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ABSTRACT

Modern Statistical/Machine Learning Techniques for Bio/Neuro-imaging applications

Ruoxi Sun

Developments in modern bio-imaging techniques have allowed the routine collection
of a vast amount of data from various techniques. The challenges lie in how to build
accurate and efficient models to draw conclusions from the data and facilitate scientific
discoveries. Fortunately, recent advances in statistics, machine learning, and deep learn-
ing provide valuable tools. This thesis describes some of our efforts to build scalable
Bayesian models for four bio-imaging applications: (1) Stochastic Optical Reconstruc-
tion Microscopy (STORM) Imaging, (2) particle tracking, (3) voltage smoothing, (4) detect

color-labeled neurons in ¢ elegans and assign identity to the detections.
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Introduction

Modern advances in bio-imaging and neuro-imaging techniques have opened tremendous
opportunities to investigate scientific problems inaccessible before. The insights provided
by the novel techniques have advanced scientific domains. The novel technologies im-
prove upon existing ones in different perspectives. Some can provide higher resolution,
such as super-resolution imaging; some offer more insightful representation of recording,
such as voltage imaging of neurons, as oppose to traditional calcium imaging; others can
be unprecedented technologies, such as NeuroPAL, which designs multicolor C. elegans
strain that can be used to resolve unique neural identities in whole-brain images.

Despite that the novel technologies are exciting, statistical approaches are in great
need to transform the rich imaging information into accessible and interpretive knowl-
edge. The computational imaging community has adopted techniques from mathematics,
statistics, machine learning, and deep learning to introduce novel methodologies target-
ing the improvement of our understanding of various new data.

This thesis describes statistical approaches for four novel biological or neural tech-
nologies and demonstrates their performances. Concretely, we propose scalable Bayesian
approaches to either capture the relevant structure of the data (e.g. data generation pro-

cess) or model the uncertainty. Our promising results demonstrate the potential of our



methods to advance bio/neuro-imaging analysis to go beyond the limit of its experimental

capacity. We arrange the thesis as follows:

1. Super resolution imaging, (Chapter 2)
Resolution of light microscope suffers from light diffraction— a single point on spec-
imen leads to a blurry projection on the microscope. Super-resolution data, Stochas-
tic Optical Reconstruction Microscopy (STORM), obtains high resolution by collect-
ing hundreds or thousands of random subsets of the specimen image (stochastically
activation of a random subset of fluorophores that are used to label the specimen).
Traditionally, STORM analysis is performed by independently sparse deconvolu-
tion on each of the individual images to resolve the centers of blurry projections,
and adding estimates of all frames. However, this approach is sub-optimal, as the
sparse activations are not independent, and they share information. They are sam-
ples drawn from the same distribution - original specimen image. Therefore, a
natural way to take advantage of shared information and the relevant structure of
the data is a Bayesian framework. The objective function of the Bayesian frame-
work mimics the data generation, which is from stochastic activation of subsets of
fluorophores to noisy emissions. Then we use variational inference to resolve the
center of fluorophores as well as the model parameters.

2. Particle tracking data (Chapter 3)
Tracking objects is a classic problem with broad applications in science, machine
learning, and computer vision. For example, in science, we track neurons, virus, or

nano-particles on a microscope; in non-science, we track traffic or people. In our ap-



plication, particles are doing Brownian motion, and frequently running into each
other (collisions). Particles appear and disappear at random time. Most existing
methods are deterministic, which output a single best estimate, e.g., maximum like-
lihood estimator (MLE), of the true tracks. However, due to the limited resolution
of the microscope, particles are indistinguishable in shape, leading to impossible to
deterministically assign identities of particles after collisions (particles running into
each other). For example, two particles move towards each other and then move
apart. After collisions, we can have 50% chance to have two particles cross over
and 50% chance to bounce back. Therefore, we propose a probabilistic approach,
which infers the Bayesian posterior distribution of estimates of tracks given noisy
observations using an iterative neural networks sampling approach. Drawing sam-
ples from the inferred posterior distribution, we are able to provide multiple valid
solutions given the observed data.

. Voltage smoothing data (Chapter 4)

The subthreshold neuronal activity provides a rich representation of the properties
of a single cell’s physiology. The access to sub-threshold activity reveals the intrin-
sic biophysical properties, such as membrane and ion channel parameters; circuit-
level properties (e.g. synaptic connectivity), and neural coding (e.g. receptive fields).
Recent advances in optical voltage sensors have brought us closer to a critical goal
in cellular neuroscience: imaging the full spatiotemporal voltage on a dendritic tree.
However, current sensors and imaging approaches still face significant limitations
in SNR and sampling frequency; therefore, statistical denoising methods remain

critical for understanding single-trial spatiotemporal dendritic voltage dynamics.



Previous denoising approaches were either based on an inadequate linear voltage
model or scaled poorly to large trees. Here we introduce a scalable fully Bayesian
approach. We develop a generative nonlinear model that requires few parameters
per dendritic compartment but is nonetheless flexible enough to sample realistic
spatiotemporal data. The model captures potentially different dynamics in each
compartment and leverages biophysical knowledge to constrain intra- and inter-
compartmental dynamics. We obtain a full posterior distribution over spatiotempo-
ral voltage via an efficient augmented block-Gibbs sampling algorithm. The nonlin-
ear smoother model outperforms previously developed linear methods, and scales
to much larger systems than previous methods based on sequential Monte Carlo
approaches.

. NeuroPAL data (Chapter 5)

The major challenge in exploring neural circuitry is to identify neuronal patterns
of activity, gene expression, and mutant effects. Our collaborators, Eviatar Yemini
and Hobert Oliver developed a multicolor C. elegans strain, called the NeuroPAL (a
Neuronal Polychromatic Atlas of Landmarks), to resolve unique neural identities in
whole-brain images. An identical color map is shared among all NeuroPAL worms,
permitting a complete, unambiguous determination of individual neuron names.
NeuroPAL worms were applied to functional connectomics (gustatory/olfactory
neurons) and molecular connectomics (metabotropic neurons). Here, we proposed

a software for fully-automated neural identification for NeuroPAL.



Chapter 1

Super Resolution Microscope

Super-resolution microscopy methods have become essential tools in biology, opening
up a variety of new questions that were previously inaccessible with standard light mi-
croscopy methods. In this paper we develop new Bayesian image processing methods
that extend the reach of super-resolution microscopy even further. Our method couples
variational inference techniques with a data summarization based on Laplace approxima-
tion to ensure computational scalability. Our formulation makes it straightforward to
incorporate prior information about the underlying sample to further improve accuracy.
The proposed method obtains dramatic resolution improvements over previous methods
while retaining computational tractability.

This is a joint work with Evan Archer, Liam Paninski. This work was built on
Evan Archer’s previous work. This work was published: Ruoxi Sun, Evan Archer, Liam
Paninski. Scalable variational inference for super resolution microscopy, International
Conference on Artificial Intelligence and Statistics (AISTATS) 2017. http://biorxiv.
org/content/early/2016/11/19/081703. Code is available: https://github.com/

SunRuoxi/vEM
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1.1 Introduction

Super-resolution microscopy techniques, such as STORM (Rust, Bates, and Zhuang 2006),
PALM (Betzig et al. 2006), or fPALM (Hess, Girirajan, and Mason 2006) imaging have
quickly become essential tools in biology. These methods overcome the light diffrac-
tion barrier of traditional microscopy, thus enabling researchers to ask questions previ-
ously considered inaccessible (as a measure of impact, developers of these methods were
awarded the Nobel prize in Chemistry in 2014). Given a sample treated with a fluorescent
dye, the basic strategy is to stochastically activate fluorophores at a low rate, guaranteeing
that only a sparse subset are activated at a given time. By repeatedly imaging the sam-
ple we obtain a movie wherein each frame reflects a random, sparse set of fluorophore
activations. Then we exploit the sparsity of activations within each frame to localize the
positions of the activated fluorophores; aggregating a long sequence of such point local-
izations then yields a super-resolved image (Fig. [L.1)).

Many methods have been proposed to expand upon this basic idea, focusing upon
improving localization performance within each individual frame (Sage et al. 2015). For
sparse recovery of a single frame, several modern techniques take a compressed sensing
approach that exploits the true sparsity of the underlying fluorophore activations; these
techniques result in a formulation as a sparse deconvolution problem (Min et al. 2014; Zhu
et al. 2012), providing scalable, fairly accurate reconstructions.

The critical message of this paper is that such standard approaches are sub-optimal
because each frame is reconstructed independently, thereby discarding information that

should be shared across frames. Intuitively, given N — 1 reconstructed frames, we should



have a good deal of prior information about the locations of fluorophores on the N-th
frame, and ignoring this information will in general lead to highly suboptimal estimates.
(This basic point has been made previously, e.g. by (Cox et al. 2014; Mukamel, Babcock,
and Zhuang 2012); we will discuss this work further below.)

Here, we propose a scalable Bayesian approach that properly pools information across
frames and can also incorporate prior information about the image, leading to dramatic

resolution improvements over previous methods while retaining computational tractabil-

ity.

1.2 Model

True

X FALCON
- Trueall

True

True X FALCON
- Trueall - Trueall

Figure 1.1: Overview of standard super-resolution microscopy. Column 1: The true flu-
orophore density matrix ®. Column 2: /; indicates the sparse subset of fluorophores
(yellow circles) activated on frame ¢ from ®, which is also plotted as background (black
dots); two independent sample frames shown here (top and bottom). Column 3: Y; are
the observed camera images on these two frames, formed by blurring and downsampling
the corresponding /; and adding Poisson noise. Column 4: I; indicate the estimated lo-
cations of the active fluorophores on each frame, with the true /; shown for comparison.
The FALCON method (Min et al. 2014) was used to compute the estimates here; note that
estimator performance decreases in regions where the “bumps” in Y; overlap significantly.
Column 5: The standard approach to estimate p® is to simply average over multiple in-
ferred frames, I = % Ziv I,.



At each frame ¢ we observe an L x L fluorescence image Y; € RiXL , and collect the
sequences of N observed frames into the movie Y = {Y;: ¢ € {1,..., N}}. We model

each observed frame Y; as a noisy, blurred, low-resolution image,

Y; ~ Poisson(Al); (1.1)

here A is a matrix implementing convolution with a known point-spread function (PSF),
scaling by the mean photon emission rate per fluorophore, and spatial downsampling;
the high-resolution image I; € RY*? is a sparse matrix, zero except at the locations of
fluorophores activated on frame 7. In this application L < D. Below we will use the
sparse representation (m;, F;) for I;: m; denotes the number of active fluorophores in /;
and F; € R?™ denotes the vector of zy positions of these fluorophores. Note that multi-
ple fluorophores can be active at the same location, so the entries of /; are nonnegative
integers; it is straightforward to extend our methods to the case that /; can take arbitrary
nonnegative real values, but we will suppress this case here for notational simplicity.

At each high-resolution pixel position (z, y), we model the activation of fluorophores

by an inhomogeneous Poisson process with rate A,

I; 4y ~ Poisson(A,y), (1.2)

)\xy = pq)xya (1'3)

and p is a scalar (typically under at least partial experimental control) that sets the flu-

orophore emission rate. The matrix ¢ € ]Rf *D specifies the density of fluorophores at



each pixel location, and is the main object we aim to estimate; since A and ® are related
by a constant (p), we will develop the inference methods below in terms of )\, as this leads
to slightly simpler algebra.

This model can be extended to 3D (Babcock, Sigal, and Zhuang 2012; Huang et al. 2008)
and/or multispectral imaging (Bates et al. 2012), but for simplicity here we focus on 2D
single-color imaging.

The above definitions lead to the joint probability distribution

N
P, Fon, ) o TL{ POAEL ) P ) PO (19

where m and F' collect the N scalars m; and vectors F}, respectively; P(\) is a prior

distribution on A;

L L Yiay

_ . A-[z T
P(Y;|Fromy) = Pv|E) = [ [T et A0 (15
1,2y "

r=1y=1

where we have used the equivalence between I; and (m;, F;), and

P(F;,m;|\) = P(F;|\,m;)P(m;|\) (1.6)

zl’j{A

FJ
n

} Poisson(m;|n), (1.7)

where F/ denotes the zy position of the j-th active fluorophore in frame 7, i is the

value of the 2D function A at location Fij , and we have abbreviated the normalizer n =

D D
Zx:l Zy:l Azy-



1.3 Inference

Now that the model and likelihoods have been defined, we can proceed to develop our
estimator for the underlying fluorophore density image A\. We take a Bayesian approach,
which requires that we approximate the posterior distributions of the unknown quantities
(m;, F;) given the observed data Y;. (Approximation methods are required here since
this is a non-conjugate latent variable model; we cannot analytically integrate out the I;
variables.) A number of such approximation methods are available; for example, (Picardo
et al. 2016) recently developed MCMC methods to perform Bayesian inference in a similar
model. However, these methods do not scale to the cases of interest here, where the
number of frames N and pixels (D? and L?) are often quite large.

Therefore we have developed a variational expectation-maximization (VEM) (Blei, Ku-
cukelbir, and McAuliffe 2016) approximate inference approach. As is standard, we need
to choose a variational family of distributions ¢ (these distributions will be used to ap-
proximate the true posterior), then write down the “evidence lower bound” (ELBO; this
is a function of ¢ and other model parameters), and then develop methods for tractably
ascending the ELBO.

The most standard choice of ¢ here (a fully factorized distribution over all latent vari-
ables, i.e., the activations I; together with )\) does not lead to a scalable inference method,
due to the very high dimensionality of {/;}; in addition, this vanilla variational approx-
imation is poor here because of strong posterior correlations between adjacent pixels in
the I; images. Instead, we exploit the sparse representation (m;, F;) for I;: a more effec-

tive approach for approximating p(F, m|Y, \) was to use a simple point estimate for m
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(discussed below) and then, conditionally on m, a factorized (“mean-field”) approximation

for p(F|m, Y, A). Thus we approximate

N m;

P(F|\,Y,m) = ¢(F) = HH%(Fg). (1.8)

We have factorized across frames ¢ and active fluorophores j within each frame; here each
qij € ]Rf *D is a probability density on the D x D grid that summarizes our approximate
posterior beliefs about the fluorophore location Fij . In practice each g;; will be extremely
sparse, with very compact support, as we will discuss further below (Fig [L.2E).

The ELBO is given by:

(£,A,Y|m)

LN, q(F)) :/q(F)lnP () dr (1.9)

Our goal is to maximize £(\, ¢(F")) with respect to the distributions ¢;; and image .
We will use a coordinate-ascent approach in which we update one ¢;; or \ at a time; as

discussed below, after one more approximation each update step can be computed cheaply

(and parallelizes easily), and empirically only a few coordinate sweeps are necessary for

convergence to a local optimum.

Laplace Approximation

Computing each ¢;; update directly requires the computation of an L x L sum over the
observed data image Y; and several D x D sums over the other factors ¢;;,, and since we

have to compute these updates repeatedly, it is important to reduce the computation time
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A E

Observation, frame: 1987 Initial g

Initial g, Fluo: 3 Final q, Fluo:3

Initial g, Fluo: 4 Final q, Fluo:4

C Zoomed in: Initial q Final q, Fluo:5

A
Initial g, Fluo: 6 Final q, Fluo:6

3|

O True O True
- True all - True all

Figure 1.2: Updating the factors ¢;; in the E step. (A) A single simulated observation
frame Y;. (B) 8 superimposed initial ¢;; distributions for frame 7, computed via Laplace
approximations with means Flj . True active fluorophores in I; are labeled as red circles;
true A indicated by black dots; numbers indicate each Fl-j (ordering is arbitrary). Fluo-
rophores 1,2,7, and 8 are relatively spatially isolated, with correspondingly large Fisher
information (see supplementary Fig. [1.§) and so their initial ¢ distributions are highly
concentrated (and cannot even be seen beneath the red circles). In contrast, the closely
overlapping PSF’s of fluorophores 3,4,5, and 6 lead to broad initializations of ¢. (C) Zoom
of yellow region outlined in B. (D) Final ¢;;’s estimated by the vEM algorithm (same re-
gion as in panel B). Note that these have converged onto the region of positive A (despite
not having access to the ground truth \), and the four original estimated fluorophore dis-
tributions have essentially converged near the 3 true active fluorophores in this region.
(E) Further zoom showing details of each ¢;; in D. The locations of other ﬁ’ij ’s are indi-
cated by white numbers. Left column: initial g;;’s; right column: final ¢;;’s. Again, the
numbers indicate the FY locations, which correspond to the peaks of the initial g;;’s. Note
the significant differences between the initial and final ¢;;’s.

in this inner loop. We have found that we can effectively summarize the data in each

frame by using a conditional Laplace approximation to the likelihood. Specifically, we
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approximate
P(Yi|F;,m;) o N (F| F, ), (1.10)

where the left hand side is the Poisson likelihood from eq. .5 and the right hand side

denotes a multivariate normal density over F; € R*™i, with mean

~

I = arnggxP(Y;]Fi,mi) (1.11)

and covariance inverse to the Fisher information .J;,

~

¥ = [J]7 = [=VEIP(Y|Fme)]| (1.12)

F,=F;"

This Gaussian approximation to the Poisson likelihood is well-known to be accurate in
the high-information regime where a sufficient number of photons are observed; see
(Mukamel and Schnitzer 2012) for further discussion, and supplementary Fig. [1.§ for em-
pirical evaluations of this approximation in the context of our simulations. (However,
note that this Laplace approximation is not equivalent to assuming a Gaussian noise model
with constant variance for Y;; the Poisson noise model used here is significantly more ac-
curate and consistent with the physics of shot noise.)

As we will see in the next subsection, this approximation allows us to replace the ex-
pensive sums noted above with evaluations of a much simpler 2m;-dimensional quadratic
form. F; and 3; serve as approximate sufficient statistics for Y;, drastically reducing the

size of the data that needs to be touched per iteration. In fact, the observed Fisher infor-
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mation matrix J; is sparse - if fluorophores j and j’ are sufficiently distant (more than
a couple PSF widths apart) then J; (; ;) = 0, and this can be used to further speed up
the computation. In practice, we compute J; via automatic differentiation ((Algorithm:
ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in
MATLAB Using Source Transformation via Operator Overloading”) and locally optimize
eq. numerically using an efficient initializer discussed further below.

The Laplace approximation also provides a convenient initialization for the g;;’s: we
simply set each g;; to be the marginal (Gaussian) density of Fij in eq. [.10, with qij set to

zero for all pixels sufficiently distant from F.

Variational EM Algorithm

Now we can put the pieces together and derive our vEM algorithm. The first step is to
expand the ELBO eq.[L.9, plugging in our factorized ¢, the Laplace approximation eq.[L.10,

and the likelihood eq/[L.7 to arrive at

N
In P(F\Y|m)~ ) {m N (F|F;, %)
—HnH

J

+1In P(X\) + const. (1.13)

Api
~ + In Poisson(m;|n)
n

The vEM algorithm alternates between an E step (in which we optimize the ELBO wrt

each ¢;;, with A and all the other ¢’s held fixed), and an M step (in which we optimize the
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ELBO wrt A with all the ¢’s held fixed).

M step:

~

A= arg max L\, q(F)) (1.14)
= arg max E,[In P(F, N\, Y |m)] (1.15)
N
—argm/.\axzzlqij@ln)\—Nn—l—lnp()\), (1.16)
i j=

with ® denoting pointwise multiplication. If we use a flat prior for A, the p(\) term can be
dropped, and if we abbreviate Q = >~ Z;r“ ¢i;> we have the solution A = Q/N. (Recall
that \, )\, and Q € Rf *D ) This is a natural generalization of the MLE for a discretized
inhomogeneous Poisson process.

E step:

~

¢;; = argmax L(\, q) (1.17)

qij

X exp {EQ\ij [In P(F, A, Y|m)] } (1.18)
Ny A A
X exp {]EQ\ij {Z —§(Fn — F)Y I (F, - F,)

N mpn
+ZZlnﬁFﬁ]} (1.19)

= (F = ENT I (e — E’“)}; (1.20)

here we have abbreviated ¢\;; = ¢/¢s, J?* is the 2 x 2 block of J corresponding to

7
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fluorophores j and k, and y;; = E,,, F*. Note that in the end, due to the Laplace approx-
imation, the g;;;’s only enter the update above via their means, and that the updated g;; is
simply proportional to a Gaussian factor multiplied by .

Finally, note that the effective support of each ¢;; tends to shrink compared to the
initialization (and this increasing sparsity can be readily exploited computationally); this
makes sense, because our initialization (from the Laplace approximation) is based only
on the likelihood of a single frame Y; — when we incorporate the information from other
frames (via \) the approximate posterior ¢;; tends to become more concentrated. See

Fig. [1.9 for an illustration.

Extensions and further details

In the developments above we have deferred several questions. How do we estimate m;,
the number of active fluorophores in each frame? How do we initialize the optimization
problem eqfl.11 in the Laplace approximation for the likelihood? How do we make use
of prior information P(\) in the M-step?

For the first two tasks mentioned above we exploit pre-existing solutions. Specifically,
we have found that the FALCON (Min et al. 2014) method provides fairly good preliminary
estimates of both the number and the location of fluorophores in each frame 7; the former
is used as m; and the latter are used to initialize the optimization in eq. [L.11.

One of the major benefits of a Bayesian approach is that we can easily incorporate
prior information about parameters of interest - in this case, A. In principle it is possible
to incorporate various sources of prior information about A, but here we restrict our at-

tention to the simplest case: in many cases the true underlying A is known to be sparse,

16



and we can exploit this fact to improve our estimates significantly. (Note that this spar-
sity constraint on A is in addition to the fact that the images [; are sparse, a fact that we
have already exploited repeatedly. Also note that standard super-resolution approaches
exploit the sparsity of each I; — but since they simply average over the estimated I; to
obtain \, previous approaches have not attempted to further exploit the sparsity of A\.) An
effective and computationally trivial approach is to apply the standard L1 “soft threshold”

operator (Bach et al. 2011) to @ in the M-step (eq.f1.16):

N my;

A= QN = 5. 30 0B (121)

where we define S.[x] = max(z — ¢,0); the threshold ¢ can easily be chosen to achieve
an a desired level of sparsity (typically set by prior knowledge, though cross-validation
could be used here instead).

When active fluorophores are well-isolated in the image (i.e., the “bumps” correspond-
ing to each active fluorophore are sufficiently distinguishable) then FALCON’s estimates
are typically accurate, and the corresponding entries of the Fisher information matrix .J;
are large. However, when the bumps overlap then the Fisher information can decrease
significantly (see supplementary Fig. [1.§ for an illustration) and the accuracy of m, and
the nearby fluorophore estimates 7 decrease. In this case we can achieve significantly
improved accuracy by exploiting information from other frames, via the estimated .

Thus the full algorithm proceeds as follows. To initialize we run FALCON on each
frame and compute the Laplace approximation, then run vEM (restricting attention to the

~ 50% of frames on which fluorophore activation was sparsest, to improve localization
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FALCON

Figure 1.3: Illustrating the algorithm steps on a simulated example. Upper left: FALCON
estimate given 5000 frames of data. Upper right: output after first run of vEM, based on the
2000 sparsest frames. This estimate is used to constrain FALCON to obtain a more accurate
preliminary estimate F" and sh, with all 5000 frames (lower left), and our final estimate
using all 5000 frames after a second vEM run is shown in the lower right. The grid shape
of the true underlying simulated image (red dots) is recovered essentially perfectly in the
lower right; estimation noise (averaged over frames) blurs the true grid shape significantly
in the left panels.

accuracy). Then we rerun FALCON incorporating information from the preliminary A
estimate to improve the estimates F* and 7h. FALCON uses an L1-penalized regression
approach to obtain preliminary estimates of /; from Y;; it is straightforward to include a
weighted L1 term where the weight is inversely proportional to A to encourage the FAL-
CON output to localize near regions of high A (and to eliminate some spurious location
estimates). Then we can use the resulting updated A-constrained FALCON estimates of
the fluorophore locations to re-initialize eq. on the subset of frames where the prelim-
inary FALCON and vEM results disagree (updating these m; as well), and proceed with
further vEM iterations. This procedure can in principle be iterated, though we find in
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Figure 1.4: Evaluating performance of each algorithm step. (A) Estimates of active flu-
orophore locations in a single frame. Dotted black line indicates location of remaining
(inactive) fluorophores. Note that vVEM-2 estimates are more accurate than FALCON es-
timates. Algorithm steps and all simulation details follow Fig. [L.3, except in the VEM-1
step we compute results over all 5000 frames (not just 2000 frames, as in Fig. [.3 upper
right), for apples-to-apples comparison against the VEM-2 results here. Inset: observed
data Y; for this frame. (B) The percentage of ) contained within the true support after
each algorithm step. Note that vEM leads to significant improvements over FALCON;
applying soft-thresholding in the M-step also provides significant improvements. (C) Re-
call, Precision and F-measure of identified fluorophores (solid: soft-thresholded; dashed:
no soft-thresholding), and (D) mean absolute error of fluorophore location estimates. In
both cases, similar trends as in (B) are visible.

practice that one outer iteration typically suffices. In the inner loop, we found that just
5 vEM iterations were sufficient. See Fig. [.3 for an illustration of each algorithm step’s

output.
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1.4 Results

Figures [.3-.4 detail simulated comparisons between FALCON, a state-of-the-art super-
resolution algorithm (Min et al. 2014), and the vEM algorithm developed here. The simu-
lated image was a simple grid pattern; full simulation details are given in the Appendix. In
Fig. [1.3it is clear that the variational EM algorithm recovers the true grid support in this
simulated example more accurately than does the FALCON algorithm. Fig. [1.4 quantifies
the performance of the new proposed algorithm following each step illustrated in Fig. [L.3.
Specifically, we examine the proportion of fluorophores whose estimated positions were
recovered on the correct support of the true underlying grid image (panel B); the frame-
by-frame precision and recall (and F measure, defined as the harmonic mean of precision
and recall) of individual fluorophore estimates (panel C); and the frame-by-frame absolute
error of individual fluorophore estimates (panel D). In each panel, we see that vEM leads
to significant improvements over FALCON; applying soft-thresholding in the M-step also
leads to significant improvements.

Figure [1.5 quantifies these results further, and adds comparisons to other competitive
algorithms in the literature. Again the conclusion is that the vEM approach provides
significantly more accurate estimates at little computational cost. Supplementary Figures
and in the appendix show that this conclusion holds fairly uniformly over a wide
range of PSF widths and average fluorophore densities, respectively.

Figure [1.d provides a visual summary of one of the critical points of this paper: as
the number of observed frames NV increases, the vEM estimator continues to improve,

and by N = 5000 is able to recover the true support of the underlying grid image with
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Figure 1.5: Evaluation of VEM in comparison with FALCON Min et al. 2014, decon-
STORM Mukamel, Babcock, and Zhuang 2012, and SPIDER Hugelier et al. 2016 as a
function of the number of observed frames N. A-C: F-measure, mean absolute fluo-
rophore estimation error, and fraction of fluorophore mass recovered correctly on the true
underlying grid computed as in Fig. l.4. The vEM approach outperforms the other state-
of-the-art algorithms on all of these metrics. D: Computational time of each algorithm
step. Our full algorithm runs FALCON (red curve), computes the Laplace approximation
(black curve), then iterates vEM to convergence (blue curve), then repeats the whole pro-
cess on at least a subset of frames, so overall speed is ~ 2x slower than FALCON overall.
The deconSTORM algorithm is relatively much slower here.

almost perfect accuracy. FALCON, on the other hand (as well as other approaches that
estimate each frame independently), outputs estimates that appear blurry, due to noise
in the estimated fluorophore locations, averaged over many frames — and this effective
blur (and resulting loss of resolution) does not decrease asymptotically as /V increases,
since unlike vEM, FALCON does not exploit information from the (N — 1) other frames
to improve estimation of individual frames.

Finally, Figure [1.7 shows a comparison of FALCON vs vEM applied to real data (see
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Appendix for full details). In this case the ground truth image is not available for compari-
son, but nonetheless the results are consistent with the simulated results described above:

vEM leads to a sharper, better-resolved image than does FALCON.

FAL: N=500 N=1000 N=2000
3 E 13 g 1 B

Figure 1.6: Estimates with varying number of observed frames N. Estimated A images
output by FALCON (upper panels) and vEM (lower panels) with 500, 1000, 2000, and 5000
simulated frames (with imaging parameters such as PSF width and fluorophore density
p held fixed over all frames). Red dots indicate the ground truth grid. The grid recovery
accuracy of the vEM algorithm continues to improve with NV — recovering the underlying
grid structure nearly perfectly when N = 5000 — but the estimation noise-induced blur
in the FALCON estimate does not decrease with V.

1.5 Discussion

We have introduced scalable Bayesian methods for improved estimation in super-
resolution microscopy. By further extending the reach of these critical imaging methods,
our approach can significantly impact a variety of biological applications. The hybrid
vEM / Laplace-approximation / sparse-representation approach developed here is more
generally applicable in other hierarchical sparse signal model applications (Picardo et al.
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2016). Our methods exploit the insight that sharing information across image frames sig-
nificantly improves accuracy — and this effect grows more powerful as the number of
frames N increases.

Similar points have appeared previously in the super-resolution microscopy literature,
notably in (Mukamel, Babcock, and Zhuang 2012) and (Cox et al. 2012). The methods intro-
duced in (ibid.) are seldom used in practice on large-scale imaging data, due to prohibitive
computational expense. The vVEM methods we have introduced here are much more scal-
able (Fig. [L.3D); indeed, we were unable to obtain good results from the method used in
(ibidJ) in a reasonable amount of computational time (> 1 day) and so we did not show
comparisons against this method here (see appendix for further discussion).

The deconSTORM method described in (Mukamel, Babcock, and Zhuang 2012) (see
also Fig. [L.9) attempts to improve upon simple Richardson-Lucy deconvolution by incor-
porating local information about the survival of active fluorophores from one frame ¢ to
the next (« + 1). Our approach is orthogonal: we share information between frames I;
globally, through \. As we discuss in the appendix (“Markov model”), the vVEM frame-
work extends easily to handle these local correlations between fluorophores at frames
and 7 + 1. We observed that although incorporating these local correlations can slightly
improve the recovery of individual fluorophores (Fig[L.11), the local Markov model does
not significantly qualitatively improve the accuracy of the final estimated A (Figf1.19).

A final interesting and important direction for future work would be to extend some
of the methods developed here to the case where the fluorophores are moving from frame
to frame, in the context of single-particle tracking experiments (Shen and Andersson
2009).
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VEM code is available here: https://github. com/SunRuoxi/vEM

Wide field FALCON

Figure 1.7: Analysis of real tubulin image data. Final resolved images output by FALCON
and vEM-2 with 5000 frames. Wide field image, with all fluorophores turned on simulta-
neously, is given in first panel. Note that FALCON image is blurrier than the vVEM-2 image,
especially in areas of high fluorophore density, e.g., where multiple tubulin branches are
close together, as noted by white arrows.

Details of algorithmic comparisons

All parameters of the methods compared here are tuned for best performance.

FALCON (Min et al. 2014): We set the sparsity parameter (the ¢, weights ) « to 3. The
threshold above which the support is defined is set as 10% of the maximum intensity.

SPIDER (Hugelier et al. 2016): We set the sparsity parameter, the weights of ¢, regu-
lation, k = 250.

deconSTORM (Mukamel, Babcock, and Zhuang 2012): In our simulations accuracy
continued to improve even after 5000 iterations, so we used 5000 iterations in our compar-
isons. Note computation time is proportional to the number of iterations, so this method

could be sped up at the cost of some accuracy.
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https://github.com/SunRuoxi/vEM

3B (Cox et al. 2012): As mentioned in the Discussion, we were not able to obtain
reasonable results using this method, even after > 1 day of computation, for data sets
with e.g. 2000 observed frames. In personal communications with the developers of this
method, it was emphasized that this approach is better suited for smaller images and
smaller values of V, since the speed of this method decreases more or less with the square
of the size of the PSF (in pixels), the size of the image area being analyzed, and the number
of frames observed. Therefore we did not pursue further quantitative comparisons against
this method.

Evaluation: Identified fluorophores are defined as estimates within some fixed dis-
tance from the true fluorophores. The cutoff radius we used was 50 nm. FALCON returns
a list of fluorophore locations, whereas vEM, deconSTORM, and SPIDER return images of
the estimated fluorophore density. To quantify fluorophore estimate accuracy for these
methods we thresholded these images and took local weighted averages to obtain the

estimated fluorophore locations.

Experimental details

Simulation: To validate our analysis method, we simulated grid data on a 32-by-32 pixel
map with an image pixel size of 100 nm. The final resolved image sits on a 3x finer grid
with super resolution pixel size of 33 nm. Unless stated otherwise, each frame has an emis-
sion rate of 0.04, corresponding to an average molecule density of 6.8 um 2. The average
photon number is 1,000 per fluorophore with PSF width 150 nm in standard deviation or

353 nm in FWHM. To test the performance of our method under different practical situ-
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ations, we varied critical parameters, including the number of frames, molecule density,
and PSF width. In those simulations, we replace the above parameters with a range stated
in the corresponding figure caption and keep other parameters unchanged.

Real data: We reconstruct a patch of tubulins on a 32-by-32 pixel image map with 5000
real experimental frames. The final resolved image sits on a 4x finer grid. We modeled the
PSF as a Gaussian blur with width of 183 nm in standard deviation; this parameter was
estimated by fitting observations of non-overlapping fluorophores to a 2D Gaussian func-
tion, following Small and Stahlheber 2014. The dataset is provided as Tubulin ConjAL647

on the Single Molecule Localization Microscope website Sage et al. 2015.

1.6 Markov model

In the main text, we focus on a model in which fluorophores become active according
to a Poisson process with rate \. The active fluorophores in one frame are conditionally
independent from those in other frames, given \. In this section, we incorporate the phe-
nomenon that some fluorophores do not quench immediately, i.e. there is a probability
that an active fluorophore will remain active in the following frames. Thus the active
fluorophores in one frame consist of two groups: “newborn” fluorophores that activate
from the dark state with rate A (the same as before), plus fluorophores remaining active
from the previous frame, each with probability . Under this assumption, the active fluo-
rophores in one frame are dependent on those in the frame before and after, so we denote
the new model as the “Markov model” and the original model as the “non-Markov model”

The Markov model incorporates the positions of active fluorophores in neighboring
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Figure 1.8: Accuracy of the Laplace approximation. We use the same frame as in Figure
1.4 in the main text as an illustration. (A) Y;. (B) Red circles are true positions; blue stars

are Fij . (C) Fisher information matrix J;. Xj indicates = coordinates of fluorophore j, and
Yj the y coordinates. FALCON inferred 8 fluorophores in this frame, so we have 16 total
coordinates. Note that the blocks of J; corresponding to fluorophores 3,4,5,6 have smaller
values, indicating reduced estimation accuracy due to overlapping PSF bumps. Panels
(D), (E), (F) indicate the accuracy of the Laplace approximation for the Poisson likelihood.
Since the likelihood w.r.t. F; is a 16-dimensional function, we can only display slices
of this function. We choose slices in the direction of eigenvectors of .J; — the principal
components of the Laplace approximation. (Directions appear in bottom panels.) The red
(Poisson likelihood) and blue (Laplace approximation) curves align very closely in each
of the three directional slices shown here.

frames i 4+ 1 and ¢ — 1, which can potentially be useful to help pinpoint the positions of
active fluorophores in each frame 7. Thus we would expect the Markov model to outper-

form the non-Markov in localizing individual fluorophores. (Similar neighboring-frame
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Figure 1.9: Evaluation of VEM in comparison with FALCON Min et al. 2014, decon-
STORM Mukamel, Babcock, and Zhuang 2012, and SPIDER Hugelier et al. 2016 as a
function of PSF width. Panel layout as in Fig. [1.5. 2000 frames were used here.

effects are incorporated in Mukamel, Babcock, and Zhuang 2012 and Cox et al. 2012.) In
this section, we will first introduce the Markov model, and then show results comparing

the effectiveness of the Markov model versus the non-Markov model.

We begin by writing down the Markov model for the time series of activations of fluo-

N
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Figure 1.10: Evaluation of VEM in comparison with FALCON Min et al. 2014, decon-
STORM Mukamel, Babcock, and Zhuang 2012, and SPIDER Hugelier et al. 2016 as a
function of fluorophore density p. Panel layout as in Figures [.5 and [I.9. We found that
deconSTORM tends to have an inflated false positive rate (i.e., lower precision) for small
values of p in panel (A). Also note that vEM is relatively cheaper computationally for small
p, where there are fewer fluorophores to iterate over in the Laplace approximation and
VEM steps. 2000 frames were used here.

(As usual, fluorophores in different locations xy activate conditionally independently

given \.) The transition matrix is given by

P<[i,xy = 1‘[',17331/ = O, )\,Oé) =A

P(Ii,zy = 0‘]»_171‘21 — 07 A)a) =1-=\ ( )
1.23

P([i,xy = 1‘['—175814 = 1,)\,05) =+ A

P(Ii,ry = O‘I'—l,xy = 1, )\,Oé> =1—-a-— )\,
\
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where « is the probability that an active fluorophore remains active in the next frame, and
\is defined in eq. [1.3, [1.3; note that the probability of a new fluorophore activating in any
frame is typically fairly low (to guarantee that each image I; is sparse), so A < 1, while
the probability of remaining active may be non-negligible. We are most interested here in
the case that « is significantly greater than 0, implying A < «. Finally, note that we use
a Bernoulli emission model here instead of the Poisson emission model used in the main
text (eq. [L.5); this simplifies the derivations below. Of course the Poisson and Bernoulli
models are identical in the limit of small .

After the Laplace approximation our full approximate loglikelihood is

D
Inp(l, Y|\ a) Z { Z Zlnp(]i,xym_my, Ay, @)

1=1 Yy

+ In N (F}|F, E)} (1.24)
where in eq. we define [ as all zeros.

Variational EM Algorithm

Now we proceed as before and maximize the ELBO (eq. [L.9) to obtain the E and M steps.
We will assume that o is known. In reality, of course, a is unknown and needs to be
estimated along with \. It is straightforward to derive EM iterations for a as well, but
we do not pursue this here. Instead, in the Results section we will simulate data from the
Markov model and estimate A using a known value of a, to give the Markov approach the

best possible chance of improving over the results of the non-Markov model.
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M step

~

A = arg max LN q(F)) (1.25)

= argmax E,[P(1,Y|m,\, a)] (1.26)
N

= arg max Eq[z Inp(L;|1i—1, A\, &) (1.27)

N
= argmax B[} (1~ L) In[A"(1 = A)' "]

%

+ (Lim) In [(a+ A (1 — o= N)H]); (1.28)

eq. combines the cases in eq. and uses the property that /; can only take
values of 0 or 1. We have dropped the pixel subscript zy to simplify notation; the maxi-
mization problem is separable over locations xy and therefore we can optimize for each
pixel independently in parallel.

Setting the derivative w.r.t. A to zero, we obtain

Ql,N /1,N N — Ql,N I QO,N—l - Q/LN
b\ b\ 1—\ 11—\
/1,N Qon-1— Qll,N

_l’_ — —
o+ A 1—a— A

=0, (1.29)
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where we define Q € RY*P and Q' € RP*P:

N N m;
Qsn =Y E(L)=> ¢;(Fy) (1.30)
=S =S j
N
Qsn =Y E(L;)©E(I;-y) (1.31)
i=S
N m; M(i—1)
- {Zq”(m} @{ 3 q,-kmk)}
=S\ j=1 k=1
(1.32)
Now set
ki=Qin — Q) x (1.33)
ko =N—Qin —Qon-1+ Q1 y (1.34)
/ e
/{53 _ LNA . QO,N—l Q},N (1'35)
a+ A l—a—2A
/ Y
~ 1,N o QO,N*I QLN (136)
a -«
where in eq. [.36, we used A\ << «. Therefore, eq. becomes
Ky ks
L () 1.37
T (1.37)

which reduces to a simple quadratic equation in X. We select the valid solution \ € (0,1).
Similarly as in the non-Markov model, we can perform soft-thresholding on the ob-

tained value to increase the sparsity of A
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Finally, note that if we set o = 0, eq. becomes

N —
- 920;
1—A

>l O

(1.38)

this leads to A = Q /N, which corresponds to the M step in the non-Markov model (de-

scription under eq. [1.16), as desired. E step:

q;(F)) = arg max L\, q(F))
X exp {Eqw [In P(1,Y|m, A, )] }
X exp {Eq\ij [lnp(m[,-_l, A )

+ lnp(-[i+1|]i7 ;\7 OZ)

ocexp{

Y a+ A A
(Bl (5D 2 4 2

(. J/

effect of I; 1

1-Ay, a+A l—a-2A
+(Eq\ij [ia] In [ ( 3 )(1_0[_5\)} +IHT>FJ
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effect of I; 11
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b
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where the operator () s is the value of the 2D function of the variable in the parentheses
at location FY.

Note that if « = 0 and A < 1, then

eq. 22 + eq.I23 ~ In \;

therefore, we recover the E step in the non-Markov model (eq[1.20), as desired.

Results

To quantify the benefits of including the Markov terms in the model, we generate data
from the Markov model with a range of parameters and perform inference with both the
Markov and non-Markov models. Note that the non-Markov model is mis-specified in
these simulations, while the Markov model is given the “unfair” advantage of knowing
the true value of a. Nonetheless, somewhat surprisingly, our basic conclusion is that in-
corporating the Markov effects has only a small effect on inference performance. Fig.
shows that the estimation accuracy on individual fluorophores is improved modestly if the
Markov terms are included, once « is sufficiently large. However, in Fig. we see that
the Markov terms lead to negligible improvement in the overall estimate of A, which is the
main object of interest in many super-resolution imaging studies. Thus we conclude that
the “local” information encoded by the Markov terms in the model is mostly redundant
with the “global” information encoded by our estimate ), which is shared across frames

to improve our estimate of each /;.
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Figure 1.11: Evaluation of Markov and non-Markov models as a function of « (First
column), Scale (Second column), and PSF (Third column), with and without soft thre-
holding. The performance is quantified using the same measures as in the main text. Scale
is the average number of photons per active fluorophore. We use N = 2000 frames. Emis-
sion rate p is 0.01. When not indicated otherwise, v, Scale, and PSF are set to be 0.7, 1000
photons, and 353.25 nm respectively. Note that this is rather large value of «; as seen in
the left panel, smaller differences between the Markov and non-Markov models are seen
when smaller values of « are used.
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Figure 1.12: Estimates of Markov and non-Markov model as a function of o with soft-
thresholding.. The final resolved images of Fig. (First column). The test image was the
same grid used in the main text. Recall that v influences the number of active fluorophores
(with large o corresponding to more persistent fluorophores and therefore higher fluo-
rophore density); the average fluorophore densities in the four columns shown here are
1.90, 2.55, 3.44, and 5.75m 2 (left to right). We use N = 2000 frames. Emission rate
p is 0.01, with an average of 1000 photons per fluorophore. PSF is 353.25 nm. Note that
no major differences are seen between the Markov and non-Markov estimates. Similar
results were obtained over a wide range of parameters (not shown).
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Chapter 2

Particle Tracking

Many important datasets in physics, chemistry, and biology consist of noisy sequences of
images of multiple moving overlapping particles. In many cases, the observed particles
are indistinguishable, leading to unavoidable uncertainty about nearby particles’ identi-
ties. Exact Bayesian inference is intractable in this setting, and previous approximate
Bayesian methods scale poorly. Non-Bayesian approaches that output a single “best”
estimate of the particle tracks (thus discarding important uncertainty information) are
therefore dominant in practice. Here we propose a flexible and scalable amortized ap-
proach for Bayesian inference on this task. We introduce a novel neural network method
to approximate the (intractable) filter-backward-sample-forward algorithm for Bayesian
inference in this setting. By varying the simulated training data for the network, we
can perform inference on a wide variety of data types. This approach is therefore highly
flexible and improves on the state of the art in terms of accuracy; provides uncertainty
estimates about the particle locations and identities; and has a test run-time that scales
linearly as a function of the data length and number of particles, thus enabling Bayesian
inference in arbitrarily large particle tracking datasets.

This work was published: Ruoxi Sun, Liam Paninski. Scalable approximate Bayesian

inference for particle tracking data, The International Conference on Machine Learning
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(ICML) 2018. https://www.biorxiv.org/content/10.1101/276253v1. Code is avail-

able: https://github.com/SunRuoxi/Single Particle Tracking

2.1 Introduction

In many biological and physical experiments it is necessary to track the movement of
many isolated particles in a video datastream. This is an essential task in biomedical re-
search, for example, to reveal the biophysical properties of both the imaged particles (e.g.,
single molecules) and the biological substrate (e.g., cell membrane) that the particles are
traversing. Effective particle tracking algorithms have wide applications in both funda-
mental and applied biology, and more generally in chemistry and physical applications.

Previous scalable approaches to this task have largely involved non-Bayesian methods
aiming at estimating a single “best” path of the underlying particles. However, in many
applications particles have indistinguishable shapes under light microscopic resolution.
This leads to a fundamental non-identifiability: if two particles pass close by each other
(“meet”) then it is impossible to deterministically link the pre-meeting paths with the
correct post-meeting paths (see Figure 2.1 below for an illustration). This motivates a
Bayesian approach for assigning posterior probabilities over all the possible sets of particle
paths consistent with the observed data.

Formally, at each timestep we observe a noisy, blurry image recording the particles’
current positions. In the simplest case, we can cast the tracking task in a factorial hidden
Markov Model (HMM) framework, where each particle evolves according to a Markov

process and thus multiple HMMs (one per particle) jointly determine the observed image
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data. The classic HMM inference approach is the forward-backward algorithm (Rabiner
1990), but the complexity of forward-backward scales superlinearly with the number of
particles here.

In this work, we propose an amortized inference approach utilizing a specialized re-
current neural network architecture to approximate the posterior particle transition den-
sities inferred by forward-backward. After network training, posterior inference can be
performed very quickly: given a new video dataset, the network outputs the conditional
particle initialization and transition densities, and then we can simply sample forward
from the resulting Markov chain to draw samples from the posterior particle paths.

We apply the method to simulated and real data. We show that the method robustly
performs approximate Bayesian inference on the observed data, and provides more accu-
rate results than competing methods that output just a single “best” path. Our approach
is much more scalable than previously proposed Bayesian approaches, scaling linearly in

the number of frames and in the number of observed pixels.

2.2 Model

To set the stage we describe the simplest concrete model for particle tracking data; we

will generalize this model below. We have J indistinguishable particles: each particle j

disappear

appear
j J

; . The particles

appears at some time ¢ and disappears at some later time ¢
move according to independent Gauss-Markov processes, with no interactions between
particles. On each frame ¢ we observe a blurred noisy sum of the particles that are visible

at time ¢. The observation likelihood depends on the details of the experimental setup;
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the most common model is the Gaussian blur + Poisson noise model:

Y(t,x) ~ Poisson[\(t,z) + Ao

AMt,z) = ZG[x_Sj(t)L

where Y (¢, ) denotes the image data observed at pixel z at time ¢, )\ is a background
“dark noise” Poisson intensity, G|.] is a Gaussian point spread function (psf), s;() repre-
sents the location of particle j at time ¢, and the sum is over all particles that are alive at
time ¢.

The model described above is a factorial HMM (Ghahramani and Jordan 1996). How-
ever, this simple model can be generalized significantly. There may be multiple distin-
guishable classes of particles that have different shapes or colors. In many datasets par-
ticles can interact: they might merge, collide, split, etc. Individual particles often move
in a non-Markovian manner (e.g., switching between several different latent dynamical
modes). There may be strong dependencies between the motion of different particles,
due e.g. to substrate motion. Finally, the observation noise may be highly non-Poisson,
with correlations and strong inhomogeneities across the field of view. Thus it is critical
to develop flexible inference approaches that do not depend on strong factorial HMM

assumptions.

40



2.3 Related work on particle tracking

The literature on particle tracking methods is vast, and dates back to early physics stud-
ies of Brownian motion in fluids; see e.g.( Manzo and Garcia-Parajo 2015) for a review,
and (Chenouard et al. 2014) for a quantitative comparison of many algorithms. We will
not attempt to review all of these methods here, but note that many algorithms split the
tracking problem into a “detect” followed by a “link” step. The “detect” step outputs es-
timated particle locations given each image Y;. Various nonlinear filtering, thresholding,
deconvolution, and neural network approaches have been employed for this task (ibid.).
Most such detection algorithms take just single frames Y; as input, and therefore they
do not integrate useful information across multiple frames to perform detection; (Newby
et al. 2017) is a recent counterexample that demonstrates that better performance can be
achieved if multiple frames Y; are utilized in the detection step.

The “link” step then attempts to fuse these detected locations, to estimate the tracks
that each visible particle took over the length of the observed movie. This linkage step
is solved by some matching algorithm; see e.g. (Jagaman et al. 2008) for an influential
example of this approach, and (Chenouard et al. 2014; Turner, Bottone, and Avasarala
2014; Wilson et al. 2016) for discussion of some other linking methods.

As we emphasized in the introduction, deterministic detection and linking approaches
are statistically suboptimal, since they ignore the irreducible uncertainty of the tracking
problem that results when two or more visibly indistinguishable particles pass closer than
a fraction of a psf-width of each other. Ignoring this uncertainty leads to non-robust re-

sults, in which tiny changes to the data can lead to discontinuous changes in the estimated
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particle tracks. Moreover, it is clear that the linkage and detection should not be separated:
if we know the tracks of particles at times (1 : t — 1) and (¢t + 1 : T'), then we have very
strong prior information about the locations of particles at time ¢, and ignoring this useful
prior information will lead to suboptimal results. (See e.g. Sun, Archer, and Paninski 2017,
where similar points were made in the context of a related super-resolution application.)

Similar points have been made in the Bayesian signal processing literature; for ex-
ample, sequential Monte Carlo (particle filtering) methods have been applied to perform
probabilistic inference in this setting (Smal et al. 2008). These approaches have the advan-
tage of a proper grounding in standard Bayesian computational methodology, but scale
poorly in the number of visible particles.

Finally, there is also a very large literature on “multi-target tracking,” e.g., tracking
multiple people visible on security cameras. In this literature the different targets are typ-
ically distinguishable (e.g., different people visible on a camera will have different faces,
gaits, clothing, etc.), whereas in this paper we focus on the case that the particles to be
tracked are indistinguishable. Of course a middle ground exists in which particles have
some distinguishing features but some posterior uncertainty about particle identity re-
mains due to noisy or incomplete observations; however, to keep our presentation simple

we focus exclusively on the most challenging fully-indistinguishable case here.
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Figure 2.1: Overview of the conditional transition density network. Inputs to the net-
work include the observed data Y;_ ;.4 1, with M = 2 here (top), the locations of particles
sampled at time ¢ — 1 (lower left), the particles that have been sampled so far at time ¢
(lower middle), and the identity of the particle we are currently sampling (indicated by
the yellow box). The network outputs the probability that the sampled particle survives to
time ¢, and the conditional probability density of the particle’s next position. See the sam-
pling process video for further illustration of the network processing data. In this video,
the particles are restricted to move in the horizontal direction only (to facilitate plotting
of the results in the following section); different particles are marked by different colors.
The lower right panel displays the probability map p(si|q,_1,{q]};j<i,Y) output by the
network at each iteration.

2.4 Methods

Overview

Our conceptual starting point is the standard filter-backward-sample-forward algorithm
for sampling from the posterior distribution p(Q|Y’) of the hidden state Q = {¢;} of an
HMM conditional on the observed data Y (Rabiner 1990). This algorithm has two steps:

(1) combine the observed data Y with the prior distribution p(Q) of the hidden Markov
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state () to obtain a new Markov chain p(Q|Y’), and (2) sample forward from this new
Markov chain. Once (1) is complete, we can call (2) as often as we like to generate new
sample paths from p(Q|Y).

This approach is attractive in our setting because sampling forward from a Markov
chain is a fast operation once the conditional initial and transition densities (p(¢;|Y") and
p(q:|Y, qi—1), respectively) are in hand, where the hidden state ¢; is the configuration of
the locations and identities of all of the particles alive at time ¢. Thus in principle we can
simply run (2) repeatedly to compute probabilities of any quantity we care about (e.g., the
probability that a particle is in location x at time ¢, or the probability that particle 7 in
frame s should be linked with particle j in frame t).

Unfortunately, as emphasized above, computing (1) exactly is intractable in our con-
text; thus we need to approximate the conditional initial and transition densities. Our
strategy is to train neural networks to approximate these probabilities. This approach is
highly flexible; given enough training data, we can handle a wide variety of non-standard
data, well beyond the simplest Gaussian blur + Poisson noise factorial HMM described
above, since the learned probabilities do not lean heavily on special assumptions about
e.g. the noise model or the precise details of the graphical model underlying the datall
In turn, we can generate as much training data as we need by simulating ground truth
particle tracks along with the resulting observed data videos Y.

It is convenient to split the network into three parts: the conditional transition density

that governs how samples move from timestep ¢ to ¢ 4- 1; the conditional birth density that

"The main assumption we make is that the posterior p(Q|Y") can be well-approximated as Markovian, so
that our resulting Markovian sampler can provide good approximations to true samples from the posterior.
This assumption is reasonable in the majority of particle-tracking applications we have in mind.
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governs the probability that a new particle appears at time ¢; and the conditional initial
density that governs the positions of the particles at timestep 1. We describe each of these

in turn below.

Conditional transition density network

This network is illustrated in Figure R.1. The task of this network is to combine the ob-
served data Y with the previous particle configuration ¢;_; and to output probabilities
that govern the particle configuration ¢; in the next time step. This is a nontrivial task,
since the dimensionality of ¢; can be large and varies with time ¢ as particles appear or
disappear. Similarly, the observed image Y; is often large (hundreds of pixels on a side),
and in principle we need to observe multiple frames before and after time ¢ to perform
optimal inference.

Thus, for scalability, we break the problem up into a sequence of smaller pieces and
work convolutionally. We begin by choosing a random ordering of the particles in ¢;_;.
Then, for each of these particles indexed by 7, we input three types of data: (1) a local
patch of the observed movie data (in a spatial neighborhood around the ¢-th particle lo-
cation s!_, and in a temporal context of M frames before and after the current frame
t; (2) a binary mask indicating the locations of the particles at time ¢ — 1 in the same
spatial neighborhood as particle i; and (3) a second binary mask indicating the locations

of the particles j that have been sampled at time ¢ prior to sampling particle i@, The

“This input lets the network avoid placing two particles to explain a single observed bump in Y;; if a
previously-sampled particle j already explains the bump well, then the network will prefer to put particle
i elsewhere. Also note that the input data Y and output probability maps don’t need to have the same
number of pixels (i.e., we could attempt to resolve the particle locations at higher spatial resolution than
the observed data), but we have not pursued this direction in detail.
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network is then trained to output a probability map p(si|g_1, {¢]};<:,Y) indicating the
likely location s¢, along with an auxiliary probability that the particle disappears (and is
therefore no longer present at time ¢). Once these transition probabilities are learned, we
can sample forward one particle and time-step at a time, as illustrated in the sampling
process video and detailed in Algorithm [I; thus at test time inference scales linearly in
the number of particles and time steps in the movie.

Note that we have slightly diverged from the vanilla filter-backward-sample-forward
algorithm, which propagates information all the way back from the final observation Y
to determine the state ¢;. Instead, we exploit the fact that only a local context around time
t is necessary to infer ¢;, and thus we restrict our attention at time ¢ to the local context

Y mt+m- (We use M = 2 throughout this paper.)

Algorithm 2 Conditional sampling network

Initialization S; = Initializer(Y1.p/11, [])

fort =2,3,4...do

S =]

for i in Permutation{S; 1} do
p; = ConditionalProbability (Y, as.4ar, Si—1, St, )
particle ¢ disappears with prob. 1 — [ p;
otherwise i’ is sampled from p;
Insert 7' to S;

end
Nt = NeWBirth(Y;j_]\/[;t+M, St—l; St) Insert Nt to St
Si—1 =5

end

New birth networks and initialization

The network described above moves particles forward from timestep ¢t —1 to ¢, and decides

which particles should disappear at time t. However, new particles can enter the field of
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view at any time, and therefore we need a method for adding new particles to ¢;. Thus
after running the update described above to ¢;, we run a second convolutional network
that takes the same inputs as above (i.e., the local context of ¢;_1, ¢;, and Y, now at each
location in the image instead of just at the previously-sampled particle locations) and
outputs the probability that a new particle is born at each location at time ¢. Then we
iteratively sample from this density and update ¢; until no further particles are added.
The same strategy can be used to initialize ¢;; the only difference is that the inputs

now don’t include ¢;_; or the context of Y prior to Y;.

Network architecture and training

To handle the temporal and spatial dependencies in this data, we chose a combination of
bi-directional 2D convolution LSTM and 3D convolutional layers; see Appendix. Over-
all, when the network is sampling forward, we can think of the resulting algorithm as a
recurrent neural network (since the sampled output is then read back into the network
to define the next state transition), with the somewhat non-standard feature that the net-
work remains at timestep ¢ for a random number of iterations (depending on how many
particles need to be updated and how many particles are born at each timestep).

To train the network we generated simulated ground truth particle tracks ¢; and cor-
responding observed movies Y. (We will discuss the training data in more detail in the
following section.) Then we formed minibatches of training data, where each data sample
included the inputs to the network (the local context of Y, ¢;_;, and a random subset of

q;) along with the true particle location si, which served as the target output of the net-

47



work. We trained the network (using default learning rate settings in Keras) to minimize
the binary cross-entropy between the target mask (zero except at s, or all zeros if all the
particles in g, were already sampled and no further particles should be added) and the

network’s output probability mask. Code is available here.

2.5 Results

One-dimensional example

We begin with a simple simulated experiment in which the particles are restricted to move
in the horizontal direction only. This makes it easier to view and understand the results,
by simply plotting the horizontal positions of the (true vs. inferred) particles as a function
of time. The results are illustrated in Figure P.Z; the same data are shown in Figure
and the sampling process video.

In this example we see the appearance and disappearance of a couple particles, and two
“meeting” events in which one particle overlaps significantly with another particle. Since
in this example all the particles have identical shapes and are undergoing independent
and identically distributed Brownian motions, there is no way to deterministically “link”
particles before and after these meeting events; i.e., the “correct” linker here must output
a probabilistic answer.

In panels 2-4 of Figure P.4 we display three conditional sample paths drawn by our
algorithm. Sample 0 (panel 2) recovers the ground truth accurately, and Sample 1 and 2

(panels 3 and 4) give different — but also valid — sets of tracks. Panel 5 shows an average
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of 100 samples overlaid together, with the colors indicating relative probabilities of the
chosen tracks. Note that at the beginning of the trial, where the two visible particles are
well-isolated, the sampler essentially outputs a deterministic estimate, with all samples
assigned to the left (red) or the right (blue). However, after the “meeting” near ¢t = 15, the
colors blend, indicating probabilistic assignment of tracks following this event, as desired.

For comparison, we also show the output of two existing particle tracking methods,
both of which output deterministic particle identities. Our approach provides visibly more
robust outputs on this example, with fewer dropped particle detections and false particle

appearances or disappearances.

Two-dimensional example

Next we turn to a small-scale simulated two-dimensional example; the results are illus-
trated in the moving particles vided, Figure 2.3, and the 3D view vided. As in the previous
one-dimensional example, we find that our proposed approach accurately detects the par-
ticle locations and appearance/disappearance times, and successfully assigns identities

probabilistically following particle meetings.

Large scale examples and evaluation

To establish a more quantitative evaluation, we compared against two baseline methods:
the popular Utrack approach (Jagaman et al. 2008) and the method proposed in (Wilson
et al. 2016), which performed well on the performance metrics established in the review

/ competition paper (Chenouard et al. 2014). We generated large-scale two-dimensional
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simulated data whose parameters matched a pair of challenging datasets in (Chenouard et
al. 2014), and then computed the suite of performance metrics (measuring various facets
of detection accuracy, linking quality, etc.) introduced in the same paper (averaging over
100 draws from our sampler for each dataset). Results are shown in Table 1: we find that
our proposed method outperforms the baselines on both datasets examined, on all the
performance metrics computed here.

It is worth emphasizing that these performance metrics were designed for determin-
istic tracking algorithms, and therefore entirely miss one of the major advantages of our
approach (the fact that it outputs not just a single “best” track estimate but instead esti-
mates the posterior distribution over all tracks). How can we evaluate the quality of our
approximation to the posterior here (and quantitatively compare between different algo-
rithms that attempt to approximate this posterior)? One natural approach is to estimate
the Kullback-Leibler divergence Dy [f(Q); p(Q|Y)] between our approximate posterior
f(Q) and the true posterior p(Q|Y") on the state space () given the observed data Y. Of

course, this is not quite tractable, due to the intractability of p(Q|Y"), but we can estimate

Dgr[f(Q); p(Q]Y)] up to a constant in f(Q) by sampling from f(Q):

Drrlf(Q);p(Q|Y)] = Efq)log (fé)l}z)

= By log % + const[f(Q)]
1 & f(@Q)
N Zl —Y|Q’) + const[f(Q)],

where {Q")}i—1.y are N samples from f(Q). Here p(Q*) and p(Y'|Q") can be evaluated
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| SNR=5

Assign error RMSE cov Alpha Beta Jsc JSCy
Network 7.28 +1.05 0.08 + 0.01 0.69 + 0.05 0.82 + 0.06 0.81 +0.03 0.68 1+ 0.06 0.99 + 0.02
Utrack 8.88 0.189 0.574 0.778 0.748 0.523 0.769
Wilson 11.83 0.214 0.385 0.704 0.667 0.339 0.741
SNR=4
Network | 8.23 +1.12 0.07+0.01 0.63+0.07 0.76+0.03 0.70+0.04 0.55+0.08 0.82+0.05
Utrack 12.78 0.10 0.32 0.62 0.59 0.29 0.68
Wilson 14.42 0.34 0.36 0.58 0.55 0.32 0.63

Table 1. Comparison of three particle tracking methods: our proposed approach (“network”),
Utrack from (Jagaman et al. 2008), and the method proposed in (Wilson et al. 2016). Bold indicates
best performance; we find that the proposed network approach achieves the best performance
over both datasets and all performance metrics computed here. RMSE: Root Mean Square Error;
COV: Coverage; JSC: Jaccard similarity coefficient; all quantities are as defined in (Chenouard et al.
2014).

explicitly if the prior p(Q) is e.g. Markovian; for our approach f(Q?) can also be eval-
uated directly since f(Q) has an explicit Markov form. This provides us a method for
scoring any Bayesian particle tracking algorithm for which we can explicitly evaluate
the approximate posterior f(()). (We do not perform this scoring on the baselines exam-
ined here, since for any deterministic algorithm f(Q) is a delta function, leading to an
infinite Kullback-Leibler score if we treat ¢; as a continuous random variable — i.e., the

probabilistic approach trivially outperforms deterministic approaches.)

Real data example

Finally, we tested the performance of our algorithm on real data. The data are TIR-FM
imaged clathrin-coated pits in a BSC1 cell (Jagaman et al. 2008). We trained the network
on simulated data whose parameters (signal-to-noise ratio, particle density and speed, psf
width, etc.) were coarsely matched to the real data; see the comparison videg for details.

We plot three samples from our algorithm using different colors in Fig. 2.4 and the real data
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video. While ground truth is unavailable in this case, by visual inspection the algorithm
seems to effectively follow the particles in the video, without excessive oversegmentation
of the tracks; the output here seems consistent with the behavior of the algorithm on the

previous simulated datasets.

2.6 Discussion

Related machine learning work

In the introduction we emphasized the importance of the particle tracking problem; we
believe that the more robust, accurate, and probabilistic tracking methods developed here
will have a significant impact in a wide range of biological and physical applications.

More generally, from a machine learning point of view, the major novelty of our work
is the incorporation of neural network methods to provide a flexible and scalable approx-
imation of Bayesian inference via efficient sampling in a large graphical model.

Of course, interactions between Bayesian analysis and neural network methods com-
prise a very rich thread of research these days. The work of (Snell and Zemel 2017) is
highly relevant: this paper describes a neural network approach to sample multiple seg-
mentations that are consistent with an observed image, much as we use neural networks
to sample multiple particle tracks that are consistent with an observed video.

As another example, variational autoencoders Kingma and Welling 2013; Rezende,
Mohamed, and Wierstra 2014 and variants thereof Fraccaro et al. 2017; Gao et al. 2016;

Johnson et al. 2016; Krishnan, Shalit, and Sontag 2017 have become very popular recently
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for performing inference in nonlinear HMMs. These methods are most effective when
the latent state variable is low-dimensional. In the particle tracking problem the latent
dynamical variable is very high-d (scaling with the number of particles) and more impor-
tantly the latent dimensionality is time-varying, as particles are born, die, merge, split,
enter, or leave the focal plane. We are not aware of variational autoencoder approaches
that would be easily applicable to the particle tracking problem.

Another related thread involves amortized inference using neural networks for se-
quential Monte Carlo; see e.g. Paige and Wood 2016. Again, it is not clear how well these
methods would scale to the large-scale multiple-particle tracking problems of interest
here.

Finally, our work is an example of a broad theme in the current image processing
literature: start with “ground truth” images, then simulate observed data that can be gen-
erated as some kind of corruption of this ground truth, and then use this simulated data to
train a neural network that can “denoise” (or super-resolve, or deblur, or infill, etc.) this
corruption. A (highly non-exhaustive) list of recent examples includes: Parthasarathy
et al. 2017, which applies this idea to approximate Bayesian decoding of neuronal spike
train data; Yoon et al. 2017, to segmentation of three-dimensional neuronal images; and

Weigert et al. 2017, to denoising of microscopy images.

Future work

At test time, as emphasized above, the inference approach proposed here is highly scalable,

but the network training time is relatively slow (taking on the order of hours for the
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experiments presented here). This is typical of “amortized inference” approaches: we pay
with relatively long training times for fast test times. Thus our proposed approach is most
valuable in settings where we have repeated experimental samples from a similar data
regime (instead of training a new inference network for each new experimental dataset).

We have not expended serious effort optimizing over network architectures here; we
could likely find lighter architectures that perform similarly, which would speed up both
testing and training. Similarly, we could distill/compress the network to further speed up
test times, if necessary e.g. for online experimental designs.

Similarly, we have not yet attempted to develop automated procedures for choosing
parameters for generating training data. In practice we have found that these parameters
(e.g., the amplitude, density, variance/speed of particles, plus noise levels, point-spread
width, etc.) are fairly straightforward to choose, and the inference results are not highly
sensitive to small misspecifications of these parameters (recall Figure .4 and the corre-
sponding comparison video). It would be useful to develop a simple interface that would
allow experimentalists to easily generate training data, followed by generation of a net-
work trained to perform inference on their data.

An alternative approach would be to include data parameters as extra inputs for the
network. Then in principle there would be no need to train a new network for each new
type of data; instead we could perhaps just train a single big network on many different
data types (with the corresponding data parameters included as inputs to the network) and
then when presented with a new datatype we just provide the network with the required

parameters and let it perform inference. This is an ambitious but important direction for
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future workh.

*Note that a slightly different philosophy is espoused in Newby et al. 2017, who trained a single deter-
ministic network for particle detection that can be applied to a wide range of data, but without including
any parameters describing the data generation mechanism as inputs to the network. This approach makes
it easy for experimentalists to use the network (since no training or parameter estimation is required), but
likely sacrifices some accuracy compared to a network that is provided information about the parameters
governing the generation of the data. We hope to run more detailed comparisons of these approaches in

the future.
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Figure 2.2: One-dimensional simulated example. We test the performance of the pro-
posed algorithm on a simplified example where the particles are restrained to move in
one dimension, to facilitate visualization. See the sampling process video for the raw
data. Top: Ground truth tracks. New particles appear near ¢ = 13 and ¢t = 20; a par-
ticle disappears near t = 20; “meetings” between two particles occur near t = 14 and
t = 22. Panels 2-4: sample tracks output by our proposed method. Colors indicate
particle identity. Note that the detected locations track the ground truth locations and
appearance/disappearance times accurately, and identity is assigned probabilistically fol-
lowing particle meetings, as desired. (The network output corresponding to Sample 0 is
shown in Figure El] and the sampling process video, with colors matched across the fig-
ures and video.) Panel 5: mean over 100 examples; the blended colors following particle
meeting times indicate the relative probabilities of the identity assignments. Bottom two
panels: output from two deterministic particle tracking methods, by (Jagaman et al. 2008)
and (Wilson et al. 2016), respectively. Several detection errors are visible in the output of
these methods, leading to oversegmentation of the output tracks.
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Figure 2.3: Two dimensional example. This figure displays a single frame of the moving
particles video; view the video for further details. First panel: observed data Y;. Top
middle: a time-lapse trace of the ground truth particle tracks; plus marks the current par-
ticle position, and the tails mark the recent history. Other panels: four sample estimated
particle tracks output by our proposed method. As can be seen in the moving particles
video, as particles meet the particle identities are assigned probabilistically and the identi-
ties across different samples diverge, even if some identities were initially the same across
some samples. (Colors of sampled tracks are assigned according to total proximity of each
track to the ground truth tracks, each of which is assigned a random color.) We show an-
other representation of these samples in the 3D view video; the first frame of this video
shows the ground truth tracks and each remaining frame shows a single sample in 3d
(two spatial dimensions and one time dimension), with colors matched to those shown in
this figure and in the moving particles video; thick lines indicate ground truth tracks for
comparison.

57


https://drive.google.com/file/d/1pb1EvZYRGVW5i8Yg1G45S6X56tcleayL/view?usp=sharing
https://drive.google.com/file/d/1pb1EvZYRGVW5i8Yg1G45S6X56tcleayL/view?usp=sharing
https://drive.google.com/file/d/1pb1EvZYRGVW5i8Yg1G45S6X56tcleayL/view?usp=sharing
https://drive.google.com/file/d/1pb1EvZYRGVW5i8Yg1G45S6X56tcleayL/view?usp=sharing
https://drive.google.com/file/d/1UMkR5h6Ybx9C2zPYJbkyGTCNeinDXpiD/view?usp=sharing
https://drive.google.com/file/d/1pb1EvZYRGVW5i8Yg1G45S6X56tcleayL/view?usp=sharing

Frame = 32. Raw data

Zoomed in patch

Figure 2.4: Real data. Performance on real data (TIR-FM imaged clathrin-coated pits in a
BSC1 cell) (Jagaman et al. 2008). Left: raw image sequence. Middle: raw image sequence
overlaid with detection markers and tails indicating the recent location history. Colors
indicate three different samples from our algorithm. Right: a zoomed in patch. Image
size: 150 X 170 pixels, pixel size: 67 nm. For more details see the real data video.
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Figure 2.5: Neural network architecture. This is the architecture of the conditional
transition density network described in section P.4. We use Bidirectional Convolution
LSTM and Convolution 3D Neural Networks as building blocks with notation '40@3x3’
meaning 40 feature maps with kernel size 3 by 3. The input size of the networks is
7 X patch_size X patch_size: b patches for Y; o419, plus binary masks M;_; and M;
encoding the positions of the particles at times ¢ — 1 and ¢ respectively. The output prob-
ability map is patch_size X patch_size. We used patch_size = 28 here. The new birth
network in section P.4 uses a similar architecture.

Bidirectional ConvLSTM

e N e N e N
-« _J _J

59



Chapter 3

Voltage Smoothing

Recent advances in optical voltage sensors have brought us closer to a critical goal in cel-
lular neuroscience: imaging the full spatiotemporal voltage on a dendritic tree. However,
current sensors and imaging approaches still face significant limitations in SNR and sam-
pling frequency; therefore statistical denoising methods remain critical for understanding
single-trial spatiotemporal dendritic voltage dynamics. Previous denoising approaches
were either based on an inadequate linear voltage model or scaled poorly to large trees.
Here we introduce a scalable fully Bayesian approach. We develop a generative nonlin-
ear model that requires few parameters per dendritic compartment but is nonetheless
flexible enough to sample realistic spatiotemporal data. The model captures potentially
different dynamics in each compartment and leverages biophysical knowledge to con-
strain intra- and inter-compartmental dynamics. We obtain a full posterior distribution
over spatiotemporal voltage via an efficient augmented block-Gibbs sampling algorithm.
The nonlinear smoother model outperforms previously developed linear methods, and
scales to much larger systems than previous methods based on sequential Monte Carlo
approaches.

This is joint work with Scott Linderman and Liam Paninski, and Ian. Scott Linderman

contributed significantly to the project from all perspectives. Ian helped with quantitative
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comparisons with other approaches.
This work was submitted to Conference on Neural Information Processing Systems

(NeurIPS) 2019. Code is in preparation.

3.1 Introduction

Recent progress in the development of voltage indicators (Abdelfattah et al. 2018;
Chavarha et al. 2018; Hochbaum et al. 2014; Kannan et al. 2018; Marshall et al. 2016;
Miyazawa et al. 2018; Piatkevich et al. 2018) has brought us closer to a long-standing
goal in cellular neuroscience: imaging the full spatiotemporal voltage on a dendritic tree.
These recordings have the potential (pun not intended) to resolve fundamental questions
about the computations performed by dendrites — questions that have remained open
for more than a century (Cajal 1911; Stuart, Spruston, and Hausser 2016). Unfortunately,
despite accelerating progress, currently available voltage indicators and imaging tech-
nologies provide data that is noisy and sparse in time and space. Our goal in this work
is to take this noisy, sparse data and output Bayesian estimates, with uncertainty, of the
spatiotemporal voltage on the tree, at arbitrary resolution.

A number of generic denoisers are available. For example, one previous approach is
to run an independent spline smoother on the temporal trace from each pixel (Hochbaum
et al. 2014). However, this approach ignores two critical features of the data. First, the
data is highly spatiotemporally structured; thus, running a purely temporal smoother
and ignoring spatial information (or vice versa) is suboptimal. Second, the smoothness

of voltage data is highly inhomogeneous; for example, action potentials are much less
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smooth than are subthreshold voltage dynamics, and it is suboptimal to enforce the same
level of smoothness in these two very different regimes.

How can we exploit our strong priors, based on decades of biophysics research, about
the highly-structured dynamics governing voltage on the dendritic tree? Our starting
point is the cable equation (Tuckwell 1988), the partial differential equation that specifies
the evolution of membrane potential in space and time. If we divide up the tree into N
discrete compartments, then letting V;(n) denote the voltage of compartment n at time ¢,

we have

’

N
VL AV SIS LS g i v )
n § —1

Each compartment n has its own membrane capacitance C,, and internal currents It(n’j );
j indexes membrane channel types, with j = 0 denoting the current driven by the mem-
brane leak conductance. The currents through each channel type for 7 > 0 in turn depend
on the local voltage Vt(n) plus auxiliary channel state variables with nonlinear, voltage-
dependent dynamics. The coupling of voltage and channel state variables renders the
intra-compartment dynamics highly nonlinear.

Additional current flows between compartments n and n’ according to the conduc-
tance ¢,,» > 0 and the voltage drop Vt("/) — Vt("). The conductances are undirected so

b eN*N gpecifies

that ¢,y = gnn- The symmetric matrix of conductances G = {g,n/
a weighted, undirected tree graph. Nonzero entries indicate the strength of connection

between two physically coupled compartments: if g, is large then voltage differences

between compartments n and n’ are resolved quickly, i.e. their voltages become more
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tightly coupled.

The HH model (Hodgkin and Huxley 1952) and its generalizations (Koch 2004) offer
biophysically detailed models of voltage dynamics, but learning and inference pose sig-
nificant challenges in the resulting high-dimensional nonlinear dynamical system. Two
approaches have been pursued in the past. First, we can restrict attention to the subthresh-
old regime, where the dynamics can be approximated as linear. Invoking the central limit
theorem leads to a Gaussian approximation on the current noise (due to the sum over
4 in Eq. B.1), resulting in an overall linear-Gaussian model. If the observed data can in
turn be modeled as a linear function of the voltage plus Gaussian noise, we are left with
a classical Kalman filter model. (?) develops efficient methods to scale inference in this
Kalman filter model to handle large trees. However, the resulting smoother doesn’t han-
dle spikes well — it either over-smooths spikes or under-smooths subthreshold voltages.
The Kalman model suffers because it assumes voltage has one uniform smoothness level,
and as already discussed, this assumption only makes sense in the subthreshold regime.

Alternatively, we can attempt to perform inference on noisy voltage recordings based
on model (B.1) directly. There are many compartments, each with a voltage and a collec-
tion of channel state variables, leading to a very high-dimensional nonlinear dynamical
system. For low-dimensional models, like single compartment models with few channel
states, methods like SMC and ABC can be applied (Huys and Paninski 2009; Lueckmann
et al. 2017; Meng, Kramer, and Eden 2011), but even with recent advances (Le et al. 2018;
Maddison et al. 2017; Naesseth et al. 2018), inference in large scale biophysical models
remains difficult. The learning problem (i.e. estimating the parameters governing the
intra- and inter-compartment conductances) is even harder: inaccurate state inferences
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lead to errors in parameter estimation, and poor parameter estimates lead to incorrect
state inferences. Compounding all of this is model misspecification — critical parame-
ters such as time constants and voltage-sensitivity functions vary across channels, and
there are dozens of types of channels in real cells (Koch 2004)—and model identifiability
— many channel combinations can produce similar dynamics (O’Leary et al. 2013). Thus
performing inference on the multi-compartment biophysical model (B.1) directly seems
intractable.

Below we propose an alternative approach, blending the cable equation model with
general purpose statistical models of nonlinear dynamical systems, to enable efficient

learning and inference of spatiotemporal voltage dynamics.

3.2 Model

Our basic strategy is as follows. For each compartment n, the biophysical model in (B.1)
involves potentially dozens of channel types, each with their own state variables evolving
according to nonlinear dynamics. But we only actually need the sum of their induced
currents. We replace this sum with a simpler, low-dimensional effective model. We
retain the basic spatial biophysical constraints on voltage dynamics (i.e., leaving the
second term in model (B.1) as is), while approximating the nonlinear interactions between
voltage and membrane channels with a more tractable model: a rSLDS. Figure B.1 shows
how each compartment is given its own discrete states, continuous states, and voltage,
and how these variables interact to produce nonlinear spatiotemporal dynamics.

For each compartment n, we introduce :c,E”) €P, a continuous latent state of dimen-
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Figure 3.1: Approximating the biophysical model of membrane potential dynamics with a
tractable graphical model. a. We study voltage dynamics on dendritic trees like the one
shown here. b. Each compartment of the cell is approximated with a recurrent switching
linear dynamical system, which has discrete latent states, continuous latent states, true
(unobserved) voltage, and noisy voltage observations. The continuous states and voltage
follow linear dynamics conditioned on the discrete states; marginalizing over the discrete
states, we obtain nonlinear dynamics within each compartment. The red arrows denote
the recurrent dependencies by which continuous states and voltage modulate discrete
transition probabilities. c¢. Importantly, the inter-compartmental voltage dependencies
are linear, as specified by the cable equation.

sion D (D = 1 in all the examples shown below, but higher-dimensional dynamics are
possible). Let ztn) € {1,..., K} denote a corresponding discrete latent state. Given the

discrete state, the voltage and continuous latent, (V;(n), x§”))T, together follow linear dy-
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The dynamics matrix A" €(P+Dx(D+1) and the bias vector 5" €21 parameterize lin-
ear dynamical systems for each discrete state in each compartment. We further assume
additive Gaussian dynamics noise for each compartment and discrete state with covari-
ance Q,(Cn) Importantly, the voltage dynamics retain the inter-compartmental linear terms
from the cable equation, linking connected compartments in the dendritic tree (inset of
Fig. B.1). On the other hand, the nonlinear summed intra-compartment currents > i It("’j )
are replaced with a collection of linear dynamics on voltage and continuous states; by
switching between these discrete linear dynamics, we can approximate the nonlinear dy-
namics of the original model (since any sufficiently smooth function can be approximated
with a piecewise-linear function).

To complete the dynamics model, we must specify the dynamics of the discrete

states z§”). We use a rSLDS, allowing the discrete states to depend on the preceding volt-
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age and continuous states,

(n)
el = KV ) scemp T [ | L (32)

2™
The red arrows in Fig. B.1 highlight these dependencies. The linear hyperplanes defined
by {w,in), d,in)}le define a weak partition of the space of voltages and continuous latent
states. As the magnitude of the weight vectors increases, the partition becomes more and
more deterministic. In the infinite limit, the discrete states are fully determined by the
voltage and continuous states, and the switching linear dynamical system becomes a piece-
wise linear dynamical system (Sontag 1981). We find that these models admit tractable
learning and inference algorithms, and that they can provide a good approximation to the

nonlinear dynamics of membrane potential.

2
Finally, we observe noisy samples of the voltage yt(n) ~ (V;(n),al(gn) ) for each

compartment, with state-dependent noise. = Our goal is to learn the parame-
ters of the multi-compartment rSLDS, © = {{#™}N G}, where 0 =

{A,(Cn), b,(gn), ,(Cn) , w,(gn) , d,(cn), a,gn)}le. Given the learned parameters, we seek a Bayesian

estimate of the voltage given the noisy observations.

3.3 Bayesian learning and inference

The rSLDS inherits some of the computational advantages of the standard SLDS; namely,
the conditional distribution of the discrete states given the continuous states is a chain-

structured discrete graphical model, and most model parameters admit conjugate updates.
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Figure 3.2: A single-compartment, three-state rSLDS provides an adequate model of real so-
matic voltage responses. (a) Observed voltage (formed by adding noise to the intracellular
voltage from a real neuron) and the credible interval (CI) output by a the estimated rSLDS
model. (b) Inferred continuous latent state x(¢) corresponding to this trial. (c) Inferred
discrete latent state z(t). (d) Inferred two-dimensional dynamics. The blue state (corre-
sponding to z = 0 in (c)) is a fixed point at the rest potential; the yellow state corresponds
to a fast depolarization (the upswing of the spike; z = 2) and the red state the hyperpo-
larization (the downswing of the spike; z = 1), followed by a return to the blue rest state.
The thin traces indicate samples from x(¢) and V' (¢) given the observed noisy voltage data.
(e) Generative samples from the learned rSLDS; the difference between these traces and
those shown in the previous panel is that these traces are generated using the learned
rSLDS parameters without conditioning on the observed noisy voltages {y;}, whereas in
(d) we show samples from the posterior given {y; }; the fact that the two sets of traces are
similar is a useful check that the model fits have converged. (f) Voltages sampled from
the rSLDS prior, corresponding to traces shown in (e). Note that the simple three-state
two-dimensional rSLDS is able to learn to produce reasonably accurate spike shapes and
firing rates.
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However, the additional dependency in (B.2) breaks the linear Gaussian structure of the
conditional distribution on voltage and continuous latent states.

Following previous work (Linderman et al. 2017; Nassar et al. 2019), we use Pdlya-
gamma augmentation (Polson, Scott, and Windle 2013) to render the model conjugate and
amenable to an efficient Gibbs sampling algorithm. Briefly, we introduce augmentation
variables wi,?) for each compartment, discrete state, and time bin. After augmentation,
the voltage and continuous states are rendered conditionally linear and Gaussian; we
sample them from their complete conditional with standard message passing routines.
Moreover, the augmentation variables are conditionally independent of one another and
Polya-gamma distributed; we appeal to fast methods (Windle, Polson, and Scott 2014)
for sampling these. The discrete states retain their chain-structured conditionals, just as
in a hidden Markov model. Finally, the model parameters all admit conjugate Gaussian
or matrix-normal inverse Wishart prior distributions as in (Linderman et al. 2017); we
sample from their complete conditionals.

One algorithmic choice remains: how to update across compartments? Note that all
of the voltages and continuous latent states are jointly Gaussian given the discrete states
and the augmentation variables. Moreover, within single compartments, the variables
follow a Gaussian chain-structured model (i.e., a Kalman smoother model). We leverage
this structure to develop a block-Gibbs sampling algorithm that jointly updates each com-
partment’s voltage and continuous latent trajectories simultaneously, given the discrete

states, augmentation variables, and the voltages of neighboring compartments.

In principle, all compartments’ continuous latent states and voltages could be updated at once, given
that they are conditionally jointly Gaussian; however, the computational cost would naively scale as
O(T(N D)3), based on a Kalman forward-backward sweep. An important direction for future work would
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Figure 3.3: Comparing the Kalman smoother against the rSLDS. Left: example noisy data
(constructed by adding noise to real voltage data) and output of the Kalman smoother (top)
and rSLDS (bottom). Right: summary of MSE as a function of observation noise variance.
The rSLDS outperforms the Kalman smoother, because the latter is a linear filter with
a single homogeneous smoothness level, and therefore it must either underfit spikes or
overfit subthreshold voltage (or both), whereas the rSLDS can enforce different levels of
smoothness in different dynamical regimes (e.g., spiking versus non-spiking).

3.4 Results

A single-compartment rSLDS is a useful model of real somatic voltage

As a first test of the model and algorithm, we use intracellular voltage traces from the
Allen Institute for Brain Science Cell Types Atlas (Brain Science 2015, cell id=464212183).
The traces are recorded via patch clamp, a high SNR method that provides “ground truth”
measurements. We added artificial white noise with a standard deviation of 5mV to these
recordings in order to test the model’s ability to both learn membrane potential dynamics
and smooth noisy data. We fit the rSLDS to 100ms of data sampled at At = 0.1ms, for a
total of 1000 time points. We used three discrete latent states (X = 3) and one additional

latent dimension (D = 1); already, this simple model is sufficient to provide a surpris-

be to adapt the fast approximations proposed in (Paninski 2010) to implement this joint update more effi-
ciently.
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ingly good model of the observed data. Figure B.4(a) shows the observed voltage (i.e. the
ground truth plus white noise), and the 95% posterior credible intervals estimated with
samples from the posterior under the estimated rSLDS model. The inferred discrete state
sequence (c) shows how the rSLDS segments the voltage trajectory into periods of roughly
linear accumulation (blue), spike rise (yellow) and spike fall (red). These periods are each
approximated with linear dynamics in (V,x) space, as shown in Fig. B.4(d). Moreover,
simulating from the learned dynamics yields realistic trajectories in both latent space (e)
and in voltage space, as shown in Fig B.4(f).

Figure .3 compares the rSLDS to a simpler baseline method. Past work in volt-
age smoothing has utilized the Kalman smoother, based on an assumption of approxi-
mately linear dynamics in the subthreshold regime (Paninski 2010). Notably, the Kalman
smoother is a special case of the rSLDS with K = 1 discrete state. We compare perfor-
mance over a range of noise levels and find that the rSLDS significantly outperforms the
standard Kalman smoother, due largely to the fact that the former can adapt to the dras-
tically different smoothness of the voltage signal in the spiking versus the subthreshold

regimes.

Spatiotemporal denoising with simulated data on real morphologies

The single compartment studies afford us ground truth electrical recordings, but obtain-
ing simultaneous electrical recordings from a multiple compartments of a single cell is
a significant technical challenge. Optical recordings of fluorescent voltage indicators of-

fer multiple compartments, but at the cost of lower temporal resolution and significantly
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Figure 3.4: Voltage smoothing in noisy recordings in a simulated dendritic branch. The
branch consists of five compartments connected in a chain. Left: The observed voltage
(black line) and the inferred voltage (colored line) are shown for each compartment. Right:
A sample from the learned multi-compartment rSLDS. The generated voltage traces show
that the model has learned to reproduce the nonlinear dynamics of multi-compartment
models, including the interactions between compartments that propagate spikes down
the dendritic branch.

higher noise. To test our method’s ability to denoise multi-compartment voltage traces,
we simulate voltage traces using the simple HH model in lieu of ground truth electrical
recordingsE. We start by simulating a single dendritic branch and then move to a full

dendritic tree, using real neuron morphologies.

Denoising a dendritic branch. We model a single dendritic branch as a five-
compartment chain. We simulate membrane potential according to the classical HH
model with voltage-gated sodium and potassium channels, a leak current, and currents

from neighboring compartments in the chain. We inject a constant 35mA current into the

20f course more detailed realistic simulations with multiple nonlinear channel types are possible; we
leave this for future work. As we will see below, the simple HH model already provides a rich and interesting
testbed simulated dataset for the methods presented here.
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first compartment, and induced spikes propagate to downstream compartments according
to the cable equation. However, we have tuned the inter-compartment conductances g,
such that only every other spike propagates — a single spike in compartment 1 cannot
depolarize compartment 2 enough to reach the spike threshold, but two spikes can. More-
over, we corrupt the voltage traces with additive Gaussian noise with standard deviation
of 8mV. We test the multi-compartment rSLDS’s ability to mimic the nonlinear dynamics
of the true generative process and smooth the noisy voltage observations.

Figure B.4 shows five compartments in the chain. In the left column we show the
observed voltage traces (black) and the smoothed voltage (color) traces. Again, the model
does an excellent job denoising the data, and is also able to learn a rich generative model
of the spatiotemporal dynamics underlying the observed data. In particular, the model
does not simply learn separate models for each compartment — it also learns interactions
between compartments. This is evident in the traces that are generated by the model, as
shown in the right column of Fig. B.4. The first compartment shows a high firing rate,
but only approximately every other spike propagates to downstream compartments, as in
the real data. The generation is not perfect: some spikes fail to propagate (e.g. the third
spike in compartment 3 does not propagate to compartment 4), and we see some spurious
discrete state transitions (data not shown). Nevertheless, these generated samples indicate
that the learned dynamical system captures the gross structure of multi-compartmental
membrane dynamics. An accurate generative model offers a strong prior for smoothing

spatiotemporal noisy voltage traces given by optical recordings.
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Denoising a full dendritic tree. We have shown that the rSLDS can learn the dynamics
of single compartments and dendritic branches (i.e. multi-compartment chains), but can
these methods scale to full dendritic trees? We test these models on real three-dimensional
dendritic tree (Brain Science 2015, cell id=464212183). (Note that this morphological data
only includes the three-dimensional shape, not any voltage recordings.) Of the 2620 com-
partments in the original tree, we retain approximately every fifth compartment to create
a tree with 519 compartments (Fig. B.5f). We simulate the HH model on this tree to ob-
tain 100ms of data at 10kHz temporal resolution. As above, we add Gaussian white noise
(uncorrelated in space and time; standard deviation 25mV).

Fig. B.5a shows the observed voltage across all spatial compartments for a single time
point, and panel (b) shows the true underlying voltage. Supplementary Video 1 shows
the voltage propagating in time through the tree. Panel (c) shows the voltage inferred
by the multi-compartment rSLDS. The residual in panel (d) and the error in (e) show the
difference between the inferred voltage and the observed and true voltage, respectively.
There is a slight spatial correlation in the errors — specifically, the inferred voltage tends
to slightly underestimate spike amplitude and overestimate the voltage during recovery
— but the errors are generally small. Panel (g) shows the temporal estimates for the single
compartment indicated by the green dot in (f). The posterior credible interval captures the
true voltage, despite the high level of noise. Each spike corresponds to a canonical discrete
state sequence, as in shown in (h). By transitioning between these discrete states, the
piecewise linear dynamics aid the model-based decoding. Finally, panels (i-k) show both
spatial and temporal dynamics of voltage for the dendritic branch highlighted in red in (f).
We see the spikes propagating along the compartments in observed, true, and inferred
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voltage. Again, the residuals (1) and errors (m) show small spatiotemporal correlations,
but overall good recovery of the voltage from the noisy observations.

For comparison, previous particle filtering-based approaches to voltage smoothing
(Huys and Paninski 2009) would need to infer the trajectories of ~ 2000 state variables
(N = 500 compartments with D = 4 dimensions each) in the simplest HH model of
this data, and this model would not be able to adapt to modest changes in the dynamical
parameters of the channels in each compartment. Scaling such methods to this number of
state variables is a serious challenge, but the recurrent switching linear dynamical system

approach makes this problem tractable.

3.5 Conclusion

The advent of new voltage imaging methods presents exciting opportunities to study com-
putation in dendritic trees. We have developed new methods to smooth and denoise op-
tical voltage traces in order to realize this potential. These methods incorporate biophys-
ical knowledge in the form of constraints on the form of inter-compartmental dynamics,
while allowing for effectively nonparametric learning of nonlinear intra-compartmental
dynamics. We have illustrated the potential of these methods using semi-synthetic data
based on real electrophysiological recordings of membrane potential and actual neuron
morphologies. The results show promising progress toward the critical goal of denoising

noisy spatiotemporal voltage measurements.

75



(a). Observed (b). True (c). Inferrd

-50
-25
-0
--25
- -50

- -75

- —100
- -125
- -150

(d). Residue = (a) - (c) (e). Error = (b) - (c) (f) Dendritic tree
': 40 f a0
) ! 20 1 20
M I'. 'Il ° °
. :'l'\i " b -20 20
et _

(9) Inferred V

V (mV)
o

8 o
Ml

(h) Inferred 2

hhhhhh

(i) Observed

N o
@ °

(j) True

--25
- -50

(k) Inferred

- -100
- -125

Compartment ID

m Re5|due (i) -

‘ \ { I!‘ hl!; f; ‘IM ’\I: f | H‘H"il lld" III I Ii: ‘II‘ lf‘l VIIIH “ u |EI:\I I.umw{::l'jﬂl\l(llllllf hli I\rnuluw'l' r J‘ I‘ll:l'”ml‘\”"” {IH lf if I .
I II\ IH‘ Ll I I Iw ’\ I I | ‘FI h |I ”“l I R ‘ “ ‘II ‘/ H‘ “HI‘ \W | o m ‘f ‘“ IIPI J| “\"‘ \c H‘ \J I IH Llll d‘* I =
— - . ‘(m) Error = (ﬂ) (k) . | ‘“ . )

*\“‘\ ‘I 1 ”I‘Inllll ' ‘LP "} I|l IT " ‘llhll l,su
| Ll ‘ 1 A I| ‘|‘ | I\ il |'|"'.‘I:| ] n‘ ‘ III |‘| \II 1 'Hll I||f| | :‘150
0 20 40 60 80 100

t (ms)

Figure 3.5: Spatiotemporal denoising on a large simulated dendritic tree. The 3D morphol-
ogy of the tree is taken from a real cell in the Allen institute database. (a) Simulated
voltage with additive Gaussian noise (25mV std.) on the dendritic tree. (b) True simu-
lated voltage without noise. (c) Denoised estimate of voltage with the multi-compartment
rSLDS; note the close match with (b). Colorbar shared between (a), (b), and (c). (d) Resid-
ual equals observed (a) minus inferred (c). (e) Error equals (b) minus (c). (f) Cartoon
figure indicates the single compartment (green dot) and a segment of dendritic tree (red
branch) shown in the following panels. (g) Noisy observation (black) and posterior cred-
ible interval (CI) of inferred voltage (cyan), and true voltage (red) corresponding to dot
in (f). (h) The inferred discrete state of the compartment (0: subthreshold; 1: spike fall; 2:
spike rise). (i, j, k) spatiotemporal representation of the noisy, true, and denoised voltage
propagating up the branch shown in (f). (I, m) are the residual and error computed from

(L, j, k).

76



Chapter 4

Computational Analysis for NeuroPAL

The development of experimental technology, NeuroPAL, is accomplished by our collab-
orator Eviatar Yemini and Oliver Hobert. The computational analysis is joint work with
Erdem Varol, Gonzalo Mena, Amin Nejatbakhsh and Liam Paninski. This chapter of the
thesis only includes the first three parts of the entire project to focus on my contribution
and tell a relatively complete story. I led the first part — neuron filter (sec. ). Amin and
I worked closely together on neuron detection (sec f.3). Erdem has led the development
of (Sec jt.4).

This work is in preparation for journal submission. The full paper is included in Ap-

pendix.

4.1 Introduction

Identifying neuronal patterns of activity, gene expression, mutant effects remains a
critical challenge when investigating neural circuitry. Despite rapid advances in whole
brain imaging, current methods collapse sets of neurons activities into low dimension en-
sembles, prohibiting accurate analysis of individual neurons. In order to achieve single-
neuron resolution functional analysis, our collaborators Eviatar Yemini and Oliver Hobert

developed a multicolor C. elegans strain, called the NeuroPAL (a Neuronal Polychro-
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matic Atlas of Landmarks). All NeuroPAL worms share an identical color map, permit-
ting a complete, unambiguous determination of individual neuron names when using
GCaMP/GFP/CFP/YFP reporters. The utility of NeuroPAL has been demonstrated in (1)
functional connectomics; assisted by neural-activity sensor (GCaMP6s), NeuroPAL was
able to delineate the neural circuitry activated by gustatory neurons or olfactory neu-
rons in response to the corresponding stimulus respectively; (2) molecular connectomics;
assisted by GFP-based reporters, NeuroPAL is able to identify expression for the whole
family of metabotropic classical-neurotransmitter receptors.

The promising broad usage of NeuroPAL in neurobiology and the stereotyped designs
for individual neurons (e.g. same color for same neuron) in NeuroPAL worms motivate
and enable us to develop a novel set of algorithms, to automatically detect all neurons,
match them to their unique named identities, and recover associated attributes such as

location, neural activity or gene expression.

Overview of NeuroPAL

We describe a pipeline for semi-automated identification of neurons in C. elegans captured
in three-dimensional color images of NeuroPAL strains. The proposed pipeline effectively
comprises the three steps: (1) filter, (2) detect, and (3) identify, illustrated in the schematic
in figure [4.1.

The first step in the pipeline consists of pre-filtering regions in the raw images that
correspond to non-neuronal structures such as gut cells and lysosomes. This is followed

by the neurons being detected from the filtered image using a greedy sparse reconstruc-
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Figure 4.1: The schematic of the proposed C. elegans neuron detection and identification
pipeline. From left to right: The raw image is supplied by the user and is then filtered
to remove objects that are not neurons (i.e lysosomes, gut cells). From the filtered image,
neurons are detected. The detected neurons are then aligned with a statistical atlas of
neurons to yield their identities.

tion procedure consisting of a variant of matching pursuit (Bergeaud and Mallat 1995;
Elad 2010; Mallat and Zhang [1993). Next, the color and positional features of the set of
detected neurons are aligned with the features of a statistical atlas of neurons (Evange-
lidis and Horaud 2018) to yield a set of likelihoods for each neuron which are then used to
compute probabilistic assignment of identities (Mena et al. 2018). Lastly, and optionally,
the proposed model allows user supervision to refine the identifications.

The efficacy of the proposed pipeline is demonstrated in a leave-one-out cross-
validation setting using 14 anterior and 39 posterior images of worms. The numerical
results demonstrate the potential of our approach for practical deployment and public
use.

This remainder of the manuscript is organized as follows. First, we introduce notation
in Table .1 Section [£.4 describes the filters for removing non-neuronal objects from the
image. In section t.3, we describe the matching pursuit procedure for detecting neurons.
In section .4, we describe the training model for obtaining statistical worm atlases.

The following sections are not included in this chapter, but are still stated here to keep
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the project intact. In section 4.5, we show how to use the atlas to align and probabilis-
tically identify neurons in out-of-sample worm images. In section 4.6, we demonstrate
the empirical performance of our pipeline in cross-validation settings. Lastly, section 4.7

showcases some of the layouts and functions of the software package and graphical user

interface.
Variable | Definition Space | Section
I Microscopy image in D voxels, C' colors RP*C T hIk3
myg center of kth detected neuron R3 1.3.4.4
Sk covariance of gaussian envelope of kth detected neuron S‘i =
T color proportions of kth detected neuron R3 Y|
L mean of position/color of neuron i R? %]
3 covariance of position/color of neuron i Si L %]
B; Random transformation on worm j R4 | k4
? Random translation on worm j R? 7|
P; Random permutation on worm j prxn| 14
Zij random draw of the stereotypical position/color of neuron i in worm j R? 1.4
T; randomly transformed neuron i for worm j R? k4
Yij random permuted neuron i of worm j R? k4
L Likelihood matrix of kth detection corresponding to the ith atlas neuron | RF*" [ .4

Table 4.1: Notation

4.2 Step 1: Neuron filter

Due to the features of NeuroPAL staining, fluorescence images of the worms often contain
bright non-neuronal components, such as gut cells or lysosomes. To reduce the number
of false positives in detection, we remove these structures in a pre-filtering step (fig. .2).

Gut cells are usually larger-radius balls or hollow rings (larger than regular neuron
nuclei), with a green color, whereas lysosomes are usually small balls (or an irregular

shape) and blue in color. Therefore we filter these components by size and color: we
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extract green and blue regions, and filter out those with size greater or less than the
typical size of neuronal nuclei, respectively. For each color ¢, we create a binary mask
to indicate the on-region for c. First, we lightly smooth each color channel individually
(with a small 3d Gaussian filter). Then we generate a binary mask m, to indicate regions
with intensity for color c above the threshold (we use the 99th percentile as the threshold).
Finally, we eliminate connected components in these masks that contain a total number
of pixels above or below a user-defined threshold.

The overall algorithm for filtering gut cells and lysosomes is sketched in algorithm [.

The gut cell and lysosome removal subroutines are detailed below.

Algorithm 3 Neuron filter - Pseudocode

Input: Microscopy image: I € RP*¢

Apply a Gaussian smoother in each color channel
Mask pixels in each color channel whose intensities are in the 99th percentile
Compute connected components in masks

Eliminate connected components that are green and are larger than ¢’ pixels (Gut elimi-
nation)

Eliminate connected components that are blue and are smaller than ¢” pixels (Lysosome
elimination)

return Filtered image: I; € RP*¢
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14/38

Raw data (Y). z

Apply mask to Y

Figure 4.2: Filtered data (worm 38_YAaSP, ventral-dorsal view). Top: raw data (single
z-slice). Bottom: filtered data, with with big green gut cells and small blue lysosomes
largely removed. For all z slices, see Filter Video.

4.3 Step 2: Detecting neurons

Nuclear shape model

In NeuroPAL worms, neuronal nuclei are labeled with different colors. To detect these

nuclei we greedily minimize the following objective:

2
, (4.1)
2

K
I-) fo
k=1

where I € RP*¢ represents the 3-dimensional color image of the worm (D voxels, C
colors) and fy, (v) € RP*C is a function that approximates the multi-color shape of the

neuron parametrized by 6; K is the number of cells visible in the field of view. We choose
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f to be a Gaussian function:

(v—1)"8; (v=4)

fo(v.¢) = b + m(2m) 2| | = exp | ——— ;

(4.2)

here j, is the spatial mean of the Gaussian bump, S}, controls the size and eccentricity of
the Gaussian, 7rj, controls the brightness of the cell in the c-th color channel, and 0j, is the
brightness of the local background in color channel ¢, all for the cell indexed by k. We

collect these parameters into

O, = {bx, "ok , Sk },

and impose constraints on each of these parameters:

(

Tmin S T S T max
bmin S bk S bmax

min S k Smax

Omin S U(‘S'k) S O max)

\

where the o(S) operator returns the singular values of the matrix S.

Optimization

To optimize this objective, we use a matching pursuit (MP) based strategy. In standard
MP (?) we begin with a finite collection of filter functions fj and then greedily add in the

filter element k that leads to the largest reduction in the squared error (#.1). This greedy
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optimization can be implemented efficiently using convolutions and simple subtractive
updates of the objective function, until a maximal number K filters have been added to
the model.

In the present context, the family of filters represented by the constraint set € above
is infinitely large, so we can not apply the standard MP approach directly. Instead, we
choose an “average” Gaussian shape (i.e., with covariance S chosen near the “middle” of
the constraint set), convolve the image I with this shape, and find local optima of the
resulting function. (This is analogous to the first step of standard MP.) Then instead of
subtracting this “average” shape away from around the peaks located in the first step, we
locally optimize the parameter 0, to fit the local shape of the image and then subtract this
locally-optimized shape away. Then we iterate, adding a new locally-optimized shape to
the model at each iteration £. (This algorithm can be parallelized by finding multiple local
optima (i, in the first step and then updating the corresponding parameters 6}, in parallel
for locations i, that are sufficiently far apart.)

If we initialize p. = GT I, (with I, the 3d data volume in color channel ¢, and G I,
denoting convolution of I. with the average Gaussian shape), then our approach can be
summarized as in algorithm [; see figure [t.3 for an illustration.

In the current optimization procedure we have two hyperparameters that should be
specified before running the optimization. The first hyperparameter is the number of
neurons (K’). We found it more convenient to set K to a value larger than the estimated
number of neurons in the image to prevent having false positives. This approach results
in the detection of non-neuronal objects that can further be filtered out by the user. The
second hyperparameter is the approximate size of a neuron in pixels which can be easily
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read out from the image itself.

Algorithm 4 Neuron-like object detection

Input: Microscopy image: I € RP*¢
Initialize p. = GTI, fork =1,..., K do

|
end

Choose p, = argmax Y p.(x)? - regional maximum of smoothed image

Set ,,in and ,,,4, in the constraint set € to enclose a small box near this initial z, and then
optimize
2

k
0 = argmin || I — Z fo,(X)
j=1

0reC

Compute residual image: p. « p. — G fp, .

return 6y, = {by, 7,x , Sk} which are the background mean, color proportions, cell cen-
ters and shape described by covariance.

14/38

194 82 .15 22
%

57 150,
2

187
“9p5 124
8

Raw data (Y). frame:

194 182 1400 22
o

205124 5o

reconstruction (Yhat)

Figure 4.3: Detection step run on filtered data (same worm and z-slice as Fig. .4). Top:
raw data I. Bottom: reconstruction ), fs,. Red crosses indicate inferred location of
neurons; numbers indicate the order in which these locations were detected (typically
brighter cells are detected first; note that some visible cells may be brighter on different z
planes and may therefore not be labeled in this plane). For filtered data of all z slices, see
full reconstruction video and residue video.
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4.4 Step 3a: Statistical neuron atlas construction

Due to biological variability as well as variability in illumination and pose of the worm
when imaged, the observed positions and colors of a given neuron will vary across imaged
worms. This presents a significant challenge when attempting to obtain correspondences
between worms to infer the identities of neurons. Therefore, to normalize the random
variability that occurs across different worms, prior to identifying neurons in any given
microscopy image, we estimate a statistical atlas of neuron positions and colors.

The approach we take resembles the joint expectation-maximization alignment of
point sets technique of Evangelidis and Horaud 2018, with several important differences
discussed below. The dataset we are modeling consists of a collection of point sets: each
worm corresponds to one point set, with each point in the set corresponding to the posi-
tion and color of a single detected neuron. We model each of these positions and colors
as samples from a statistical atlas that is common across worms. Each neuron 7 has a cor-
responding mean and covariance in this atlas, denoted as p; and 3J;, respectively. After
drawing all the positions and colors for a given worm j we apply a random affine transfor-
mation (parametrized by a matrix 3; and translation vector (3?). Finally, since the order
of neurons in each point set is arbitrary, we scramble the identities of the neurons with a
random permutation, parameterized by a permutation matrix P;. This generative model
is summarized in Figure §.4.

ibid. infer the parameters of this generative model (i.e., the means and covariances
of the statistical atlas, the random transformations, and the random permutations) in a

completely unsupervised fashion using a three-way expectation maximization procedure.
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Figure 4.4: Schematic of the generative model of neuron position and color expression.
First we draw a position and color for each neuron ¢ from a distribution with mean p; and
covariance X, (center box); then, to create the observed data y; ; (the color and position
of the i-th neuron of the j-th worm) we apply a random affine transformation 3;, ,6? to

the positions and colors and a random permutation P; to the identities (indicated with
the arrows to the observed datasets Y for each worm j).

However, in our dataset, we have access to fully annotated neuron detections. We take
advantage of this supervised data to simplify the inference problem.

Now we can describe our model in detail. Neural positions are three-dimensional, and
there are three color channels in this dataset; therefore, if we use y; ; to denote the ap-
pended position and color vector of the i-th neuron in worm j (as output by the detection
step described in the previous section), theny; ; € R°. Each of these observed y; ; vectors
has a corresponding latent vector z;; in the aligned atlas space. We model this latent

vector as Gaussian,

Zij ™~ N(N’la 21)7 (4'3)
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with means p; € R and covariances X; € Si that do not depend on the worm index

Ei osition 0
7. We model the covariance 3; with block structure of the form ¥; = [ post ] ,

0 ¥

color

since position and each color are independently varying.
Now the latent vectors z; ; in the atlas space and observed data y; ; extracted from
the imaged worm j are connected by a worm-specific random affine transformation and

permutation. We denote the intermediate affine-transformed variables as x; ;:

Ti; = 23 + ,3?7 (4.4)

with 3; a 6 x 6 matrix (with a similar block structure as 3;) and ﬁ? € R®. then we obtain

yi,; by scrambling the labels via the permutation p;:

yi,j = ij(i)’j. (45)

Given these modelling assumptions, for a dataset of m worms and n; detected neurons in

each worm, we can express the likelihood of observation as:

P(y|lp, %, P,B) = (4.6)
m Ny
H H 1 _(1/2)(yi,j_ﬂpi’j/Bj_:@?)(ﬂjzpi,jﬂf)il(yi,j_ﬂpi,jﬂj_ﬁg)’r

(2m)7/2 det((B,%,,,B7)) /2

j=1i=1

(4.7)
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which has the negative log likelihood:

m Ny 1 B
>N 5 Wiy — Hpy B85 — BB, 87) (yiy — bpi; B — BT+
j=1 i=1
5 logdet(8,%,,87)) +C «9)

Since the term ) >~ ,(1/2) log det((8;3,, ;8] ) is permutation invariant, we can write it
as 3, >;(1/2) log det((83;%:3]).
Therefore, the maximum likelihood estimation (MLE) of parameters for our generative

model involves optimizing the following objective:

minimize (4.10)
P7ﬁ7”72

S (i — b, 85 — BBy, 80) " (Wig — tp, 8 — BT (4.11)

=1 i=1

+ YD logdet((8,2:6)) (4.12)

j=1 i=1

Optimization

To infer the parameters of the generative model, we take an iterative approach since
MLE is a tri-convex system with three blocks of variables: {P}, {3}, {p, X}. This can
be solved to a local optima by fixing P, 3 and solving for p, 32 and then fixing p, 3 and

iteratively solving for P, 3 as is done in (Evangelidis and Horaud 2018).
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Inference of the statistical atlas parameters y, 3

Let P; € P™*" denote the permutation matrix, Y; = [y] ...y, ;|" € R denote the
row stacked features of the neurons of the jth worm, and let M = [u! ... pl] € R4
denote the row stacked neuron means.

The generative model can be written in matrix form as:

Y; = PMB;+13) + E (4.13)

where E; ~ N(0,3,3p, ,BJT) denotes the row stacked uncertainty terms. Since PJTP] =
I because P is a permutation matrix and assuming that 3, is a non-degenerate transfor-

mation, its inverse exists and can be used to write the system as:

P'Y,3 ' —18)3;' =M +V (4.14)

where V; ~ N (0, X;) is a term to quantify uncertainty.

This equation can be used to infer M and ¥ by computing the first and second mo-

ments of V:
L . )
M=% FY,8 - 166" (4.15)
j=1
* 1 @ — —_ — —
5P =D (PLYB = 887 — w) (PLY, 6" — 818" — ) (4.16)
Jj=1
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Inference of the transformation terms 3, 3

We can infer the transformation and translation terms 3, 3, if we view equation
as a weighted linear regression with a different goodness of fit criteria for each neuron
quantified by a mahalanobis norm using the statistical atlas covariance 3;.

The weighted regression can be posed as the following unconstrained minimization

problem:

minimize
[N c
N (PLYB - 8987 — w) S (PLY B - 898 — )"

=1

which has the derivatives wrt to ,3]71, ,8? ﬂ;l

_Z 7y J PTY/Bil_ﬂ?/B;l_”’Z)Ez_lzo

8’8 ' =1
9 o B B B
8,6;),8;1 = ZZ_;('PJY,;XJIB] T /3;)/6] 1 Nz)zz ! =0

First we solve for ,6?,6’]-_1:

n n —1
BB = (Z(Pﬁmfl - m)z:;l) (Z 2;1) (4.17)
=1

i=1

To analytically solve for 3; ', we utilize the fact that vec(ABC) = (CT ® A)vec(B) where
vec(+) denotes vectorization operation and ® denotes Kronecker product. This yields the
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following relation:

n

> (87 @ (PLY)(PLY;))vec(B Zvec YT (828 + ) E )

=1

which gives a vectorized solution for ,6;1

wee() = ( L5 0 (FLY)(BLY)) (Z 1) e+ =)

=1

(4.18)

Note that the expressions for the zero gradient solutions of Bj involves ,60 B and like-
wise, the zero gradient solution of ﬁ?ﬁj_l involves ,8]»_1. This prohibits yielding a closed
form solution for each term. Instead, we employ an iterative coordinate descent method
to yield an optimum solution for ,3]_1 and B?BJ_I These optima can then be used to infer

B; and ﬁ?*. The affine transformation optimization procedure is outlined in algorithm f.

Permutation inference

Lastly, we can solve for the permutation P; by setting up a n x n transport matrix D

where

Dy, = (pYB+ 8 - Y,,)S, (1Y B+ 8 - Y,,)" (4.19)

and obtaining P; through the linear assignment optimization solved through the Hungar-

ian algorithm of Kuhn 1955 which minimizes the following objective:

92



Algorithm 5 Affine transformation optimization

Input: Statistical atlas parameters p, 3, neuron correspondences for jth worm P;, ¢
convergence tolerance

Initalize: [3;']° and [393; ']° randomly while Not converged do
|

end

6, (S Prls - - st ) (S = )

8,1 < reshape L, (57w (PLY)" <Iz€m>>)_l(2?:1vec<< YT ((808)
wiz) )

Check convergence H[B;l]t — [ﬁ;l]t_lHF <e

return 3; = ([ﬁ;l]t)fl, By = [6?/33'_1]%;

P —argmmZpuv v (4.20)

pEP w,v

Statistical atlas of neuron positions and colors

If we have access to several annotated worms, meaning that we have access to both the
detections and their correspondences to the identities of neurons, P, we can infer the
transformation terms {3, 3y} as well as the parameters of the statistical atlas {p, 3}
using the procedure outlined in algorithm f.

In words, algorithm [ operates in the following way. First, the targeted inference pa-
rameters are initialized using the neuron centers and colors for a random worm. Then, the
remaining worms are affinely aligned to the hypothetical atlas by solving the linear sys-
tem for {3y, ﬁ?} in equation [t.18. The means and covariances of the aligned neurons are
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then used to update the atlas parameters p and X. This procedure is iteratively repeated
until convergence. The resulting statistical atlas consisting of the mean stereotypical neu-

ron positions and colors and their covariances can be seen in figures .5, i.6.
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Figure 4.5: The statistical atlas of positions of C. elegans neurons of the head (top), and tail
(bottom). The centers denote the mean positions while the ellipses denote the contours
that delineate the half quantile. Note that this is 2D projection of a 3D atlas, therefore the
x and y axes denote the major and minor axes of position in pixels.
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Figure 4.6: The statistical atlas of positions of C. elegans neurons of the head (top), and tail
(bottom). The centers denote the mean positions while the ellipses denote the contours
that delineate the half quantile. Note that this is 2D projection of a 3D atlas, therefore the
x and y axes denote the major and minor axes of color intensities in arbitrary units.
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Algorithm 6 Train statistical neuron atlas

Input:  {y;;} (colors and positions) and {P,;} (neuron correspondences) for j
1,...,m worms in a training set and i = 1, ..., n neurons, € (convergence tolerance)

Initalization

Select random worm j ~ Unif[m)]

Set means as neuron centers of worm j: p) yijfori=1,...,n

Set covariances as identity: X\ < Is fori = 1,...,n while Not converged do
!

end

t < t+1for j=1,...,ndo
|

end
Solve alignment of jth worm to atlas {pt, ¥} using equations and

Update p!, 3 using equations
Check convergence ||p! — p! || < eand | — 7 |p < ¢

return Statistical atlas of neuron colors and positions {u!, 3'}.
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Conclusion

To conclude, we proposed and demonstrated the usage of Scalable Baysian models for

four interesting biological or neural applications.

1. Super Resolution Microscope
increased performances of more than 20% over state-of-art approaches
2. Particle Tracking
proposed probabilistic-linking approach for tracking
3. Voltage imaging denoising
modeled neuron voltage dynamics with non-linear dynamics
4. NeuroPAL ID
proposed end-to-end approach to detect neurons and give their identity, and pro-

vide public-use software.

Leveraging on modern machine learning and deep learning techniques, robust statis-
tical approaches and Bayesian models can enhance the performance of novel technology

even further.
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Appendix

Here is the full paper for Chapter 4: Computational Analysis for NeuroPAL
“NeuroPAL: A Neuronal Polychromatic Atlas of Landmarks for Whole-Brain Imaging

in C. elegans”. Full paper link can be found: https://www.biorxiv.org/content/10.
1101/676312v1.abstract
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