18)

where a = 8.8, ξ1 = 0.5, ω1 = 37. Numerical experience shows that when one linearizes
about some desired output trajectory, could result in unstable linear time varying system, i.e.
the eigenvalues of Ad(k) could be outside the unit circle. We choose y∗6(t) = 0.1y∗1(t) and
y∗7(t) = 0.1y∗5(t) to linearize about. Figure A.27 and Figure A.28 show the 1st, 20th and 60th

123

0 5 10 15 20 25 30 35 40 45 50

Frequency index

0

1

2

3

4

5

6

7

M
a
g

n
it

u
d

e

constant coeff
periodic coeff

Figure A.22: DFT of th 10th input singular vector of the constant coefficients system
compared to the linearized system with periodic coefficients

0 20 40 60 80 100

Time step index

-50

-40

-30

-20

-10

0

10

M
a

g
n

it
u

d
e

yd
Ad
Bd

Figure A.23: The desired output y∗9(t) and time varying coefficients

124

0 5 10 15 20 25 30 35 40 45 50

Frequency index

0

1

2

3

4

5

6

7

M
a
g

n
it

u
d

e

constant coeff
periodic coeff

Figure A.24: DFT of th 30th input singular vector of the constant coefficients system
compared to the linearized system with periodic coefficients

0 10 20 30 40 50 60 70 80 90 100

Time step index

-80

-70

-60

-50

-40

-30

-20

-10

0

10

M
a
g

n
it

u
d

e

yd
Ad
Bd

Figure A.25: The desired output y10∗(t) and time varying coefficients

125

0 5 10 15 20 25 30 35 40 45 50

Frequency index

0

1

2

3

4

5

6

7

M
a
g

n
it

u
d

e

constant coeff
periodic coeff

Figure A.26: DFT of th 30th input singular vector of the constant coefficients system
compared to the linearized system with periodic coefficients

column of P matrix constructed by the corresponding time dependent matrix coefficients
Ad(k), Bd(k) and Cd(k) in discrete time space. From the plot it is easily seen that P matrix
is no longer in the Toeplitz matrix.

Observation 5: Figure A.29 and Figure A.30 show that, similar to the linear time
invariant P matrix, when the system coefficients are affected by reasonable amount of time
variation, we might still encounter the troublesome of the existence of the troublesome
anomalous singular value preventing producing a stable inverse of the system and the pair
of singular vectors associated with the anomalous singular value, with one exponentially
growing and the other one exponentially decaying. It also shows that with the stable inverse
methods developed by the authors and workers, by deleting the first row of time dependent
P matrix (bottom left), or allow the use of two zero order hold values between each time
step for which one asks for zero tracking error, i.e. the number of rows deleted to the number
of anomalous singular value, they somehow still work eliminating the anomalous singular
value. The updated singular values are marked with asterisks in Figure A.31 and Figure
A.32.

126

0 25 50 75 100

Row index

-0.015

0

0.015

M
a

g
n

it
u

d
e

1
st

20
th

60
th

Figure A.27: 1st, 20th and 60th column of time varying P matrix linearized about y∗6(t)

0 25 50 75 100

Row index

-0.1

-0.05

0

0.05

0.1

0.15

M
a

g
n

it
u

d
e

1
st

20
th

60
th

Figure A.28: 1st, 20th and 60th column of time varying P matrix linearized about y∗7(t)

127

0 20 40 60 80 100

Row index

10-20

10-15

10-10

10-5

100

M
a

g
n

it
u

d
e

output singular vector
input singular vector

Figure A.29: Input-out singular vector pair associated with σmin of P6

0 20 40 60 80 100

Row index

10-20

10-15

10-10

10-5

100

M
a

g
n

it
u

d
e

output singular vector
input singular vector

Figure A.30: Input-out singular vector pair associated with σmin of P7

128

0 25 50 75 100

Singular value index

10-20

10-15

10-10

10-5

100

M
a

g
n

it
u

d
e

Figure A.31: The updated singular values of P6d

0 25 50 75 100

Singular value index

10-15

10-10

10-5

100

105

M
a

g
n

it
u

d
e

Figure A.32: The updated singular values of P7d

129

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	The Zeros of Discretized Systems
	Introduction
	Types of Zeros
	Instability of Inverse Problems due to NMP Zeros

	Stable Inverse Theorem
	Introduction
	Stable Inverse Theorem Scheme

	New Results for Stable Inverses of Discrete Time Systems
	Introduction
	The System and Its True Inverse
	New Stable Inverses
	Apply Stable Inverse Theorem in a Linear Discrete Time System
	Conclusions

	Iterative Learning Control for Linear Discrete Time Non-Minimum Phase Systems
	Introduction
	Iterative Learning Control Laws
	A New Stable Inverse Based Iterative Learning Control
	Analytical and Numerical Results
	Stable Inverse Theorem Based Iterative Learning Control
	Conclusions

	Conclusion
	References
	Numerical Results on ILC of Time Varying Systems
	Introduction
	On ILC of Linear Time Varying Systems
	Investigation of P Matrix of LTV Systems

