
Ultra-Low-Power IoT Solutions
for Sound Source Localization:

Combining Mixed-Signal Processing and
Machine Learning

Daniel de Godoy Peixoto

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2019



© 2019
Daniel de Godoy Peixoto

All rights reserved



ABSTRACT

Ultra-Low-Power IoT Solutions for Sound Source Localization:

Combining Mixed-Signal Processing and Machine Learning

Daniel de Godoy Peixoto

With the prevalence of smartphones, pedestrians and joggers today often walk or

run while listening to music. Since they are deprived of auditory stimuli that could

provide important cues to dangers, they are at a much greater risk of being hit by

cars or other vehicles. We start this research into building a wearable system that uses

multichannel audio sensors embedded in a headset to help detect and locate cars from

their honks and engine and tire noises. Based on this detection, the system can warn

pedestrians of the imminent danger of approaching cars. We demonstrate that using

a segmented architecture and implementation consisting of headset-mounted audio

sensors, front-end hardware that performs signal processing and feature extraction,

and machine-learning-based classification on a smartphone, we are able to provide

early danger detection in real time, from up to 80m distance, with greater than 80%

precision and 90% recall, and alert the user on time (about 6s in advance for a car

traveling at 30mph).

The time delay between audio signals in a microphone array is the most important

feature for sound-source localization. This work also presents a polarity-coincidence,

adaptive time-delay estimation (PCC-ATDE) mixed-signal technique that uses 1-bit

quantized signals and a negative-feedback architecture to directly determine the time

delay between signals in the analog inputs and convert it to a digital number. This



direct conversion, without a multibit ADC and further digital-signal processing, al-

lows for ultralow power consumption. A prototype chip in 0.18µm CMOS with 4

analog inputs consumes 78nW with a 3-channel 8-bit digital time-delay output while

sampling at 50kHz with a 20µs resolution and 6.06 ENOB. We present a theoreti-

cal analysis for the nonlinear, signal-dependent feedback loop of the PCC-ATDE. A

delay-domain model of the system is developed to estimate the power bandwidth of

the converter and predict its dynamic response. Results are validated with experi-

ments using real-life stimuli, captured with a microphone array, that demonstrate

the technique’s ability to localize a sound source. The chip is further integrated in an

embedded platform and deployed as an audio-based vehicle-bearing IoT system.

Finally, we investigate the signal’s envelope, an important feature for a host of

applications enabled by machine-learning algorithms. Conventionally, the raw ana-

log signal is digitized first, followed by feature extraction in the digital domain.

This work presents an ultra-low-power envelope-to-digital converter (EDC) consist-

ing of a passive switched-capacitor envelope detector and an inseparable successive-

approximation-register analog-to-digital converter (ADC). The two blocks integrate

directly at different sampling rates without a buffer between them thanks to the

ping-pong operation of their sampling capacitors. An EDC prototype was fabricated

in 180nm CMOS. It provides 7.1 effective bits of ADC resolution and supports input-

signal bandwidth up to 5kHz and an envelope bandwidth up to 50Hz while consuming

9.6nW.
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Chapter 1

Introduction

1.1 Defining IoT

Scrolling down through the proceedings of the most reputable conferences in inte-

grated circuits, sensing networks, and embedded systems, the Internet of things (IoT)

can be found as the motivation of countless works on a wide range of topics. But what

is IoT? How can it drive research in ultra-low-power transmitters, low-jitter PLLs, and

reliable speech recognition at the same time? Even the abstraction within its name,

Internet of things, hints just how broad this subject can be. In reality, the IoT is not

a new concept or a field of study that can be sustained on its own, but a collection

(or integration) of required knowledge to make the IoT vision feasible. This vision,

in its turn, promises that in a near future a massive network of electronic gadgets

will surround our society, assisting us on our day-to-day activities [70]. This idea is

so well accepted as an inevitable outcome of the development of current technologies

that the academic society decided to prepare the technical environment required for

it to happen. Consequently, researchers from various fields are trying to tailor their

efforts to achieve this common goal.

To organize this confusion of IoT subjects, a subset of three domains can be used

1



to group the efforts of the academic work related to IoT applications, as shown in

Fig. 1.1

Figure 1.1: Segregation of the different fields of research within the IoT domain.

The connection of things embraces the communication challenges of a crowded

machine-to-machine (M2M) network. One of the greatest challenges of the IoT vision

is sustaining the ever-growing data-traffic requirements. Works related to low-power

transceivers [48] and their subblocks [23, 46], as well as massive network architectures

and protocols [16, 34] belong to this group.

The perception of things deals with systems that can understand or interpret

the stimuli from the real world, hereby refereed as perceptive systems. Naturally,

research related to sensors and transducers [37, 33, 84], data converters [20], and

signal processing algorithms [21] fit in this category.

Finally, the interaction of things closes the loop by studying the how these
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systems provide feedback to the users. The spread of smartphones opened several

possibilities on how to translate the data gathered by the systems to intelligible

information for the user in graphical or audio interfaces, yet new avenues such as

haptic approaches are still being pursued to enhance this experience [45].

It is impossible to predefine the requirements of each IoT application, but some

technical constrains should be common to most of the systems, such as power, band-

width, size, cost, speed, reliability, and so on. Any progress that significantly reduces

any of these requirements might provide the missing block for an IoT solution or

enable the development of new IoT products.

1.2 Embedded IoT Perceptive Systems

Embedded IoT perceptive systems are the main target of this research. As rule of

thumb, these systems run on battery, have limited processing and storage capabilities,

have a reduced form factor, use wireless communication, and are expected to be

affordable to the public. Table 1.1 provides a list of recently published end-to-end

embedded IoT perceptive systems. They range from health monitoring to enhanced

security in transactions to behavioral control, but they all share the same principle:

detecting one or multiple events happening in the physical world and use them to

provide some user feedback.

Each solution presents its own architecture, and deals with system-resource dis-

tribution in its own way, they all share a higher-level data-processing pipeline from
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data to information, knowledge, and wisdom (DIKW) [60, 66]. The DIKW struc-

ture is used to hierarchically describe the different stages of the system from data

to decisions and actions. Data are defined as symbols that carry properties of the

event under observation, not always in a usable structure. Information is inferred,

extracted from data; it is the means to provide quantitative or qualitative answers

about the event. Knowledge is the application of information to provide answers; it

is a deduced symptom of the event. Wisdom is the diagnostic or action made based

on the knowledge of the event; it involves a higher understanding of facts beyond

the observed event, it can be subjective to the user or action taker. When those no-

tions are specifically applied to embedded perceptive systems, the transition blocks

that change the data from a stage to another can also be labeled and analyzed as in

Fig. 1.2.

The first challenge is to translate the real-world stimulus into an electrical signal;

for that, we use sensors: microphones, photodiodes, capacitive touch sensors, ther-

mistors. These are all components or structures that change their electrical behavior

depending on physical changes in the environment. Even in the best-case scenario,

when the physical change being measure is of an electrical nature as in an ECG [6],

Authors, year System purpose
Jia et al. 2018 [38] Low-power continuous ammonia monitoring
Yang et al. 2016 [80] Enabling secure device paring
Nguyen et al. 2016 [56] Diagnosing sleep disorder
Bui et al. 2017 [15] Measuring blood oxygen level
De Godoy et al. 2017 [25] Preventing sunburn and skin cancer
Adkins et al. 2016 [1] Verifying smoking cessation
Goel et al. 2016 [28] Measuring lung function

Table 1.1: Recently published end-to-end embedded perceptive systems.
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Figure 1.2: Stages of the signal-processing pipeline in a generic embedded perceptive
system.

the electrodes used to capture the signal deserve equal attention [72].

The next step is to extract from the electrical signal generated by the sensors

the features that carry information about the physical event. This process can be

as straightforward as observing the amplitude of the input signal, or it can involve

a more complex investigation of other signal characteristics, such as the behavior of

specific spectrum components used in speech recognition [55].

Even after the corresponding feature is extracted from the sensor’s signal, there is

a gap between the values captured in the features and intelligible knowledge that can

be shown to the user. The features must be interpreted. Just like the feature ex-

traction, feature interpretation can vary in complexity depending on the application.

A thermometer may simply match a voltage acquired from a thermocouple to a cor-

responding temperature using a linear equation, while an elaborate machine-learning

classifier might be needed to identify potential health issues in a ECG reading [39].
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Lastly the user interface is needed to transfer the information to the user. Unless

the system itself intends to act upon the captured information, the whole process is

useless if not externalized to the user. The visualization of the content happens in

different ways, in real-time or though recorded log files, locally in the embedded device

or on a host platform, by the user or by a third party. All these factors play a role in

the final solution.

The first objective of this dissertation is to detail the development steps of a spe-

cific IoT perceptive system, an early-danger-detection wearable system using passive

audio sensors to detect and localize approaching vehicles for pedestrian safety. It

investigates the required signal-processing algorithms for a sound-source-localization

solutions and shows an example of an end-to-end IoT implementation.

Furthermore, after implementing the system in traditional fashion, this work

shows how to further optimize the performance of perceptive systems by combining

mixed-signal processing techniques and machine-learning classifiers and proposing the

use of analog-to-feature converters.

1.3 Analog-to-Feature Converters

“The world is analog. ... Computers are digital” [40]. The balance between the draw-

backs and benefits of performing signal processing in either of these domains is a

puzzling dilemma that bothered circuit designers for decades [61, 44, 77]. The clear

choice of most modern systems is to rely heavily on digital-signal processing and use
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the analog and mixed-signal components only to handle simple anti-aliasing, data con-

version, and communication. However, while the flexibility and robustness of digital

techniques guarantee its place in the core of complex algorithms, recent developments

in supervised machine-learning classifiers brings new opportunities for mixed-signal

processing in front-end signal handling.

In traditional architectures, feature extraction from the raw electrical sensor in-

puts proceeds in two steps: a data converter stage followed by digital feature extrac-

tion. The data converter, or analog-to-digital converter, is responsible for storing in

digital code all aspects of the analog inputs as reliably as needed for the digital-signal

processor to extract the features. This often involves preserving the spectral content

of the signal—e.g., sampling faster than the Nyquist rate—and guaranteeing that the

quantization noise will not exceed a critical threshold.

The main issue with this approach is that most of the effort of faithfully encoding

all the information of the analog inputs add no meaning to the data; it can be seen

as a horizontal step in the DIKW analysis (Fig. 1.3). Extra hardware, memory and

processing resources are allocated to changing the encoding domain, or representation

symbols, of the data just to be disregarded after the actual feature information is

extracted.

In contrast with the traditional approach, this work proposes an investigation

of a more direct conversion, an analog-to-feature converter. In the analog-to-feature

converter a mixed-signal approach is used to only digitally encode the actual informa-

tion that will required by rest of the processing pipeline, avoiding the need to sample
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Figure 1.3: DIKW analysis including the data-converter step. The horizontal shift in
the processing path shows that there is no increase in the data’s meaning during the
analog-to-digital conversion.

the input signal and store large amounts of data. This approach both deals with

the analog/digital interface required by real-word/computer architectures and adds

meaning to processed data. As shown in Fig. 1.4, the analog-to-feature converter

fits in harmony with the DIKW analysis. Adding more mixed-signal processing to

the architecture also further allows for ultra-low-power implementations, since ana-

log techniques can be used to trade-off power consumption and accuracy. Also, a

wider error margin and variations in the front-end processing can be handled with

supervised machine-learning algorithms.

This architecture might not be ideal for all embedded IoT perceptive-system im-

plementations, but examples are presented in this dissertation where ultra-low-power

analog-to-feature ASICs were developed to extract both the arrival-time difference

between multiple microphones and the amplitude envelope of a raw audio signal.

The mixed-signal processing in the ASICs can be four orders of magnitude more
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Figure 1.4: DIKW analysis of architectures with analog-to-feature converters. The
data’s meaning grows in each step of the processing pipeline.

efficient than the traditional data converter with a digital-signal processor without

significantly degrading the final accuracy of the system.

1.4 Outline

This thesis explores the challenges of embedded implementations of IoT sound-

source-localization systems and how it can combine mixed-signal processing and

machine-learning algorithms to enhance the performance of perceptive systems.

Chapter 2 presents a literature review on physical phenomena that enable sound-

source-localization. Chapter 3 shows the implementation and characterization of an

audio-based wearable IoT alert system for pedestrian safety that uses sound-source-

localization algorithms. Chapter 4 introduces a 78nW ultra-low-power analog-to-

feature time-delay estimation technique as an enhancement to the signal processing

pipeline of the previously presented system. Chapter 5 presents a sub-10nW switch-
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capacitor-based envelope-to-digital converter for audio applications. Chapter 5.3 sum-

marizes the work and analyzes the analog-to-feature approach as a solution for a wide

range of IoT perceptive systems.
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Chapter 2

Sound-Source Localization Features Overview

2.1 Introduction

Object recognition and localization have been extensively explored in the literature.

Nearly all the avenues explored mirror techniques present in nature, such as the use

of stereo imaging [11], ultrasonic radar [9], and acoustic-source localization [22]. In

vehicular tracking, video based approaches have been widely used [78, 11, 50]. More

information can undoubtedly be extracted from images than from any other types of

date; it is not by chance that humans learned to rely so much on their visual system.

Commonality in vehicles’ shapes and standardized road signs have enabled the use

of sophisticated machine-learning algorithms to identify and predict the movement

of cars [83]. Although such systems offer outstanding solutions for devices that can

be hosted in large platforms, such as an autonomous car for collision prevention [71],

they are less suitable for wearable systems. A major limitation is the computational

requirements of real-time imaging processing and the feasibility of developing low-

cost, power-efficient, rapid-response products. Another major issue is user privacy.

As it was previously pointed out, constantly taking images of one’s activities reveals

an alarming amount of personally identifiable information.
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Such active techniques as radar and LIDAR can certainly be used to detect obsta-

cles and even some spatial behaviors [35, 17], but such solutions face great challenges

in classifying the nature of those obstacles. This is particularly problematic in urban

environments, with their abundant moving and stationary obstacles but relatively

rare real threats to the user. On the implementation side, the inherently high power

dissipation of active transducers discourages their use in most portable devices.

Passive audio sensors, on the other hand, provide enough information to al-

low classification and localization of the source with lower computational and power

requirements. Audio classification has been used to detect such events as coughing

[32], gun shots [18], human activity (talking, crying, running, etc.) [5], subtle sounds

like keyboard typing and door knocking [73], and buses and trucks passing [51]. The

rest of this chapter outlines the main principles allowing sound-source classification

and localization. We investigate the physical phenomena that can be used to infer the

position of a sound source as a background to understanding the feature-extraction

decisions made in the subsequent chapters.

2.2 Physical Principles of Sound-Source

Localization

Estimating the position or direction of acoustic sources is an essential skill for many

living beings. Doing so accurately can be a life-or-death factor in the wild or in

modern cities. Even though doing it is seamless to us, the actual mechanism involved
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in this task are not yet fully understood. Neuroscientists and biologists examining

the different aspects of the auditory system regarding sound-source localization have

noticed that, in most animals, three main binaural cues are used to localize a sound

source:

Interaural Time Differences

The interaural time difference (ITD) is the difference between the arrival times of the

sound wave to each ear, as illustrated in Fig. 2.1. The correlation between the ITD

and the source’s localization is clear; if a source is to the left of the listener, the wave

will reach the left ear earlier. Given the average human ear spacing, around 21cm,

the ITD is to be most relevant for low-frequency sounds, with spectrum components

below 1.5kHz [58]. Higher frequency components with wave length smaller than the

space between the ears may lead to ambiguous estimations.

Interaural Level Differences

The next major spatial hearing cue is the interaural level difference (ILD), shown in

Fig. 2.2. The ILD refers to the difference in power of the sound waves captured by

each ear. It is also intuitive to predict that a sound source located to the left of the

listener will be heard more loudly in the left ear. Notice, however, that the reason for

this level change is mostly the acoustic shadow created by the human head, not the

different lengths travelled by the sound wave to reach each ear. In a complementary

fashion with the ITD, the ILD effect is more pronounced for high-frequency sounds
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Figure 2.1: Illustration of the interaural time difference (ITD). The ITD is the most
important spatial cue for sound-source localization, as the sound wave reaches each
ear at a different time depending on the source’s position.

[58].

Head-Related Transfer Function

With only two ears, ITD and ILD alone are not enough for humans to accurately

localize the sound source. There are multiple points in space that will provide exactly

the same ITD and ILD. This region of equal ITD and ILD is called the cone of

confusion and is shown in Fig. 2.3. An asymmetric element is needed to distinguish

the unique position of the sound source within the cone of confusion.
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Figure 2.2: Illustration of the interaural level difference (ILD). Because of the acoustic
shadow created by the head, the sound wave will reach each ear with different levels.
The ILD is harder to characterize than the interaural time difference because the
acoustic shadow depends heavily on the listener’s mechanical structure.

The pinna, the outer part of the ear, is responsible for this distinction (Fig. 2.4).

The sound wave will be guided to the inner ear differently depending on where the

wave hit the pinna, leading to different head-related transfer functions (HRTFs). This

subtle feature is so important for our binaural sound-source localization that most

virtual reality technologies include the HRTF in their system [10].

2.3 Conclusion

This chapter presented the main features used in sound-source localization. Under-

standing the physical phenomena that naturally allow us to notice if a car is ap-
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Figure 2.3: Illustration of the cone of confusion. Any sound source placed at the
base of the cone will have the same ITD and ILD. This ambiguous region exists
because humans only have two ears. In a system with arbitrary numbers of receivers,
a thoughtful geometric distribution of the microphones could eliminate this region.

Figure 2.4: Illustration of the head-related transfer function. Different sound-wave
incidence angles to the ear have different transfer functions due to the asymmetric
shape of the pinna.
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proaching from behind will help understand the work presented the next chapters.

From the features presented above, only the ITD and the ILD can be practically

implemented on embedded systems. The mechanical-structural dependency of the

HRTF places the investigation of its implementation outside the limits of this work.

ITD and ILD, on the other hand, have been used on numerous embedded system

and characterized in detail. They are used in Chapter 3 to implement an end-to-end

embedded sound-source localization system with off-the-shelf components.

The complexity of extracting ITD features makes it worthy of a more detailed

analysis. The phenomenon described here as ITD—or, more broadly, the interval

difference required for a signal to reach multiple receivers—is referred in multiple

works as time difference of arrival (TDoA). The study of TDoA is not limited to

audio signals; it is commonly used in radio-frequency systems such as GPS and radar.

There are different methods to extract the time delay between to two signals. Each

algorithm has advantages and drawbacks that should be explored before choosing

one to implement. Chapter 4 presents a method that combines cross-correlation with

an adaptive negative-feedback loop. This method combines the low computational

requirements of adaptive time-delay estimators with the principles of cross-correlation

functions. Using an understanding of the cross-correlation function, the theoretical

boundaries of operations are calculated and measured. Making it a reliable and viable

alternative for sound-source localization in resource-constrained systems.
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Chapter 3

PAWS: An Audio-Based CPS Solution

for Pedestrian Safety

3.1 Introduction

Smartphones have transformed our lives dramatically, mostly for the better. Unfor-

tunately, listening to music while walking has also become a serious safety problem

in urban areas around the world. As reported by the Washington Post, pedestrians

listening to music, texting, talking or otherwise absorbed in their phones are mak-

ing themselves more vulnerable by tuning out the traffic around them [65]. Since a

pedestrian is deprived of auditory input that would provide important cues to dan-

gers such as honks or noises from approaching cars, he or she is at a much greater

risk of being involved in a traffic accident. According to a study by Injury Prevention

and CNN, the number of serious injuries and deaths involving pedestrians who were

walking with headphones has tripled in the last seven years in the United States [57].

This global phenomenon is an important societal problem that we want to address

by introducing advanced sensing techniques and intelligent wearable systems.

We tackle these challenges in PAWS, a pedestrian audio wearable system targeting
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urban safety. PAWS is a low-cost headset-based wearable platform that combines four

microelectromechanical system (MEMS) microphones, signal-processing and feature-

extraction electronics, and machine-learning classifiers running on a smartphone to

help detect and locate imminent dangers, such as approaching cars, and warn pedes-

trians in real time.

Newer smartphones being equipped with multiple built-in microphones, it may

seem tempting to repurpose those microphones in software to localize cars based

on ITD or other localization techniques. But these approaches require the user to

hold the phone steady in their hand instead of keeping it inside a pocket [68]. It is

unrealistic to expect users to constantly hold their phones steady and to not block

the built-in microphone while walking. In addition, most built-in microphones are

designed for voice and are often band-limited. These two limitations prevent the

smartphone from capturing useful features produced by approaching cars in realistic

urban environments.

This is a challenging problem as the battery-powered wearable platform must

detect, identify, and localize approaching cars in real time, process and compute

large amounts of data in an energy- and resource-constrained system, and produce

accurate results with minimal false positives and false negatives. For example, if a

user’s reaction time is 500ms, the system has 360ms to detect a 25mph car and alert

the user when it is 10m away from him. This problem is further compounded by high

levels of mixed noise, typical of realistic street conditions in metropolitan areas.

To tackle these challenges, we develop a segmented architecture and data pro-
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Figure 3.1: An inattentive pedestrian wearing a PAWS headset, and a screen shot of
the PAWS application user interface.

cessing pipeline that partitions computation into processing modules across a front-

end hardware platform and a smartphone. Four channels of audio are collected by

a microcontroller-based front-end platform from four MEMS microphones strategi-

cally positioned on a headset. Temporospatial features such as relative delay, relative

power, and zero-crossing rate are computed inside the front-end platform using the

four channels and transmitted wirelessly to the smartphone. A fifth standard headset

microphone is also connected to the audio input of the smartphone, and together with

the data sent from the front-end platform, classifiers are trained and used to detect

an approaching car and estimate its azimuth and distance from the user. We evaluate

PAWS using both controlled experiments in parking lots and real-world deployments

on urban streets. We make the four contributions in this work:

• We create an end-to-end, low-cost, wearable system and smartphone application
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that accurately provides real-time alerts to pedestrians in noisy urban environ-

ments. Inattentive pedestrians can immediately benefit from our system.

• We develop a segmented architecture and data-processing pipeline that intel-

ligently partitions tasks across the front-end hardware and the smartphone to

ensure accuracy while minimizing latency.

• We propose a new acoustic feature designed to capture frequency-domain char-

acteristics of such low-frequency noise as the sound of a car’s tires against the

road. We develop classifiers to recognize cars approaching the user and to lo-

calize approaching cars, with respect to the user, in real time.

• We share with the community our entire data set, which includes high-fidelity

multichannel audio recordings of moving car sounds, honks, and street noises,

that we have collected in a metropolitan area and in a college town.

The work presented in this chapter was performed in collaboration with Prof. Nirjon

and his students in the University of North Carolina (UNC) at Chapel Hill. All mem-

bers of the project worked on multiple parts and were fundamental to the system’s

integration. The UNC team focused on the smartphone signal processing related to

the vehicle detection such as the new acoustic feature presented in Section 3.3.

3.2 Studying the Problem

We studied the car-sound recognition-and-localization problem using a validation

platform before developing PAWS into a wearable system. The objective of this ex-
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ercise was to analyze the feasibility and complexity of our proposed solution and to

determine the specifications required to capture the necessary information: sampling

rate, sensor placement, and relevant features for the machine-learning algorithms.

As shown in Figure 3.2, the validation platform directly connected eight MEMS

microphones to a computer. The microphones were placed on a mannequin head to

reproduce the physical phenomena of the final setup, such as the acoustic shadow of

the human head [58] and the approximate spacing among sensors on a real user.

The study was performed in five locations in two different cites: a metropolitan

area and a college town. The locations were two parking areas, a four-way intersection,

and two multi-lane streets. We recorded audio from a total of 47 cars. We conducted

our first set of controlled experiments in the parking areas with labeled distances,

directions, and precise time keeping of honks and car passing. All other scenarios

were uncontrolled.

Recording Specifications

To characterize the sounds of interest, such as an approaching vehicle’s tire noise,

engine noise, and honks, we conducted controlled experiments in two parking areas

(Figure 3.2 shows one of the experiments). These results are later compared to the

uncontrolled experiments for consistency.

Figure 3.3 shows the spectrogram of one recording from the controlled exper-

iments. The top and the bottom spectrograms correspond to the same recording.

Approximately 5s after the recording starts, a car honks, resulting in distinct sta-
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Figure 3.2: Validation system: Reference mannequin with eight MEMS microphones
and data-acquisition board in a low-noise controlled-experiment setup.

tionary tones with fundamental frequencies near 500Hz. The vehicle then accelerates

towards the mannequin. In the bottom figure, zoomed in on the lower part of the

spectrogram, we see the engine noise. The engine noise follows the engine’s speed

(RPM). In a car with an automatic transmission, the engine noise is bounded be-

tween 60Hz and 200Hz. (notice the transmission shifting at the seven-second mark.)

Once the vehicle gets closer to the mannequin, the friction noise from the tires and

asphalt gets louder. This noise has a band-limited spectrum with more energy below

3kHz. When the car makes its closest approach to the system near the twelve second

mark, a burst of air causes loud white noise. Similar spectrum components were found

on several recordings of different approaching cars at similar speed (20–30mph) on

dry asphalt.
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Figure 3.3: Spectrogram of one of the recordings from the controlled environment.
The car was approaching the mannequin at 25mph.

These observations indicate that the audio system must reliably capture frequen-

cies from 50Hz to 6kHz to accurately identify warning honks and vehicles that are

still approaching the user. This requirement means that the system needs custom mi-

crophone drivers with a cut-off frequency of less than 10Hz (in contrast to standard

headset microphones with a 100Hz cut-off frequency) and analog-to-digital converters

with sampling rates above 12kHz.
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Figure 3.4: Distribution of honks and other types of sounds in a 2D feature space.

Presence of a Car

The presence of a car can be determined from high-energy, sharp sounds like honks,

and from such low-energy, noise as the sound of tires on the road.

Honks are louder and easier to detect than tire or engine sounds. We analyze the

Mel-frequency cepstral coefficients (MFCC) [53] of honks and compare them with

other street sounds. The MFCC is one of the most commonly used acoustic features

for detecting various types of sounds [49, 41, 59, 42] including car sounds [12]. For

visualization purpose, we reduce the thirteen-dimension MFCC features to two di-

mensions (using PCA [54]) and the result is shown in Figure 3.4. We observe that

honks are separable from other sounds as they cluster around a different point in the

space. Honks are easily detectable using all thirteen coefficients.

MFCCs, however, are not effective in detecting other types of car noises, such

as the sound of tires on the road. The fundamental reason behind this is that the

Mel scale, expressed as m = 2595 log10(1+ f/1000), was originally designed to mimic
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human hearing of speech signals that maps frequencies f < 1kHz somewhat linearly,

and maps f > 1kHz logarithmically. Our analysis of tire sounds shows that about

60% of the signal energy is attributed to frequency components below 1 kHz. Hence,

to model such low-energy, low-frequency, noise-like sounds, we need to develop a new

feature that captures these subkilohertz characteristics of audio signals. Section 3.3

describes this new acoustic feature.

Direction of a Car

To determine the direction to the car, we recorded audio of cars approaching from

different directions and analyzed the signals captures by the different microphones.

Some of these recordings also have honks in them. Intuitively, microphones that are

closer to the sound source and are not obstructed by the human head should receive

signals earlier, and the signals should be stronger. Hence, the relative delays and the

relative energy of the received signals should be strong indicators of the direction

from which a car is approaching.

In Figure 3.5, we plot the relative delays of the microphones with respect to

the front microphone for left- and right-side honks. As expected, the relative delays

change signs for left and right honks. We do similar tests in eight directions (each

covering a 22.5° 3D cone surrounding the mannequin) to successfully determine the

directions to honks near the user.

Similarly, we plot the microphones’ relative delays as a car passes the mannequin

from its left to right (Figure 3.6). We observe that the relative delays are quite random
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Figure 3.5: Normalized relative delays of the microphones for left and right honks.

Figure 3.6: Relative delay versus time of a car driving past a mannequin from its left
to right.

on both left and right ends. As the car approaches the mannequin, we see a trend in

all the curves with one or more of them peaking. The trend reverses as the car passes

the mannequin. This behavior suggests that patterns in relative delays (when they

are looked at together) are useful to determine the direction of passing. Hence, by

learning the trend and the point when the trend reverses, it is possible to differentiate

a car on the left from a car on the right, as well as their angular directions.
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Figure 3.7: The maximum cepstral coefficient follows a trend when an approaching
car is within about 30m from an observer.

Distance to a Car

To estimate the distance to the identified car, we formulate a regression problem that

maps sound energy to distances. Later, we realized that due to environmental noise

and the weakness of car sounds, a fine-grained location estimation is extremely inac-

curate when the car is more than 30m from the audio recorder. When the car is within

30m, we find that the maximum values of the cepstral coefficients (computed every

100ms) are approximately linearly correlated with distance, as shown in Figure 3.7

for a car driven toward the mannequin. This relationship can be exploited to form a

regression problem that maps maximum cepstral coefficients to distances.

For cars more than 30m away, although we are able to detect their presence and

estimate their direction, a precise distance estimation results in a large error. However,

the distance-estimation problem can be formulated as a multiclass classification task

by dividing the absolute distances into a number of ranges such as (0, 30m], (30m,
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60m], and (60m, 80m]. Each of these ranges can be characterized by signal-energy

and zero-crossing rates, and can be classified accurately using a machine-learning

classifier.

Therefore, PAWS uses a two-level approach for distance estimation. It first em-

ploys a classifier to determine a coarse-grained distance. If a car is detected within

the nearest range, it applies regression to obtain a fine-grained distance estimate.

3.3 Overview of PAWS

PAWS is a wearable headset platform together with a smartphone application using

four MEMS microphones and the smartphone microphone with a set of machine-

learning classifiers to detect, identify, and localize approaching cars in real time and

alert the user using audio/visual feedback on the smartphone.

The system consists of three main components: sensors and their drivers, front-

end hardware, and a smartphone host (Figure 3.8). The four MEMS microphones,

labeled MIC1 to MIC4, are distributed at the left and right ears, the back of the

head, and the user’s chest to provide relevant information about the sound source’s

location. The front-end hardware synchronously acquires analog signals from these

microphones and locally extracts acoustic features used by the application running

on the smartphone.

PAWS performs signal processing inside the front-end hardware to reduce the

volume of data to be transmitted to the smartphone via a Bluetooth Low Energy
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Figure 3.8: A block diagram of PAWS.

(BLE) connection. The headset’s standard microphone (the fifth microphone, MIC5)

is connected to the phone’s 3.5mm audio input. Data from the fifth microphone is

directly acquired by the smartphone. Using the features computed by the front-end

hardware and an audio stream from the headset microphone as inputs, machine-

learning classifiers running inside the PAWS application detect the presence of an

approaching vehicle and estimate its position relative to the user. The decision to run

the machine learning classifiers on a smartphone stems from insufficient processing

power and memory for a single microcontroller to sample, extract features, and run

classifiers for car detection and localization with reasonable latency.

30



Figure 3.9: (Left) Teardown of the PAWS headset; the front-end hardware is exposed
inside the left ear housing. (Right) Close up of the PAWS front-end hardware PCB.

Front-End Hardware

The front-end hardware is responsible for three blocks on the PAWS signal flow:

synchronous ADC of microphone channels, embedded signal processing, and wireless

communication with the smartphone. The integration of these blocks in a wearable

resource-constrained system is challenging, and computational bottlenecks such as

memory and data transfer require a careful distribution of resources.

To demonstrate PAWS’s system architecture and algorithms, off-the-shelf compo-

nents were used to build the system. As shown in Figure 3.8, four MEMS microphones

are wired to a microcontroller unit (MCU). The MCU synchronously collects the sig-

nals, calculates the temporospatial features, and sends the result to a smart BLE

module via a universal asynchronous receiver-transmitter (UART). The BLE mod-

ule sets the link between the front-end hardware and the smartphone. The front-end
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hardware is powered by standard AAA batteries and is designed to fit inside the left

ear housing of a commercial headset, as shown on the left in Figure 3.9.

Front-End Signal Processing

This section outlines the operations processed by the front-end hardware. The MCU

must sample the data from the four MEMS microphones and perform feature extrac-

tion, while the BLE module is responsible for transferring the calculated features to

the smartphone. Since cars may be traveling at high speeds, fast response times and

low latency are critical. PAWS uses a Cortex-M4 MCU to perform data acquisition

and processing in real time. The design choices and evaluation are explained in detail

in Section 3.4.

Sampling Data

Audio is captured from four microphones at 32kHz with an 8-bit successive-

approximation ADC and a four-channel analog multiplexer running in the micro-

controller. The sampling frequency was chosen as a compromise between the lowest

rate necessary to capture the spectral content, as explained in Section 3.2, and the

performance enhancement achieved by a delay estimation with finer granularity.

Feature Extraction

Running the feature-extraction algorithms in real time on a Cortex-M4 is challenging

due to the complexity and number of computations required across the four channels.
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To service a continuous stream of incoming data, it is imperative that one feature

extraction finishes before the next window of data is completely received. The feature

extraction calculations were simplified to achieve low latency; complex multiplication

and division were avoided. The following features were calculated on the acquired

four-channel data: relative power of each channel with respect to MIC1, relative

delay with respect to MIC1, and zero-crossing rate of each channel. These features

are calculated for every time window of 100ms with 50% window overlap.

The relative power (RpN,1) is calculated by summing the difference of squares

between samples from each microphone to the reference microphone, MIC1.

RpN,1 =

WL∑
i=1

(X2
N [i]−X2

1 [i]), (3.1)

where N is the channel number, WL is the window length (in this case 3,200 samples),

XN is the channel signal, and X1 is the reference MIC1 signal.

The relative delay is calculated using cross-correlation (XCORRN,1). The lag be-

tween the channels is defined as the index where the cross-correlation is maximum.

XCORRN,1[d] =

WL∑
i=0

XN [i− d].X1[i] (3.2)

This is the most computationally expensive calculation of the front-end system.

Since the physical separations of microphones are limited, e.g. the average spacing

between ears is ∼25cm, the range of valid relative delays is bounded, making it

possible to compute and compare the XCORR only for d ∈ [−40, 40]. These limits
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on the cross-correlation interest interval make the time-domain calculation of the

cross-correlation more efficient than frequency-domain approaches [75].

The zero-crossing rate (ZCN) is the number of times a signal changes sign within

a given time window.

ZCN =

WL∑
i=1

(| sign(XN [i])− sign(XN [i− 1])|) (3.3)

Data Transfer

The BLE module gathers the resulting ten-element feature values and sends them to

the smartphone following a custom protocol in 40-byte packets. The protocol consists

of a validation header (3 bytes), followed by a set of hardware configuration flags (1

byte), payload size (1 byte), and the feature values: 1 × 3 bytes for relative delays,

8× 3 bytes for relative powers, and 2× 4 bytes for zero crossings of MIC2–4.

Smartphone Data Processing

The PAWS smartphone app receives a 44.1kHz, single channel audio stream from

the headset via the standard microphone jack and the ten-element acoustic features

over BLE, and processes them in real time in a service. The application includes a

graphical user interface to start and stop the service, configure alerts, and display a

timeline of approaching cars along with their distances and directions.

Figure 3.10 shows the data processing pipeline of the PAWS smartphone applica-

tion. The application’s two-stage pipeline detects and localizes cars.
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Figure 3.10: Smartphone data processing.

Car Detection Stage

In the first stage of the data processing pipeline, the single-channel audio stream is

assessed to determine the severity of the surrounding noise level. If the level is below

a safe threshold, the rest of the pipeline is executed to detect the presence of an

approaching car. If the surrounding noise is extremely high, the user is alerted that

the system is not in a suitable operating environment. We empirically determined that

when the received signal strength is above 0.03dB, the SNR becomes very low, and

our system’s performance deteriorates from its ideal level. In such noisy environments

(e.g., too many cars and honks), PAWS alerts the user of its ineffectiveness.

Two offline-trained classifiers are used in this stage to detect car honks and en-

gine/tire sounds. The first classifier uses standard MFCC features to detect the pres-
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Figure 3.11: The basic idea of nonuniform binning of spectral energy.

ence of car honks. For the other type of car noises, we propose a new acoustic feature,

the nonuniform binned-integral periodogram (NBIP), that divides the frequency scale

nonuniformly to capture the variation at the lower end of the frequency spectrum

characteristic of car noises. Five steps compute the NBIP features:

• Step 1: The FFT of each audio frame x(t) is computed to obtain the Fourier

spectra X(f). Only the left half of this symmetric spectra is retained.

• Step 2: The periodogram of x(t) is obtained from X(f) by normalizing its

magnitude squared and then taking its logarithm.

Px(f) = 20 log10
(

1

FsN
|X(f)|2

)

Fs and N denote the sampling frequency and the signal length, respectively.

• Step 3: The frequency range is divided into a total of B bins. The frequencies

below a threshold a are equally divided into b bins, and the higher frequen-
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cies are equally divided into B − b bins. The binning process is illustrated in

Figure 3.11. The optimal values of the parameters B, a, and b are empirically

determined, which we will describe shortly.

• Step 4: Px(f) is integrated in each bin to obtain a B dimension feature vector

v = (v1, v2, . . . , vB).

vk =


∫ k∆1

(k−1)∆1

Px(f)df, if 1 ≤ k ≤ b∫ a+(k−b)∆2

a+(k−b−1)∆2

Px(f)df, otherwise,

where, ∆1 =
a
b
and ∆2 =

1−a
B−b

are the bin sizes for frequencies below and above

the threshold a, respectively.

To find the optimum values of parameters a and b, we vary the parameters 0 ≤

a ≤ 1 and 1 ≤ b ≤ B in small increments and compute the vector difference between

features of car noises and all other sounds. Figure 3.12 shows the search space for a

and b for a fixed value of B = 20. We observe that a = 0.3 and b = 18 maximizes

the vector difference between the car noise features and other sound features. A

quantitative comparison of NBIP and MFCC is given in Section 3.5. We see that for

noise-like sounds, NBIP provides much more accuracy in detection than traditional

MFCC.

The features described above are used to detect approaching cars’ engine and tire

noises only. As honk is not a noise-like sound, we cannot use the proposed NBIP

for its detection. We use MFCC in this case. For both types of classification (honks
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Figure 3.12: NBIP search space for parameter optimization.

and engine/tire noises), we train separate random-forest classifiers [14] to perform

significantly better than other classifiers (e.g., support vector machine [19]).

Car-Localization Stage

If a car is detected, the second stage of the pipeline is executed. In this stage, the

smartphone acquires and uses the four-channel acoustic features received from the

embedded front-end system to estimate the distance and direction of the car. Four

multiclass random-forest classifiers are used to classify eight directions and three dis-

tance levels based on honks and engine/tire sounds. Because the feature vectors are

only of 10 dimensions, we feed all the features into both classifiers for a simpler im-

plementation. However, a principal-components analysis (PCA) reveals that relative

delay and relative power are more relevant for direction classification, whereas rela-
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tive delay combined with ZC and relative power are relevant for distance estimation.

Relative delay is relevant for direction because the microphone closer to the sound

source will receive the audio signal sooner than the other microphones.

In addition to determining one of the three levels of distances, when a car is

detected within the nearest level (within 30m), PAWS runs a linear-regression-based

fine-grained distance estimator. This step includes computing the cepstral coefficients

and then fitting the maximum value to an actual distance in meters. This step does

not add any significant cost as we obtain the cepstral coefficients as a byproduct of

MFCC computation during the car-detection stage.

Alert Mechanism

The application alerts a user with audio/visual feedback. If a car is detected within a

user-configured distance range (e.g., 30m) – the phone vibrates, reduces the volume,

and beeps. It can also be configured to play a customized message, e.g., “a car is

{approaching, honking} on your {direction, left, right}”. The application also visually

shows the location and direction of the car on its user interface, as shown in Figure 3.1.

3.4 Platform Evaluation

Real-Time Performance

In this section, we discuss the system’s real-time performance, the timing constraints

involved, and the design choices to meet them. Response time is crucial for our system,
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Figure 3.13: Pipeline of the MCU processing. The “Feature Calc.” block represents
all the operations involved in the feature extraction, and “TX” represents the UART
communication between the MCU and BLE module.
as milliseconds can make a difference in saving the user’s life. The embedded front-end

hardware is handling 32kHz with eight bits per sample for each of the four MEMS

microphones. To minimize latency, we compute features in 100ms windows every 50ms

in a pipeline fashion. This means that features are being calculated every 50ms with

50% window overlap. The MCU uses a dedicated ADC module with direct memory

access (DMA) to leave more CPU cycles available for feature calculation. The ADC

continuously samples the audio and stores samples in RAM while features from the

previous frame are calculated. Data are transferred from the MCU to the BLE module

via a dedicated UART module. For this pipeline to work in real time, all features from

the current frame must be calculated before the following frame is acquired, and the

UART module must finish sending the current feature vector before the next feature

is ready. Figure 3.13 presents the timing of the different parts of this pipeline. Feature

calculation consumes 36ms of the available 50ms in each time slot, and the UART

module transmits each feature vector in 1.9ms.

Another crucial timing aspect of the system is the transmission latency from the
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Figure 3.14: Block diagram of the test setup for the latency between the features from
the front-end hardware and the smartphone.

BLE module to the smartphone. This latency will not only lengthen the system’s

response time, but it can also cause a mismatch between vehicle detection (based on

the audio signal from the wired microphone) and its localization. If the temporospatial

features calculated in the front-end hardware take too long to reach the smartphone,

the location estimation displayed to the user might refer to a different sound source

than the vehicle that the system just detected.

To verify that the smartphone receives the data within an acceptable time in-

terval, an adaptation to the system was made, as shown in Figure 3.14. A button

was simultaneously connected to one of the inputs of the front-end hardware and the

smartphone’s microphone input (as the regular microphone button). A verification

app was developed to compare the difference between the time when the button-

press event was detected by the smartphone application and when the smartphone

received the data packet containing the same event. All aspects of the MCU and the

BLE module firmware remain equivalent to the setup for standard operation. The
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Figure 3.15: Histogram of the front-end-to-smartphone latency acquired with the
Figure 3.14 test setup.

average delay is on the order of 55ms as shown in Figure 3.15. Since the event can be

captured by the MCU anywhere within the 50ms sampling windows, this latency is

not expected to be lower than the 38ms required for the calculation and transmission.

However, due to randomness in the delay on the smartphone path, a few samples on

the histogram have lower latencies.

The front-end hardware and the smartphone will be close together as both of

them will be on the user’s body. This small distance will ensure very little effect on

the connection due to the presence of multiple Bluetooth devices in the environment

unless there is major interference.

Figure 3.16 shows the execution times of various components inside the smart-

phone application. The application runs four threads in parallel. Thread 1 is responsi-

ble for getting audio data from the single-channel microphone. We take ten frames per

window (448ms) for robust feature calculations. Thread 2 is responsible for receiving

acoustic features over BLE. Thread 3 runs the car detector, which takes 86ms. The
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distance and direction estimators, which also runs in Thread 3, takes a mere 2ms since

these classifiers use precomputed features. The UI thread (Thread 4) takes 3ms to

update the UI and notify the user. The worst-case execution time for the PAWS app

is 91ms. Because we use a 50% overlap between successive windows, the PAWS app

runs the full classification pipeline every 448/2 = 224ms, and detects and localizes

cars in 91ms (i.e., in real time).

Power Consumption and Price Breakdown

We evaluate PAWS’s energy consumption by measuring the power consumption for

both the embedded platform and the smartphone during idle and active states. In

the active state, data is processed, features are computed, and results are transmitted

to provide danger feedback to the user. In the idle state, the smartphone application

is not connected to the headset and most of the clocks in the embedded front-end

platform are turned off to conserve power. The sole purpose of the idle state is to

conserve power when the user is not using the system (e.g. when the headset is not
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Table 3.1: Power Consumption and Price Breakdown

Idle [mA] Active [mA] Unit Price [US$]
MCU (STM32f4) 4.37 50 3.20
BLE Transceiver (nRF52) 0.46 7 6.40
MEMS Mics 0.48×4 0.48×4 0.40×4
Amplifiers 2.34×4 2.34×4 1.60×4
3.3V regulator 0.1 0.1 0.50
Total 16.21 68.4 18.10

paired with the phone).

The embedded platform uses an STM32f4 Cortex-M4 chip to sample and ex-

tract features and a BMD-300 as the BLE transceiver. Operating at 180MHz, the

STM32f4 consumes the most power, 50mA when active. While not in active use, the

power can be reduced to 4.37mA. The Cortex-M4 architecture provides a familiar

environment for firmware development with an acceptable energy footprint and a

low cost of US$3.20 at major parts suppliers. The BMD-300 BLE transceiver module

transmitting at 0dBm power consumes 7mA when active and 0.46mA when idle and

transmitting only advertisement packets. The BMD-300 module integrates the Nordic

nRF52 BLE chipset and antenna in a small-footprint component that fits this appli-

cation for a low price of US$6.40. The other components of the front-end hardware

are the 3.3V regulator, the MEMS microphones, and the preamplifiers. The overall

power consumption of the system is below 70mA, allowing for 17 hours of continu-

ous operation when powered by three standard AAA Alkaline batteries. As shown in

Table 3.1, the total retail cost for the main electrical components is around US$18.00

per board.

For the smartphone, the most energy-consuming component is the display, which
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Table 3.2: CPU and Memory Footprint.

CPU (%) Memory (KB)
STM32f4 (Active) 75.8 84.916
STM32f4 (Idle) 0 6.908
PAWS App (Active) 17.88 32,580

is only used to configure the app. Therefore, it is not necessary to keep it on at all

times. The BLE communication consumes about 0.2mA. The energy consumption for

the rest of the application is between 0.3µAh to 0.8µAh per frame.

CPU and Memory Footprint

We measure the CPU and memory footprints of both the front-end data acquisition

system and the smartphone application. The portion of the embedded front-end that

consumes the greatest resources (memory and CPU cycles) is the feature extraction

process on the STM32f4.

Table 3.2 shows the average CPU and memory usage of the STM32f4 chip in

PAWS. The CPU usage is almost 76% when the system is actively sampling and

extracting features from audio sampled at 32kHz in 50ms time slots. However, when

the system is idle, the CPU usage reaches 0%. This is because, when the system is

idle, the STM32f4 CPU and all of its main clocks are shut down; the system is only

able to wake up again when it receives an external event from the BMD-300 BLE

module, which is generated by the smartphone application on demand. Because of

this, PAWS saves energy and CPU/memory resources when not actively in use.
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3.5 Empirical Data Analysis

This section describes the performance of the car-detection and localization algo-

rithms in controlled settings. The full system is evaluated in an uncontrolled envi-

ronment in Section 3.6.

Empirical Dataset

Detection Data collection consisted of recording single-channel audio samples using

our embedded front-end platform. We used 47 different cars including sedans, SUVs,

and convertibles from the street. We then listened to each audio stream and labeled

the presence of cars. Later, we postprocessed the data to add Gaussian noise at

10dB (low noise), 30dB (medium noise) and 50dB (high noise) to the collected audio

sample.

Localization We could collect the precise location of the cars on streets. So,

we conducted a controlled data-collection experiment to record four-channel audio

samples using the initial prototype of the embedded front-end platform. We used

three standard automatic sedan cars in two different empty parking lots, where we

marked different points on the ground and precisely measured the distances and angles

as we drove each car towards the mannequin honking occasionally. The experiment

area was about 120m × 100m. Table 3.3 lists the datasets, their purposes, and the

number and types of audio clips. We also used a video camera to record the entire

session. After the data collection, each sound clip was manually labeled to precisely

mark the duration of honks and approaching car positions by listening to each clip
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Table 3.3: Summary of the Empirical Dataset.

Dataset Purpose Clips Characteristics
Honk Honk Detection 720 1-ch, 1s

Honk Localization 998 4-ch, 1s
Moving Car Approaching Car Detection 63 1-ch, 15s, ∼25MPH

and Localization
City Noise Noise Injection 397 60dB–66dB

while watching the video as needed. In addition to honks and moving-car sounds, we

also recorded city noises from the streets of a busy metropolitan area, which are used

to inject controlled noise into sound clips to be able to test our algorithms’ robustness.

The datasets are available online.1

Comparison of Features

We compare the proposed NBIP features with standard MFCC features in terms of

their ability to distinguish the two classes of sounds (car tire/engine sounds vs. noncar

noises). Figures 3.17 and 3.18 show the mean and standard deviation of each com-

ponent for the two feature vectors (NBIP and MFCC) for the two classes of sounds.

We observe that most of the NBIP feature components (the first ten components)

are very dissimilar for the two classes, whereas the MFCC features for both classes

are very similar. Unlike the MFCCs, NBIPs are designed to maximize their vector

representations for car engine/tire vs. noncar sounds, which helps them accurately

recognize cars.

1http://icsl.ee.columbia.edu/projects/seus/
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Accuracy of Car-Presence Detection

We measure the precision and recall of our honk detector as well as the approaching-

car detector for various levels of injected noise across all distances and angles between

the car and the mannequin. For these experiments, we use 80% splitting of dataset

and tenfold cross validation. Figure 3.19 shows that the precision and recall are 99%
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and 81% for honk detection, even under extreme noise. Figure 3.20 shows that for

extreme noise, the accuracy of PAWS for approaching-car detection is 89%, whereas

the accuracy of MFCC is 78%. The average precision and recall of PAWS for all

noise levels are 96% and 92%. PAWS has a very low false negative rate in detecting

approaching cars which is extremely important for such a safety-critical system.
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Direction-Estimation Accuracy

Figure 3.21 shows the accuracy of the angle detector when the distance and the level

of noise are varied. Recall that this classifier detects one of the eight 45◦ 3D cones

around a person. Its accuracy drops below 75% under extreme noise or when the

distance is more than 40m. Under low-to-medium noise levels and <40m distance,

the accuracy is 95%–100%. In urban areas with 35–45mph speed limits, this gives a

person 2–3 seconds to react after the system detects a honk. For approaching cars, as

seen from Figure 3.22, PAWS can determine whether a car is approaching from the

left or the right with over 90% accuracy under extreme noise, with accuracy as high

as 99.4% on less-noisy roads. Section 3.6 breaks down direction-estimation accuracy

for all eight angles.

Distance-Estimation Accuracy

We measure PAWS’s classification accuracy for inferring the distance of an approach-

ing car and show the confusion matrices in Figure 3.23 for honk-based and approach-
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d1 d2 d3 d1 d2 d3
d1 95 4 0 94% d1 222 20 6 90%
d2 5 100 28 77% d2 36 183 29 74%
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Figure 3.23: Confusion matrices of distance classification for honks (left) and ap-
proaching cars (right).

ing cars’ tire and engine sound-based distance classification, respectively. The three

distance levels are d1 < 30m, 30m < d2 < 60m, and 60m < d3 < 80m. When the car

is either honking or is within 30m of the system, the accuracy of the two classifiers

is 90%–94%. The confusion between levels d2 and d3 is higher, so the estimated dis-

tance at those distances may be erroneous in a strict sense. However, due to the high

precision and recall of the car detector, PAWS will still be able to detect the car at

those distances and warn the user in time.

Additionally, when a car is within 30m, PAWS’s fine-grained linear-regression-

based distance estimator is able to estimate distances with an average error of 2.8m.
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Figure 3.24 shows a scatter plot of actual distances and estimated distances when

cars are coming toward a person wearing the PAWS headset.

3.6 Real-World Deployment

Experimental Setup

To evaluate the end-to-end performance of the complete PAWS system in realistic

settings, we conducted experiments in two different environments: a metropolitan

area and a campus street. Unlike Section 3.5, we perform no postprocessing such as

imposing noise or controlling the cars.

In the metropolitan area, three subjects participated in the experiments in multi-

ple sessions acting in the roles of ground-truth collector, PAWS user, and distracted

user, respectively. The ground-truth collector uses a special version of the PAWS ap-

plication, “PAWS Clicker,” to point to a location and direction of a car on the screen
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as he sees it or hears its honks. The PAWS user carries a phone with the PAWS app

running and also logs the honks and cars with another phone that runs the PAWS

Clicker app. The third user mimicking an inattentive person is like the ground-truth

collector except that he is also listening to music. During this experiment, PAWS

is exposed to about 60 unique vehicles of various types—from trucks and buses to

sedans and SUVs with different speeds and trajectories. Real urban noise, such as

pedestrians, bikers, and wind were also present in the environment. After performing

a sanity check on human-logged data, we realized that there were inconsistencies since

participants have their own perceptions of car locations, and there were human errors

in locating a car on the UI as well. As the distracted user has worse performance than

the other two users, we consider the reports that are consistent in the ground-truth

collector and attentive user’s log and compare the results with PAWS.

The second experiment was performed on a campus street. It had fewer cars, but

the numbers of pedestrians, bikers, and campus buses were higher. The weather was

also windy due to the hurricane season. Because the ground-truth collection with the

PAWS Clicker app proved to be problematic, this time, we used three fixed markers

(yellow cones) on the sidewalk, and every time a vehicle passed a cone, a volunteer

raised a flag and the event was logged in the original PAWS app. The setup is shown

in Figure 3.25. The experiment was repeated multiple times. Each time, the user

faced the road at a different angle, θ, to the accuracy of the direction estimation for

as many different angles (3D cones) as possible.

Table 3.4 provides some statistics of the deployment in both environments. For
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Figure 3.25: Experiment scenario in a campus street.

Table 3.4: Summary of Deployment Events.

Deployment User (Facing Angle) Honks Car Events
City 0°, ±45°, 180° 48 165
Campus 0°, ±45°, 90°, ±135°, 180° 0 97

each one, the table shows how the PAWS user faced the road, and the number of

logged honks and car events. Each honk is logged once, but each car is logged 3-5

times as it passed the participants. Since the second deployment was in a campus,

we could not exercise the honk detection feature of PAWS in this environment.

Results

We measure PAWS’s car-detection accuracy and compare its performance with the

ground-truth collector’s and distracted user’s reports. Figure 3.26 compares the exact

counts of total logged honks and approaching-car events for both environments. We

see that PAWS logged the cars logged by the ground-truth collector, whereas the

distracted participant missed about 26%–36% of them. This shows that PAWS is a
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Figure 3.26: Car-detection performance.

highly efficient system for detecting and alerting pedestrians of approaching cars.

We also compute PAWS’s distance and direction accuracy and show the results

in Figure 3.27 for both environments. We assume that the distances and directions

reported by the ground-truth collector are accurate. Each reported distance and di-

rection is first mapped to the corresponding distance level and direction class and

then compared with PAWS’s classification results to compute the accuracy numbers.

We observe that the overall accuracy of the distance classifier is 86%–87%, and that
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Figure 3.27: Car-localization accuracy.
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Figure 3.28: Accuracy for different directions.

of the two-level direction classifier (left vs. right) is 96%–98.5%. Upon investigating

the cases where PAWS makes mistakes in distance estimation, we notice that the

majority of these are where the car was at the furthest ends of the street. There are

also some cases where a user logged the location to an area close to the boundary

between two classes. Such human errors are also a reason for loss of accuracy. Fig-

ure 3.28 breaks down the direction estimation result for different cones in 360°, with

an average accuracy of 86.7%. This is lower than the left–right detection because

the participants naturally yaw their head about ±22.5° as they stand by the street.

This effect could have been neutralized had we used an IMU to determine the user’s

staring angle with respect to his body. We leave this enhancement for future work.

3.7 Limitations and Future Work

We acknowledge that some scenarios can reduce the accuracy of the current system.

Their effects on the predictions are discussed below.
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Noisy Streets

PAWS is designed to detect the presence of cars in real-world environments. Streets

may contain diverse kinds of noise, some of which are vastly different from those for

which we have trained our system. PAWS should be trained in as many scenarios

as possible to be able to handle these new types of sounds. For now, as a fallback

mechanism, we turn off PAWS when the noise level is high, as described in Section 3.3.

Nearby Cars

The current PAWS design considers only the positions of vehicles relative to the user,

not their trajectories. We can foresee occasions where a pedestrian is walking parallel

to a busy road, and the system is giving warnings, even though the user is not in

danger of being hit. A system to take into account the trajectory of both the vehicle

and the user is under development.

Multiple Approaching Cars

The presence of multiple cars at the same time can impair the localization of vehi-

cles. PAWS localizes the loudest source. However, the loudest source may not be the

most relevant vehicle to the user. Sound-source separation and multiple sound source

localization techniques are being investigated to improve the system.
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3.8 Conclusion

This chapter presents PAWS, a wearable system that uses multiple audio sensors

to protect pedestrians by identifying and localizing approaching vehicles. PAWS is

carefully designed to recognize the honks and noises of an approaching vehicle. Using

machine-learning algorithms, PAWS is able to identify honks and tire/engine sounds

with greater than 80% precision and 90% recall. It further provides feedback on the

azimuth of the sound source with up to 99% accuracy and predicts the distance from

the user with up to 94% accuracy. As technology evolves and new distractions and

dangers permeate modern cities, innovative safety systems must and will arise as

solutions to balance the common citizen’s welfare.
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Chapter 4

A Sub-100nW Three-Channel

Time-Delay-to-Digital Converter

4.1 Introduction

In a cyberphysical system (CPS), data converters are key blocks connecting the digital

signal-processing or control blocks to the real world by encoding the sensors’ responses

Figure 4.1: This work in the DIKW processing flow. The analog-to-feature converter,
here exemplified as time-delay-to-digital converter, combines in a single block the
analog–digital domain conversion and an increment in meaning of the resulting data.
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into a format that can be easily manipulated by the digital blocks. In a CPS with a

machine-learning classifier back end, the digital back end is only interested in the fea-

tures present in the sensor signals. A traditional analog-to-digital converter (ADC),

however, converts the complete, raw sensor signal into a digital signal which is then

processed by digital feature-extraction blocks. In the analog-to-feature approach the

sensor interface is specifically optimized to extract the features in the analog domain

and only digitizes those features, as shown in Figure 4.1. In this chapter, we demon-

strate the analog-to-feature approach in the context of a sound-source localization

CPS detecting cars.

Vehicle awareness systems are of significant interest to the smart-city community

[65, 30]. The ability to localize vehicles in an urban area can be the first step to

reducing the number of traffic accidents involving pedestrians. Large-scale systems,

integrated in traffic lights or in smart vehicles, use various techniques to detect cars:

from LIDAR [35, 17] to stereo vision [11] to radio-frequency networks [8]. Such sys-

tems, however, must have access to large power sources, either the vehicle’s battery

or the power grid. Designing a wearable vehicle-aware system powered only by small

batteries and with a reduced physical footprint [27] is still technically challenging.

Audio-based integrated systems have demonstrated encouraging progress towards

reaching ultra-low power consumption [37, 62], since the low frequency of the acous-

tic signal allows the integrated circuits to operate with a reduced clock frequency and

supply voltage.

Time-delay estimations (TDE) are used to extract the arrival-time difference be-
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Figure 4.2: Example of how polarity-coincidence-correlation, adaptive, time-delay es-
timation (PCC-ATDE) can be used to simplify a sound-source-localization IoT sys-
tem. PCC-ATDE is used to directly extract to digital the arrival-time difference be-
tween the analog signals of the microphones domain. It uses significant fewer resources
than traditional approaches like generalized cross-correlation phase transform.

tween microphones in sound-source-localization systems [31, 29, 13, 22]. The standard

approach uses a direct cross-correlation (DCC) function. For each TDE, time frames

of the input signals are stored and all the points of the DCC function are calculated.

The argument of the maximum DCC corresponds to the intersignal time delay. With

a sampling frequency above 50kHz, the storage of the frames and the arithmetic op-

erations to calculate the DCC values are a roadblock to achieving a submicrowatt

implementation [29] as is needed in mobile, wearable, or IoT applications.

The low complexity of adaptive time-delay estimation (ATDE) techniques, such
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as least-mean-square TDE (LMS-TDE) [69], makes them an attractive approach, but

they still require a high-resolution ADC after the sensors. The bio-inspired silicon

cochlea in [81] estimates the time difference by translating the audio stimulus into

asynchronous events, but its power consumption is still in the microwatt range.

We present a 78.2nW 50kHz time-delay-to-digital converter with four audio in-

put channels and three 8-bit delay outputs [26]. The presented architecture requires

neither a multi-bit ADC, memory blocks to store frames or intermediate results, nor

any computationally expensive algorithm.

Section 4.2 presents the negative-feedback tracking-loop architecture of the pro-

posed TDE. Section 4.3 analyses the discrete-time implementation of the method.

Section 4.4 introduces a delay-domain model of the loop, used in behavioral simula-

tions to analyze and validate the proposed method. Section 4.5 describes the silicon

implementation of the ultra-low-power TDE prototype, and its characterization is

presented in Section 4.6. Section 4.7 compares our performance to previous work.

The prototype is used to build a sound-source localization system, tested in Sec-

tion 4.8 in a controlled indoor environment, and used in Section 4.8 to detect the

bearing of approaching cars on the streets of New York city.

4.2 Feedback Time-Delay Estimation

When designing a TDE block, the considerations for selecting the sampling frequency

are different from other feature-extraction blocks, where it is typically set by the signal
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bandwidth. In a TDE, the sampling frequency of the data converters, FS, defines the

resolution. In this work, we support a −1ms to 1ms delay range with 8-bit resolution

for noise-like sources with dominant spectral components below 250Hz (noise from

approaching automobiles or other vehicles). For that case, the audio signal needs to

be sampled at > 50kHz, ∼ 100× the Nyquist rate.

TDE with Direct Cross-Correlation

Consider the outputs of two microphones, M1(t) and M2(t) at different positions in

space, which capture the signal of a single source x(t):

M1(t) = x(t) + n1(t) (4.1)

M2(t) = (1 + ϵ) · x(t−D) + n2(t) (4.2)

where D is the time delay the algorithm must determine, n1(t) and n2(t) are random

noise, and ϵ is the gain (or attenuation) difference in the microphones. The estimation

of D requires computing the direct cross-correlation

DCCM1,M2(τ) =
1

T

∫ T

0

M1(t).M2(t− τ)dt (4.3)

for many different τ and then determining the argument of the peak:

D = argmax(DCCM1,M2(τ)) (4.4)
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There are multiple ways to compute DCCM1,M2(τ): in the time domain, in the fre-

quency domain, or by applying weighting functions to emphasize the peak as done in

the generalized cross-correlation phase transform method (GCC-PHAT) [13].

TDE with Polarity-Coincidence Correlation

An alternative to reduce the complexity of the DCCM1,M2(τ) calculations is to use

the polarity-coincidence correlation (PCC) function [24]:

PCCM1,M2(τ) =
1

T

∫ T

0

sign(M1(t)) · sign(M2(t− τ))dt. (4.5)

It has been proven [76] that

PCCM1,M2(τ) =
2

π
sin−1

(
DCCM1,M2(τ)

max(DCCM1,M2(τ))

)
. (4.6)

Hence, argmax(PCCM1,M2) = argmax(DCCM1,M2). Note that the computation of

PCC requires only one-bit signals, in contrast to DCC which requires multibit signals.

The one-bit quantization of the PCC also makes it less sensitive to the microphones’

gain difference ϵ.

Regardless of how you obtain DCCM1,M2(τ) or PCCM1,M2(τ), their computation

involves storing a large frame of bothM1(t) andM2(t). FindingD requires calculating

and storing the cross-correlation for the various τ within the TDE range and, finally,

searching for the argument of the peak.
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Figure 4.3: Simplified block diagram of the negative-feedback tracking loop used by
the PCC-ATDE loop to estimate the intersignal delay ∆.

Polarity-Coincidence, Adaptive, Time-Delay Estimation

We present the polarity-coincidence-correlation, adaptive, time-delay estimation

(PCC-ATDE) approach. The PCC-ATDE uses only two values of the PCC function

to close a negative feedback loop that continuously tracks the intersignal delayD. Fig-

ure 4.3 illustrates the principle of the PCC-ATDE. Two points of the PCCM1,M2(τ)

are calculated, one with argument ∆, marked with a red square, and the other at

∆+ τfix, marked with a blue circle.

To search for D = argmax(PCCM1,M2), the loop takes the difference between the

two PCCM1,M2 values. Figure 4.4 presents three possible cases. If the current ∆ is

sufficiently close to the argument of the peak, the difference between PCCM1,M2(∆)

and PCCM1,M2(∆+ τfix) indicates whether ∆ is smaller or larger than the argument

of the peak. The integrator will continuously increase or decrease the value of ∆

until PCCM1,M2(∆) and PCCM1,M2(∆ + τfix) have equal values, locking the loop at

∆ = D − τfix/2, which gives a measurement of the desired intersignal delay, D. The

attenuator 1/G sets the speed and bandwidth of the loop. Section 4.4 details its effect

on the TDE. A practical problem for the architecture in Figure 4.3 is that to calculate
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delayed by D = 1.2ms. Marked as red triangles and blue circles are three possible
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Figure 4.5: Block diagram of the proposed PCC-ATDE loop.

the PCCM1,M2 value pair, the system must store a large frame of each input signal.

The block diagram in Figure 4.5 shows how PCCM1,M2(∆) and PCCM1,M2(∆ +

τfix) can be extracted in the PCC-ATDE without storing signal frames. The analog

microphone signals are connected directly to a comparator acting as a 1-bit ADC.

Then each signal goes through a variable-delay cell, τvar1 and τvar2:
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M1d(t) = sign(x(t− τvar1) + n1(t− τvar1)) (4.7)

M2d(t) = sign((1 + ϵ) · x(t− τvar2 −D) + n2(t− τvar2))

As shown in Figure 4.6, the variable delays, τvar1 and τvar2, are defined such that

∆ = τvar2 − τvar1. Since a variable-delay line can only introduce positive delay val-

ues, an offset τoffset is added such that τvar1 and τvar2 are always positive. When the

loop settles, ∆ corresponds to the time-delay estimation between the inputs and can

assume both positive and negative values depending on which input is ahead.

Next, M1d(t) and M2d(t) are multiplied to create VMIXER1(t). The average of

VMIXER1(t) is the same as PCCM1,M2(∆):

1

T

∫ t

t−T

VMIXER1(t)dt =
1

T

∫ t

t−T

sign(M1(t)) · sign(M2(t−∆))dt

:= PCCM1,M2(∆) (4.8)

M2d(t) is further delayed by a fixed value, τfix, and then multiplied by the upper

:2

       

       

     

     

 

Figure 4.6: Block diagram of how τvar1 and τvar2 are obtained from∆. τoffset guarantees
that neither assume negative values.
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branch to create VMIXER2. The average VMIXER2 is PCCM1,M2(∆ + τfix).

Note that the averages of the multiplier’s output, VMIXER1 and VMIXER2, need

not be explicitly calculated. The loop integrator providing a low-pass feedback loop

performs the averaging and attenuates the higher frequency components. 1/G controls

the loop bandwidth, guaranteeing that the average value is properly calculated.

4.3 Discrete-Time PCC-ATDE Loop

So far, we have presented a continuous-time PCC-ATDE loop. However, realizing

programmable variable-delay lines for audio signals is very difficult; Implementing

a discrete-time realization offers substantial design simplifications because it only

requires conventional building blocks typically available in a signal-processing library.

Figure 4.7 shows a discrete-time realization of the PCC-ATDE loop outlined in

Figure 4.5. The output ∆[n] at time step n is given by

∆[n] = ∆[n− 1] +
1

G
· (Mixer2[n]− Mixer1[n]). (4.9)

As in (4.8), since τvar1[n] − τvar2[n] = ∆[n], we can show that the average value of

Mixer1 is the same as PCCM1,M2(∆):

1

T

n∑
k=n−T

Mixer1[n] =
1

T

n∑
k=n−T

sign(M1[k − τvar1[k]]) · sign(M2[k − τvar2[k]])

:= PCCM1,M2(∆[n]). (4.10)
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Figure 4.7: Block diagram of the discrete-time implementation using latched com-
parators, digital delay cells, XORs, adders, and dividers. The two shaded areas have
different functionalities: The section on the left is used to add a delay of ∆[n] to
the microphone signals. On the right is part of the loop responsible Fx,x, which is a
function of the intersignal time-delay of its input.

Consequently, the average of Mixer2 = PCCM1,M2(∆+ τfix). Since the average values

of both Mixer1 and Mixer2 are functions of ∆, and assuming PCCM1,M2 and τfix are

static, the average of Mixer2[n]− Mixer1[n] is FM1,M2(∆[n]):

1

T

n∑
k=n−T

[Mixer1[n]−Mixer2[n]] = PCCM1,M2(∆[n] + τfix)− PCCM1,M2(∆[n])

= FM1,M2(∆[n]). (4.11)
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Figure 4.8: Simulated results of M1(t) and M2(t) and the resulting Mixer1[n] −
Mixer2[n], a fast-switching signal with much higher frequencies than the PCC-ATDE
loop. Its average, FM1,M2(∆), is a function of the microphones’ intersignal delay.

Figure 4.8 shows a simulated example of Mixer2[n]−Mixer1[n] a fast-switching digital

signal that can only assume values {−2, 0, 2}. Its AC components can be expressed as

e[n] and will be attenuated by the PCC-ATDE loop’s much lower cut-off frequency.

Rewriting Mixer2[n]− Mixer1[n] as its DC and AC components, we have

Mixer2[n]− Mixer1[n] = FM1,M2(∆[n]) + e[n]. (4.12)

We can now substitute FM1,M2(∆[n]) and e[n] in (4.9):

∆[n] = ∆[n− 1] +
1

G
· FM1,M2(∆[n]) +

1

G
· e[n]. (4.13)
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e[n] does not introduce a DC error in ∆[n], but contributes as noise at the output. If

we neglect e[n] and focus on the loop’s low-frequency output, we obtain a nonlinear

feedback loop that continuously adjusts ∆[n] to keep FM1,M2(∆[n]) = 0.

4.4 Discrete-Time PCC-ATDE Loop Analysis

We now analyze the PCC-ATDE loop’s behavior. We focus specifically on the case

where M1(t) and M2(t) come from the same source x(t), but are differentially delayed

due different signal paths to the microphones as expressed in (4.1) and (4.2).

Delay-Domain Model

Based on (4.13), we now propose a delay-domain model to predict the behavior of

the PCC-ATDE loop. Similarly to phase-locked loops (PLL), the PCC-ATDE oper-

ates across multiple domains. Like phase-domain models used to analyze and design

PLLs, a delay-domain model can assist in the PCC-ATDE design. In a PLL, the

swap between the time domain and phase domain is accomplished by the phase de-

tector (PD). It takes the reference and VCO signals as inputs and outputs a value

corresponding to their phase difference. In the PCC-ATDE, the function FM1,M2(∆)

is responsible for the domain swap. The value of FM1,M2(∆) is directly dependent on

the difference between the estimated time delay, ∆, and the intersignal time delay

from the microphones D.

Since the only correlation between M1(t) and M2(t) comes from the source x(t),
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the PCC function betweenM1 andM2 can be approximated by the auto PCC function

of x(t) shifted by the intersignal delay D:

PCCM1,M2(∆) ≈ PCCx,x(D −∆). (4.14)

We can use this approximation as the explicit contribution of the microphone delay

D to the values of FM1,M2 , resulting in the function Fx,x:

FM1,M2(∆) ≈ PCCx,x(D −∆− τfix)− PCCx,x(D −∆)

= Fx,x(D −∆) (4.15)

The approximation in (4.14) and Fx,x are illustrated in Figure 4.9. Examples of

PCCM1,M2 and PCCx,x are overlapped for a band-limited noise x(t) and a sinu-

soidal x(t). Next to each of them is the resulting Fx,x(D −∆). Notice that Fx,x only

depends on the source signal x(t) and the fixed delay τfix. Since it is defined by the

difference of two PCCx,x values spaced by τfix, it can be understood as the derivative

of PCCx,x.

Introducing Fx,x into (4.13), we now have a direct relation between the output of

the loop, ∆[n], and the intersignal delay, D, that was previously implicit in FM1,M2 :

∆[n] = ∆[n− 1] +
1

G
· Fx,x(D −∆[n]) +

1

G
· e[n] (4.16)

Using (4.16) provides the delay-domain model in Figure 4.10. This model is a power-
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Figure 4.9: Simulated PCCM1,M2 , PCCx,x, and Fx,x for band-limited noise and sinu-
soidal source signal x(t). PCCM1,M2 peaks at the intersignal delay D, while PCCx,x

always peaks at 0, both with similar shape since the only correlated factor of M1 and
M2 is x(t). Fx,x is the derivative of PCCx,x.

ful tool for the extraction of the system’s transient and steady-state responses, and

also to determine the boundaries for the loop’s correct functioning. The low number

of elements in the model and the first-order negative-feedback architecture create a

misleading impression that the PCC-ATDE will follow a conventional analysis. The

nonlinear, x(t)-dependent function Fx,x is a complex mathematical element that af-

fects all the system parameters, from the range of converter to the settling time and

bandwidth.
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Figure 4.10: Delay-domain model of the PCC-ATDE. The input for this models is the
intersignal time delay between the microphones D[n]. Since Fx,x is the DC component
of an operation, the remaining undesired high-frequency components are expressed
as an error, e[n].

Analog Input Bandwidth and Converter Range

To maintain the negative feedback and guarantee convergence to the correct time-

delay estimate, Fx,x[D−∆] has to have positive values for ∆ < D and negative values

for ∆ > D. Since Fx,x(D−∆) is defined as the difference of two consecutive values of

PCCx,x(τ), see (4.15), the equivalent condition is that the derivative of PCCx,x(τ) is

positive for positive τ and negative for negative τ .

Figure 4.11 shows the PCCx,x(τ) of band-limited noise signals. The local minima

that limit the convergence condition for the PCC-ATDE, are indicated as τMAX away

from the peak of PCCx,x(τ) at τ = 0. Higher bandwidth analog input signals have

their local minima closer to the origin, so they have a smaller τMAX.

To define a range for the system, we must ensure that any possible time delay

between the input signals D differs from any current output values ∆[n] by less than

τMAX:

|∆[n]−D| < τMAX. (4.17)
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Figure 4.11: Example of the resulting PCCx,x(τ) for inputs x(t) with different band-
width. τMAX indicates, for each bandwidth value, the maximum difference between
∆[n] and D[n] that the PCC-ATDE can tolerate and still correctly track the delay.

This is an important design parameter for sound-source localization systems, where

the maximum time delay between the input signals is limited by the spacing of the

microphones. If the microphones are separate by approximately 35cm, the intersignal

delay will be always |D| < 1ms. Applying a boundary to the output |∆| < 1.5ms

will guarantee that the loop stays within the covered range for x(t) sources with

bandwidth lower than 200Hz that has a τMAX > 2.5ms. Low-pass filters can be used

before the PCC-ATDE to limit the bandwidth of x(t).

Response to a Step in the Intersignal Time Delay

As highlighted in the delay-domain model, the input to the PCC-ATDE feedback

loop is the intersignal time delay D of the analog signals M1(t) and M2(t). Hence, to

analyze the system’s step response, we vary the delay between two identical 200Hz
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Figure 4.12: Step response of the time-delay-to-digital converter with different step
amplitudes. Colored continuous lines represent experimental data and dashed lines
are simulated using the delay-domain model. The close match of the results validate
the delay-domain model’s transient response.

band-limited signals applied to the microphone inputs. Figure 4.12 shows the step

responses simulated with the proposed delay-domain model when steps of 0.3ms,

0.6ms, 0.9ms, 1.2ms, and 1.5ms are applied in the time delay two seconds after the

beginning of the simulation. The experimental data is also shown and will be discussed

in Section 4.6.

The settling times of the responses vary from 0.36s for a 0.3ms step to 1.72s for

a 1.5ms step and depend on the step amplitude. Looking back at the delay-domain

model, Figure 4.10, we see that this behavior comes from the slope limitation caused

by the nonlinear element, Fx,x:

∆[n]−∆[n− 1] =
1

G
· Fx,x(D −∆). (4.18)
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Figure 4.13: Isolated 2.4ms step. The colored continuous lines represent experimental
data and the dashed line is simulated using the delay-domain model. The large step is
used to highlight the effect of Fx,x, illustrated inside the dashed box, on the transient
response. At t = 5s, D −∆ = 2.4ms making Fx,x very small. As shown by the gray
dot in the plot, this reduces the output’s slope.

For small amplitudes of D − ∆, we can approximate Fx,x as a step function, in the

case of this simulation with limits ±0.004TLSB. TLSB is defined by the PCC-ATDE

sampling frequency as 1/Fs. With that assumption, we can use (4.19). Using G = 4

and |Fx,x| = 0.004TLSB, we can calculated a settling time of Tset = 0.3s for the input

step Astep = 0.3ms, fairly close to the measured result.

Tset =
|Astep| ·G
|Fx,x(0)|

(4.19)

As the amplitude of the input step increases, the shape of Fx,x will affect the

settling time of the system. To show that, a similar plot with an isolated 2.4ms step

is presented in Figure 4.13. In a large step, the initial value of Fx,x(D −∆) is small,
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so the slope of the curve is also small. As ∆ gets closer to D, Fx,x(D−∆) approaches

its maximum, increasing the slope of the TDE.

Both properties of the step response, namely the amplitude-dependent response

time and its overall shape, are captured by the delay-domain model.

Response to a Sinusoidally Varying Intersignal Time Delay

Next, sinusoidal variations on the analog signals’ intersignal time delay are applied to

verify the PCC-ATDE’s steady-state response. As with bang-bang PLLs [74] and slew-

limited amplifiers [3], the slope limitation caused by the nonlinear element is expected

to affect the PCC-ATDE’s steady-state response. In the steady state, assuming the

PCC-ATDE is able to track the input, the loop operates around ∆[n] − D[n] = 0,

allowing us to predict the a maximum increment the loop is able to track:

max(|∆[n]−∆[n− 1]|) = 1

G
· |Fx,x(0)|. (4.20)

The loop can handle a high-frequency signal with low amplitude, but will distort large

low-frequency signals. If we assume a sinusoidal input for the intersignal delay, we

can use (4.21) to calculate maximum amplitude–frequency product before we reach

slope saturation:

max(2π · fdelay · Adelay) =
1

G
· |Fx,x(0)|. (4.21)

Figure 4.14 shows the outputs from three 0.25Hz sinusoidal intersignal time-
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Figure 4.14: Steady-state response of the PCC-ATDE for sinusoidal delay inputs with
three different amplitudes and the same frequency. Colored continuous lines represent
experimental data and dashed lines are simulated using the delay-domain model. The
response to high-amplitude signals are distorted due to the slope limitation.

delay inputs with different amplitudes. For this simulation G = 4, and |Fx,x(0)| =

0.004TLSB. The continuous lines are measurement data, and the dashed lines are the

results simulated with the delay-domain model. Only the signal with Adelay = 0.3ms is

correctly tracked by the PCC-ATDE; the slope overload clearly distorts the other two

responses where the amplitude–frequency product exceeds 0.001. The delay-domain

model is also able to faithfully capture the loop’s steady-state response.

Using the maximum allowable rail-to-rail amplitude (AMAX) in (4.21) we can find

the PCC-ATDE’s power bandwidth (PBW):

PBW =
1

G
· |Fx,x(0)| ·

1

2π · AMAX
. (4.22)
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Figure 4.15: Block diagram of the CMOS prototype. The system has two main
blocks: four latched comparators that receive the input from the microphones and
the ultra-low-power core that outputs three digital time-delay values. Subthreshold
level shifters interface the low-voltage signals with the digital I/O pads.

4.5 CMOS Prototype Implementation

Figure 4.15 presents the block diagram of the CMOS prototype of the discrete-time

implementation. The chip has four analog inputs connected to a microphone array.

One of the microphones provides the reference for the time-delay estimation; the chip

outputs the time delay of the other three analog signals relative to this reference

microphone.

Figure 4.16 shows the PCC-ATDE die photo in standard 0.18µm CMOS tech-

nology with a total area of 1mm2. Digital blocks were synthesized from subthreshold

CMOS logic cells and the overall power consumption of the three-channel PCC-ATDE

time-delay estimator is 78.2nW.
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Figure 4.16: Microphotograph of the PCC-ATDE CMOS prototype.

Front-End Comparator

The latched comparator shown in Figure 4.17 is based on [20, 82]. It consumes no

power in reset mode, leading to a total power consumption of 3.1nW per compara-

tor at 670mV when operated at 50kHz. The front end is designed with thick-oxide

transistors for better ESD robustness. It supports differential inputs, but, to simplify

the integration with the off-the-shelf microphones and preamplifiers, it was used in a

single-ended fashion in the final system.
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Figure 4.17: Schematic of the latched comparator. The shaded area illustrates the
microphone connection to the circuit.

Ultra-Low-Power Processing Core

A 0.18µm CMOS technology was selected for its low leakage current, while easily

meeting speed and density requirements. The core of the PCC-ATDE was synthesized

with subthreshold CMOS logic [63, 2]. Reducing the power supply voltage helps to

decrease both dynamic and static power consumption.

The variable-delay cells are implemented with multiplexed chains of 128 flip-flops.

Delays are chosen by selecting a stage of the flip-flop chain. After the 1-bit quanti-

zation, multiplications are computed with XOR logic gates. An extra flip-flop after

the upper multiplexer provides the fixed delay, τfix. A 10-bit register and adder accu-

mulates, and the 1/G attenuation is realized with arithmetic shifts of 0, 1, or 2 bits.

The output is divided by two to evenly distribute ∆[n] to both variable-delay cells.

In the case of a odd ∆[n], one is added to the value of the lower variable-delay cell.
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Figure 4.18: Schematic of the subthreshold level shifter used to convert the 300mv
digital signal from the ultra-low-power core to the 1.8V level of the I/O pads.

Subthreshold Level Shifter

For this experiment, the 300mV signals from the PCC-ATDE core are converted to

1.8V I/O levels with the subthreshold level shifters shown in Figure 4.18. The current-

mirror level shifters [79] guarantee the conversion of the subthreshold logic signals. In

a fully integrated system implementation, these level shifters are not required, so their

power consumption has not been included in the power-consumption assessment.

4.6 Experimental Characterization of the

PCC-ATDE Operation

For the experimental performance characterization, arbitrary waveform generators

(AWG) are used to provide the analog inputs. The AWGs output a 600mVpp 60Hz–

200Hz band-limited noise signal to simulate the sound of approaching vehicles. All
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AWGs are synchronized and under software control so that the delays between them

can be precisely set for accurate measurements. Similar measurements were made to

obtain Figures 4.12–4.14, but, for the characterization plots, the system operates at

the optimal FOM sampling frequency, FS = 50kHz, as shown in Section 4.7.

Step Response

The first measurement, shown in Figure 4.19, is the step response of the PCC-ATDE

with different attenuator (G) values. As illustrated inside the dashed box, the step

function is in the intersignal time delay between the analog inputs. Before the 5s

mark, Input 2 is D = −1ms delayed of Input 1. After the 5s mark, the delay changes

to D = 1ms. The −1ms-to-1ms step response varies from 514ms when G = 1 to 2.05s

when G = 4. As detailed in Section 4.4, the step response is amplitude dependent,

a ±1ms step was used since it fits a reasonable microphone spacing of 35cm for

sound-source-localization devices.

Steady-State Response

The nonlinear, slew-limited behavior does not allow us to provide a straightforward

number for the PCC-ATDE’s bandwidth. Instead, we use the power-bandwidth, also

known as full-power bandwidth, to characterize the system. It is defined by the maxi-

mum frequency of a rail-to-rail input the loop can handle. The calculated PCC-ATDE

power-bandwidth (4.22) with a ±2.52ms range is 0.252Hz, 0.126Hz, and 0.063Hz, for

G = 1, G = 2, G = 4.
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Figure 4.19: Measured PCC-ATDE ±1ms step responses. As shown in the shaded
area, the step is in the intersignal time delay, not in amplitude. The dashed lines
shows the delay switching from D = −1ms to D = 1ms at the 5s mark. The step
response for the same input changes with the attenuation value, G from 514ms to
2.049s.

Linearity

The rail-to-rail pure-tone response is plotted in Figure 4.20 and is used to extract the

expected number of bits (ENOB), 5.41bits to 6.06bits.

We also conducted static linearity tests. The y-axis of Figure 4.21 shows the

digital codes obtained for analog inputs delayed by the corresponding x-axis values.

The algorithm’s clock improves linearity with a peak INL of −1.57/1.33LSB and peak

DNL of −0.85/0.97LSB with TLSB = 20µs with no need for calibration.
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ENOB

G=1 5.414

G=2 5.544

G=4 6.056

Figure 4.20: Steady state measurement used for ENOB calculations. A low-frequency
rail-to-rail input was used to avoid slope saturation as detailed in Section 4.4.

4.7 Performance Comparison

Power Consumption Figure of Merit

To establish a metric that captures most of the PCC-ATDE’s design aspects, we use

a figure of merit (FOM) similar to that to compare ADCs:

FOM =
Power

#channels · 2ENOB · Fs

(4.23)

The plot in Figure 4.22 shows the comparator’s and ultra-low-power core’s contribu-

tion to the FOM at frequencies from 10kHz to 800kHz. In each of the measurements,

the power supply was adjusted to its minimum value to sustain normal operation at
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INL DNL

G=1 -1.57/1.19 -0.85/0.97

G=2 -1.39/1.24 -0.74/0.45

G=4 -1.39/1.33 -0.82/0.48

Figure 4.21: Linearity plot of the PCC-ATDE. The continuous black line is the ideal
linear response. The dashed gray line is the measurement data. The colored areas
around the plot are 3σ regions for different attenuation values, G.

the given Fs. Running at Fs = 50kHz the system’s FOM reaches an optimal value of

7.84fJ/Conv.-Step. Operating with higher clock frequencies reduces TLSB and can be

used to enable TDoA calculation in higher frequency applications, such as ultrasound.

Comparison to the State of the Art

The LMS-TDE is the most commonly implemented adaptive time-delay estimation.

Yet, to the best of our knowledge, no silicon implementations are available in the open

literature. Details on the performance of the LMS-TDE were extracted from simula-

tions presented in [69]. Similarly to the PCC-ATDE, the LMS-TDE uses feedback to

perform the time-delay estimation, but the algorithm still requires a front-end ADC

to capture microphone audio and significantly more arithmetic operations.
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Figure 4.22: Figure of merit (FOM) plot over sampling frequency. The selected FOM is
plotted as the clock frequency of the system is changed. For each FOM measurement,
the supply voltages of the blocks are adjusted to the minimum possible value to
sustain correct operation.

Cross-correlation based time-delay estimation is the conventional approach. Time-

delay estimation is presented in 0.18µm, CMOS with subsample (TLSB < 1/FS) [29].

To store the audio frames and intermediate results from the algorithm, this solution

uses 20kB of memory, in contrast with the 257 DFF required by the PCC-ATDE.

The calculations also involve taking the FFT and iFFT of 1,024-point vectors that

are much more complex than the basic XORs and adders present in the PCC-ATDE.

The result is a normalized area more than six times larger and a power FOM 105×

higher than for the PCC-ATDE.

The binaural silicon cochlea uses address-event representation (AER) to estimate

the time delay between microphones [47]. The AER also provides information on the

spectral content, and more recent work on AER silicon cochlea has been published
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Table 4.1: Comparison table of low-power sound-source-localization solutions. High-
lighted are the parameters in which this work excels: low arithmetical complexity;
low power per conversion step; and small normalized area.

[81, 4], but the selected paper [47] has more details on its sound-source localization

performance. The silicon cochlea needs many operations to convert the AER into a

time-delay estimation. Combined with the AER circuitry, the solution is still more

than four times as large as the PCC-ATDE and has 104× the power FOM.
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[This Work]

[Shih-Chii Liu, 2014]

[D. Halupka, 2005 ]

Figure 4.23: Comparison plot of previous sound-source localization solutions. The
power FOM of the solutions are plotted versus the prototypes’ normalized areas.

4.8 Sound-Source-Localization Experiments

Sound-Source Localization in an Controlled Environment

All previous experiments prove that the PCC-ATDE is able to extract the intersignal

time delay from two analog inputs. But, to deploy this technique in a sound-source-

localization system, we needed to verify if second-order effects, such as reverberation

or mismatches in microphone responses, would affect system operation. We conducted

experiments with microphones and speakers and with real-life audio inputs on the

PCC-ATDE.
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Figure 4.24: Setup used to compare the performance of the PCC-ATDE prototype
and traditional time-delay estimation techniques. On the left, the diagram shows how
the sound-source rotates around the microphone pair. On the right is a photo of the
experimental setup.

TDE Performance Comparison

In this experiment, we compared the results of time-delay estimations using the PCC-

ATDE prototype and a standard GCC-PHAT approach. Figure 4.24 shows the setup

used in the experiment. A single sound source playing a band-limited white-noise

recording is placed near a microphone pair. The TDoA of the sound wave from the

speaker to each microphone causes the time delay between the analog inputs. The

sound source rotates around the microphone pair, and, for each angular position, the

delay estimations from the PCC-ATDE device under test (DUT) and 400ms frames

from both analog signals are collected. The experiment was conducted in a 4m-by-6m

closed room without acoustic isolation. However, when the microphones were close

to the walls, a piece of acoustic foam was used to reduce reverberation.

Figure 4.25 presents the results of the experiment. The delay acquired from the

PCC-ATDE DUT and using a GCC-PHAT algorithm with the collected frames are
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Figure 4.25: Time-delay estimation results from the PCC-ATDE, in green, and from
GCC-PHAT, in red. The GCC-PHAT time-delay estimation was performed using
400ms sampled at 50kHz by the oscilloscope.

plotted for each incidence angle. The time-delay estimates match closely, with a RMS

error of 37.2µs (or 2.3%).

Sensitivity

The next behavior we investigate is the effect of a second sound source in the time-

delay estimation. We now place two speakers next to the microphone pair, as shown

in Figure 4.26. The speakers are at different positions with distinct TDoAs. The ratio

of speaker power is swept form −20dB to 20dB, the resulting time-delay estimation

is plotted in Figure 4.27.

DA is the expected time-delay estimation if only Source A was present, andDB the

delay with only B. The final result leads to a empirical observation that the resulting

time-delay estimation (DOUT) can be expressed as the average of the individual delays
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Figure 4.26: Setup used to measure the effect of an interfering sound source in the
PCC-ATDE estimation. The diagram at left shows two sound sources with unique
TDoAs playing uncorrelated recordings with different power.

Figure 4.27: Measured time-delay estimation of the PCC-ATDE prototype as function
of the relative power of two interfering sound sources. Inside the box is an empirical
expression for the resulting delay.

weighted by their relative powers:

Dout =
DA · PA +DB · PB

PA + PB
(4.24)
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Figure 4.28: Vehicle-bearing experiment. Inside the yellow box is the approaching car
the system is detecting. The red box marks the pyramid microphone array; and the
blue box shows the PCC-ATDE DUT PCB.

Estimating a Vehicle’s Bearing on a City Street

Finally we integrated the PCC-ATDE DUT into an IoT embedded system for vehicle-

bearing estimation with the four microphones in a pyramid structure connected to

the DUT. We used a microcontroller only to interface the digital output of the time-

delay-to-digital converter to a host computer.

Figure 4.28 shows a photo of the setup in the New York street where the exper-

iment was conducted. We placed the system in a one-way street between two busy

avenues and measurements were conducted during regular hours of a weekday.

The TDoA of the vehicle’s noise to each microphone varies as the car moves

from right to left past the array. This is captured by the three extracted intersignal

time-delay estimations of the PCC-ATDE plotted in Figure 4.29.

Running on a host computer, a k-nearest neighbors (KNN) [43] machine-learning

classifier is used to convert the time-delay data into incidence angles in real time.
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Figure 4.29: Three measured channels of time-delay estimation using the PCC-ATDE
embedded setup. The measured delays are caused by an approaching car’s noise in
the experiment illustrated in Figure 4.28.

Even though the classifier was trained indoors, with car-sound recordings playing at

different incidence angles from the array, it was able to track the vehicle accurately.

Figure 4.30 shows the recorded real-time output of the KNN classifier changing from

0° when the car is on the right side of the microphone array to 180° after it crosses

to the left in with a 30° resolution.

4.9 Conclusions

By condensing the traditional ADC–DSP processing chain in an analog-to-feature

converter, we reduce the power consumption to less than 100nW, four orders of mag-

nitude less than conventional techniques. Our analog-to-feature converter, prototyped

in 0.18µm CMOS, successfully estimates the time delay under all tested conditions.

We carefully analyzed the behavior of the proposed PCC-ATDE, and introduced a
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Figure 4.30: Output of the KNN classifier for the vehicle-bearing estimation. With
the time delays shown in Figure 4.29, the classifier predicts the incidence angle of the
sound waves, 0° for a wave hitting from the right and 180° from the left.

simplified delay-domain model that allows us to accurately predict the behavior of

the time-delay estimator.

This mixed-signal approach to obtain features in cyberphysical systems is promis-

ing for resource constrained solutions, especially for always-on battery-powered sys-

tems. Even though the PCC-ATDE was demonstrated in a sound-source-localization

system, the technique can be applied on other systems that use time-delay estima-

tion, and it should especially be considered if the required TLSB is very small and the

frequency of the analog input signals is low.
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Chapter 5

An Ultra-Low-Power

Envelope-to-Digital Converter

5.1 Introduction

After being able to extract the intersignal time delay between the microphones using

less than 100nW, the next feature that is investigated in this work is the relative

power between the microphones. Just as the intersignal time delay maps to the ITD

in the source-localization contest detailed in Chapter 2, the relative power can be used

to extract the ILD. For that, an collaborative investigation with Erjia Shi and Prof.

Kong Pang Pun was started to the develop an ultra-low-power solution to extract the

envelope of an audio signal, and its initial results are presented at [67].

In this chapter, we use the analog-to-feature approach to develop an envelop-to-

digital converter (EDC). Unlike conventional solutions that digitize the signal at the

Nyquist rate and later extract the envelope amplitude, we isolate the signal envelope

and then use an ADC at a much lower sampling rate to convert the result, as shown in

Figure 5.1. Other options—diode-based rectifiers [52] or class-AB current conveyors

[62]—could extract the envelope effectively, but their integration is challenging due
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Figure 5.1: (a) Nyquist-rate ADC solution. (b) Analog-to-feature solution. With the
envelope isolated from the signal, the ADC’s required sample rate drops significantly.

to the large capacitors required for low-frequency envelopes. They are also unfit for

low-power, low-voltage designs: They need large bias voltages to turn on their diodes

[52] and considerable power to drive their large load capacitors [62, 64].

5.2 Envelope-to-Digital Converter

Figure 5.2 presents the proposed solution for the ultra-low-power EDC. The circuit

is divided in two main sections, a switched-capacitor (SC) envelope detector and a

low-frequency low-power SAR ADC. Even though the blocks are clearly separated in

the diagram, they work inseparably, interchangeably sharing each element to avoid

using a buffer.

SC Envelope Detector

The basic blocks required for an analog envelope detector are a nonlinear element,

such as a diode or a squarer, and a low-pass filter. The proposed envelope detector,
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Figure 5.2: Block diagram of the envelope-to-digital converter. The dashed lines mark
the boundaries of the integrated circuit. The switched-capacitor envelope detector and
the low-frequency SAR ADC sections are marked with different colors.

shown in Figure 5.3, uses a comparator-based polarity detector as the nonlinear el-

ement. It rectifies the signal by steering the input of the circuit Vin to the upper or

lower branch based on its polarity. For the filtering, each branch has a SC first-order

low-pass filter. The SC envelope detector must operate at the Nyquist rate or higher,

but its power consumption is much less than a complete ADC operating at the same

rate. The comparator used in the envelope detector is similar to the comparator pre-

sented in Section 4.5. The signal from the microphone Vin is AC-coupled and all the

analysis is referred to VCM, such that Vin · sign(Vin) = |Vin|.

The timing diagram of the SC envelop detector is shown in Figure 5.4. The clock

signal ϕ1a, not shown in the diagram, is slightly advanced from ϕ1. At ϕ1, The polarity

of the input signal will determine which sampling capacitor CS will be charged. Later,

at ϕ2, the charge of each CS is shared between CS and CH. Note that CS is refreshed

every ϕ1, but CH will hold the contribution of all previous charge sharing. Looking

at the voltage hold at CH at a given cycle n at the end of ϕ2, we have
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Figure 5.3: Schematic of the switched-capacitor envelope detector circuit. The polarity
detector controls the SC circuit’s input switch together with ϕ1. Vin will charge the
CS of either the top or bottom branch, and the charge sharing with CH will filter out
the high frequencies of the signal at ϕ2.

Figure 5.4: Critical clock signal used in the envelope-to-digital converter.

VCH+[n] =
CS · Vin[n] · (12 +

1
2
· sign(Vin[n])) + CH · VCH+[n− 1]

CS + CH

+
CS · VCH[n− 1] · (1

2
− 1

2
· sign(Vin[n]))

CS + CH
(5.1)
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VCH−[n] =
CS · Vin[n] · (12 −

1
2
· sign(Vin[n])) + CH · VCH+[n− 1]

CS + CH

+
CS · VCH[n− 1] · (1

2
+ 1

2
· sign(Vin[n]))

CS + CH
(5.2)

If we subtract VCH+[n] and VCH−[n], the output of the envelope detector Vout[n] is

Vout[n] =
CS|Vin[n]|+CHVout[n−1]+ 1

2
CSVout[n−1]−Vout,CM[n−1] · sign(Vin[n])

CS + CH
(5.3)

Since the Vin is AC coupled, we expect the common mode of the output Vout,CM[n−

1] to be close to the bias voltage VCM. If we neglect the term with Vout,CM in (5.3),

Vout[n] =
CS · |Vin[n]|+ (CH + 1

2
· CS) · Vout[n− 1]

CS + CH
(5.4)

From (5.4), we see that Vout is the low-pass filtered result of the absolute value of

Vin, with transfer function

Vout

|Vin|
(z) =

1

1 + CH
CS

− (1
2
+ CH

CS
)z−1

(5.5)

We used a 500fF CS and a 12pF CH in this work. The size and ratio of the

capacitors are such that both acceptable thermal noise and sufficient low-pass filtering

are achieved. Theoretically, the envelope detector has an conversion gain of 1.2. For

an input bandwidth up to 5kHz, the envelope-detector sampling frequency is 10kHz.
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Figure 5.5: Schematic of the low-frequency ultra-low-power SAR ADC.

Low-Frequency Ultra-Low-Power SAR ADC

The next step on the EDC is to digitize the voltages stored in VCH+ and VCH−. As

straightforward as this sounds, it is challenging given the sub-10nW power budget

of the solution. Remember that the envelope information is stored in the capacitors;

they are not able to drive conventional low-power ADCs. Adding buffers between

the output of the envelope detector and the ADC input would solve this problem,

but the buffer power itself would exceed the 10nW budget. We solve this problem by

introducing a ping-pong scheme that uses the charge in CS directly as the input to

the ADC.

Figure 5.5 shows the circuit diagram of the 8-bit SAR ADC [37]. During ϕPC, the

binary-weighted DAC capacitors are precharged to a certain DC voltage controlled

by the SAR logic. In ϕEV, the DAC voltage and the sampled signal are subtracted

from the inputs of the comparator, which decides to increase or decrease the SAR

register’s contents. The ADC’s comparator has the same topology as the envelope

detector’s comparator. By slightly delaying ϕEV, the phase ϕCLK is used to control
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Figure 5.6: Illustration of the ping-pong scheme between CS and CS,SAR. CS is used
in the low-pass filtering of the SC envelope detector and constantly refreshed at the
rate of ϕ1. Triggered by ϕ3, the CS that was used in the SC envelope detector and
held the value of the last operation is connected as the input to the SAR ADC, and
the CS,SAR that was being used previously in the SAR ADC replaces CS.

the comparator and SAR logic block. Because the voltages in the sampling capacitors

are rectified, the DAC needs only a unipolar output and uses an asymmetric reference-

voltage scheme.

But, differently from prior works, we do not use the previous stage to charge the

capacitor CS,SAR. Instead, we directly switch, in a ping-pong manner, CS,SAR and

CS from the SC envelope detector. Figure 5.6 details the step-by-step action of the

ping-pong between CS and CS,SAR.

Notice that, as shown by ϕ3 in Figure 5.4, the SAR ADC sampling is much slower

than the SC envelope detector. That can be done because the bandwidth of the

envelope detector is much smaller that the raw input signal itself. The oversampling

ratio (OSR) between the SC envelope detector and the SAR ADC is set to 100,
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determining the overall 100Hz sample rate for the EDC. CS,SAR needs to have the same

value as CS for the ping-pong scheme to be seamless to the SC envelope detector. The

DAC’s unit capacitor is set to 100fF, four times the minimum available value. The

ADC operates at 0.6V except for the SAR logic, which runs at 0.4V to optimize power

consumption at low operating frequencies. VCM for both the SC envelope detector and

the ADC is 0.3V.

Experimental Results

The EDC prototype was fabricated in a 180nm CMOS process. Figure 5.7 shows the

die photograph of the chip, which occupies 0.32mm2 total area. The EDC is designed

to support a wide range of applications with various target frequencies. Hence, a

programmable off-chip microcontroller is employed to generate the clocks. The mi-

crocontroller is sufficiently fast to provide the synchronized clock. Simulations show

that the clock-generation and switch-driving circuits consume a few nanowatts, which

will not dominate the power budget if they are implemented on chip. We tested the SC

envelope detector alone with amplitude-modulated signals. As shown in Figure 5.8,

100Hz and 1kHz carriers are modulated by a 10Hz signal of varying magnitude. The

SC envelope detector tracks the 10Hz sinusoidal envelope and removes the carrier.

It attenuates the carrier more with higher frequency, which is in agreement with the

transfer function described in (5.5). We conducted single-tone tests with a 1kHz pure

sinusoidal signal to examine the accuracy of the SC circuit (Figure 5.9). The SC en-

velope detector achieves an amplitude RMS error less than 1.55mV: The circuit is
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Figure 5.7: Microphotograph of the envelope-to-digital converter CMOS prototype.

Figure 5.8: SC envelope detector outputs for amplitude-modulated signals with dif-
ferent carrier frequencies FC (100Hz/1kHz) and amplitudes (0.6Vp-p/0.2Vp-p).

linear. The conversion gain is 1.2, the same as the theoretical value.

The SAR ADC in this chip can be tested alone by applying an input signal across

the output pins (pads labeled “To off-chip cap” in Figure 5.2) of the SC envelope
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Figure 5.9: Single-tone linearly test of the envelope-to-digital converter.

Table 5.1: Comparison table of low-power envelope extraction solutions.

This work [67] [7] [62] [64] [36] [33]
Application Respiratory Wake-up Bionic Ear EMG ECG Signal

Monitoring Circuit Processor Readout Monitoring Acquisition
Feature Envelope Energy Envelope Envelope Raw ECG Raw Signal
Technology 180nm 90nm 1.5µm 180nm 65nm 65nm
Bandwidth 5kHZ (raw input) 2kHZ 10kHz 500Hz 250Hz 292Hz

50Hz (envelope)
ENOB of ADC 7.1bit N/A N/A 9.2bit N/A 7.14bit
Power 9.6nW * 700nW 875nW 19µW 18.6nW 3nW
Configuration Envelope detector Wake Up Envelope Preamp + Envelope Preamp Preamp

+ ADC ** detector detector detector + ADC + ADC + ADC

* Clock generation is not included. The DAC, SAR logic, and envelope-detector consume 4.8nW, 1.1nW, and 3.6nW,
respectively.

** Preamplifier (Preamp) is not implemented in this work. Estimated from [33], the preamp power is 9nW.

detector. The ADC consumes 6nW at 100Hz sampling rate. We used a 5Hz, 0.59VP-

P sinusoidal wave to test the ADC’s dynamic performance. The ADC achieves a 44dB

signal-to-noise-and-distortion ratio (SNDR), corresponding to a 7.1 ENOB. As the

SC envelope detector is intrinsically nonlinear due to its rectification operation, we

did not characterize the linearity of the entire EDC.

Table 5.1 summarizes the proposed EDC’s performance. The entire EDC con-

sumes 9.6nW with 100Hz ADC sampling. Its energy efficiency compares favorably

with existing circuits for similar applications.
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5.3 Conclusions

The first prototype of the EDC proposed in this work shows promising results. Other

work has demonstrated a respiratory-monitoring application using this ultra-low-

power EDC [67].

The EDC consumes 9.6nW power with a 100Hz output data rate and supports

input bandwidth up to 5kHz. Experimental results show that the EDC is able to

extract envelopes from various respiratory sounds and the respiratory rate can be

successfully computed from the extracted envelopes.

This demonstrates the concept of the analog-to-feature conversion by removing

redundancy in A–D conversion and data transmission and reducing the overall power

consumption of the solution. Which is critical to extending the lifetime of these

always-on, energy-conscious IoT devices.

There is still work to be done on the proposed EDC. Further characterizing and

optimizing the technique may reduce the total power consumption even further. To

close the loop with the initial sound-source-localization motivation for the EDC, the

circuit still needs to be connected to a microphone array and the digital output used

to find the sound source.
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Conclusion

This dissertation has discussed ultra-low-power challenges and solutions for feature-

extraction front-end blocks applied to sound-source-localization IoT embedded sys-

tems. The focus of the research is to take full advantage of the already established

machine-learning digital-signal flow to drive the optimization of data converters. Tra-

ditional data converters are still bounded by the objective of faithfully representing

the analog waveform in the digital domain. But, for machine-learning systems, only

specific characteristics, features, of the signal are used. Digitizing the full content

of the analog signal, just to have a following digital-signal processing block extract

the relevant piece of information, leads to an unnecessary use of power and storage

space. Designing data converters that digitize only the features to be used by the

machine-learning classifiers can drastically reduce the system’s power consumption.

The research started by developing a sound-source-localization end-to-end wear-

able IoT system using off-the-shelf components and the traditional data-converter

approach. The system was designed to tackle a contemporary problem. We devel-

oped a warning system embedded in a headset form factor able to detect and local-

ized approaching vehicles and prevent accidents involving distracted pedestrians in

busy urban areas. A segmented architecture was designed: We connected multiple
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MEMS microphones distributed on the headset to a front-end unit that extracted

the features for sound-source localization and transmitted the data to a smartphone

via Bluetooth. The machine-learning algorithms running on the smartphone detected

the approaching vehicle. To fully develop the motivated system, we also worked on

detecting the presence of a vehicle. For that, we used the smartphone microphone,

developing new spectral features and machine-learning classifiers the detection. Over-

all, the system reliably detected and localized approaching vehicles and provided the

feedback to the user in time.

After developing a sound-source-localization system using traditional feature-

extraction techniques, we choose to investigate the analog-to-feature data converter

approach to extract the intersignal time delay. We presented a sub-100nW, three-

channel time-delay-to-digital converter that combines the low-complexity of the

adaptive time-delay estimator with the theoretical analysis and robustness of cross-

correlation-based approaches. The time-delay-to-digital converter used one-bit quan-

tizers in a negative-feedback architecture to search for the peak of the polarity-

coincidence correlation function. We extensively analyzed the system to understand

its detailed operation, resulting in a multidomain behavioral model that can be used

to quickly predict the solution’s performance. The time-delay-to-digital converter

was built in ASIC and used to implement a much more power efficient sound-source-

localization system, lowering the feature-extraction power consumption from milli-

watt to nanowatt, as illustrated in Fig. 5.10.

After the successful demonstration of the analog-to-feature converter in the ex-
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Figure 5.10: Evolution of the sound-source-localization systems presented in this work.
Chapter 3 is on the left, with an off-the-shelf components and traditional digital-
signal processing solution and a milliwatt-range power consumption; On the right,
is the analog-to-feature solution that uses an ultra-low-power PCC-ATDE ASIC to
drop the power consumption to nanowatts.

traction of the intersignal time delay, the research focused on detecting the envelope of

the audio signal. For that, we presented a sub-10nW one-channel EDC. The EDC com-

bines a SC envelope detector and a low-frequency, ultra-low-power analog-to-digital

converter. To cascade these blocks efficiently, we presented a ping-pong scheme where

the capacitor is shared between the envelope detector and the ADC. The scheme re-

moved the need for a buffer and allowed the ultra-low-power implementation. This

work is still ongoing, more characterization is still needed, but the prototype’s initial

results are encouraging.

Future work to extend this research can be done to fully integrate the time-delay-

to-digital converter and the EDC to the machine-learning processing unit in a single

ASIC. Most of the challenge in applying the presented ASIC in real system is in

interfacing the signals across multiple platforms. The power consumption on these

translations can reduce the benefits of the approach. Having all the signal-processing
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units coexisting on a single ASIC could significantly reduce the power and size of

the system. Another research vector from this work is to use the same analog-to-

feature logic at the transducer driver level. In this work, we used off-the-shelf MEMS

microphones and preamplifers for easy integration, but those are overkill for the time-

delay-to-digital converter for instance, where we only cared about the polarity of the

sound wave. Acoustic transducers with much poorer specifications could have been

designed for in the circuit, saving even more power. This work ultimately pushes the

understanding of the complete signal-processing flow before setting the specifications

of the front-end blocks as the way to break power barriers and enable IoT applications.

111



Bibliography

[1] Joshua Adkins and Prabal Dutta. “Monoxalyze: Verifying smoking cessation
with a keychain-sized carbon-monoxide breathalyzer.” In: Proceedings of the
14th ACM Conference on Embedded Network Sensor Systems CD-ROM. ACM.
2016, pp. 190–201.

[2] Massimo Alioto. “Ultra-low power VLSI circuit design demystified and ex-
plained: A tutorial.” In: IEEE Transactions on Circuits and Systems I: Regular
Papers 59.1 (2012), pp. 3–29.

[3] P. Allen. “A model for slew-induced distortion in single-amplifier active filters.”
In: IEEE Transactions on Circuits and Systems 25.8 (1978), pp. 565–572.

[4] Jithendar Anumula et al. “An event-driven probabilistic model of sound source
localization using cochlea spikes.” In: IEEE International Symposium on Cir-
cuits and Systems. IEEE. 2018, pp. 1–5.

[5] Pradeep K. Atrey, Namunu C. Maddage, and Mohan S. Kankanhalli. “Audio
based event detection for multimedia surveillance.” In: Proceedings of the Inter-
national Conference on Acoustics, Speech and Signal Processing. IEEE. 2006,
pp. V-813–V-816.

[6] Dimitra Azariadi et al. “ECG signal analysis and arrhythmia detection on IoT
wearable medical devices.” In: 5th International Conference on Modern Circuits
and Systems Technologies. IEEE. 2016, pp. 1–4.

[7] Komail M.H. Badami et al. “A 90 nm CMOS, 6µW power-proportional acoustic
sensing frontend for voice activity detection.” In: IEEE Journal of Solid-State
Circuits 51.1 (2015), pp. 291–302.

[8] Carolina Tripp Barba et al. “Smart city for VANETs using warning messages,
traffic statistics and intelligent traffic lights.” In: Intelligent Vehicles Symposium.
IEEE. 2012, pp. 902–907.

112



[9] Billur Barshan and Roman Kuc. “A bat-like sonar system for obstacle local-
ization.” In: IEEE Transactions on Systems, Man and Cybernetics 22.4 (1992),
pp. 636–646.

[10] Durand R. Begault and Leonard J. Trejo. 3-D Sound for Virtual Reality and
Multimedia. San Diego, CA: Academic Press Professional, 2000.

[11] Massimo Bertozzi et al. “Stereo vision-based vehicle detection.” In: IEEE Intel-
ligent Vehicles Symposium. 2000, pp. 39–44.

[12] Nikhil Bhave and Preeti Rao. “Vehicle engine sound analysis applied to traf-
fic congestion estimation.” In: Proceedings of the International Symposium on
Computer Music Modeling and Retrieval and Frontiers of Research on Speech
and Music. 2011, pp. 59–63.

[13] Michael Brandstein and Darren Ward. Microphone arrays: Signal processing
techniques and applications. New York: Springer Science & Business Media,
2013.

[14] Leo Breiman. “Random Forests.” In: Machine Learning 45.1 (2001), pp. 5–32.

[15] Nam Bui et al. “PhO2: Smartphone based blood oxygen level measurement
systems using near-IR and RED wave-guided light.” In: Proceedings of the 15th
ACM Conference on Embedded Network Sensor Systems. 2017, Article 26.

[16] Jin Cao et al. “Fast authentication and data transfer scheme for massive NB-
IoT devices in 3GPP 5G network.” In: IEEE Internet of Things Journal (2018),
pp. 1561–1575.

[17] Z.J. Chong et al. “Synthetic 2D LIDAR for precise vehicle localization in 3D
urban environment.” In: IEEE International Conference on Robotics and Au-
tomation. IEEE. 2013, pp. 1554–1559.

[18] Chloé Clavel, Thibaut Ehrette, and Gaël Richard. “Events detection for an
audio-based surveillance system.” In: IEEE International Conference on Multi-
media and Expo. IEEE. 2005, pp. 1306–1309.

[19] Corinna Cortes and Vladimir Vapnik. “Support-vector networks.” In: Machine
Learning 20.3 (1995), pp. 273–297.

[20] Jan Craninckx and Geert Van der Plas. “A 65fJ/conversion-step 0-to-50MS/s
0-to-0.7 mW 9b charge-sharing SAR ADC in 90nm digital CMOS.” In: IEEE
International Conference on Solid-State Circuits, Digest of Technical Papers.
IEEE. 2007, pp. 246–600.

113



[21] Chacko John Deepu, Chun-Huat Heng, and Yong Lian. “A hybrid data compres-
sion scheme for power reduction in wireless sensors for IoT.” In: IEEE Trans-
actions on Biomedical Circuits and Systems 11.2 (2016), pp. 245–254.

[22] Joseph H. DiBiase, Harvey F. Silverman, and Michael S. Brandstein. “Robust
localization in reverberant rooms.” In: Microphone Arrays. New York: Springer,
2001, pp. 157–180.

[23] Hani Esmaeelzadeh and Sudhakar Pamarti. “18.4 A 0.55 nW/0.5 V 32 kHz
crystal oscillator based on a DC-only sustaining amplifier for IoT.” In: IEEE
International Solid-State Circuits Conference. IEEE. 2019, pp. 300–301.

[24] Antoni Fertner and Anders Sjolund. “Comparison of various time delay estima-
tion methods by computer simulation.” In: IEEE Transactions on Acoustics,
Speech, and Signal Processing 34.5 (1986), pp. 1329–1330.

[25] Daniel de Godoy, Ji Jia, and Xiaofan Jiang. “Demo abstract: RIO-40C-A low-
cost wearable sunlight exposure monitor for skincare.” In: IEEE/ACM Second
International Conference on Internet-of-Things Design and Implementation.
IEEE. 2017, pp. 295–296.

[26] Daniel de Godoy, Xiaofan Jiang, and Peter R Kinget. “A 78.2 nW 3-channel
time-delay-to-digital converter using polarity coincidence for audio-based object
localization.” In: IEEE Custom Integrated Circuits Conference. IEEE. 2018,
pp. 1–5.

[27] Daniel de Godoy et al. “PAWS: A wearable acoustic system for pedestrian
safety.” In: IEEE/ACM Third International Conference on Internet-of-Things
Design and Implementation. IEEE. 2018, pp. 237–248.

[28] Mayank Goel et al. “SpiroCall: Measuring lung function over a phone call.”
In: Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems. CHI ’16. New York, NY, USA: ACM, 2016, pp. 5675–5685. doi: 10.
1145/2858036.2858401.

[29] David Halupka et al. “Robust sound localization in 0.18µm CMOS.” In: IEEE
Transactions on Signal Processing 53.6 (2005), pp. 2243–2250.

[30] Gerhard P. Hancke, Bruno de Carvalho Silva, and Gerhard P. Hancke Jr. “The
role of advanced sensing in smart cities.” In: Sensors 13.1 (2012), pp. 393–425.

[31] Amir A. Handzel et al. “A biomimetic apparatus for sound-source localization.”
In: Proceedings of the 42nd IEEE Conference on Decision and Control. Vol. 6.
IEEE. 2003, pp. 5879–5884.

114

https://doi.org/10.1145/2858036.2858401
https://doi.org/10.1145/2858036.2858401


[32] Aki Harma, Martin F. McKinney, and Janto Skowronek. “Automatic surveil-
lance of the acoustic activity in our living environment.” In: International Con-
ference on Multimedia and Expo. IEEE. 2005, 4–pp.

[33] Pieter Harpe et al. “A 0.20mm2 3nW signal acquisition IC for miniature sensor
nodes in 65nm CMOS.” In: IEEE Journal of Solid-State Circuits 51.1 (2015),
pp. 240–248.

[34] Syed Husain et al. “Mobile edge computing with network resource slicing for
Internet-of-Things.” In: IEEE 4th World Forum on Internet of Things. IEEE.
2018, pp. 1–6.

[35] Shyr-Long Jeng, Wei-Hua Chieng, and Hsiang-Pin Lu. “Estimating speed using
a side-looking single-radar vehicle detector.” In: IEEE Transactions on Intelli-
gent Transportation Systems 15.2 (2014), pp. 607–614.

[36] Dongsuk Jeon et al. “An implantable 64nW ECG-monitoring mixed-signal SoC
for arrhythmia diagnosis.” In: IEEE International Solid-State Circuits Confer-
ence Digest of Technical Papers. IEEE. 2014, pp. 416–417.

[37] Seokhyeon Jeong et al. “A 12nW always-on acoustic sensing and object recog-
nition microsystem using frequency-domain feature extraction and SVM classi-
fication.” In: IEEE International Solid-State Circuits Conference. IEEE. 2017,
pp. 362–363.

[38] Zhenhua Jia et al. “Continuous low-power ammonia monitoring using long
short-term memory neural networks.” In: Proceedings of the 16th ACM Confer-
ence on Embedded Networked Sensor Systems. ACM. 2018, pp. 224–236.

[39] Jinkwon Kim et al. “Robust algorithm for arrhythmia classification in ECG
using extreme learning machine.” In: Biomedical Engineering Online 8.1 (2009),
p. 31.

[40] Peter R. Kinget. The World Is Analog. 2014. url: http://circuitcellar.
com/tech-the-future/kinget-the-world-is-analog/.

[41] Tomi Kinnunen et al. “Voice activity detection using MFCC features and sup-
port vector machine.” In: International Conference on Speech and Computer.
2007, pp. 556–561.

[42] Shashidhar G. Koolagudi and K. Sreenivasa Rao. “Emotion recognition from
speech: A review.” In: International Journal of Speech Technology 15.2 (2012),
pp. 99–117.

115

http://circuitcellar.com/tech-the-future/kinget-the-world-is-analog/
http://circuitcellar.com/tech-the-future/kinget-the-world-is-analog/


[43] Sotiris B. Kotsiantis, I. Zaharakis, and P. Pintelas. “Supervised machine learn-
ing: A review of classification techniques.” In: Emerging Artificial Intelligence
Applications in Computer Engineering 160 (2007), pp. 3–24.

[44] Hae-Seung Lee and Charles G. Sodini. “Analog-to-digital converters: Digitizing
the analog world.” In: Proceedings of the IEEE 96.2 (2008), pp. 323–334.

[45] Jeong-Mook Lim et al. “An audio-haptic feedbacks for enhancing user expe-
rience in mobile devices.” In: IEEE International Conference on Consumer
Electronics. IEEE. 2013, pp. 49–50.

[46] Hanli Liu et al. “A 0.98 mW fractional-N ADPLL using 10b isolated constant-
slope DTC with FOM of 246dB for IoT applications in 65nm CMOS.” In: IEEE
International Solid-State Circuits Conference. IEEE. 2018, pp. 246–248.

[47] Shih-Chii Liu et al. “Asynchronous binaural spatial audition sensor with 2 ×
64 × 4 channel output.” In: IEEE Transactions on Biomedical Circuits and
Systems 8.4 (2013), pp. 453–464.

[48] Vivek Mangal and Peter R. Kinget. “A 0.42 nW 434MHz 79.1dBm wake-up
receiver with a time-domain integrator.” In: IEEE International Solid-State
Circuits Conference. IEEE. 2019, pp. 438–440.

[49] Arnaud Martin, Delphine Charlet, and Laurent Mauuary. “Robust speech/non-
speech detection using LDA applied to MFCC.” In: Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing. Vol. 1.
IEEE. 2001, pp. 237–240.

[50] Gregor J. McDonald et al. “Real-time vehicle identification performance using
FPGA correlator hardware.” In: IEEE Transactions on Intelligent Transporta-
tion Systems 13.4 (2012), pp. 1891–1895.

[51] Annamaria Mesaros et al. “Acoustic event detection in real life recordings.” In:
18th European Signal Processing Conference. IEEE. 2010, pp. 1267–1271.

[52] Robert G. Meyer. “Low-power monolithic RF peak detector analysis.” In: IEEE
Journal of Solid-State Circuits 30.1 (1995), pp. 65–67.

[53] S. Molau et al. “Computing Mel-frequency cepstral coefficients on the power
spectrum.” In: Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing. IEEE. 2001, pp. 73–76.

116



[54] Bruce Moore. “Principal component analysis in linear systems: Controllabil-
ity, observability, and model reduction.” In: IEEE Transactions on Automatic
Control 26.1 (1981), pp. 17–32.

[55] Lindasalwa Muda, Mumtaj Begam, and Irraivan Elamvazuthi. “Voice recogni-
tion algorithms using Mel frequency cepstral coefficient (MFCC) and dynamic
time warping (DTW) techniques.” In: Journal of Computing 2 (2010), pp. 138–
143.

[56] Anh Nguyen et al. “A lightweight and inexpensive in-ear sensing system for
automatic whole-night sleep stage monitoring.” In: Proceedings of the 14th
ACM Conference on Embedded Network Sensor Systems CD-ROM. ACM. 2016,
pp. 230–244.

[57] Madison Park. Injuries while walking with headphones tripled, study finds. Ed.
by CNN. [Online]. Jan. 2012. url: http://thechart.blogs.cnn.com/2012/
01/16/injuries-while-walking-with-headphones-triple-study-finds/.

[58] Christopher J. Plack. The Sense of Hearing. London: Lawrence Erlbaum Asso-
ciates, 2005.

[59] Jose Portelo et al. “Non-speech audio event detection.” In: Acoustics, Speech
and Signal Processing. IEEE. 2009, pp. 1973–1976.

[60] Jennifer Rowley. “The wisdom hierarchy: Representations of the DIKW hier-
archy.” In: Journal of Information Science 33.2 (2007), pp. 163–180.

[61] Rahul Sarpeshkar. “Analog versus digital: Extrapolating from electronics to
neurobiology.” In: Neural Computation 10.7 (1998), pp. 1601–1638.

[62] Rahul Sarpeshkar et al. “An ultra-low-power programmable analog bionic ear
processor.” In: IEEE Transactions on Biomedical Engineering 52.4 (2005),
pp. 711–727.

[63] Mingoo Seok, Dennis Sylvester, and David Blaauw. “Optimal technology se-
lection for minimizing energy and variability in low voltage applications.” In:
Proceedings of the 2008 International Symposium on Low Power Electronics &
Design. ACM. 2008, pp. 9–14.

[64] Hyeon-Cheon Seol et al. “An EMG readout front-end with automatic gain con-
troller for human-computer interface.” In: IEEE Biomedical Circuits and Sys-
tems Conference. IEEE. 2013, pp. 170–173.

117

http://thechart.blogs.cnn.com/2012/01/16/injuries-while-walking-with-headphones-triple-study-finds/
http://thechart.blogs.cnn.com/2012/01/16/injuries-while-walking-with-headphones-triple-study-finds/


[65] Katherine Shaver. “Safety experts to pedestrians: Put the smartphones down
and pay attention.” In: Washington Post (Sept. 2014). url: https://www.
washingtonpost.com/local/trafficandcommuting/safety-experts-to-
pedestrians-put-the-smartphones-down-and-pay-attention/2014/09/
19/278352d0-3f3a-11e4-9587-5dafd96295f0_story.html?.

[66] Amit Sheth. “Internet of Things to smart IoT through semantic, cognitive, and
perceptual computing.” In: IEEE Intelligent Systems 31.2 (2016), pp. 108–112.

[67] E. Shi et al. “A 9.6nW, 8-bit, 100S/s envelope-to-digital converter for respi-
ratory monitoring.” In: IEEE Transactions on Circuits and Systems II: Ex-
press Briefs (2019), Advance online publication. doi: 10.1109/TCSII.2019.
2922661.

[68] Kang G. Shin and Yu-Chih Tung. Real-Time Warning for Distracted Pedestri-
ans with Smartphones. US Patent App. 14/865,262. Sept. 2015.

[69] H.C. So and P.C. Ching. “Comparative study of five LMS-based adaptive
time delay estimators.” In: IEE Proceedings-Radar, Sonar and Navigation 148.1
(2001), pp. 9–15.

[70] John A. Stankovic. “Research directions for the Internet of Things.” In: IEEE
Internet of Things Journal 1.1 (2014), pp. 3–9.

[71] Zehang Sun, George Bebis, and Ronald Miller. “On-road vehicle detection: A
review.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence
28.5 (2006), pp. 694–711.

[72] Bahareh Taji et al. “Impact of skin–electrode interface on electrocardiogram
measurements using conductive textile electrodes.” In: IEEE Transactions on
Instrumentation and Measurement 63.6 (2013), pp. 1412–1422.

[73] Andrey Temko et al. “CLEAR evaluation of acoustic event detection and clas-
sification systems.” In: International Evaluation Workshop on Classification of
Events, Activities and Relationships. Springer. 2006, pp. 311–322.

[74] Stefan Tertinek, James P. Gleeson, and Orla Feely. “Statistical analysis of first-
order bang-bang phase-locked loops using sign-dependent random-walk theory.”
In: IEEE Transactions on Circuits and Systems I: Regular Papers 57.9 (2010),
pp. 2367–2380.

[75] Bert Van den Broeck et al. “Time-domain generalized cross correlation phase
transform sound source localization for small microphone arrays.” In: 5th Eu-
ropean Education and Research Conference. IEEE. 2012, pp. 76–80.

118

https://www.washingtonpost.com/local/trafficandcommuting/safety-experts-to-pedestrians-put-the-smartphones-down-and-pay-attention/2014/09/19/278352d0-3f3a-11e4-9587-5dafd96295f0_story.html?
https://www.washingtonpost.com/local/trafficandcommuting/safety-experts-to-pedestrians-put-the-smartphones-down-and-pay-attention/2014/09/19/278352d0-3f3a-11e4-9587-5dafd96295f0_story.html?
https://www.washingtonpost.com/local/trafficandcommuting/safety-experts-to-pedestrians-put-the-smartphones-down-and-pay-attention/2014/09/19/278352d0-3f3a-11e4-9587-5dafd96295f0_story.html?
https://www.washingtonpost.com/local/trafficandcommuting/safety-experts-to-pedestrians-put-the-smartphones-down-and-pay-attention/2014/09/19/278352d0-3f3a-11e4-9587-5dafd96295f0_story.html?
https://doi.org/10.1109/TCSII.2019.2922661
https://doi.org/10.1109/TCSII.2019.2922661


[76] J. Hf. Van Vleck and David Middleton. “The spectrum of clipped noise.” In:
Proceedings of the IEEE 54.1 (1966), pp. 2–19.

[77] Marian Verhelst and Ahmad Bahai. “Where analog meets digital: Analog-to-
information conversion and beyond.” In: IEEE Solid-state circuits magazine 7.3
(2015), pp. 67–80.

[78] Weihua Wang. “Reach on Sobel operator for vehicle recognition.” In: Artificial
Intelligence, International Joint Conference on. IEEE. 2009, pp. 448–451.

[79] Stuart N. Wooters, Benton H. Calhoun, and Travis N. Blalock. “An energy-
efficient subthreshold level converter in 130nm CMOS.” In: IEEE Transactions
on Circuits and Systems II: Express Briefs 57.4 (2010), pp. 290–294.

[80] Lin Yang, Wei Wang, and Qian Zhang. “Secret from muscle: Enabling secure
pairing with electromyography.” In: SenSys. 2016, pp. 28–41.

[81] Minhao Yang et al. “A 0.5V 55uW 64 × 2-channel binaural silicon cochlea for
event-driven stereo–audio sensing.” In: IEEE Journal of Solid-State Circuits
51.11 (2016), pp. 2554–2569.

[82] Dai Zhang, Ameya Bhide, and Atila Alvandpour. “A 53-nW 9.1-ENOB 1-kS/s
SAR ADC in 0.13-µm CMOS for medical implant devices.” In: IEEE Journal
of Solid-State Circuits 47.7 (2012), pp. 1585–1593.

[83] Shengyan Zhou et al. “Road detection using support vector machine based
on online learning and evaluation.” In: IEEE Intelligent Vehicles Symposium.
IEEE. 2010, pp. 256–261.

[84] Xiaodan Zou et al. “A 1-V 450-nW fully integrated programmable biomedical
sensor interface chip.” In: IEEE Journal of Solid-State Circuits 44.4 (2009),
pp. 1067–1077.

119


	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Defining IoT
	Embedded IoT Perceptive Systems
	Analog-to-Feature Converters
	Outline

	Sound-Source Localization Features Overview
	Introduction
	Physical Principles of Sound-Source Localization
	Conclusion

	PAWS: An Audio-Based CPS Solution for Pedestrian Safety
	Introduction
	Studying the Problem
	Overview of PAWS
	Platform Evaluation
	Empirical Data Analysis
	Real-World Deployment
	Limitations and Future Work
	Conclusion

	A Sub-100nW Three-Channel Time-Delay-to-Digital Converter
	Introduction
	Feedback Time-Delay Estimation
	Discrete-Time PCC-ATDE Loop
	Discrete-Time PCC-ATDE Loop Analysis
	CMOS Prototype Implementation
	Experimental Characterization of the PCC-ATDE Operation
	Performance Comparison
	Sound-Source-Localization Experiments
	Conclusions

	An Ultra-Low-Power Envelope-to-Digital Converter
	Introduction
	Envelope-to-Digital Converter
	Conclusions

	Conclusion
	Bibliography

