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Abstract

Investigation of Lithium Ion Battery Electrodes: Using Mathematical Models Augmented

with Data Science to Understand Surface Layer Formation, Mass Transport, Electrochem-

ical Kinetics, and Chemical Phase Change

Nicholas W. Brady

This thesis first uses physical scale models to investigate solid-state phenomena

- surface layer formation, solid-state diffusion of lithium, electrochemical reactions at

the solid-electrolyte interface, as well as homogeneous chemical phase change reactions.

Evidence is provided that surface layer formation on the magnetite, Fe3O4, electrode

can accurately be described mathematically as a nucleation and growth process. To

emulate the electrochemical results of the LiV3O8 electrode, a novel method is developed

to capture the phase change process; this method describes phase change as a nucleation

and growth process. The physical parameters of the LiV3O8 electrode: the solid-state

diffusion coefficient, phase change saturation concentration, phase reaction rate constant,

and exchange current density, are all quantified and the agreement with experimental

results is compelling. Electrochemical evidence, corroborated by results from density

functional theory, indicate that delithiation is a more facile process than lithiation in the

LiV3O8 electrode.

Further investigation of the LiV3O8 electrode is undertaken by coupling the crystal

scale model to electrode scale phenomena. Characterization of the LiV3O8 electrode by

operando EDXRD experiments provides a unique and independent set of observations



that validate the previously estimated physical constants for the phase change saturation

concentration and phase change reaction rate constant; they are both found to be consis-

tent with their previous estimates. Finally, it is observed that anodic physical phenomena

are important during delithiation of the cathode because the kinetics at the anode become

mass-transfer limited.

Finally, it is illustrated that coupling physical models to data science and algorith-

mic computing is an effective method to accelerate model development and quantitatively

guide the design of experiments.
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Chapter 1

Introduction
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Energy storage technology can be used to complement both existing traditional

power generation and rising renewable energy sources, such as wind and solar.1,2 In the

absence of energy storage technology, energy needs to be produced to match demand.

This means that power plants are not designed to meet average power demand, but

peak power demand. These limitations prevent power plants from being designed with a

practical sense of efficiency. Using energy storage would allow power plants to be designed

closer to the average daily power demand, instead of peak demand.1,2 In addition to

traditional power generation, electrical energy storage will be necessary for the widespread

implementation of intermittent renewable energy sources such as wind and solar.1,2

1.1 Why batteries?

Several technologies are being investigated for electrical energy storage applications

such as pumped hydro, compressed air energy storage, flow cells, and fuel cells to name

a few.1,2 Batteries, in particular lithium ion batteries, are attractive electrical energy

storage devices because they deliver high round trip efficiency, low self-discharge rates,

reasonable cycle lives, and have demonstrated scalability.1,2 In addition to grid level ap-

plications of lithium ion batteries, lithium ion batteries currently are the most common

type of battery found in electric vehicles due to their high gravimetric energy density.

According to both Exxon Mobil3 and the International Energy Agency (IEA)4, the num-

ber of electric vehicles in the global fleet is project to increase by 40× in the next 20

years, so research on lithium ion batteries has huge practical implications.

1.2 Why Modeling?

Batteries are inherently complex devices; the very nature of a battery involves at

least two electrodes and an electrolyte and so it can become challenging and in some

ways impossible to practically study individual components of a battery. Mathematical

modeling provides a surrogate method to interrogate individual components of complex

systems. There is a plethora of empirical evidence that mathematical models are effective

2



tools in studying complex systems, such as batteries.5–7 In some situations, simulations

are the only effective method to quantitatively interrogate battery physics and validate

physical hypotheses, and because of this they are essential in deepening our understanding

of the physical phenomena that govern performance. Models also allow us to identify what

is still unknown and quantify our uncertainty. Finally, optimal design and control of

these processes and devices will require physically accurate and predictive mathematical

models.

1.3 Why Data Science?

Models are effective tools to interrogate the dynamic physics present in battery

systems, however they are very time-consuming to develop. Optimizing the physical

parameters to best fit the experimental data can take months. Testing new physical

hypotheses often requires building a unique model for each hypothesis; because each

model needs to be optimized for proper comparison with the experimental data, this

process can take a month or more for each unique hypothesis. Human time is expensive,

while computer time is cheap and getting cheaper every year. Being able to outsource

some of the model development process to computers has the potential to accelerate and

cheapen the process of battery material exploration.

There is strong empirical evidence (autonomous cars, strategic games8,9, spam filter-

ing10, natural language processing11) that computer algorithms and artificial intelligence

are capable of performing complex tasks and they are not only cheaper, but they can

also be more effective than humans. It is important for all industries, including chem-

ical engineering and even those in academic research, to recognize the rising utility of

computational resources and adopt methodologies to try and leverage these potentially

paradigm altering tools.12–14

While some aspects of the model development process use quantitative metrics for

decision making, such as relaxation time-constant analysis to provide intuition about the

dominant length scale, many other aspects of model development lack rigorous quan-
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titative metrics for model selection or decision making in general. Selecting between

different models classically has been performed by visually comparing the simulation

results from different hypotheses to experimental results and choosing the simulations re-

sults that appear to most accurately emulate the experimental observations. Developing

more quantitative metrics for parameter optimization and decision making with allow

these processes to be outsourced to computer algorithms and will also improve academic

reproducibility.

This thesis covers several aspects of the model development process for battery

systems. The next three chapters of this thesis illustrate how mathematical models are

built for batteries, and how they can incorporate various physical phenomena; they also

provide additional evidence that mathematical models are essential to understanding the

complex physical phenomena that occur in batteries. Chapters 2 and 3 develop crystal

scale models for both the Fe3O4 and LiV3O8 systems, respectively. These crystal scale

models are built upon in Chapter 4 by coupling the crystal scale physics to electrode scale

phenomena. Chapter 5 provides insight into how computer algorithms can be applied to

the model development process to perform physical parameter estimation as well as model

selection and variable selection. In addition, Chapter 5 shows how mathematical models

in conjunction with computer algorithms can be used to intelligently and quantitatively

design experiments.
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Chapter 2

Galvanostatic Interruption of

Lithium Insertion into Magnetite:

Evidence of Surface Layer

Formation†

†This work has been published: Nicholas W. Brady, K. W. Knehr, Christina A. Cama, Christianna
N. Lininger, Zhou Lin, Amy C. Marschilok, Kenneth J. Takeuchi, Esther S. Takeuchi, and Alan C. West.
“Galvanostatic interruption of lithium insertion into magnetite: Evidence of surface layer formation.”
Journal of Power Sources 321 (2016): 106-111.
The thesis writer’s contribution to this work was the model development and the analysis of the simulated
results. The electrochemical observations were provided by C.A. Cama and Z. Lin from the Marschilok-
Takeuchi Research Group at Stony Brook University.
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2.1 Introduction

Nanostructuring of lithium-insertion materials may improve the performance of

lithium-ion batteries by increasing the surface area to volume ratio and by lowering

the solid-state diffusion resistances in the electrodes.1–9 Increasing the surface area to

volume ratio is beneficial because it provides more sites for the electrochemical reactions,

thereby decreasing surface overpotential for a given nominal current density. However,

extensive nanostructuring may have negative effects because it increases the amount of

active material that can be exposed to side reactions and surface layer formation.10–12

For instance, during the first cycle(s) of a lithium-ion battery, reactions between the

electrolyte and the electrodes may result in the formation of thin layers of material on

the electrode surfaces, commonly referred to as the solid electrolyte interphase (SEI) for

graphite anodes and the cathode electrolyte interphase for cathodes.13–15 The formation

of these layers typically involves the transformation of active material into a surface layer,

thereby reducing theoretical capacity.13

Herein, we compare simulations to experiments and hypothesize that the complex

potential transients upon current interruption seen after a relatively small amount of

lithium is inserted into magnetite (x = 0.5, 1.0, and 1.5 in LixFe3O4) is related to the

formation of a thin layer of inactive material. In short, for small crystal sizes (6 and

8 nm) the potential initially increases due to relaxation of the concentration profile of

reduced lithium, and then at longer times, decreases. Previous simulations capture the

initial rise in potential caused by rearrangement of solid-state lithium16,17, but the fall

in potential during relaxation cannot be explained. We hypothesize that it is caused by

transformation of the active material (Fe3O4) into inactive material. The transformation

is confined to the crystal surface and occurs through a (as of yet unidentified) reaction,

which increases the concentration of intercalated lithium in the remaining active material.

The coupling of these effects – concentration profile relaxation by mass transport (rise)

and increase of intercalated lithium (fall) – gives better experimental agreement. This

chapter uses a previously described mass-transfer model and incorporates a mechanism

for surface layer formation. The formation of the surface layer appears to occur via
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nucleation and growth, which is qualitatively consistent with literature.18 The Avrami

model describes the formation of the surface layer.19–21

2.2 Experimental

Experiments were conducted using electrodes comprised of nanocrystalline mag-

netite. Small crystals, 6 and 8 nm average diameter, were synthesized using a co-

precipitation method previously reported by the authors.8,22 Larger crystals, ∼32 nm

(data not shown), were purchased from Alpha Aesar. Electrodes were prepared using

90% magnetite, 5% carbon, and 5% polyvinylidene fluoride binder (by weight) coated

onto an aluminum foil substrate. Each electrochemical test was performed using a two-

electrode coin-type experimental cell with a lithium metal anode and 1M LiPF6 in 1:1

dimethyl carbonate: ethylene carbonate as the electrolyte. The electrodes had a nominal

thickness of 50 m and a nominal active mass loading of 4.1 mg cm-2.

Galvanostatic interruption experiments were conducted for electrodes comprised of

nanocrystalline magnetite with average diameters of 6, 8 and 32 nm. The experimental

cells were first lithiated at a C/200 rate (4.63 mA g-1 of Fe3O4) to x = 0.5, 1.0, 1.5,

and 2.0 electron equivalents per Fe3O4 and then held at open circuit for up to 30 days.

After the rest period, the cells were delithiated to a cutoff voltage of 3.0 V using a C/200

rate, followed by a constant voltage oxidation at 3.0 V for two hours. Subsequently, a

second experiment was performed, where the current interruption was applied after the

reduction of a specified amount of charge, which was equivalent to the amount of charge

passed during the first lithiation.

In addition, second lithiation experiments were conducted at a rate of C/100 (9.26

mA g-1 of Fe3O4) for electrodes made of 42.5% Fe3O4, 42.5% acetylene carbon black, and

15% polyvinylidene fluoride binder (PVDF) by weight. The magnetite was lithiated at

the C/100 rate until a charge of 100 mAh g-1 was passed. The magnetite was subsequently

delithiated to a cut-off voltage of 3.0 V at the same C/100 rate and then held at 3.0 V

for 1 hour, and lithiated again at C/100 to the same capacity, 100 mAh g-1.23 All voltage
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recovery experiments were conducted at 30°C using a freshly fabricated cell.

2.3 Theory

This section provides an outline of the present model, which was developed by mod-

ifying a previously validated multi-scale model to include the effects of the transformation

of active material.16,17 Table 1 contains a comparison of the governing equations for the

two models. Consistent with multi-scale simulation results for 6 and 8 nm crystals, the

present model assumes mass transport resistances only occur on the agglomerate length

scale (i.e., no concentration variations within the crystals or across the bulk electrode).

This assumption provides a valid approximation for the present experiments, where the

focus is on understanding the complex voltage transients during the relaxation of elec-

trodes comprised of crystals with diameters of 6 and 8 nm. The transport of lithium-

ions in the agglomerate is simulated using dilute solution theory. The concentration of

lithium-ions in the agglomerate is coupled to the concentration of solid-state lithium in

the crystals through a Butler-Volmer kinetic expression. It is assumed that the formation

of the surface layer has a negligible impact on the reaction kinetics. The thermodynamic

potential as a function of lithium in the solid-state and in the agglomerate U (cx, cagg)

was modeled by fitting a modified Nernst equation to experimental data. The rate of

change of solid-state lithium within the crystals, cx , is calculated from the following

material balance:

∂ (εactivecx)

∂t
=
airxn
F

(2.1)

When held at the open circuit, the local current density irxn may not be zero because

the crystals within the agglomerate galvanically interact until the concentration variations

completely relax. εactive is the volume fraction of active material in the electrode. It is

given by

εactive = (1− ε) Vx,0 − ξVS
Vx,0

, Vx,0 =
4

3
πr3

x (2.2)
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where ξ is the volume fraction of magnetite in the surface layer. For these simula-

tions, ξ = 50% and it is assumed that ε = 0.26, consistent with closed packed spheroidal

crystals. Other volume fractions ξ were explored, and they did not have a significant

impact on the simulated results. Equations 2.1 and 2.2 were formulated assuming the

transformation of magnetite to an inactive phase does not alter the total amount of solid-

state lithium within the remaining magnetite. This implies that the local concentration

of solid-state lithium within the active material increases as a result of the loss of active

magnetite.

w/o Fe3O4 Transformation
(agglomerate-only)

w/ Fe3O4 Transformation
(agglomerate-only)

Mass
(agg.)

ε∂cagg
∂t

= εDagg
∂2cagg
∂r2

+ 2εDagg
r

∂cagg
∂r

+ airxn
F

No change

Mass
(crystal)

εactive
∂cx
∂t

= −airxn
F

-

∂(εactivecx)
∂t

= −airxn
F

εactive = (1− ε) Vx,0−ξVS
Vx,0

Reaction
irxn = i0

[
exp

(
αaF (V−U)

RGT

)
− exp

(
−αcF (V−U)

RGT

)]
i0 = Fkrxnc

αa
aggc

αc
x (cx,max − cx)αa

No Change

No Change

Table 2.1: Comparison of governing equations for model with and without transformation of Fe3O4 to
an inactive state due to reactions with the electrolyte.

2.4 Surface Layer Formation

The surface layer formation was initially modeled assuming a uniform, layer-by-layer

growth. The results were able to capture some of the salient features of the OCP re-

laxation. However, better agreement was achieved by assuming a nucleation-and-growth

mechanism, whereby the volume of the surface layer can be described through the Avrami

model19–21:

VS = Vmax,S [1− exp(−kStn)] (2.3)
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When the exponent n = 1, equation 2.3 is consistent with a layer-by-layer growth

mechanism. More generally, n is determined by the relative rate of nucleation to growth

and the dimensionality of the growth (e.g., two- vs. three-dimensional). The value of

Vmax,S is set by a final thickness of the surface layer:

Vmax,S =
4π

3

(
r3
x − (rx − λmax)3) (2.4)

where λmax is the maximum thickness of the surface layer, which was determined

from the final measured open circuit potential.

Along with increasing the size of the crystals, the formation of the inactive layer

is expected to increase the overall size of the agglomerate. In the present study, the

agglomerate radius may, at most, increase by a factor of 7/6, which corresponds to a 1

nm thick surface layer forming on the 6 nm crystals (see below for further discussion on

the model fitting of λmax = 1 nm). Simulations incorporating a 7/6 expansion of the

agglomerate were conducted, but they did not have a significant impact on the simulated

results. Therefore, the present model does not include the expansion of the agglomerate.

2.5 Salt Saturation Limit

During delithiation, the concentration of lithium salt within the pores of the agglom-

erate increases due to the slow mass transport processes. If the concentration exceeds the

solubility limit of the salt, an additional solid-phase precipitates, and this plugs the pores

and prevents the electrochemical reactions from occurring. To account for this process,

the model includes the following conditional statement on the reaction current:

irxn =


irxn, if cagg < csat

0, if cagg ≥ csat

(2.5)

In equation 2.5, cagg is the concentration of lithium salt in the agglomerate pores,

and csat is the saturation concentration where the salt starts to precipitate. To the best

of the authors knowledge, the exact value of csat for this system has not been published.
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Therefore, csat was taken as a fitted parameter in the model. It was selected to ensure that

the simulated delithiation reached the 3.0 V cutoff at the same time as the experiments.

Equations 2.2-2.4 along with the equations outlined in Table 1 were solved using

a numerical algorithm outlined by Newman.24 Physical properties were assumed to be

the same as given in references 13, 14. In all cases, simulations were performed to be as

consistent as possible with the experimental protocols. When the saturation limit was

included in the model, the simulated and experimental charge passed prior to the cutoff

voltage was in excellent agreement. To ensure a reasonable comparison between theory

and experiment when the salt saturation limit was not included, the cells were oxidized

at a rate of C/200 until an equivalent number of coulombs were passed. The simulations

were then held at open-circuit for the remainder of the experimental oxidation time (see

Figure 2.3). Continuous operation simulations followed the experimental protocol in ref.

19.

2.6 Results and Discussion

Figure 2.1 shows the experimental and simulated voltage during recovery after a

lithiation at C/200 (4.63 mA g-1) until an average lithium concentration of x = 0.5 (for

x in LixFe3O4). The experimental voltage curve rises to a maximum after approximately

100 hours and appears to plateau. After 200 hours, the potential falls until it begins

to reach a steady state at around 400 hours. The initial rise in voltage is explained by

relaxation of concentration profiles within the agglomerate, and the subsequent decline in

voltage is due to inactive layer formation. Qualitatively similar results are seen for 8-nm

crystals, but no maximum is observed for the variation of the open circuit potential for

32-nm crystals.

The simulations in Figure 2.1 are based on the original model (no surface layer

formation) as well as the modified model with surface layer formation. For each of the

models with surface layer formation, the parameter kS was adjusted to obtain the best fit.

The agreement between experiment and simulation when n = 3, or n = 4 is particularly
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Figure 2.1: Voltage recovery for 6 nm Fe3O4 electrodes that were initially lithiated to an average
lithium concentration of Li0.5Fe3O4. Simulations with surface layer formation were conducted using n =
1, 2, 3, or 4 in the Avrami equation (Eq. 2.3). Inset provides a visualization of the proposed mechanism
of surface layer formation: progressive nucleation and three-dimensional growth (n = 4).

compelling. The physical interpretation implies that the phase grows through a nucleation

and growth process. However, it cannot be concluded definitively whether the nucleation

is progressive or instantaneous or if the growth is two-dimensional or three-dimensional.

It is assumed that surface layer growth terminates when magnetite is no longer in direct

contact with electrolyte. The two parameters used to fit the model to experiment were kS

and λmax , with kS = 2.0×10−25 s-4 when n = 4, and λmax = 1 nm. The reported surface

layer thickness is within the range reported in the literature for surface layers.10,13,25,26

Figure 2.2 shows a comparison of simulated (n = 4) and measured transients for

interruption after reduction to different levels of lithiation for 6 and 8 nm crystals. The

initial drop in potential corresponds to insertion of lithium, and the initial rise indicates

the beginning of recovery after current interruption. Comparisons are made without

adjustment of the values of kS and λmax. In general, good agreement is observed between

the simulations and experiments. Discrepancies may be attributed to changes in the
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Figure 2.2: Side by side comparisons of experimental and simulated lithiation and voltage recovery
for electrodes comprised of a) 6 nm and b) 8 nm crystals. Recovery was conducted after lithiation to
different levels of intercalation (i.e., x in LixFe3O4). Each experiment was conducted with a separate
cell.

nucleation and growth kinetics at different depths of lithiation. For instance, inactive

layer formation can be influenced by many factors including the cell potential and the

lithiation time.27–29 While a detailed analysis of the relationship between the kinetic

parameters (kS and λmax) and the operating conditions may be beneficial, it is currently

out of scope with this work.

At higher degrees of lithiation (e.g., x = 1.5 and 2.0), both experimental and simu-

lated results in Fig. 2 show no or very small maxima in the open circuit potential. The

simulations suggest that the disappearance in the maximum is not because the surface

layer is already fully formed. Instead, the maxima disappear because the open circuit

potential does not change significantly in the range 1.0 ≤ x ≤ 2.0 (for x in LixFe3O4).

This can be observed in Figure 5 of Ref. 13, which shows the fit of the open circuit

voltage equation to experimental voltage recovery data. When simulations are extended

to 32-nm crystals, the simulations correctly predict only small maxima with potential
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(data not shown). This result is consistent with an assumption that the volume fraction

transformed is proportional to the crystal surface area and that the surface layer thick-

ness is the same for all crystal sizes. For instance, assuming that λmax does not vary with

crystal size, only a small percentage of the active material is transformed in the 32-nm

crystals, which minimizes the increase in the solid-state lithium concentration. For exam-

ple, the simulations indicate that a fully formed surface layer on a 32-nm crystal would

only increase the concentration of solid-state lithium from x = 0.5 to x ∼ 0.55, which

corresponds to a 33 mV change in voltage. This is a small variation when compared to

the case with 6-nm crystals, where the concentration of solid-state lithium is predicted

to increase by over 70% (from x = 0.5 to x ∼ 0.86, 270 mV).

Figure 2.3: Experimental and simulated voltage during: I) first oxidation at C/200, then constant
voltage hold at 3.0 V), II) second reduction at C/200, and III) second voltage recovery (open circuit).
The first oxidation was conducted after a reduction to x = 0.5 (for x in LixFe3O4) and an OCP relaxation
for 30 days.

Another test of the hypothesis is to compare potential-time variation for the first

and second reduction cycles. Figure 2.3 shows the experimental and simulated voltage

curves for a cell that rested at open circuit for 30 days at a state of x = 0.5 in LixFe3O4.
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Initially, the electrode was driven anodically to a cutoff voltage of 3.0 V. Next, the cell

was held at 3.0 V for 2 hours. Coulometric analysis of the experimental data in Figure

2.3 show that x ∼ 0.25 at the end of oxidation. The cell was then lithiated to x ∼ 0.75

(0.25 + 0.50), and allowed to relax. Simulations with and without a salt saturation limit

show that including a solid-salt phase precipitation dramatically improves agreement

with the experimental potential. Solid-salt precipitation is a factor because during the

first voltage recovery solid-state lithium relaxes to a uniform concentration throughout

the agglomerate. When the agglomerate is delithiated, poor mass transport through the

agglomerate causes the concentration of oxidized lithium-ions in the pores to build up at

the center of the agglomerate, eventually surpassing the saturation concentration.

Based on this analysis, delithiation of magnetite should be easier if the solid-state

lithium does not redistribute toward the center of the agglomerate. This suggests that

oxidation is less difficult if the electrode is operated continuously. For example, for

magnetite reduced to an average concentration of x = 1.0 (results not shown), simulations

predict that ∆x = −0.76 (prior to a 3.0V cutoff) can be achieved by delithiation at a

constant rate of C/100 (experimental value is ∆x = −0.78) if the oxidation current is

applied immediately after the reduction reaction. However, if the electrode rests at OCP

for 30-days prior to the oxidation reaction, simulations predict ∆x = −0.5, in accord

with the experimental value of ∆x = −0.55 electron equivalents.

Further evidence that the surface layer reduces capacity can be seen from an analysis

of the first and second lithiation processes of the galvanostatic interruption experiments,

c.f. Figures 2.2 and 2.3. For instance, experiments show a reduction in specific energy

between the first and second lithiation processes of 14%, 11%, and 11% for cells lithiated

to x = 0.5, 1.0, and 1.5 respectively, whereby x corresponds to the change of lithiation.

The specific energy was determined by integrating the power vs. time curves. Simulations

of these experimental studies that account for surface-layer formation are in accord with

experiments (predicted reduction of specific energies of 11%, 9%, and 16%, respectively).

Simulations without the surface layer formation predicted specific-energy reductions of

3%, 1%, and 2%, with the reductions arising from an incomplete delithiation during the
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charging protocol. While the present simulations incorporating surface- layer formation

are in fair agreement with experiments, a more complex model may be able to capture the

impact of potential-time history on the surface layer, possibly leading to improvements

in the predictions.

Figure 2.4: Experiments and simulations of the second voltage recovery with simulations accounting
for (solid) and not accounting for (dashed) active material transformation. Comparisons are made for
a) x = 0.5 and b) x = 1.0 in LixFe3O4.

Figure 2.4 shows the experimental and simulated voltage recovery (cf., zone III of

Figure 2.3), for x = 0.5 and for x = 1.0. When the impact of inactive layer formation

is included, the simulations of the potential recovery after the second lithiation step are

in much better agreement with the final OCP. However, the simulations predict a more

rapid transition to the steady-state OCP than is seen experimentally. It appears as if

the diffusion coefficient is lower after the formation of the surface layer on the magnetite.

One explanation is that the surface mobility of lithium on the new surface is significantly

decreased, as this is believed to impact the agglomerate-scale diffusion coefficient.

Figure 2.5 summarizes the impact of nanosizing magnetite on electrode capacity.

Assuming that a 0.5 nm layer of magnetite is transformed into a surface layer, the fraction

of active material lost decreases rapidly with increasing crystal size. However, depending

on lithiation rates and transport resistances, large crystal sizes result in a significant frac-

tion of the magnetite not being used prior to the lithiation cutoff potential. To illustrate

this effect, we have simulated performance of a hypothetical magnetite electrode with

varying crystal sizes and varying insertion rate. The battery is hypothetical because it is
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Figure 2.5: Plot comparing the active material lost (not utilized) due to transformation (left-axis) and
active material not utilized due to solid-state transport resistances (right-axis).

assumed that it has been fabricated in such a manner that the only transport resistance

in the battery is the solid-state diffusion in the crystal. Presently, as constructed, agglom-

erate scale diffusion is another significant resistance within the magnetite electrodes.16,17

Simulations were conducted using dilute solution theory with Dx = 2.0 × 10−18 cm2 s-1,

and a cutoff voltage of 1.5 V.

Results, shown for four lithiation rates, illustrate that the fraction of unused mag-

netite increases as crystal radius increases. Clearly, the trend is the opposite for the

fraction of magnetite transformed by surface layer formation. The results summarized

in Figure 2.5 are hypothetical because they assume agglomerate-free electrode construct

and cannot be quantitatively compared to experiments. Depending on the application,

an optimal crystal size may exist, where performance may even decline if the crystal

is made too small. While the above asserts that inactive layer formation may have a

negative effect on capacity for nanoparticles, it is well documented that SEIs (a type of

surface layer) have an important role in improving stability, cyclability, rate capability,
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and safety in lithium ion batteries.13,14,30–35

At present, the precise composition and structure of the surface layer identified

in this work are unknown. The surface layer may correspond to the transformation of

magnetite to a different, less reversible phase. It may also correspond to the formation of

an SEI on the magnetite surface, similar to that observed by Lee et al. for 10 to 12-nm

crystals.36 Either way, the simulated results suggest that a portion of the active material

is lost, which reduces the capacity of the material.

2.7 Conclusions

Magnetite reacts with electrolyte to form a surface layer, and when the magnetite is

made nanocrystalline, a significant fraction of the active material may be transformed. It

is suggested by the open-circuit potential relaxation that during surface layer formation,

the intercalated lithium is concentrated in the remaining magnetite. Comparisons of

simulations to experiments suggest that the surface layer formation can be described by

a nucleation and growth mechanism. Agreement with experimental oxidation data can be

improved by accounting for a saturation- induced solid-salt formation within the pores

of the agglomerate. The process of surface layer formation is very complicated. This

particular system allowed for insights into the formation process, but it is unclear if the

methods outlined here can be extended to other chemistries.
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2.9 List of Symbols

a specific surface area (cm2 cm-3)

cagg lithium concentration in the agglomerate (mol cm-3)

csat saturation limit of lithium salt in the electrolyte (mol cm-3)

cx solid-state lithium concentration (mol cm-3)

Dx solid-state diffusion coefficient (cm2 s-1)

F Faradays constant (96,485 C mol-1)

irxn reaction rate (A cm-2)

kS reaction rate constant of the surface layer formation (s-4)

n denotes mode of nucleation and growth (-)

rx crystal radius (cm)

t time (s)

Vagg agglomerate volume (cm3)

Vx crystal volume (cm3)

VS surface layer volume (cm3)

Vmax,S maximum surface layer volume (cm3)

εactive volume fraction of active material (-)

λmax maximum surface layer thickness (cm)

ξ volume fraction of magnetite in the surface layer (-)

Subscript

agg denotes agglomerate

x denotes crystal

S denotes surface
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Chapter 3
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3.1 Introduction

Large scale transportation and stationary applications of lithium ion batteries re-

quire inexpensive, reliable, and safe systems.1 Transition metal (cobalt, iron, nickel, man-

ganese, vanadium, titanium, tungsten, and molybdenum) oxides are attractive lithium

intercalation cathode materials for these applications because of their natural abundance

and high redox potentials.2 Conventional anode materials, such as graphite, typically have

higher specific capacities than cathode materials, such as LiCoO2 and LiFePO4. This dif-

ference in capacity is because typical cathode materials can only accept one lithium per

formula unit; therefore there is potential breakthrough in developing cathode materials

that are able to host lithium-ions in excess of one per formula unit. For example, LiV3O8

is an attractive material because of its high potential suitable for battery applications

(∼3V) and high theoretical specific energy (∼374 mAh g-1).3–5 The high capacity comes

from the ability of the matrix to host three additional (excess) lithium ions (Li4V3O8).6

Because LiV3O8 is a promising mid-voltage material with high capacity and good

cycling ability, it has received research attention. However, despite this attention, impor-

tant physical parameters such as the diffusion coefficient of lithium in the material are

not known with precision, varying by at least two orders of magnitude.7,8 In addition,

the material undergoes a phase change at ∼ 2.5 V from Li1+xV3O8 to Li4V3O8,6,9,10 but

the equilibrium composition, specifically in the lithium-deficient phase is not known with

precision11 and, to the authors knowledge, there are no studies on the kinetics of phase

change in this material.

Through the development of a continuum model, this chapter seeks to quantify

the diffusion coefficient as well as the parameters governing phase change in lithium

trivanadate. In other materials, several models have been proposed to account for phase

change, including shrinking-core, mosaic, domino-cascade, and core-shell models.12–15 The

shrinking-core model is the most commonly used model because it gives good agreement

with electrochemical measurements, it is intuitive, and numerically robust. Conceptu-

ally, this method is limited because it generally assumes instantaneous phase transforma-

tion kinetics. Because we seek to quantify the phase change kinetics, the shrinking-core
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method is of little use.

In order to quantify the kinetics of the phase transition, this chapter develops a

model which accounts for lithium diffusion and phase change reaction as parallel pro-

cesses. Depending on parameter values, this model can replicate a shrinking-core model,

yet it is easier to implement. The model retains the main advantages of the shrinking-core

model: agreement with electrochemical measurements, intuitive, numerically robust, and

has the added advantage that it does not require the tracking of moving interior bound-

aries. This model utilizes the Avrami treatment of nucleation and growth to describe

phase change.16–18 While a description of nucleation and growth has been used previ-

ously to describe phase change in battery materials,19,20 this work is the first to validate

a continuum model using Avrami kinetics against electrochemical measurements taken

during discharge, charge, and relaxation.

3.2 Experimental

Figure 3.1: SEM images of LiV3O8 crystals sintered at 550°C for 2 hours. The inset highlights a
representative crystal with the three faces labeled with their respective planes.
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3.2.1 Materials Synthesis and Characterization

Li1.1V3O8 materials were prepared via a sol-gel approach.21 Briefly, LiOH ·H2O and

V2O5 in a stoichiometric ratio of Li:V=1.1:3 were used as starting materials and stirred

in 50 °C aqueous solution under N2 atmosphere for 24 h followed by freeze-drying. The

precursor materials were heat-treated at 550 °C to get the final product. SEM images were

taken with an accelerating voltage of 10 kV on a JEOL 7600F Field Emission Scanning

Electron Microscopy at the Center of Functional Nanomaterials at Brookhaven National

Laboratory.

3.2.2 Electrochemical Measurements

Li1.1V3O8 cathodes were prepared by mixing Li1.1V3O8 powders, carbon, graphite

and polyvinylidene fluoride in N-Methyl-2-pyrrolidone solution and the slurry was cast

onto Al foil. Coin cells were assembled in an Argon-filled glovebox with lithium-metal as

the anode and 1M LiPF6 EC (ethylene carbonate)/DMC (dimethyl carbonate) (volume

ratio 3:7) as electrolyte. Galvanostatic cycling tests were carried out on Maccor Battery

Test Equipment at C/10 to 1.9 electron equivalents or at C/5, C/2 and 1C rate to 2.4 V.

3.2.3 Ab-Initio Theory Calculations

DFT calculations were performed within the Generalized Gradient Approximation

(GGA) using the PW9122 pseudo-potential as implemented in VASP.23 A +U correction

term was used for vanadium, 3.1 eV, cited from fitting enthalpy of formation for bi-

nary oxides.24 LiV3O8 surfaces were modeled by two Li4V12O32 layers, where the bottom

Li4V12O32 layers in the unit cell was fixed in their optimized bulk positions while the top

layer was allowed to relax. The Brillouin-zone integration was performed on a grid of

2×3×1 Monkhorst-Pack25 special k-points. A vacuum layer of 20 �A thick was applied

perpendicular to the slab to avoid artificial interactions between the slab and its periodic

images.
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3.2.4 Experimental Results

From the SEM images of the synthesized LiV3O8 crystals, the particle dimensions

were measured using ImageJ software. Measuring many of these crystals gives order of

magnitude estimations for the dimensions: 10 - 100 nm, 1000 nm, 100 nm for the [100],

[010], and [001] directions respectively.

Figure 3.2: Representative potential curve during discharge and recovery. The constant voltage plateau
seen during the discharge indicates a two-phase region. The voltage recovery (inset) is divided into
charge-transfer losses (ηCT ) and mass-transfer losses (ηMT ). The characteristic relaxation time, τ , is
also determined from the voltage recovery data.

Figure 2 is a discharge curve conducted at a C/10 current rate (37.49 mA g-1) to

a depth of x = 1.9 in Li1+xV3O8 (176.82 mAh g-1). The voltage plateau at about 2.5 V

suggests a two-phase region, as has been documented previously.6,9,10 At the end of dis-

charge, the current is interrupted and voltage recovery is measured. The recovered voltage

is composed of a charge-transfer overpotential, ηCT , and a mass-transfer overpotential,

ηMT , associated with non-uniformities of the solid-state lithium concentration within the

crystal. It is seen that the charge-transfer losses recover nearly instantaneously, while the

mass-transfer overpotential relaxes over longer time periods (on the order of an hour). It

is important to understand on which length scales these mass-transfer losses are occurring

because it informs us which processes are performance limiting, from which we can im-
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prove electrode design. Using the bulk electrode thickness and bulk diffusion coefficient,

relaxation is expected to occur on the order of a minute, τ = L2

D
= (0.005 cm)2

(10−6 cm2 s−1)
= 25 s.

This suggests that mass-transport within the electrolyte is not performance limiting.

The LiV3O8 crystal has a layered structure,8,11 where intralayer transport of lithium,

along the [010] and [001] directions, is preferred over interlayer transport, the [100] di-

rection.26,27 Assuming that transport in the [100] direction is negligible compared to

transport in the other directions, and assuming that rates of transport in the [010] and

[001] directions are approximately equal, it is hypothesized that diffusion in the [001]

direction is performance limiting. Using the crystal thickness in the [001] direction and

the solid-state diffusion coefficient, we expect the characteristic diffusion time (relaxation

time) to be on the order of an hour, τ = L2

D
= (0.005 nm)2

(10−13 cm2 s−1)
= 1000 s. Although Figure 1

shows that the crystals agglomerate, the dimensional analysis suggests that mass trans-

fer losses are dominated by diffusion resistances on the crystal scale. To further test this

hypothesis a mathematical model was developed.

3.3 Theory

A qualitative comparison of the shrinking-core and nucleation and growth models

is given in Figure 3. For both formulations, lithium inserts into the active material, and

below a threshold concentration, cα,sat, there is no phase change. However once the local

concentration of lithium in the α-phase exceeds cα,sat, the material phase separates into

a lithium-deficient α-phase and a lithium-rich β-phase as follows:

Li1+xV3O8→ yLi1+xα,satV3O8 + (1− y) Li1+xβ,satV3O8 (3.1)

At equilibrium, the molar ratio of α-phase to β-phase can be calculated:

y =
xβ,sat − x

xβ,sat − xα,sat
; xα,sat < x < xβ,sat (3.2)

Following the development outlined by Knehr et al.28,29 the hypothesis of phase

formation was further explored by developing a nucleation and growth model on the
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Figure 3.3: (Top) Schematic of the modeling domain. It is assumed that Li+ predominantly inserts
through the (001) crystal face and therefore concentration variations only occur along the [001] direction.
(Bottom) Qualitative representations of two models for phase-change are compared: the commonly
utilized shrinking-core method and the nucleation and growth model. As lithium is inserted into the
material, the concentration of lithium increases. Once the concentration of lithium exceeds the saturation
value, phase change commences, and a new lithium rich β-phase is created. As more lithium is inserted,
the amount of β-phase increases. The shrinking-core method assumes that the new phase forms in a
layer by layer process, while the nucleation and growth model produces a profile that is similar, but with
a more dispersed β-phase.

crystal scale with the following assumptions:

1. The system is isothermal

2. Dilute solution theory is applicable to describe solid-state transport

3. Variations in concentration and potential on the bulk electrode scale and agglom-

erate scale are negligible.

4. The LiV3O8 crystals are considered to be rectangular prisms and have a constant

volume.

5. The polarization associated with the lithium-metal negative electrode is negligible.
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6. Only the α-phase is electrochemically active. Lithium can only enter the β-phase

by first inserting into the α-phase, and then through a chemical reaction, enter into

the β-phase.

7. Mass-transfer along the [001] direction is assumed to be rate limiting and concen-

tration variations in the [100] and [010] directions are negligible.

Assumption 7 is informed from an analysis of the materials crystal structure and

DFT calculations. The spacing between vanadate layers is about 6.36 �A, while the

atoms within a vanadate layer are more close-packed.30,31 This crystal structure indicates

lithium transport is anisotropic: diffusion is favored in directions parallel to the vanadate

plane ([010] and [001]) and hindered in the direction normal to the plane, [100]. Using

the diffusive activation energies calculated in Ref. 27 (0.61 eV: 0.36 eV: 0.36 eV for

the directions [100]:[010]:[001]), and the crystal aspect ratios obtained from the SEM

image (Figure 1), it would be concluded that the mass flow (flux multiplied by area of

appropriate face) rates in the [100] and [001] directions may be approximately equal.

Furthermore, grain boundaries might also be a more significant transport route along the

shorter distance perpendicular to the [100] plane.

However, DFT calculations suggest that the adsorption and diffusion of Li+ are

preferential on the (001) surface via the unique tunnel along the [001] direction. The

tunnel is constructed along the zig-zag VOx plane, which provides highly symmetric

oxygen sites for Li+ adsorption and diffusion. The (001) face provides a Li+ binding energy

of -0.56 eV; accordingly, the (001) face can be anticipated to be active during lithiation.

In contrast, on the (010) face, lithiation is hindered by a weakened Li+ adsorption with

a binding energy of -0.08 eV, which likely results in a lower coverage. The (100) face

is the most inert face during lithiation, providing an adsorptive binding energy of 0.40

eV. Charge-transfer on the (100) face may be hindered by an unfavorable binding energy,

essentially rendering the (100) face an insulator during lithiation. These factors indicate

that the mass-transport process can be approximated as one-directional along the [001]

direction.

The description of the lithium insertion is given by equation 3.3.
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Li+ + e– + Γ↔ LiΓ (3.3)

where Γ and LiΓ are unoccupied and occupied host sites in the crystal (Γ = α-

LiV3O8).

The charge-transfer kinetics of this reaction are estimated using the Butler-Volmer

kinetic expression, equations 3.4 and 3.5.

i = i0

[
exp

(
αaFη

RGT

)
− exp

(
−αcFη
RGT

)]
(3.4)

i0 = Fkrxnc
αa
0 cαcα (cα,max − cα)αa (3.5)

In the crystal, the conservation of mass for lithium in the α-phase and β-phase is

given by

∂ ((θα + θgb) cα)

∂t
+
∂ (θβcβ)

∂t
= ∇ · (Deff∇cα) (3.6)

∂θβ
∂t

= rβ (3.7)

θα + θβ + θgb = 1 (3.8)

where cα and cβ are the concentrations of lithium in the α and β-phases, θα and θβ

are the volume fractions of the α and β-phases respectively, rβ is the rate at which lithium

enters the β-phase (leaves the α-phase) and is discussed below, with further detail in the

appendix. θgb is the volume fraction of grain boundaries. It is assumed that some fraction

of the particle is composed of voids or grain boundaries and that lithium can reside in

these gaps. The void volume of the β-phase is some presumably very small fraction, ζ,

of the β-phase:

θgb = ζθβ (3.9)
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It was initially hypothesized that the effective diffusion coefficient was given by

Deff = θαDα, where mass transport is increasingly resistive as more β-phase formed.

However, this formulation was inconsistent with experiment because it underpredicts the

materials capacity when there are significant amounts of β-phase formation. Instead it

was hypothesized that diffusion could take place not only through the α-phase, but also

along grain-boundaries and that these two processes could proceed in parallel.

Deff = θαDα + θgbDgb (3.10)

This formulation is more consistent with experimental observations if Dgb ∼ 100 Dα

and ζ ∼ 0.01.

3.3.1 Boundary and Initial Conditions

At the beginning of the simulation, the values of cα and θβ are set to initial values:

cα|t=0 = cα,0; θβ|t=0 = θβ,0 (3.11)

For each crystal, the flux at the (001) surface is defined by the specific current

density and symmetry is invoked at the center of the crystal, along the [001] direction:

∂cα
∂x

∣∣∣∣
x=L

=
1

Deff

i

F
(3.12)

∂cα
∂x

∣∣∣∣
x=0

= 0 (3.13)

where the current density, i, and specific current, iapp, are related by equation 3.14

i = iappρL (3.14)
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3.3.2 Kinetics of Phase Change

The kinetics of phase change, equation 3.15 are developed from Avramis mathe-

matical formulation of nucleation and growth,16–18 where kβ is the reaction rate constant,

cαcα,sat is the driving force for phase change, θβ represents the interfacial area between

the α and β-phases, and 1− θβ is the correction for impinging nuclei. A detailed deriva-

tion is given in Appendix A. The value of m changes depending on the rate of nucleation

relative to that of growth and the dimensionality of growth (1, 2, or 3-dimensional).

∂θβ
∂t

= kβ (cα − cα,sat)
(
θmβ
)

[1− θβ] ; 0 ≤ m ≤ 1 (3.15)

3-D
Progressive

3-D
Instantaneous

2-D
Instantaneous

1-D
Instantaneous

θ θ2/3 θ1/2 θ0

Table 3.1: Value of m for different mechanisms of phase change

Table 3.1 gives the value of m for some scenarios, but m can take on any value

between 0 and 1. Combining equations 3.6, 3.7, and 3.15 are assuming 1-directional

diffusion in rectangular coordinates yields

∂ (θαcα)

∂t
= Deff

∂2cα
∂x2

− kβ (cα − cα,sat)
(
θmβ
)

[1− θβ] (3.16)

By introducing dimensionless concentration, position, and time:

c̄ =
cα
cα,sat

; x̄ =
x

L
; τ =

t

L2/Deff

(3.17)

equation 3.16 can be recast in dimensionless form:

∂ (θαc̄)

∂τ
=
∂2c̄

∂x̄2
− ψTh (c̄− 1) θmβ (1− θβ) (3.18)

where ψTh is the ratio of phase-transformation rate to diffusion rate, akin to the

Thiele modulus,
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ψTh =
kβL

2

Deff

(3.19)

The boundary condition given by equation 3.12 is also given in dimensionless form:

∂c̄

∂x̄

∣∣∣∣
x̄=1

= ī (3.20)

where ī is a dimensionless current density:

ī =
L2ρ

Deffcα,sat

iapp
F

(3.21)

As ψTh approaches zero, the phase fraction θβ is uniform across the crystal, while

values approaching infinity will produce profiles resembling step functions. The shrinking-

core method assumes instantaneous phase change kinetics, ψTh →= ∞, producing the

step change seen in Figure 4. At higher values of ψTh the profiles resemble the shrinking-

core profile. Figure 4B illustrates the effect of ī on the uniformity of the θβ-profile. It

is observed that, as with ψTh, increasing ī increases the sharpness of the profile, but the

effects are milder. In addition, there is a limit to the extent that changing the flux can

affect the profiles. If ī is made greater than 100, the profile is identical to the profile

when ī = 100. The same effect is seen for ī less than 0.1.

Figure 3.4: A) Illustration of the effect of changing ψTh on the θβ profile within the crystal for ī = 10.
The profiles are also compared to the profiles produced using the shrinking-core model; it can be seen
that at high values of ψTh, the model collapses to the shrinking-core model. B) Illustration of the effect
of changing ī on the θβ profile within the crystal for ψTh = 5.
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Figure 3.5: An illustration of the θβ profile within a crystal (ψTh = 10,000, m = 0) during a current
cycling process (̄i = 60). The predicted spatial variation of the regions with two phases is a strong
function of the battery usage.

With the shrinking-core method, tracking a few boundaries is manageable, but

not trivial. The complexity involved in tracking many boundaries, whose positions vary

with time, can make shrinking-core method cumbersome. Additional questions arise

concerning the coalescence of boundaries. With the method outlined in this chapter,

there is no need to introduce internal boundaries and this is important because simulations

of battery cycling may need to account for a large number of scenarios. For example,

Figure 5 shows a simulated θβ profile, where the battery is discharged before the β-phase

is completely consumed during charge. In this case, there are two distinct regions within

the crystal with non-zero θβ.

3.3.3 Numerical Methods

The governing equations were discretized using the forward-time, central-space finite

volume method. The scale was discretized, and the resulting block, tri-diagonal matrix

was solved in Fortran 95 using the BAND(J) algorithm.32 The mesh size necessary to

adequately resolve the profiles is dependent on the value of ψTh; higher values require
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a finer mesh. For comparison to electrochemical data, mesh sizes of 22 points were

sufficient. The time step was set to 0.03 seconds. Computer experiments were conducted

for the mesh sizes and time steps to ensure convergence.

The shrinking-core method commonly uses a finite volume formulation because it

makes handling the internal boundary conditions more manageable. While the finite

volume formulation was used to obtain the results shown in this chapter, there are no

significant advantages to using the finite volume method over the finite difference method;

a corresponding paper treats a different electrochemical system using the finite difference

method.33

3.4 Parameter Estimation

The results of the current interrupt experiments at different rates were used to get

order of magnitude estimates for krxn, Dα, as well as estimates for the equilibrium con-

centration and the rate constant for β-phase formation. From the voltage recovery data

we could elucidate information about charge-transfer and get an estimate for krxn (equa-

tion 3.5). The instantaneous potential jumps are the sum of the activation and ohmic

overpotentials in the electrode. Assuming the ohmic losses are much smaller than the

charge-transfer losses, the overpotential can be estimated using Butler-Volmer kinetics.

Figure 6A overlays order of magnitude estimations of krxn and the experimental voltage

jump observed 10 ms after the current is turned off at each current rate.

Using the discharge voltage versus average equivalence (6B) we are able to gain

insights into the diffusive properties of lithium in LiV3O8. First it should be noted, that

estimating the diffusion coefficient requires isolation of mass-transport effects from phase

change effects, i.e. we examined the data before the onset of phase-change. In addition,

at low current rates (C/10) the resolution between 1× 10−12 and 1× 10−13 cm2 s−1 is too

low to distinguish between the two conditions. However, using a higher current rate, 1C,

improves the resolution between these two cases, from which it is clearly observed that the

best estimate of the diffusion coefficient is 1× 10−13 cm2 s−1. Additionally because the
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Figure 3.6: Qualitative comparisons used for parameter estimation of A) krxn, B) Dα, C) xα,sat,
and D) kβ . A) compares varying exchange current densities with the charge-transfer losses at different
current rates. B) compares varying diffusion coefficient at a current rate of 1C; C) and D) compare
varying saturation concentrations and phase change reaction coefficients, respectively, with experiments
conducted at C/10.

value of the effective diffusion coefficient was not found to change much in the two-phase

region,8 Dgb was assumed to be 100 times greater than Dα.

Next, it was important to establish equilibrium concentrations of lithium in the

α-phase and β-phase. As previously described, the equilibrium concentration in the

lithium-deficient phase was not established with certainty in the literature. Namely, it

was debated whether the equilibrium concentrations were Li2.5V3O8:Li4V3O8,
34,35 or as

others suggest Li2.9–3.0V3O8:Li4V3O8.
9,10,36 Because it is generally accepted that the β-

phase composition is Li4V3O8, xβ,sat was set to 3 (cβ,sat = 0.0365 mol cm−3). Because

the consensus in the literature is that there are only two probable possibilities for the

equilibrium concentration in the α-phase, it is relatively easy for us to test the two cases
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and compare the results, which are given in Figure 6C. Clearly, xα,sat = 1.5 (cα,sat =

0.0182 mol cm−3), or Li2.5V3O8:Li4V3O8 gives better agreement with experimental data.

While some may contend that the value of xα,sat needs to be fitted with the value of

kβ, this is simply not true for this particular case. While it is true that some non-zero

value of kβ needed to be selected, the value of kβ only controls the slope of the voltage

plateau, while xα,sat can be thought of as controlling the vertical position (the analog

of the y-intercept). Using this reasoning, xα,sat and kβ can (and should) be determined

independently for this case.

Figure 6D shows a comparison of experimental measurements with simulations in-

corporating phase change with varying rate constants, kβ. It can be appreciated that as

kβ is increased from 1 to 50 cm3 mol−1 s−1, the slope of the voltage plateau decreases,

and the performance increases. The performance increase is due to decreases in the

concentration overpotentials. As kβ increases, the voltage is also able to recover more

quickly. The parameter kβ was selected to obtain the best agreement with experimental

data during the voltage plateau as well as during the voltage recovery. The reaction rate

constant, kβ, was found to be 5.0× 10−3 cm3 mol−1 s−1, yielding ψTh = 5. The reader

should note that the parameter m, equation 3.15, may also be fit with kβ.

Values of m not equal to 0, contribute to a shallow local voltage minimum at

intermediate values of capacity. Because these local voltage minima were not observed

experimentally and because of the fast phase change kinetics observed in the LiV3O8

electrode, m = 0 was concluded to be the best estimation. The value ofm = 0 corresponds

to 1-dimensional growth and instantaneous nucleation, and numerical simulations show

that m = 0 agrees well with experimental data. New phases have been observed to grow

through one-dimensional growth and instantaneous nucleation in electrode materials with

similar structures.37 Other values ofm seem to be in better agreement with other electrode

materials.33

Because we have adjusted five parameters: the charge-transfer rate constant, the

diffusion coefficient, the saturation concentration, the phase change rate constant, as well

as the dimensionality of nucleation and growth to achieve the model-experimental fits in
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Figure 6, a discussion about the validity of the parameters estimated is necessary. First,

the charge-transfer rate constant and diffusion coefficient can be estimated independently,

therefore we believe those estimates to be reasonable. In addition, the diffusion coeffi-

cient suggested by Figure 6B is within the range reported in the literature, 1× 10−11 −

1× 10−15 cm2 s−1.8 The remaining two parameters, xα,sat and kβ, could not be selected

without first establishing the diffusion coefficient.

Concerning the saturation composition, the tested compositions are supported by

experimental literature. Additionally, DFT calculations indicate that the saturation com-

position in the α-phase is Li2.5V3O8.
27 In summary, experiments, theoretical calcula-

tions, and this continuum model all suggest the saturation composition in the α-phase is

Li2.5V3O8.

Finally, this brings us to the selection of the phase change kinetic parameters. First,

it should be noted that changing the value of kβ does not impact the experiment-model

agreement before the onset of phase change, above 2.5 V. While it cannot be said that kβ

is determined independently from the previously fitted parameters, the foundation of the

diffusion coefficient and saturation concentration in experimental data lends credence to

the validity of the selected phase change kinetic constant. A summary of all the selected

model parameters is given in Table 3.2.

Paramter Value

L (nm) 100
Dα (cm2 s−1) 1× 10−13

Dgb (cm2 s−1) 1× 10−13

ξ 0.01
ρ (g cm−2) 3.5
cα,sat(mol cm−3) 0.0182
cβ,sat(mol cm−3) 0.0365
krxn (cm5/2 mol−1/2 s−1) 3.5× 10−8

kβ (cm3 mol−1 s−1) 5.0× 10−3

m 0

Table 3.2: Parameter values used to model the LiV3O8 electrode.
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3.5 Results

Figure 7 shows the experimental and simulated voltage during discharge and recov-

ery at current rates of C/10, C/5, C/2, and 1C (37.49, 74.98, 182.8, and 360.6 mA g−1

respectively). Maintaining the same parameter values for each experiment, the simula-

tions accurately predict the voltage plateau (∼2.5 V) as well as the transient and the final

resting voltage during voltage recovery.

Figure 3.7: Experimental (dashed lines) and simulated (solid lines) potential during discharge (lithi-
ation) and after interruption of current. Comparisons are shown for four discharge rates. The rapid
change in slope of the curves is the result of current interruption.

Figure 7 appears to validate the model during discharge and voltage recovery; it is

also important to validate the model during charge. Figure 8A shows the experimental

charge data and Figure 8B shows the simulated charge experiments. The agreement be-

tween simulation and experiment is good until the end of charge (low values of capacity),

where the voltage rapidly increases with decreasing capacity. In the circled region, the

experimental voltage profiles collapse onto each other, suggesting smaller overpotentials

during delithiation than lithiation. Simulations were conducted assuming no charge-

transfer losses, but this still could not produce the observed trend. Experimental trends
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were captured in the simulations by increasing the diffusion coefficient during charge by

a factor of 5.

The question is then, why are there differences between lithiation and delithiation?

In assumption 7 it was asserted that concentration variations in the [100] direction were

negligible, in part because of the lower mobility perpendicular to the [100] direction and

in part because charge-transfer at the (100) face was unfavorable due to a relatively

low binding energy for Li+ (this assumes a mechanism requiring surface adsorption prior

to insertion). Possibly, the low sticking probability of Li+ on the (100) face may limit

the lithiation and may enhance the delithiation rate. If indeed the (100) face is active

during delithiation, diffusion may proceed in all directions, albeit with a significantly

lower mobility perpendicular to the (100) face. Alternatively, diffusion perpendicular to

the (100) face may occur primarily through grain boundaries.

Independent of the precise mechanism, comparisons between experiments (8A) and

simulations (8B) during discharge and charge are in agreement by assuming a 5× increase

in an effective diffusion coefficient during charge. Simulations suggest that enhanced

activity of the (100) face impacts delithiation NOT by reducing the charge-transfer re-

sistance, but instead by allowing an alternative mass-transfer path for the solid-state

lithium to exit the crystal. In other words, transport anisotropy is not required to justify

the model during lithiation, an alternative rationale is that the (100) face is an insulator

to lithiation because surface adsorption energetics are not favorable. We speculate that

both anisotropic transport and face-dependent kinetics may play a role.

Using the model we can examine the factors that contribute to voltage losses within

the electrode. This is illustrated in Figure 10 for a rate of C/5, which focuses only on the

two-phase portion of the discharge curve. The experimental data and model fit represent

the potential between the lithium-metal anode and the vanadate cathode. The losses

can be split into three components: losses due to charge-transfer, non-instantaneous

phase change kinetics (supersaturation), and mass-transport. The open-circuit voltage is

obtained in simulations assuming zero charge-transfer losses, infinitely fast phase change

kinetics, and no mass-transfer resistances. The individual losses can be quantified by
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Figure 3.8: Experimental (A) potential during charge (delithiation) at different rates. The correspond-
ing simulated (B) potential is shown for comparison. The simulations do not capture the relatively small
changes in potential with charge rate observed at low equivalence.

sequentially relaxing these ideal assumptions. Before phase change potential losses arise

due to charge-transfer and mass-transfer resistances. At the end of the discharge, all three

effects present significant voltage drops to the system. Considering this information in

the context of cell design, it suggests that decreasing the crystal size could significantly

improve performance by decreasing the diffusion path-length thereby decreasing the mass-

transfer resistance; additionally, the smaller crystal sizes would have a larger surface area

to volume ratio, which would improve charge-transfer resistance. However, it is unclear

how smaller crystals would impact phase-change kinetics and consideration needs to be

given to how crystal size will affect cycling performance of this material.
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Figure 3.9: Experimental (A) potential during charge and discharge at different rates. The correspond-
ing simulated (B) potential is shown for comparison. If the diffusion coefficient is increased during charge,
then the simulation curves collapse onto each other as is observed experimentally, providing significant
improvement from those observed in Figure 3.8.

Figure 3.10: Estimation of the potential drops in the lithium trivanadate electrode at a current rate of
C/5, focusing on the two-phase region. The graph shows qualitatively the contributions to the observed
overpotential. 1) reversible potential, 2) charge-transfer resistance only, 3) charge-transfer and estimated
phase-change resistances, assuming no concentration variations, 4) charge transfer, estimated phase-
change, and estimated mass-transfer resistances.
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3.6 Conclusions

A combined experimental and theoretical study suggests that the phase transforma-

tion from α-Li1+xV3O8 to β-Li4V3O8 is relatively facile. A model to analyze the electro-

chemical behavior and phase transformation also requires a description of mass transport

of lithium in the crystal host material. Although SEM analysis reveals that the crys-

tals aggregate, from the analysis of the time constant associated with voltage recovery

it was concluded that the significant mass transfer resistances occur on the crystal scale

and these resistances are consistent with the assumption of 1-D diffusion along the [001]

direction. Fitted phase-transformation kinetics suggest that ψ ∼ 5, and a shrinking-core

model of phase distributions within a crystal is thus not appropriate. The excellent

agreement between simulated and experimental lithiation results validates the selected

diffusion coefficient of lithium in LiV3O8, as well as the selected value of the equilibrium

concentration of lithium in the α-phase. Comparisons also suggest that transport pro-

cesses within the crystal may be more rapid during charge than discharge, from which

we have hypothesized that the (001) crystal face may be active during charge but not

during discharge. An analysis of the potential drop contributions indicates that losses

due to charge-transfer, mass-transfer, as well as phase change are all significant.
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3.8 Appendix A

This appendix details the mathematical model for the formulation of a new phase,

equation 3.15 in the text, which is based on the formulations for nucleation and growth

developed by Avrami.16–18,38 First, it is assumes that the radius, or characteristic length,

of a nucleus grows at a constant rate, v and can be described by equation 3.22.

r(t) = r∗ + vt ≈ vt (3.22)

where r∗ is the critical radius of a nucleus, and t is time. Assuming spherical

particles, the volume of a single nucleus is given by 3.23, and differentiating with respect

to the time gives 3.24.

V =
4

3
πr3 =

4

3
πv3t3 (3.23)

dV

dt
= 4πv3t2 = kgV

2
3 (3.24)

where kg is the growth rate constant.

Next it is important to quantify the total volume of the β-phase, which is a product

of the number of nuclei, and the volume per nuclei, V :

dVβ
dt

= n
dV

dt
= n

(
4πv3t2

)
(3.25)

As the nuclei grow they will begin to impinge upon each other. To ensure that

there is no double counting, n represents the number of isolated nuclei, given as n0 [1− θ],

where n0 is the total number of nuclei. As the volume fraction of β-phase increases, it

becomes more likely that nuclei will impinge on each other, therefore decreasing the num-

ber of isolated nuclei. As super-saturation increases it is expected to favor nucleation, i.e.

(cα − cα,sat) is the driving force for nucleation. The growth rate, v, of an individual nu-

cleus is assumed to be unaffected by super-saturation. Assuming progressive nucleation,

n can be represented using equation 3.26:
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n = (kn (cα − cα,sat) t) [1− θβ] (3.26)

where kn is the nucleation rate constant. Combining equations 3.25 and 3.26 and dividing

by the total volume, Vtot, produces 3.27, which is a specific case of equation 3.15, where

m = 1.

1

Vtot

dVβ
dt

=
1

Vtot

(
4πv3t3

)
kn (cα − cα,sat) [1− θβ]

=
1

Vtot
kn (cα − cα,sat) (4πV ) [1− θβ]

dθβ
dt

= kβ (cα − cα,sat) (θβ) [1− θβ] (3.27)

3.9 Appendix B

This appendix lists the open-circuit potential of excess lithium in lithium trivana-

date (LiV3O8). The expression for the open-circuit potential as a function of lithium

concentration in the α-phase is derived using the approach outlined by Karthikeyan et

al..39 The open-circuit potential at a particular lithium concentration was estimated using

U = Uref +
RGT

F
ln

[(
c

c0

)(
1− c̄max
c̄max

)]
+

N∑
k=0

Ak

[
(2c̄max − 1)k+1 − 2c̄maxk (1− c̄max)

(2c̄max − 1)1−k

] (3.28)

where c is local concentration of lithium in the electrolyte. The parameters in equation

3.28 are obtained by fitting the equation to experimental data and the values for the

parameters are given in Table B1 and the fit is shown in Figure B1. The reason the

empirical open-circuit voltage (OCV) falls below the experimental electrochemical data

(x = 1.6 in Li1+xV3O8) is that the empirical OCV neglects the effects of phase change. The
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effects of phase change on the experimental data is to suppress the lithium concentration

in the α-phase, see equation 3.6.

Figure 3.11: Open-circuit voltage measurements (squares) were taken and the empirical open-circuit
voltage curve (solid red) was constructed to reside between the discharge and charge curve (dashed) at
the lowest current rate.
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Parameter Value

N 20
Uref 2.7671
A0 -0.32895
A1 0.057048
A2 -0.21475
A3 0.24177
A4 1.8186
A5 -0.32144
A6 -19.037
A7 11.997
A8 107.13
A9 -111.70
A10 -355.17
A11 489.45
A12 696.86
A13 -1133.1
A14 -813.10
A15 1438.6
A16 568.70
A17 -953.47
A18 -237.50
A19 260.21
A20 52.050

c0 (mol cm3) 0.001
cα,max (mol cm3) 0.0243

Table 3.3: Parameters for the empirical open circuit potential of the α-phase derived from the Redlich-
Kister expression (see equation 3.28 and Figure 3.11).

3.10 List of Symbols
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c0 bulk concentration of lithium in the electrolyte mol cm−3

cα,max maximum solid-state lithium concentration mol cm−3

c̄ dimensionless concentration (-)
D solid-states diffusion coefficient cm2 s−1

Deff effective solid-states diffusion coefficient cm2 s−1

F Faradays constant 96 485 C mol−1

i current density A cm−2

ī dimensionless current density (-)
i0 exchange current density A cm−2

iapp applied current A g−1

kg growth rate constant s−1

kn nuclei formation rate constant cm3 mol−1 s−1

krxn reaction rate constant cm5/2 mol−1/2 s−1

kβ rate constant for phase formation cm3 mol−1 s−1

L characteristic length of the crystal cm

m
indicates the dimensionality of growth

and nucleation of phase formation
(-)

n number of nuclei (-)
r particle radius cm
r∗ critical particle radius cm
RG ideal gas constant 8.314 J mol−1 K−1

t time s
T temperature K
v linear growth rate in Avrami formulation cm s−1

V volume cm3

Vtot total volume cm3

x linear position in the crystal cm
x̄ dimensionless posioint (-)
αa, αc anodic and cathodic charge-transfer coefficients (-)
η overpotential V
θ volume fraction of phase (-)
ρ density of crystal material g cm−3

τ characteristic time (L2/D) (-)

ψTh
ratio of rate of phase transformation

to diffusive mass transfer rate
(-)

Subscript
α denotes the α-phase (alpha-phase)
β denotes the β-phase (beta-phase)
CT charge-transfer
gb grain-boundary
MT mass-transfer
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Chapter 4

Operando Study of LiV3O8 Cathode:

Coupling EDXRD Measurements to

Simulations††

††This work has been published: Nicholas W. Brady, Qing Zhang, Andrea Bruck, David C. Bock,
Christian Alexander Gould, Amy C. Marschilok, Kenneth Takeuchi, Esther Takeuchi, and Alan C. West.
“Operando Study of LiV3O8 Cathode: Coupling EDXRD Measurements to Simulations.” Journal of
The Electrochemical Society 165, no. 2 (2018): A371-A379.
The thesis writer’s contribution to this work was the model development and the analysis of the simulated
results. The electrochemical results and energy dispersive x-ray diffraction results were provided by Qing
Zhang, Andrea Bruck, and David C. Bock from the Marschilok-Takeuchi Research Group at Stony Brook
University.
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4.1 Introduction

Lithium trivanadate, LiV3O8, and transition metal oxides in general are attractive

cathode materials for lithium-ion batteries due to their moderate redox potential, high

theoretical capacity, and good rate capability.1,2 LiV3O8, as with many other transi-

tion metal oxides, undergoes phase change during lithiation.1,3,4 Up to a composition of

Li2.5V3O8, the material is in the parent layered α-phase; from Li2.5V3O8 to Li4V3O8, the

α- to β-phase transition process takes place where the layered phase transforms into the

defected rock-salt β-phase; beyond Li4V3O8, lithiation occurs into the single β-phase.1,4

Phase transitions during battery operation are significant because they have implica-

tions for electrochemical performance, rate capability, as well as cycle life. Previous

studies have interrogated phase change using a variety of methods, both experimental

and theoretical: electrochemical5–7, in-situ8,9 and ex-situ10 characterization (SEM7,11,

XRD4,5,7,10,11), DFT9,12, and continuum modeling6.

Electrochemical measurements are commonly used to investigate battery perfor-

mance. While these measurements are useful, they are indirect measurements of the

physical processes that govern performance. For this reason, direct measurements through

characterization, such as SEM, XRD, and TEM are used in-situ and ex-situ to try to un-

derstand the internal processes. However, because battery systems are highly dynamic,

if there are even short delays between operating the battery and interrogating it, the

observed profiles may not be indicative of the profiles that exist during operation. This

concept is illustrated in Figure 4.1. Using the parameters listed in Table 2 and discharg-

ing at C/18 until an equivalence of Li2.4V3O8, simulations show that even with a short

gap between discharge and characterization (two hours) the spatial profiles change sig-

nificantly. And if there is a 10-hour delay or more, the non-uniformities present during

operation will be completely undetectable. Operando studies are therefore very valuable

because they allow for characterization in time and position and show how these profiles

evolve during battery operation; insights about the physical process can be gained from

this characterization information. Zhang et al. used synchrotron energy dispersive X-

ray diffraction (EDXRD) measurements to probe the evolution of phase change and the
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Figure 4.1: The volume fraction of β-phase in a 561 µm thick LiV3O8 cathode as a function of position
at 0, 1, 2, and 10 hours after the end of discharge.

spatial variation of solid-state lithium concentrations within an LiV3O8 electrode during

operation.13 Because the results of the operando EDXRD measurements can be difficult

to interpret it is useful to couple these results with simulation studies.

A previously published crystal-scale mathematical model has been shown to be in

excellent accord with electrochemical measurements and used to detail the crystal scale

transport and phase change dynamics in LiV3O8.
6 The model was developed using ex-

perimental studies on cathodes with thicknesses of 50 µm, ensuring that electrode-scale

transport resistances were minimized. The agreement with electrochemical data present

by Brady et al.6 was compelling, however the predicted concentration profiles were not

directly verified. The present study uses operando EDXRD measurements in addition

to electrochemical measurements to validate the predicted concentration profiles and hy-

pothesized phase change parameters. In the present study, a ∼500 µm thick electrode

was used in order to effectively exploit the ability of the operando method to map spatial

variations as a function of time (state of charge); because the electrode used in this study

was 10× thicker, electrode-scale resistances needed to be accounted for in the simulations

in addition to crystal-scale transport effects. While Strobridge et al.14 used a combina-

tion of operando EDXRD characterization, electrochemical measurements, and porous
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electrode theory to explore the performance of LiFePO4, this is the first study to use this

combination of methods to study LiV3O8; in addition, this is the first study to compare

operando EDXRD measurements with a continuum model using crystal scale transport

properties coupled with electrode scale transport properties and phase change kinetics

based on nucleation and growth. The spatio-temporally resolved operando data provide

a means to test the validity of the continuum model, especially the novel description

of the phase change kinetics. Furthermore, the model provides context for quantitative

interpretation of the operando data.

4.2 Experimental

Li1.1V3O8 material was synthesized via a sol-gel approach, adapted from a previous

report.15 Briefly, V2O5 and LiOH ·H2O in a stoichiometric ratio (Li:V = 1.1:3) were

stirred in aqueous solution under nitrogen, dried and annealed at 500°C to obtain the

final product, LVO500. The electrode for EDXRD measurements was prepared using

LVO500, carbon and graphite in a weight ratio of 90:5:5, where the mixtures were pressed

into a cylindrical electrode 561 µm thick and radius 13 mm; the mass loading of LVO500

in the electrode was 0.124 g. A coin cell with a LVO500 electrode, Li metal anode

and polypropylene separator was constructed in an argon-filled glove box. 1 M LiPF6 in

ethylene carbonate/dimethyl carbonate (a volume ratio of 3:7) was used as an electrolyte.

Excess electrolyte is added to the cell to ensure proper wetting. The volume of the

electrolyte is usually ∼150 µL. If the electrode is not properly wetted, during discharge,

propagation of the β-phase throughout the entire depth of the electrode would not be

observed. Since this is not the case, it is believed that the electrode is properly wetted.

The EDXRD measurements of the LVO500 coin cell were conducted at the Ad-

vanced Photon Light Source at Argon National Laboratory on Beamline 6-BM-B. The

experimental setup has been published previously.16 White beam radiation was focused

to a final gauge volume of 3.6 × 0.1 × 0.02 mm3. Coin cells were placed on the sample

stage, which was moved vertically in 20 µm increments to acquire the EDXRD patterns

58



for various regions inside the cell. The germanium energy detector was set to 2θ = 3°.

The LVO500 cell was discharged to 1.8 V vs. Li/Li+ and charged to 3.8 V at a current

rate of C/18 (20.2 mA/g) on a Maccor cycle life tester while the EDXRD patterns were

continuously collected. During lithiation 9 scans were taken (scans 1 - 9), at average

equivalences (x in LixV3O8): x = 1.1, 1.5, 1.8, 2.0, 2.3, 2.6, 2.9, 3.2, and 3.5; during

delithiation 10 scans were taken (scans 11 - 20), at average equivalences x = 3.6, 3.3, 3.0,

2.7, 2.3, 2.1, 1.8, 1.5, 1.3, and 1.2.

Figure 4.2: A schematic of the setup used for operando EDXRD measurements. White beam radiation
was focused to a final gauge volume of 3.6 × 0.1 × 0.02 mm3. Coin cells were placed on the sample
stage, which was moved vertically in 20 µm increments to acquire the EDXRD patterns for various
regions inside the cell. The germanium energy detector was set to 2θ = 3°.

Figure 4.2 is a schematic of the set-up used for the operando EDXRD measurements.

The scans start at the anode and move toward the current collector. The gauge thickness

is ∼20 µm, and the scanning speed is 120 seconds per 20 µm, which equals 80 minutes to

scan the entire length of the 800 µm battery.

4.3 Theory

The governing equations and boundary conditions used to model the system are

shown in Table 1 and follow the development outlined by Knehr et al.17,18 The model

assumptions are identical to those outlined previously6, with a modification to assumption
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Units Symbol Brady, et al.6 Current Study

Electrode Scale Parameters
Electrode Porosity [cm3 cm−3] ε - 0.45
Diffusion Coefficient of Li+ in Electrolyte [cm2 s−1] D0,eff - 5× 10−7

Solid-State Electron Conductivity [S cm−1] σ - 1.0× 10−2

Electrode Length [cm] L - 0.0561

Crystal Scale Parameters
Crystal Length in the [001]-direction [nm] Lx 100 60
Diffusion Coefficient of Li+ in Solid-State [cm2 s−1] Dx,eff 1× 10−13 1× 10−13

β-phase Formation Reaction Rate Constant [cm3 mol−1 s−1] kβ 5× 10−3 4.5× 10−3

α-phase Saturation Concentration [mol cm−3] cα,sat Li2.5V3O8 Li2.5V3O8

Lithium Concentration in the β-phase [mol cm−3] cβ Li4.0V3O8 Li4.0V3O8

Electrochemical Reaction Rate Constant [cm5/2 mol−1/2 s−1] krxn 3.5× 10−8 3.5× 10−8

Electrochemically Active Surface Area [cm2 cm−3] a - 4.8× 104

Table 4.1: Comparison of model parameters from previously published study and current study on the
LiV3O8.

3 - concentration and potential variations on the scale of the electrode are now considered

significant (in addition to variations on the crystal scale).

1. The system is isothermal.

2. The impact of intermolecular interactions on solute species transport is ignored

(dilute solution theory is assumed both in the solid-state and in the electrolyte).

3. Spatial variations in concentration and potential on both the bulk electrode scale

on the crystal scale are considered.

4. The LiV3O8 crystals are considered to be rectangular prisms and have a constant

volume.

5. The polarization associated with the lithium-metal negative electrode is negligible.

6. Only the α-phase is electrochemically active. Lithium can only enter the β-phase

by first inserting into the α-phase, and then through a chemical reaction, enter into

the β-phase.

7. In the crystal, mass-transfer along the [001] direction is assumed to be rate limiting

and mass-transport along the [100] and [010] directions are considered negligible

during lithiation. During delithiation, an effectively higher diffusion coefficient was
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found and was hypothesized to be the result of the [100] face also being active

during delithiation.6

In the present study, electrode-scale effects play a significant role in performance

based on the dimensional analysis outlined by Knehr et al.17 and applied by Brady et

al6. Porous electrode theory is used to describe the current in the solid-state, i1, equation

(1) in Table 1, the current in the electrolyte, i2 (Equation 2), concentration of lithium in

the electrolyte, c0 (Equation 3), concentration of lithium in the solid-state, cα (Equation

4), where the current in the electrolyte and solid-state are coupled through the electro-

chemical reaction rate, iin (Equation 6), which is described using Butler-Volmer kinetics;

η is the overpotential for the electrochemical reaction, φ1 is the solid-state potential, and

φ2 is the solution potential. The description of the electrochemical reaction rate and

equilibrium potential, U (Equation 7) remain identical to what was published by Brady

et alf.6 The ionic mobility of the species in the electrolyte, ui, is assumed to follow the

Nernst-Einstein relation. The governing equations associated with the electrode scale

are consistent with previous simulation studies.19 Although the equations were written

generally, it was assumed that the values of the cationic and anionic diffusion coefficients

were equal (i.e. D+ = D− = D0,eff ).

Concentration variations within the solid-state are not neglected and are described

by equation (4), based on the crystal scale model developed by Brady et al.6 This equation

describes the Fickian transport of lithium through the crystal and assumes that phase

change proceeds through a chemical reaction. Equation (5) in Table 1 describes phase

change: the process of lithium transferring between the α- and β-phases, is assumed not

to be electrochemically driven, but chemically driven, where the term (cα − cα,sat) is the

driving force for phase change and kβ is the kinetic rate constant. The exponent m de-

scribes the dimensionality of phase growth (planar, cylindrical, spherical) and nucleation

(instantaneous, progressive), and the exponent p describes the degree of self-passivation.

It is assumed that the new phase grows planarly and self-passivation is proportional to

the volume fraction already transformed (m = 0, p = 1 for lithiation and m = 1, p = 1

for delithiation).
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The crystal scale model development is detailed by Brady et al.6 The most sig-

nificant information is that the crystal is composed of three components: the α-phase,

β-phase, and grain boundaries, whose volume fractions, θi, sum to 1:

θα + θβ + θgb = 1 (4.1)

And the volume fraction of the grain boundaries is assumed to be proportional to

the volume fraction of the β-phase.

θgb = ζθβ (4.2)

where ζ is some very small fraction (here it was assumed ζ = 0.01). The diffusion

of lithium in the crystal is assumed to proceed through the α-phase and along the grain

boundaries these two diffusion pathways are in parallel:

Dx,eff = θαDα + θgbDgb (4.3)

where the grain boundary diffusion coefficient, Dgb is 100× greater than Dα. As

stated in 01 - assumption 7, it was also found that the effective crystal scale diffusion coef-

ficient, Dx,eff , was 5× greater during delithiation than lithiation and this was determined

to be caused by an additional crystal face, the (100) face, becoming electrochemically ac-

tive during delithiation. During lithiation, only the (001) face is assumed to be active,

but during delithiation, both the (100) and (001) faces are assumed to be active, which

facilitates the improved lithium transport in the solid-state.

4.3.1 Boundary and Initial Conditions

- At the beginning of operation, it is assumed that the concentration of lithium

everywhere in the electrolyte is the nominal lithium ion concentration, cbulk = 1 M, the

lithium concentration in the solid-state is equal to the nominal lithium concentration,

cα,0 = Li1.1V3O8, and the volume fraction of β-phase is zero.
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c0|t=0 = cbulk ; cα|t=0 = cα,0 ; θβ|t=0 = θβ,0 (4.4)

The boundary conditions follow those outlined by Newman et al.19 At the separator

all the current is assumed to carried by the ions (i1 = 0), the solution potential, φ2, is

arbitrarily set to zero, and the lithium concentration in the electrolyte is assumed to be

equal to the nominal concentration of lithium in the electrolyte, cbulk.

Separator: i2 = iapplied ; Φ2 = 0 ; c0 = cbulk (4.5)

At the current collector, the current is carried exclusively through the solid-state

(i1 = iapplied, i2 = 0) and there is no flux of lithium ions at the cathode/current collector

interface.

Current Collector: i1 = iapplied ; i2 = 0 ; ∇c0 = 0 (4.6)

iapplied is the superficial current passed through the device, and is given by the total

current passed through the electrode divided by the solid-state cross-sectional area.

iapplied = ispecρLiV3O8
L (4.7)

where ispec is the mass specific current density (mA g−1).

Because the model couples the electrode and crystal-scale, boundary conditions are

also needed for the crystal scale equations. The flux at the crystal surface, the (001) face,

is defined by the electrochemical reaction rate at that electrode position and a symmetry

condition is assumed at the crystal center.

Dx,eff
∂cα
∂x

∣∣∣∣
x=L

=
iin
F

(4.8)

∂cα
∂x

∣∣∣∣
x=0

= 0 (4.9)
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4.3.2 Numerical Methods

The governing equations were discretized using the forward-time, central-space fi-

nite volume method. The scale was discretized, and the resulting block, tri-diagonal

matrix was solved in Fortran 95 using the BAND(J) algorithm.20 For comparison to elec-

trochemical data, mesh sizes of 42 points on the electrode scale and 22 points on the

crystal scale were sufficient. The time step was set to 1.0 second. Computer experiments

were conducted for the mesh sizes and time steps to ensure convergence. For Figures 4.5

and 4.6, 202 points on the electrode scale were used to obtain a smooth prediction of the

position at which the β-phase is present.

The crystal-scale parameters remain the same as those previously published by

Brady et al.6 (Dx,eff = 1× 10−13 cm2 s−1, krxn = 3.5× 10−8 cm5/2 mol−1/2 s−1, cα,sat =

Li2.5V3O8, and cβ = Li4.0V3O8), but the phase change reaction rate constant, kβ, was

allowed to vary along with the solid-state electrical conductivity, σ, and electrolyte ef-

fective diffusion coefficient, . These parameters were fit to the experimental data using

1000 Sobol points with the bounds: [0.5 × 10-6, 2 × 10-6] cm2 s−1, σ [1 × 10-1, 1 ×

10-5] S cm−1, and kβ [0.1 × 10-3, 10 × 10-3] cm3 mol−1 s−1. The volume of LiV3O8 was

calculated using the mass loading and the material density (3.5 g cm−3); the density of

the graphite and carbon were both taken to be 2.26 g cm−3; the porosity of the electrode,

ε, is calculated as the difference of the electrode volume and the volume of the active ma-

terial volume, graphite, and carbon. From the 1000 Sobol points two local minima were

found. A dimensionless parameter, K, describing the ratio of the electrical conductivity

in the electrolyte to the electrical conductivity of the solid-state, was used to distinguish

between these two sets of simulations parameters. K is defined below,

K =
εκ0,eff

(1− ε)σ
(4.10)

where κ0,eff is the effective electrical conductivity of the electrolyte. One set of simulation

parameters had a value of K < 0.15, which corresponds to large electronic conductivity;

another set of parameters had a value of K = 1.0. It was found that low values of K were
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associated with larger values of kβ (∼5× 10−3 cm3 mol−1 s−1) while the higher values of K

were associated with lower values of kβ (< 1× 10−3 cm3 mol−1 s−1). Although simulations

using either set of parameters fit the electrochemistry data well, only the K < 0.15

simulations collapsed to the crystal scale model in the limits of low current rate or thin

electrodes. It is believed that additional electrochemical data would also resolve the choice

between the two sets of simulation parameters. In addition, as shown below, it was found

that simulations with K < 0.1 were consistent with operando EDXRD measurements,

while simulations with K = 1.0 were not.

The fitted diffusion coefficent D0,eff was found to be 5× 10−7 cm2 s−1. For the

electrical conductivity of the electrode, σ, increasing above 1.0× 10−2 S cm−1 had no

effect on simulated performance. From the agreement of simulation with electrochemical

measurements, it has been determined that σ > 1.0× 10−2 S cm−1. The value of the

phase change reaction rate constant was found to be 4.5× 10−3 cm3 mol−1 s−1, which is

in good agreement with the previous study.6

Using the Nernst-Einstein relation, the effective conductivity of 1M LiPF6 in EC/DMC

was calculated to be 4.0× 10−3 S cm−1, which is about 3× lower than what is experimen-

tally observed (1.0× 10−2 S cm−1). However, the parameters are not estimated for bulk

solutions, but are estimated within the porous electrode; this means there are tortuosity

effects that are not explicitly accounted for in the formulation, but are implied (hence

the labeling as the effective conductivity).

Table 2 compares the parameters derived from simulating thin electrode (∼50 µm)

electrochemical measurements against the parameters derived from this study of thick

electrode (561 µm) electrochemical measurements. It should be noted that the thin-

electrode material was sintered at 550°C, while the thick electrode material was sintered

at 500°C. These slight differences in synthesis conditions may account for the difference

in observed crystal size.
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Electrode Scale Equations

Separator Current Collector

(1) Solid-State Current (1− ε)σ∇2Φ1 − aiin = 0 i1 = 0 i1 = iapplied

(2) Electrolyte Current (i2) ∇ · (κ∇Φ2) + εF (z+D+ + z−D−)∇2c0 + aiin = 0 Φ2 = 0 i2 = 0

Ionic Conductivity (κ) κ = εF 2
(
z2

+u+ + z2
−u−

)
c0

(3) Electrolyte Concentration (c0) ε∂c0∂t = εD0,eff∇2c0 + aiin
F c0 = cbulk N+ = N− = 0

Crystal Scale Equations

Crystal Center Crystal Edge

(4)
Lithium Concentration

in the α-Phase
∂((θα+θgb)cα)

∂t = Dx,eff∇2cα − cβ
∂θβ
∂t ∇cα = 0 −Dx,eff∇cα = iin

F

Solid-State Volume Fractions
θgb = ζθβ

θα + θβ + θgb = 1

Lithiation Delithiation

(5)
Balance on the

β-Phase Formation (θβ)
∂θβ
∂t = kβ (cα − cα,sat) θmβ [1− θβ] m = 0, p = 1 m = 1, p = 0

Electrochemical Reaction Rate

(6)
Current Density (iin)

Exchange Current Density (i0)

iin = i0

[
exp(αaFηRT )− exp(−αcFηRT )

]
i0 = Fkrxnc

αa
0 cαcα (cα,max − cα)αa

η = Φ1 − Φ2 − U

Reversible Potential

(7) U = Uref + RGT
F ln

[(
c
c0

)(
1−c̄max
c̄max

)]
+

N∑
k=0

Ak

[
(2c̄max − 1)k+1 − 2c̄maxk(1−c̄max)

(2c̄max−1)1−k

]
c̄max =

cα−cα,0
cα,max−cα,0

Parameter Value Parameter Value Parameter Value

cα,max (mol cm3) 0.0243 [Li3.0V3O8] A5 0.32144 A13 1133.1

N 20 A6 19.037 A14 813.10

Uref 2.7671 A7 11.997 A15 1438.6

A0 0.32895 A8 107.13 A16 568.70

A1 0.057048 A9 111.70 A17 953.47

A2 0.21475 A10 355.17 A18 237.50

A3 0.24177 A11 489.45 A19 260.21

A4 1.8186 A12 696.86 A20 52.050

Table 4.2: Governing equations and boundary conditions used to model the thick LiV3O8 electrode.
The crystal scale and electrochemical reaction rate equations are consistent with those reported by Brady
et al.6

4.4 Results

Figure 4.3 compares two models - a crystal scale model and a coupled electrode/crystal

scale model - to the observed electrochemical data. The published crystal scale model

overpredicts the cell potential between x = 1.5 and 3 (x in LixV3O8), but by accounting

for both electrode as well as crystal-scale effects, agreement with the electrochemical mea-

surements is achieved. The electrode-scale model accounts for both potential losses and

depletion of Li+ in the electrolyte. It is observed that the thin-electrode simulation (only

crystal-scale effects) shows a voltage plateau for compositions greater than Li2.5V3O8,

whereas the thick electrode simulations (coupled electrode and crystal-scale effects) show
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Figure 4.3: Cell potential of a 561 µm thick LiV3O8 cathode discharge data current rate of C/18.
Dashed (black) lines are experimental measurements. Simulations neglecting electrode scale resistances
(i.e. only modeling crystal-scale resistances) are shown in green and simulations accounting for both
electrode and crystal scale resistances in blue, assuming ε = 0.45.

a more sloping voltage profile. The voltage slope is primarily due to the non-uniformities

in the concentration profile, which favor lithiation closer to the separator and cause the

voltage to continuously decrease.

Figure 4.4 shows the simulated and measured electrochemical data; the solid circles

on the simulated curve give the average equivalence (x in LixV3O8) during each of the

EDXRD scans, and the insets are the simulated concentration profiles at some selected

scans. Significant spatial variations in solid-state Li concentration, with higher values

near the separator are predicted. These spatial variations lead to a preferential formation

of the β-phase near the separator, with the penetration depth of the β-phase increasing

with state of charge.

The simulations can predict the penetration depth of the β-phase within the elec-

trode, e.g. at x ∼ 2.1 in LixV3O8 (scan 5) the penetration depth of β-phase is 100 µm, x

∼ 2.5 (scan 6): 240 µm, x ∼ 2.7 (scan 7): 300 µm, x ∼ 3.0 (scan 8): 400 µm. Similarly,

the EDXRD patterns can be analyzed to determine the observed penetration depth of

the β-phase within the electrode. Figure 4.5 shows the measured penetration depth of

the β-phase (measured from the separator) at different values of x (scan #). The ver-

tical error bars are ±20 µm (the gauge thickness of each scan) and the horizontal bars
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Figure 4.4: Simulated and experimental potential as a function of state of charge at a current rate
of C/18. The points along the simulation curve correspond to the average equivalence of the EDXRD
scans. The insets are model predictions for the concentration profiles of lithium in the α-phase as well
as the volume fraction of β-phase as a function of electrode position.

are ±0.007 equivalence. The horizontal error bars arise from the simultaneous scanning

and operation (i.e. discharging) of the cell. It was assumed that the interface could be

determined within ± 20 µm, and the variation in the equivalence is given by the time

needed to scan 40 µm.

For comparison of experiments to simulations, a detection limit for the β-phase is

required. Here it was estimated that the minimum detectable volume fraction was ∼4%.

The solid lines in Figure 4.5 represent the simulated penetration depth of the β-phase for

different thresholds of detection: 0%, 5%, 10% by volume of β-phase. From Figure 4.5

it can be seen that the agreement of penetration depth vs. depth of discharge is largely

independent of the detection limit. The agreement between EDXRD measurements and

simulated predictions of the β-phase penetration depth using a detection limit of 5%

is very good. From the combination of electrochemical measurements and operando

characterization it was determined that the simulations accurately capture the physics

occurring within the 561 µm LVO electrode.

In a previous theoretical study of the LiV3O8 electrode6, comparisons between elec-

trochemical measurements and simulated results were used to estimate parameter values

for crystal-scale transport as well as the kinetics of phase change; the operando EDXRD
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Figure 4.5: A) The position (measured from separator) where β-phase is present as a function of
the state of charge. Points are determined from the EDXRD measurements and the solid lines are
simulations of this interface assuming volume fractions of 0%, 5%, and 10% as the detection thresholds.
B) Representative EDXRD scan illustrating how the scans were analyzed to determine the presence of
β-phase.

Figure 4.6: The position (measured from separator) where β-phase is present as a function of the state
of charge. Points are determined from the EDXRD measurements and the solid lines are simulations of
this interface. Simulations show the sensitivity of the model to phase-change kinetic parameters A) kβ
and B) xα,sat, assuming a 5% volume fraction detection limit.

measurements provide another avenue to interrogate the kinetics of phase change. Equa-

tion 5 in Table 1 gives the analytical expression used to evaluate the formation of β-phase

in the material. The two most critical kinetic parameters are the kinetic rate constant,

kβ, and the saturation concentration, cα,sat. Simulations of the β-phase interface as a

function of kβ are displayed in Figure 4.6A and simulations of the β-phase interface for

different values of cα,sat are displayed in Figure 4.6B. In 4.6A, it can be seen that kβ =

0.45 is inconsistent with the EDXRD data. However, distinguishing between kβ = 4.5

and kβ = 45 cannot be done from the operando data alone.
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From the scientific literature two hypotheses have been proposed for the phase

equilibria: Li2.5V3O8:Li4V3O8
21,22 and Li2.9–3.0V3O8:Li4V3O8

1,4,23. Brady et al.6 com-

pared electrochemical measurements with simulated results to show that an equilibrium

of Li2.9–3.0V3O8:Li4V3O8 is inconsistent with electrochemical observations. Similarly, the

operando EDXRD measurements also show that Li2.9–3.0V3O8:Li4V3O8 is inconsistent with

the observed phase profiles. From 6B, it can be seen that the predicted penetration depth

of the β-phase using cα,sat = Li2.9V3O8 would be lower than what is experimentally ob-

served; however, using cα,sat = Li2.5V3O8 the β-phase penetration depth agrees very well

with the EDXRD measurements. These findings, cα,sat = Li2.5V3O8 and kβ 4.5 cm3

mol-1 s-1, are consistent with the electrochemical data from both thick (∼500 µm) and

thin (∼50 µm) electrodes. While for this material, LixV3O8, the phase change parameters

could be extracted from the electrochemical data, this may not be the case for all mate-

rials. Figures 4.6A and 4.6B illustrate a framework of how EDXRD data (or operando

data in general) can be used in combination with simulation results as another metric to

quantify physical parameters.

Figure 4.7: Simulated and experimental cell potential as a function of state of charge at a current
rate of C/18. Simulations are shown as the blue solid line and experiments as the black dashed line.
The points along the simulation curve indicate the average equivalence when EDXRD scans were taken
during delithiation. The insets are two scans at the end of delithiation, x ∼ 1.5 (scan 18) and x ∼ 1.3
(scan 19) in LixV3O8.

Because of model limitations, as θβ → 1.0, the simulations of lithiation cannot
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reach the end of discharge capacity, at which delithiation begins. Therefore, the simula-

tions for delithiation were seeded uniformly with θβ = 0.9 (Li3.7V3O8); assuming uniform

concentration profiles at the start of delithiation or starting delithiation immediately

after lithiation produced similar results in terms of the predicted electrochemical mea-

surements and predicted concentration profiles. It was found that simulations did not

accurately predict the cell potential. By adding a constant overpotential of 150 mV to

the simulations during delithiation (the blue delithiation curve in Figure 4.7), agreement

is improved. In contrast, simulations and experiments are in agreement during both the

lithiation and delithiation process on studies of 50 µm electrodes without an additional

overpotential during delithiation. It is possible that the larger cell potentials measured

during the delithiation step in the 561 µm electrode can be attributed to higher anodic

overpotentials due to mass transfer limitations, considering that the cathodic current

densities on the Li anode are 10× higher than they were for the thin electrodes.

During lithiation of the cathode, the lithium metal anode is being oxidized, and

during delithiation of the cathode, lithium is being reduced. Polarization at the anode is

presumably more important during delithiation of the cathode because the mass transfer

overpotential associated with depleting lithium is higher than the penalty for creating

excess lithium ions near the anode. Despite discrepancies in the cell potential, the model

seems to be in agreement with the operando observations for the dissolution of β-phase

during delithiation. This hypothesis for why there is a higher observed polarization during

delithiation does not preclude other physical reasons for the higher observed polarization.

During delithiation, simulation results of the β-phase profiles were also compared

to the profiles observed through operando EDXRD. In contrast to the lithiation process,

during delithiation the characterization data suggest that the β-phase disappears uni-

formly across the electrode. This is interpreted from the β-phase peak being present

across the entire electrode at x ∼ 1.5 (scan 18), and disappearing uniformly at x ∼ 1.3

(scan 19, voltage 3.4 V); scans 18 and 19 are shown in the inset of Figure 4.7, where it can

be observed that the peak associated with the β- phase (boxed in yellow) is present across

the electrode in scan 18 and completely disappears in scan 19. Simulations suggest that
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Figure 4.8: Simulated volume fraction of β-phase, θβ , as a function of electrode position (measured
from separator) for an LiV3O8 electrode 561 µm thick and operated at a current rate of C/18. Solid lines
track the evolution of the β-phase profile during lithiation, and dashed lines track the disappearance of
the β-phase during delithiation.

during lithiation the β-phase forms heterogeneously due to mass- transport limitations

- it more favorable to insert lithium near the separator, therefore β-phase preferentially

forms near the separator.

Similar to what is hypothesized to occur at the anode, the mass transfer overpoten-

tial associated with depleting lithium near the current collector is higher than the penalty

associated with creating excess lithium ions near the anode. Because of the asymmetry in

the overpotentials, lithiation of the cathode occurs nonuniformly, but delithiation occurs

uniformly, which is depicted in Figure 4.8.

Mass transfer resistances within the electrode lead to large concentration gradients

of the lithium ion in the electrolyte during both lithiation and delithiation, as can be ob-

served in Figure 4.9A. However, the depletion of lithium ions near the current collector (>

500 µm) during lithiation has a higher penalty associated with it than the production of

excess lithium ions in the electrolyte during delithiation. Using the electrolyte concentra-

tions during lithiation and delithiation, and assuming a nominal solid-state concentration

of Li1.5V3O8, Figure 4.9B shows ∆η the deviation of the positional overpotential, η, from

the overpotential if there were no concentration variations in the electrolyte η∗ (i.e. if

c0 = cbulk everywhere; ∆η = η − η∗). From this plot it can be observed that during
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Figure 4.9: A) Simulated concentration profiles of Li+ ions in the electrolyte for varying degrees of
lithiation and delithiation. B) The deviation of the positional overpotential from the overpotential if
there were no concentration variations in the electrolyte for lithiation (solid) and delithiation (dashed).

lithiation, the reduction potential of lithium is ∼200 mV lower at the current collector

than at the separator, while during delithiation, the oxidization potential of lithium is

only ∼20 mV higher at the current collector than at the separator. This severe asymme-

try in the effect of the mass transfer resistance of Li+ is a large reason for the observed

asymmetry in the solid-state concentration profiles between lithiation and delithiation,

and the observed asymmetry in the formation and dissolution of the β-phase.

4.5 Conclusions

EDXRD operando studies provide an important avenue to study spatial non-uniformities

in phase formation and solid-state Li concentrations in LiV3O8 cathodes. Properties ob-

tained from simulation and experiment suggest relaxation of spatial non-uniformities

occurs within a few hours for an electrode ∼500 µm thick. Introduction of an electrode-

scale transport resistance coupled to a previously published crystal-scale model leads to

an effective electrolyte porosity of 0.21 when compared to experiment. Simulations are in

quantitative agreement with operando experiments in the prediction of spatial variations

in β-phase formation. During lithiation, β-phase formation moves from the separator to-

ward the current collector. During delithiation, the disappearance of β-phase is spatially

uniform.
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Chapter 5

Quantitative Parameter Estimation,

Model Selection, and Variable

Selection in Battery Science‡‡

‡‡This work has been published: Nicholas W. Brady, Christian Alexander Gould, and Alan C. West.
“Quantitative Parameter Estimation, Model Selection, and Variable Selection in Battery Science.” Jour-
nal of The Electrochemical Society 167, (2020).
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5.1 Introduction

Since the 1960s, the costs associated with electronic data storage, computational

operations, as well as data transfer have decreased exponentially.1,2 These improvements

in computational performance have made simulations easier and cheaper to execute and

have led to a proliferation of data generated from numerical physics-based simulations.

The challenge of the future (if not already) is that there are too much data to be analyzed

manually, and computationally scalable algorithms need to be developed and adopted to

maintain the current pace of research; Venkatasubramanian made this observation in

2008 for the broader field of chemical engineering.3 Data science techniques have enabled

software programs to perform complex tasks with remarkable results.4–6 However, how

to apply these techniques to the fundamental study of physical processes and complex

systems is not always obvious.

Numerical simulations are particularly useful when applied to complex systems such

as those that arise in battery science. Numerical physical models allow for the rapid test-

ing of hypotheses and determination of optimal design and control parameters, especially

when compared to a trial-and-error process. Because of the inherent structure of bat-

teries, models are particularly useful because they provide insights that are difficult or

impossible to obtain through experimentation alone.7–12 In addition to providing physical

inference, models are often essential in the design of optimal control schemes. However,

increasing the accessibility of fundamental physics-based battery models remains a chal-

lenge. Though commercial software tools are ubiquitous, they can be difficult to tailor

to a particular system; development of a suitable model often needs to be done by a

modeling expert. Most battery researchers are not modeling experts and often choose

to use less rigorous, but more accessible battery models. However, the assumptions in-

herent in these models may only be applicable to ideal cases, therefore their link to the

observed physics can be ambiguous. If, by leveraging data science techniques, a general,

computationally scalable algorithm can be defined for the explicit purpose of develop-

ing numerical physics-based battery models, it would increase the accessibility of porous

electrode models to all battery researchers, accelerating battery development.
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Data science techniques have been applied to battery research, especially in bat-

tery state of charge and state of health estimation and battery management13–15 and

Dawson-Elli et al. used machine learning to build a surrogate model from a particular

physics-based model in an effort to decrease execution time while retaining electrochem-

ical accuracy.15 While these applications of data science were not designed to elucidate

physical processes, other papers have explored using data science techniques to elucidate

physical understanding, specifically to perform physical parameter estimation by compar-

ing well-developed models to the performance of commercial battery cells.16–18 This paper

describes how data science can be applied to four aspects of physics-based model develop-

ment: parameter estimation, model selection, variable selection, and model-guided design

of experiment.

Parameter estimation is the first step of model development after the numerical

equations have been established. Modeling experts can produce compelling results by

manually estimating physical parameters and systematically comparing simulated results

to experimental observations.19 However, because it is a trial-and-error process, manual

parameter estimation is time-consuming and tedious, and often lacks a clear quantitative

justification. Quantitative approaches to parameter estimation such as, parameter sam-

pling12, least-squares20 and gradient-descent have been used in the literature. However,

uncertainty quantification is another important element of parameter estimation; it is not

only necessary to assess model accuracy21,22, but it also necessary for optimal control23,24.

Sensitivity analysis has been deployed in the literature20,25, but linearization sensitivity

analysis can be inaccurate in determining uncertainty if the model is highly nonlinear.26

The Markov-Chain Monte-Carlo method provides an alternative to sensitivity analysis

that can be applied more generally.27,28

Sometimes hypothesis testing leads to the development of multiple physical models,

so there is a need to develop a general and quantitative method to assess model per-

formance and to discriminate between models. Statistical t-tests25 have been used to

assess model suitability, and statistical f-tests have been used to discriminate between

models.20 These two tests are good inference tools, however, these statistical tests rely

79



on the assumption of independent and identically distributed samples and do not give

a quantification of the model’s predictive power. Cross-validation can be applied with-

out making such strong statistical assumptions and is therefore a more general way to

conduct model discrimination. By dividing the data into a training set and a validation

set, cross-validation provides an empirical measure of a model’s predictive power.29 This

manuscript employs k-fold cross-validation, which uses a loop in which each iteration

holds each data set as the validation set and the remaining k − 1 data sets as the train-

ing sets. k-fold cross-validation is widely recommended when applying machine learning

to real-world data.30,31 While the statistical t-test and f-test may be computationally

cheaper to perform, using k-fold cross-validation to compare the predictive power of sev-

eral models is a computationally scalable way (or at least computationally feasible way)

to perform model selection.

When it is suspected that parameter values change as a process proceeds (e.g. as

a battery cycles the apparent solid-state diffusion coefficient of lithium decreases), the

model can be fit to subsets of the experimental data and the parameter estimates can be

tracked during the process.32 This is reasonable when there are only a few parameters

in the model, i.e. the model already provides good inference. However, if the model

accounts for many different physical processes, there may be tens of parameters that can

vary, and searching for an optimal fit in these instances becomes intractable especially

if no prior knowledge is provided. One method to provide prior knowledge is to use

Bayesian estimation and Bayesian priors.33 Another method, covered in this paper, is to

use lasso regression. Lasso regression allows for the inclusion of prior knowledge about

the parameter values and provides a structured method to select the parameters that are

most likely changing during the process.34

After a model has been developed from the original experiments, it may be necessary

to conduct additional experiments to refine parameter estimates21,35 or test a new hy-

pothesis. Model-guided design of experiment can be used to determine which experiments

and what operating conditions should be used for optimal information extraction.25,26

Brady et al.36 and Knehr et al.37,38 modeled the LiV3O8 and Fe3O4 cathodes, respec-
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tively. In these studies, experts used ad hoc methods for parameter estimation, model

selection, and variable selection, and the results were validated against experimental

data. Herein algorithms are developed and validated by evaluating conclusions compared

to those obtained by “expert” battery researchers. The sections Parameter Estimation,

Model-Guided Design of Experiment, and Variable Selection compare the conclusions of

the modeler and the algorithm with respect to the LiV3O8 electrode; Model Selection

compares conclusion derived from the Fe3O4 electrode. The conclusions developed in this

paper are consistent with those developed by Knehr et al.38 and Brady et al.36. The

advantage of the algorithmic workflow is that it allows for streamlined data analysis and

decision-making and strengthens conclusions by providing quantitative justification.

5.2 Methods

To perform parameter estimation, a designated parameter space was sampled. To

obtain confidence intervals for the estimated parameter values, a bootstrapped Markov-

Chain Monte-Carlo (MCMC) algorithm was used. The advantage of using sampling

instead of an iterative optimization or a sequential stochastic optimization is that the

simulations can be executed in parallel. Performing MCMC with a bootstrap allows for

the number of accepted points, m, and the number of simulations, q, to be independent of

each other because the MCMC analysis samples the parameter space with replacement.

This allows for m > q; which means 10,000 accepted points can be achieved from 1,000

simulations and generate similar statistics to 10,000 uniquely accepted simulations.39–41

(Bootstrapping means that the random sampling is done with replacement. Once a

simulation result has been chosen and either rejected or accepted, it can subsequently be

selected again and tested for acceptance or rejection, i.e. a selection of a simulation does

not preclude it from subsequent selections; a simulation can be selected and accepted

multiple times.)

The simulated voltage data were generated using the methodologies outlined by

Brady et al.36 and Knehr et al.37,38 for the lithium trivanadate (LiV3O8) and magnetite
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(Fe3O4) systems, respectively. Markov-Chain Monte-Carlo analysis, cross-validation, and

lasso regression were performed using code written in Python and contained in a Jupyter

notebook.

5.2.1 Sampling

Sobol Sampling: To sample the parameter space efficiently, Sobol sequences were

usually generated in up to 4-dimensions using a downloadable Python module sobol seq.42

sobol seq takes as inputs the number of dimensions to sample as well as the number of

points to generate. The points generated are in the space [0,1], so the numbers are linearly

scaled to fit the range needed for the specific parameters. A Sobol sequence is a quasi-

random low-discrepancy sequence. These types of sequences are efficient for sampling

through hypercubes because they efficiently fill in gaps in the hypercube, and when these

points are projected onto lower dimensions, the gaps are also small.43

Lasso sampling: Because Sobol sequences produce very few points with parameter

values set identically to zero, for the implementation of the Lasso method (variable se-

lection) a grid mesh was used instead of Sobol sequences. The Lasso method regularizes

the optimization problem by pushing parameter values toward zero, so it is necessary to

have a fair number of points with parameter values set identically to zero.

A metric for how well the simulations emulate the experimental data is the residual

sum of squares, RSS:

RSS =
n∑
j=1

(ŷj − yj)2 (5.1)

where n is the number of experimental observations (the total number of voltage versus

time measurements for a constant current discharge experiment), ŷj are the simulated

observations and yj are the experimental observations. Each parameter set yields an

RSS, and this information is stored in a table, an example of which is shown below

(Table 5.1), and used for the MCMC analysis.
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Simulation # Dα (×10−13 cm2 s-1) krxn (×10−8 cm5/2 mol-1/2 s-1) Lixα,satV3O8 kβ (×10−3 s-1) RSS
0 5.05 8.0 2.0 25.0 2.29791
1 7.525 7.5 2.5 12.5 2.87751
2 2.575 8.5 1.5 37.5 0.716081
...

...
...

...
...

...
q 0.103625 8.04468 1.99487 23.5291 4.25133

Table 5.1: Correlation between the simulation parameters and agreement with experimental observa-
tions (RSS) for a given applied current.

5.2.2 Markov-Chain Monte-Carlo

While sampling by itself gives an apparent “optimal” parameter set, it does not

directly lead to statistics on the parameters12, and for this reason it is desirable to pair

sampling with a Markov-Chain Monte-Carlo (MCMC) method. The MCMC method used

in this paper is the Metropolis-Hastings algorithm.28,44 The method uses an accept-reject

criterion to find the simulations that most likely emulate the experimental observations.

The accept-reject criterion approximates the experimental variation and inherent devia-

tion between the model and the observations.

1. The algorithm is initialized by randomly picking a simulation result; this simula-

tion’s correlated RSS value is labeled RSSt.

2. For each subsequent iteration, t:

(a) Randomly choose a candidate simulation and designate its RSS value as RSS ′.

(b) Calculate the acceptance ratio, α = f(RSS′)
f(RSSt)

, where f(RSS) is the likelihood

that a particular simulation is representative of the observed experimental

data.

(c) Accept or reject the candidate simulation based on the criteria:

• Generate a random number, u, in the range [0,1].

• If α ≥ u then the candidate simulation is accepted and its parameter set

is tabulated; RSSt+1 = RSS ′.

• If α < u then the candidate simulation is rejected; RSSt+1 = RSSt.

The likelihood, f , that a particular simulation represents the experimental obser-
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vations is quantified by

f(ŷ|y, sexp) =
n∏
j=1

1√
(2πs2

exp,j)
exp

(
−(ŷj − yj)2

2s2
exp,j

)
(5.2)

When the experimental standard deviation is constant, sexp,j = sexp for all j, equation

5.2 can be simplified to

f(RSS, sexp) =
1(√

2πs2
exp

)n exp

(
−RSS

2s2
exp

)
(5.3)

Results continue to be tabulated until a threshold number of accepted simulations

is reached. Because the initial simulation result is randomly chosen, the initially accepted

simulations may not yield an accurate distribution of likely parameters. Therefore, after

the threshold acceptance number is reached, the first 10% of the selections are discarded

and the remaining 90% are used to calculate the pertinent statistics.

From the accepted parameter values, the mean and variance of the parameter values

are calculated from

µP =

∑m
j=1 Pj

m
(5.4)

σ2
P =

∑m
j=1 (Pj − µP )2

m
(5.5)

where the Pj are the accepted parameter values and m is the total number of “undis-

carded” accepted simulations. The accepted parameter values are assumed to follow a

normal distribution. The mean, µP is the most likely parameter value, and the standard

deviation, σP is assumed to be the uncertainty in the parameter, whose value depends

on the experimental variation as well as the uncertainties in the other parameter values.

5.2.3 Physical Model of LixV3O8

The details of the physical-based model for the Fe3O4 cathode are given by Knehr

et al38 and the details of the LiV3O8 chemistry are given by Brady et al.36 The most
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pertinent details of the LiV3O8 system are summarized here for the reader. Lithium ions

combine with an electron at an insertion site to enter into the host material:

Li+ + e– + Γ→ LiΓ (5.6)

where Γ is an insertion site in α-phase LiV3O8.

Phase change occurs in the material when the local lithium equivalence exceeds a

threshold equivalence (or concentration), xα,sat. The equilibrium fractions of the α and

β-phases are given by a mass balance on the total lithium within a crystal.

LixV3O8→ yLixα,satV3O8 + (1− y)Lixβ,satV3O8 (5.7)

y =
xβ,sat − x

xβ,sat − xα,sat
; xα,sat < x < xβ,sat (5.8)

The physical model used for lithium trivanadate, LiV3O8, is taken from Brady et al. and

summarized in Table 5.2 for the reader.36

Crystal Scale Equations

(1)
Lithium Concentration

in the α-Phase (cα)
∂((θα+θgb)cα)

∂t = Dx,eff∇2cα − cβ
∂θβ
∂t

Crystal Center

∇cα = 0

Crystal Edge

−Dx,eff∇cα =
iapp
F

Solid-State Volume Fractions:
θgb = ζθβ

θα + θβ + θgb = 1

Dx,eff = Dαθα +Dgbθgb

Dgb = 100Dα

(2)
Balance on the

β-Phase Formation (θβ)
cβ

∂θβ
∂t = kβ (cα − cα,sat) θwβ [1− θβ]v

Lithiation
w = 0, v = 1

Delithiation
w = 1, v = 0

Electrochemical Reaction Rate

(3)
Current Density (iin)

Exchange Current Density (i0)

iapp = i0

[
exp

(
αaFη
RT

)
− exp

(
−αcFη

RT

)]
i0 = Fkrxnc

αa
0 cαcα (cα,max − cα)αa

iapp = ispecρLiV3O8L

η = V − U

Reversible Potential

(4) U = Uref + RGT
F ln

[(
c
c0

)(
1−c̄max
c̄max

)]
+

N∑
k=0

Ak

[
(2c̄max − 1)k+1 − 2c̄maxk(1−c̄max)

(2c̄max−1)1−k

]
c̄max =

cα−cα,0
cα,max−cα,0

Table 5.2: Physical equations used to model the LixV3O8 cathode.

5.2.4 Algorithmic Model Development and Analysis

Figure 5.1 depicts a flowsheet showing the connections between parameter sampling,

the numerical physics-based model, and experimental measurements. Sets of tunable
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Figure 5.1: Flow diagram illustrating a computationally scalable framework to perform model devel-
opment and subsequent analysis of the model output.

parameter values are fed to the physics-based model; for each set of parameter values

simulated data are produced and compared to the experimental data and a table is

constructed correlating the parameter values and a metric of the goodness of fit, such

as an RSS, as shown by Table 5.1. This table of information can be used to perform

parameter estimation, model selection, variable selection, and model-guided design of

experiment.

5.3 Results and Discussion

5.3.1 Parameter Estimation

In 2016, Brady et al.36 used current interrupt experiments (lithiation and voltage

recovery) to estimate the physical parameters of the LiV3O8 electrode. The authors esti-

mated the solid-state diffusion coefficient, Dα, exchange current reaction constant, krxn,

phase change saturation equivalence, xα,sat, and phase change reaction rate constant, kβ.
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Figure 5.2: Physical model parameter estimates obtained from Sobol sampling followed by Markov-
Chain Monte-Carlo analysis using the lithiation and voltage recovery data from all four current rates.

Experiment Dα (×10−13 cm2 s-1) krxn (1× 10x cm5/2 mol-1/2 s-1) kβ (×10−3 s-1) Lixα,satV3O8

C/10 0.5± 0.1 −7.7± 0.2 6± 10 2.48± 0.02
C/5 1.1± 0.1 −8.5± 0.1 40± 13 2.48± 0.02
C/2 1.2± 0.2 −8.5± 0.1 31± 12 2.45± 0.02
1C 1.8± 0.2 −8.7± 0.2 25± 15 3.1± 0.6

Overall 1.2± 0.1 −8.5± 0.1 31± 13 2.47± 0.03

Table 5.3: The estimated mean and standard deviation for the physical parameters as a function of
applied current, as well as the estimates and standard deviations derived using all rates.

Using the values Dα = 1 × 10−13 cm2 s-1, krxn = 3 × 10−8 cm5/2 mol-1/2 s-1, xα,sat =

Li2.5V3O8, and kβ = 5× 10−3 s-1, the numerical simulations produced compelling agree-

ment with the experimental observations.36 Figure 5.2 shows the parameter estimates

derived from all the rate data during lithiation and voltage recovery and sampling us-

ing Sobol sequences in the ranges [0.1, 10] ×10−13 cm2 s-1, [-7, -9] for 1 × 10x cm5/2

mol-1/2 s-1, [2.1, 4.0] for Lixα,satV3O8, and [0, 50] ×10−3 s-1, (Dα, krxn, xα,sat, and kβ,

respectively) - 4096 Sobol points were generated, followed by MCMC analysis assuming

a uniform experimental standard deviation of 100 mV, sexp = 100 mV and taking 10,000

acceptances. It can be seen that the estimates produced by the algorithm are in good

agreement with the estimates derived by Brady et al.36 Figure 5.2 and Table 5.3 show
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krxn (1 × 10 x cm5/2 mol 1/2 s 1)
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x , sat in LixV3O8

Figure 5.3: Physical model parameter estimates obtained from Sobol sampling calculation of the
likelihood of the parameter values using equation 5.3. The comparison with 5.2 shows that the derived
parameter estimates are identical. This indicates that this simpler, more efficient method can be used
in place of MCMC after Sobol sampling to obtain identical results.

that some parameters can be estimated with high confidence even if other parameters

have high uncertainty. This is important because during manual parameter estimation,

the “expert” sometimes has to use their judgement to determine which parameters are

known confidently and which are not.

The experimental standard deviation, sexp, has an effect on the estimated parameter

distribution. This is illustrated in Figure 5.4. Examining only the C/10 lithiation data

and assuming a uniform estimate for the experimental standard deviation of 100 mV,

sexp = 100 mV, the estimated distribution of the solid-state diffusion coefficient, Dα, is

µDα = 0.4×10−13 cm2 s-1, with a standard deviation of σDα = 0.04×10−13 cm2 s-1. From

Figure 5.4A, it is clear that using a uniform experimental standard deviation of 100, 50,

or 20 mV gives nearly identical estimates of the parameter distribution. If the empirically

determined standard deviation, which varies as a function of x in LixV3O8, is used (given

as the inset in Figure 5.4A) a different distribution is achieved with µDα = 0.7 × 10−13

cm2 s-1, and σDα = 0.1 × 10−13 cm2 s-1. The derived mean and standard deviation in
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Figure 5.4: A) Parameter distribution estimates for the solid-state diffusion coefficient, Dα, obtained
from the lithiation data at C/10 using two different estimates of the experimental standard deviation:
uniform estimates of sexp = 100, 50, and 20 mV, and an empirically determined estimate, which is shown
as the inset. B) Comparison of the simulated data with parameter estimates from assuming sexp = 50
mV (green) and parameter estimates from using the empirically calculated deviation (blue). The C/10
lithiation data are shown in black; the error bars show the experimental deviation.

diffusion coefficient show significant discrepancies, highlighting the importance in quan-

tifying experimental variance as a function of state of charge. Furthermore, the value

in inferred diffusion coefficients in both cases differ from estimates in Table 5.3, show-

ing the importance in the choice of the experimental conditions in obtaining parameter

estimates. Figure 5.4B shows comparisons of simulated data using parameter estimates

derived by assuming sexp = 50 mV and using an empirical estimate of sexp. While both

simulations provide good fits to the experimental data, the comparison illustrates the

important information obtained by using the empirical sexp.

It should be noted that this current rate, C/10, is low and it is typically not advisable

to extract kinetic information from experiments that do not stress the kinetics. However,

lithiation data (not voltage recovery data) at C/10 were the only experimental condition

for which replicate experimental data were available and therefore the only condition

for which an empirical sexp could be calculated. The conclusion of this observation is

that experiments should be done at least in duplicate to allow for the determination of

the experimental variance and, when possible, the empirically observed variance should

be used to inform the parameter estimates. Figure 5.4 also suggests that if data from
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duplicate experiments are not available, or if replicate data are infeasible to collect, an

estimated constant value of the experimental deviation may yield realistic parameter

estimates.

The parameter distributions at different current rates are also informative. For

instance, as shown in Table 5.3, the experimental measurements at 1C do not inform

the values of the parameters that govern phase change, xα,sat and kβ. This makes sense

because the voltage plateau indicative of a phase change is not observed during these

experiments; i.e. these experiments do not inform phase change because they do not

probe phase change. For the lower discharge rates, the parameter distributions for xα,sat

seem to be independent of rate.

The other three parameters, Dα, krxn, kβ, are kinetic parameters. Intuition indi-

cates that, all things being equal, higher current rates are better for discerning kinetic

processes; however, there are practical limits to the maximum current. Though higher

current rates might reveal more information about kβ, currents that are too high are

unable to probe phase change before the experimental cutoff conditions are reached.

Finding the maximum current rate that gives sufficient information, implies there is an

optimum condition. Table 5.3 shows that some experimental conditions provide more

precise insights into parameter values than other conditions. Finding the optimal exper-

imental conditions is explored more thoroughly in the section Model-Guided Design of

Experiment.

5.3.2 Model Selection

It is common in battery studies to have multiple competing hypotheses about the

physics that are dictating battery performance; different assumptions lead to different

models. This section illustrates how data science approaches can be used to algorithmi-

cally perform model selection by quantitatively identifying which model is statistically

most consistent with experimental data. Such approaches allow for an unbiased evalua-

tion of the efficacy of alternative modeling hypotheses. The results of these approaches

are not purely numerical, but contain physical insights.
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Figure 5.5: A) The MCMC determined distributions of the diffusive mass-transfer coefficient Dagg

for the agglomerate scale model and B) the MCMC determined distributions of the solid-state mass-
transfer coefficient, Dx, for crystal scale model. The parameters were determined using discharge data
(blue) as well voltage recovery data (red). C) Comparisons of the simulated data using the mass-transfer
coefficients determined by fitting each model to the relaxation data. The inset shows the average test
error per experimental lithiation data point.

For the magnetite electrode, Fe3O4, Knehr et al.37,38 showed through voltage re-

covery data that for small crystal sizes of 6 and 8-nm, it was not solid-state transport

that dominated performance, but transport through the crystal aggregate structures, or

agglomerates, that dominated performance. The authors reached that conclusion by ob-

serving that the solid-state diffusion coefficient necessary to replicate the observed voltage

recovery times was very small, but when using that same diffusion coefficient during the

discharge experiments, the simulations produced significant deviation from the observed

electrochemical measurements. However, using an agglomerate model, the mass trans-

fer coefficient necessary to emulate the voltage recovery data also produced reasonable

agreement with the discharge data. While this paper does not contest the conclusions of

the previous work, it does seek to understand how these conclusions can be developed

algorithmically.

One method to perform model selection quantitatively is cross-validation.45 Cross-

validation requires the experimental data to be divided into a training set, by which the

parameters are tuned, and a testing set, to validate the tuned parameters. Because the

data come from current interrupt experiments, it can intuitively be divided into discharge

data, when the current is on, and voltage recovery data, when the current is off.

Fe3O4 electrodes composed of 8-nm crystals were lithiated at a rate of C/200 (4

mA/g) to three different equivalences: Li0.5Fe3O4, Li1.0Fe3O4, and Li1.5Fe3O4; upon reach-

91



ing the threshold equivalence, the cell current was turned off and voltage measurements

continued to be made up to 100 hours of total test time. The data are divided into two

sets: lithiation (current on) and voltage recovery (current off). One set is labeled the

training set, by which the mass-transfer diffusion coefficient is fit; the other set is labeled

the validation set by which the trained model is tested, and the testing error is recorded.

Then the training and testing data are switched and the testing errors are summed; this

is done for both models. For the agglomerate model, 256 Sobol points were generated

in the range [-14, -11] for 1 × 10x cm2 s-1 for Dagg, and for the crystal scale model, 256

Sobol points were generated in the range [-20, -17] for 1 × 10x cm2 s-1 for Dx. It was

found that the agglomerate model tested significantly better than the crystal model in

cross-validation, c.f. Figure 5.5.

Figure 5.5 shows the MCMC determined distributions (using 10,000 accepted points

for both models) for the mass-transfer coefficient for the agglomerate and crystal models

when fitted to the discharge data and the voltage recovery data; the experimental devi-

ation is assumed to be 50 mV, sexp = 50 mV. (The experimental data were examined

from Knehr et al.37 in the range Li0.0Fe3O4 to Li1.5Fe3O4 and it was observed that the

experimental standard deviation in that range during lithiation was almost entirely below

40 mV; experimental standard deviation during voltage recovery could not be calculated

empirically because there were not replicate data.) It can be seen that for the agglomer-

ate model, the MCMC results for each partition are quite comparable, 4.0 and 3.3 ×10−13

cm2 s-1, while for the crystal scale model, the mass transfer coefficients differ by an order

of magnitude, ∼5 × 10−19 and ∼5 × 10−20 cm2 s-1. The improved precision provided

by the agglomerate model as well as the improved testing error both indicate that the

agglomerate model is more consistent with the observed electrochemical measurements.

Cross-validation provides a clear methodology to rigorously perform model discrim-

ination in a general way and provides the expert researcher with a quantitative justifica-

tion; these measures allow for the model development process, specifically the evaluation

of competing hypotheses, to be streamlined.
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5.3.3 Variable Selection
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Figure 5.6: A) The average deviation per observation between the simulations and experiments versus
the value of λ. B) The optimum values of βj versus the value of λ. The vertical dashed lines indicate
the value of λ where an additional parameter is allowed to vary (an additional βj 6= 0). A grid mesh of
13 x 13 x 13 was constructed and the βj ’s were allowed to vary from [0, 1] for each parameter.

The situation arises where a physical model explains existing experimental data, but

fails to adequately describe new observations. In such cases, it may be necessary to select

new parameter values or to develop a new model. It may be desirable to initially focus

on selecting new parameter values. This section illustrates how data science approaches

can be used to systematically identify statistically significant parameter variation.

For the LiV3O8 electrode, using the physical parameters, Dα = 1.0× 10−13 cm2 s-1,

krxn = 3 × 10−8 cm5/2 mol-1/2 s-1, kβ = 5.0 × 10−3 s-1, xα,sat = Li2.5V3O8, Brady et al.

achieved excellent agreement between simulations and experiments during lithiation and

voltage recovery.36 However, during delithiation, simulations using the aforementioned

physical parameters significantly differed from the experimental observations. Brady et

al. concluded that during delithiation, mass transport of lithium in the solid-state was

more facile than during lithiation.36 The authors came to this conclusion because accurate

agreement between simulation and experimental observation was achieved by increasing
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the value of the diffusion coefficient by a factor of 5, Dα = 5.0 × 10−13 cm2 s-1. The

excellent agreement could only be achieved by changing the parameter associated with

mass transport. Changing the exchange current density or changing the reaction rate

constant for phase change did not improve agreement.

Again, this paper does not question the conclusions of the previous work, but seeks

to explore if an algorithmic approach can come to the same or a similar conclusion.

Because the values of the parameters during lithiation are already validated, and physical

intuition and experience indicate that most of these parameters likely do not change

during delithiation, the implied question is: what is the minimum number of parameters

that need to be adjusted to improve agreement?

Regularization is a method to optimize a problem (achieve the best fit) while also

providing additional constraints. Lasso regression regularizes the optimization problem as

well as performs variable selection.34,46 This method performs variable selection by only

allowing the parameters that most significantly improve agreement to vary; parameters

that do not significantly contribute toward improved agreement are not allowed to vary,

i.e. they assume their lithiation values. Lasso performs variable selection mathematically

by placing a penalty on non-zero parameters. If the parameter values during delithiation

are defined in terms of their values during lithiation:

Pj,delithiation = Pj,lithiation × 10βj (5.9)

it is observed that βj = 0 produces no difference between the lithiation and delithiation

parameter values. The lasso objective function introduces a bias to minimize changes in

the parameters:

Lasso = RSS + λ

N∑
j=1

|βj| (5.10)

where the RSS is calculated according to equation 5.1. The additional parameter, λ,

weights how significantly the model is constrained; high values of λ force all βj to 0,

which returns the lithiation model, while small values of λ give the ordinaryRSS objective
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function - all parameters are allowed to vary without constraint. Figure 5.6 shows how the

parameter values (for mass transfer - Dα, charge-transfer - krxn, and the thermodynamic

potential - Uref ) and the agreement between simulations and electrochemical observations

vary as the penalty, λ, varies. The vertical dashed lines denote the regions where (from

left to right) no parameters, one parameter, then two parameters vary. Figure 5.6 shows

that almost all of the reducible error during delithiation is achieved by increasing the

diffusion coefficient and only a small amount of the error is reduced by varying the

exchange current density. In addition, immediately before two parameters are allowed to

vary, the optimal value of the solid-state diffusion coefficient is Dα = 3.2 ± 0.4 × 10−13

cm2 s-1, which is in good agreement with the previous study.36 Figure 5.6 suggests that

the lasso method is a useful tool in identifying physical changes in battery systems; the

lasso method may also be a general tool that can be applied to investigate changes that

occur between charge and discharge, during cycling, through temperature changes, etc.

As in the Model Selection section, the utility of a variable selection framework is to

provide researchers with rigorous quantitative justification for conclusions. In addition,

utilizing the lasso method allows researchers to simultaneously interrogate many param-

eters in various combinations, instead of having to change each parameter individually,

or in a sequential combinatorial fashion. These aspects of lasso regression allow for an-

other process of model development, variable selection, to be streamlined and performed

systematically.

The previous sections have shown how to use quantitative and algorithmic ap-

proaches to perform parameter estimation, model selection, and variable selection. After

gathering insights from these processes it may be desirable or even necessary to validate

the conclusions with additional experiments; sometimes it is not clear which experiments

to perform. The next section illustrates how these quantitative approaches can be used

to guide experimental design.
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Figure 5.7: The left two plots show, for given true values of kβ , how the estimated value of kβ , µkβ ,
and the uncertainty in the estimation, σkβ , vary for different applied currents. The right two plots show,
for kβ = 5× 10−3 s-1 (red), how the apparent value, µkβ , and uncertainty, σkβ , vary for different applied
currents. These data are overlaid with the estimated value and uncertainty of kβ derived from four
current rates: C/10, C/5, C/2, 1C.

5.3.4 Model Guided Design of Experiment

In the Parameter Estimation section, the value of the phase change reaction rate

constant, kβ, could not be determined precisely. So the question is: what experimen-

tal conditions, specifically what constant current lithiation rate, would allow a precise

determination of kβ? To answer this question, simulations are used to generate mock

experimental data, and the sampling and MCMC analysis are used to show which exper-

imental conditions minimize parameter uncertainty.

In the previous sections, simulated data are compared against experimental data to

generate an RSS (equation 5.1). In this section, sampled simulated data are compared

to mock experimental data; the yj,mock are the mock experimental observations and the

ŷj are the simulated observations; for clarity this is given in the following equation:

RSS =
n∑
j=1

(yj,mock − ŷj)2 (5.11)
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It is important to note that the mock experimental observations, yj,mock, are a function

of kβ,TRUE, i.e. yj,mock = f(kβ,TRUE).

For simplicity it is assumed that Dα, krxn, and xα,sat are known with exact precision:

Dα = 1 × 10−13 cm2 s-1, krxn = 3 × 10−8 cm5/2 mol-1/2 s-1, xα,sat = Li2.5V3O8, and only

lithiation data are used for parameter estimation (voltage recovery data are not used);

this is a simplified case of the parameter estimation reported in Table 5.3 and Figure

5.2. A mock experiment is generated using a specific applied current, and a value of

kβ = kβ,TRUE. Sampling simulations are conducted in the range inferred from existing

experiments, kβ = [0, 30] × 10−3 s-1 using 50 Sobol points, and a table is constructed

correlating kβ (sampled) with RSS, equation 5.11. Using MCMC analysis, µkβ and σkβ

are determined for a specific value of kβ,TRUE at a specific applied current.

Using five different values of kβ,TRUE = 3, 10, 15, 20, 27 ×10−3 s-1, constant current

lithiation mock experiments were run at varying current rates (5, 10, 15, . . . , 360 mA/g),

with a cutoff potential 2.4 V or a cutoff equivalence of Li3.0V3O8. Then the parameter es-

timation framework (sampling followed by MCMC analysis) was applied at every current

rate for each value of kβ,TRUE and the results are shown in Figure 5.7. The left two plots

of Figure 5.7 show the inferred values of kβ - the mean, µkβ , and standard deviation,

σkβ , derived from sampling combined with MCMC analysis, assuming sexp = 50 mV.

These inferred values are plotted as a function of the applied current rate. Assuming the

optimum maximizes precision, i.e. minimizes σkβ , an optimal current range is found for

each value of kβ,TRUE.

This method can be applied to a hypothetical example where the phase change

reaction rate constant has an estimated value and confidence interval of kβ = 15±12×10−3

s-1. Using the mean of this range, the information on the left of Figure 5.7 indicates

the optimal current rate would be 125 mA/g. If kβ,TRUE = 5 × 10−3 s-1, algorithmic

analysis of experimental data would reveal a new estimated value and confidence interval,

kβ = 7.5±3×10−3 s-1. If it is desired to achieve more precision, a subsequent experiment

can be performed, at a new optimum current of 100 mA/g; this current would likely

reduce the uncertainty to a value of about 1× 10−3 s-1.
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It can be seen from Figure 5.7 that there is an optimal applied current and that

the optimal discharge current varies depending on the value of kβ,TRUE; as the value of

kβ,TRUE increases, the optimum discharge current also increases. This is a reasonable

conclusion because as the system kinetics increase, the higher the experimental rate

needed to accurately investigate kinetics.

It should be noted that the minimum σkβ does not necessarily correlate with the

most accurate value of µkβ (i.e. the minimum σkβ does not imply µkβ = kβ,TRUE).

The methodology outlined here can also be used to test different types of experiments

(e.g. constant voltage experiments, constant power, galvanostatic interrupt titrations) in

addition to testing different operating conditions.

The left side of Figure 5.7 shows theoretically that this process can be used, but is

this process actually informative? The right side of Figure 5.7 shows how the apparent

value of kβ and its uncertainty vary with applied current when kβ,TRUE = 5×10−3 s-1; this

was the value of kβ proposed by Brady et al.36 The simulated results are overlaid with

experimental data at four different current rates: C/10, C/5, C/2, and 1C (36, 72, 180,

360 mA/g, respectively). It is observed that the experimentally determined values of µkβ

and σkβ agree with the values determined from the mock experiments, which validates this

methodology and confirms that simulations in combination with the framework outlined

in this paper can be leveraged to help design experiments for maximum utility.

Figure 5.8: The plot on the left shows how the best simulated θβ profile compares to the ideal profile
as a function of applied current. The plot on the right shows representative θβ plots for three current
rates: 2, 18, and 30 mA/g as well as the defined ideal profile.
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In the previous sections, simulations have been used to deduce parameter values,

but this framework can also be used to maximize other metrics; one obvious metric is

performance, but here we examine how this framework can be used to optimize character-

ization conditions. Coin cells are relatively cheap to fabricate and test, so it is reasonable

that an experimental group could quickly make and test multiple coin cells and bypass

the simulations entirely and do the optimization empirically. However, there are exper-

iments that are more expensive to conduct, for instance conducting operando EDXRD

experiments on a synchrotron beam line may be expensive, with limited opportunities

for using such state of the art facilities. In these instances, using simulations to guide

experimental endeavors is useful to maximize the utility of these opportunities.

Figure 5.8 shows a hypothetical optimization of design parameters for an operando

EDXRD experiment. Assuming the physical parameters of the electrode are known,

how can the applied current be tailored to achieve an optimal profile of the β-phase

volume fraction, θβ, during the experiment? The ideal profile needs to be informed by

experimental experience, but here it was assumed that a profile spanning the full range

of possible θβ values over the full length of the electrode was best; i.e. it is neither ideal

to have a profile that is flat (does not vary) across the electrode, nor is it ideal to have

a sharp step-change in the profile. Using the physical parameters outlined by Brady et

al.47 and assuming an electrode length of 500 µm, simulations were run to determine

the optimal applied current. Figure 5.8A shows how the profiles generated at different

current rates deviate from the ideal profile; this deviation was calculated using equation

5.12, where θβ,j are the ideal volume fractions of the β-phase at the electrode positions

and θ̂β,j are the simulated volume fractions of the β-phase at the electrode positions.

It was also assumed that the EDXRD gauge thickness is 20 µm so the total number of

observations is 25. It was found that the current rate that minimized this deviation was

18 mA/g.

RSS =
n=25∑
j=1

(
θβ,j,mock − θ̂β,j

)2

(5.12)

Figure 5.8B shows representative profiles for 2, 18, and 30 mA/g. From Figure 5.8B
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it is seen that at 30 mA/g, from 300-500 µm the volume fraction of the β-phase is 0. This

is not ideal because scan time is wasted over that range and would give no additional

information. Another constraint may be the total experimental time. The β-phase profile

produced at 18 mA/g is optimal, but 18 mA/g also corresponds to C/20; 20 hours for

one synchrotron experiment may be too expensive. In contrast, the 30 mA/g profile is

not ideal, but that experiment corresponds to a rate of C/12 (it would take 12 hours),

which may be more feasible. Researchers must weigh the improvement in information

obtained versus the cost of beam time.

5.4 Conclusion

The authors do not anticipate that the expertise and intuition of expert physical

modelers can be easily replaced by software. However, the recent advances in compu-

tational capabilities as well as data science algorithms are significant. This paper has

outlined how some of these algorithms can be effectively applied to battery science, but

further work is necessary for mathematical modelers to stay abreast of the developments

in data science and remain informed of how they can be applied to battery studies. Im-

plementation of computationally scalable techniques has the potential to improve the

productivity of modelers as well as strengthen the conclusions of modeling studies. The

physical insights provided by these techniques in regard to the LiV3O8 and Fe3O8 elec-

trodes are consistent with previous studies. The novelty of this paper is that the same

conclusions can be reached using a methodology that is more quantitative, provides more

information about the fitted physical parameters, minimizes human time, and is compu-

tationally scalable.
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Chapter 6

Conclusion
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Chapters 2, 3, and 4 have shown that mathematical models are effectives tools to

explore a variety of physical phenomena that occur in batteries: surface layer formation,

solid-state transport and phase change, as well as electrode scale processes. Through

careful experimentation and thoughtful model development, these physical models pro-

vide accurate simulation of battery physics as evidenced by their agreement with elec-

trochemical measurements and, when available, operando characterization data, such as

energy dispersive x-ray diffraction (EDXRD). Chapter 5 provided evidence that many

aspects of the model development process can be outsourced to computer algorithms

without loss of fidelity or physical inference.

The author hopes that the reader understands that:

1. Mathematical modeling is a highly effective tool researchers have to interrogate

batteries and that physical models provide unique insights that can be inaccessible

through experimentation alone.

2. Just as modeling does not provide a full replacement of experimental research, data

science algorithms are unlikely to fully replace mathematical models and modelling

experts. However, battery researchers, especially modeling experts, need to keep

abreast of the developments occuring within the field of data science because these

fields are rapidly advancing the utility of computational resources, and therefore

implicitly the utility of numerical simulations themselves. Simple awareness of de-

velopments in the field of data science will, if not already, provide a significant

boost in research productivity by decreasing both the human time spent and finan-

cial funds necessary to develop predictive, physically intuitive models.

The full potential of leveraging both physical models and algorithmic approaches

has not been reached yet. It was shown in Chapter 5 that accurate models in con-

junction with efficient algorithms can be leveraged to design more physically insightful

experiments. Using the same infrastructure, these tools will be instrumental in designing

optimal battery architectures, such as the ratio of binder, conductive additive, and active

material, as well as the optimal electrode thickness and material loading. In addition,
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these tools will be essential in developing optimal control schemes and in resolving the

real-time state of charge of battery devices, which are fundamental to the wide-scale pen-

etration of batteries into the electric vehicle market as well as grid-level energy storage.
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