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ABSTRACT

Bayesian Modeling of Latent Heterogeneity in
Complex Survey Data and Electronic Health

Records

Rebecca Anthopolos

In population health, the study of unobserved, or latent, heterogeneity in longitudinal data

may help inform public health interventions. Growth mixture modeling is a flexible tool

for modeling latent heterogeneity in longitudinal data. However, the application of growth

mixture models to certain data types, namely, complex survey data and electronic health

records, is underdeveloped. For valid statistical inferences in complex survey data, features

of the sample design must be incorporated into statistical analysis. In electronic health

records, the application of growth mixture modeling is challenged by high levels of missing

values. In this dissertation, I have three goals: First, I propose a Bayesian growth mixture

model for complex survey data in which I directly incorporate features of the complex

sample design. Second, I extend a Bayesian growth mixture model of multiple longitudinal

health outcomes collected in electronic health records to a shared parameter model that

can account for different missing data assumptions. Third, I develop open-source software

packages in R for each method that can be used for model fitting, selection, and checking.
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πk under the Full, Näıve, MAR, and MNAR methods. . . . . . . . . . . 143

F.4 Simulation results of S3 for subject misclassification under the Full, Näıve,
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Latent heterogeneity in population health may be a consequence of unobservable subgroups

of individuals with distinctive patterning in their longitudinal health trajectories. Subgroup

membership may be associated with observed risk factors, such as health or demographic

variables. Diverse research areas have sought to improve understanding of latent heterogene-

ity in longitudinal data. For example, [Elliott et al., 2005] related baseline depression status

with longitudinal measurements of mood scores and reactivity to negative events to identify

unobserved subgroups of patients with varying risk of depressive disorder. [Neelon et al.,

2011] identified unobserved subgroups of pregnant women with distinctive blood pressure

trajectories and varying risk of adverse birth outcomes. From a public health perspective,

the study of heterogeneity can point to underlying causes of population health and suggest

pathways towards improving health outcomes [Galea, 2017]. Trajectory patterns in differ-

ent subgroups and associated risk factors can be used to target clinical monitoring towards

individuals at-risk of adverse health outcomes, and to tailor interventions for specific risk

profiles.

Statistical methods for modeling latent heterogeneity in longitudinal data are based on
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CHAPTER 1. INTRODUCTION

relaxing the assumption of a single, homogeneous population that underlies conventional

growth models. Two commonly used methods are latent class growth analysis (LCGA) and

growth mixture models (GMMs) [Muthen et al., 2002; Jung and Wickrama, 2008], which

allow probabilistically classifying individuals into different unobserved subgroups – often

called “latent classes” – based on individual longitudinal trajectories and risk factors as-

sociated with latent class membership. As finite mixture models, both LCGA and GMMs

require pre-specifying a fixed number of latent classes K. Then, modeling proceeds in two

parts: First, a discrete latent variable for an individual’s class membership is introduced

via data augmentation. By assuming latent class membership follows a multinomial dis-

tribution, the probabilities of latent class membership πik for individual i in latent class k

(k = 1, . . . ,K) can be modeled as a function of hypothesized risk factors. Second, given

latent class membership, conditional densities of the longitudinal outcomes f(yi | θk) are

specified, enabling estimation of the average longitudinal trajectory in each latent class.

The mixture distribution is formed as f(yi | θ) =
∑K

k=1 πikf(yi | θk), where the latent class

membership probabilities πik act as mixing weights over the class-specific conditional den-

sities.

The difference between LCGA and GMM concerns the specification of the variance-

covariance of longitudinal measurements belonging to the same individual yi. In LCGA,

the covariance between any pair of measurements from the same individual is fixed to zero.

Conditional on latent class membership, an individual’s longitudinal measurements are

assumed to be independent. In contrast, in GMMs, conditional on latent class membership,

between-subject heterogeneity is modeled using subject-specific random effects, such as

random intercepts or random slopes, as in conventional growth models. Conditional on

latent class membership, and subject-specific random effects, longitudinal measurements

2
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from the same individual are assumed to be independent. In this way, GMMs can be

viewed as mixtures of random effect models. In this dissertation, I use GMMs because

of their general utility in modeling latent heterogeneity in longitudinal data compared to

LCGA.

Methods for applying GMMs in certain data types, namely, complex survey data and

electronic health records, remain underdeveloped. The application of GMMs to complex

survey data is not straightforward because finite mixture modeling assumes that the sample

was drawn using simple random sampling. Complex survey data, however, arise from

complex sample designs in which different forms of controlled selection, such as unequal

selection probabilities, stratification, and clustering, are used to construct a sample. As a

probability sample, the selection probabilities of all elements in the population are known.

For valid statistical inferences with complex survey data, sample design features must be

incorporated into statistical analyses.

In electronic health records (EHRs), the application of GMMs is challenged by the

often high prevalence of missing values, which is in part a consequence of the fact that

the data were originally collected for clinical and administrative use rather than scientific

research. Statistical inferences rely on assumptions about the probability distribution for

whether a data point is observed. In the missing data lexicon of Rubin [Rubin, 1976], three

missing data mechanisms are possible. Missing completely at random (MCAR) is when the

probability of an observed response is unrelated to the value of the data point or to the

value of any other observed or unobserved variable. Missing at random (MAR) is when

conditional on observed variables, the probability of an observed response is independent

of the missing data point or unobserved variables. Under missing not at random (MNAR),

the probability of an observed response depends on the missing data point or unobserved

3
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variables, even after conditioning on observed variables. The application of GMMs to EHRs

therefore requires assumptions about how the patterns of missing values arose.

In this dissertation, my three aims are to:

1. Propose a new method for applying GMMs to complex survey data while accounting

for features of the complex sample design;

2. Propose a new method for applying GMMs to EHRs that can account for different

assumptions about the missing data; and,

3. Develop open-source software in the form of R packages for each of the proposed new

methods.

This dissertation is organized as follows: In Chapter 2, I propose a Bayesian GMM for

complex survey data. In Chapter 3, I propose a Bayesian method for applying GMMs to

EHRs that can account for different missing data assumptions. In Chapter 4, I explicate

two R software packages that I developed for the methods in Chapters 2 and 3, which can

be used for model fitting, selection, and checking. Finally, in Chapter 5, I conclude with a

summary of the contributions of this dissertation.
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Chapter 2

A Bayesian Growth Mixture

Model for Complex Survey Data:

Clustering Post-Disaster PTSD

Trajectories

2.1 Introduction

In disaster recovery research, disasters are defined as acute events, such as hurricanes or

industrial accidents, that affect many people simultaneously, occur suddenly, and result in

at least some primary victims [Norris et al., 2002]. A commonly studied condition of mental

health among disaster survivors is post-traumatic stress disorder (PTSD), which manifests

through multiple, persistent symptoms like flashbacks and negative thinking [National In-

stitute of Mental Health, 2016]. After a disaster, PTSD trajectories over time exhibit

well-documented heterogeneity. The modal trajectory subgroup has been shown to be re-

silience, which entails early transient perturbations along a relatively stable path of healthy

functioning [Bonanno and Diminich, 2013; Norris et al., 2009]. Among other trajectory
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subgroups, recovery entails an extended period of dysfunction followed by a gradual return

to pre-event functioning, and chronic dysfunction is manifested when an initial stress reac-

tion persists indefinitely [Bonanno and Diminich, 2013; Norris et al., 2009]. The different

subgroups of PTSD trajectories are an indication of unobserved, or latent, heterogeneity in

the population. For such data from post-disaster studies, a growth mixture model (GMM)

can be used to combine subject-level risk factors with longitudinal trajectories to classify

subjects probabilistically into different trajectory subgroups, often called “latent classes”.

The current study is motivated by the Galveston Bay Recovery Study (GBRS), con-

ducted by the National Center for Disaster Mental Health Research. The GBRS used a

stratified multi-stage sample design to collect longitudinal data on PTSD among survivors

of Hurricane Ike that struck the Galveston Bay Area of Texas on September 13-14, 2008

[Valliant et al., 2009; Rice, 2016]. To characterize heterogeneity in longitudinal trajecto-

ries of PTSD in this population and describe risk factors associated with each trajectory

subgroup, I use a GMM to identify latent trajectories and estimate associated risk factors

while incorporating the complex sample design.

For valid statistical inferences with complex survey data, sample design features must

be incorporated into statistical analyses. Existing methods for finite mixture modeling with

complex survey data use pseudo-likelihood with variance estimated via linearization or re-

sampling techniques [Wedel et al., 1998; Patterson et al., 2002; Asparouhov, 2005]. However,

large sample approximations are necessary for analyses based on pseudo-likelihoods, and

estimation can be challenging for complex models. Alternatively, a Bayesian framework is

advantageous because it allows building flexible and complex models and can handle small

samples and missing data [Little, 2003; Little, 2004]. In this paper, I propose a Bayesian

GMM for complex survey data. I model the hierarchical structure of the data, with repeated
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measures of PTSD in different waves of the survey nested within subjects, which are further

clustered by area segments and geographic strata. Features of the complex sample design,

such as stratification, clustering, and unequal probability sampling, are directly included

in the model as covariates or hierarchical variance components. Because classification of

disaster survivors into different latent classes may exhibit geographic clustering [Gruebner

et al., 2016], I account for spatial correlations among neighboring clustering units in the

model for latent class membership. In contrast to existing methods [Muthen and Muthen,

2017], I model longitudinal trajectories as a function of discrete time. My model allows

partitioning variability in the probability of latent class membership and PTSD between

different aspects of the sample design and other sources. To ease computation, I model

latent class membership risk using a multinomial probit model. I show model selection

and model checking. For posterior computation, I propose an efficient Markov chain Monte

Carlo (MCMC) algorithm. I implement the proposed Bayesian GMM for complex survey

data in the Bsvygmm package in R.

2.2 Motivating Data

The GBRS was a three-wave panel survey conducted in the aftermath of Hurricane Ike.

The study aimed to characterize the trajectories and determinants of post-disaster mental

health outcomes [Valliant et al., 2009]. The target population comprised persons aged 18

years or older living in Galveston and Chambers counties, Texas, who were present when

Hurricane Ike struck, and who had been living in the study area for at least the preceding

month [Valliant et al., 2009]. The study area was divided into five geographic strata based

on the degree of flood damage and level of poverty from the 2000 US Census (Figure 2.1).

Differential sampling rates were used to oversample from strata expected to be worse off from
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the storm. Constructed from census block boundaries, 77 area segments were sampled with

probability proportional to size (pps) sampling within strata using the number of occupied

households from the 2000 US Census as the size variable. Household socioeconomic data

were obtained to construct a high risk indicator for developing PTSD. Households at high

risk were oversampled.

In the current study, I consider PTSD severity score, which is equal to the sum of

responses to 17 symptoms of PTSD, such as “repeated, disturbing memories of Hurricane

Ike”. Participants rated each symptom on a scale from 1 to 5 corresponding to increasing

severity. At wave 1, scores measure PTSD severity since Hurricane Ike. Scores at waves 2

and 3 refer to the time period since the previous interview. At wave 1, various baseline risk

factors hypothesized to be associated with mental health wellness were also collected.

2.3 Methods

I formulate the Bayesian GMM for modeling PTSD severity scores among participants in

the GBRS that accounts for complex sample design. Assume that there are K latent classes

of subjects with distinctive PTSD trajectory patterns across the three survey waves. I first

present the latent class membership model in Section 2.3.1, followed by the longitudinal

model of PTSD severity scores in Section 2.3.2. In Sections 2.3.3 and 2.3.4, I specify the

prior distributions and show posterior computation. In Sections 2.3.5 and 2.3.6, I describe

model selection and model checking.

2.3.1 Latent class membership model

In finite mixture modeling, I can define the mixture density for subject i overK latent classes

as f(yi | Θ) =
∑K

k=1 πikf(yi | θk), with
∑K

k=1 πik = 1. For k = 1, . . . ,K, f(yi | θk) are
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Figure 2.1: Geographic strata in the Galveston Bay Recovery Study. Strata were labeled 1

to 5 in order of decreasing degree of flood damage. Stratum 1 represented Galveston Island

and the Bolivar Peninsula, which suffered storm surge damage. Stratum 2 represented

flooded areas on the mainland. Stratum 3 indicated non-flooded regions with high poverty,

while strata 4 and 5 indicated different non-flooded regions with low poverty.
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component densities, and πik are subject-specific class weights, also called mixing weights,

used to “mix” the component densities. As a probability derived from a multinomial re-

gression of latent class membership, πik can be modeled as a function of different sources

of information that may predict a subject’s latent class. By adapting an estimation frame-

work for discrete choice models in Bayesian econometrics [McCulloch and Rossi, 1994], I

use multinomial probit regression to model πik.

For participants in the GBRS, let s denote sampling strata (s = 1, . . . , S), j denote area

segments (j = 1, . . . , Js), and i denote subjects (i = 1, . . . , nsj), where nsj is the number

of subjects in area segment j of stratum s. To specify the multinomial probit regression, I

define csji to be a discrete variable for latent class membership with values 1, . . . ,K. Let

zsji = (zsji1, . . . , zsjiK)T be a column vector of K continuous latent variables associated

with csji such that

zsji = µsji + εsji and csji = k if max(zsji) = zsjik, (2.1)

where the probability of belonging to latent class k is given by πsjik = Pr(zsjik > zsjil for

all l 6= k) [Albert and Chib, 1993; McCulloch and Rossi, 1994]. µsji is a mean vector of

length K, and εsji is a K-length vector of random errors with εsji ∼ NK(0,H), where H is

a K ×K variance-covariance matrix.

The model in equation (2.1), however, is unidentifiable without restrictions [Daganzo,

1979; Dansie, 1985; Bunch, 1991]. Following [McCulloch and Rossi, 1994], I use latent class

K as the reference class and construct column vector z∗sji = (zsji1 − zsjiK , . . . , zsji(K−1) −

zsjiK)T with

z∗sji = µsji
∗ + ε∗sji. (2.2)

In equation (2.2), µsji
∗ = (µ∗sji1, . . . , µ

∗
sji(K−1))

T and ε∗sji ∼ NK−1(0,H∗), with H∗ being a
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(K − 1)× (K − 1) variance-covariance matrix. I then define c∗sji as

c∗sji =

 K if max(z∗sji) < 0

k if max(z∗sji) = z∗sjik ≥ 0 for k = 1, . . . ,K − 1.
(2.3)

To address the identifiability problem, previous research has recommended drawing infer-

ence only on identifiable subsets of parameters or implementing constraints on the mean

structure µ∗sji or the variance-covariance H∗ [Imai and van Dyk, 2005; Koop, 2003; McCul-

loch and Rossi, 1994]. I choose to implement a constraint on H∗ with H∗ being an identity

matrix. For K = 2, this is the standard Bayesian probit model for a binary outcome [Albert

and Chib, 1993].

I model the mean structure µ∗sjik (k = 1, . . . ,K − 1) as

µ∗sjik = λsk + usjk + νsjk + gk(xsj) + wT
sjiδk (2.4)

λsk
ind∼ N(0, γ2

k) (2.5)

usjk
ind∼ N(0, τ2

k ) (2.6)

νsjk|ν−sjk
ind∼ N(ν̄sjk,

ξ2
k

msj
), (2.7)

where λsk is a stratum-specific intercept that reflects variability in the probability of la-

tent class membership from different strata; usjk is an area segment-specific intercept that

captures correlations among subjects who live in the same area segment; and νsjk is an

area segment-specific intercept that accounts for spatial correlations among neighboring

segments. νsjk is modeled according to an intrinsic conditional autoregressive (ICAR) prior

distribution [Besag, 1974; Besag and Kooperberg, 1995], where ξ2
k is a latent class-specific

spatial variance component; msj is the number of neighbors of segment j in stratum s, with

neighboring segments defined by a shared border or vertex; and ν̄sjk is the sample average

of these msj neighboring segments.
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To flexibly capture the effect of pps sampling on probability of latent class membership,

I model µ∗sjik as a smoothed function of xsj , the number of occupied households in area

segment j of stratum s, using B-splines of polynomial degree m [Chen et al., 2010]. With

L pre-specified inner knots and R = m+ L degrees of freedom, I have

gk(xsj) =
R∑
r=1

αkrBr(xsj), (2.8)

where Br(xsj) denotes the rth basis function evaluated at xsj , and αk = (αk1, . . . αkR)T are

latent class-specific regression coefficients.

Lastly, δk contains regression coefficients for corresponding covariates in wsji, including

risk factors for PTSD, such as age, and sample design variables, such as the number of

household members, that may be associated with latent class membership.

2.3.2 Longitudinal model of PTSD severity scores

Longitudinal PTSD severity scores are modeled conditional on latent class membership.

Let t denote the interview wave for t = 1, 2, 3. Then, for the ith subject at wave t in area

segment j of stratum s and latent class k = 1, . . . ,K, I assume

[ysjit |bsji, ρsjk, ζsk, c∗sji = k] (2.9)

= 1t=1b1sji + 1t=2b2sji + 1t=3b3sji + ρsjk + ζsk + χsjitk,

where

[
bsji | c∗sji = k

] ind∼ N3(βk,Φk) (2.10)

ρsjk
ind∼ N(0, ω2

k) (2.11)

ζsk
ind∼ N(0, ψ2

k) (2.12)

χsjitk
ind∼ N(0, σ2

k). (2.13)
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In equations (2.9)-(2.13), ysjit is the natural log-transformed PTSD severity score; bsji =

(b1sji, b2sji, b3sji)
T is a column vector that captures the subject-specific latent trajectory

centered around the class-specific average growth parameters βk; and Φk is a 3×3 unstruc-

tured variance-covariance matrix with elements φee′k (e = 1, 2, 3, e
′

= 1, 2, 3) that capture

between-subject variation in trajectories in class k. Among subjects in area segment j of

stratum s in latent class k, ρsjk is an area segment-specific intercept with a latent class-

specific variance ω2
k. ζsk is analogously defined at the stratum-level. Finally χsjitk is an

observation-level error with χsjitk
ind∼ N(0, σ2

k).

2.3.3 Prior distributions

Bayesian modeling requires specification of prior distributions for all parameters. For each

parameter, I use the same prior distribution across mixture components. In the latent

class membership model, I follow previous research [Garrett and Zeger, 2000; Elliott et al.,

2005] by assigning the probit regression coefficients (δk and αk) independent proper prior

distributions N(0, I). After transforming the coefficients to the probability scale, this prior

distribution yields a non-informative prior on the probability of latent class membership,

with its mode at approximately 1
K . I assign non-informative uniform prior distributions on

the hierarchical standard deviations γk, τk, and ξk [Gelman, 2006].

In the longitudinal model of PTSD, I assign βk ∼ N3(0, 10I), with
√

10 being over five

times the interquartile range of log PTSD severity scores. I assign Φk an inverse-Wishart

prior distribution IW (ν0,S0), with ν0 = 5 to indicate lack of knowledge about the latent

class-specific variance-covariance and S0 fixed to a positive definite matrix. As in the latent

class membership model, I use uniform prior distributions on the hierarchical standard

deviations ψk and ωk. I assign the observation-level variance σ2
k an inverse gamma prior
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IG(0.1, 0.1).

2.3.4 Posterior computation

Let Θ and Υ be containers for parameters in the longitudinal model for PTSD severity

scores and the latent class membership model, respectively. Let X be a container for model

covariates. For posterior computation, I consider the likelihood

L(c∗,Θ,Υ | y; X)

=

S∏
s=1

Js∏
j=1

nsj∏
i=1

K∏
k=1

(
πsjik f(ysji | c∗sji,bsji, ρsjk, ζsk, σ2

k; Xsji)

×f(bsji | c∗sji, βk,Φk) f(ρsjk | ω2
k) f(ζsk | ψ2

k)

)1c∗
sji

=k

.

My posterior computation uses Gibbs sampling with closed-form full conditional distri-

butions. To improve the convergence properties of the MCMC sampler, I follow previous

research [Frühwirth-Schnatter et al., 2004; Fruhwirth-Schnatter, 2006] by proposing a partly

marginalized Gibbs sampler. Using the method of collapsing, I replace the full conditional

densities of selected parameters with their marginal densities obtained from integrating out

part of the conditioning parameters. Specifically, after I set initial values for the model

parameters, the algorithm iterates among the following three steps:

1. For k = 1, . . . ,K − 1, update parameters in the latent class membership model (2.2)

- (2.8), including z∗sjik, λsk, usjk, νsjk, δk, αk, γ
2
k , τ2

k , and ξ2
k. Calculate πsjik for

k = 1, . . . ,K.

2. For k = 1, . . . ,K, update parameters in the longitudinal outcomes model (2.9) - (2.13),

including bsji, ρsjk, ζsk, βk, σ
2
k, Φk, ω

2
k, and ψ2

k. In the partly marginalized Gibbs

sampler, the full conditional for βk is replaced with the partially marginalized density

obtained from integrating out bsji, ρsjk, and ζsk.
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3. Using updated parameters from steps 1 and 2, draw the latent class indicators c∗sji (i =

1, . . . , n) defined in (2.3) from Multinomial(1; psji1, . . . , psjiK), with the posterior

probabilities of latent class assignment psjik (k = 1, . . . ,K) given by

psjik = Pr(c∗sji = k | ysji, βk, σ2
k,Φk, ω

2
k, ψ

2
k, πsjik; Xsji)

=
πsjik f(ysji | βk, σ2

k,Φk, ω
2
k, ψ

2
k; Xsji)∑K

k=1 πsjik f(ysji | βk, σ2
k,Φk, ω

2
k, ψ

2
k; Xsji)

, (2.14)

with f(ysji | .) being the partially marginalized density obtained by integrating out

bsji, ρsjk, and ζsk from f(ysji,bsji, ρsjk, ζsk | βk, σ2
k,Φk, ω

2
k, ψ

2
k; Xsji).

The full MCMC algorithm is detailed in Appendix A.

2.3.5 Model selection

I conduct model selection according to model information criteria and graphical methods. I

apply three information criteria: the Bayesian Information Criterion (BIC) [Schwarz, 1978],

the integrated classification likelihood using a BIC approximation (ICL-BIC) [Biernacki et

al., 2000], and a modified version of the Deviance Information Criterion [Spiegelhalter et

al., 2002] for latent variable models known as the DIC4 [Celeux et al., 2006]. Commonly

used for model selection in mixture modeling, the BIC combines a measure of goodness

of fit with a penalty for model complexity. The ICL-BIC extends the BIC to include a

penalty for poorly separated components. Recommended by [Celeux et al., 2006] as an

information criterion in the latent variable setting, the DIC4 also penalizes both model

complexity and poorly separated components. For each information criterion, models with

smaller values are considered preferable. Details about these information criteria can be

found in Appendix B.

I use graphical techniques [Garrett and Zeger, 2000] to confirm my selection based on the
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information criteria. To examine the extent to which the data are able to distinguish among

the assumed number of latent classes, I compare the prior versus posterior distributions for

regression coefficients in the latent class membership model. Largely overlapping prior and

posterior distributions may suggest that the number of latent classes is too large given the

data.

2.3.6 Model checking

I evaluate the overall adequacy of the selected model using Bayesian posterior predictive

p-values [Gelman et al., 1996]. At each MCMC iteration, a discrepancy measure is com-

puted using the replicated and observed data. The Bayesian predictive p-value denotes the

probability that the discrepancy measure under the replicated data is greater than that

under the observed data. A p-value near 0.5 indicates adequate model fit, while a p-value

outside the range of 0.05 and 0.95 is considered to suggest a lack of model fit. For my dis-

crepancy measure, I select a weighted mean squared error computed as [Neelon et al., 2011;

Gelman et al., 2014]:

T =

K∑
k=1

S∑
s=1

Js∑
j=1

nsj∑
i=1

3∑
t=1

(ysjit − 1t=1b1sji − 1t=2b2sji − 1t=3b3sji − ρsjk − ζsk)2

σ2
k

× 1c∗sji=k.

In addition, I compare plots of the observed data with the posterior predictive distribution

to check how well the model captures features of the data.

2.4 Results from the Analysis of the GBRS

I applied the proposed Bayesian GMM to modeling trajectories of PTSD severity scores

across the three waves in the GBRS. I considered models with K = 2, 3, 4 latent classes.

For each K, I fit three different latent class membership models. In the first two models, I
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singly included usjk in equation (2.6) or νsjk in equation (2.7) to model correlations among

subjects in the same area segment or spatial correlations among neighboring area segments,

respectively. In the third model, I included both usjk and νsjk as in equation (2.4). In fitting

each latent class membership model, wsji from equation (2.4) contained design variables,

including high versus low PTSD risk, natural log-transformed weighting adjustment for

nonresponse at the household-level, and the number of household members; and PTSD

risk factors previously identified in the literature, including demographics, community-level

social assets including average collective efficacy and average social support, and pre and

peri-disaster mental health factors [Lowe et al., 2015; Gruebner et al., 2016]. To model the

effect of pps sampling of area segments with probability of selection proportional to the

number of occupied households, I used a cubic B-spline with a set of basis functions for

R = 5 in equation (2.8).

I ran the MCMC sampler for 30,000 iterations, discarding the first 15,000 as a burn-

in. Based on three chains from dispersed initial values, the Gelman-Rubin convergence

diagnostic [Gelman et al., 2014] indicated model convergence with values near 1 for all

parameters. Trace plots did not show evidence of the label switching problem that can

occur in finite mixture modeling applications.

2.4.1 Number of latent classes in the GBRS

The 2-class and 3-class models converged, but the 4-class model could not identify a fourth

mixture component in the GBRS data. The 3-class models have a smaller BIC, ICL-BIC,

and DIC4 than the 2-class models (Table 2.1). Among the 3-class models, the DIC4 prefers

the model with both types of correlations usjk and νsjk by a sizeable margin, while the BIC

and ICL-BIC are similar for the different correlation structures. I select the 3-class model
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Table 2.1: Comparison of information criteria between models with K = 2, 3 latent classes.

For each number of latent classes, three models to account for different correlations among

area segments in the latent class membership model, including usjk only, νsjk only, and

both usjk and νsjk, are compared.

K

Criterion Correlations 2 3

BIC usjk only -408.79 -563.96

νsjk only -430.50 -566.88

usjk and νsjk -456.71 -557.17

ICL - BIC usjk only -329.71 -401.22

νsjk only -346.34 -388.00

usjk and νsjk -384.41 -408.37

DIC4 usjk only 51.73 -558.01

νsjk only -186.81 -688.00

usjk and νsjk -140.52 -776.40

with both types of correlations.

Figures 2.2 and 2.3 compare the posterior versus prior distributions for the regression

coefficients δk from the 3-class model with both types of correlations. The posterior distri-

butions are narrow compared to the prior distributions, suggesting that the data contain

evidence to estimate this 3-class model.

2.4.2 Latent classes of PTSD severity score trajectories

Figure 2.4 shows the mean trajectory in each latent class using the posterior means for the

growth parameters βk and corresponding 95% credible intervals in vertical bars. The growth

parameters in latent class 1 (solid, black) portray a steadily low level of log PTSD severity

scores, whereas in latent class 3 (solid, grey), a high level of PTSD persists over time. In
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Household 3+ Nonresponse High risk

Emotion high Support Efficacy Household 2

Pre depression Ike trauma Ike stress Emotion medium

> high school Pre trauma 2−3 Pre trauma 4+ Pre PTSD

Other race Age 35−54 Age 55+ High school

Intercept Male Black Hispanic

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

−5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0 −5.0 −2.5 0.0 2.5 5.0

value

de
ns

ity

Posterior Prior

Figure 2.2: Posterior versus prior densities of regression coefficients δ1 from the latent

class membership model comparing the likelihood of being in the recovery versus resilient

subgroup. The model includes both correlations among subjects in the same area segment

and spatial correlations among area segments.
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Figure 2.3: Posterior versus prior densities of regression coefficients δ2 from the latent

class membership model comparing the likelihood of being in the chronic versus resilient

subgroup. The model includes both correlations among subjects in the same area segment

and spatial correlations among area segments.
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Figure 2.4: Mean log PTSD severity score trajectory in each latent class based on the

posterior mean and 95% credible interval of βk in the longitudinal model of PTSD.

latent class 2 (dashed), after decreasing from medium high in wave 1 to medium low in wave

2, the trend remains steady at wave 3. Figure 2.4 demonstrates that based on taxonomy

used in disaster recovery research, latent classes 1, 2, and 3 can be interpreted as the

resilient, recovery, and chronic subgroups of PTSD severity score trajectories, respectively.

Table 2.2 presents the hierarchical variance components at the observation-level, subject-

level, area segment-level, and stratum-level in the model of longitudinal PTSD severity

scores. At each level, the resilience subgroup is characterized by very small variability, and
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the chronic subgroup exhibits larger variability relative to the other subgroups. Notwith-

standing, for all three subgroups, variation at the area segment and stratum-level is minimal,

as evidenced by the lower bound of the 95% credible interval being nearly zero.
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Table 2.2: Variance components in the longitudinal model for PTSD severity score trajectories.

Resilience Recovery Chronic

Variance Posterior Mean (95% CrI) Posterior Mean (95% CrI) Posterior Mean (95% CrI)

Observation-level:

σ2
k 0.003 (0.003, 0.005) 0.02 (0.014, 0.029) 0.061 (0.04, 0.087)

Subject-level:

φ11k 0.008 (0.005, 0.014) 0.044 (0.028, 0.063) 0.064 (0.031, 0.109)

φ12k 0.002 (0, 0.006) -0.003 (-0.013, 0.009) 0.028 (0.004, 0.06)

φ13k 0.002 (0, 0.006) -0.001 (-0.01, 0.01) -0.004 (-0.029, 0.023)

φ22k 0.006 (0.004, 0.01) 0.022 (0.013, 0.037) 0.047 (0.022, 0.086)

φ23k 0.002 (0, 0.006) 0.004 (-0.003, 0.014) 0.006 (-0.014, 0.03)

φ33k 0.007 (0.004, 0.011) 0.017 (0.01, 0.029) 0.047 (0.021, 0.084)

Area segment-level:

ω2
k 0.002 (0, 0.004) 0.006 (0.001, 0.014) 0.022 (0.006, 0.045)

Stratum-level:

ψ2
k 0.003 (0, 0.015) 0.004 (0, 0.021) 0.024 (0, 0.13)
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I classified subjects into the three subgroups of PTSD trajectories based on the maximum

of the average posterior probabilities of belonging to each latent class over MCMC draws.

Of 563 subjects, 274 (nearly 50%) are classified in the resilient subgroup, followed by 178

and 111 (approximately 30% and 20%) in the recovery and chronic subgroups, respectively.

For the 274 subjects classified in the resilient subgroup, the median (mean) of the average

posterior probabilities of belonging to this subgroup is 0.98 (0.94). The corresponding

median (mean) for the recovery and chronic subgroups are 0.87 (0.84) and 0.99 (0.93),

respectively.

2.4.3 Predicting latent class membership

Associations of the probability of latent class membership with PTSD risk factors and

sample design variables are presented in Figure 2.5 and 2.6. In Figure 2.5, compared

to the resilient subgroup, subjects in both the recovery and chronic subgroups are more

likely to be older in age, to be black or Hispanic race, and to have higher peri-emotional

reactions, Ike-related stress, and pre-Ike depression and PTSD. However, these associations

are in general more pronounced in the chronic subgroup than in the recovery subgroup.

Increasing average collective efficacy is associated with lower likelihood of being in the

chronic versus resilient subgroup. Although none of the associations between the sample

design variables and probability of latent class membership are significant, subjects with

high PTSD risk tend to be more likely to belong in the recovery or chronic subgroups, and

subjects in a household with three or more members tend to be more likely to belong to

the resilient subgroup. Figure 2.6 presents the probability of latent class membership as

a smoothed function of the number of occupied households. Among subjects from a given

area segment, the probability of belonging to the resilient subgroup tends to increase with
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Figure 2.5: Probit regression coefficients, along with 95% credible intervals, for covariates

in the latent class membership model.

the number of occupied households at the area segment-level, whereas I observe a modest

negative association in the recovery subgroup and no association in the chronic subgroup.

Figure 2.7 shows variability in latent class membership among strata and area segments.

Stratum 1 exhibits some evidence of being associated with higher probability of belonging to

the recovery or chronic subgroups. This is consistent with the sample design because stra-

tum 1 contained Galveston Island and the Bolivar Peninsula, which suffered severe damage

from the storm. No difference is observed among the remaining four strata. Conditional

on stratum, I also observe moderate variability in latent class membership among area

segments, as measured by the sum of the terms usjk and νsjk in equation (2.4).
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Figure 2.6: Probability of belonging to each latent class as a cubic B-spline of log occupied

households, with knots at the distribution tertiles. The shaded region is the 95% highest

posterior density interval of the B-spline.
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Figure 2.7: Estimation of stratum and area segment-specific intercepts using the posterior

mean (diamond) and 95% credible interval (vertical bar) in the latent class membership

model. The area segment-specific intercepts are the sum of usjk and νsjk. Coloring denotes

area segments from the same stratum. The five stratum-specific intercepts are in bold font.
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2.4.4 Model checking in the GBRS

Figure 2.8 presents a scatter plot of the predicted versus observed discrepancy measure T

across MCMC samples. The Bayesian predictive p-value of 0.83 represents the proportion

of samples above the diagonal, suggesting adequate overall model fit. Figure 2.9 shows his-

tograms of the observed data overlaid by the posterior predictive distributions by subgroup

and wave. The selected model fits the data reasonably well except for some observations

with very high PTSD severity scores in the chronic subgroup.

2.5 Discussion

To my knowledge, this is the first study that uses Bayesian hierarchical modeling for incor-

porating a complex sample design into a finite mixture model, and specifically, a growth

mixture model. By modeling variance components hierarchically to reflect the hierarchy

of the data structure, with repeated measures nested within subjects, which are further

clustered by area segments and strata, my method enables partitioning the variance across

different levels of the data. In addition to modeling the effect of area segments using the

typical independent random intercepts, I account for spatial correlations among neighboring

area segments, thus relaxing the assumption that class membership risk is independent in

geographic space. I develop an efficient Gibbs sampler including only closed-form full con-

ditional distributions by using a probit link to model latent class membership probabilities,

which largely reduces computational burden as compared to a logit link. My user-friendly

R package Bsvygmm can be used for model fitting, selection, and checking.

Applying my proposed model to the GBRS, I found three clinically meaningful subgroups

of PTSD severity score trajectories, namely, resilience, recovery, and chronic. Incorporating
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Figure 2.8: Posterior predictive checking for the selected model using a Bayesian posterior

predictive p-value. Observed T is computed using the observed data. Replicated T is

computed using the replicated datasets from the posterior predictive distribution.
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Figure 2.9: Histograms of the observed data and the posterior predictive distribution of log

PTSD severity scores by subgroup and wave of survey. The posterior predictive distribution

is summarized using the median draw over MCMC samples.
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the sample design can affect estimation of the optimal number of latent classes, latent class

proportions, latent class-specific regression coefficients, and actual subject classification

[Patterson et al., 2002; Wedel et al., 1998]. For example, in previous research with the

GBRS, [Lowe et al., 2015] used latent class growth analysis (LCGA) implemented by the

TRAJ procedure in SAS [Jones et al., 2001; Jones and Nagin, 2007] and found a fourth

subgroup (5% of the study sample) that exhibited a delayed PTSD score trajectory, defined

as initially low symptomatology that increases over time. The difference in the number

of latent classes may be, in part, because given latent class, LCGA does not account for

correlation among repeated measures of PTSD scores from the same subject, or because

[Lowe et al., 2015]’s analysis ignored features of the complex sample design. In a sensitivity

analysis (see Appendix C), I fit alternative Bayesian GMMs assuming K = 2, 3, 4 latent

classes that removed all information about the complex sample design. Based on the BIC

and ICL-BIC, the 3-class model was preferred, but the 4-class model was selected according

to the DIC4 (Table C.1). However, the additional class in the 4-class model exhibited

low posterior probability of class assignment. In comparing the 3-class models with and

without complex sample design, estimation of the average latent class-specific trajectories

and variance components was similar (see Figure C.1 corresponding to Figure 2.4 and Table

C.2 corresponding to Table 2.2), and only 37 of the 563 subjects in the GBRS differed in

their latent class membership.

A Bayesian hierarchical modeling approach requires careful consideration of model spec-

ification of the design features. In my proposed GMM, I use design variables – in addition

to PTSD-related risk factors measured at baseline – to predict latent class membership.

To flexibly model the effect of pps sampling on the probability of class membership, I in-

clude the continuous size variable, the number of occupied households from the census,
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using B-splines. Because the design variables are not strongly associated with the proba-

bility of latent class membership, I do not include interaction effects. Stratum and area

segment-level effects are included in both the latent class membership model and the lon-

gitudinal model of PTSD scores. My analysis, however, reveals little variability in PTSD

scores at the stratum and area segment-levels after conditioning on latent class, which may

suggest removing these variance components from the longitudinal model of PTSD scores.

By including the other sample design variables only in the latent class membership model,

I assume that they are independent of PTSD trajectories given latent class. Overall, my

Bayesian GMM analysis suggests that design features play a relatively small role in predict-

ing PTSD score trajectories. This may explain why the 3-class models with and without

accounting for the complex sample design yield similar mean and variance estimates. Unlike

the pseudo-likelihood method, in my Bayesian approach, variance estimation will not be

inflated when design features are unnecessarily included in the model.

In the GBRS, not all subjects who participated in the baseline survey completed the two

follow-up surveys. I assumed that PTSD scores are missing at random; however, particu-

larly with mental health data, the probability of a missing value may depend on unobserved

PTSD scores even after conditioning on latent class. In future research, I will conduct sen-

sitivity analyses to assess the missing at random assumption. In addition, my analysis

suggests that subjects in the chronic subgroup have a more dispersed PTSD distribution

than assumed in my normal model. Future research may explore other distributional as-

sumptions.

My proposed GMM for analyzing complex survey data using a Bayesian approach has

practical utility for planning and allocating post-disaster services. Classification of disaster

survivors into their trajectory subgroups provides information about the extent to which
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different types of interventions are needed, the efficacious timing of these interventions, and

the tailoring of these interventions to specific risk profiles. Especially important in the con-

text of precision public health, my proposed GMM provides subject-specific inference. For

example, I can use subject-specific predictions to identify individuals who have higher than

average PTSD scores compared to other individuals with similar geographic, demographic,

and health characteristics. Post-disaster services can be targeted not only within subgroup,

but also within geographic areas, for individuals with specific combinations of risk factors,

and for individuals themselves. Moreover, information about predominant levels of variabil-

ity in PTSD can suggest cost-effective scales at which to implement an intervention, which

is critical post-disaster when resources are scarce.
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Chapter 3

Modeling Heterogeneity and

Missing Data in Electronic Health

Records

3.1 Introduction

Longitudinal data collected in electronic health records (EHRs) are big data. As EHRs are

increasingly adopted in US health systems, an estimated one billion patient visits may be

documented per year [Hripcsak and Albers, 2013]. A natural feature of such data may be un-

observed, or “latent” heterogeneity, whereby unobservable subgroups of patients are charac-

terized by distinctive patterning in their longitudinal health trajectories. Researchers from

diverse biomedical fields, such as psychology [Elliott et al., 2005] and maternal and infant

health [Neelon et al., 2011], have used growth mixture models (GMMs) [Muthen et al., 2002;

Verbeke and Lesaffre, 1996] to analyze latent heterogeneity in longitudinal data. GMMs

enable classifying subjects into different subgroups, often called latent classes, according to

individual longitudinal trajectories and risk factors hypothesized to be associated with class

34



CHAPTER 3. MODELING HETEROGENEITY AND MISSING DATA IN
ELECTRONIC HEALTH RECORDS

membership.

Despite the potential for new scientific insights from analyzing the vast amounts of data

in EHRs, one of the primary challenges faced by researchers is how to handle the often

large numbers of missing values [Weiskopf and Weng, 2013]. Unlike in longitudinal data

collected in a designed study, in EHRs, two patient-led missing data processes drive the

generation of missing values, namely, the visit process and the response process given a

clinic visit. In the absence of follow-up times fixed a priori by the study design, the visit

process refers to the probability that patients themselves decide to visit the clinic, which

may be based on a patient’s own prerogative, physician recommendation, or a combination

thereof. Without a set of variables for data collection fixed before study onset, the response

process given a clinic visit refers to the probability of observing a response on a given EHR

variable, conditional on a patient visiting the clinic. This may be based, in part, on a

patient’s stated medical reasons for the visit, in addition to clinical judgement. Multiplied

over huge patient populations in EHRs, the visit process and the response process given a

clinic visit spawn innumerable patterns in missingness over time, which may themselves be

characterized by latent heterogeneity.

For valid statistical inferences with EHRs, the missing data mechanisms for the visit

process and the response process given a clinic visit require careful attention. When the

probability of a missed visit is related to the underlying process generating the longitudinal

outcomes, the visit process is characterized as a special case of missing not at random

(MNAR), termed informative [Wu and Carroll, 1988; Follmann and Wu, 1995]. In EHR-

based research, because a patient’s underlying health status may be associated with when

and how often the patient visits the clinic, longitudinal data analysis may be subject to an

informative visit process. Existing methods to handle an informative visit process rely on

35



CHAPTER 3. MODELING HETEROGENEITY AND MISSING DATA IN
ELECTRONIC HEALTH RECORDS

shared parameter modeling [Wu and Carroll, 1988; Follmann and Wu, 1995] in which the

longitudinal outcomes and visit processes are jointly modeled on the basis of a conditional

independence assumption that includes – at a minimum – shared continuous or discrete

latent variables [Liang et al., 2009; Sun et al., 2007; McCulloch et al., 2016; Lin et al.,

2004]. However, to my knowledge, no methods have been developed for the setting of EHRs

where in addition to the visit process, the response process given a clinic visit may exhibit

an MNAR mechanism.

In this paper, I propose a Bayesian shared parameter model to model latent heterogene-

ity in multiple longitudinal health outcomes in EHRs, while accounting for MNAR missing

data mechanisms for the visit process and response process given a clinic visit. My focus

is on longitudinal health outcomes in EHRs for which there is a clinically prescribed visit

schedule, which I use to construct time windows of observation to measure each patient’s

visit process. For example, my data application is on early childhood weight and height

measurements, which according to the American Academy of Pediatrics, should be collected

according to the well-child check schedule [American Academy of Pediatrics, 2018]. Condi-

tional on observing a visit in a given clinical time window, I measure the response process

for each health outcome.

The proposed shared parameter model links GMMs of the longitudinal health outcomes,

the visit process, and the response process given a clinic visit using a discrete latent vari-

able to indicate the latent class to which each patient belongs. Conditional on a patient’s

latent class membership, the longitudinal health outcomes, the visit process, and the re-

sponse process given a clinic visit are assumed to be independent. The use of the discrete

latent class variable [Lin et al., 2004; Roy, 2003] to link the health outcomes and missing

data processes confers three main advantages in the EHR setting: First, I can relax the as-
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sumption of a single, homogeneous patient population in modeling longitudinal trajectories

of health outcomes, the visit process, and the response process given a clinic visit, while

having population-averaged inferences at my disposal if I so desire. Second, I can tractably

summarize the innumerable patterns of missing values from the visit process and response

process given a clinic visit into a small number of latent classes. Third, I can easily alter my

MNAR assumption about the visit process or response process given a clinic visit to handle

ignorable missing data mechanisms. For model estimation, I developed an efficient Markov

chain Monte Carlo (MCMC) algorithm that is based on easily sampled closed-form full

conditional distributions. I developed the R package EHRMiss for model fitting, selection,

and checking.

3.2 Statistical Method

I formulate the proposed model of longitudinal health outcomes among patients in EHRs

accounting for MNAR missing data mechanisms for the visit process and the response

process given a clinic visit. First, in Section 3.2.1, I present the Bayesian multivariate

GMM for complete data. In Section 3.2.2, I extend the complete-data model to account

for a nonignorable visit process and response process given a clinic visit, followed by an

explication of the missing data mechanisms in Section 3.2.3. Sections 3.2.4 and 3.2.5 detail

prior distributions and posterior computation, respectively, followed by model selection in

3.2.6 and model checking in 3.2.7.

3.2.1 Complete-data model

Suppose there are K latent classes of patients with distinctive patterning in their trajectories

of R health outcomes collected over J prescribed time windows for clinical observation. The
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Bayesian multivariate GMM for the complete-data model comprises two submodels, namely,

the latent class membership model and the longitudinal health outcomes model. I begin

with the latent class membership model.

Let ci be a discrete latent variable taking values k = 1, . . . ,K to indicate the latent class

membership of patient i (i = 1, . . . , n). I assume that

ci ∼Multinomial
(

1; πi1, . . . , πiK

)
, (3.1)

where πik are patient-specific latent class membership probabilities that I model by adapting

a multinomial probit regression framework [McCulloch and Rossi, 1994].

To connect πik with latent class membership ci, I introduce K latent normal random

variables ξ∗ik (k = 1, . . . ,K) with unknown mean and variance-covariance, where πik =

Pr(ξ∗ik > ξ∗il for all l 6= k). Following standard practice, I define latent class K as the

reference level by taking the difference ξik = ξ∗ik − ξ∗iK for k = 1, . . . ,K − 1. Then, I specify

the multinomial probit model as

ξik = wiδ
T
k + εik, (3.2)

with

ci =

 K if max(ξi1, . . . , ξiK−1) < 0

k if max(ξi1, . . . , ξiK−1) = ξik ≥ 0 for k = 1, . . . ,K − 1.
(3.3)

In (3.2), the latent normal random variables ξik are modeled as a function of wi (1×s), which

includes patient-level risk factors and a column of ones for an intercept. Corresponding

regression coefficients are contained in δk. εik (k = 1, . . . ,K − 1) are normal random

errors with mean zero, whose variance-covariance I restrict to the identity matrix in order

to address identifiability issues in the multinomial probit [Daganzo, 1979; Dansie, 1985;

Bunch, 1991]. For K = 2, this set-up corresponds to the standard Bayesian probit model
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for a binary outcome [Albert and Chib, 1993]. Equation (3.3) defines ci according to the

values of the latent normal random variables ξik (k = 1, . . . ,K − 1).

The multivariate model of longitudinal health outcomes is specified conditional on latent

class membership. Let y1ij , . . . , yRij be longitudinal measurements on R health outcomes

in clinical time window j. Then,


y1ij

... ci = k

yRij

 ∼MVNR



β1kx

T
ij + b1iz

T
ij

...

βRkx
T
ij + bRiz

T
ij

 , Σk

 (3.4)


b1i

... ci = k

bRi

 ∼MVNRq




0
...

0

 , Ψk

 . (3.5)

In (3.4), conditional on latent class membership, the longitudinal health outcomes yrij

(r = 1, . . . , R) are modeled as a polynomial function of a patient’s age in window j, with

polynomial terms and a column of ones for an intercept included in xTij (p × 1). The

corresponding regression coefficients in βrk (1 × p) capture the average health trajectory

in latent class k, and Σk is an R × R latent class-specific variance-covariance among yrij

(r = 1, . . . , R). For each outcome r, bri = (bri1, . . . , briq)
T (1 × q) are patient-specific

random effects associated with zTij , the columns of which are a subset of xTij . As shown in

(3.5), bri are modeled conditional on a patient’s latent class membership, thus reflecting

patient-specific variability around the average health trajectory in a given latent class. The

latent class-specific variance-covariance Ψk is an Rq×Rq block diagonal matrix with entries

Ψkr (q × q), the elements of which compose a variance-covariance for bri (i = 1, . . . , n).

Note that for simplicity, I assume that xij and zij are the same for all health outcomes r;

however, this is not required.
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3.2.2 Nonignorable visit process and response processes given a clinic

visit

I extend the complete-data model in (3.1) - (3.5) to allow for missing values from the visit

process and the response process given a clinic visit. To account for nonignorable missing

data mechanisms for the visit process and the response process given a clinic visit, I build

a shared parameter model through which the longitudinal health outcomes, visit process,

and response process given a clinic visit are linked via the discrete latent variable ci for a

patient’s latent class membership.

To specify the full data, corresponding to the elements yri1, . . . , yriJ , let dij (j = 1, . . . , J)

be an indicator for the visit process such that dij = 1 if patient i has a clinic visit during

time window j, and 0 otherwise. The response process for the rth health outcome given a

clinic visit is defined for the subset of time windows when patient i visits the clinic. Let

A = {j : dij = 1 for j = 1, . . . , J}, and let the total number of clinic visits for patient i

be ni =
∑J

j=1 dij . Then, for l = 1, . . . , ni, define mriA(l) = 1 if a response is observed for

health outcome r at window A(l), and 0 otherwise. The full data are given by yrij , dij , and

mriA(l).

Using a probit link function, I model the probability of a clinic visit for patient i in time

window j as

[
dij ci = k

]
∼ Bernoulli

(
Φ{xijφTk + zijτ

T
i }
)

(3.6)

[
τi ci = k

]
∼MVNq

(
0, Ωk

)
, (3.7)

where Φ{.} is the cumulative distribution function of the standard normal distribution. In

(3.6) and (3.7), φk (1× p) are latent class-specific regression coefficients associated with xij

that capture the average visit process trajectory in latent class k. τi (1 × q) are patient-
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specific random effects associated with zij and modeled conditional on latent class mem-

bership with a q × q variance-covariance Ωk. τi (i = 1, . . . , n) reflect within latent class

variability around the average visit process trajectory.

Analogous to the visit process model, the probability of response for health outcome r

in window A(l) is specified as

[
mriA(l) ci = k

]
∼ Bernoulli

(
Φ{xiA(l)λ

T
rk + ziA(l)κ

T
ri}
)

(3.8)

[
κri ci = k

]
∼MVNq

(
0, Θrk

)
, (3.9)

where λrk (1×p) represent the latent class-specific average response process for health out-

come r; and, κri are patient-specific random effects associated with ziA(l) that are modeled

with a latent class-specific variance-covariance Θrk (q × q). As in the visit process model,

κri (i = 1, . . . , n) capture variability within a latent class around the average response tra-

jectory. To simplify notation, I have assumed that the visit process and response process

given a clinic visit use the same design matrices as in the longitudinal health outcomes

model in (3.4), but this is unnecessary in practice.

3.2.3 Missing data mechanism

Let yij = (y1ij , . . . , yRiJ)T and yi = (yTi1, . . . ,y
T
iJ)). Let bi = (bT1i, . . . ,b

T
Ri)

T . Let

di = (di1, . . . , diJ)T , and mri = (mriA(1), . . . ,mriA(ni))
T for r = 1, . . . , R. Let there be

a partition of the longitudinal health outcomes yi = (yoi ,y
m
i ) for observed (o) and missing

(m) components, where ymi can be decomposed between missed clinic visits, ym1
i , and missed

responses given a clinic visit, ym2
i . To examine the missing data mechanism, I consider the
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joint density

f(yoi ,y
m2
i ,bi; di, τi; m1i, . . . ,mRi, κ1i, . . . , κRi; ci | rest)

=

∫
ym1
i

f(yoi ,y
m1
i ,ym2

i ,bi; di, τi; m1i, . . . ,mRi, κ1i, . . . , κRi; ci | rest) ∂ym1
i ,

with the factorization

f(yoi ,y
m2
i ,bi; di, τi; m1i, . . . ,mRi, κ1i, . . . , κRi; ci | rest)

= f(yoi ,y
m2
i | ci,bi) f(bi | ci)

× f(di | ci, τi) f(τi | ci)

× f(m1i | ci, κ1i) f(κ1i | ci) . . . f(mRi | ci, κRi) f(κRi | ci)

× f(ci).

Conditional on latent class membership, the longitudinal health outcomes, visit process, and

response process given a clinic visit are assumed to be independent. The MNAR mechanism

is evident because the visit process and the response process given a clinic visit depend on

ym2
i indirectly through latent class membership.

The proposed shared parameter model can be easily altered to accommodate an MAR

mechanism for one or both of the visit process and response process given a clinic visit.

For example, the visit process is MAR if f(di, τi | ci, rest) = f(di, τi | rest). Conditional on

observed information, the visit process and the associated patient-specific random effects are

assumed to be independent of latent class. Under an MAR mechanism and the assumption

of separable parameter spaces, the visit process can be ignored in statistical analysis.

3.2.4 Prior specification

To complete the Bayesian model specification, I assign prior distributions to all of the pa-

rameters. For each parameter, I use the same prior distribution across mixture components.

42



CHAPTER 3. MODELING HETEROGENEITY AND MISSING DATA IN
ELECTRONIC HEALTH RECORDS

In the latent class membership model, I follow previous research [Garrett and Zeger, 2000;

Elliott et al., 2005] by assigning the probit regression coefficients δk in (3.2) a prior distribu-

tion MVNs(0, I). On the probability scale, this prior distribution yields a non-informative

prior on the probability of latent class membership, with its mode at approximately 1
K .

In the longitudinal health outcomes model (3.4), I assign the latent-class specific re-

gression coefficients βrk a diffuse prior distribution of the form MVNp(0,Σβ), where Σβ

is a diagonal variance-covariance with some large variance. I assign the observation-level

variance-covariance Σk an inverse-Wishart prior distribution IW (νΣ,S
−1
Σ ), where νΣ is the

degrees of freedom and S−1
Σ is a positive definite matrix. In (3.5), for the hierarchical

variance-covariance of the patient-specific random effects Ψk, I assign each of the con-

stituent variance-covariances Ψkr an inverse-Wishart prior distribution.

Like the model of longitudinal health outcomes, for the visit process model in (3.6)

and (3.7) and the response process model in (3.8) and (3.9), I use diffuse normal prior

distributions on the latent class-specific regression coefficients φk and λrk, and inverse-

Wishart prior distributions on the hierarchical variance-covariances Ωk and Θrk.
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3.2.5 Posterior computation

Let yiA(l) = (y1iA(l), . . . , yRiA(l))
T , and βk = (βT1k, . . . , β

T
Rk)

T . Assuming prior independence,

I specify the joint posterior distribution as

p(c; β,b,Σ,Ψ; φ, τ,Ω; λ, κ,Θ |y,d,m; x, z,w)

=
K∏
k=1

{
n∏
i=1

πik

[ J∏
j=1

f(dij | τi, φk) f(τi |Ωk)


×

ni∏
l=1

(
f(yiA(l) |bi, βk,Σk) f(bi |Ψk)

R∏
r=1

f(mriA(l) |κri, λrk) f(κri |Θrk)

)]1ci=k

× p(βk) p(Σk) p(Ψk) p(φk) p(Ωk)
R∏
r=1

p(λrk) p(Θrk)

}
K−1∏
k=1

p(δk),

where for notational simplicity, the design matrices in the conditional densities for dij ,

yiA(l), and mriA(l) are suppressed.

For posterior computation, I propose an MCMC algorithm that uses easily sampled

closed-form full conditionals. After assigning initial values to model parameters, the algo-

rithm iterates among the following steps:

1. For k = 1, . . . ,K − 1, update δk for the latent class membership model in (3.2).

Compute πik for k = 1, . . . ,K in (3.1).

2. For k = 1, . . . ,K, update parameters for the longitudinal health outcomes model in

(3.4) and (3.5), including βrk, bri, Σk, and Ψk.

3. For k = 1, . . . ,K, update parameters for the visit process model in (3.6) and (3.7),

including φk, τi, and Ωk.

4. For k = 1, . . . ,K, update parameters for the model of the response process given a

clinic visit in (3.8) and (3.9), including λrk, κri, and Θrk.

44



CHAPTER 3. MODELING HETEROGENEITY AND MISSING DATA IN
ELECTRONIC HEALTH RECORDS

5. Sample latent class indicators ci for i = 1, . . . , n from Multinomial(1; pi1, . . . , piK),

where pi1, . . . , piK are the posterior probabilities of latent class assignment given by

pik (3.10)

= Pr(ci = k |πik; y∗i ,bi; di, τi; m1i, . . . ,mRi, κ1i, . . . , κRi; rest)

∝ πik f(y∗i |bi, βk,Σ∗k) f(bi |Ψk)

× f(di | τi, φk) f(τi |Ωk)

×
R∏
r=1

f(mri |κri, λrk) f(κri |Θrk),

where y∗i = (yTiA(1), . . . ,y
T
iA(ni)

), and Σ∗k is an niR × niR block diagonal matrix with

elements Σk (R×R) for each yiA(l) (l = 1, . . . , ni).

The full MCMC algorithm is detailed in Appendix D.

3.2.6 Model selection

I use model selection as a tool to guide sensitivity analysis about missing data assumptions.

First, I select the optimal number of latent classes among models with the same assumed

missing data mechanism. Then, assuming each of the selected number of latent classes, I

fit models varying the missing data assumptions. This approach enables investigating the

sensitivity of statistical inferences to missing data assumptions given the selected number

of latent classes.

To conduct model selection, I use two model information criteria and a graphical tech-

nique known as latent class identifiability displays (LCIDs) [Garrett and Zeger, 2000]. The

model information criteria include the Bayesian Information Criterion (BIC) [Schwarz,

1978], and a modified version of the Deviance Information Criterion (DIC) [Spiegelhal-

ter et al., 2002] known as the DIC3 [Celeux et al., 2006]. I calculate the BIC using the
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marginal density of y∗i , di, m1i, . . . ,mRi after integrating out latent class membership ci

and the random effects bi, τi, κ1i, . . . , κRi for each of the outcomes, given by

f(y∗i ,di,m1i, . . . ,mRi |π; β,Σ,Ψ; φ,Ω; λ,Θ) (3.11)

=

K∑
k=1

πik

(∫
bi

f(y∗i |bi, βk,Σ∗k) f(bi |Ψk) ∂bi

)
×

(∫
τi

f(di | τi, φk) f(τi |Ωk) ∂τi

)
×

(∫
κRi

· · ·
∫
κ1i

f(m1i |κ1i, λ1k) f(κ1i |Θ1k) . . . f(mRi |κRi, λRk) f(κRi |ΘRk) ∂κ1i, . . . , ∂κRi

)
,

where I can analytically compute only the integral for the longitudinal health outcomes y∗i .

I estimate the integrals for the visit process di and response process given a clinic visit

m1i, . . . ,mRi using numerical integration. I then define the BIC as

BIC =
n∑
i=1

logf(y∗i ,di,m1i, . . . ,mRi | π̂; β̂, Σ̂, Ψ̂; φ̂, Ω̂; λ̂, Θ̂) + d logNeff,

where π̂, β̂, Σ̂, Ψ̂, φ̂, Ω̂, λ̂, Θ̂ are the Bayesian estimators of the unknown parameters;

d is the number of free parameters in the mixture model; and Neff is the effective sample

size from the model of longitudinal health outcomes y∗i estimated by accounting for the

correlations among the longitudinal measurements belonging to same patient [Jones, 2011].

The first term is a measure of goodness of fit, and the second term provides a penalty for

model complexity.

In Bayesian hierarchical models, the number of free parameters may be unclear. As the

Bayesian analogue to the BIC, [Spiegelhalter et al., 2002] proposed the DIC in which the

number of effective parameters is estimated. For some unknown parameter α, the DIC is

computed as DIC = D̄(α) + pD, where D̄(α) is the posterior mean deviance estimated from

MCMC samples, and pD is the effective number of parameters taken as pD = D̄(α)−D(α̂).

The second term, D(α̂), is the point estimate for the deviance and is standardly evaluated

46



CHAPTER 3. MODELING HETEROGENEITY AND MISSING DATA IN
ELECTRONIC HEALTH RECORDS

at the posterior mean estimator of α. However, according to [Celeux et al., 2006], in finite

mixture modeling, the posterior mean estimator often leads to a negative effective number

of parameters. The authors recommend the DIC3, in which the posterior mean estimator

is replaced by the estimator of the marginal density (3.11) obtained from MCMC samples.

Analogous to the BIC, D̄(α) is a measure of goodness of model fit, while pD is a penalty

for model complexity. Smaller values of BIC and DIC3 indicate a preferred model.

[Garrett and Zeger, 2000] propose using LCIDs to examine the extent to which the data

are able to distinguish among the assumed number of latent classes. In LCIDs, plots of the

prior versus posterior distributions for regression coefficients in the latent class membership

model are examined. Largely overlapping prior and posterior distributions may suggest

that the number of latent classes is too large given the data.

3.2.7 Model checking

For model checking under MAR or MNAR missing data mechanisms, previous research

[Gelman et al., 2005] has recommended conducting Bayesian posterior predictive checking

[Gelman et al., 1996] with completed datasets that include observed and imputed data,

and replicates of the completed datasets drawn from the complete-data model in (3.1) -

(3.5). At each MCMC iteration, a discrepancy measure is computed using the completed

and replicated completed datasets. The Bayesian predictive p-value denotes the probability

that the discrepancy measure under the replicated completed data is greater than that

under the completed data, with p-values outside the range of 0.05 and 0.95 suggesting a

lack of model fit. To examine overall model adequacy, I use the multivariate mean square

error for my discrepancy measure [Daniels and Hogan, 2008], which for the complete-data
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model in (3.1) - (3.5), I compute as

T =
K∑
k=1

n∑
i=1

ni∑
l=1

(yiA(l) − µiA(l))Σ
−1
k (yiA(l) − µiA(l))

T × 1ci=k,

where µiA(l) = xiA(l)β
T
k + ziA(l)b

T
i . I generate the replicated completed dataset by first

sampling replicate latent class indicators crepi and then drawing yrepiA(l) conditional on crepi

[Fruhwirth-Schnatter, 2006].

In addition, for randomly selected datasets, I compare plots of the completed data

with the replicated completed data to evaluate model fit and the reasonableness of the

imputations [Gelman et al., 2005].

3.3 Analysis of Early Childhood Weight and Height Mea-

surements

I apply my proposed model to an illustrative dataset of EHR measurements on weight

and height in a sample of US children followed from birth to age 4 years. These EHR

measurements were linked to participants in the 1988 National Maternal and Infant Health

Survey (NMIHS) and its 1991 Longitudinal Follow-Up, in which low birth weight infants

(<2,500 g) were oversampled [Sanderson et al., 1988]. In this dataset, clinic visit times

are available in terms of a child’s age in months. Clinical recommendation suggests that

in early childhood, weight and height measurements should be collected at clinic visits

classified as well-child checks [American Academy of Pediatrics, 2018]. The well-child check

schedule prescribes clinic visits at age in months 1, 2, 4, 6, 9, 12, 15, 18, 24, 30, 36, and

48. To illustrate my proposed model, I used weight and height measurements from clinic

visits classified as check-ups for a random sample of 500 children. I converted weight and

height measurements to z-scores using a reference distribution from the Centers for Disease
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Control and Prevention [Centers for Disease Control and Prevention, 2019]. Of the 500

children, I excluded one child whose available measurements were flagged as biologically

implausible values. The patterns of missing values for the visit process and the response

processes given a clinic visit for weight and height are shown in Figure E.1. Overall, of

5,988 well-child windows, 67% correspond to missed visits. Among 1,966 observed clinic

visits, only 17 weight measurements are missing (< 1%), whereas 207 height measurements

are missing, corresponding to approximately 10%.

I compare three estimation methods, which I label as MNAR, MAR, and Näıve.

For the MNAR method, I illustrate my proposed model: Assuming that the missing data

mechanisms for the visit process and the response process for height are MNAR, I model

them jointly with weight and height z-scores. On the other hand, since weight z-scores are

rarely missing, I assume the response process for weight is MAR. For the MAR method, I

assume each of the missing data mechanisms is ignorable. For the Näıve method, I fit the

complete-data model using only time windows in which both weight and height z-scores are

observed, herein “complete pairs”. Whereas the MNAR and MAR methods are based

on all 499 children, the Näıve method uses only 471 children who have at least one time

window with a complete pair.

I consider models with K = 1, 2, 3 latent classes. I separately select the optimal number

of latent classes for the MNAR and MAR methods that use all 499 children. Using the

MNAR method, I fit models with K = 2, 3 latent classes, while in the MAR method, I

assume K = 1, 2, 3, where the 1-class model is a multivariate normal model. For model

selection, I do not include risk factors in wi (3.2) to predict latent class membership.

Given the selected number of latent classes for the MAR and MNAR methods, for a

sensitivity analysis, I compare the Näıve, MAR, and MNAR methods based on a model
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that includes a child’s race, sex, and birth weight in wi. I model longitudinal trajectories

as a cubic polynomial function of a child’s age in months, and the patient-specific random

effects are specified with a random intercept.

I ran the Gibbs sampler for 20,000 MCMC iterations discarding the first 10,000 as burn-

in. To assess convergence, I calculated the Gelman-Rubin convergence diagnostic [Gelman

et al., 2014] based on three chains from dispersed initial values. The diagnostic indicated

model convergence with values near 1 for all parameters. Trace plots did not show evidence

of the label switching problem [Fruhwirth-Schnatter, 2006] that can occur in finite mixture

modeling applications. I re-ordered MCMC samples so that latent classes are labeled in

order of decreasing health status. For example, latent class 1 always represents the “healthy”

trajectory, while the last latent class is for the “unhealthy” trajectory.

3.3.1 Model selection for the MNAR and MAR methods

Table E.1 presents the model information criteria using the MAR and MNAR methods.

For the MAR method, the BIC and the DIC3 each chose the 2-class model. In contrast,

using the MNAR method, the 3-class model was selected by both model information

criteria. For K = 2 and K = 3 using the MAR and MNAR methods, respectively, the

LCIDs show that the posterior distributions of the intercepts are narrow relative to the prior

distributions (Figures E.2 and E.3). I therefore assess sensitivity of statistical inferences

under the Näıve, MAR, and MNAR methods based on K = 2, 3 latent classes.

3.3.2 Sensitivity analysis for the 2 and 3-latent class models

Assuming 2 latent classes, I compared the latent class-specific trajectories of weight and

height z-scores, the visit process, and the response process for height, and child latent class
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assignment using the Näıve, MAR, and MNAR estimation methods. I conducted the

same analysis for the 3-latent class models. Here, I describe the latent class-specific trajec-

tories, and I explicate why some children were classified differently among the methods.

3.3.2.1 2-latent class models.

The Näıve, MAR, and MNAR methods each detected a Normal trajectory subgroup

(purple) and a Low trajectory subgroup (orange) (Figure 3.1). Despite similar trajectory

patterns across methods, the latent classes appear better separated in the MNAR method,

particularly for height z-scores for which the response process was modeled. Based on the

MNAR method, Figure 3.2 presents the latent class-specific visit process and response

process for height. Compared to the Low subgroup, the Normal subgroup exhibits a higher

probability of a clinic visit, except at the study end. Whereas in the Normal subgroup,

the probability of a height response is invariably near 1, in the Low subgroup, the response

process climbs sharply from probability below 0.75 at the start of follow-up. Risk factors

associated with the probability of latent class membership are presented in Figure E.4.

I assigned children to the Normal or Low subgroup by the maximum of their mean

posterior probabilities of belonging to each latent class (columns for K = 2, Table E.2).

While the Näıve and MAR methods similarly placed about 67% and 33% of children in the

Normal and Low subgroups, respectively, the MNAR method assigned 59% of children to

the Normal subgroup, and 41% of children to the Low subgroup. Table E.3 cross-classifies

the 499 children used in the MAR and MNAR methods according to posterior latent

class assignment, and a covariate from the latent class membership model, birth weight.

Since few children born low birth weight (LBW) were classified differently by the MAR

and MNAR methods, I focus on children born non-LBW. Fifty non-LBW children were
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Figure 3.1: Latent class-specific average trajectories of weight and height z-scores estimated

by the Näıve, MAR, and MNAR methods, assuming 2 latent classes. n refers to the

number of children included by each method.
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Figure 3.2: Latent class-specific trajectories of the probability of a clinic visit and the

probability of a response for height z-scores using the MNAR method, assuming 2 latent

classes.
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placed in the Normal subgroup by the MAR method and the Low subgroup by the MNAR

method. Based on the MNAR method, Figure 3.3 shows the sample means among the

50 children using their observed weight and height z-scores, overlaid on the average latent

class-specific z-score trajectories. Larger points indicate sample means with more observed

measurements. Sample means with more measurements appear in later follow-up when the

latent class-specific trajectories are similar. In fact, especially for height z-scores, the 50

children have few observed measurements in early follow-up when the class trajectories are

easily distinguished. Figure 3.4 shows the patterns of the proportions of observed visits

and observed height responses in each time window among the 50 children, overlaid by the

latent class-specific visit and response trajectories. Consistent with the MNAR method

classifying the children in the Low subgroup, both the observed visit and response patterns

resemble the corresponding Low trajectories.

Table E.3 also indicates that 18 non-LBW children were placed in the Low subgroup

by the MAR method and the Normal subgroup by the MNAR method. In contrast

to the scenario of the 50 children, these 18 children have more weight and height z-score

measurements in early follow-up, when the sample means align to some extent with the

Low trajectory (Figure E.5). However, the patterns of the proportions of observed visits

and observed height responses among the 18 children correspond to the visit and response

process trajectories in the Normal subgroup (Figure E.6), which is again consistent with

the MNAR classification.

The comparison of the Näıve and MNAR methods for the 471 common children reveals

patterns of classification similar to those heretofore explicated for the MAR and MNAR

methods (data not shown).
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Figure 3.3: Sample means of observed weight and height z-scores (hollow circles) in each

well-child window among the 50 non-low birth weight children moved from the Normal

trajectory subgroup in the MAR method to the Low trajectory subgroup in the MNAR

method, assuming 2 latent classes. The size of the point indicates the number of observations

contributing to the sample mean. Overlaid are the average latent class-specific z-score

trajectories estimated by the MNAR method.
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Figure 3.4: Bar plots of the observed proportions of children with a clinic visit, and the

observed proportions of children with a height response, among the 50 non-low birth weight

children moved from the Normal trajectory subgroup in the MAR method to the Low

trajectory subgroup in the MNAR method. In the Visit panel, the number of children with

a clinic visit in each window is provided. In the Response for Height panel, the number

of children with a height response (given a clinic visit) is given. Overlaid are the latent

class-specific visit and response trajectories estimated by the MNAR method assuming 2

latent classes.
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3.3.2.2 3-latent class models.

In Figure 3.5, the Näıve, MAR, and MNAR methods each identified a Normal, increasing

(purple); Normal, decreasing (orange); and Low (blue) subgroup. The latent class-specific

average trajectories for weight and height z-scores appear similar across methods. In Figure

3.6, the visit process of the Normal, increasing subgroup decreases over follow-up, whereas

for the Normal, decreasing subgroup, the probability of a clinic visit rises quickly until about

12 months before decreasing. The probability of a response for height is indistinguishable

for these two subgroups. The Low subgroup exhibits a visit and response process similar

to the Low subgroup in the 2-class model. Figure E.7 presents risk factors from the latent

class membership model.

Using the MAR method, the percentage of children in the Normal, increasing; Normal,

decreasing; and Low subgroups is 38, 37, and 24 (columns for K = 3, Table E.2). Posterior

latent class assignment under Näıve method is comparable. In contrast, the MNAR

method placed approximately one-third of children in each subgroup. For the MAR and

MNAR methods in the 3-class analysis, Table E.4 presents the cross-classification of the

499 children according to their posterior latent class assignment and LBW status. To

illustrate the patterns of classification between the MAR and MNAR methods, I focus

on the two cells with the largest number of children.

Thirty children were placed in the Normal, increasing subgroup by the MAR method

and the Normal, decreasing subgroup by the MNAR method. With measurements avail-

able over most of follow-up, the sample means of observed weight and height z-scores among

the 30 children largely align with the Normal, increasing trajectory (Figure 3.7), which is

consistent with the MAR classification. As evidenced by Figure 3.8, the MNAR method
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Figure 3.5: Latent class-specific average trajectories of weight and height z-scores estimated

by the Näıve, MAR, and MNAR methods, assuming 3 latent classes. n refers to the

number of children included in each analysis.

58



CHAPTER 3. MODELING HETEROGENEITY AND MISSING DATA IN
ELECTRONIC HEALTH RECORDS

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●●

●

●●
●

●●● ●●● ●●● ●●● ●●●
●
●
●

●
●
●

●
●●

Visit Response for Height

(0
,1

]
(1

,2
]

(2
,4

]
(4

,6
]

(6
,9

]
(9

,1
2]

(1
2,

15
]

(1
5,

18
]

(1
8,

24
]

(2
4,

30
]

(3
0,

36
]

(3
6,

48
]

(0
,1

]
(1

,2
]

(2
,4

]
(4

,6
]

(6
,9

]
(9

,1
2]

(1
2,

15
]

(1
5,

18
]

(1
8,

24
]

(2
4,

30
]

(3
0,

36
]

(3
6,

48
]0.00

0.25

0.50

0.75

1.00

Well−Child Window (months)

P
ro

ba
bi

lit
y

Class

●

●

●

Normal,
increasing

Normal,
decreasing

Low

Figure 3.6: Latent class-specific trajectories of the probability of a clinic visit and the

probability of a response for height z-scores in the MNAR method, assuming 3 latent

classes.
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classified these children in the Normal, decreasing subgroup on the basis of their pattern of

proportion of observed visits.
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Figure 3.7: Sample means of observed weight and height z-scores (hollow circles) in each

well-child window among the 30 non-low birth weight children moved from the Normal,

increasing trajectory subgroup in the MAR method to the Normal, decreasing trajectory

subgroup in the MNAR method, assuming 3 latent classes. The size of the point indicates

the number of observations contributing to the sample mean. Overlaid are the average

latent class-specific z-score trajectories estimated by the MNAR method.

For the second largest cell in Table E.4, 26 children were placed in the Normal, de-

creasing subgroup by the MAR method and the Low subgroup by the MNAR method.

Corresponding to the scenario in Figure 3.3 from the 2-class sensitivity analysis, sample
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Figure 3.8: Bar plots of the observed proportions of children with a clinic visit, and the

observed proportions of children with a height response, among the 30 non-low birth weight

children moved from the Normal, increasing trajectory subgroup in the MAR method to

the Normal, decreasing trajectory subgroup in the MNAR method. In the Visit panel,

the number of children with a clinic visit in each window is provided. In the Response

for Height panel, the number of children with a height response (given a clinic visit) is

given. Overlaid are the latent class-specific visit and response trajectories estimated by the

MNAR method assuming 3 latent classes.
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means of observed weight and height z-scores based on more measurements appear in later

follow-up when the Normal, decreasing and Low trajectories are similar, with very few mea-

surements in early follow-up when the trajectories are different (Figure E.8). The MNAR

method placed the 26 children in the Low subgroup because their patterns of observed

proportions of visits and height responses resemble the Low visit and response trajectories

(Figure E.9).

As in the 2-latent class sensitivity analysis, the analogous comparison based on 3-latent

class models of the Näıve versus MNAR methods showed findings similar to those from

comparing the MAR and MNAR methods (data not shown).

3.3.3 Model checking

Based on the sensitivity analysis of the 2 and 3-latent class models using the Näıve, MAR,

and MNAR methods, I chose to conduct model checking for the 2-latent class model using

the MNAR method. Figure E.10 presents a scatter plot of the replicated completed versus

completed discrepancy measure T across MCMC samples. The Bayesian predictive p-value

of 0.45 represents the proportion of samples above the diagonal, suggesting adequate overall

model fit. For a randomly selected dataset, Figures E.11 and E.12 show histograms of

completed weight and height z-scores overlaid by replicated completed weight and height

z-scores by subgroup and well-child window. The model appears to fit the data well.
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3.4 Simulation Study

3.4.1 Design

I conducted a simulation study to examine the effect of estimation method on estimating the

regression coefficients from the longitudinal health outcomes model, βrk, in (3.4); estimating

the latent class-level weights calculated as πk = 1
n

∑n
i=1 πik from (3.1); and, predicting a

subject’s true latent class from pik in (3.10). I designed the study based on the real data

analysis with 2 latent classes estimated with the MNAR method. For 500 subjects, I

generated longitudinal outcomes of interest y1ij and y2ij over 12 time windows, with about

60% and 40% of subjects in latent classes 1 and 2, respectively. I assumed the missing data

mechanisms for the visit process and response process for y2ij are MNAR, while y1ij is fully

observed given a clinic visit. In this setting, I considered four specific scenarios, which I

describe briefly below, with details in the Appendix F.

In scenario 1 (S1), I mimicked the latent class-specific trajectories and missingness

proportions in the real data analysis. I selected true parameter values for βrk (3.4), φk

(3.6), and λ2k (3.8) in the models for the longitudinal health outcomes, visit process, and

response process for y2ij , respectively, to linearly represent the estimated trajectories in

the 2-latent class model using the MNAR method. As in the real data analysis, in latent

class 1, the percents of missed clinic visits and missed y2ij responses are 55% and 10%,

respectively. The corresponding values in latent class 2 are 70% and 20%. Figure 3.9

depicts S1 for y2ij , in which the latent class-specific average trajectories are overlaid by

points for observed measurements. In early follow-up when the class trajectories are better

separated, missingness in y2ij is high in latent class 2.

In S2 and S3, I examined whether the effect of estimation method varies by how different
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the slopes are for the latent class-specific trajectories of y2ij . In S2, I increase the difference

by making the slope in latent class 2 steeper. In S3, I change the slope in latent class 2 to

be nearly parallel to that in latent class 1. No other aspects of S1 were modified.

In S4 and S5, I modified S1 to examine whether the effect of estimation method varies

by the extent of visit and response process missingness whilst maintaining the shapes of the

class trajectories. In S4, I reduced the percent of missed clinic visits in latent classes 1 and

2 from 55% to 35%, and from 70% to 55%, respectively. In S5, I modified S1 by increasing

the percent of missing y2ij responses from 10% to 25% in latent class 1, and from 20% to

35% in latent class 2.

For each scenario, I compare estimation of the 2-latent class model using the MNAR

method (under which the data are generated) to the MAR method and Näıve method –

as in the real data analysis. In addition, for the benchmark, I include the Full method,

in which the complete-data model is fit to the full data before introducing any missed

visits or missed responses. I ran 500 data simulations. For parameter estimation of βrk,

I examined the performance measures including bias, mean squared error (MSE), 95%

coverage probability, and the average length of the 95% credible interval. For the latent

class-level weights, I compare the true weight to the average weight over the 500 simulations.

For subject classification, I considered summary statistics of the proportion of misclassified

subjects in each simulation. In the main text, I present the simulation results of S1 and

summarize those from S2-S5, with the full details in Appendix F.

3.4.2 Results

Table 3.1 presents the simulation results from S1. As expected, estimation under the Full

method presents the benchmark. The MNAR method generally shows better performance
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Figure 3.9: Average latent class-specific trajectories for y2ij overlaid by points for observed

measurements, under S1.

on all measures than the Näıve and MAR methods. Using the Näıve and MAR methods,

parameter estimation in latent class 2 of the intercepts and slopes, βr21 and βr22, respec-

tively, is poor, particularly for βr22. The positive bias in the intercepts and negative bias

in the slopes suggest that poor estimation is driven by subjects from latent class 1 incor-

rectly classified into 2. On average, however, estimation of the latent class-level weights πk

reveals that more subjects from class 2 are misclassified into 1. In Table 3.2, under S1, the

median subject misclassification rate for the Näıve and MAR methods is 0.15, while the

distributional summaries for the MNAR and Full methods are similar.

Under S2 in which the latent class-specific slopes for y2ij are more different (Table F.1),

the Full method remained the benchmark, with the MNAR method outperforming the

Näıve and MAR methods. However, compared to S1, performance using the Näıve and

MAR methods improved: For y1ij , estimation of the latent class-specific intercepts β1k1

and slopes β1k2 appears satisfactory, with the exception of β122 under the Näıve method.
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For y2ij , the intercept and slope in latent class 2, β221 and β222, respectively, are biased

in the same direction as in S1, but the magnitude of the bias is smaller. This suggests

that the better performance of Näıve and MAR methods may be driven by fewer subjects

from latent class 1 being misclassified into 2 – which is consistent with the worse estimation

of πk. Table F.2 shows that using the Näıve and MAR methods, the median subject

misclassification rate decreased slightly in S2 relative to S1.

The performance of the Full and MNAR methods was robust to S3, in which the latent

class-specific slopes for y2ij are nearly parallel (Table F.3). However, estimation using the

Näıve and MAR methods is worse than in S1. For y1ij , in latent class 2, I observe positive

bias in the intercept β121 and negative bias in the slope β122, as in S1. In addition, however,

in latent class 1, I observe positive bias in the intercept β111, which is likely driven by

the extent of subjects from latent class 1 with relatively low y1ij values misclassified into

class 2. Estimation of parameters for y2ij reveals a similar phenomenon. Interestingly,

estimation of the latent class-level weights has improved – suggesting comparable levels of

misclassification between classes 1 and 2. Summary statistics of the subject misclassification

rate are similar to those from S1 (Table F.4).
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Table 3.1: Simulation results of S1 for parameter estimation of intercept βrk1 and slope

βrk2 for longitudinal outcome r in latent class k, and latent class-level weights πk under the

Full, Näıve, MAR, and MNAR methods.
Parameter Method Truth Mean Bias MSE Coverage Length

β111

Full

-0.250

-0.252 -0.002 0.002 0.950 0.190

Näıve -0.221 0.029 0.005 0.904 0.224

MAR -0.231 0.019 0.004 0.908 0.219

MNAR -0.248 0.002 0.003 0.942 0.209

β121

Full

-1.000

-1.000 0.000 0.003 0.956 0.230

Näıve -0.954 0.046 0.016 0.878 0.404

MAR -0.996 0.004 0.011 0.932 0.370

MNAR -0.995 0.005 0.007 0.936 0.312

β112

Full

0.100

0.100 -0.000 0.000 0.930 0.048

Näıve 0.089 -0.011 0.001 0.928 0.099

MAR 0.092 -0.008 0.001 0.926 0.094

MNAR 0.100 -0.000 0.001 0.954 0.091

β122

Full

0.500

0.501 0.001 0.001 0.930 0.096

Näıve 0.411 -0.089 0.013 0.720 0.266

MAR 0.459 -0.041 0.007 0.850 0.238

MNAR 0.499 -0.001 0.003 0.948 0.215

β211

Full

0.500

0.500 -0.000 0.002 0.954 0.189

Näıve 0.545 0.045 0.006 0.858 0.224

MAR 0.536 0.036 0.005 0.886 0.221

MNAR 0.505 0.005 0.003 0.938 0.210

β221

Full

-0.500

-0.503 -0.003 0.003 0.940 0.196

Näıve -0.452 0.048 0.015 0.896 0.379

MAR -0.474 0.026 0.011 0.922 0.366

MNAR -0.500 0.000 0.007 0.956 0.310

β212

Full

0.200

0.199 -0.001 0.000 0.918 0.048

Näıve 0.185 -0.015 0.001 0.904 0.098

MAR 0.186 -0.014 0.001 0.880 0.096

MNAR 0.200 -0.000 0.001 0.950 0.093

β222

Full

0.750

0.751 0.001 0.001 0.934 0.097

Näıve 0.648 -0.102 0.017 0.646 0.270

MAR 0.675 -0.075 0.012 0.738 0.262

MNAR 0.747 -0.003 0.004 0.944 0.237

π1

Full 0.557 0.557

Näıve 0.576 0.617

MAR 0.577 0.609

MNAR 0.576 0.575
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Table 3.2: Simulation results of S1 for subject misclassification under the Full, Näıve,

MAR, and MNAR methods.

Percentile

Method Min 25 50 75 Max

Full 0.00 0.01 0.02 0.02 0.04

Näıve 0.09 0.14 0.15 0.16 0.20

MAR 0.09 0.13 0.14 0.16 0.20

MNAR 0.01 0.03 0.03 0.04 0.06

Compared to S1, in S4, when I reduce the percent missed clinic visits in latent classes 1

and 2 to 35% and 55% respectively, estimation of βrk and subject misclassification (Tables

F.5 and F.6) using the Näıve and MAR methods improves. The slopes in latent class 2,

βr22, however, still show negative bias. The MNAR method often presents an efficiency

gain. Conversely, in S5, with increased missed y2ij responses, estimation of βrk and subject

misclassification using the Näıve and MAR methods worsens relative to S1 (Tables F.7

and F.8).
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3.5 Discussion

In this study, I developed a Bayesian shared parameter model for multiple longitudinal

health outcomes in EHRs to account for an MNAR visit process and response process

given a clinic visit. My model targets longitudinal health outcomes collected according to a

clinically prescribed visit schedule. By exploiting heterogeneity in EHR patient populations,

I built a shared parameter model with a discrete latent class variable. Conducive to handling

large numbers of missing values in EHRs, my model tractably summarizes missingness

patterns into a pre-specified number of latent classes. My shared parameter model can be

easily altered to conduct sensitivity analysis about missing data assumptions. I developed a

user-friendly R package EHRMiss that can be used for model fitting, selection, and checking.

My study complements recent work on large clinical databases by [McCulloch et al.,

2016], who use a traditional shared parameter model in which patient-specific random ef-

fects link the longitudinal health outcomes and visit process. In contrast to my approach,

[McCulloch et al., 2016] define the visit process as a binary indicator for whether a response

was observed, which corresponds to my definition of the response process given a clinic visit.

Notwithstanding, the authors show analytically and via simulations that in the absence of

accounting for an informative visit process, estimators of regression coefficients associated

with the random effects can be badly biased. Using a discrete latent class variable to link

the longitudinal health outcomes, visit process, response process given a clinic visit, I show

empirically that failure to account for a nonignorable visit process and response process

given a clinic visit may result in misleading statistical inferences. Estimated average latent

class-specific health trajectories may be biased depending on whether the latent classes are

well-identified, in addition to the shape of the class trajectories. Even when estimated class
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trajectories are unbiased, the latent class-level weights may be poorly estimated, precluding

unbiased population-averaged inferences. Finally, subject misclassification is sensitive to

treatment of missing data.

In my data application, I found that given a selected number of latent classes, sensitivity

analysis under different estimation methods is critical, particularly if the clinical interpreta-

tion of latent classes is of scientific interest. Comparing 2-latent class models estimated with

the MAR and MNAR methods, I learned that the MNAR method used the visit process

and response process for height z-scores given a clinic visit to reclassify children between the

Low and Normal subgroups when few observed measurements were available. On the other

hand, the corresponding sensitivity analysis based on the 3-latent class models showed that

the MNAR method could reclassify children primarily on the basis of their observed visit

process – contrary to the subgroup suggested by their observed weight and height z-scores.

Carefully examining classification under different missing data assumptions can help ensure

the interpretation of the latent classes is consistent with the scientific investigation.

I am primarily interested in two areas for future research. In developing the proposed

model, I was motivated by longitudinal health outcomes with a clinically prescribed visit

schedule, which I used to discretize time into observation windows during which to measure

the visit process and response process given a clinic visit. However, when a prescribed visit

schedule is unavailable, measuring the visit process in continuous time is consistent with

the data generation in EHRs, since a patient can show up for a clinic visit at any time. I am

currently modifying the proposed model for the continuous time setting. Second, Bayesian

methods can be especially time intensive as the number of observations grows. To enhance

the practicality of my proposed method for EHR-based research, I am interested in pursuing

strategies for scaling MCMC algorithms to large datasets.
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As EHRs are increasingly used in applied biomedical research, the use of statistical meth-

ods that account for the features of data generation process will heighten the credibility of

the scientific findings. My proposed Bayesian shared parameter model exploits heterogene-

ity in EHR patient populations to account for an MNAR visit process and response process

given a clinic visit.
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Chapter 4

Software

I developed two R software packages to fit each of the proposed models in Chapters 2 and

3. In this Chapter, I explicate how to use each of the packages.

4.1 R Software Package Bsvygmm

The R package Bsvygmm can be used to fit the proposed Bayesian GMM for complex

survey data in Chapter 2. In addition, the package can be used for model selection with

three model information criteria, and model checking using Bayesian posterior predictive

p-values. The proposed Bayesian GMM is fit using the Bsvygmm function. To predict each

subject’s latent class membership, Bsvygmm can model three different types of a cluster

sample design, including:

1. correlations among subjects within the same area segment, referred to as “Unstr” in

the package;

2. spatial correlations among neighboring area segments only, called “Str” in the package;

and,
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3. both types of correlations, called “Both” in the package.

In addition, in the multinomial model of latent class membership, Bsvygmm includes an

option to use B-splines for flexibly modeling the relationship between one of the variables

and the probability of belonging to a latent class. In Chapter 2, I used this option for the

size variable used in probability proportional to size sampling.

I describe the functionality of Bsvygmm. Details on the package functions are accessible

with the R help pages. For example, by typing ?Bsvygmm, extensive information is provided

on the Bsvygmm function. The Bsvygmm package contains an artificial dataset, called data.

Using the package’s simdat function, I generated the data from a 2-latent class model.

In the latent class membership model, I used independent random effects to account for

correlations among subjects in the same area segment (“Unstr”); and spatial random effects

to account for correlations among neighboring area segments (“Str”). The dataset contains

600 subjects each of whom has 3 measurements. There are 50 clusters, each of which

contains 12 subjects. There are 10 strata, each of which contains 5 clusters, and therefore

60 subjects. A preview of the data is

library(Bsvygmm)

data(data)

head(data, n = 3)

## subjectID Y time clusterID stratumID x1 C

## 1 1 7.731119 1 1 1 -0.9258426 1

## 2 1 5.826467 2 1 1 -0.9258426 1

## 3 1 5.368823 3 1 1 -0.9258426 1
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where subjectID is an integer-valued subject identifier for each longitudinal measurement;

Y are longitudinal measurements; time is a categorical variable indicating interview wave;

clusterID provides the integer-valued cluster identifier; stratumID provides the integer-

valued stratum identifier; x1 is a subject-level covariate generated from the standard normal

distribution; and C is a discrete latent variable for each subject’s latent class membership.

In addition, the package has a stored adjacency matrix that is used in modeling the

spatial correlations among the area segments in the latent class membership model. Adja-

cency matrices can be easily created in R with the readOGR function in the rgdal package.

A preview of the adjacency matrix is

data(ADJ)

ADJ[1:4, 1:4]

## [,1] [,2] [,3] [,4]

## [1,] 0 0 0 0

## [2,] 0 0 0 0

## [3,] 0 0 0 0

## [4,] 0 0 0 0,

where area segments 1 to 4 are evidently not neighbors with each other.

4.1.1 Analysis with “Both” types of correlations among area segments

I demonstrate fitting the model that generated the data with the function Bsvygmm. The

model type is “Both”, because both types of area segment correlations are included in the

latent class membership model. In this model, I do not use a spline, and I use inverse

gamma prior distributions on the hierarchical variances for the random effects and for the
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observation-level data variance. A uniform prior distribution is also available by replacing

“IG” with “Unif”.

# Number of assumed latent classes

K <- 2

# Model type

modelType <- "Both"

# Include spline?

spline <- FALSE

# Priors on hierarchical variance of random effects

# and observation-level data variance

hierVar <- list("IG", "IG")

Before fitting the model, the design matrices for the latent class membership model,

and the fixed and random effects in the model for Y must be specified. The columns in

the design matrix for the random effects must be a subset of the columns of the fixed

effects design matrix. In addition, the function call requires area segment (called “cluster”

in the code chunk) and stratum identifiers at the observation-level and subject-level. For

example, the stratum identifier at the observation-level indicates the stratum to which a

given longitudinal measurement belongs.

# Aggregate to subject-level for the design matrix

# in the latent class membership model

dats <- aggregate(data[ , c("subjectID", "clusterID", "stratumID", "x1")],

by = list(data$subjectID), FUN = tail, n = 1)

W <- model.matrix( ~ x1, data = dats)
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s <- ncol(W)

# In this analysis, model time using dummies

timedf <- data.frame(time = factor(data$time))

# Random effects design matrix

Vr <- data.matrix(dummy::dummy(timedf, int = TRUE))

colnames(Vr) <- c("time1", "time2", "time3")

q <- ncol(Vr)

# Fixed effects design matrix

Vf <- Vr

p <- ncol(Vf)

# Cluster and stratum identifiers at the subject and observation-level

clusterIDSub <- dats$clusterID

stratumIDSub <- dats$stratumID

clusterIDObs <- data$clusterID

stratumIDObs <- data$stratumID

The prior distributions and initial values must be specified as list objects in which the

order of the elements matters. Note the use of list(NULL) when a parameter is not desired:

I use list(NULL) for the position of the prior and initial values for the B-splines. The user

cannot specify different prior distributions by latent class. However, initial values for each

latent class are required.

# Prior distributions

priors <- list(list(rep(0, s), diag(1, s)),

# Latent class regression coefficients
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list(.1, .1),

# Stratum-level independent random effects in latent class model

list(2, 1),

# Cluster-level spatial random effects in latent class model

list(.1, .1),

# Cluster-level independent random effects in latent class model

list(NULL),

# No spline

list(rep(0, p), diag(10, p)),

# Regression coefficients for Y

list(.1, .1),

# Stratum-level independent random effects for Y

list(.1, .1),

# Cluster-level independent random effects for Y

list((q + 2), diag(0.25, q)),

# Subject-level random effects for Y

list(.1, .1))

# Observation-level variance for Y

# Initial values following the same order as in priors

inits <- list(matrix(rep(0, s * (K - 1)), nrow = s, ncol = (K - 1)),

rep(0.2, K - 1),

rep(0.2, K - 1),

rep(0.2, K - 1),
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NULL,

matrix(rnorm(p * K), nrow = p, ncol = K),

rep(0.1, K),

rep(0.1, K),

array(diag(0.5, q), dim = c(q, q, K)),

rep(1, K))

In the call to Bsvygmm, I run the MCMC sampler for 1000 iterations with a burn-in of

500. Since I set update = 500 with monitor = TRUE, the iteration number and predicted

class size will be printed to the console every 500 iterations. In addition, a graphic with

selected trace plots will be updated.

# Define subjectID and outcome

subjectID <- data$subjectID

Y <- data$Y

res <- Bsvygmm(K = K, W = W, B = NULL, ADJ = ADJ, Y = Y,

Vr = Vr, Vf = Vf, subjectID = subjectID,

clusterIDObs = clusterIDObs, stratumIDObs = stratumIDObs,

clusterIDSub = clusterIDSub, stratumIDSub = stratumIDSub,

spline = FALSE, modelType = modelType, priors = priors,

hierVar = hierVar, inits = inits, n.samples = 1000,

burn = 500, monitor = TRUE, update = 500,

writeSamples = TRUE)

## Iteration: 500
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## Class size: 318 282

## Iteration: 1000

## Class size: 318 282
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Figure 4.1: Trace plots of the first three regression coefficients in the longitudinal outcomes

model, and the observation-level data variance in latent class 1.
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## Total minutes elapsed: 25.16183 0.5193333 26.606 NA NA

##

## No evidence of label switching problem using Stephen’s method

## from the label.switching package

##

## Background information

## Number of subjects: 600

## Number of observations: 1800

## Number of latent classes: 2

## Clusters in study area: 50

## Number of area segments (clusters): 50

##

## Posterior latent class assignment:

## Class 1 Class 2

## Predicted class size 318 282

## No. subjects with probability at least 0.95 318 281

## No. subjects with probability at least 0.90 318 281

## No. subjects with probability at least 0.80 318 282

## Mean probability 1 1

## Median probability 1 1

##

## Reference class in latent class membership model: 1

## Posterior means and 95% credible intervals:

## Post. Mean 2.5 % 97.5%
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## Class2_(Intercept) -0.0749 -0.4534 0.3310

## Class2_x1 0.1407 0.0272 0.2693

## Class2_gamma2 0.3964 0.0689 1.1646

## Class2_xi2 1.1004 0.2266 2.8329

## Class2_tau2 0.6965 0.2060 1.4544

## Class1_time1 5.9567 5.8601 6.0602

## Class1_time2 4.9267 4.8321 5.0402

## Class1_time3 4.4560 4.3600 4.5514

## Class2_time1 7.1676 7.0751 7.2542

## Class2_time2 8.1733 8.0879 8.2545

## Class2_time3 9.2170 9.1294 9.3031

## Class1_psi2 0.5010 0.1832 1.1061

## Class2_psi2 0.1130 0.0314 0.2798

## Class1_omega2 0.2810 0.1783 0.4339

## Class2_omega2 0.2319 0.1427 0.3536

## Class1_phi11 0.0274 0.0160 0.0532

## Class1_phi21 -0.0006 -0.0175 0.0159

## Class1_phi31 0.0026 -0.0110 0.0161

## Class1_phi12 -0.0006 -0.0175 0.0159

## Class1_phi22 0.0396 0.0206 0.0625

## Class1_phi32 0.0036 -0.0132 0.0205

## Class1_phi13 0.0026 -0.0110 0.0161

## Class1_phi23 0.0036 -0.0132 0.0205

## Class1_phi33 0.0419 0.0221 0.0669
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## Class2_phi11 0.0416 0.0196 0.0754

## Class2_phi21 0.0077 -0.0096 0.0249

## Class2_phi31 -0.0040 -0.0196 0.0097

## Class2_phi12 0.0077 -0.0096 0.0249

## Class2_phi22 0.0522 0.0239 0.0832

## Class2_phi32 -0.0093 -0.0238 0.0069

## Class2_phi13 -0.0040 -0.0196 0.0097

## Class2_phi23 -0.0093 -0.0238 0.0069

## Class2_phi33 0.0407 0.0225 0.0664

## Class1_sigma2 0.1399 0.1156 0.1718

## Class2_sigma2 0.1373 0.1119 0.1629

##

## Key to table of posterior means and 95% credible intervals:

## gamma2: variance of stratum-level random effects in latent class membership model

## xi2: variance of cluster-level spatial random effects in latent class

## membership model

## tau2: variance of cluster-level independent random effects in latent class

## membership model

## psi2: variance of stratum-level random effects in longitudinal outcomes model

## omega2: variance of cluster-level random effects in longitudinal outcomes model

## phi: elements of variance-covariance of subject-level random effects in longitudinal

## outcomes model, indexed by row, then column

## sigma2: variance of observation-level in longitudinal outcomes model

##
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## Model comparison statistics:

## BIC ICL-BIC DIC4

## value 3639.362 3640.102 3512.586

Model summaries are printed to the console, including posterior means and 95% cred-

ible intervals, posterior latent class assignment, and for model selection, the three model

information criteria. A label switching diagnostic using Stephen’s algorithm from the la-

bel.switching package in R is printed.

In the model fitting object, Bsvygmm provides a list of matrices of saved posterior samples

after discarding the burn-in. For example, to access the samples of the regression coefficients

in the longitudinal outcomes model,

head(res[["store_beta"]], n = 3)

## Class1_time1 Class1_time2 Class1_time3 Class2_time1

## Iteration_501 5.995099 4.939528 4.505680 7.150514

## Iteration_502 5.901227 4.858443 4.401004 7.199024

## Iteration_503 5.941898 4.910269 4.428605 7.144700

## Class2_time2 Class2_time3

## Iteration_501 8.149440 9.224054

## Iteration_502 8.216366 9.241020

## Iteration_503 8.124307 9.222587

The posterior samples can be used for post-estimation analysis.

If writeSamples = TRUE, in the working directory, Bsvygmm writes to individual comma-

separated files samples for the random effects, draws of Y from the posterior predictive dis-
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tribution, and the discrepancy measure in the form of the mean square error. Corresponding

text files with the column names are also written.

The file store_T.txt contains samples of the discrepancy measure. The Bsvygmm

function get_discrepancy_plot produces a scatter plot of the replicated versus observed

discrepancy measure across MCMC samples. The plot is annotated with the Bayesian

predictive p-value, which represents the proportion of samples above the diagonal.

store_T <- read.table("store_T.txt", header = FALSE, sep = ",")

get_discrepancy_plot(store_T)

Bayesian p−value = 0.55
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Figure 4.2: Posterior predictive checking for the 2-class model with both types of correlation

in the latent class membership model. Observed T is computed using the observed Y.

Replicated T is computed using the replicated Y from the posterior predictive distribution.
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4.1.2 Analysis with other types of correlations among area segments

In the latent class membership model, instead of modeling both correlations among subjects

within an area segment (independent random effects) and spatial correlations among area

segments (spatial random effects), one or the other can be selected. If modelType = Str,

then only spatial random effects will be modeled. If modelType = Unstr, then only inde-

pendent random effects will be included.

4.2 R Software Package EHRMiss

The R package EHRMiss can be used to fit the proposed Bayesian shared parameter model

in Chapter 3. EHRMiss is equipped to conduct analyses based on the following assumptions

about the missing data mechanisms for the visit process and the response process given a

clinic visit:

1. The visit process is MNAR, and one or more of the response processes given a clinic

visit is MNAR, with remaining response processes assumed to be MAR;

2. The visit process is MNAR, and all of the response processes given a clinic visit are

MAR; or,

3. The visit process is MAR, and all of the response processes given a clinic visit are

MAR.

In addition, a näıve analysis that uses only time windows with observed measurements

for all longitudinal outcomes may be conducted. In the näıve analysis, the visit process and

response process given a clinic visit are not modeled.
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EHRMiss can also be used for model selection based on model information criteria

including the BIC and DIC3, and model checking using posterior predictive p-values.

To explicate EHRMiss, I use an artificial dataset named growth stored in the package.

Documentation for the dataset can be accessed using ?growth. I generated the data using

the simdat function within EHRMiss to reflect a real data analysis with longitudinal data

from electronic health records on weight and height z-scores in early childhood. Based on

a 2-latent class model, I assumed that the missing data mechanisms for the visit process

and the response process for Y2 given a clinic visit are MNAR. Y1 is fully observed given

a clinic visit. In the sub-models for the longitudinal outcomes, visit process, and response

process for Y2, I included a random intercept.

The dataset contains longitudinal measurements for 173 subjects followed over 8 clin-

ical time windows. Variables in the dataset include subjectID, an integer-valued subject

identifier for each measurement time window; time, the measurement time window with

original values 1,. . . ,8 that is centered and scaled; Y1 and Y2, the longitudinal outcomes

of interest; D, a binary indicator for the visit process which equals 1 if a clinic visit is

observed, and 0 otherwise; M1 and M2, binary indicators for the response process of Y1

and Y2, respectively, each of which equals 1 if a response is observed given a clinic visit,

and 0 otherwise; and, birthweight, a simulated variable for each subject’s birthweight that

was centered and scaled. When D equals 0, the response indicators are NA. The variables

YC1 and YC2 correspond to Y1 and Y2, respectively, before the inserting any missed clinic

visits or missed responses given a clinic visit. Finally, Class takes value 1 or 2 to indicate

each subject’s latent class membership. On installing EHRMiss, the data can be viewed as
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library(EHRMiss)

data(growth)

head(growth, n = 3)

## subjectID time birthweight Y1 Y2 YC1

## 1 1 -1.5270478 1.20245 NA NA -0.8992924

## 2 1 -1.0907484 1.20245 -1.3989838 0.233472 -1.3989838

## 3 1 -0.6544491 1.20245 -0.1893407 0.753286 -0.1893407

## YC2 D M1 M2 Class

## 1 0.5567838 0 NA NA 1

## 2 0.2334720 1 1 1 1

## 3 0.7532860 1 1 1 1

Each subject has 8 time windows of observation in which D measures the visit process,

and M1 and M2 measure the response process given a clinic visit.

4.2.1 Analysis under an MNAR visit process and response process for

Y2

I demonstrate fitting the model that generated the data with the function MVNYMissBinary.

Before fitting the model, a named list with formulas for each of the design matrices must be

specified. MVNYMissBinary parameterizes the sub-model for the longitudinal outcomes using

hierarchical centering. This means that the design matrices for the random effects (“YRe”)

and the observation-level covariates (“YObs”) must not have overlapping columns. “YSub”

is a subject-level design matrix for covariates that will enter the random effects equations.

Unlike the longitudinal outcomes model, the visit process and response process models do
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not use hierarchical centering. Therefore, their design matrices for the fixed and random

effects will have overlapping columns.

# Named list of formulas for design matrices

regf <- list(LatentClass = ~ 1 + birthweight, # Latent class membership

YRe = ~ 1, # Random effects for Y1, Y2

YObs = ~ -1 + time, # Observation-level fixed effects for Y1, Y2

YSub = ~ 1, # Subject-level fixed effects for Y1, Y2

DObs = ~ 1 + time, # Fixed effects for D

DRe = ~ 1, # Random effects for D

MObs = ~ 1 + time, # Fixed effects for M2

MRe = ~ 1) # Random effects for M2

MVNYBinaryMiss also requires specifying the parameters for the prior distributions and

the initial values. The prior distributions and initial values are supplied to MVNYBinaryMiss

as lists in which the order of the elements matters. While the prior distributions are

not allowed to vary by latent class, initial values must be specified for each latent class.

?MVNYBinaryMiss provides extensive detail.

# Number of outcomes

J <- 2

# Number of latent classes

K <- 2

# Number of covariates for each design matrix
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m <- length(all.vars(regf[["LatentClass"]])) + 1

s <- length(all.vars(regf[["YObs"]]))

p <- length(all.vars(regf[["YSub"]])) + 1

e <- length(all.vars(regf[["DObs"]])) + 1

f <- length(all.vars(regf[["MObs"]])) + 1

# Number of random effects, assumed the same for all models

q <- length(all.vars(regf[["YRe"]])) + 1

# Prior distributions

priors <- list(list(rep(0, m), diag(1, m)),

# Latent class membership

list(rep(0, s), diag(100, s)),

# Observation-level design matrix for Y1, Y2

list(rep(0, p), diag(10000, p)),

# Subject-level design matrix for Y1, Y2

list(1, 1),

# Variance of random intercept for for Y1, Y2

list(diag(c(0.5, 0.5), J), (J + 2)),

# Variance-covariance of Y1, Y2

list(rep(0, e), diag(100, e)),

# Observation-level design matrix for D

list(1, 1),
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# Variance of random intercept for D

list(rep(0, f), diag(100, f)),

# Observation-level design matrix for M2

list(1, 1)) # Variance of random intercept for M2

# Initial values following the same order as in priors

inits <- list(matrix(rep(0, m*(K - 1)), nrow = m, ncol = (K - 1)),

list(matrix(rnorm(s*K), ncol = K, nrow = s),

matrix(rnorm(s*K), ncol = K, nrow = s)),

list(array(rnorm(p*q*K), dim = c(p, q, K)),

array(rnorm(p*q*K), dim = c(p, q, K))),

list(array(rep(0.4, K), dim = c(q, q, K)),

array(rep(0.4, K), dim = c(q, q, K))),

array(c(1, 0, 0, 1, 0.5, 0, 0, 0.5), dim = c(J, J, K)),

matrix(rnorm(e*K), ncol = K),

array(rep(0.5, K), dim = c(q, q, K)),
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list(matrix(rnorm(f*K), ncol = K)),

list(array(rep(0.5, K), dim = c(q, q, K))))

To account for the MNAR visit process, I set modelVisit = TRUE. By modelResponse =

TRUE, MVNYMissBinary understands that one or more of the response processes given a

clinic visit will be assumed to be MNAR, thus requiring modeling. I set Mvec = 2 to

indicate that M2 (the response process for Y2 given a clinic visit) will be modeled. Except

for a näıve analysis, all analyses require that imputeResponse = TRUE.

# Set interval update to 500 and monitor = TRUE

res <- MVNYBinaryMiss(K = K, J = J, data = growth, regf = regf,

imputeResponse = TRUE, Mvec = 2,

modelVisit = TRUE, modelResponse = TRUE,

priors = priors, inits = inits, n.samples = 1000, burn = 500, monitor =

TRUE, update = 500, modelComparison = TRUE, sims = FALSE)

MVNYBinaryMiss processes the dataset for an analysis with indicated missing data as-

sumptions. The function prints the number of observations that will be used in the model

for Y1 and Y2. When imputeResponse = TRUE, this is the number of observed clinic

visits. If the number of unique subjects in the sub-models for latent class membership, the

longitudinal outcomes of interest, the visit process, and the response process given a clinic

visit are not equal, MVNYBinaryMiss will produce an error.

In the call to MVNYBinaryMiss, I run the MCMC sampler for 1000 iterations with a

burn-in of 500. Since I set update = 500 with monitor = TRUE, the iteration number
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and predicted class size will be printed to the console every 500 iterations. In addition, a

graphic with selected trace plots will be updated.

## Number of obs. after restricting to observed visits: 532

## Iteration: 500

## Class size: 69 104

## Iteration: 1000

## Class size: 70 103
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Figure 4.3: Trace plots of the first four regression coefficients in the design matrix for

“YSub”. In this analysis, these are the latent-class specific intercepts for Y1 and Y2.
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## Total minutes elapsed: 47.1395 0.019 48.09517 NA NA

## No evidence of label switching problem using Stephen’s method

## from the label.switching package

##

## Background information

## Number of subjects: 173

## Number of observations: 532

## Number of latent classes: 2

##

## Posterior latent class assignment:

## Class 1 Class 2

## Predicted class size 72.00 101.00

## No. subjects with probability at least 0.95 58.00 86.00

## No. subjects with probability at least 0.90 62.00 90.00

## No. subjects with probability at least 0.80 66.00 94.00

## Mean probability 0.95 0.96

## Median probability 1.00 1.00

##

## Reference class in latent class membership model: 1

## Posterior means and 95% credible intervals:

## Post. Mean 2.5 % 97.5%

## Class2_(Intercept) 0.1954 -0.0398 0.4053

## Class2_birthweight 0.8025 0.5056 1.0628

## Y1_Class1_time 0.6117 0.4118 0.8500
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## Y1_Class2_time -0.0025 -0.1028 0.0942

## Y2_Class1_time 0.7881 0.5219 1.0440

## Y2_Class2_time 0.0734 -0.0147 0.1591

## Class1_Sigma11 1.4582 1.0945 1.8805

## Class1_Sigma21 0.7045 0.4274 1.0198

## Class1_Sigma12 0.7045 0.4274 1.0198

## Class1_Sigma22 1.3905 1.0320 1.9122

## Class2_Sigma11 0.5109 0.4282 0.6086

## Class2_Sigma21 0.1671 0.1081 0.2315

## Class2_Sigma12 0.1671 0.1081 0.2315

## Class2_Sigma22 0.4943 0.4143 0.5903

## Y1_Class1_RE1_(Intercept) -0.9347 -1.1772 -0.6664

## Y1_Class2_RE1_(Intercept) -0.1551 -0.3355 0.0302

## Y2_Class1_RE1_(Intercept) -0.6544 -0.9569 -0.3228

## Y2_Class2_RE1_(Intercept) 0.4597 0.2413 0.6624

## Y1_Class1_Psi11 0.4925 0.1549 0.9929

## Y1_Class2_Psi11 0.6266 0.4266 0.9158

## Y2_Class1_Psi11 0.4810 0.1610 1.0044

## Y2_Class2_Psi11 0.6586 0.4509 0.9102

## AME_Y1_RE1_(Intercept) -0.4963 -0.6502 -0.3409

## AME_Y1_time 0.2661 0.1576 0.3727

## AME_Y2_RE1_(Intercept) -0.0270 -0.1893 0.1430

## AME_Y2_time 0.3855 0.2697 0.5165

## D_Class1_(Intercept) -0.6300 -0.7620 -0.5014
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## D_Class1_time 0.1143 -0.0036 0.2473

## D_Class2_(Intercept) -0.1444 -0.2962 0.0080

## D_Class2_time -0.8636 -0.9996 -0.7369

## D_Class1_Omega11 0.1167 0.0589 0.2002

## D_Class2_Omega11 0.3809 0.2176 0.5942

## M2_Class1_(Intercept) 1.0102 0.5457 1.5592

## M2_Class1_time 0.3650 0.0519 0.6729

## M2_Class2_(Intercept) 1.8812 1.4256 2.3099

## M2_Class2_time -0.0210 -0.3242 0.2650

## M2_Class1_Theta11 1.7606 0.5193 3.9284

## M2_Class2_Theta11 0.6784 0.2894 1.3450

##

## Footnotes for posterior means and 95% credible intervals:

## Elements of variance-covariances are indexed by row and then column.

## RE indexes the random effects equations. If there is only a

## random intercept, then this will be RE1.

## AME indicates the population-averaged regression coefficients.

##

## Model comparison statistics:

## BIC1 BIC2 DIC3 LPML

## value 5194.167 5183.4 5330.418 -2924.723

##

## Footnotes for model comparison:

## BIC1: Computed using number of observations equal to the number of
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## observed clinic visits

## BIC2: Computed using number of observations equal to the effective sample size

## from the longitudinal health outcomes model

## DIC calculation details

## DIC3

## Dbar 5168.0095

## Dtilde 5005.6009

## pD 162.4086

MVNYMissBinary prints model output to the R console, saves output in the model fitting

object, and writes output to comma-separated text files in the working directory. First, I

explain the model output printed to the console. Before conducting post-estimation analysis

with the posterior samples, MVNYMissBinary uses Stephen’s algorithm in the R package

label.switching to diagnose the presence of the label switching phenomenon which can occur

in finite mixture modeling. After background information, a summary of posterior latent

class assignment is provided, followed by the posterior mean estimators and associated

95% credible intervals. If modelComparison = TRUE, three model information criteria are

computed, in addition to the log pseudo-marginal likelihood (LPML).

In the model fitting object, MVNYBinaryMiss provides a list of matrices of posterior

samples saved after burn-in. For example, to access the samples of the observation-level

design matrix for Y1 and Y2,

head(res[["store_betaObs"]], n = 3)

## Y1_Class1_time Y1_Class2_time Y2_Class1_time Y2_Class2_time

## Iteration_501 0.5183279 0.018091410 0.7843445 0.12130878

96



CHAPTER 4. SOFTWARE

## Iteration_502 0.5152602 0.002508136 0.7778971 0.08035319

## Iteration_503 0.7144048 0.007618712 0.8257602 0.05694670

or the posterior probabilities of latent class membership,

head(res[["store_pi"]][ , 1:4], n = 3)

## Class1_Subject_1 Class1_Subject_2 Class1_Subject_3

## Iteration_501 4.500746e-05 0.9999993 0.9999827

## Iteration_502 3.112051e-07 0.9999398 0.9999995

## Iteration_503 5.682738e-04 0.9999890 0.9999999

## Class1_Subject_4

## Iteration_501 0.9987603

## Iteration_502 0.9998808

## Iteration_503 0.9999902

The posterior samples can be used for post-estimation analysis.

In the working directory, MVNYBinaryMiss writes to separate files to store imputations

of each longitudinal outcome given an observed clinic visit (e.g., store_miss_Y2.txt). To

form a completed dataset, the imputations can be inserted into the data, for example, as

Y <- subset(growth, subset = D == 1, select = paste("Y", 1:J, sep = ""))

M <- subset(growth, subset = D == 1, select = paste("M", 1:J, sep = ""))

store_miss_Y2 <- data.matrix(read.table("store_miss_Y2.txt", sep = ","))
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Ycomplete <- Y

# e.g., use the iteration 10 (after burn-in)

Ycomplete[M[ , 2] == 0 , 2] <- store_miss_Y2[10, ]

The file store_T_completed.txt of the stored discrepancy measure, the multivariate

mean square error, is written. The EHRMiss function get_discrepancy_plot produces

a scatter plot of the replicated completed versus completed discrepancy measure across

MCMC samples. The plot is annotated with the Bayesian predictive p-value, which repre-

sents the proportion of samples above the diagonal.

store_T_completed <- read.table("store_T_completed.txt", header = FALSE,

sep = ",")

get_discrepancy_plot(store_T_completed)

Samples of replicated completed longitudinal outcomes are written to store_Ydraw.txt.

These samples can be used to diagnose model fit.

4.2.2 Analysis under different missing data assumptions

To conduct an analysis assuming that the visit process is MNAR, and all of the re-

sponse processes given a clinic visit are MAR, I change the function call in 4.2.1 with

modelResponse = FALSE and Mvec = NULL. For the assumptions of an MAR visit pro-

cess, and all MAR response processes given a clinic visit, I also set modelVisit = FALSE.

For the different assumed missing data mechanisms, imputeResponse = TRUE is required.

A näıve analysis, in which only time windows with observed measurements for all lon-

gitudinal outcomes are used, is conducted by setting imputeResponse = FALSE. Modeling

of the visit process or response process given a clinic visit is not permitted.
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Figure 4.4: Posterior predictive checking for the 2-class model estimated assuming an

MNAR visit process and response process for Y2 given a clinic visit. Completed T is com-

puted using the completed data. Replicated T is computed using the replicated completed

datasets from the posterior predictive distribution.
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Chapter 5

Conclusion

In this dissertation, I proposed statistical methods for modeling latent heterogeneity in

complex survey data and electronic health records, and developed corresponding software

to make these methods widely accessible. Each of the methods addresses a gap in the

existing literature. For complex survey data, the proposed Bayesian growth mixture model

complements existing pseudo-likelihood methods. By flexibly incorporating the hierarchical

structure of the data and the different features of the complex sample design, my method

can easily be applied to diverse survey data applications. For electronic health records, the

proposed Bayesian shared parameter model extends a growth mixture model of multiple

longitudinal health outcomes to account for different missing data assumptions. As routinely

collected data sources are increasingly used for scientific research, my method provides a

necessary tool for validating statistical findings.
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Appendix A

MCMC Algorithm for Bayesian

GMM in Complex Survey Data

Appendix A explicates the MCMC algorithm for fitting the Bayesian GMM in complex

survey data.

A.0.1 Update parameters in the latent class membership model

The Gibbs steps are given for the latent class membership model with both usjk and νsjk.

1. Update z∗sji. Recall that z∗sji = (z∗sji1, . . . , z
∗
sjiK−1)T . Per [McCulloch and Rossi,

1994], for i = 1, . . . , n, the distribution of z∗sji | δ, c∗sji is a (K − 1)-variate normal

distribution truncated over the appropriate cone in RK−1. Let dsji be a multinomial

vector with entries dsji = (dsji1, . . . , dsjiK) equal to 1 if the ith subject is in latent

class k and 0 otherwise. If dsjik = 1, then z∗sjik > max(z∗sji,−k, 0). If dsjik = 0, then

z∗sjik < max(z∗sji,−k, 0). z∗sji,−k is a K − 2 dimensional vector of all components of

z∗sji excluding z∗sjik. This algorithm avoids the problem of drawing from a truncated

multivariate normal. Instead each draw is a truncated univariate normal because I am

using the conditional distribution z∗sjik | z∗sji,−k, δk, c∗sji, where c∗sji = K if max(z∗sji) <
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0, or else c∗sji = index of max(z∗sji) for k = 1, . . . ,K − 1.

2. Update δk. For k = 1, . . . ,K − 1, I assume the prior δk ∼ Nm(0,Σ0). The full

conditional is Nm(µδk ,Vδ), where

Vδ =

 S∑
s=1

Js∑
j=1

nsj∑
i=1

wsjiw
T
sji + Σ−1

0

−1

µδk = Vδk ×

 S∑
s=1

Js∑
j=1

nsj∑
i=1

wsji(z
∗
sjik − λsk − usjk − νsjk)

 ,

with wsji being an m-length column vector of covariates.

3. Update λsk. For k = 1, . . . ,K − 1, s = 1, . . . , S, I assume the prior λsk ∼ N(0, γ2
k).

The full conditional is N(µλsk , Vλsk), where

Vλsk =

(
ns +

1

γ2
k

)−1

µλsk = Vλsk ×

 Js∑
j=1

nsj∑
i=1

(z∗sjik −wT
sjiδk − usjk − νsjk)

 .

ns =
∑Js

j=1 nsj is the number of subjects in stratum s.

4. Update γ2
k . For k = 1, . . . ,K − 1, the prior is ∝ 1. Per [Gelman, 2006], this is ∝ 1

γk
.

Therefore, the full conditional is IG(aγk , bγk), where

aγk =
S − 1

2

bγk =

∑S
s=1 λ

2
sk

2
.

5. Update usjk. For k = 1, . . . ,K− 1, j = 1, . . . , Js, and s = 1, . . . , S, I assume the prior

usjk ∼ N(0, τ2
k ). The full conditional is N(µusjk , Vusjk), where

Vusjk =

(
nsj +

1

τ2
k

)−1

µusjk = Vusjk ×

( nsj∑
i=1

(z∗sjik −wT
sjiδk − λsk − νsjk)

)
.
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nsj is the number of subjects in stratum s and area segment j.

6. Update τ2
k . For k = 1, . . . ,K − 1, the prior is ∝ 1. Per [Gelman, 2006], this is ∝ 1

τk
.

Therefore, the full conditional is IG(aτk , bτk), where

aτk =
J − 1

2

bτk =

∑S
s=1

∑Js
j=1 u

2
sjk

2
,

with J =
∑S

s=1 Js is the number of area segments.

7. Update νsjk. For k = 1, . . . ,K − 1, j = 1, . . . , Js, and s = 1, . . . , S, the prior dis-

tribution is an intrinsic conditional autoregressive (ICAR) [Besag, 1974; Besag and

Kooperberg, 1995]:

νsjk|ν(−sjk) ∼ N
(
ν̄sjk,

ξ2
k

msj

)
,

where msj is the number of neighbors for area segment j of stratum s, and ξ2
k is

the latent class-specific spatial variance scaled by the number of neighbors. The

conditional mean is defined according to neighboring area segments of area segment

j in stratum s, indicated by ∂sj . I write ν̄sjk =
∑

l∈∂sj
νsjk,l
msj

. The full conditional is

N(µνsjk , Vνsjk), where

Vνsjk =

(
nsj +

msj

ξ2
k

)−1

µνsjk = Vνsjk ×

( nsj∑
i=1

(z∗sjik −wT
sjiδk − λsk − usjk) +

msj ν̄sjk
ξ2
k

)
.

8. Update ξ2
k. For k = 1, . . . ,K − 1, the prior is ∝ 1. Per [Gelman, 2006], this is ∝ 1

ξk
.

Therefore, the full conditional is IG(aξk , bξk), where

aξk =
J − 1

2

bξk =

∑S
s=1

∑Js
j=1(msj(ν

2
sjk − 2νsjkν̄sjk + ν̄2

sjk))

2
.
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J =
∑S

s=1 Js is the total number of area segments, and msj is the number of neighbors

for the jth area segment of stratum s.

A.0.2 Update parameters in the longitudinal outcomes model

I provide the MCMC algorithm for a general version of the longitudinal model of PTSD

severity scores. Specifically, I rewrite bsji as bsji = vfsjiβk+vrsjiηsji, where vfsji is an nsji×p

design matrix for fixed effects with corresponding latent class-specific regression coefficients

in βk, and vrsji is an nsji× q design matrix for random effects that is a subset of vfsji. nsji is

the number of longitudinal measurements for the ith subject in area segment j of stratum

s. I then assume ηsji ∼ Nq(0,Φk).

Following [Frühwirth-Schnatter et al., 2004] and [Fruhwirth-Schnatter, 2006], in the

partially marginalized Gibbs sampler, the updates for βk and c∗sji are based on the marginal

distribution of ysji | c∗sji that is obtained by integrating out the random effects. Specifically,

the marginal mean (conditioning on latent class) is

E[ysji | c∗sji = k] = vfsjiβk. (A.1)

The marginal variance (conditioning on latent class) is

Rsjik = V ar[ysji | c∗sji = k] = Insjiσ
2
k + vrsjiΦkv

rT

sji + ω2
k + ψ2

k. (A.2)

1. Update ηsji | c∗sji = k. For i = 1, . . . , nsj , j = 1, . . . , Js, and s = 1, . . . , S, I assume the

prior distribution ηsji | c∗sji = k ∼MVNq(0,Φk). The full conditional is Nq(µη,Vη),

where

Vη =

(
(vrsji)

T (vrsji)

σ2
k

+ Φ−1
k

)−1

µη = Vη ×

(
(vrsji)

T (ysji − vfsjiβk − ρsjk − ζsk)
σ2
k

)
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2. Update ρsjk. For k = 1, . . . ,K, j = 1, . . . , Js, and s = 1, . . . , S, I assume the prior

ρsjk ∼ N(0, ω2
k). The full conditional is N(µρsjk , Vρsjk), where

Vρsjk =

(
Nsjk

σ2
k

+
1

ω2
k

)−1

µρsjk = Vρsjk ×

∑nsj

i=1 1c∗sji=k ×
∑nsji

t=1 (ysjit − vf
T

sjitβk − vr
T

sjitηsji − ζsk)
σ2
k

 ,

with Nsjk =
∑nsj

i=1 1c∗sji=k × nsji. Nsjk is the number of observations in stratum s,

area segment j, and latent class k.

3. Update ζsk. For k = 1, . . . ,K, and s = 1, . . . , S, I assume the prior ζsk ∼ N(0, ψ2
k).

The full conditional is N(µζsk , Vζsk), where

Vζsk =

(
Nsk

σ2
k

+
1

ψ2
k

)−1

µζsk = Vζsk ×

∑Js
j=1

∑nsj

i=1 1c∗sji=k ×
∑nsji

t=1 (ysjit − vf
T

sjitβk − vr
T

sjitηsji − ρsjk)
σ2
k

 .

with Nsk =
∑Js

j=1

∑nsj

i=1 1c∗sji=k × nsji. Nsk is the number of observations in stratum

s and latent class k.

4. Update Φk. For k = 1, . . . ,K, I assume Φk ∼ IW (ν0, S
−1
0 ). The full conditional is

IW (aΦk
, bΦk

), where

aΦk
= ν0 + nk

bΦk
= S0 +

S∑
s=1

Js∑
j=1

nsj∑
i=1

(
1c∗sji=k × ηsjiη

T
sji

)
,

with nk =
∑S

s=1

∑Js
j=1

∑nsj

i=1 1c∗sji=k. nk is the number of subjects in latent class k.

5. Update σ2
k. For k = 1, . . . ,K, I assume σ2

k ∼ IG(0.1, 0.1). The full conditional is
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IG(aσ2
k
, bσ2

k
), where

aσ2
k

= 0.1 +
Nk

2

bσ2
k

= 0.1 +

∑S
s=1

∑Js
j=1

∑nsj

i=1

(
1c∗sji=k ×

∑nsji

t=1

(
ysjit − vf

T

sjitβk + vf
T

sjitηsji + ρsjk + ζsk

))2

2
.

Nk =
∑S

s=1

∑Js
j=1

∑nsj

i=1(1c∗sji=k × nsji), the number of observations in latent class k.

6. Update ω2
k. For k = 1, . . . ,K, the prior is ∝ 1. Per [Gelman, 2006], this is ∝ 1

ωk
.

Therefore, the full conditional is IG(aω2
k
, bω2

k
), where

aω2
k

=

∑S
s=1 Js − 1

2

bω2
k

=

∑S
s=1

∑Js
j=1 ρ

2
sjk

2
.

7. Update ψ2
k. For k = 1, . . . ,K, the prior is ∝ 1. Per [Gelman, 2006], this is ∝ 1

ψk
.

Therefore, the full conditional is IG(aψ2
k
, bψ2

k
), where

aψ2
k

=
S − 1

2

bψ2
k

=

∑S
s=1 ζ

2
sk

2
.

8. Update βk. In the partially marginalized Gibbs sampler, the update for βk uses the

marginal distribution of ysji with ζk, ρk, and bsji integrated out. The mean and

variance of this distribution are shown in equations A.1 and A.2, respectively.

For k = 1, . . . ,K, assuming the prior βk ∼ Np(0,Σ0), the full conditional isNp(µβk ,Vβk)

where

Vβk =

 S∑
s=1

Js∑
j=1

nsj∑
i=1

(
1c∗sji=k × vf

T

sjiR
−1
sjikv

fT

sji

)
+ Σ−1

0

−1

µβk = Vβk ×

 S∑
s=1

Js∑
j=1

nsj∑
i=1

1c∗sji=k × vf
T

sjiR
−1
sjikysji

 .
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9. Update c∗sji. In the partially marginalized Gibbs sampler, the update for c∗sji uses the

marginal distribution of ysji | c∗sji with ζk, ρk, and bsji integrated out. The mean and

variance of this distribution are shown in equations A.1 and A.2, respectively.

Using Bayes’ theorem, the posterior probability that subject i belongs to latent class

k (k = 1, . . . ,K) is

psjik =Pr(c∗sji = k | ysji, βk, σ2
k,Φk, ω

2
k, ψ

2
k, πsjik; v

f
sji,v

r
sji)

=
πsjik f(ysji | βk, σ2

k,Φk, ω
2
k, ψ

2
k; v

f
sji,v

r
sji)∑K

k=1 πsjik f(ysji | βk, σ2
k,Φk, ω

2
k, ψ

2
k; v

f
sji,v

r
sji)

,

where πsjik is the probability of latent class membership obtained from the latent class

membership model, and the likelihood contribution to latent class k is obtained from

the partially marginalized density f(ysji | βk, σ2
k,Φk, ω

2
k, ψ

2
k; v

f
sji,v

r
sji) with mean and

variance given in equations (A.1) and (A.2), respectively.
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Appendix B

Model Information Criteria for

Bayesian GMM in Complex Survey

Data

In Appendix B, I explicate the different model information criteria used in model selection.

The Bayesian Information Criterion (BIC) [Schwarz, 1978] is derived as an approxima-

tion to the marginal likelihood using the Laplace method. In mixture models, however,

the necessary regularity conditions do not hold for assessing the number of components

K. Notwithstanding, the BIC has been shown to be consistent for choosing the number of

components if the distribution family of component densities is correctly specified [Keribin,

2000]. According to simulation studies in Biernacki et al. [Biernacki et al., 2000], the BIC

exhibits superior performance in selecting the true number of components if the modeling

objective is non-parametric density estimation. However, if the modeling objective is a clus-

tering analysis, the BIC tends to overestimate the number of clusters K when the quality
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of model fit is poor. I compute the BIC as

BIC = −2 log
S∏
s=1

Js∏
j=1

nsj∏
i=1

K∑
k=1

πsjikf(ysji | β̂k, σ̂2
k, Φ̂k, ω̂

2
k, ψ̂

2
k; v

f
sji,v

r
sji) + dK logN,

where f(ysji | β̂k, σ̂2
k, Φ̂k, ω̂

2
k, ψ̂

2
k; v

f
sji,v

r
sji) is the partially marginalized density after inte-

grating out the random effects (as in A.1 and A.2 and called the observed data likelihood)

evaluated at the maximum likelihood estimates of the parameters. dK is the number of free

parameters, and N is the sample size. I approximated the maximum likelihood estimator

by maximizing the log of the observed data likelihood over MCMC samples.

The integrated classification likelihood (ICL) [Biernacki et al., 2000] extends the BIC

to account for the clustering structure of the data. The ICL has been shown to detect

the correct number of clusters even under model misspecification. When the number of

observations is large in a component, the ICL can be approximated using the BIC as

ICL-BIC = BIC + 2
S∑
s=1

Js∑
j=1

nsj∑
i=1

K∑
k=1

p̂sjik log p̂sjik

where the second term is a measure of entropy using psjik evaluated at the maximum

likelihood estimator of the observed data likelihood. Entropy quantifies the degree to which

the fitted K component model fails to partition the data. Under well-separated clusters,

entropy will be near 0. As the degree of separation worsens, the value of entropy will

become very large [Fruhwirth-Schnatter, 2006]. Therefore, ICL-BIC penalizes not only

model complexity but also poorly separated clusters.

Outside of latent variable modeling, the Deviance Information Criterion (DIC) is based

on the effective number – as opposed to the actual number – of model parameters. The

DIC is calculated by subtracting the deviance evaluated at the posterior means of model

parameters from the expected deviance averaged over MCMC iterations [Spiegelhalter et al.,

2002]. In mixture models, however, the DIC often results in a negative number of effective
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parameters [Celeux et al., 2006]. For an analogous criterion in latent variable modeling,

Celeux et al. [Celeux et al., 2006] recommend the DIC4. Below, I define the DIC4.

Let ΘK be a container for parameters in a K component model. Define the observed

data likelihood f(y | ΘK) as

f(y | ΘK) =

S∏
s=1

Js∏
j=1

nsj∏
i=1

K∑
k=1

πsjikf(ysji |βk, σ2
k,Φk, ω

2
k, ψ

2
k; v

f
sji,v

r
sji).

The DIC4 can be approximated by [Celeux et al., 2006]

DIC4 = −4EΘK
[log f(y | ΘK) | y] + 2(log f(y | Θ̂M

K ,y) + EΘK
[EN(ΘK | y)]),

where Θ̂M
K is the posterior mode estimator obtained from the observed data posterior, and

EN(ΘK | y) is the measure of entropy used in the ICL-BIC. The expectations are calculated

by averaging over MCMC samples. The DIC4 penalizes poorly separated clusters in addition

to model complexity.
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Appendix C

Sensitivity Analysis Removing

Complex Sample Design

In Appendix C, I present the findings from the sensitivity analysis in which I fit Bayesian

GMMs assuming K = 2, 3, 4 latent classes that removed all information about the complex

sample design.

Table C.1: Comparison of information criteria among models without accounting for com-

plex sample design, assuming K = 2, 3, 4 latent classes.

K

Criterion 2 3 4

BIC -628.27 -726.79 -649.25

ICL - BIC -566.91 -584.32 -426.56

DIC4 -760.28 -946.04 -982.62
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Figure C.1: Mean log PTSD severity score trajectory in each latent class based on the

posterior mean and 95% credible interval of βk in the longitudinal model of PTSD that did

not include information on the complex sample design.
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Table C.2: Variance components in the longitudinal model for PTSD severity score trajectories that did not include information

on the complex sample design.

Resilience Recovery Chronic

Variance Posterior Mean (95% CrI) Posterior Mean (95% CrI) Posterior Mean (95% CrI)

Observation-level:

σ2
k 0.003 (0.002, 0.003) 0.015 (0.011, 0.021) 0.054 (0.035, 0.076)

Subject-level:

φ11k 0.006 (0.004, 0.007) 0.049 (0.034, 0.066) 0.082 (0.048, 0.124)

φ12k 0 (-0.001, 0.001) -0.005 (-0.013, 0.003) 0.046 (0.023, 0.075)

φ13k 0 (-0.001, 0.001) -0.003 (-0.01, 0.004) 0.01 (-0.013, 0.034)

φ22k 0.004 (0.003, 0.005) 0.018 (0.011, 0.027) 0.065 (0.036, 0.1)

φ23k 0 (0, 0.001) 0.001 (-0.003, 0.006) 0.019 (-0.002, 0.043)

φ33k 0.005 (0.004, 0.006) 0.014 (0.009, 0.021) 0.053 (0.025, 0.088)
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Appendix D

MCMC Algorithm for the

Bayesian Shared Parameter Model

in Electronic Health Records

I explicate the MCMC algorithm for fitting the proposed shared parameter model to EHRs.

I provide the MCMC algorithm using a parametrization based on hierarchical centering in

the longitudinal health outcomes model [Gelfand et al., 1995; Gelfand et al., 1996], in con-

trast to the parameterization in the main text. The hierarchically-centered parameterization

is used in the R package EHRMiss. This parameterization is given as
y1i

... ci = k

yRi

 ∼MVNRJ



β1kx

h,T
i + b1iz

T
i

...

βRkx
h,T
i + bRiz

T
i

 , diag(Σk)

 (D.1)


b1i

... ci = k

bRi

 ∼MVNRq




uiη
T
1k

...

uiη
T
Rk

 , Ψk

 (D.2)

where I use a superscript h for the fixed effects design matrix xhi (J × ph) to indicate the

change in parameterization. Unlike the main text, in (D.1), the columns in the random
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effects design matrix zi are no longer a subset of the columns in xhi . For example, in a

random intercept model, only zi will include a column of ones for an intercept. In (D.2),

the random effects b1i, . . . ,bRi are distributed with mean as a function of patient-level

risk factors in ui (1 × e) and corresponding regression coefficients in η1k, . . . , ηRk (q × e).

diag(Σk) is an RJ×RJ block diagonal matrix with elements Σk for the variance-covariance

among y1ij , . . . , yRij in each time window j (j = 1, . . . , J).

D.0.1 Update parameters in the latent class membership model

The Gibbs steps are given for the latent class membership model.

1. Update ξik. Let ξTi = (ξi1, . . . , ξiK−1) be a (K − 1)-length column vector. Per [Mc-

Culloch and Rossi, 1994], for i = 1, . . . , n, the distribution of ξi | δ, ci is a (K − 1)-

variate normal distribution truncated over the appropriate cone in RK−1. Let c∗i be

a multinomial vector with entries c∗i = (c∗i1, . . . , c
∗
iK) equal to 1 if the ith subject is

in latent class k and 0 otherwise. If c∗ik = 1, then ξik > max(ξi,−k, 0). If c∗ik = 0,

then ξik < max(ξi,−k, 0). ξi,−k is a K − 2 dimensional vector of all components of ξi

excluding ξik. This algorithm avoids the problem of drawing from a truncated mul-

tivariate normal. Instead each draw is a truncated univariate normal because I am

using the conditional distribution ξik | ξi,−k, δk, ci, where ci = K if max(ξi) < 0, or

else ci = index of max(ξi) for k = 1, . . . ,K − 1.

2. Update δk. For k = 1, . . . ,K − 1, I assume the prior δk ∼ MVNs(0,Σδ). The full
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conditional is MVNs(µδk ,Vδ), where

Vδ =

(
n∑
i=1

wT
i wi + Σ−1

δ

)−1

µδk = Vδ ×

(
n∑
i=1

wT
i ξik

)
,

with wi being an s-length row vector of patient-level risk factors, including a column

of ones for an intercept.

D.0.2 Update parameters in the longitudinal outcomes model

1. Update βrk.

To update βrk, based on the properties of the multivariate normal distribution, I use

the conditional distribution of longitudinal health outcome r given health outcomes

r
′

for all r
′ 6= r. Let y∗ri = (yriA(1), . . . , yriA(ni))

T . Let Q be a matrix of conditional

coefficients defined as Q = I − [diag(Σ−1
k )]−1Σ−1

k , with elements qrr′ (r = 1, . . . , R,

r
′

= 1, . . . , R) [Gelman et al., 2014]. For longitudinal health outcome r of patient i in

window j, the conditional distribution of y∗ri given y∗
r′ i

for all r
′ 6= r and latent class

ci is

[y∗ri |y∗r′ i all r
′ 6= r, ci = k] ∼ (D.3)

MVNni

βrkxh∗,Ti + briz
∗,T
i +

∑
r′ 6=r

qrr′ (y
∗
r′ i
− βr′kx

h∗,T
i − br′ iz

∗,T
i ), diag

(
[Σ−1

krr]
−1
) ,

where xh∗i (ni × ph) is the fixed effects design matrix for time windows A(l) for l =

1, . . . , ni. z∗i is the corresponding random effects design matrix.

For latent classes k = 1, . . . ,K, assuming the prior distribution βrk ∼MVNph(0,Σβ),

the full conditional is MVNph(µβrk ,Vβrk), where

Vβrk =

(
n∑
i=1

1ci=k ×
xh∗,Ti xh∗i
[Σ−1

krr]
−1

+ Σ−1
β

)−1
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µβrk

= Vβrk

×

 n∑
i=1

1ci=k ×
xh∗,Ti

(
y∗,Tri − z∗ib

T
ri − (

∑
r′ 6=r qrr′ (y

∗
r′ i
− βr′kx

h∗,T
i − br′ iz

∗,T
i ))T

)
[Σ−1

krr]
−1


2. Update bri. Using the conditional distribution in (D.3), the full conditional isMVNq(µbri ,Vbri),

where

Vbri =

K∑
k=1

1ci=k

(
z∗,Ti z∗i

[Σ−1
krr]
−1

+ Ψ−1
kr

)−1

µbri

= Vbri

×
K∑
k=1

1ci=k

×

z∗,Ti

(
y∗,Tri − xh∗i β

T
rk − (

∑
r′ 6=r qrr′ (y

∗
r′ i
− βr′kx

h∗,T
i − br′ iz

∗,T
i ))T

)
[Σ−1

krr]
−1

+ Ψ−1
kr ηrku

T
i


3. Update ηrk. Let the elements of bri be indexed as brig for g = 1, . . . , q. For the gth

random effect, let ηrkg = (ηrkg1, . . . , ηrkge)
T (1×e). Then, brig ∼ N(uiη

T
rkg, ψkrgg). As-

suming the prior distributionMVNe(0,Ση), the full conditional of ηrkg isMVNe(µηrkg ,Vηrkg),

where

Vηrkg =

(
n∑
i=1

1ci=k ×
uTi ui
ψkrgg

+ Σ−1
η

)−1

µηrkg = Vηrkg ×

(
n∑
i=1

1ci=k ×
uTi brig
ψkrgg

)

4. Update Σk. Recall the R-length row vectors yiA(l) = (y1iA(l), . . . , yRiA(l))
T , and

µiA(l) = xiA(l)β
T
k + ziA(l)b

T
i . Assuming an inverse-Wishart prior distribution Σk ∼
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IW (νΣ, S
−1
Σ ), the full conditional is IW (aΣk

, bΣk
), where

aΣk
= νΣ +

n∑
i=1

1ci=k × ni

bΣk
= SΣ +

n∑
i=1

1ci=k

ni∑
l=1

(yiA(l) − µiA(l))
T (yiA(l) − µiA(l))

5. Update Ψk. The block diagonal matrix Ψk (Rq×Rq) contains elements Ψkr (q× q).

Assuming Ψkr ∼ IW (νΨ, S
−1
Ψ ), the full conditional is IW (aΨkr

, bΨkr
), where

aΨkr
= νΨ +

n∑
i=1

1ci=k

bΨkr
= SΨ +

n∑
i=1

1ci=k × (bri − uiη
T
rk)

T (bri − uiη
T
rk)

D.0.3 Update parameters in the visit process model

Following [Albert and Chib, 1993], I use a data augmentation approach [Tanner and Wong,

1987] to model the probability of a clinic visit using Bayesian probit regression. Corre-

sponding to the visit process for patient i in clinical window j, I introduce latent variables

ξdij (i = 1, . . . , n, j = 1, . . . , J). The latent variables ξdij are assumed to be distributed as

N(xijφ
T
k + zijτ

T
i , 1), where the observation-level error variance is fixed to 1. To connect

latent ξdij to the visit process dij , define dij = 1 if ξdij > 0 and dij = 0 if ξdij ≤ 0. With the

introduction of the latent variables, the Gibbs sampling steps are as follows.

1. Update ξdij . The full conditional is ξdij | dij , φk, τi, ci = k ∼ N(
∑K

k=1 1ci=k × (xijφ
T
k +

zijτ
T
i ), 1), truncated at the left by 0 if dij = 1. Otherwise, ξdij | dij , φk, τi, ci = k ∼

N(
∑K

k=1 1ci=k × (xijφ
T
k + zijτ

T
i ), 1), truncated at the right by 0 if dij = 0.

2. Update φk. For latent classes k = 1, . . . ,K, assuming the prior distribution φk ∼
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MVNp(µφ,Σφ), the full conditional is MVNp(µφk ,Vφk), where

Vφk =

(
n∑
i=1

1ci=k × xTi xi + Σ−1
φ

)−1

µφk = Vφk ×

(
n∑
i=1

1ci=k × xTi

(
ξd,Ti − ziτ

T
i

)
+ Σ−1

φ µTφ

)
,

where the random effects design matrix zi (J × q) contains a subset of the columns in

the fixed effects design matrix xi (J × p).

3. Update τi. The full conditional is MVNq(µτi ,Vτi), where

Vτi =
K∑
k=1

1ci=k ×
(
zTi zi + Ω−1

k

)−1

µτi = Vτi ×
K∑
k=1

1ci=k ×
(
zTi

(
ξd,Ti − xiφ

T
k

))

4. Update Ωk. Assuming an inverse-Wishart prior distribution Ωk ∼ IW (νΩ, S
−1
Ω ), the

full conditional is IW (aΩk
, bΩk

), where

aΩk
= νΩ +

n∑
i=1

1ci=k

bΩk
= SΩ +

n∑
i=1

1ci=k × τ
T
i τi

D.0.4 Update parameters in the response process given a clinic visit

model

The Gibbs steps to update the parameters in the model for the response process given a

clinic visit are analogous to the steps in the visit process model, except that I use observed

clinic visits.

For patient i in clinical window l with an observed visit (l = 1, . . . , ni), I introduce

latent variables ξmriA(l) (i = 1, . . . , n, l = 1, . . . , ni). The latent variables ξmriA(l) are assumed

to be distributed as N(xiA(l)λ
T
rk + ziA(l)κ

T
ri, 1), where the observation-level error variance is
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fixed to 1. To connect latent ξmriA(l) to the response process mriA(l), define mriA(l) = 1 if

ξmriA(l) > 0 and mriA(l) = 0 if ξmriA(l) ≤ 0. Upon introducing the latent variables, the Gibbs

sampling steps for λrk, κri, and Θrk proceed as in the visit process model.

D.0.5 Update latent class membership

Sample latent class indicators ci for i = 1, . . . , n from Multinomial(1; pi1, . . . , piK), where

pi1, . . . , piK are the posterior probabilities of latent class assignment. For k = 1, . . . ,K,

pik

= Pr(ci = k |πik; y∗i ,bi; di, τi; m1i, . . . ,mRi, κ1i, . . . , κRi; rest)

∝ πik f(y∗i |bi, βk,Σ∗k) f(bi |Ψk)

× f(di | τi, φk) f(τi |Ωk)

×
R∏
r=1

f(mri |κri, λrk) f(κri |Θrk),

where y∗i = (yTiA(1), . . . ,y
T
iA(ni)

), and Σ∗k is an niR×niR block diagonal matrix with elements

Σk (R×R) for each yiA(l) (l = 1, . . . , ni).
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Appendix E

Addendum to the Analysis of

Weight and Height Z-scores
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Figure E.1: Patterns of missed visits and missed responses in weight and height z-scores

given a clinic visit.
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E.0.1 Model selection for the MNAR and MAR methods

Table E.1: Comparison of model information criteria among models with up to K = 3

latent classes using the MAR and MNAR methods.

MAR MNAR

K K

Criterion 1 2 3 2 3

BIC 11854 10978 12114 21469 21104

DIC3 12093 11384 13673 23087 22483
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Figure E.2: Posterior versus prior distributions for the intercepts in the multinomial probit

model of latent class membership using the MAR method, K = 2, 3.
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Figure E.3: Posterior versus prior distributions for the intercepts in the multinomial probit

model of latent class membership using the MNAR, K = 2, 3.
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E.0.2 Sensitivity analysis for the 2 and 3-latent class models

E.0.2.1 2-latent class models.
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Figure E.4: Regression coefficients for predictors in the multinomial probit model of latent

class membership in the Näıve, MAR, and MNAR methods, assuming 2 latent classes.

Birth weight was inversely associated with probability of belonging to the Low versus Nor-

mal subgroup, while race and sex were not related to probability of latent class membership.
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Table E.2: Posterior latent class assignment in the K = 2, 3-class models based on assign-

ing children to a trajectory subgroup according to the maximum of the mean posterior

probabilities of class assignment. The Näıve, MAR, and MNAR methods are shown.

K = 2 K = 3

Normal Low
Normal, Normal,

Low
increasing decreasing

Näıve (n = 471):

Predicted class size (%) 307 (65) 164 (35) 197 (42) 163 (35) 111 (24)

Mean probability 0.87 0.88 0.83 0.79 0.91

Median probability 0.92 0.98 0.89 0.82 0.99

MAR (n = 499):

Predicted class size (%) 335 (67) 164 (33) 192 (38) 185 (37) 122 (24)

Mean probability 0.90 0.91 0.82 0.82 0.91

Median probability 0.96 0.99 0.87 0.88 1

MNAR (n = 499):

Predicted class size (%) 295 (59) 204 (41) 159 (32) 165 (33) 175 (35)

Mean probability 0.93 0.87 0.82 0.85 0.84

Median probability 0.99 0.95 0.84 0.94 0.95
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Table E.3: Cross-classification of 499 children assigned to the Normal and Low trajectory

subgroups by the MAR and MNAR methods, according to latent class assignment and

low birth weight (LBW) status.

MNAR

Non-LBW LBW

Normal Low Normal Low

MAR

Normal 258 50 16 11

Low 18 57 3 86
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Figure E.5: Sample means of observed weight and height z-scores (hollow circles) in each

well-child window among the 18 non-low birth weight children moved from the Low tra-

jectory subgroup in the MAR method to the Normal trajectory subgroup in the MNAR

method, assuming 2 latent classes. The size of the point indicates the number of observa-

tions contributing to the sample mean. Overlaid are the average latent class-specific z-score

trajectories estimated by the MNAR method.
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Figure E.6: Bar plots of the observed proportions of children with a clinic visit, and the

observed proportions of children with a height response, among the 18 non-low birth weight

children moved from the Low trajectory subgroup in the MAR method to the Normal

trajectory subgroup in the MNAR method. In the Visit panel, the number of children with

a clinic visit in each window is provided. In the Response for Height panel, the number

of children with a height response (given a clinic visit) is given. Overlaid are the latent

class-specific visit and response trajectories estimated by the MNAR method assuming 2

latent classes.
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E.0.2.2 3-latent class models.
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Figure E.7: Regression coefficients for predictors in the multinomial probit model of latent

class membership in the Näıve, MAR, and MNAR methods, assuming 3 latent classes.

Birth weight is inversely associated with probabilty of belonging to the Low versus Normal,

increasing subgroup.
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Table E.4: Cross-classification of 499 children assigned to the Normal, increasing; Normal,

decreasing, and Low trajectory subgroups by the MAR and MNAR methods, according

to latent class assignment and low birth weight (LBW) status.

MNAR

Non-LBW LBW

Normal, Normal,
Low

Normal, Normal,
Low

increasing decreasing increasing decreasing

MAR

Normal, 120 30 19 14 1 8

increasing

Normal, 18 121 26 1 11 8

decreasing

Low 5 2 42 1 0 72

132



APPENDIX E. ADDENDUM TO THE ANALYSIS OF WEIGHT AND HEIGHT
Z-SCORES

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

Weight Height

(0
,1

]

(1
,2

]

(2
,4

]

(4
,6

]

(6
,9

]

(9
,1

2]

(1
2,

15
]

(1
5,

18
]

(1
8,

24
]

(2
4,

30
]

(3
0,

36
]

(3
6,

48
]

(0
,1

]

(1
,2

]

(2
,4

]

(4
,6

]

(6
,9

]

(9
,1

2]

(1
2,

15
]

(1
5,

18
]

(1
8,

24
]

(2
4,

30
]

(3
0,

36
]

(3
6,

48
]

−4

−3

−2

−1

0

1

Well−Child Window (months)

M
ea

n 
z−

sc
or

e

Class

●

●

●

Normal,
increasing

Normal,
decreasing

Low

Count

●

●

●

Less than 5

5−9

10 plus

Figure E.8: Sample means of observed weight and height z-scores (hollow circles) in each

well-child window among the 26 non-low birth weight children moved from the Normal,

decreasing trajectory subgroup in the MAR method to the Low trajectory subgroup in the

MNAR method, assuming 3 latent classes. The size of the point indicates the number of

observations contributing to the sample mean. Overlaid are the average latent class-specific

z-score trajectories estimated by the MNAR method.
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Figure E.9: Bar plots of the observed proportions of children with a clinic visit, and the

observed proportions of children with a height response, among the 26 non-low birth weight

children moved from the Normal, decreasing trajectory subgroup in the MAR method to

the Low trajectory subgroup in the MNAR method. In the Visit panel, the number of

children with a clinic visit in each window is provided. In the Response for Height panel,

the number of children with a height response (given a clinic visit) is given. Overlaid are

the latent class-specific visit and response trajectories estimated by the MNAR method

assuming 3 latent classes.
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Figure E.10: Posterior predictive checking for the 2-class model estimated using the MNAR

method. Completed T is computed using the completed data. Replicated T is computed

using the replicated completed datasets from the posterior predictive distribution.
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Figure E.11: Histograms of completed and replicated completed weight z-scores from the

posterior predictive distribution, by subgroup and well-child window, assuming 2 latent

classes and using the MNAR method.
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Figure E.12: Histograms of completed and replicated completed height z-scores from the

posterior predictive distribution, by subgroup and well-child window, assuming 2 latent

classes and using the MNAR method.
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Appendix F

Addendum to the Simulation

Study

F.1 Design

I designed the study based on the real data analysis with 2 latent classes estimated with

the MNAR method. For 500 subjects, I generated longitudinal outcomes of interest y1ij

and y2ij over 12 time windows, with about 60% and 40% of subjects in latent classes 1 and

2, respectively. I assumed the missing data mechanisms for the visit process and response

process for y2ij are MNAR, while y1ij is fully observed given a clinic visit. In this setting,

I considered the following five specific scenarios (S1-S5):

1. Under S1, I mimicked the latent class-specific trajectories and missingness proportions

in the real data analysis. True parameter values for variance components were selected

according to the real data analysis.

First, I generated the latent class membership of subject i as

[
ci w1i

]
∼ Bernoulli

(
πi2

)
,
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where using a probit link function, πi2 = Φ{−0.25 − wi}. πi2 is the probability that

subject i belongs to latent class 2, and wi is a scaled and centered simulated variable

for a subject’s birth weight.

Then, I generated the longitudinal outcomes, visit process, and response process given

a clinic visit conditional on a subject’s latent class membership as y1ij
ci = k

y2ij

 ∼MVN2

β1k1 + β1k2xij + b1i1

β2k1 + β2k2xij + b2i1

 , Σk

 (F.1)

 b1i1
ci = k

b2i1

 ∼MVN2

0

0

 ,
Ψk1 0

0 Ψk2

 (F.2)

[
dij ci = k

]
∼ Bernoulli

(
Φ{φk1 + φk2xij + τi1}

)
(F.3)

[
τi1 ci = k

]
∼ Normal

(
0, 0.25

)
[
m2i,A(l) ci = k

]
∼ Bernoulli

(
Φ{λ2k1 + λ2k2xiA(l) + κ2i1}

)
(F.4)

[
κ2i1 ci = k

]
∼ Normal

(
0, Θ2k

)
(F.5)

In (F.1), for y1ij , in latent class 1, β11 = (β111, β112)T = (−0.25, 0.1), and in latent

class 2, β12 = (β121, β122)T = (−1, 0.5). For y2ij , β21 = (β211, β212)T = (0.5, 0.2),

and β22 = (β221, β222)T = (−0.5, 0.75). The latent class-specific variance-covariances

of y1ij , y2ij are Σ1 = [ 0.5 0.2
0.2 0.5 ] and Σ2 = [ 1.5 1

1 1.5 ]. In (F.2), for the random intercept of

y1ij , the latent class-specific variances are Ψ11 = Ψ21 = 0.6. For y2ij , Ψ12 = 0.6 and

Ψ22 = 0.4.

For the visit process, in (F.3), φk = (φk1, φk2)T , with φ1 = (−0.2, −0.8) and φ2 =

(−0.8, 0.2).

For the response process of y2ij given a clinic visit, in (F.4), λ2k = (λ2k1, λ2k2)T ,
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with λ21 = (1.9, 0.1) and λ22 = (1.1, 0.25). The latent class-specific random intercept

variances (F.5) are Θ21 = 0.5 and Θ22 = 1.5.

2. In S2, I modified S1 by increasing the difference in the slopes for the latent class-

specific trajectories of y2ij by making the slope in latent class 2 steeper. Specifically,

in (F.1), β222 = 1. No other changes to S1 were made.

3. In S3, I modified S1 by decreasing the difference in the slopes for the latent class-

specific trajectories of y2ij by making the slope in latent class 2 nearly parallel to the

latent class 1 slope. Specifically, in (F.1), β222 = 0.3. No other changes to S1 were

made.

4. In S4, I altered the visit process of S1 to reduce the percent of missed clinic visits

in each latent class whilst maintaining the general visit process trajectory. In (F.3),

I set φ1 = (0.4, −0.2) and φ2 = (−0.1, 0.9). These changes resulted in 35% missed

clinic visits in latent class 1, and 55% missed clinic visits in latent class 2. No other

changes to S1 were made.

5. In S5, I modified S1 by increasing the percent of missed responses of y2ij in each

latent class whilst maintaining the general response process trajectory. In (F.4), I set

λ21 = (0.8, 0.1) and λ22 = (0.5, 0.2). These changes resulted in 25% missed responses

in y2ij in latent class 1, and 35% missed responses in y2ij in latent class 2. No other

changes to S1 were made.

F.2 Results from the simulation study
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Table F.1: Simulation results of S2 for parameter estimation of intercept βrk1 and slope

βrk2 for longitudinal outcome r in latent class k, and latent class-level weights πk under the

Full, Näıve, MAR, and MNAR methods.
Parameter Method Truth Mean Bias MSE Coverage Length

β111

Full

-0.250

-0.248 0.002 0.002 0.960 0.188

Näıve -0.232 0.018 0.004 0.930 0.217

MAR -0.244 0.006 0.003 0.948 0.212

MNAR -0.245 0.005 0.003 0.946 0.209

β121

Full

-1.000

-1.003 -0.003 0.003 0.952 0.228

Näıve -0.995 0.005 0.014 0.922 0.404

MAR -1.010 -0.010 0.009 0.946 0.369

MNAR -0.994 0.006 0.007 0.932 0.314

β112

Full

0.100

0.100 -0.000 0.000 0.940 0.048

Näıve 0.092 -0.008 0.001 0.936 0.096

MAR 0.094 -0.006 0.001 0.950 0.092

MNAR 0.100 0.000 0.001 0.946 0.091

β122

Full

0.500

0.499 -0.001 0.001 0.946 0.096

Näıve 0.445 -0.055 0.009 0.854 0.273

MAR 0.480 -0.020 0.005 0.928 0.242

MNAR 0.495 -0.005 0.003 0.940 0.214

β211

Full

0.500

0.500 0.000 0.002 0.938 0.188

Näıve 0.529 0.029 0.004 0.894 0.214

MAR 0.529 0.029 0.004 0.914 0.212

MNAR 0.509 0.009 0.003 0.932 0.209

β221

Full

-0.500

-0.504 -0.004 0.003 0.942 0.194

Näıve -0.461 0.039 0.014 0.890 0.380

MAR -0.475 0.025 0.011 0.916 0.364

MNAR -0.491 0.009 0.008 0.934 0.311

β212

Full

0.200

0.201 0.001 0.000 0.946 0.048

Näıve 0.187 -0.013 0.001 0.904 0.095

MAR 0.189 -0.011 0.001 0.902 0.094

MNAR 0.202 0.002 0.001 0.934 0.093

β222

Full

1.000

1.001 0.001 0.001 0.944 0.097

Näıve 0.938 -0.062 0.012 0.814 0.287

MAR 0.966 -0.034 0.007 0.896 0.275

MNAR 0.992 -0.008 0.004 0.954 0.239

π1

Full 0.558 0.557

Näıve 0.576 0.632

MAR 0.576 0.623

MNAR 0.576 0.576
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Table F.2: Simulation results of S2 for subject misclassification under the Full, Näıve,

MAR, and MNAR methods

Percentile

Method Min 25 50 75 Max

Full 0.00 0.01 0.01 0.01 0.03

Näıve 0.09 0.12 0.13 0.14 0.19

MAR 0.08 0.12 0.13 0.14 0.18

MNAR 0.01 0.02 0.03 0.03 0.06
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Table F.3: Simulation results of S3 for parameter estimation of intercept βrk1 and slope

βrk2 for longitudinal outcome r in latent class k, and latent class-level weights πk under the

Full, Näıve, MAR, and MNAR methods.
Parameter Method Truth Mean Bias MSE Coverage Length

β111

Full

-0.250

-0.247 0.003 0.002 0.942 0.190

Näıve -0.196 0.054 0.007 0.832 0.231

MAR -0.214 0.036 0.005 0.890 0.225

MNAR -0.249 0.001 0.003 0.956 0.209

β121

Full

-1.000

-1.003 -0.003 0.003 0.950 0.231

Näıve -0.943 0.057 0.016 0.885 0.397

MAR -0.975 0.025 0.010 0.928 0.366

MNAR -0.992 0.008 0.006 0.962 0.314

β112

Full

0.100

0.100 -0.000 0.000 0.948 0.048

Näıve 0.086 -0.014 0.001 0.913 0.101

MAR 0.088 -0.012 0.001 0.934 0.096

MNAR 0.098 -0.002 0.001 0.960 0.091

β122

Full

0.500

0.500 0.000 0.001 0.938 0.097

Näıve 0.393 -0.107 0.017 0.593 0.252

MAR 0.438 -0.062 0.008 0.790 0.227

MNAR 0.497 -0.003 0.003 0.958 0.216

β211

Full

0.500

0.503 0.003 0.003 0.926 0.191

Näıve 0.538 0.038 0.006 0.866 0.236

MAR 0.534 0.034 0.005 0.866 0.231

MNAR 0.509 0.009 0.003 0.936 0.210

β221

Full

-0.500

-0.503 -0.003 0.002 0.950 0.197

Näıve -0.477 0.023 0.010 0.929 0.363

MAR -0.492 0.008 0.009 0.932 0.349

MNAR -0.486 0.014 0.007 0.932 0.310

β212

Full

0.200

0.200 -0.000 0.000 0.940 0.048

Näıve 0.192 -0.008 0.001 0.917 0.099

MAR 0.192 -0.008 0.001 0.942 0.098

MNAR 0.201 0.001 0.001 0.932 0.093

β222

Full

0.300

0.299 -0.001 0.001 0.942 0.096

Näıve 0.198 -0.102 0.014 0.597 0.236

MAR 0.223 -0.077 0.010 0.726 0.233

MNAR 0.300 -0.000 0.003 0.944 0.235

π1

Full 0.557 0.556

Näıve 0.577 0.598

MAR 0.576 0.592

MNAR 0.577 0.574
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Table F.4: Simulation results of S3 for subject misclassification under the Full, Näıve,

MAR, and MNAR methods.

Percentile

Method Min 25 50 75 Max

Full 0.00 0.02 0.02 0.03 0.05

Näıve 0.08 0.14 0.15 0.17 0.22

MAR 0.10 0.13 0.14 0.16 0.20

MNAR 0.01 0.03 0.03 0.04 0.06
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Table F.5: Simulation results of S4 for parameter estimation of intercept βrk1 and slope

βrk2 for longitudinal outcome r in latent class k, and latent class-level weights πk under the

Full, Näıve, MAR, and MNAR methods.
Parameter Method Truth Mean Bias MSE Coverage Length

β111

Full

-0.250

-0.252 -0.002 0.002 0.950 0.190

Näıve -0.242 0.008 0.003 0.954 0.199

MAR -0.251 -0.001 0.003 0.946 0.197

MNAR -0.251 -0.001 0.002 0.958 0.195

β121

Full

-1.000

-1.000 0.000 0.003 0.956 0.230

Näıve -0.986 0.014 0.009 0.922 0.338

MAR -0.999 0.001 0.007 0.944 0.307

MNAR -0.992 0.008 0.005 0.940 0.274

β112

Full

0.100

0.100 -0.000 0.000 0.930 0.048

Näıve 0.096 -0.004 0.000 0.944 0.066

MAR 0.096 -0.004 0.000 0.930 0.064

MNAR 0.101 0.001 0.000 0.938 0.062

β122

Full

0.500

0.501 0.001 0.001 0.930 0.096

Näıve 0.460 -0.040 0.005 0.878 0.222

MAR 0.483 -0.017 0.003 0.924 0.194

MNAR 0.496 -0.004 0.002 0.968 0.176

β211

Full

0.500

0.500 -0.000 0.002 0.954 0.189

Näıve 0.508 0.008 0.003 0.946 0.199

MAR 0.506 0.006 0.003 0.936 0.198

MNAR 0.503 0.003 0.003 0.952 0.195

β221

Full

-0.500

-0.503 -0.003 0.003 0.940 0.196

Näıve -0.489 0.011 0.007 0.938 0.311

MAR -0.490 0.010 0.007 0.918 0.296

MNAR -0.490 0.010 0.005 0.924 0.263

β212

Full

0.200

0.199 -0.001 0.000 0.918 0.048

Näıve 0.193 -0.007 0.000 0.916 0.066

MAR 0.192 -0.008 0.000 0.918 0.065

MNAR 0.200 0.000 0.000 0.944 0.064

β222

Full

0.750

0.751 0.001 0.001 0.934 0.097

Näıve 0.706 -0.044 0.006 0.872 0.223

MAR 0.719 -0.031 0.004 0.885 0.212

MNAR 0.743 -0.007 0.003 0.928 0.190

π1

Full 0.557 0.557

Näıve 0.557 0.601

MAR 0.558 0.590

MNAR 0.557 0.553
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Table F.6: Simulation results of S4 for subject misclassification under the Full, Näıve,

MAR, and MNAR methods.

Percentile

Method Min 25 50 75 Max

Full 0.00 0.01 0.02 0.02 0.04

Näıve 0.07 0.10 0.11 0.12 0.16

MAR 0.06 0.09 0.10 0.11 0.14

MNAR 0.00 0.02 0.02 0.02 0.04
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Table F.7: Simulation results of S5 for parameter estimation of intercept βrk1 and slope

βrk2 for longitudinal outcome r in latent class k, and latent class-level weights πk under the

Full, Näıve, MAR, and MNAR methods.
Parameter Method Truth Mean Bias MSE Coverage Length

β111

Full

-0.250

-0.252 -0.002 0.002 0.950 0.190

Näıve -0.204 0.046 0.007 0.870 0.249

MAR -0.216 0.034 0.004 0.900 0.222

MNAR -0.245 0.005 0.003 0.964 0.210

β121

Full

-1.000

-1.000 0.000 0.003 0.956 0.230

Näıve -0.909 0.091 0.024 0.830 0.424

MAR -0.985 0.015 0.011 0.928 0.374

MNAR -0.990 0.010 0.006 0.942 0.316

β112

Full

0.100

0.100 -0.000 0.000 0.930 0.048

Näıve 0.088 -0.012 0.001 0.920 0.117

MAR 0.091 -0.009 0.001 0.930 0.095

MNAR 0.098 -0.002 0.001 0.950 0.091

β122

Full

0.500

0.501 0.001 0.001 0.930 0.096

Näıve 0.378 -0.122 0.022 0.590 0.282

MAR 0.448 -0.052 0.007 0.846 0.235

MNAR 0.497 -0.003 0.003 0.952 0.216

β211

Full

0.500

0.500 -0.000 0.002 0.954 0.189

Näıve 0.576 0.076 0.011 0.754 0.250

MAR 0.545 0.045 0.006 0.888 0.233

MNAR 0.509 0.009 0.004 0.922 0.220

β221

Full

-0.500

-0.503 -0.003 0.003 0.940 0.196

Näıve -0.404 0.096 0.025 0.778 0.405

MAR -0.451 0.049 0.015 0.874 0.388

MNAR -0.497 0.003 0.007 0.950 0.334

β212

Full

0.200

0.199 -0.001 0.000 0.918 0.048

Näıve 0.180 -0.020 0.001 0.882 0.116

MAR 0.184 -0.016 0.001 0.898 0.109

MNAR 0.197 -0.003 0.001 0.930 0.105

β222

Full

0.750

0.751 0.001 0.001 0.934 0.097

Näıve 0.602 -0.148 0.030 0.478 0.285

MAR 0.666 -0.084 0.014 0.740 0.280

MNAR 0.746 -0.004 0.004 0.976 0.258

π1

Full 0.557 0.557

Näıve 0.575 0.598

MAR 0.577 0.604

MNAR 0.576 0.573
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Table F.8: Simulation results of S5 for subject misclassification under the Full, Näıve,

MAR, and MNAR methods.

Percentile

Method Min 25 50 75 Max

Full 0.00 0.01 0.02 0.02 0.04

Näıve 0.11 0.15 0.17 0.18 0.25

MAR 0.11 0.14 0.15 0.17 0.21

MNAR 0.01 0.03 0.04 0.04 0.07
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