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ABSTRACT

Essays in High Dimensional Time Series Analysis

Kashif Yousuf

Due to the rapid improvements in the information technology, high dimensional

time series datasets are frequently encountered in a variety of fields such as macroe-

conomics, finance, neuroscience, and meteorology. Some examples in economics and

finance include forecasting low frequency macroeconomic indicators, such as GDP or

inflation rate, or financial asset returns using a large number of macroeconomic and

financial time series and their lags as possible covariates. In these settings, the num-

ber of candidate predictors (pT ) can be much larger than the number of samples (T ),

and accurate estimation and prediction is made possible by relying on some form of

dimension reduction. Given this ubiquity of time series data, it is surprising that few

works on high dimensional statistics discuss the time series setting, and even fewer

works have developed methods which utilize the unique features of time series data.

This chapter consists of three chapters, and each one is self contained.

The first chapter deals with high dimensional predictive regressions which are

widely used in economics and finance. However, the theory and methodology is mainly

developed assuming that the model is stationary with time invariant parameters.

This is at odds with the prevalent evidence for parameter instability in economic

time series. To remedy this, we present two L2 boosting algorithms for estimating

high dimensional models in which the coefficients are modeled as functions evolving

smoothly over time and the predictors are locally stationary. The first method uses

componentwise local constant estimators as base learner, while the second relies on

componentwise local linear estimators. We establish consistency of both methods,

and address the practical issues of choosing the bandwidth for the base learners and



the number of boosting iterations. In an extensive application to macroeconomic

forecasting with many potential predictors, we find that the benefits to modeling

time variation are substantial and are present across a wide range of economic series.

Furthermore, these benefits increase with the forecast horizon and with the length of

the time series available for estimation. This chapter is jointly written with Serena

Ng.

The second chapter deals with high dimensional non-linear time series models, and

deals with the topic of variable screening/targeting predictors. Rather than assume a

specific parametric model a priori, this chapter introduces several model free screening

methods based on the partial distance correlation and developed specifically to deal

with time dependent data. Methods are developed both for univariate models, such

as nonlinear autoregressive models with exogenous predictors (NARX), and multi-

variate models such as linear or nonlinear VAR models. Sure screening properties are

proved for our methods, which depend on the moment conditions, and the strength

of dependence in the response and covariate processes, amongst other factors. Finite

sample performance of our methods is shown through extensive simulation studies,

and we show the effectiveness of our algorithms at forecasting US market returns.

This chapter is jointly written with Yang Feng.

The third chapter deals with variable selection for high dimensional linear station-

ary time series models. This chapter analyzes the theoretical properties of Sure In-

dependence Screening (SIS), and its two stage combination with the adaptive Lasso,

for high dimensional linear models with dependent and/or heavy tailed covariates

and errors. We also introduce a generalized least squares screening (GLSS) proce-

dure which utilizes the serial correlation present in the data. By utilizing this serial

correlation when estimating our marginal effects, GLSS is shown to outperform SIS

in many cases. For both procedures we prove two stage variable selection consistency



when combined with the adaptive Lasso.
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Chapter 1

Boosting High Dimensional Predictive Regressions with Time

Varying Parameters

1.1 Introduction

Due to the rapid improvements in the information technology, high dimensional

time series datasets are frequently encountered in a variety of fields in economics and

finance (see Fan et al. (2011c); Shapiro (2017) for examples). In these settings, the

number of candidate predictors (pT ) is much larger than the number of samples (T ),

and accurate estimation and prediction is made possible by relying on some form of

dimension reduction. Ng (2013) puts the methods used in high dimension predictive

regressions into two classes: a dense class which assumes that the covariates have a

low rank representation that can be exploited for subsequent modeling, and a sparse

class which assumes that the number of relevant predictors is far smaller than the

number of predictors available. Research within the first class usually assumes a

linear latent factor model which is estimated by principal components or partial least

squares.1 The second class treats the problem as one of variable selection in high

dimension. Prominent methods in this class include screening, penalized likelihood,

1Stock and Watson (2002b); Bai and Ng (2002) and Kelly and Pruitt (2015).
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lasso, and boosting methods.

This paper contributes to the literature in the second class. A key assumption

made in the vast majority of works on sparse modeling is of a stationary underlying

model with time invariant parameters.2 The assumption is very restrictive in practice,

as empirical evidence of parameter instability and time varying effects have been well

documented in macroeconomics.3 Parameter instability can be driven by structural

changes in technological advancements, government or monetary policy changes, and

preference shifts at the individual level (Chen and Hong, 2012). Ignoring these in-

stabilities can lead to large forecasting errors, with Clements and Hendry (1996) and

others even arguing that these instabilities are the main source of error for forecasting

models.

Consider a high dimensional linear time varying parameter (TVP) model:

Yt = βtxt−h + εt for t = 1, . . . , T, (1.1)

where Yt is the response, xt−h = (X1,t−h, . . . , XpT ,t−h) is a pT -dimensional vector of

predictors (with pT >> T ), β = (β1,t, . . . , βpT ,t) is a vector of time varying parameters,

and εt are errors; the precise assumptions on the model will be stated in section

1.3. Given the evidence for parameter instability, the question remains on how to

best represent and model this change, especially when dealing with high dimensional

predictors. Parameter instability is most commonly represented in the econometrics

2Examples include Medeiros and Mendes (2016), Kock and Callot (2015), Han and Tsay (2017),
and Basu and Michailidis (2015) which focus on the Lasso or the adaptive Lasso, and Lutz and
Bühlmann (2006) which focuses on L2 boosting for stationary VAR models.

3See (Stock and Watson, 1996; Rossi, 2013; Hamilton, 1989), asset pricing (Goyal and Welch,
2003; Paye and Timmermann, 2006; Rapach et al., 2010; Dangl and Halling, 2012), and exchange
rate prediction (Schinasi and Swamy, 1989).
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literature by random walks or by one or more discrete structural breaks.4 Modeling

variations by random walks can be quite restrictive as it imposes a specific structure

on the evolution of the parameters. Discrete breaks require knowledge of the break

dates, and not all time variations are well characterized by discrete shifts. Technology

and taste shifts are arguably evolving slowly over time. Smooth transition models as

in Terasvirta (1994) are still tightly parameterized. Furthemore, these methods are

mainly designed for a fixed pT . A third approach is to use rolling-window estimation

to capture the smooth change in the parameters. As will soon be clear, rolling-window

estimation is a special case of our proposed approach with a particular choice of kernel

and bandwidth.

In this paper, we model these high-dimensional parameters as smooth functions of

time whose functional forms are unknown and are estimated non-parametrically. We

present two L2 boosting algorithms which differ in their choice of base learners; the

first uses componentwise local constant estimators as base learners, while the second

relies on componentwise local linear estimators as base learners. We consider the use

of local linear estimators since they have been shown to be a superior estimator the-

oretically, with smaller asymptotic bias at the boundaries of the sample (Cai, 2007).

We establish consistency of both our methods when dealing with high dimensional

locally stationary predictors and errors with only polynomially decaying tails. Al-

though we focus on linear time varying parameter models, L2 boosting methods can

easily be adapted to fit more general non-linear models by considering alternative

base learners such as regression trees with varying degrees of depth. This makes

the L2 boosting framework more flexible than the often used `1 penalized likelihood

4The first approach has a long history in macroeconomics, some examples include Cogley and
Sargent (2001); Primiceri (2005); Koop and Korobilis (2013). For the literature on structural breaks,
see Perron et al. (2006); Casini and Perron (2018) for surveys.
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approaches.

The smooth TVP model considered in this paper has been studied in the econo-

metrics literature for the case when the number of predictors is fixed and assumed

known. Under this assumption, Robinson (1989, 1991) studied the asymptotic prop-

erties of the local constant estimator of the coefficient functions. The theory was

further developed in several directions.5 To our knowledge, there were only two

attempts at modeling sparse high dimensional smooth TVP models, both dealing

with locally stationary sub-Gaussian predictors, and rely on l1 regularization meth-

ods along with kernel smoothing to estimate the coefficient functions. In particular,

Ding et al. (2017) deals with locally stationary sparse VAR processes, and proposes

a hybrid estimator which combines l1 regularization with local constant estimation.

Lee et al. (2016) deals with models where the set of non-zero coefficient functions

does not change with over time, and proposes a computationally intensive penalized

local linear estimation method. Our work adds to this line of research by proposing

L2 boosting algorithms for high dimensional smooth TVP models characterized by

(1.1).

Our methods compare favorably to more commonly used alternatives for modeling

time varying parameters such as assuming the coefficients are stochastic and generated

by a random walk, or using a rolling window estimator with a fixed window length.

These models are typically estimated via MCMC, or other computationally intensive

methods, which excludes the use of high dimensional datasets. Rolling window fore-

5 Some examples include: Orbe et al. (2005, 2006) considered shape restricted estimation. Cai
(2007) analyzed the asymptotic properties of the local linear estimator. Inoue et al. (2017) considered
the question of optimal bandwidth selection for the local constant estimator when using the uniform
kernel. Zhang et al. (2015), Hu et al. (2018), and Vogt et al. (2012) allow for non-stationary predic-
tors and non-linear time varying functions of these predictors. Zhou and Wu (2009); Zhou (2010)
considered local linear quantile estimation, Phillips et al. (2017) obtained results for cointegration
models, and Chen (2015) dealt with models with endogenous predictors.
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casts, although they are usually not presented this way, are actually equivalent to

using a local constant estimator using a uniform kernel and a fixed bandwidth. This

choice of fixed bandwidth is arbitrary and can lead to larger forecast errors vs using

the optimal bandwidth (Inoue et al., 2017). Additionally, local constant estimators

have higher asymptotic bias at the boundary of the sample vs local linear estimators.

In contrast, our L2 boosting algorithms are capable of variable selection and estima-

tion simultaneously at a very low computational cost even for very high dimensional

data. Also, using non-parametric methods to estimate the time varying coefficient

functions allows our method to perform well even under model misspecifications such

as discrete breaks, stochastic coefficients generated by a random walk, and time in-

variant coefficients; see Giraitis et al. (2013); Inoue et al. (2017) and our simulations

section for more details.

On the empirical side we include an extensive application to macroeconomic fore-

casting. Although parameter instability has long been established in the econometrics

literature (Stock and Watson, 2003, 2009; Breitung and Eickmeier, 2011), the ques-

tion of whether one can exploit this instability to improve macroeconomic forecasts

is far less clear (see section 1.7 or Rossi (2013) for more details). Some issues which

have hindered the utility of modeling time variation are: 1) the bias-variance tradeoff

encountered when using a reduced sample for modeling, 2) misspecification and/or

estimation error incurred when trying to estimate the nature of time variation, and

3) computational constraints restricting the use of high dimensional predictors when

estimating traditional TVP models with stochastic coefficients.

To analyze the effectiveness of modeling time variation with our methods, we use

a panel of 123 monthly series from the FRED-MD database and focus on forecasting 8

major macroeconomic series over a range of forecast horizons. Using an out of sample

period of over 47 years, we find that: 1) the benefits of modeling time variation with



6

our methods are substantial, especially when considering longer forecast horizons,

2) the benefits of using our time varying boosting models vs their time invariant

counterparts increases as the length of the available sample increases, and 3) the

benefits of modeling time variation appear to be confined to the high dimensional

setting, as we confirm the results in Stock and Watson (1996) that modeling time

variation in AR models offers little to no benefits for the majority of series.

The rest of the paper is organized as follows. Section 1.2 reviews the locally sta-

tionary framework, along with the functional dependence measure which will be used

to quantify dependence. We also discuss the assumptions placed on the structure of

the covariate and response processes; these assumptions are very mild, allowing us

to represent a wide variety of stochastic processes which arise in practice. Section

1.3 introduces our boosting algorithms for both local constant or local linear least

squares base learners, and studies the asymptotic properties of these procedures. The

asymptotic properties, and the number of predictors allowed depend on the strength

of dependence, and the moment conditions of the underlying processes. Section 1.6

presents results from Monte Carlo simulations, and section 1.7 contains our applica-

tion to macroeconomic forecasting. Lastly, concluding remarks are in section 1.9.

1.2 The Econometric Framework

We first start with a review of locally stationary processes which were first in-

troduced by Dahlhaus (1996); Dahlhaus et al. (1997) using a time varying spectral

representation. This was expanded in Dahlhaus et al. (2018) to a more general def-

inition which facilitated theoretical results for a large class of non-linear processes;

see Dahlhaus (2012) for a partial survey of the results pertaining to locally station-

ary processes. Heuristically speaking, a locally stationary process is a non-stationary
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process which can be well approximated by a stationary process locally in time. This

is a convenient framework to model non-stationarity induced by smooth time varying

parameters. Consider the model (1.1), with βt being a vector of unknown determin-

istic smooth functions of time, as a consequence Yt in (1.1) is clearly non-stationary.

Due to this non-stationarity, letting T → ∞ will not lead to consistent estimates of

βt, since future observations may not contain any information about the probabilistic

structure of the process at the present time t. Therefore, it is common to work in

the infill asymptotics framework with rescaled time t/T ∈ [0, 1], with βt = β(t/T )

(Dahlhaus et al., 1997; Robinson, 1989; Cai, 2007). Letting T →∞ now implies that

we observe β(t/T ) on a finer grid within the same interval, thereby increasing the

amount of local information available. Although this setting is not commonly seen in

forecasting time series, a prediction theory is still possible. For example, we can view

our data as having been observed for t = 1, . . . , T/2 (i.e. on the interval [0, 1/2]), and

we are forecasting the next few observations (see Dahlhaus et al. (1997); Dahlhaus

(1996)).

For a formal description of locally stationary processes we use the definition and

assumptions stated in Dahlhaus et al. (2018) and Richter and Dahlhaus (2018):

Definition 1.2.1. Let q > 0, and ||W ||q = (E|W |q)1/q. Let Yt,T , t = 1, . . . , T be a

triangular array of stochastic processes. For each u ∈ [0, 1], let Ỹt(u) be a stationary

and ergodic process satisfying:

1. Dq = max{supu∈[0,1] ||Ỹt(u)||q, supT∈N supt=1,...,T ||Yt,T ||q} <∞

2. There exists CB > 0 such that uniformly in t = 1, . . . , T and u, v ∈ [0, 1]:

||Ỹt(u)− Ỹt(v)||q ≤ CB|u− v|, ||Yt,T − Ỹt(t/T )||q ≤ CBT
−1 (1.2)
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From the second assumption we obtain: ||Yt,T−Ỹt(u)||q ≤ O(|t/T−u|+T−1), thus

for rescaled time points t/T near u, the process Yt,T can be approximated by a sta-

tionary process Ỹt(u) with asymptotically negligible error. Consider the model used

in Robinson (1989); Cai (2007): Yt,T = β(t/T )Xt + εt, where Xt, εt are stationary

processes, and β(·) is a lipschitz continuous function. Under these conditions Yt,T is

a locally stationary process, with stationary approximation: Ỹt(u) = β(u)Xt + εt. A

slightly more complicated example is a tvAR(1) process: Yt,T = α(t/T )Yt−1,T + εt =∑∞
j=0[
∏j−1

k=1 α( t−k
T

)]εt−j. Intuitively one can see that if we assume α(·) is lipschitz

continuous then the process is locally stationary with stationary approximation:

Ỹt(u) = α(u)Ỹt−1(u) + εt, and ||Yt,T − Ỹt(u)||q ≤ O(|t/T − u| + T−1).6 The sta-

tionary approximation is the key to estimation and formulating an asymptotic theory

when dealing with locally stationary processes. Estimation of parameters such as

α(u) and local covariances is carried out by assuming, for each rescaled time point u,

that the process is essentially stationary on a small window around u. We then carry

out estimation via stationary methods using observations within this window.7

In order to establish asymptotic properties of our L2 boosting procedures, we

rely on the functional dependence measure used in the context of locally stationary

processes in Dahlhaus et al. (2018); Richter and Dahlhaus (2018). We first introduce

the following notation: Let {et}t∈Z be a sequence of iid random variables, and let Ft =

(et, et−1, . . .), F∗t = (et, et−1, . . . , e
∗
0, e−1, . . .) with e∗0, et, t ∈ Z being iid. Additionally,

let Ht = (ηt,ηt−1, . . .), H∗t = (ηt,ηt−1, . . . ,η
∗
0,η−1, . . .) with η∗0,ηt, t ∈ Z being iid

random vectors. Throughout this paper, we assume the following structure for the

6Under appropriate conditions, more general non-linear time varying processes which satisfy
the recursion: Yt,T = Gεt(Yt−1,T , . . . , Yt−p,T ,max(t/T, 0)), for t ≤ T , can be shown to be locally
stationary (Dahlhaus et al., 2018). Examples of such processes include time varying ARMA, time
varying GARCH, time varying VAR, and time varying random coefficient processes.

7We note that assuming approximate stationarity on a small window is essentially the justification
of the commonly used rolling window estimators.
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stationary approximation for univariate processes (such as the response and error

processes), and multivariate processes (such as the covariate process) respectively:

Ỹt(u) = g(u,Ft) and x̃t(u) = h(u,Ht) = (h1(u,Ht), . . . , hpT (u,Ht)), (1.3)

where g(·, ·), and h(·, ·) are real valued measurable functions. These representa-

tions allow us to define the functional dependence measure as: δỸ (u)
q (t) = ||Ỹt(u) −

g(u,F∗t )||q, and δ
X̃j(u)
q (t) = ||X̃j,t(u) − hj(u,H∗t )||q. Additionally, we assume short

range dependence of the form:

∆Ỹ
0,q =

∞∑
k=0

sup
u∈[0,1]

δỸ (u)
q (k) ≤ ∞, and Φx̃0,q = max

j≤pT

∞∑
k=0

sup
u∈[0,1]

δX̃j(u)
q (k) ≤ ∞, (1.4)

for some q > 2 to be specified in the next section.

We place assumptions on the stationary approximation rather than directly on

the process itself. This leads to results using weaker assumptions, and to more in-

terpretable dependence measures. For an intuitive explanation of this measure, we

consider the stationary approximation at time u0 (Ỹt(u0)) and we obtain δỸ (u0)
q (k) =

||Ỹk(u0)− g(u0,F∗k )||q. We can view δ
Ỹ (u0)
q (k) as measuring the dependence of Ỹk(u0)

on the innovation ε0, which for weakly dependent processes decreases suitably quickly

as k → ∞. For a concrete example, consider a stationary AR(1) process Ỹt(u0) =∑∞
j=0 a(u0)jet−j with ei iid, then δ

Ỹ (u0)
q (k) = |a(u0)k|||e0 − e∗0||q, and ∆

Ỹ (u0)
0,q = ||e0 −

e∗0||q
∑∞

k=0 |a(u0)k|. Now in the locally stationary setting, we take the supremum over

the rescaled time interval to account for the non-stationarity of the processes, thereby

obtaining ∆Ỹ
0,q = ||e0− e∗0||q supu∈[0,1]

∑∞
k=0 |a(u)k|. A very wide variety of locally sta-

tionary processes encountered in practice including time varying linear processes,

tv-ARMA, tv-GARCH, tv-TAR, and tv-VAR, and time varying random coefficient
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processes have stationary approximations which satisfy (1.4), and have geometrically

decaying functional dependence measures (see Dahlhaus et al. (2018)).

1.3 Boosting High Dimensional TVP Models

Ever since the introduction of AdaBoost in the 1990’s (Freund and Schapire,

1997), boosting algorithms have been one of the most successful and widely utilized

machine learning methods (Friedman et al., 2001). AdaBoost, which was developed

for classification, consisted of iteratively fitting a series of weak classifiers or learners

onto reweighted data and taking a weighted average of the predictions from each of

these simple models. The success of AdaBoost was originally thought to originate

from averaging many weak classifiers and from a reweighting scheme which placed

large weights on heavily misclassified observations. Later work by Friedman (2001),

and Friedman et al. (2000) established AdaBoost as a gradient descent algorithm in

function space using an exponential loss function. This functional gradient descent

view connected boosting to the common optimization view of statistical inference,

and led to extensions of boosting beyond the realm of classification. Friedman (2001)

proposed several new boosting algorithms using alternative base learners and loss

functions including squared error loss, leading to L2 boosting. Additionally, Efron

et al. (2004) and Friedman et al. (2001), made connections for linear models between

L2 boosting and common statistical procedures such as the Lasso and forward stage-

wise regression.8 9 These insights shed light on L2 boosting as a method which

performs variable selection and shrinkage leading to sparse models. For an excellent

8For theoretical connections one can consult Chapter 16.2 of Friedman et al. (2001), and addi-
tional works such as Hastie et al. (2007); Rosset et al. (2004)

9Empirical comparisons between boosting with linear least squares learners and the lasso have
shown close performance with boosting performing slightly better in the case of high correlated
predictors Hastie et al. (2007); Hepp et al. (2016).
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survey of the statistical view of boosting and results pertaining to several common

boosting algorithms, one can consult Buhlmann and Hothorn (2007). 10

We are interested in estimating the following model:

Yt,T = β′(t/T )xt−h,T + εt,T for t = 1, . . . , T, (1.5)

where Yt,T is the response, xt−h,T = (X1,t−h,T , . . . , XpT ,t−h,T )′ is a pT -dimensional vec-

tor of locally stationary predictors (with pT >> T ), β′(t/T ) = (β1(t/T ), . . . , βpT (t/T ))

is a vector of unknown functions of time defined on the grid [0, 1], which becomes finer

as T →∞, and εt,T denotes the locally stationary error process with E(εt,Txt−h,T ) =

0 ∀ t, T . We denote the stationary approximation of the response as Ỹt(u) = β′(u)x̃t−h(u)+

ε̃t(u). To simplify notation, we discuss estimation at the boundary point u = T/T =

1. Before we introduce our boosting algorithms, it helps to first introduce the pop-

ulation version of componentwise L2 boosting with linear base learners as applied to

the stationary approximations (ỸT (u), x̃T−h(u)):

Algorithm: Population level L2 Boosting

1. Set F (0)(u, x̃T−h(u)) = E(ỸT (u))

2. For m = 1, . . . ,MT , where MT is some stopping iteration, do:

(a) Compute Ũ (m)
T (u) = ỸT (u)− F (m−1)(u, x̃T−h(u)).

(b) Let Sm = argminj≤pTE(Ũ
(m)
T (u)− α(m)

j (u)X̃j,T−h(u))2,

where α(m)
j (u) = E(X̃j,T−h(u)Ũ

(m)
T (u))/E(X̃2

j,T−h(u)).

10Additionally, one can consult Buhlmann (2006) for extensions of boosting to stationary VAR
processes, and Bai and Ng (2009); Ng (2014) for applications to macroeconomic forecasting and
recession classification respectively.
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(c) Update F (m)(u, x̃T−h(u)) = F (m−1)(u, x̃T−h(u)) + υ · α(m)
Sm (u)X̃Sm,T−h(u),

where υ ∈ (0, 1] is a step length factor.

3. Output F (MT )(u, x̃T−h(u)) = F (0)(u, x̃T−h(u)) + υ
∑MT

m=1 α
(m)
Sm (u)X̃Sm,T−h(u)

Although we use linear base learners, we note that our methods can be ex-

tended to a broader class of models by using a more general base learner, such as

gj(u, X̃j,T−h(u)) = E(ỸT (u)|X̃j,T−h(u)), and estimating using kernel regressions or

smoothing splines. For the corresponding sample version of L2 boosting with linear

base learners, it is informative to consider the case of stationary response and predic-

tor processes. In the stationary setting, we can remove the dependence on T and the

sample version of our algorithm simplifies to Ŝm = argminj
∑T

t=1(U
(m)
t − α̂(m)

j Xt,j)
2,

where α̂(m)
j = T−1

∑T
t=1Xj,t−hU

(m)
t , assuming E(Xt), E(Yt) = 0, and E(X2

t ) = 1. For

the case of locally stationary response and predictor processes the situation is more

complicated as the above estimator is inconsistent for α(m)
j (u). Intuitively, this incon-

sistency arises since observations “far" from rescaled time u contain little information

about the probabilistic structure of the processes at time u.

To proceed with estimation in the locally stationary setting, ∀m and j ≤ pT , we

have U (m)
t,T = α

(m)
j (t/T )Xj,t−h,T + εj,t,T ,

where α(m)
j (t/T ) = E(X̃j,t−h(t/T )Ũ

(m)
T (t/T ))/E(X̃2

j,t−h(t/T )).11 By local stationarity

and assuming appropriate smoothness conditions, we have the following expansion:

α
(m)
j (t/T ) = α

(m)
j (u) + α̇

(m)
j (u)(t/T − u) + α̈

(m)
j (c)(t/T − u)2, (1.6)

where α̇(·), α̈(·) denote the first and second derivative respectively of the function,

with c between u and t/T . To compute the local constant estimate for α(m)
j (u), we

11Recall that E(Xj,t−h,TU
(m)
t,T )/E(X2

j,t−h,T ) = α
(m)
j (t/T ) +O(T−1) by local stationarity.
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ignore the linear term in the Taylor expansion to obtain the following approximation:

U
(m)
t,T ≈ α

(m)
j (u)Xj,t−h,T +εj,t,T for t/T near u. The local constant estimator for α(m)

j (u)

is then

α̂
(m)
lc,j (u) =

∑T
t=1 Kb(t/T − u)Xj,t−h,TU

(m)
t,T∑T

t=1 Kb(t/T − u)X2
j,t−h,T

, (1.7)

where Kb(x) = b−1K(x/b), is a kernel function and b is the bandwidth. Therefore,

α̂
(m)
lc,j (u) is a weighted least squares estimate, with the weights given by the kernel

values. For now, one can think of this estimator as aiming to use information from

observations “near" time T , while discounting information from distant points. A

simple example of the local constant estimate is the rolling window estimate: using

the uniform kernel K(x) = 1|x|≤1, with a fixed bandwidth b = b0, we obtain a rolling

window estimate which uses the last b0T observations in our sample.

The local constant estimate is widely used for estimating time varying effects,

however the Taylor expansion of α(m)
j (t/T ) suggests we can obtain a better ap-

proximation by using the linear term in the expansion (1.6). This was analyzed

rigorously in Cai (2007), which showed that for boundary points the local linear

estimator is theoretically superior to the local constant estimator. Using the ex-

pansion (1.6), we obtain: U (m)
t,T ≈ α

(m)
j (u)Xj,t−h,T + α̇

(m)
j (u)Xj,t−h,T (t/T − u) + εj,t,T ,

for t/T near u. Let Zj,t−h,Tθ
(m)
j (u) where Zj,t−h,T = (Xj,t−h,T , Xj,t−h,T (t/T − u)),

θ
(m)
j (u) = (α

(m)
j (u), α̇

(m)
j (u))′. The local linear estimate is obtained by minimizing a

weighted least squares criterion:

θ̂
(m)
j (u) = (α̂

(m)
ll,j (u), ˆ̇α

(m)
ll,j (u)) = argmin

θ
(m)
j (u)

T∑
t=1

Kb(t/T − u)(U
(m)
t,T −Zt−h,Tθ

(m)
j (u))2

(1.8)
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Using these estimators we can formulate our L2 boosting algorithm for (1.5) using

local constant, and local linear estimators as base learners. We first start with our

first algorithm which uses local constant estimators:

Algorithm 1: Local Constant L2 Boosting (LC-Boost)

1. Set F̂ (0)
lc (u,xt,T ) = T−1

∑T
i=h+1 Kb(i/T − u)Yi,T , for t = 1, . . . , T − h

2. For m = 1, . . . ,MT , where MT is some stopping iteration, do:

(a) Compute the residuals Û (m)
i,T = Yi,T − F̂ (m−1)

lc (u,xi−h,T ) for i = h+1, . . . , T .

(b) Let Ŝm = argminj≤pT
∑T

i=h+1Kb(i/T − u)(Û
(m)
i,T − α̂

(m)
lc,j (u)Xj,i−h,T )2

(c) Update F̂ (m)
lc (u,xi−h,T ) = F̂

(m−1)
lc (u,xi−h,T ) + υα̂

(m)
lc,Sm(u)XSm,i−h,T , where

υ ∈ (0, 1] is a step length factor.

3. Output F̂ (MT )
lc (u,xT−h,T ) = F̂

(0)
lc (u,xt,T ) + υ

∑MT

m=1 α̂
(m)
lc,Sm(u)XSm,T−h,T

Let zt,T = (xt,T ,xt,T (t/T−u)), our boosting algorithm using local linear estimates

as base learners is:

Algorithm 2: Local Linear L2 Boosting (LL-Boost)

1. Set F̂ (0)
ll (u,xi−h,T ) = T−1

∑T
i=h+1Kb(i/T − u)Yi,T , for i = h+ 1, . . . , T

2. For m = 1, . . . ,MT , where MT is some stopping iteration, do:

(a) Compute the residuals Û (m)
i,T = Yi,T − F̂ (m−1)

ll (xi−h,T ) for i = h+ 1, . . . , T .

(b) Let Ŝm = argminj≤pT
∑T

i=1 Kb(i/T − u)(Û
(m)
i,T −Zj,i−h,T θ̂

(m)
j (u))2.
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(c) Update F̂ (m)
ll (u,xi−h,T ) = F̂

(m−1)
ll (u, zi−h,T ) + υ · ZSm,i−h,T θ̂

(m)
Sm (u), where

υ ∈ (0, 1] is a step length factor.

3. Output F̂ (MT )
ll (u,xT−h,T ) = F̂

(0)
ll (u,xi−h,T ) + υ

∑MT

m=1ZSm,T−h,T θ̂
(m)
Sm (u)

We see that boosting is a stagewise estimation procedure, where at each stage

only one learner is updated and the previously selected terms are unchanged. This

stagewise fitting procedure induces regularization through limiting the number of

steps (MT ), and the step length factor (υ). We usually fix the the step-length factor

(υ) to a low number such as υ = .1, making the stopping iteration (MT ) akin to the

regularization parameter of the Lasso.12 In light of this, boosting can be thought of

as a close relative of the lasso, with the advantage of being able to approximate the `1

penalized solution in situations where it is impossible or computationally burdensome

to compute the Lasso solution (Friedman et al., 2004).

By viewing boosting as a general regularized function estimation procedure, we

can formulate a generic local constant boosting procedure which can be easily be

computed for a wide variety of base learners and (almost everywhere) differentiable

loss functions (L(·, ·)).

Algorithm 3: Generic Local Constant Boosting

1. Set F̂ (0)
G (u,xt,T ) = argmincT−1

∑T
i=h+1Kb(i/T−u)L(Yi,T , c), for t = 1, . . . , T−h

2. For m = 1, . . . ,MT , where MT is some stopping iteration, do:

(a) Compute the pointwise negative gradient:

U
(m)
i,T = d

dF
L(Yi,T , F )

∣∣∣
F=F̂

(m−1)
G (u,xi−h,T )

evaluated at i = h+ 1, . . . , T .

12Given that each predictor can be selected multiple times, especially for low values of υ, the
number of predictors in the estimated model is ≤ MT , and all predictors which have not been
selected by step MT have an effect of zero.
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(b) Let Ŝm = argminj≤pT
∑T

i=h+1Kb(i/T − u)(Û
(m)
i,T − ĝ

(m)
j (u,Xj,i−h,T ))2

(c) Update F̂ (m)
G (u,xi−h,T ) = F̂

(m−1)
G (u,xi−h,T ) + υĝ

(m)
Sm

(u,XSm,i−h,T ), where

υ ∈ (0, 1] is a step length factor.

3. Output F̂ (MT )
G (u,xT−h,T ) = F̂

(0)
G (u,xt,T ) + υ

∑MT

m=1 ĝ
(m)
Sm

(u,XSm,T−h,T )

The algorithm can be modified to allow gj(u, ·) to be a function of several variables

e.g. a predictor along with a number of its lags.

1.4 Implementation

Implementation of these algorithms is very simple and can be carried out using ex-

isting software packages. We first discuss the choice of the kernel function K(·), band-

width (b), stopping iteration (MT ), and step length factor (υ). We set υ = .1, which

is the default choice in statistical software packages and applied work (Buhlmann

and Hothorn, 2007; Friedman, 2001; Hofner et al., 2014). In non-parametric statistics

and machine learning the most commonly used kernels are the Gaussian Kernel and

the Epanechnikov kernel K(u) = .75(1−u2)1|u|≤1, while in econometrics the uniform

kernel 1|u|≤1 is more widely used. Both the uniform kernel and the Epanechnikov

Kernel use a subset of the sample, with the Epanechnikov kernel also downweighting

more distant observations within this subset. The Gaussian kernel does not truncate

the sample, instead it smoothly downweights more distant observations. It has a

much smoother downweighting scheme than the Epanechnikov kernel, which can be

beneficial in many applications.13 In general however, the choice of a kernel does not

have much impact on the performance, as opposed to the selection of the bandwidth

parameter which is crucial.

13We decide to use the uniform kernel in our applications due to its close connections with the
rolling window estimator. Using the Gaussian Kernel gave us similar results.
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We first discuss bandwidth selection for an out of sample forecasting exercise.

To help with exposition, we use a concrete example: assume we have monthly data

ranging from 1960:1 to 2018:8, giving us about ∼ 700 observations. We begin our

forecasts on 1970:1 and move forward utilizing an expanding window framework. We

use one-sided kernels to avoid looking into the future. We choose our bandwidth

parameter using a cross validation approach. We first form a grid of values B =

(b1, . . . , bn) from which to select the bandwidth parameter. For each forecast, our

cross validation procedure uses the last ω (where ω is chosen by the researcher)

observations of our sample for an out of sample forecasting exercise. We then choose

the bandwidth which minimizes the MSFE over this sub-sample. Therefore, the

selected bandwidth is:

b∗T0
= argminbi∈Bω

−1

T0−h∑
τ=T0−ω

(Yτ,T − F̂ (MT )
τ,bi

(τ/T,xτ−h,T ))2,

where F̂ (MT )
τ,bi

(τ/T,xτ−h,T ) refers to the LC-Boost or LL-Boost estimate of xτ−h,Tβ(τ/T )

using only observations until time τ , and the bandwidth bi. For our first out of sam-

ple forecast we set T0 = 120, which is the length of the sample available at the time,

and for each additional forecast we increment T0 by 1 until we reach the end of the

sample. In the special case of using LC-Boost with a one sided uniform kernel, we

are selecting the optimal window size at each time point, via cross validation, for a

rolling window forecast. With the bandwidths representing the fraction of the sample

we are using for estimation.

For in-sample estimation problems, two sided kernels are used in our algorithms

with a weighted leave one out cross validation procedure to select the bandwidth.
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The procedure is as follows:

b∗T0
= argminbi∈BT

−1

T∑
τ=h

(Yτ,T − F̂ (MT )
lc,−τ,bi(τ/T,xτ−h,T ))2Kbi(τ/T − T0/T ),

where F̂ (MT )
lc,−τ,bi(τ/T,xτ−h,T ) refers to the estimate of xτ−hβ(τ/T ), which uses all ob-

servations except (Yτ,T ,xτ−h,T ). The kernel in the above equation discounts errors far

away from the time point t0 when selecting the optimal bandwidth. This procedure

gives us a bandwidth for each time point in the sample, and if one wants a single

bandwidth for all time points, the kernel can be removed.

To select the stopping iteration MT , we specify an upper bound for the number

of iterations Mupp (we set Mupp = 100), where MT ≤Mupp. The stopping iteration is

then selected using the corrected AIC (AICc) statistic given in Buhlmann (2006):

MT = argminm≤Mupp
AICc(m),

where AICc(m) is the AIC of the model using m iterations.14

Our methods can be computed extremely quickly using the existing R package

mboost. Our base learners are univariate or bivariate weighted least squares esti-

mates which can be implemented through existing functions in the package once we

specify the kernel values as weights. We can also implement the generic local con-

stant boosting algorithm for wide a variety of base learners and loss functions such

as absolute loss, Huber loss and quantile loss.15 As an example, to obtain quantiles

14Alternatively, we can jointly select MT and the bandwidth b∗T0
by forming a two dimensional

grid and selecting the optimal combination using the cross validation procedure described earlier.
We decide to use the AICc statistic in this work. We note that when dealing with very large sample
sizes and/or more complicated base learners which are a function of more than one variable, using
cross validation to select MT , using a moderately sized grid, can often be quicker since calculation
of the corrected AIC requires computing the trace of the Hat matrix.

15We refer the reader to Hofner et al. (2014) which provides an excellent introduction and tutorial
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for our forecasts, we specify the quantile loss for a given quantile16, and compute

the optimal bandwidth for our base learners by using the cross validation procedure

mentioned above. A density forecast can be obtained from these estimated quantiles

by using the procedure outlined in ?.

1.5 Asymptotic Theory

In order to prove our asymptotic results, we need the following assumptions:

Condition 1.5.1. Assume supu∈[0,1] |β(u)|1 <∞

Condition 1.5.2. Assume the error and the covariate processes are locally stationary

and have representations given in (1.3). Additionally, we assume the following decay

rates Φxm,r = O(m−αx),∆ε
m,q = O(m−αε), for some αx, αε > 0, q > 2, r > 4 and

τ = qr
q+r

> 2.

Condition 1.5.3. Let Σx̃(u) = E(x̃′t(u)x̃t(u)) be the covariance matrix function.

For u ∈ [0, 1], assume that β(u),Σx̃(u) ∈ C2[0, 1], where C2[0, 1] denotes the class of

functions defined on [0, 1] that are twice differentiable with bounded derivatives.

Condition 1.5.4. The kernel function K(u) is bounded and symmetric, and of

bounded variation with compact support. Additionally, the bandwidth (b) satisfies

bT = RT = O(Tψ), where ψ ∈ (0, 1).

Condition 1.5.1 requires `1 sparsity of the time varying coefficients, and allows the

active set of predictors to change over time. Our asymptotic results do not require

sparsity in the number of non-zero coefficients (`0 sparsity). Condition 1.5.2 assumes

to the mboost package. It also lists the wide variety of base learners and loss functions supported
by the package.

16See ? for more details on the quantile boosting algorithm.
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the covariate and error processes are locally stationary, and presents the dependence

and moment conditions on these processes, where higher values of αx, αε indicate

weaker temporal dependence. We assume our predictor and error processes have at

least r > 4 and q > 2 finite moments respectively. Examples of processes satisfying

condition 1.5.2 were given in section 1.2.

Given that xt−h can contain lags of Yt,T , an example of a model which satisfies

the above conditions is as follows: Let Wt,T = (Yt,T , zt,T ), where zt,T represents our

exogenous series, andWt,T =
∑`

i=1Ai(t/T )Wt−i,T +ηt. Then the stationary approx-

imation is W̃t(t/T ) =
∑`

i=1Ai(t/T )W̃t−i(t/T ) + ηt, with cumulative functional de-

pendence measure ΦW̃0,r = supu∈[0,1]

∑∞
k=0O(λmax(A∗(u))k)(Chen et al., 2013), where

A∗(u) is the companion matrix. We can then define xt−1,T = (Wt−1,T , . . . ,Wt−l,T ),

and β(t/T ) as the first row of the companion matrix A∗(u). We weaken the assump-

tions placed in the works Cai (2007); Robinson (1989); Chen and Hong (2012) which

restricted the predictors and errors to be stationary, thus ruling out models with

lagged dependent variables. Compared to previous works on high dimensional TVP

models, such as Ding et al. (2017); Lee et al. (2016), we use a different dependence

framework, and allow the predictors and errors to have polynomially decaying tails.

Condition 1.5.3 is a sufficient condition to guarantee that the expansion (1.6) ex-

ists, i.e: α(m)
j (u) ∈ C2[0, 1],∀m and j ≤ pT . Sufficient conditions needed for smooth-

ness of the covariance matrix function were given in Ding et al. (2017) for the case

of locally stationary VAR processes, and one can consult Dahlhaus et al. (2018) for

sufficient conditions for more general processes. Condition 1.5.4 is a standard con-

dition and it includes the commonly used Epanechnikov (K(u) = .75(1 − u2)1|u|≤1)

and uniform (K(u) = 1|u|≤1) kernels. It also places the standard conditions on the
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effective sample size RT . Let

aT =

[
R−τ+τκ+1
T + pTR

−r/2+rκ+1
T + pT exp

(
−R1−2κ

T

)
+ exp

(
−R1−2κ

T

) ]

The following two theorems presents the consistency of LC-Boost and LL-Boost.

Theorem 1. Let x∗T−h,T denote a new predictor variable, independent of and with

the same distribution as xT−h,T . Let κ ∈ (0, 1/2) be such that κ < ψ−1 − 1, Suppose

that conditions 1.5.1, 1.5.2, 1.5.3, and 1.5.4 hold. Then

a. on a set with probability at least 1−O(pTaT ), our LC-Boost estimate F̂ (MT )
lc (·, ·)

satisfies: E(|F̂ (MT )
lc (u,x∗uT−h,T ) − β′(u)x∗uT−h,T |2) = op(1) (T → ∞) for some

sequence MT →∞ sufficiently slowly,

b. on a set with probability at least 1−O(pTaT ), our LL-Boost estimate F̂ (MT )
ll (·, ·)

satisfies E(|F̂ (MT )
ll (u,x∗uT−h,T ) − β′(u)x∗uT−h,T |2) = op(1) (T → ∞) for some

sequence MT →∞ sufficiently slowly,

This is an extension of theorem 1 in Buhlmann (2006) to the locally stationary

time series setting with local constant or local linear base learners. From the above

theorems, we see the range of pT depends primarily on the moment conditions, the

effective sample size RT , and κ. For example, if we assume only finite polynomial

moments with r = q, α ≥ 1/2− 2/r then, pT = o(R
r/4−rκ/4−1/2
T ) for our estimates to

be consistent. If we assume, subgaussian or subexponential predictors for example

we have pT = o(T φ) for arbitrary φ > 0. This is the same range Buhlmann (2006)

obtained for iid sub-Gaussian predictors and errors. Given the O(T−1) encountered

when approximating a locally stationary process by a stationary distribution, we are

unable to extend the theory to the ultra-high dimensional setting i.e pT = o(exp(nc))

for c < 1.
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We also provide results for the stationary time series with time invariant pa-

rameters. In this setting, we use the linear least squares base learner and use the

entire sample for estimation. For the case of only a finite number of moments, the

results in theorem 1 easily carry over to the stationary time invariant setting (i.e

β(t/T ) = β ∀t, T ), by letting RT = T , and computing the relevant functional de-

pendence measures. However, we can obtain a larger range for pT , if we assume a

stronger moment condition such as:

Condition 1.5.5. Assume the response and the covariate processes are stationary

and have representations given in (1.3). Additionally, assume υx = supq≥2 q
−α̃xΦx0,q <

∞ and υε = supq≥2 q
−α̃ε∆ε

0,q <∞, for some α̃x, α̃ε ≥ 0.

Condition 1.5.5 strengthens the moment condition 1.5.2, and requires that all

moments of the covariate and response processes are finite. To illustrate the role of

the constants α̃x and α̃ε, consider the example where εt =
∑∞

j=0 ajet−j with ei iid,

and
∑∞

j=0 |aj| < ∞. Then ∆ε
0,q = ||e0 − e∗0||q

∑∞
j=0 |aj|. Now if we assume e0 is sub-

Gaussian, then α̃ε = 1/2, since ||e0||q = O(
√
q), and if ei is sub-exponential, we have

α̃ε = 1.

The following corollary states the corresponding results for the stationary time

series setting. We define ψ̃ = 2
1+2α̃x+2α̃ε

, ϕ̃ = 2
1+4α̃x

, and let

bT =

[
exp

(
−T

1/2−κ

υxυε

)ψ̃
+ pT exp

(
−T

1/2−κ

υ2
x

)ϕ̃]
,

and let F̂ (MT )(xt) denote our L2 boosting estimate for Yt, we then have:

Corollary 2. Let κ ∈ (0, 1/2), and x∗T−h denote a new predictor variable, independent

of and with the same distribution as xT−h. Suppose conditions 1.5.1, 1.5.4, and 1.5.5

hold. Then on a set with probability at least 1−O(pT bT ), we have that our L2 Boosting
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estimate F̂ (MT )(·) satisfies:

E(|F̂ (MT )(x∗T−h)− βx∗T−h|2) = op(1) (T →∞).

We see that in the stationary setting our theorems improve upon previous results

by providing a more detailed and larger range for pT . For example, assuming sub-

Gaussian predictors and errors we obtain pT = o(exp(T
1−2κ

3 )), and pT = o(exp(T
1−2κ

5 ))

for subexponential predictors and errors. As a comparison Buhlmann (2006) obtained

pT = o(T φ), for arbitrary φ > 0, when applying L2 boosting for stationary sub-

Gaussian time series.

1.6 Simulations

In this section, we evaluate the forecasting performance of our algorithms in a

finite sample setting. Let Yt,T denote our response, and let

xt−1,T = (Yt−1,T , . . . , Yt−3,T , zt−1,T , . . . ,zt−3,T ) represent our potential set of predic-

tors, where zt−1,T ∈ RdT represents our dT exogenous series at time t. We fix T = 200,

and dT = 100, giving us pT = 303 potential predictors. We consider 14 DGPs and

our general model is, for t = 1, . . . T ,

Yt,T = ρYt−1,T +
4∑
j=1

(b+ βj(t/T ))zj,t−1,T + εt

zt,T = A(t/T )zt−1,T + ηt

and it is assumed that ρ = .6, b = 0.5. For DGPs 1-12 we letA(t/T ) = {.4|i−j|+1}i,j≤dT ,

and for DGPs 13 and 14 we let A(t/T ) = (1 − t/T )A1 + (t/T )A2, where the ma-

trices A1 = {.2|i−j|+1}i,j≤dT , A2 = {.4|i−j|+1}i,j≤dT . Define lgt(γ, c, t/T ) = (1 +
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exp(−γ(t/T − c))−1, time variation in the coefficients is modeled as follows:

DGP Description β1(t/T ) β2(t/T ) β3(t/T ) β4(t/T ) zt,T

1 constant 0 0 0 0 stationary

2 break in error variance 0 0 0 0 stationary

3 early break, Tb = 50 −1(t > Tb) stationary

4 mid break, Tb = 100 −1(t > Tb) stationary

5 late break, Tb = 150 −1(t > Tb) stationary

6 small random walk ∆βj(t/T ) ∼ N(0, .5√
T

) stationary

7 big random walk ∆βj(t/T ) ∼ N(0, 1√
T

) stationary

8 smooth, c = .25 lgt(10,c) lgt(5,c) lgt(20,c) lgt(10,c) stationary

9 smooth, c = .75 lgt(10,c) lgt(5,c) lgt(20,c) lgt(10,c) stationary

10 smooth, c = .90 lgt(10,c) lgt(5,c) lgt(20,c) lgt(10,c) stationary

11 steep −.3( tT )2 ( tT )2 −.4( tT ) t
T stationary

12 exotic 0 0 3cos( 2πt
T ) 2 t

T sin(2π t
T ) stationary

13 smooth, c = .75 lgt(10,c) lgt(5,c) lgt(20,c) lgt(10,c) locally stationary

14 late break, Tb = 150 −1(t > Tb) locally stationary

For all DGPs, we report results when generating the innovations as ηt
iid∼ N(0, IdT )

or from a t5(0, 3/5 ∗ IdT ). For DGP 2, we have a break in the error variance: εt =

D(0, 1)(t < 150) +D(0, 2.5)(t ≥ 150), where the distribution D is either a normal or

t5 distribution. For the remaining DGPs εt
iid∼ N(0, 1) or iid∼ t5.

1.6.1 Methods and Forecast Design

We consider the forecasting performance of the following methods:

• LC-Boost, LL-Boost.

• L2 Boosting, with time invariant coefficients estimated on the full sample.

• Lasso, AR(3) both estimated on the full sample.
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• Rolling window L2 Boosting, Rolling window AR(3) model both with window

length T/5.

AR and rolling window AR models are commonly used benchmarks in macroeconomic

forecasting. Models estimated on the full sample assume time invariant parameters,

or more generally assume the time variation is small. Estimation using LC-Boost, LL-

Boost or a rolling window approach involves using a subsample of the data leading to

a bias-variance tradeoff. Due to this tradeoff, methods accounting for time variation

are not guaranteed to outperform their time invariant counterparts in a finite sample

setting.

All boosting models are computed using the R package mboost, and the lasso

model is computed using the R package glmnet. For LC-Boost and LL-Boost, we use

the uniform kernel and we estimate the bandwidth via the cross validation procedure

described in section 1.4, with ω = 20, and B = [.3, .4, . . . , 1]. The number of steps in

all boosting models is determined using AIC with the maximum number of steps set

to Mupp = 100. Lastly, the penalty parameter in the Lasso model is estimated using

the BIC statistic.

For each simulation, and for all methods, we forecast YT,T and compute the out

of sample forecast error, which is then averaged over 1000 simulations. Specifically,

for a given simulation, let Ŷ (k)
T,T represent the out of sample forecast of YT,T . We

then compute MSFE= 1
1000

∑1000
k=1 (Ŷ

(k)
T,T − Y

(k)
T,T )2, for each method. We report this

MSFE relative to the MSFE obtained from L2 boosting model with time invariant

coefficients.
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1.6.2 Results

The results for Gaussian innovations are in table 1.1. The results for t5 innovations

are contained in the appendix. We first dicuss results for the Gaussian case. DGP

1 and 2 contain time invariant coefficients, with DGP 2 having a structural break in

the variance of the noise. In both these DGPs using the full sample yields the best

estimator. LC-Boost only has a minor error inflation compared to using the whole

sample, whereas LL-Boost does worse than LC-Boost in this setting. The under per-

formance of LL-Boost vs LC-Boost in these settings is likely due to the bias-variance

tradeoff when using local linear vs local constant methods. If the time variation is

non-existent or mild, as is the case here, the additional variance incurred by estimat-

ing more parameters can cancel out any benefit obtained from bias reduction. DGP

3, 4, 5 all contain a discrete structural break, and we see that both LC-Boost and

LL-Boost outperform other methods. When the structural break occurs near the end

of the sample, LL-Boost has large gains over LC-Boost.

DGP 6 has a slowly varying random walk, and we observe that LC-Boost and

LL-Boost perform slightly better than using the full sample. DGP 7 has larger time

variation in the coefficients, and we see that LL-Boost and LC-Boost easily outper-

forms the other methods. DGP 8, 9 and 10 have smooth transition logistic functions,

where c is the analogous to the breakpoint in a discrete break model, and γ represents

smoothness of the transition.17 Out of the three DGPs, time varying methods per-

form best when c = .75, with the performance deteriorating in the other two cases as

the time variation occurs either too close to the forecast date or too far away. DGP

11 and 12 contain coefficient functions which are highly non-linear, and LL-boost

shows very large improvements vs LC-Boost. DGP 13 and 14 show that adding lo-

17We note that setting γ to infinity results in a discrete break model.



27

cally stationary predictors leads to only slight change in the results vs DGP 9 and 5

respectively.

When we have t5 innovations, the results generally follow the conclusions stated

earlier, except the improvements are noticeably smaller in many cases. The presence

of additional noise in the data likely impacts our method in two ways: due to the

additional noise in the data, the bias-variance tradeoff is less favorable to using a

subset of the full sample. Additionally, the noise in the data makes the cross validation

error estimate less reliable, leading to errors in estimating the optimal bandwidth

parameter.18

The results suggest the following conclusions:

1. When the time variation in the coefficients is non-existent or minor, using the

full sample often gives the best performance. The performance of LC-Boost is

only marginally weaker than using the full sample, while the performance of

LL-Boost takes a more significant hit.

2. LL-Boost and LC-Boost forecasts both seem to underperform forecasts using

the full sample when there is a break of in the conditional variance rather than

the conditional mean.

3. Using LL-Boost leads to large improvements in forecasting performance vs LC-

Boost when we have significant time variation in the coefficients. This is espe-

cially true when the time variation occurs closer to the forecast date and/or the

coefficient functions are highly non-linear.

4. Time varying methods are likely to be less useful when we have a low sample

18We also repeated each of the simulations using the Gaussian kernel instead of the uniform kernel.
In general we found very similar performance between the two kernels. For the case of t5 innovations
and little to no time variation in the coefficients, we found the Gaussian kernel was more effective
for LL-Boost. Given the close similarities between the kernels, we omit the results.
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Table 1.1: Relative MSFE, Gaussian Innovations

DGP AR (3) Rolling AR (3) Rolling Boost LC-Boost LL-Boost Lasso
1 2.22 2.41 1.92 1.05 1.19 1.06
2 1.79 1.79 1.42 1.08 1.16 1.23
3 1.16 1.24 1.01 .61 .67 1.14
4 .91 .98 .80 .55 .58 1.02
5 .72 .78 .63 .76 .53 .92
6 5.25 5.93 1.62 .91 .90 1.06
7 3.47 3.75 .96 .68 .60 1.06
8 4.92 5.30 1.53 .59 .56 1.13
9 1.94 2.08 .73 .52 .35 1.20
10 1.77 1.88 .95 .79 .53 1.22
11 2.81 3.10 .99 .75 .61 1.15
12 1.04 1.09 .32 .63 .16 1.15
13 2.11 2.20 .83 .63 .39 1.20
14 .73 .78 .67 .80 .52 .97

size coupled with high noise. Some of the difficulties in this setting may be

overcome by selecting the bandwidth parameter using a larger validation set

along with a finer grid of bandwidth values.

1.7 Application to Macroeconomic Forecasting

As discussed in the introduction, the parameter instability of various macroeco-

nomic series has long been established in the econometrics literature. Some examples

include Stock and Watson (1996, 2009); Breitung and Eickmeier (2011), all of which

find instability in either the univariate relationship of a large number of series or

in the factor loadings of a dynamic factor model of a large panel of macroeconomic

series. Similarly, Stock and Watson (2003) and Rossi and Sekhposyan (2010) have

found evidence of instability in the predictive ability of various series in forecasting

output and inflation. However, the question of whether forecasts can be improved by

modeling parameter instability, especially when using high dimensional predictors, is
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far less clear.

Proponents of modeling parameter instability include works such as Clements and

Hendry (1996) which argue that ignoring these instabilities are the main sources of

forecast breakdowns. On the other hand, empirical evidence in favor of ignoring

instabilities include Stock and Watson (1996) which had shown there is little benefit

to modeling time variation in a wide range of autoregressive and bivariate forecasts,

and Kim and Swanson (2014); Koop (2013) which showed forecasts estimated by

recursive estimation (using the full sample) performed as well as or better than rolling

window forecasts for a range of models estimated from a large panel of macroeconomic

series. Additionally, a number of works such as Pettenuzzo and Timmermann (2017);

Koop and Korobilis (2013); Eickmeier et al. (2015), have estimated TVP models

using Bayesian methods and their results suggest that TVP models offer only minor

improvements in the accuracy of point forecasts when compared to low dimensional

constant parameter models.19 Lastly, on the theoretical side, Bates et al. (2013) has

shown the standard principal components estimator remains consistent even in the

presence of “small" breaks and/or mild time variation in the factor loadings of a

dynamic factor model.

To illustrate the difficulty of exploiting parameter instability, consider a simple

example where there is a single discrete structural break in the forecasting model.

Even if the researcher knew the precise date of the break and decided to use only

post break observations for estimation there is a bias-variance trade off in using less

data for estimation (Pesaran and Timmermann, 2007). Therefore in the presence of

19These works did find TVP models produced larger improvements to density forecasts. We
note that works such as Koop and Korobilis (2012); Groen et al. (2013); Chan et al. (2012) have
also estimated TVP models using Bayesian methods and found significant improvements to point
forecasts when compared to a low dimensional constant parameter benchmark. However, these works
are restricted to forecasting inflation with low dimensional predictors.
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small instabilities, such as small breaks or very slowly varying coefficients, using the

entire sample through recursive estimation can be more beneficial than using only a

subset of the data. Due to this bias-variance tradeoff and the uncertainty around the

precise nature of time variation, the majority of works on macroeconomic forecasting

tend to use the full sample available when forecasting. Furthermore, these issues are

more severe when using high dimensional predictors.

Given the above discussion, we use the methods developed in this paper to answer

a number of questions such as:

• Does modeling parameter instability improve macroeconomic forecasts?

• Which models are best able to deal with underlying parameter instability?

• Which variables and forecast horizons benefit most from the use of time varying

parameter models?

• During which time periods do time varying methods perform best?

To answer these questions, we use the August 2018 (2018:8) vintage of the FRED-

MD database which contains 128 monthly macroeconomic series collected from a

broad range of categories. See McCracken and Ng (2016) for a more detailed descrip-

tion of each series, as well as transformations needed to achieve approximate station-

arity.20 We remove 5 series which contain large amounts of missing values, leaving

us with 123 monthly macroeconomic series which run from January 1960 to August

2018. We focus our analysis on 8 major macroeconomic series: Industrial Production

(IP), Total Nonfarm Payroll (PAYEMS), Unemployment Rate (UNRATE), Civilian

Labor Force (CLF), Real Personal Income Excluding Transfer Receipts (RPI), Con-

sumer Price Index (CPI), Effective Fed Funds Rate (FF), and Three Month Treasury

20We depart from the recommended transformations for the housing series (Group 4) which we
treat as I(1) in logs.
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Bill (TB3MS). For each series, we compare the out of sample forecasting performance

of several models at the h = 1, 3, 6, 12 month forecasting horizons.

1.7.1 Methods and Forecast Design

For all the methods we consider, let Y h
t,T denote our h-step ahead target variable to

be forecast. As an example, for CPI our target variable is Y h
t,T = 1200

h
log( CPIt

CPIt−h
), and

we define the target similarly for the rest of the series except FEDFUNDS and TB3MS

which are modeled as I(1) in levels (i.e. Y h
t,T = 12

h
(FEDFUNDSt−FEDFUNDSt−h)).

Next let zt−h,T denote the rest of our 122 predictor series at time t − h, and let

xt−h = (Yt−h,T , . . . , Yt−h−3, zt−h,T , . . . ,zt−h−3,T ) where Yt−h,T = Y 1
t−h,T .

For all time varying methods we estimate the bandwidth using the cross validation

procedure detailed in section 1.4. For selecting the bandwidth we use a grid of values

from .3 to 1 with increments of .025 i.e. B = [.3, .325, . . . . , 1], and we use the last

ω = 60 observations as our validation set.21 Additionally, we estimate all models

under consideration using time invariant methods in order to assess the benefits of

directly modeling time variation. We evaluate the forecasting performance of the

following methods:

Method Parameter Predictors considered
AR time invariant (Yt−h,T , . . . , Yt−h−3)
TV-AR local constant (Yt−h,T , . . . , Yt−h−3)
Boost time invariant xt−h
Lasso time invariant xt−h
LC-Boost local constant xt−h
LL-Boost local linear xt−h
LC-Boost-Factor local constant (Yt−h,T , . . . , Yt−h−3,Ft−h,T , . . . ,Ft−h−3,T )
LL-Boost-Factor local linear (Yt−h,T , . . . , Yt−h−3,Ft−h,T , . . . ,Ft−h−3,T )
DI time invariant (Yt−h,T , . . . , Yt−h−3,Ft−h,T )
Boost Factor time invariant (Yt−h,T , . . . , Yt−h−3,Ft−h,T , . . . ,Ft−h−3,T )

21For all local constant methods we report results using the uniform kernel, the results are very
similar if we use the Gaussian kernel. For local linear methods we use the Gaussian kernel.
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The last four methods are of the following form:

Y h
t,T = α(t/T ) +

3∑
j=0

αj(t/T )YT−h−j,T +
l∑

j=0

β′j(t/T )Ft−h−j,T + εt, (1.9)

where Ft−h,T = (F1,t−h,T , . . . , Fk,t−h,T ) is a k-dimensional vector of factors which are

estimated using the principal components of our 122 predictor series zt−h,T . We

ignore possible time variation in our predictors when estimating our factors, and rely

on results showing the consistency of the principal components estimator under mild

time variation and structural breaks in the factor loadings (Bates et al., 2013). We

instead focus on modeling the time variation in the coefficients of the forecasting

equation (1.9). As an example, for LC-Boost Factor we set k = 8, l = 3 and estimate

the model using our LC-Boost algorithm. And for DI we set k = 4, l = 0 and estimate

the model assuming time invariant coefficients and utilizing the full sample.22

Remark 1. We note that constant parameter versions of high dimensional methods

(e.g. Boost, Boost Factor, Lasso) have greater adaptability to time variation than low

dimensional regressions which assume the set of relevant predictors/factors is fixed

over time. The idea is that by combining information from a large set of predictors

our forecasts are more robust to instabilities which occur in a specific predictor’s

forecasting ability.23 When combined with a recursive window forecasting scheme,

these methods indirectly capture at least some of the time variation present in the

data.

We use an expanding (recursive) window scheme designed to simulate real time

22Additionally, Stock and Watson (2009) conjectured, for macroeconomic data, that the time
variation in the coefficients β(t/T ) is far more important than possible time variation in the factors.
Their empirical results showed in sample estimates of the factors as well in-sample forecasting results
were little changed by allowing for a one time break in the factors.

23Empirical evidence of this was provided in Carrasco and Rossi (2016).
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forecasting. Our out of sample forecasting period starts in 1971:9 and ends in 2018:8

for a total of 564 months (47 years). To construct the first forecast of time t=1971:9

we estimate the factors, the coefficients, and select the hyperparameters using data

available only until time 1971:9-h. We then expand our window by one observation

and estimate the forecast of time t+1=1971:10 using information available until time

t− h+ 1, and so on until we reach the end of our sample.

1.8 Results

Our benchmark model for all series and forecasting horizons is an AR(4) model

with time invariant parameters. Due to space considerations we report some of our

results in the appendix. We start by giving an overview of the results for the full out

sample period, which are reported in table 1.2 for h = 12 and in the appendix for

h = 6, 3, 1, before analyzing how performance varies over time. For the time varying

methods we observe the following: the TV-AR model fails to improve upon the

benchmark AR model for the vast majority of series and forecast horizons, confirming

the results of Stock and Watson (1996) on an expanded sample. Out of our four

time varying Boosting methods, LC-Boost Factor appears to perform best. LC-Boost

Factor outperforms the benchmark for all series and forecast horizons, it also performs

best, out of all models, the majority of times. In contrast, our LL-Boosting methods

appear to perform poorly relative to LC-Boost.24 Given the results in section 1.6,

this suggests that the parameters as a function of time may not be sufficiently curvy

enough for local linear methods to benefit. For time invariant methods we observe

the following: Boost-Factor and Boost performs similarly and generally outperform

DI and Lasso models.

24We omit the performance of LL-Boost as it was outperformed by both LL-Boost Factor and
both LC-Boost methods.
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Comparing across forecast horizons: we observe that, for all high dimensional

methods, improvements to the benchmark are greater as we increase our forecast

horizon. For h = 1, many of the methods appear to perform similarly, with Boost

Factor and LC-Boost Factor appearing to perform best. For longer forecast horizons,

LC-Boost Factor is the best performing model the majority of the time, with the gap

between LC-Boost Factor and its competitors widening as we increase the forecast

horizon. Additionally, the benefits to modeling time varying parameters are more

apparent at longer forecast horizons.

1.8.1 Analyzing Performance Over Time

Relying only on the aggregate performance of a model over the entire out of sample

period can hide many important details and lead to misleading conclusions. We rely

on two methods to analyze how performance varies over time; the first is to plot

the MSFE as a function of the start date for the out of sample forecasting period.

More specifically, let T1 denote the start forecast date, then for a given method i and

horizon h, we calculate

MSFEh
(i)(T1, T2) =

∑T2

t=T1
ε̂2t,(i)∑T2

t=T1
ε̂2t,(AR)

, with T2 = 2018 : 8. (1.10)

The second method is to analyze the forecasting performance over three important

subperiods. The first subperiod, which we refer to as “Pre-Great Moderation", con-

sists of 136 observations, 1971:9-1982:12, and corresponds roughly to the period before

the start of the “Great Moderation". The second subperiod is from 1983:1-2006:12,

and corresponds roughly to the “Great Moderation", a period where the volatility of

a large number of macroeconomic series was significantly reduced (Stock and Watson,

2002b). The third subperiod is from 2007:1-2018:8, which we refer to as “Post Great
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Moderation", covers the period right before the great recession and takes us to the

end of our sample.

For the first method, we let T1 vary from 1971:9 until 2006:12. We plot the MSFE

by T1 for the top 5 performing methods: LC-Boost Factor, LC-Boost, Boost, Boost

Factor, and DI. The figures 1.1-1.3; contain the results for horizons h = 12, 6, 1 re-

spectively.25 Looking at figures 1.1-1.3, we see that LC-Boost Factor is easily the best

performing method for horizon h = 12, 6, and to a lesser extent h = 1. Comparing

across all horizons, we notice:

• The performance improvements for LC-Boost factor, relative to its time invari-

ant counterparts, are more apparent as we increase the forecast horizon.

• As we increase T1, the gap between LC-Boost Factor and the time invariant

methods widens. In particular we notice a large separation in performance

starting during great moderation period.

Additionally, we also observe that the commonly used DI model loses much of its

predictive ability during the Great moderation and performs worse than the bench-

mark for about half of the series. This result suggests that DI gained most of its

predictability vs the benchmark during the “Pre-Great Moderation" period.

Table 1.2 contain the results for each of the subperiods for horizon h = 12; the

corresponding results for h = 6, 3, 1 are found in the appendix. For each subperiod

we report the MSFE, relative to the MSFE of the benchmark AR(4) model. We start

with the “Pre-Great Moderation" period, and note that with the exception of TV-AR

models, all other models strongly outperform the benchmark model the majority of

the time during this period. Time invariant methods such as Boost Factor and DI

models perform best, and their performance is strongest when forecasting at longer

25The corresponding results for h = 3 are reported in the appendix.
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horizons. LC-Boost factor appears to be slightly lag behind these two methods during

this time period. As we enter the “Great Moderation" period, the performance of all

models generally declines relative to the AR benchmark. In particular, time invariant

methods such as DI and Boost take a large hit and underperform the benchmark in

many cases, especially for h = 12. LC-Boost Factor undergoes a much smaller decline

compared to the rest of the models, and emerges as the best performing model during

this time period. Importantly, we also observe that LC-Boost performs at the same

level or worse than its time invariant counterpart Boost in the majority of cases.

This suggests that although there seems to be a large amount of time variation in

this period, the bias variance tradeoff in modeling it is not favorable to a model with

a large amount of potential predictors (∼ 500 predictors).

During the “Post Great Moderation" period we notice two interesting develop-

ments: The performance of LC-Boost methods show large improvements over both

the benchmark AR model, and their time invariant counterparts, for all forecast hori-

zons, with the improvement being greatest for longer horizons. On the other hand,

time invariant methods experience smaller improvements, and in many cases their

performance worsens compared to the Great Moderation period.

1.8.2 Assessing Benefits of Modeling Time Varying Parame-

ters

In order to assess the benefits of directly modeling parameter instability, we com-

pare the performance of LC-Boost Factor vs Boost-Factor. These also happen to be

the best time varying and time invariant methods respectively. We start our anal-

ysis by first plotting the MSFE of LC-Boost Factor, relative to the MSFE of Boost

Factor, as a function of the start date for the out of sample forecast period, i.e.
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MSFE(LCBoostFactor)(T1, T2)/MSFE(BoostFactor)(T1, T2). The results are in figure 1.4.

We observe that for all series and forecast horizons LC-Boost Factor almost never

performs worse than Boost Factor, and outperforms it the vast majority of the time.

Furthermore, the gap between the two methods widens as we increase the start date

of the out of sample period, and as we increase the forecast horizon. For example, if

we consider horizon h = 12, and we start the out of sample period in the early 1990’s,

LC Boost offers, on average, over a 20 percent improvement over Boost-Factor. We

observe similar patterns, although the improvements are not as large (∼ 10-15 percent

on average), for horizons h = 3, 6. An exception seems to be for h = 1, which shows

little improvements for the majority of series, with the exceptions coming from the

two interest rate series and EMS.

Next, we attempt to get a finer look at how the benefits of modeling parameter

instability vary over time. We first define the local MSFE (L-MSFE), of method i at

time t0 as :

L-MSFEi(t0) =

∑t0+∆
t=t0−∆ ε̂

2
t,(i)∑t0+∆

t=t0−70 ε̂
2
t,(AR)

, RL-MSFEi(t0) =
L-MSFEi(t0)

L-MSFEBoostFactor(t0)
(1.11)

with the convention that ε̂t,(i) = 0 for t ≤ 0, t ≥ T . This amounts to us-

ing a uniform kernel to weight the forecast errors with a bandwidth chosen such

that the window size has ∆ = 70 observations. We then plot RL-MSFEi(t0) for

i =LCBoostFactor, for t0 = 1977:3, . . . , 2012:10 for all series and forecast hori-

zons. The endpoints are chosen so that the first and last values in the plot correspond

to the RL-MSFE during the “Pre-Great Moderation" and “Post-Great Moderation"

periods respectively.

The results are in figure 1.5, and we observe that the first value is usually near or

above one for all variables except for CLF (Civilian Labor Force). This suggests that
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during the “Pre-Great Moderation" there seems to be little or no benefit to modeling

time variation. This can reflect either a lack of underlying parameter instability

during this time period, or the relatively low sample size available combined with

high volatility made it difficult to exploit the time variation present. During the

Great Moderation period, almost all series experience large declines in RL-MSFE,

with the exact timing of the decline differing by series. For IP and RPI the benefits

to modeling parameter instability appear to decrease from their mid 1990’s levels,

while for the rest of the series we see further improvements until the end of the

sample. These results suggest that there is a large amount of parameter instability

which started during the Great moderation period and continued though the sample.

Lastly, we attempt to examine the degree and timing of time variation by examin-

ing the bandwidth values selected. We define the local bandwidth of LC-Boost Factor

as:

L-BW(t0) =

t0+∆∑
t=t0−∆

b̂t0/(2∆), (1.12)

with the convention that b̂t0 = 0 for t ≤ 0, t ≥ T . Recall that b̂t0 is the bandwidth

chosen at time t0. Since we are using the uniform kernel, b̂t0 represents the fraction

of the sample available at time t0 that we are using for estimation. As as example, at

time t0=1977:3 we have a total of 196 observations available for estimation, therefore

a value of b̂t0 = .61 for t0=1977:3 implies we are using ≈ 120 observations. We

set ∆ = 70 observations, and then plot L-BW(t0) for t0 = 1977:3, . . . , 2012:10 for

all series and forecast horizons. As an additional comparison we also plot the local

bandwidth implied by a rolling window estimator which uses a fixed window length

of 120 observations.

The results are seen in figure 1.6, and we notice that for the pre Great Moderation
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period the local bandwidths are usually between .7-.8 for most series. As we enter

the Great Moderation we notice that the local Bandwidths generally tend to increase

initially before declining. However, we notice the timing and degree of declines differs

by series. For some series such as IP and RPI, the local BW tends to increase after

reaching their lows in the mid 1990s, whereas for other series such as UNRATE,

FEDFUNDS, and TB3MS the local BW start their decline in the 1990s. In contrast,

we see that using a fixed rolling window of 120 observations implies a monotonically

decreasing bandwidth and assumes the same bandwidth regardless of series or horizon.

To determine the importance of estimating the optimal bandwidth via cross valiation,

we compare the local MSFE of LC-Boost Factor to Boost Factor estimated using a

120 observation rolling window in the appendix. The results show that for the vast

majority of series and horizons the rolling window estimator is strongly outperformed

by LC-Boost Factor with the largest out performance occurring during the Great

Moderation period.

Overall our results suggest the following conclusions:

1) Parameter instability starts to appear around the beginning of the Great Mod-

eration period. This instability seriously deteriorates the relative forecasting

performance of time invariant methods; with the effect being more severe for

longer horizon forecasts.

2) Due to the large improvements in point forecasts from our methods, it is likely

that this instability has a substantial impact on the conditional mean as well

as the variance of various economic series.

3) Lastly, there are large benefits to modeling parameter instability if done prop-

erly. Given the high bias variance tradeoff encountered in using a reduced

sample size, these benefits can easily be missed. For example, models such as
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LC-Boost have more difficulty in learning the time variation in the data due to

the large amount of potential predictors.

4) The commonly used rolling window estimation method can understate the ben-

efits of modeling parameter instability by failing to account for differences in

the degree of parameter instability by series, forecast horizon, and time period.

To elaborate more on point 3) above, we compare the L-MSFE of the following

models in the appendix: LL-Boost vs LC-Boost, LC-Boost vs LC-Boost Factor, and

LC-Boost vs Boost. We see from the results that LL-Boost Factor was strongly

outperformed by LC-Boost Factor in the earlier parts of the sample, suggesting that

there was little time variation during the pre-great Moderation period. As our sample

size available for estimation increases we see the performance of LL-Boost factor

improve to the point where it does as well as or outperforms LC-Boost factor in about

half of the series, especially for longer horizons. Compared to LC-Boost Factor, we

observe that the benefits of modeling time variation via LC-Boost are smaller and are

realized far later in the sample. As an example, for h = 12 we notice that LC-Boost

performs worse than Boost during most of the Great moderation period. Additionally,

for many of the series, the improvements of LC-Boost over Boost start to occur near

the end of the great moderation period. In contrast, LC-Boost Factor is able to adapt

to the time variation far earlier as a result of having a more favorable bias variance

tradeoff.

1.9 Conclusion

In this work, we have presented two L2 Boosting algorithms for estimating high

dimensional predictive regressions with time varying coefficient. We proved the con-

sistency of both of these methods, and showed their effectiveness in modeling the pa-
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rameter instability present in macroeconomic series. Compared to other TVP meth-

ods, our methods are very efficient computationally even for high dimensional data; a

single LC-Boost forecast, including implementing the cross validation procedure, can

be estimated within a matter of seconds. Additionally, they can be implemented by

researchers and practitioners using the easy to use R package mboost. Furthermore,

the boosting framework can be easily adapted to fitting more complex non-linear

models.

There are many topics available for further study, one such topic is in selecting

the important bandwidth parameter for our models. Although our cross validation

procedure seems to perform adequately, we welcome further improvements to this

methodology. Lastly, although our empirical example focused on forecasting, our

models are applicable in a far broader range of settings.
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Table 1.2: Relative MSFE h = 12

Full Out of Sample Period 1971:9-2018:8
IP PAYEMS UNRATE CLF RPI CPI FF TB3MS

TV-AR 1.04 .99 1.1 .64 .99 .86 1 1.07
DI .79 .79 .69 .99 .84 .94 .87 .91

Lasso .77 .81 .75 .77 .93 .96 .76 .89
Boost .78 .73 .73 .74 .85 .88 .79 .88

Boost Factor .75 .81 .62 .96 .80 .89 .78 .85
LC-Boost .74 .73 .62 .66 .88 .80 .85 .92

LC-Boost Factor .62 .64 .58 .63 .75 .77 .84 .90
LL-Boost Factor .74 .85 .70 .76 .76 .82 1.20 1.37

“Pre-Great Moderation" 1971:9-1982:12
IP PAYEMS UNRATE CLF RPI CPI FF TB3MS

TV-AR 1.07 1 1.15 .71 .96 1.11 1.01 1.14
DI .38 .49 .48 1.51 .61 82 .88 .89

Lasso .30 .51 .41 1.27 .71 1.13 .76 .77
Boost .27 .44 .43 1.24 .67 .92 .72 .75

Boost Factor .32 .50 .43 1.34 .65 .84 .74 .80
LC-Boost .29 .44 .38 .86 .77 1.03 .70 .79

LC-Boost Factor .31 .54 .43 .60 .66 .94 .77 .81
LL-Boost Factor .41 .83 .66 .86 .80 1.04 1.28 1.57

“Great Moderation" 1983:1-2006:12
IP PAYEMS UNRATE CLF RPI CPI FF TB3MS

TV-AR 1.12 1 1.11 .65 1.06 1.07 1.04 1.03
DI 1.18 1.08 .75 .88 1 1 .85 .92

Lasso 1.23 1.32 .97 .85 1.10 .90 .80 1.03
Boost 1.36 1.20 .95 .81 1.08 .91 .85 1

Boost Factor 1.25 1.16 .67 .89 1 .90 .80 .90
LC-Boost 1.43 1.26 .97 .82 1.16 .90 1.07 1.05

LC-Boost Factor .99 .89 .71 .71 .89 1 .97 1.01
LL-Boost Factor 1.03 1 .79 .90 .86 1.14 1.16 1.22

“Post Great Moderation" 2007:1-2018:8
IP PAYEMS UNRATE CLF RPI CPI FF TB3MS

TV-AR .96 .98 1 .58 .96 .41 .79 .83
DI 1.10 1.02 .91 .76 .88 1.02 .94 1

Lasso 1.15 .76 .99 .36 .95 .79 .89 1.07
Boost 1.13 .72 .91 .33 .81 .81 1.13 1.25

Boost Factor 1.04 .98 .82 .79 .77 .94 1 1.01
LC-Boost .94 68 .60 .38 .73 .48 1.29 1.21

LC-Boost Factor .82 .54 .66 .57 .72 .42 .92 .98
LL-Boost Factor 1.01 .69 .66 .55 .66 .33 .56 .67
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Figure 1.1: MSFE by start date of out of sample period. Horizon h = 12. More specifically
we plot: MSFE12

(i)(T1, T2) =
∑T2

t=T1
ε̂2t,(i)/

∑T2

t=T1
ε̂2t,(AR), where we T1 vary from 1971:9 until 2006:12,

with T2=2018:8. Shaded regions represent NBER recession dates.
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Figure 1.2: MSFE by start date of Out of sample period. Horizon h = 6. See notes to
figure 1.1.
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Figure 1.3: MSFE by start date of out of sample period. Horizon h = 1. See notes to
figure 1.1.
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Appendix A: Proofs

Proof of Theorem 1.

The proof follows the framework of Buhlmann (2006), which handled the case of

boosting for iid data using linear least squares base learners.26 The proof depends on

an application of Temlyakov’s result (Temlyakov, 2000) for the population version of

L2 boosting known as “weak greedy algorithm". To simplify the notation, we work

with the uniform kernel and show the proof for the rescaled time point u = T/T = 1.

The proof is almost exactly the same for more general kernels satisfying condition

3.6, and for other rescaled time points. We start by considering a step size of ν = 1,

and smaller step sizes can be handled as in section 6.3 of Buhlmann (2006).

We introduce the following notation: Let x̃T−h(u) and ỸT (u) be the stationary

approximation to xT−h,T and YT,T respectively with approximation error Op(T
−1)→

0. Let the inner product
〈
X̃j,t(u), X̃k,t(u)

〉
= E(X̃j(u)X̃k(u)) with ||X̃j(u)||2 =

E(X̃2
j (u)). For ease of presentation let ||X̃j(u)||2 = 1, ∀j ≤ pT . Let f(u, x̃T−h(u)) =

x̃T−h(u)β(u) be the stationary approximation to f(u,xT−h,T ) with approximation

error Op(T
−1). For readability, we define, for any rescaled time point u0 ∈ [0, 1]:

f(x̃u0T−h(u0)) ≡ f(u0, x̃u0T−h(u0)), and f(xu0T−h,T ) ≡ f(u0,xu0T−h,T ).

We now define a sequence of remainder functions for the population version of L2

26Since we refer to Buhlmann (2006) during our proof, we try, when its possible, to keep the
notation consistent with their work.
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Boosting:

R0f(x̃T−h(u)) = f(x̃T−h(u)),

Rmf(x̃T−h(u)) = Rm−1f(x̃T−h(u))−
〈
Rm−1f(x̃T−h(u)), X̃Sm,T−h(u)

〉
X̃Sm,T−h(u),

Where Sm = argmaxj|
〈
Rm−1f(x̃T−h(u)), X̃j,T−h(u)

〉
|. Given that this criterion is

sometimes infeasible to realize in practice, a weaker criterion is: Choose any Sm

which satisfies:

|
〈
Rm−1f(x̃T−h(u)), X̃Sm(u)

〉
| ≥ b ∗ sup

j
|
〈
Rm−1f(x̃T−h(u)), X̃j(u)

〉
|, for some b ∈ (0, 1]

(1.13)

We then obtain:

f(x̃T−h(u)) =
m−1∑
j=0

〈
Rjf(x̃T−h(u)), X̃Sj+1

(u)
〉

+Rmf(x̃T−h(u)),

||Rmf(x̃T−h(u))||2 = ||Rm−1f(x̃T−h(u))||2 − |
〈
Rm−1f(x̃T−h(u)), X̃Sm(u)

〉
|2

If (1.13) is met, then we have the following bound, for the population version of L2

Boosting, provided by Temlyakov (2000):

||Rmf(x̃T−h(u))||2 ≤ B(1 +mb2)
−b

4+2b (1.14)

with as defined in (1.13), and supu∈[0,1] |β(u)| ≤ B <∞.

To analyze the sample version of our LC-Boost algorithm, we introduce the fol-
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lowing notation:

〈
Xj,·,T , Xk,·,T

〉
(T )

=
T∑
t=1

Kb(t/T − u)Xj,t−h,TXk,t−h,T = S−1
T

T∑
t=T−ST

Xj,t−h,TXk,t−h,T

〈
f,Xk,·,T

〉
(T )

=
T∑
t=1

Kb(t/T − u)f(xt−h)Xk,t−h,T = S−1
T

T∑
t=T−ST

f(xt−h)Xk,t−h,T

||Xj,·,T ||2(T ) = S−1
T

T∑
t=T−ST

X2
j,t−h,T

As previously, we can define the sequence of sample remainder functions as:

R̂0
Tf(xT−h,T ) = f(xT−h,T ),

R̂m
T f(xT−h,T ) = R̂m−1

T f(xT−h,T )−
〈
R̂m−1
T f,XŜm,·,T

〉
(T )
XŜm,T−h,T ,m = 1, 2, . . .

where: Ŝ1 = argmaxj|〈Y·,T , Xj,·,T 〉| and Ŝm = argmaxj|〈R̂m
T f,Xj,·,T 〉|. Therefore,

R̂m
T f(xT−h,T ) = f(xT−h,T ) − F̂

(MT )
lc (u,xT−h,T ), is the difference between f(xT−h,T )

and its LC-Boost estimate.

Lastly, to proceed with the proof, we define a sequence of semi-population version

remainder functions as:

R̃0
Tf(x̃T−h(u)) = f(x̃T−h(u)),

R̃m
T f(x̃T−h(u)) = R̃m−1

T f(x̃T−h(u))−
〈
R̃m−1
T f(x̃T−h(u)), X̃Ŝm,T−h(u)

〉
X̃Ŝm,T−h(u),

The difference between the population and the semi-population remainder functions,

is that the semi-population version uses selectors Ŝm estimated from the sample.

The strategy of the proof is: first we establish that the selectors Ŝm satisfy a finite

sample analogue of (1.13), which allows us to apply Temlyakov’s result (1.14) to the

semipopulation version. Lastly, we analyze the difference between the sample and the
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semipopulation versions: R̂m
T f(xT−h,T )− R̃m

T f(x̃T−h(u)).

We need the following lemma:

Lemma 1. Under conditions 1.5.1, 1.5.2, 1.5.3, 1.5.4, and for κ as defined in The-

orem 1, the following hold:

1. supj,k≤pT |S
−1
T

∑T
t=T−ST Xj,t,TXk,t,T − E(X̃j,T (u)X̃k,T (u))| = ζT,1 = Op(S

−κ
T )

2. supj≤pT |S
−1
T

∑T
t=T−ST Xj,t−h,T εt,T | = ζT,2 = Op(S

−κ
T )

3. supj≤pT |S
−1
T

∑T
t=T−ST Xj,t,Tf(xt,T )− E(X̃j,T (u)f(x̃T (u)))| = ζT,4 = Op(S

−κ
T )

4. supj≤pT |S
−1
T

∑T
t=T−ST Xj,t−h,TYt,T )− E(X̃j,T−h(u)YT (u)))| = ζT,4 = Op(S

−κ
T )

Let ζT = max(ζT,1, ζT,2, ζT,3, ζT,4) = Op(S
−κ
T ) and denote by ω a realization of

all ST sample points involved in estimation. The next lemma bounds the difference

between the sample and population learners at step m.

Lemma 2. Suppose conditions 1.5.1, 1.5.2, 1.5.3, and 1.5.4 hold. Then for κ as

defined in Theorem 1 and on the set AT = {ω : ζT (w) < 1/2}, we have:

sup
j≤pT
|
〈
R̂m−1f,Xj,·,T

〉
(T )
−
〈
R̃m−1f(x̃T−h(u)), X̃j,T−h(u)

〉
| ≤ C(5/2)mζT ,

where C does not depend on m,T .

It’s clear from lemma 1, that P (AT )→ 1. Which gives us the following lemma:

Lemma 3. Suppose the conditions needed for lemma 1 hold, then for m = mT →∞
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slow enough we have:

||R̃m
T f(x̃T−h(u))|| = op(1)

We now analyze the term: R̂m
T f(xT−h,T ) = f(xT−h,T )− F̂ (MT )

lc (u,xT−h,T ). By the

triangle inequality we obtain:

||R̂m
T f(xT−h,T )|| ≤ ||R̃m

T f(x̃T−h(u))||+ ||R̂m
T f(xT−h,T )− R̃m

T f(x̃T−h(u))|| (1.15)

the first term can be handled with lemma 3. For the second term, let AT (m) =

||R̂m
T f(xT−h,T ) − R̃m

T f(x̃T−h(u))||. Using the definitions of the remainder functions,

we then have a recursive relation:

AT (m) ≤ AT (m− 1) + |
〈
R̂m−1f,XŜm,·,T

〉
(T )
−
〈
R̃m−1f, X̃Ŝm,T−h

〉
|||XŜm,T−h,T ||

+ ||
〈
R̃m−1f, X̃Ŝm,T−h

〉
||||XŜm,T−h,T − X̃Ŝm,T−h(u)||

≤ AT (m− 1) + C(5/2)mζT +O(1/T ) on the set AT

Where the last inequality follows from local stationarity and lemma 2. By the above

recursive equation we obtain: ||R̂m
T f(xT−h,T ) − R̃m

T f(x̃T−h(u))|| ≤ 3mζTC. If we

choose m = mT → ∞ slow enough (e.g mT = o(log(T ))), then along with lemma 3

and (1.15) we obtain:

||R̂m
T f(xT−h,T )|| = ||f(xT−h,T )− F̂ (MT )

lc (u,xT−h,T )|| = op(1)
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Proof of Lemma 1.

We start with (i), and we bound:

P (|S−1
T

T∑
t=T−ST

Xj,t,TXk,t,T − E(X̃j,T (u)X̃k,T (u))| > S−κT ) (1.16)

≤ P

(
|S−1
T

T∑
t=T−ST

[Xj,t,TXk,t,T − E(Xj,t,TXk,t,T )]| (1.17)

+ |S−1
T

T∑
t=T−ST

E(Xj,t,TXk,t,T )− E(X̃j,T (u)X̃k,T (u))| > S−κT

)
(1.18)

We deal with the second term, which can be thought of as the bias. The product

process Xj,t,TXk,t,T is locally stationary with the stationary approximation at rescaled

time t/T being X̃j,t(t/T )X̃k,t(t/T ). One can see this by noting:

||X̃j,T (u)X̃k,T (u))− X̃j,T (v)X̃k,T (v))||r/2 ≤ (||X̃j,T (u)||r||X̃k,T (u)− X̃k,T (v)||r

+ ||X̃k,T (u)||r||X̃j,T (u)− X̃j,T (v)||r)

≤ C(|u− v|)

We can employ the same techniques to that ||Xj,t,TXk,t,T − X̃j,t(t/T )X̃k,t(t/T )|| ≤

C(T−1).

Therefore by local stationarity we obtain:

|S−1
T

T∑
t=T−ST

E(Xj,t,TXk,t,T )− E(X̃j,T (u)X̃k,T (u))| ≤ O(ST/T ) (1.19)

Note that if u is an interior point (i.e u ∈ (bT , 1− bT ) where bT is the bandwidth), the

bound improves to O((ST/T )2). Let σ̃jk(u) = E(X̃j,t(u)X̃k,t(u)), then by condition
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1.5.3, we obtain:

σ̃jk(t/T ) = σ̃jk(u) + ˜̇σjk(u)(t/T − u) +O(b2
T )

where ˜̇σjk(u) refers to the derivative of the covariance matrix w.r.t the rescaled time

index. This gives us:

|S−1
T

Tu+ST∑
t=Tu−ST

E(Xj,t,TXk,t,T )− E(X̃j,T (u)X̃k,T (u))| ≤ O((ST/T )2) (1.20)

Now we deal with the term (1.17), note that the functional dependence measure

of the stationary approximation Using this we compute the functional dependence

measure of X̃j,T (u)X̃k,T (u)) as:

sup
u∈[0,1]

||X̃j,T (u)X̃k,T (u))− X̃∗j,T (u)X̃∗k,T (u))||r/2 ≤ sup
u∈[0,1]

(||X̃j,T (u)||r||X̃k,T (u)− X̃k,T (u)∗||r

(1.21)

+ sup
u∈[0,1]

||X̃k,T (u)||r||X̃j,T (u)− X̃j,T (u)∗||r)

Therefore, the X̃j,T (u)X̃k,T (u)) has a finite cumulative dependence measure by the

weak dependence condition imposed on x̃t(u). Taking into account (1.19), and the

above we can then apply theorem 2.7 (iii) in Dahlhaus et al. (2018) to obtain:

P (|S−1
T

T∑
t=T−ST

Xj,t,TXk,t,T − E(X̃j,T (u)X̃k,T (u))| > S−κT )

≤ O(S
−r/2+rκ/2+1
T ) +O(exp(−S1−2κ

T ))

Applying the union bound then completes the proof.
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For (ii), we proceed similarly. We bound:

P (|S−1
T

T∑
t=T−ST

Xj,t−h,T εt,T − E(X̃j,T−h(u)ε̃T (u))| > S−κT ) (1.22)

≤ P

(
|S−1
T

T∑
t=T−ST

[Xj,t−h,T εt,T |+ |O(T−1)| > S−κT

)
(1.23)

Given that E(Xj,t−h,T εt,T ) = 0, ∀j. We have that E(X̃j,T−h(u)ε̃T (u)) = O(T−1). Now

we apply the same procedure as previously. We have that:

sup
u∈[0,1]

||X̃j,t(u)ε̃t(u))− X̃∗j,t(u)ε̃∗t (u))||τ ≤ sup
u∈[0,1]

(||X̃j,t(u)||r||ε̃t(u)− ε̃t(u)∗||q (1.24)

+ sup
u∈[0,1]

||ε̃t(u)||q||X̃j,t(u)− X̃j,t(u)∗||r)

This has a finite cumulative functional dependence measure by the weak dependence

conditions imposed. Once again, by applying theorem 2.7 (iii) in Dahlhaus et al.

(2018) we obtain:

P (|S−1
T

T∑
t=T−ST

Xj,t−h,T εt,T − E(X̃j,T−h(u)ε̃T (u))| > S−κT ) (1.25)

≤ O(S−κ+τκ+1
T ) +O(exp(S1−2κ

T )) (1.26)

Applying the union bound gives the final result.

For (iii), we note that f(t/T,xt,T ) ≡ f(xt,T ) is a locally stationary process with

stationary approximation f(t/T, x̃t(t/T )). And the stationary approximation has

cumulative functional dependence measure supu∈[0,1] |β(u)|Φx0,r. We can then com-

pute the cumulative dependence measure of the product process f(x̃t(t/T ))X̃j,t(t/T )
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similarly as for part (i). We then obtain

P (|S−1
T

T∑
t=T−ST

Xj,t,Tf(xt,T )− E(X̃j,T (u)f(x̃T (u)))| > S−κT )

≤ O(S
−r/2+rκ/2+1
T ) +O(exp(−S1−2κ

T ))

We can handle the bias term, in the same way we did for part(i), given that the

product process f(xt,T )Xj,t,T is locally stationary with the stationary approximation

being twice differentiable w.r.t to the rescaled time index. Taking the union bound

then gives us the result.

The result for (iv) follows immediately from parts (ii) and (iii).

Proof of Lemma 2.

Recall that:

R̃m
T f(x̃T−h(u)) = R̃m−1f(x̃T−h(u))−

〈
R̃m−1f(x̃T−h(u)), X̃Ŝm,T−h(u)

〉
X̃Ŝm,T−h(u),

R̂m
T f(xT−h,T ) = R̂m−1f(xT−h,T )−

〈
R̂m−1f,XŜm,·,T

〉
(T )
XŜm,T−h,T

We denote: AT (m, j) =
〈
R̂m−1f,Xj,·,T

〉
(T )
−
〈
R̃m−1f, X̃j,T−h

〉
. We proceed with a

recursive analysis. Note that for m = 0, the result follows from lemma 1. By using
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the above definitions we get the following recursive relation:

AT (m, j) ≤ AT (m− 1, j)

− (
〈
R̃m−1f, X̃Ŝm,T−h

〉
)

(
〈XŜm,·,T , Xj,·,T 〉(T ) − 〈X̃Ŝm,T−h(u), X̃j,T−h(u)〉

)
−
(〈
R̂m−1f,XŜm,·,T

〉
(T )
−
〈
R̃m−1f, X̃Ŝm,T−h

〉)
〈XŜm,·,T , Xj,·,T 〉(T )

= AT (m− 1, j)− IT,m(j)− IIT,m(j)

Now we have that supj |IT,m(j)| ≤ ||f(x̃T−h)||ζT , by lemma 1, and the norm

reducing property of the remainder functions. Similarly, supj |IIT,m(j)| ≤ (1 +

ζT ) supj AT (m− 1, j). The rest of the proof follows from Buhlmann (2006).

Proof of Lemma 3.

The proof closely follows the one laid out in Buhlmann (2006), therefore we omit

the details here.

Proof of Corollary 3.

We only need to change lemma 1, from the proof of theorem 1. The rest of the proof

is essentially the same, if we switch we replace the locally stationary variables with

stationary ones. We borrow some arguments from the proof of theorem 2 in Yousuf

(2018). The main technical tool we use is theorem 3 in Wu and Wu (2016). For that,

we first define the predictive dependence measure introduced by Wu (2005). The

predictive dependence measure for stationary univariate and multivariate processes
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is defined respectively as:

θq(εi) = ||E (εi|F0)− E (εi|F−1) ||q,

θq(Xj,i) = ||E (Xj,i|H0)− E (Xj,i|H−1) ||q. (1.27)

With the cumulative predictive dependence measures defined as:

Θ0,q(x) = max
j≤pn

∞∑
i=0

θq(Xij), and Θ0,q(ε) =
∞∑
i=0

θq(εi).

By theorem 1 in Wu (2005), we have Θ0,q(x) ≤ Φx0,q, and similarly Θ0,q(ε) ≤ ∆ε
0,q.

Where Φx0,q,∆
ε
0,q represent the cumulative functional dependence measures. From

Section 2 in Wu and Wu (2016): ||Xj,i||q ≤ Φx0,q, and ||εi||q ≤ ∆ε
0,q. We only discuss

parts (i) and (ii) from lemma 1, the others can be done similarly. We now define

Gjk = (G1,jk, . . . , GT,jk) where Gi,jk = Xj,iXk,i, and let Rj = (R1,j, . . . , RT,j) where

Ri = Xj,iεi. We need to bound the sums:
∑T

i=1(Gi,jk−E(Gi,jk))/T and
∑T

i=1 Ri,j/T .

As previously, we have (by Holder’s inequality)

∞∑
t=0

||Xj,tXk,t −X∗j,tX∗k,t||q (1.28)

≤
∞∑
t=0

(||Xj,t||2q||Xk,t −X∗k,t||2q + ||Xk,t||2q||Xj,t −X∗j,t||2q) ≤ 2Φ2
0,2q(x) (1.29)

Using these, along with Condition 4.5, we obtain:

sup
q≥4

q−2α̃xΘq(Gjk) ≤ sup
q≥4

2q−2α̃xΦ2
0,2q(x) <∞ (1.30)
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Combining the above and using Theorem 3 in Wu and Wu (2016), we obtain:

P

(∣∣∣∣ T∑
t=1

(Gt,jk − E(Gt,jk))

∣∣∣∣ > cT 1−κ

2

)
≤ C exp

(
−T

1/2−κ

υ2
x

)α̃
(1.31)

Similarly, using the same procedure we obtain:

P

(∣∣∣∣ T∑
t=1

Rt,j

∣∣∣∣ > cT 1−κ

2

)
≤ C exp

(
−T

1/2−κ

υxυε

)α̃′
(1.32)

We can use the same procedure to get the corresponding bounds for the terms in

lemma 1 (iii) and (iv). Now using the above bounds and following the steps in the

proof of Theorem 1 we obtain the result.

Proof of Theorem 2.

The proof of the LL-Boost is more complicated than the LC-Boost case due to the

additional linear term. Fortunately, the population version stays the same between

both versions. This allows us to use the same framework as previously, where we relied

on Temlyakov’s result on weak greedy algorithms. We do need to make a number

of changes from the proof of theorem 1, and we start by introducing the following

notation: let Zj,t,T = (Xj,t,T , Xj,t,T (t/T − u)), and let:

ĥ(Y·,T , Xj,·,T ) = (ĥ1(Y·,T , Xj,·,T ), ĥ2(Y·,T , Xj,·,T ))

= argminhS
−1
T

T∑
t=T−ST

(Yt,T − h1Xj,t−h,T − h2Xj,t−h,T (t/T − u))2

ĥ(Xk,·,T , Xj,·,T ) = (ĥ1(Xk,·,T , Xj,·,T ), ĥ2(Xk,·,T , Xj,·,T ))

= argminhS
−1
T

T∑
t=T−ST

(Xk,t−h,T − h1Xj,t−h,T − h2Xj,t−h,T (t/T − u))2
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represent the estimated local linear regression coefficients. The arguments to the

function h(·, ·) refer to the dependent and independent variables respectively. These

functions are linear functions of the first argument. We also let h(Ỹ , X̃j),h(X̃k, X̃j)

represent the population version of these coefficients.27 We then define our selectors

as:

Ŝ1 = argmaxj||ĥ(Y·,T , Xj,·,T )Zj,·,T ||(T ), . . . , Ŝm = argmaxj||ĥ(R̂m
T f,Xj,·,T )Zj,·,T ||(T )

Where the sample remainder functions are defined as:

R̂0
Tf(xT−h,T ) = f(xT−h,T ),

R̂m
T f(xT−h,T ) = R̂m−1

T f(xT−h,T )− ĥ(R̂m
T f,XŜm,·,T )ZŜm,·,T ,m = 1, 2, . . .

Therefore, R̂m
T f(xT−h) = f(xT−h)−F̂ (MT )

ll (u,xT−h,T ), is the difference between f(xT−h)

and its LL-Boost estimate. Now the semipopulation version has the same form as in

theorem 1 except it uses the selected base learners Ŝm as defined above. Recall that

Yt,T = α
(m)
j (t/T )Xj,t−h,T + εj,t,T , where

αj(t/T ) = E(X̃j,t−h(t/T )ỸT (t/T ))/E(X̃2
j,t−h(t/T )). We also define the following:

Xj,t,T = αjk(t/T )Xk,t−h,T + εjk,t,T , (1.33)

where α(m)
j (t/T ) = E(X̃j,t−h(t/T )X̃k,t−h,T (t/T ))/E(X̃2

k,t−h(t/T )) (1.34)

We now need the following lemmas:

Lemma 4. Under conditions 1.5.1, 1.5.2, 1.5.3, 1.5.4, and for κ as defined in The-

orem 2, the following hold:

27We note that h is also a function of the rescaled time point u, but we ignore this for now.
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1. supj,k≤pT |S
−1
T

∑T
t=T−ST

[
Xj,t,TXk,t,T (t/T − u)i − E(Xj,t,TXk,t,T (t/T − u)i)

]
| =

Op(S
−κ+i
T /T i) for i = 1, 2

2. supj≤pT |S
−1
T

∑T
t=T−ST

[
X i1
j,t,T (t/T − u)i2 − E(X i1

j,t,T (t/T − u)i2)

]
| = ζT,i1,i2 =

Op(S
−κ+i2
T /T i2) for i1 = 1, 2 and i2 = 1, 2, 3.

3. supj,k≤pT |S
−1
T

∑T
t=T−ST Xj,t−h,T εjk,t,T (t/T − u)i −

E(S−1
T

∑T
t=T−ST Xj,t−h,T εjk,t,T (t/T − u)i)| = Op(S

−κ+i
T /T i) for i = 0, 1

4. supj≤pT |S
−1
T

∑T
t=T−ST Xj,t−h,T εj,t,T (t/T−u)i−E(S−1

T

∑T
t=T−ST Xj,t−h,T εj,t,T (t/T−

u)i)| = Op(S
−κ+i
T /T i) for i = 0, 1

Lemma 5. Under conditions 1.5.1, 1.5.2, 1.5.3, 1.5.4, and for κ as defined in The-

orem 2, the following hold:

1. supj,k≤pT |ĥ(Xj,·,T , Xk,·,T )− h(X̃j, X̃k)| = ζT,1 = Op(S
−κ
T )

2. supj≤pT |ĥ(ε·,T , Xj,·,T )− h(ε̃, X̃j)| = ζT,2 = Op(S
−κ
T )

3. supj≤pT |ĥ(f,Xj,·,T )− h(f̃ , X̃j)| = ζT,3 = Op(S
−κ
T )

4. supj≤pT |ĥ(Y·,T , Xj,·,T )− h(Ỹ , X̃j)| = ζT,4 = Op(S
−κ
T )
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We introduce the following notation for the next lemma. Let

ĥ(Xk,·,T (·/T − u), Xj,·,T ) = (ĥ1(Xk,·,T (·/T − u), Xj,·,T ), ĥ2(Xk,·,T (·/T − u), Xj,·,T ))

= argminhS
−1
T

T∑
t=T−ST

(Xk,t−h,T (t/T − u)− h1Xj,t−h,T − h2Xj,t−h,T (t/T − u))2

Recall that ĥ(Xk,·,T (·/T − u), Xj,·,T ) = Â ∗ B̂, where:

Â =

 S−1
T

∑T
t=T−ST X

2
j,t−h,T S−1

T

∑T
t=T−ST X

2
j,t−h,T (t/T − u)

S−1
T

∑T
t=T−ST X

2
j,t−h,T (t/T − u) S−1

T

∑T
t=T−ST X

2
j,t−h,T (t/T − u)2


−1

B̂ =

 S−1
T

∑T
t=T−ST Xj,t−h,TXk,t−h,T (t/T − u)

S−1
T

∑T
t=T−ST Xj,t−h,TXk,t−h,T (t/T − u)2


We then let h(Xk,·,T (·/T − u), Xj,·,T ) = A ∗B:

A =

 S−1
T

∑T
t=T−ST E(X2

j,t−h,T ) S−1
T

∑T
t=T−ST E(X2

j,t−h,T )(t/T − u)

S−1
T

∑T
t=T−ST E(X2

j,t−h,T )(t/T − u) S−1
T

∑T
t=T−ST E(X2

j,t−h,T )(t/T − u)2


−1

B =

 S−1
T

∑T
t=T−ST E(Xj,t−h,TXk,t−h,T )(t/T − u)

S−1
T

∑T
t=T−ST E(Xj,t−h,TXk,t−h,T )(t/T − u)2


Lemma 6. Under conditions 1.5.1, 1.5.2, 1.5.3, 1.5.4, and for κ as defined in The-

orem 2, the following hold:

1. supj,k≤pT |ĥ1(Xk,·,T (·/T − u), Xj,·,T )− h1(Xk,·,T (·/T − u), Xj,·,T )|

= ζT,5 = Op(S
−κ+1
T /T )
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2. supj,k≤pT |ĥ2(Xk,·,T (·/T − u), Xj,·,T )− h2(Xk,·,T (·/T − u), Xj,·,T )|

= ζT,6 = Op(S
−κ
T )

Let ζT = max(ζT,1, ζT,2, ζT,3, ζT,4, ζT,6) = Op(S
−κ
T ) and denote by ω a realization of

all ST sample points involved in estimation. The next lemma bounds the difference

between the sample and population learners at step m.

Lemma 7. Suppose conditions 1.5.1, 1.5.2, 1.5.3, and 1.5.4 hold. Then for κ as de-

fined in Theorem 2 and on the set AT = {ω : ζT (w) < 1/2, ζT,5(ω) ≤ ST/T, ζT,2,2(ω) ≤

S2
T/T

2}, we have:

sup
j≤pT
||Zj,·,T ĥ(R̂m

T f,Xj)−
〈
R̃m−1f(x̃T−h(u)), X̃j,T−h(u)

〉
X̃j,T−h(u)||(T ) ≤ C(5/2)mζT ,

where C does not depend on m,T .

Lemma 8. Suppose the conditions needed for Theorem 2 hold, then for m = mT →∞

slow enough we have:

||R̃m
T f(x̃T−h(u))|| = op(1)

With the above lemmas we are now ready to analyze the term: R̂m
T f(xT−h,T ) =

f(xT−h,T )− F̂ (MT )
ll (u,xT−h,T ). By the triangle inequality we obtain:

||R̂m
T f(xT−h,T )|| ≤ ||R̃m

T f(x̃T−h(u))||+ ||R̂m
T f(xT−h,T )− R̃m

T f(x̃T−h(u))|| (1.35)

the first term can be handled with lemma 8. For the second term, let AT (m) =

||R̂m
T f(xT−h,T ) − R̃m

T f(x̃T−h(u))||. Using the definitions of the remainder functions,
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we then have a recursive relation:

AT (m) ≤ AT (m− 1) + |
〈
R̂m−1f,XŜm,·,T

〉
(T )
−
〈
R̃m−1f, X̃Ŝm,T−h

〉
|||XŜm,T−h,T ||

+ ||
〈
R̃m−1f, X̃Ŝm,T−h

〉
||||XŜm,T−h,T − X̃Ŝm,T−h(u)||

≤ AT (m− 1) + C(5/2)mζT +O(1/T ) on the set AT

Where the last inequality follows from local stationarity and lemma 7.28 By the

above recursive equation we obtain: ||R̂m
T f(xT−h,T ) − R̃m

T f(x̃T−h(u))|| ≤ 3mζTC. If

we choose m = mT →∞ slow enough (e.g mT = o(log(T ))), then along with lemma

3 and (1.35) we obtain:

||R̂m
T f(xT−h,T )|| = ||f(xT−h,T )− F̂ (MT )

ll (u,xT−h,T )|| = op(1)

Proof of Lemma 4.

We start with (i), and we bound:

P (|S−1
T

[ T∑
t=T−ST

Xj,t,TXk,t,T (t/T − u)i − E(
T∑

t=T−ST

Xj,t,TXk,t,T (t/T − u)i)

]
| > S−κ+i

T /T i)

(1.36)

We have a sum similar to that in lemma 1, except we have weights (t/T − u)i. Now

given that
∑T

t=T−ST (t+1)i/T i− ti/T i ≤ C(SiT/T
i). Additionally, since we had shown

in the proof of lemma 1 that the product process Xj,t,TXk,t,T is locally stationary and

satisfies the weak dependence condition, we can use theorem 2.7 (iii) in Dahlhaus

28Although not the exact statement of 7, the proof handles the specific term we need.
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et al. (2018) directly to obtain:

(1.36) ≤ O(S
−r/2+rκ/2+1
T ) +O(exp(−S1−2κ

T ))

Part (ii) can be handled similarly. For part (iii), we have that εjk,t,T = Xj,t,T −

αjk(t/T )Xk,t−h,T , therefore is locally stationary and its stationary approximation sat-

isfies the weak dependence condition, and has r finite moments. Therefore, we get

the same result as for (iii). For (iv), note that by definition εj,t,T has min(r, q) finite

moments, and is locally stationary. Now if we let r1 = min(r, q) we get the same

result as for part (i) with ri instead of r .

Proof of Lemma 5.

We mainly discuss the proof for part (i), the rest can be handled similarly.

Note that Xk,t−h,T = h(X̃j, X̃k)Zj,t−h,T + ḧ1((X̃j, X̃k))(c)(t/T − u)2 + εjk,t,T . Where

ḧ1(X̃j, X̃k)(·) refers to the second derivative of h1(X̃j, X̃k)(·). Therefore we have:

|ĥ(Xj,·,T , Xk,·,T )− h(X̃j, X̃k)| = Â−1 ∗ B̂ + Â−1 ∗ Ĉ
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where

Â−1 =

 S−1
T

∑T
t=T−ST X

2
k,t−h,T S−1

T

∑T
t=T−ST X

2
k,t−h,T (t/T − u)

S−1
T

∑T
t=T−ST X

2
k,t−h,T (t/T − u) S−1

T

∑T
t=T−ST X

2
k,t−h,T (t/T − u)2


−1

B̂ =

S−1
T

∑T
t=T−ST Xk,t−h,T (t/T − u)2

S−1
T

∑T
t=T−ST Xj,t−h,T (t/T − u)3



Ĉ =

 S−1
T

∑T
t=T−ST Xk,t−h,T εjk,t−h,T

S−1
T

∑T
t=T−ST Xj,t−h,T εjk,t−h,T (t/T − u)


And let

A−1 =

 S−1
T

∑T
t=T−ST E(X2

k,t−h,T ) S−1
T

∑T
t=T−ST E(X2

k,t−h,T )(t/T − u)

S−1
T

∑T
t=T−ST E(X2

k,t−h,T )(t/T − u) S−1
T

∑T
t=T−ST E(X2

k,t−h,T )(t/T − u)2


−1

B =

S−1
T

∑T
t=T−ST E(Xk,t−h,T )(t/T − u)2

S−1
T

∑T
t=T−ST E(Xj,t−h,T )(t/T − u)3



C =

 S−1
T

∑T
t=T−ST E(Xk,t−h,T εjk,t−h,T )

S−1
T

∑T
t=T−ST E(Xj,t−h,T εjk,t−h,T )(t/T − u)


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Given Â is a 2 by 2 matrix we can calculate its inverse directly:

Â−1 = â−1
0

 S−1
T

∑T
t=T−ST X

2
k,t−h,T (t/T − u)2 S−1

T

∑T
t=T−ST −X

2
k,t−h,T (t/T − u)

S−1
T

∑T
t=T−ST −X

2
k,t−h,T (t/T − u) S−1

T

∑T
t=T−ST X

2
k,t−h,T



where â0 = [Â11Â22 − Â12Â21]

We first handle ĥ1(Xj,·,T , Xk,·,T ), and ĥ2(Xj,·,T , Xk,·,T ) can be handled similarly.

From the above equations we obtain:

P (|ĥ1(Xj,·,T , Xk,·,T )− h1(Xj,·,T , Xk,·,T )| > S−κT )

≤ P (|Â−1
11 B̂1 + Â−1

12 B̂2 − (A−1
11 B1 + A−1

12 B2)| > cS−κT )

≤ P (|Â−1
11 B̂1 − A−1

11 B1| > cS−κT ) + P (|Â−1
12 B̂2 − A−1

12 B2| > cS−κT )

For the first term, we let:

Q̂1 = B̂1 ∗ S−1
T

T∑
t=T−ST

X2
k,t−h,T (t/T − u)2,

and Q1 = B1 ∗ S−1
T

T∑
t=T−ST

E(X2
k,t−h,T )(t/T − u)2

we then have: |Â−1
11 B̂1 − A−1

11 B1| = |Q̂1â
−1
0 − Q1a

−1
0 | = |(â−1

0 − a−1
0 )(Q̂1 − Q1) +

(Q̂1 − Q1)a−1
0 + (â−1

0 − a−1
0 )Q1|. We have that a0 = O(S2

T/T
2), and Q = O(S4

T/T
4).
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Therefore:

P (|Â−1
11 B̂1 − A−1

11 B1| > cS−κT ) ≤ P (|(â−1
0 − a−1

0 )(Q̂1 −Q1)| > c2n
−κ/3) (1.37)

+ P (|(Q̂1 −Q1)a−1
0 | > cS−κT /3|) (1.38)

+ P (|(â−1
0 − a−1

0 )Q1| > cS−κT /3). (1.39)

For the RHS of (1.37), we obtain:

P (|(â−1
0 − a−1

0 )(Q̂1 −Q1)| > cn−κ/3) ≤ P (|Q̂1 −Q1| > CS
−κ/2
T )

+ P (|â−1
0 − a−1

0 | > CS
−κ/2
T ).

Therefore we can focus on the terms (1.38),(1.39). We can handle (1.38) directly

using the fact that a0 = O(S2
T/T

2) along with lemma 5. For (1.39), note that Q =

O(S4
T/T

4), and |â−1
0 − a−1

0 | = (â0 − a0)/(â0a0). We then obtain:

(1.39) ≤ P (|â0 − a0| > CS−κT DTS
2
T/T

2) + P (|â0| < DT )

We can now choose DT ≤ mink≤pT a0 ∗ (log(ST ))−1. And we obtain the bound by

applying lemma 4. For P (|Â−1
12 B̂2 − A−1

12 B2| > cS−κT ) we obtain a bound in similar

fashion. Applying the union bound gives us the result.

The proof for lemma 6 can be obtained similarly to the proof of lemma 5. The

proofs for lemmas 7 and 8 follow the same steps as in theorem 1, therefore we omit

the details.
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Appendix B: Additional Empirical Results:

In this section we first include the MSFE by start date of the out of sample period

for horizon h = 3. We then include results comparing: 1) LC-Boost vs Boost, 2)

LC-Boost vs LC-Boost Factor, 3) Boost Factor estimated using a 10 year rolling

window vs LC-Boost Factor, 4) LC-Boost Factor vs TV-DI and 5) LL-Boost Factor

vs LC-Boost Factor . The TV-DI model uses 4 factors along with lags of Yt,T like the

DI model, but estimates the model using local constant estimation. Our method of

comparison is to plot the relative local MSFE of the two methods being compared.

We also include the relative MSFE for horizons h = 6, 3, 1 for all methods used in

the main text. Lastly we include the simulation results using t5 innovations.
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Table 1.3: Relative MSFE h = 6

Full Out of Sample Period 1971:9-2018:8
IP PAYEMS UNRATE CLF RPI CPI FF TB3MS

TV-AR 1.1 1.01 1.08 .77 1 .83 1 .99
DI .81 .81 .73 .98 .86 .96 .91 .92

Lasso .82 .78 .72 .85 .91 .90 .80 .93
Boost .79 .77 .73 .79 .90 .87 .86 .93

Boost Factor .79 .83 .69 .92 .81 .89 .79 .87
LC-Boost .76 .76 .69 .79 .89 .89 .94 .98

LC-Boost Factor .73 .74 .67 .73 .80 .80 .78 .90
LL-Boost Factor .88 .95 .84 .79 .79 .79 .97 1.37

“Pre-Great Moderation" 1971:9-1982:12
IP PAYEMS UNRATE CLF RPI CPI FF TB3MS

TV-AR 1.08 1 1.12 .88 .97 1.07 1.06 1.05
DI .56 .64 .61 1.40 .76 .88 .91 .88

Lasso .55 .62 .56 1.20 .80 1.03 .77 .93
Boost .55 .64 .63 1.20 .78 .95 .79 .83

Boost Factor .59 .71 .64 1.14 .75 .88 .76 .86
LC-Boost .55 .64 .59 .93 .98 1.12 .91 .90

LC-Boost Factor .60 .76 .66 .85 .82 1.02 .78 .94
LL-Boost Factor .73 .99 .88 .88 .80 .94 .95 1.01

“Great Moderation" 1983:1-2006:12
IP PAYEMS UNRATE CLF RPI CPI FF TB3MS

TV-AR 1.08 .98 1.04 .81 1.02 .93 .86 .88
DI 1.07 1.03 .82 .89 .96 .96 .86 .96

Lasso 1.06 1.11 .88 .90 1.03 .86 .87 .93
Boost 1.08 1.09 .85 .80 1 .86 1.01 1.08

Boost Factor 1.04 .99 .70 .87 .93 .83 .82 .85
LC-Boost 1.14 .99 .85 .89 .95 .74 1.04 1.1

LC-Boost Factor .98 .80 .71 .80 .85 .83 .80 .76
LL-Boost Factor 1.04 .98 .84 .92 .97 .88 1.06 1.05

“Post Great Moderation" 2007:1-2018:8
IP PAYEMS UNRATE CLF RPI CPI FF TB3MS

TV-AR 1.18 1.09 1.06 .64 .98 .59 .72 .76
DI 1.12 1 .84 .78 .83 1.01 1.21 1.16

Lasso 1.21 .86 .86 .52 .91 .82 1 1.02
Boost 1.05 .77 .79 .45 .77 .82 1.53 1.43

Boost Factor 1.01 .98 .78 .79 .76 .94 1.37 1.12
LC-Boost .89 .80 .70 .54 .77 .58 .93 1.32

LC-Boost Factor .82 .61 .67 .54 .75 .64 .69 .95
LL-Boost Factor 1.07 .80 .74 .53 .62 .62 .75 .92
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Table 1.4: Relative MSFE h = 3

Full Out of Sample Period 1971:9-2018:8
IP PAYEMS UNRATE CLF RPI CPI FF TB3MS

TV-AR 1.04 1.01 1.01 .86 1.01 .91 .98 .98
DI .84 .81 .78 .98 .85 .96 .90 .94

Lasso .89 .83 .82 1.03 .87 .97 .84 .96
Boost .89 .78 .75 .89 .86 .87 .93 1.04

Boost Factor .80 .83 .76 .96 .81 .90 .82 .89
LC-Boost .79 .77 .73 .87 .85 .85 .88 1.02

LC-Boost Factor .77 .78 .77 .87 .80 .87 .79 .89
LL-Boost Factor .84 .82 .82 .90 .81 .87 .92 1.05

“Pre-Great Moderation" 1971:9-1982:12
IP PAYEMS UNRATE CLF RPI CPI FF TB3MS

TV-AR 1.05 1 1 .97 1.01 1.01 1 1.01
DI .72 .72 .72 1.29 .87 .87 .89 .88

Lasso .73 .74 .74 1.44 .85 1.09 .84 .98
Boost .77 .89 .74 1.14 .95 .91 .92 1

Boost Factor .71 .78 .78 1.15 .80 .83 .80 .86
LC-Boost .78 .69 .75 1.02 .95 .88 .89 1.02

LC-Boost Factor .74 .82 .84 1.03 .85 .97 .78 .89
LL-Boost Factor .84 .93 .90 1.05 .94 .87 .87 1

“Great Moderation" 1983:1-2006:12
IP PAYEMS UNRATE CLF RPI CPI FF TB3MS

TV-AR 1.06 1.06 1.03 .90 1 .83 .85 .88
DI .92 .95 .86 .91 .87 .97 .88 1.16

Lasso .96 1.04 .91 .98 .92 .90 .78 .88
Boost .97 .96 .84 .91 .90 .90 .89 1.12

Boost Factor .89 .89 .76 .94 .87 .89 .86 .95
LC-Boost .94 .96 .81 .94 .88 .83 .86 1

LC-Boost Factor .86 .78 .79 .92 .84 .83 .84 .89
LL-Boost Factor .94 .85 .85 .97 .90 .86 1.23 1.28

“Post Great Moderation" 2007:1-2018:8
IP PAYEMS UNRATE CLF RPI CPI FF TB3MS

TV-AR 1 .98 1.08 .70 1 .92 .74 .86
DI 1.03 .95 .78 .83 .82 1 1.37 1.28

Lasso 1.19 .81 .87 .75 .83 .83 .79 .97
Boost 1.07 .84 .68 .66 .79 .84 1.36 1.41

Boost Factor .92 .90 .70 .83 .76 .95 1.45 1.20
LC-Boost .66 .74 .60 .65 .77 .83 .65 1.06

LC-Boost Factor .73 .66 .64 .68 .75 .84 .78 .93
LL-Boost Factor .76 .67 .63 .68 .68 .89 .87 1.05
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Table 1.5: Relative MSFE h = 1

Full Out of Sample Period 1971:9-2018:8
IP PAYEMS UNRATE CLF RPI CPI FF TB3MS

TV-AR 1.04 1.04 1.01 .96 1.06 .96 .99 1.02
DI .92 .87 .87 1.04 .92 .93 .92 .95

Lasso 1.06 .92 .94 1.26 .94 1 .88 .98
Boost .91 .88 .82 1.03 .98 .94 .86 1

Boost Factor .86 .91 .84 1.02 .90 .90 .85 .88
LC-Boost .94 .91 .85 1.1 .96 .95 .84 .99

LC-Boost Factor .85 .87 .85 1.02 .89 .91 .84 .84
LL-Boost Factor .92 .95 .88 1.04 .98 .93 .91 .88

“Pre-Great Moderation" 1971:9-1982:12
IP PAYEMS UNRATE CLF RPI CPI FF TB3MS

TV-AR 1.08 1.02 1.06 .99 1.03 .99 1 1.03
DI .86 .76 .75 1.18 1.01 .97 .90 .94

Lasso 1.21 .83 1.05 1.95 1.15 1.22 .89 .97
Boost .90 .78 .77 1.19 1.12 1.10 .84 .97

Boost Factor .80 .86 .80 1.15 .97 .91 .82 .81
LC-Boost .96 .82 .77 1.30 1.08 1.14 .82 .96

LC-Boost Factor .81 .86 .79 1.19 .96 1.02 .82 .78
LL-Boost Factor .95 .96 .87 1.20 1.12 1.04 .85 .75

“Great Moderation" 1983:1-2006:12
IP PAYEMS UNRATE CLF RPI CPI FF TB3MS

TV-AR 1 1.1 .99 .98 1.08 .92 .92 .97
DI .94 .96 .96 .98 .93 .89 1.01 .98

Lasso .91 1 .93 .98 .92 .94 .82 1.11
Boost .88 .98 .90 1 .94 .89 1.02 1.25

Boost Factor .91 .97 .91 .99 .91 .93 1.03 1.31
LC-Boost .91 1.04 .93 .97 .90 .79 .98 1.24

LC-Boost Factor .91 .95 .94 .97 .88 .84 1 1.30
LL-Boost Factor .90 .99 .94 1.01 .96 .84 1.50 1.84

“Post Great Moderation" 2007:1-2018:8
IP PAYEMS UNRATE CLF RPI CPI FF TB3MS

TV-AR 1.04 .94 .99 .87 1.05 .97 .84 .96
DI .98 1.05 .90 .95 .89 .95 1.67 1.33

Lasso 1.05 1.02 .81 .93 .90 .88 .77 .96
Boost .94 .93 .75 .92 1.01 .85 1.35 1.24

Boost Factor .87 .95 .79 .94 .87 .86 1.46 1.35
LC-Boost .96 .83 .79 1.1 1 .95 .89 .94

LC-Boost Factor .84 .71 .79 .89 .87 .89 .94 .96
LL-Boost Factor .88 .75 .78 .88 .98 .94 .85 1.06
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Figure 1.7: MSFE by start date of out of sample period. Horizon h = 3. See notes to
figure 1.1.
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Figure 1.8: L-MSFE of LC-Boost relative to L-MSFE of Boost: This figure uses a window
size of 70 observations to calculate the rolling MSFE, see section 1.8.2 for details.
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Figure 1.9: L-MSFE of LC-Boost relative to L-MSFE of LC-Boost Factor: This figure
uses a window size of 70 observations to calculate the rolling MSFE, see section 1.8.2 for details.



77

1.0

1.2

1.4

1980 1990 2000 2010

M
S

F
E

IP

0.9

1.0

1.1

1.2

1980 1990 2000 2010

M
S

F
E

EMS

1.0

1.2

1.4

1980 1990 2000 2010

M
S

F
E

UNRATE

0.9

1.1

1.3

1980 1990 2000 2010

M
S

F
E

CLF

0.8

1.0

1.2

1.4

1980 1990 2000 2010

M
S

F
E

RPI

0.8

1.0

1.2

1980 1990 2000 2010

M
S

F
E

CPI

0.9

1.2

1.5

1980 1990 2000 2010

M
S

F
E

FF

0.8

1.2

1.6

2.0

1980 1990 2000 2010

M
S

F
E

TB3MS

h=1 h=12 h=3 h=6

Figure 1.10: L-MSFE of Boost Factor using 10 year rolling window relative to L-MSFE
of LC-Boost Factor: This figure uses a window size of 70 observations to calculate the rolling
MSFE, see section 1.8.2 for details.
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Figure 1.11: L-MSFE of TV-DI relative to L-MSFE of LC-Boost Factor: This figure uses
a window size of 90 observations to calculate the rolling MSFE, see section 1.8.2 for details.
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Figure 1.12: L-MSFE of LC-Boost Factor relative to L-MSFE of LL-Boost Factor: We
use a window size of 70 observations, see notes to figure 1.5 for details. Colored lines represent the
different horizons.
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Table 1.6: DGP 1-14 : Relative MSFE, t5 Innovations

DGP AR (3) Rolling AR (3) Rolling Boost LC-Boost LL-Boost Lasso
1 1.67 1.84 1.80 1.06 1.21 1.03
2 1.24 1.26 1.26 1.12 1.12 1.18
3 1.13 1.22 1.10 .76 .77 1.09
4 .96 1.04 .94 .72 .68 1.02
5 .77 .83 .76 .87 .68 .92
6 4.23 4.78 1.85 1.00 1.03 1.05
7 3.58 3.85 1.33 .90 .83 1.09
8 3.73 4.19 1.92 .72 .70 1.11
9 1.81 1.97 1.03 .71 .49 1.18
10 1.67 1.82 1.24 .92 .68 1.20
11 2.20 2.37 1.18 .85 .75 1.10
12 1.08 1.21 .42 .76 .21 1.13
13 1.99 2.05 1.06 .75 .54 1.21
14 .81 .89 .85 .92 .71 1.02
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Chapter 2

Targeting Predictors via Partial Distance Correlation with

Applications to Financial Forecasting

2.1 Introduction

High dimensionality is an increasingly common characteristic of data being col-

lected in fields as diverse as genetics, neuroscience, astronomy, finance, and macroe-

conomics. In these fields, we frequently encounter situations in which the number of

candidate predictors (pn) is much larger than the number of samples (n), and one of

the common ways statistical inference is made possible is by relying on the assump-

tion of sparsity. The sparsity assumption, which states that only a small number

of covariates contributes to the response, has led to a wealth of theoretical results

and methods available for identifying important predictors in this high dimensional

setting. These methods broadly fall into two classes: screening methods and penal-

ized likelihood methods; we focus on the screening approach in this work. For the

case where pn is much larger than n, variable screening is usually used as a first stage

method, which can then be followed by a second stage method, such as penalized like-

lihood methods, or principal components regression on the set of targeted predictors

selected at the screening stage. This two stage procedure in many cases is computa-



82

tionally more feasible and lowers estimation error, especially if the dimensionality is

very high at the first stage.

Fan and Lv (2008) proposed Sure Independence Screening (SIS) for the linear

model, and it is based on ranking the magnitudes of the marginal Pearson correla-

tions of the covariates with the response. A large amount of work has been done

since then to generalize the procedure to various other types of models including:

generalized linear models (Fan and Song, 2010), nonparametric additive models (Fan

et al., 2011a), Cox proportional hazards model (Fan et al., 2010), linear quantile

models (Ma et al., 2017), and varying coefficient models (Fan et al., 2014) 1. The

main theoretical result of these methods is the so called “sure screening property",

which states that under appropriate conditions we can reduce the dimension of the

feature space from size pn = O (exp (nα)) to a far smaller size dn, while retaining all

the relevant predictors with probability approaching 1. We note that variable screen-

ing methods are closely related to the targeted predictors framework more commonly

used in econometrics. As introduced in Bai and Ng (2008), the targeted predictors

framework was focused on selecting predictors using linear dependence measures for

the specific setting of forecasting from a second stage principal components regression.

This can be thought of as a specific type of variable screening with linear dependence

measures.

Although there has been a large amount of interest in developing screening meth-

ods, it is surprising to see that almost all of the works operate under the assumption

of independent observations. This is even more surprising given the ubiquity of time

1In addition, model-free screening methods, which do not assume any particular model a priori,
have also been developed. Some examples include: a distance correlation based method in Li et al.
(2012b), the fused Kolmogorov filter in Mai et al. (2015), a conditional distance correlation method
in Liu and Wang (2017), and a smoothing bandwidth based method in Feng et al. (2017). For a
partial survey of screening methods, one can consult Liu et al. (2015).
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dependent data in many scientific disciplines. Some examples in economics and fi-

nance include forecasting low frequency macroeconomic indicators, such as GDP or

inflation rate, or financial asset returns using a large number of macroeconomic and

financial time series and their lags as possible covariates (Stock and Watson, 2002a;

Bai and Ng, 2009; Gu et al., 2018). These examples, amongst others, highlight the

importance of developing screening methods specifically for time dependent data.

2.1.1 Our Contributions

In creating a screening method for stationary short range dependent time series,

we aim to account for some of the unique features of time series data such as:

• A prior belief that a certain number of lags of the response variable are to be

in the model.

• An ordered structure of the covariates, in which lower order lags of covariates

are thought to be more informative than higher order lags.

• The frequent occurrence of multivariate response models such linear or nonlinear

VAR models.

We also aim to have a model free screening approach which can handle continuous,

discrete or grouped time series. Using a model free approach allows us to avoid

placing assumptions on the structure of the model (i.e linearity) thereby making

our methods robust to model misspecification at the screening stage. This gives us

full flexibility to select a non-linear or non-parametric second stage procedure. Our

goal is thus to extend the targeted predictors framework to more general non-linear

or non-parametric models while accounting for some of the unique features of time

series data. This is especially useful given that recent work has shown the benefits of

considering non-linear and non-parametric models in forecasting macroeconomic and
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financial time series.2 Lastly, using a non-linear dependence measure is helpful even

when we aim to fit a second stage linear model, as the marginal relationship between

the predictors and the response can be highly non-linear.

To achieve our goals, we will introduce several distance correlation based screening

procedures. Distance correlation (DC) was introduced by Székely et al. (2007), for

measuring dependence and testing independence between two random vectors. The

consistency, and weak convergence of sample distance correlation has been established

for stationary time series in Zhou (2012) and Davis et al. (2016b). DC has a number

of useful properties such as:

• The distance correlation of two random vectors equals to zero if and only if

these two random vectors are independent.

• Ability to handle discrete time series, as well as grouped predictors.

• An easy to compute partial distance correlation has also been developed, allow-

ing us to control for the effects of a multivariate random vector (Székely and

Rizzo, 2014).

The first property allows us to develop a model free screening approach, which is

robust to model misspecification. The second property is useful when dealing with

linear or nonlinear VAR models for discrete or continuous data. The third property

will allow us to account for the first two unique features of time series data mentioned

previously.

Broadly speaking, we will be dealing with two types of models: univariate response

models, some examples of which include linear or nonlinear autoregressive models

with exogenous predictors (NARX), and multivariate response models such as linear

2Some examples include Gu et al. (2019, 2018) which showed that non-linear methods such as
regression trees and neural networks are the best performing methods at forecasting asset returns.
Additionally, in macroeconomics the sufficient forecasting framework (Fan et al., 2017) has shown
improvements over using linear principal components regression.
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or nonlinear VAR models. In both settings, we rely on partial distance correlation to

build our screening procedures. Partial distance correlation produces a rich family of

screening methods by taking different choices for the conditioning vector. In many

applications, it is usually the case that researchers have prior knowledge that a certain

subset of predictors is relevant to the response. Utilizing this prior knowledge usually

enhances the screening procedure, as shown in the case of generalized linear models in

Barut et al. (2016). Therefore our procedure can be viewed as a model free adaption

of this principle to the time series setting. We discuss approaches for choosing the

conditioning vector of each predictor, and we usually assume at least a few lags of

the response variable are part of the conditioning vector of each predictor. We also

discuss ways in which we can leverage the ordered structure of our lagged covariates

to add additional variables to our conditioning vectors.

To motivate the multivariate response setting, consider a linear VAR(1) model:

xt = B1xt−1+ηt, where xt is a p-variate random vector. The number of parameters to

estimate in this model is p2, which can quickly become computationally burdensome

even for screening procedures. In many cases however, there exists a certain group

structure amongst the predictors, which is known to researchers in advance, along

with a sparse conditional dependency structure between these groups (Basu et al.,

2015). For example, in macroeconomics or finance, different sectors of the economy

can be grouped into separate clusters. Using this group structure, we can apply the

partial distance correlation to screen relationships at the group level, thereby quickly

reducing the number of variables for a second stage procedure.
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2.1.2 Comparisons to Existing Work

To the best of our knowledge there have been only two works, Chen et al. (2017)

and Yousuf (2018), dealing with the issue in a stationary time series setting, both of

which dealt with models with a univariate response. The former work extended the

nonparametric independence screening approach used for independent observations to

the time series setting. However, the method does not utilize the serial dependence

in the data, or account for the unique properties of time series data we outlined.

The latter work (Yousuf, 2018) extended the theory of SIS to heavy tailed and/or

dependent data as well as proposing a GLS based screening method to correct for

serial correlation. However, this work is limited to linear models and the other unique

qualities of time series data outlined above are ignored.

Compared to the recent works on screening using distance correlation based meth-

ods (Wen et al., 2018; Liu and Wang, 2017), our work differs in a number of ways.

First, our work deals with the time series setting, where both the covariates and re-

sponse are stationary time series, and can have polynomially decaying tails. Second,

our screening procedures are developed specifically in order to account for certain

unique features in time series data mentioned previously. Lastly, we choose to rely

on partial DC, instead of conditional DC (Wang et al., 2015), when controlling for

confounding variables.

2.1.3 Organization

The rest of the paper is organized as follows. 2.2 reviews the distance correlation

based methods we use for our algorithms. Sections 2.3 and 2.4 introduces our screen-

ing procedures for univariate response and multivariate response models respectively,

along with their sure screening properties. Section 2.5 covers simulation results. We
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present an application to forecasting monthly US market returns in Section 2.6. Sec-

tion 2.7 covers the asymptotic properties of our methods. The concluding remarks are

in Section 2.8. Lastly, the proofs for all theorems, along with additional simulations

are placed in the supplementary material.

2.2 Review of Distance Correlation Based Methods

2.2.1 Preliminaries

We start with a brief overview of the distance covariance, distance correlation,

and partial distance correlation measures.

Definition 2.2.1. For any random vectors u ∈ Rq,v ∈ Rp, let φu(t), φv(s) be the

characteristic function of u and v respectively. The distance covariance between u

and v is defined as Székely et al. (2007):

dcov2(u,v) =

ˆ
Rp+q
|φu,v(t, s)− φu(t)φv(s)|2ω−1(t, s)dtds,

where the weight function ω(t, s) = cpcq|t|1+p
p |s|1+q

q , where cp = π(1+p)/2

Γ((1+p)/2)
. Through-

out this article |a|p stands for the Euclidean norm of a ∈ Rp.

Given this choice of weight function, by Székely et al. (2007), we have a simpler

formula for the distance covariance. Let (u, v), (u′, v′), (u′′, v′′) be iid, each with

joint distribution (u, v), and let:

S1 = E(|u−u′|p|v−v′|q), S2 = E(|u−u′|p)E(|v−v′|q), S3 = E(|u−u′|p)E(|v−v′′|q).

Then, provided that second moments exist, we have by remark 3 in Székely et al.

(2007), dcov2(u,v) = S1 +S2−2S3.We can now estimate this quantity using moment
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based methods. Suppose we observe (ui,vi)i=1,...,n, the sample estimates for the

distance covariance and distance correlation are:

ˆdcov
2
(u,v) = Ŝ1 + Ŝ2 − 2Ŝ3, and d̂cor(u,v) =

d̂cov(u,v)√
d̂cov(u,u)d̂cov(v,v)

,

where Ŝ1 = n−2

n∑
i,j=1

|ui − uj|p|vi − vj|q, Ŝ2 = n−2

n∑
i,j=1

|ui − uj|pn−2

n∑
i,j=1

|vi − vj|q,

Ŝ3 = n−3

n∑
i,j,l=1

|ui − uj|p|vi − vl|q.

As shown in Székely et al. (2007), the distance covariance given above has the

property that dcov(u,v) = 0 if and only if u,v are independent. Additionally, they

prove consistency and weak convergence of the sample distance correlation estima-

tor in the iid setting. These results were extended to strictly stationary α-mixing

processes in Zhou (2012); Davis et al. (2016b) and Fokianos and Pitsillou (2017) .

Partial distance correlation (PDC) was introduced in Székely and Rizzo (2014),

as a means of measuring nonlinear dependence between two random vectors u and v

while controlling for the effects of a third random vector Z. We refer to the vector

Z as the conditioning vector. Székely and Rizzo (2014) showed that the PDC can be

evaluated using pairwise distance correlations. Specifically, the PDC between u and

v, controlling for Z, is defined as:

pdcor(u, v;Z) =
dcor2(u, v)− dcor2(u,Z)dcor2(v,Z)√

1− dcor4(u,Z)
√

1− dcor4(v,Z)
,

if dcor(u,Z), dcor(v,Z) 6= 1, otherwise pdcor(u, v;Z) = 0. The sample PDC

( ˆpdcor(u, v;Z)), is defined by plugging in the sample distance correlation estima-

tors in the above definition. We note that theorem 3 in this work also establishes

concentration bounds, in the time series setting, for the sample DC and PDC, which
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should be of independent interest. For more details about the PDC measure, one can

consult Székely and Rizzo (2014).

2.2.2 Partial DC vs Conditional DC

As we noted in the introduction, we have chosen to use partial DC instead of

conditional DC in our screenign algorithms. There are a number of reasons for this:

First, partial DC can be easily computed using pairwise distance correlations, and

is much more computationally tractable when dealing with large numbers of predic-

tors. Computing conditional DC is more complicated, therefore using conditional

DC based screening procedure has a much higher computational burden. More im-

portantly, the computation of conditional DC involves the choice of a bandwidth

parameter to compute a kernel density estimate of the conditioning random vector.

Selecting this bandwidth matrix is difficult in practice, especially for multivariate

conditioning vectors where the curse of dimensionality rapidly deteriorates the qual-

ity of our estimates. In order to illustrate these effects, consider the following simple

example: We generate n = 100 random samples from Yt =
∑6

j=1 βjXt−1,j + εt, where

εt ∼ N(0, 1), and βj = .75, j = 1, . . . , 6 and 0 otherwise. And Xt ∼ N(0, Ip), where

p = 500, and let our conditioning vector Zt−1 ∼ N(0, Ir) be independent of both

Yt,Xt−1. To implement a simple conditional DC screening and partial DC screen-

ing procedure, we first compute the partial DC and conditional DC between each

covariate (Xt−1,j) and the response (Yt), using Zt−1 as our conditioning vector.

We run 200 simulations and report the median minimum model size, i.e minimum

size of the screened subset needed to include all the relevant covariates. The results

are displayed in table 1, which show that as we increase r, the dimension of our

conditioning vector, the performance of conditional DC screening completely breaks
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Table 2.1: Median Minimum Model Size

r = 1 r = 2 r = 3 r = 4 r = 5
PDC 19.5 21 18 20.5 20.5
CDC 26.5 90 308 338 372

down, while partial DC screening retains its performance. From this simple example,

we see that using conditional DC in place of partial DC is not an option when dealing

with multidimensional conditioning vectors. We note that for time series models it

is usually the case that we are dealing with multivariate conditioning vectors or even

high dimensional conditioning vectors as in the case of VAR models.

Due to the reasons given above, using conditional DC is not a feasible option for

screening when dealing with time series data. On the other hand, we note that unlike

conditional DC, partial DC is not a measure of conditional independence, therefore a

partial DC of zero does not imply conditional independence. Fortunately, it appears

that in practice we rarely encounter the situation in which the variables are condi-

tionally dependent but our partial DC gives us a value statistically indistinguishable

from zero. In the supplementary material, we rerun all the simulations, given in the

original conditional DC paper (Wang et al., 2015), where conditional dependence ex-

ists, and observe that partial DC has at least as much power as conditional DC in

detecting this conditional dependence.

2.3 Screening Algorithms

We first review some basic ingredients of screening procedures. Let y = (Y1, . . . , Yn)T

be our response time series, and let xt−1 = (Xt−1,1, . . . , Xt−1,mn) denote the mn pre-

dictor series at time t − 1. Given that lags of these predictor series are possible

covariates, we let zt−1 = (xt−1, xt−2, . . . , xt−hn) = (Zt−1,1, . . . , Zt−1,pn) denote the
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length pn vector of covariates, where pn = mn × hn. Now we denote our set of active

covariates as:

M∗ = {j ≤ pn : F (Yt|Yt−1, . . . , Yt−hn , zt−1) functionally depends on Zt−1,j} ,

where F (Yt|·) is the conditional cumulative distribution function of Yt. The value hn

represents the maximum lag order we are considering for our response and predictor

series. This value can be decided beforehand by the user, or can be selected using a

data driven method. We note that we can let the value hn differ between predictors,

however for simplicity of presentation we assume the same value hn for all predictors.

Variable selection methods aim to recoverM∗ exactly, which can be a very difficult

goal both computationally and theoretically, especially when pn � n. In contrast,

variable screening methods have a less ambitious goal, and aim to find a set S such

that P (M∗ ⊂ S)→ 1 as n→∞. Ideally we would also hope that |S| � pn, thereby

significantly reducing the dimension of the feature space for a second stage method.

When developing screening algorithms for time series data, we would like to ac-

count for some of its unique properties as mentioned in the introduction. For models

with a univariate response, these would be:

• A prior belief that a certain number of lags of the response variable are to be

in the model.

• An ordered structuring of the covariates, in which lower order lags of covariates

are thought to be more informative than higher order lags.

The first property can be easily accounted for, and there are many different ways

to account for the second property. In this section we present two partial distance

correlation based screening algorithms, which attempt to account for the ordered

structure of our covariates.
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2.3.1 Screening Algorithm I: PDC-SIS

In our first algorithm, PDC-SIS, we define the conditioning vector for the lth lag

of predictor series k (Xt−l,k) as:

Sk,l = (Yt−1, . . . , Yt−hn , Xt−1,k, . . . , Xt−l+1,k),

where 1 ≤ l ≤ hn. Since we are assuming a priori that a certain number of lags of Yt

are to be included in the model, {Yt−1, . . . , Yt−hn} is part of the conditioning vector

for all possible covariates. Our conditioning vector also includes all lower order lags

for each lagged covariate we are considering. By including the lower order lags in the

conditioning vector, our method tries to shrink towards sub-models with lower order

lags. To illustrate this, consider the case where Yt is strongly dependent on Xt−1,j

even while controlling for the effects of Yt−1, . . . , Yt−hn . Under this scenario, if Xt−1,j

has strong serial dependence, higher order lags of Xt−1,j can be mistakenly selected

by our screening procedure even if they are not in our active set of covariates.

For convenience, let C = {S1,1, . . . ,Smn,1,S1,2, . . . ,Smn,hn} denote our set of con-

ditioning vectors; where Ck+(l−1)∗mn = Sk,l is the conditioning vector for covariate

Zt−1,(l−1)∗mn+k. Our set of targeted predictors is:

M̂γn =
{
j ∈ {1, . . . , pn} : |p̂dcor(Yt, Zt−1,j;Cj)| ≥ γn

}
,

and we discuss how to select γn in section 2.3.3.
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2.3.2 Screening Algorithm II: PDC-SIS+

As we have seen, the time ordering of the covariates allows us some additional

flexibility in selecting the conditioning vector compared to iid setting. Our previous

algorithm attempted to utilize the time series structure of our data by conditioning

on previous lags of the covariate. However, rather than simply conditioning only on

the previous lags of a covariate, we can condition on additional information available

from previous lags of other covariates as well. One way to attempt this, and to

potentially improve our algorithm, is to identify strong conditional signals at each

lag level and add them to the conditioning vector for all higher order lag levels. By

utilizing this conditioning scheme we can pick up on hidden significant variables in

more distant lags, and also shrink toward models with lower order lags by controlling

for false positives resulting from high autocorrelation, and cross-correlation.

We now give a formal description of PDC-SIS+. The conditioning vector for the

first lag level of predictor series k is: Sk,1 = (Yt−1, . . . , Yt−hn), which coincides with

the conditioning vector for the first lag level of PDC-SIS. Using the representation

zt−1 = (xt−1, . . . ,xt−hn), we denote the strong conditional signal set for the first lag

level as:

ÛΓn
1 =

{
j ∈ {1, . . . ,mn} : |p̂dcor(Yt, Zt−1,j;Sj,1)| ≥ Γn

}
.

We then use this information to form our next conditioning vector:

Ŝk,2 =
(
Yt−1, . . . , Yt−hn , Xt−1,k, zt−1,ÛΓn

t−1

)
,

where zt−1,ÛΓn
1

is a sub-vector of zt−1 which is formed by extracting the indices con-

tained in ÛΓn
1 . We note that any duplicates which result from overlap between Xt−1,k

and zt−1,ÛΓn
1

are deleted. For convenience, we define
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Ĉ = (Ŝ1,1, . . . , Ŝmn,1, Ŝ1,2, . . . , Ŝmn,hn) as our vector of estimated conditional sets. We

then use (Ŝk,2)k≤mn to compute the strong conditional signal set for the 2nd lag level:

ÛΓn
2 =

{
j ∈ {mn + 1, . . . , 2mn} : |p̂dcor(Yt, Zt−1,j; Ĉj)| ≥ Γn

}
.

Repeating this procedure we obtain:

Ŝk,l =
(
Yt−1, . . . , Yt−hn , Xt−1,k, . . . , Xt−l+1,k, zt−1,ÛΓn

1
, . . . ,zt−1,ÛΓn

l−1

)
.

We can also vary the threshold Γn for each lag level; for simplicity we leave it the same

for each of our levels here. Our subset of predictors obtained from this procedure is:

M̃γn =
{
j ∈ {1, . . . , pn} : |p̂dcor(Yt, Zt−1,j; Ĉj)| ≥ γn

}
.

We denote UΓn =
{
UΓn

1 , . . . ,UΓn
hn−1

}
as the population version of the strong condi-

tional signal sets. Although the hope is that UΓn ⊂M∗, this is not necessary for the

success of the algorithm. As seen in Barut et al. (2016) for the case of generalized

linear models, conditioning on irrelevant variables could also enhance the power of

a screening procedure. We will discuss how to choose the threshold Γn for ÛΓn in

section 2.3.3. In practice we would prefer not to condition on too many variables,

therefore the threshold for adding a variable to ÛΓn would be high.

Now, we have presented two classes of PDC screening methods. In the first class

of methods, the conditional set of each covariate is known as a priori, while in the

second class the conditional set is estimated from the data. We can easily modify our

algorithms for both procedures depending on the situation; for example we can screen

groups of lags at a time for certain covariates in PDC-SIS, or allow the lag length hn

to vary by predictor. Additionally, for either procedure we can condition on a small
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number of lags of Yt, and leave the higher order lags of Yt as possible covariates in

our screening procedure.

2.3.3 Threshold Selection

We first discuss how to select the parameter Γn for PDC-SIS+. For simplicity we

will only use a single threshold for all lag levels. The idea is to create pseudo data

{(xt, Y ∗t )}t=1,...,n, where {Y ∗t }i=1,...,n is formed using a stationary bootstrap. This

resampling procedure creates a null model, where

ω̂∗j = ˆpdcor(Y ∗t , Xt−1,j;Y
∗
t−1, Y

∗
t−2, . . . , Y

∗
t−hn), is a statistical estimate of zero, since

asymptotically we have independence between (Y ∗t , Y
∗
t−1, . . . , Y

∗
t−hn) and Xt−1,j. We

can then choose the α = .99 quantile of ω̂∗1, . . . , ω̂∗pn . Given that this threshold depends

on a one resampling, we stabilize this threshold by constructing K (we choose K = 5)

bootstrap samples.

Our procedure is as follows: we first form K bootstrap samples y(1)∗, . . . ,y(K)∗,

and compute ω̂(i)∗
j = ˆpdcor(Y

(i)∗
t , Xt−1,j;Y

(i)∗
t−1 , . . . , Y

(i)∗
t−hn) for i ≤ K, j ≤ pn. We then

select the α = .99 quantile of these values. In order to avoid conditioning on too many

variables, an upper bound of dn1/2e variables can be added to our conditioning vector

at each lag level. The idea of this procedure is that covariates above this threshold

have a partial distance correlation easily distinguishable from zero. This procedure

is similar to the random decoupling approach used in Weng et al. (2017) and Barut

et al. (2016) for the iid setting.

For both PDC-SIS and PDC-SIS+ we also need to select a threshold γn to form

our targeted set of predictors. We give three possible methods to select this threshold.

The first is to use the bootstrap resampling procedure detailed above, which is a data

driven method to select γn. Given we used α = .99 to select Γn, we would want to use
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a quantile between .95 and .99 to select γn. This is similar in spirit to thresholding by

using a cutoff for the t-statistics of each marginal correlation measure used in Bai and

Ng (2008). The second approach, which is more commonly used in the literature, is

to select the top dn predictors as ranked by our screening algorithm. When pn � n,

dn = n/log(n) or dn = n−1 are common choices used in the literature. Alternatively,

dn can be set by the researcher using prior knowledge of the data.3 The above two

methods can be used without having decided on a second stage procedure beforehand.

If one already has decided on the second stage modeling procedure, then γn can be

selected by cross validation.

2.4 Screening for Multivariate Time Series Models

Multivariate time series models, such as linear VAR models, are commonly used

in fields such as macroeconomics (Lütkepohl, 2005), finance, and more recently neu-

roscience (Valdés-Sosa et al., 2005), and genomics. VAR models provide a convenient

framework for forecasting, investigating Granger causality, and modeling the tempo-

ral and cross-sectional dependence for large numbers of series. Since the number of

parameters grows quadratically with the number of component series, VAR models

have traditionally been restricted to situations where the number of component series

is small. One way to overcome this limitation is by assuming a sparse structure in our

VAR process, and using penalized regression methods such as the Lasso and adaptive

Lasso (Zou, 2006b) to estimate the model. Examples of works which pursue this direc-

tion include Basu and Michailidis (2015), Basu et al. (2015), Kock and Callot (2015),

and Nicholson et al. (2016). However, due to the quadratically increasing nature of

the parameter space, penalized regression methods can quickly become computation-

3If the number of targeted predictors is selected beforehand, then one can set an upperbound of
dn variables which can added to the conditioning set in PDC-SIS+.
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ally burdensome when we have a large panel of component series. For example, in

a VAR(k) process: xt =
∑k

i=1 Bixt−i + ηt, where xt ∈ Rmn , mn = 1000, k = 5,

the number of parameters to estimate is 5 × 106. Additionally, these methods are

restricted to linear VAR models, whereas there is considerable evidence of non-linear

effects such as the existence of thresholds, smooth transitions, regime switching, and

varying coefficients in fields such as macroeconomics and finance (Kilian and Lütke-

pohl, 2017).

Screening approaches can be used in this setting, and one option would be to

screen separately for each of the mn series. This can be computationally prohibitive

since it requires estimating km2
n correlations. However, if we assume a group structure

in the component series and a sparse conditional dependency structure between these

groups, we can quickly reduce the feature space by screening at the group level using

distance correlation based methods. To be more precise, let xt be a non-linear VAR(k)

process:

xt = g(xt−1, . . . ,xt−k) + ηt, where xt ∈ Rmn ,ηt iid. (2.1)

For simplicity, we let all groups be of size gn, let en = mn/gn denote the total number

of groups for a given lag level, and denote our groups (Gt−1,1, . . . , Gt−k,en). To get

a sense of the computational benefits of screening on the group level, assume for

example, mn = 500, k = 1, and we have 25 groups all of size gn = 20. For this

linear VAR (1) model, when n = 200, we note it takes about 350 times longer to

compute all m2
n = 5002 pairwise distance correlations

{
ˆdcor(Xt,j, Xt−1,k)

}
j≤mn,k≤mn

vs. computing all e2
n = 252 group pairwise distance correlations. After the group

screening, examples of second stage procedures include: screening at the individual

series level using partial distance correlations, or using a group lasso type procedure

(Yuan and Lin, 2006) which can handle sparsity between groups and within groups
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for a linear VAR model (Basu et al., 2015).

We now present the details of our group PDC-SIS procedure. We decide to condi-

tion on only one lag of the grouped response in our procedure, however this number

can also be selected using a data driven procedure. Let

A(i) = {(i, k, j) : k ∈ {t− 1, . . . , t− hn} , j ≤ en}\ (i, t−1, i), refer to the set of possi-

ble group connections for Gt,i. We remove the entry (i, t−1, i) from A(i), since we are

conditioning on Gt−1,i and it will not be screened. Let the active group connections

for group i be denoted as:

M(i)
∗ =

{
(i, k, j) ∈ A(i) : F

(
Gt,i|Gt−1,i,

t−1⋃
r=t−hn

{Gr,l}l≤en

)

functionally depends on Gk,j

}
.

Now let the overall active group connections set be denoted asM∗ =
en⋃
i=1

M(i)
∗ . Simi-

larly, our overall screened set is now:

M̂γn =
en⋃
i=1

M̂(i)
γn =

{
(i, k, j) ∈

en⋃
i=1

A(i) : |p̂dcor(Gt,i, Gk,j;Gt−1,i)| ≥ γn,

}
.

The sure screening properties of our group PDC-SIS procedure are similar to the ones

presented in theorem 1, and are presented in the supplementary material. From these

results, we can infer the maximum size of the groups is o(n1/2−κ). Given this bound on

the group size, our group PDC-SIS procedure is most advantageous when the number

of component series (mn) increases polynomially with the sample size. This is usually

the case in most VAR models seen in practice. A group version of PDC-SIS+ can

also be developed similarly to the procedure in section 3, however we do not pursue

this direction, as it usually leads to situations where we are conditioning on large
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numbers of variables.

2.5 Simulations

We now evaluate the performance of PDC-SIS and PDC-SIS+. We also include

the performance of 4 other screening methods whose properties have been investi-

gated in the time series setting, these include: marginal Pearson correlation screening

(SIS), nonparametric independence screening (NIS), generalized least squares screen-

ing (GLSS), and distance correlation screening (DC-SIS). We also include the perfor-

mance of a conditional DC screening approach (CDC-SIS), which uses the conditional

DC in place of partial DC in our PDC-SIS algorithm.

We use the R package energy to compute the partial DC and the R package cdc-

sis, which was used in Wen et al. (2018), to compute the conditional DC. The cdcsis

package computed the kernel density estimate of the conditioning vector (which is

required to estimate the conditional DC) by estimating a diagonal bandwidth matrix

using the plug-in method. The NIS estimator is computed using the R packagemgcv,

and the distance and partial distance correlation estimators are computed using the R

package energy. For computational efficiency, the GLSS estimator is computed using

the nlme package using an AR(1) approximation for the residual covariance matrix.

Simulations for our group PDC-SIS procedure are contained in the supplementary

material.

Unless noted otherwise, we fix our sample size n = 200, maximum number of

lags considered hn = 3, and the conditioning vector always includes three lags of our

response. We vary the number of candidate series, mn, from 500 to 1500, so the

number of total covariates, pn, varies from 1500 to 4500. We repeat each experiment

200 times, and report the median minimum model size needed to include all the
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relevant covariates from zt−1 = (xt−1, . . . ,xt−3). We note that for all procedures

being considered, we will not be screening the lags of Yt. In the supplementary

materials, we also report the median rank of our relevant covariates for each procedure.

We set Y0 = Y−1 = . . . = Y−(hn+1) = 0, and generate n + 200 samples of our model.

We then discard the first 200 − hn samples. To ensure stationarity when generating

a nonlinear autoregressive model with exogenous predictors (NARX), we use the

sufficient conditions provided in Masry and Tjøstheim (1997).

2.5.1 DGP’s

Model 1:

Yt =
6∑
j=1

βjXt−1,j + εt, and xt = A1xt−1 + ηt, (2.2)

where A1 = .6 ∗ I, and ηt
iid∼ N(0,Ση), or ηt

iid∼ t5(0, 3/5 ∗Ση). For this model, we set

Ση = {.3|i−j|}i,j≤mn . For the error process, we have an AR(1) process: εt = αεt−1 + et

where α = .6, and let et
iid∼ N(0, 1) or et

iid∼ t5.

Model 2:

Yt = g1(Yt−1) + g2(Yt−2) + g3(Yt−3) + f1(Xt−1,1)

+ f2(Xt−2,1) + f3(Xt−1,2) + f4(Xt−2,2) + εt,
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where the functions are defined as:

g1(x) = .25x, g2(x) = x exp(−x2/2), g3(x) = −.6x+ .3x(x > 0),

f1(x) = 1.5x+ .4x(x > 0), f2(x) = −x, f3(x) = 1.2x+ .4x(x > 0),

f4(x) = x2sin(2πx).

The covariate process is generated as in (2.2), with A1 = {.4|i−j|+1}i,j≤mn and we

set Ση = Imn with ηt
iid∼ N(0,Ση) or ηt

iid∼ t5(0, 3/5 ∗ Ση). Additionally, we set

εt
iid∼ N(0, 1) or t5.

Model 3:

Yt = g1(Yt−1) + g2(Yt−2, Yt−1) + g3(Yt−3, Yt−1) + f1(Xt−1,1, Xt−1,4)

+ f2(Xt−2,1, Xt−1,4) + f3(Xt−1,2, Xt−1,4) + f4(Xt−2,2, Xt−1,4)

+ f5(Xt−1,3, Xt−1,4) + f6(Xt−1,4) + f7(Xt−1,3, Xt−1,4) + εt,

where the functions are defined as:

g1(x) = .2x+ .2x(x > 0), g2(x, y) = .2x+ .1x(y > 0),

g3(x, y) = x exp(−y2/2), f1(x, y) = f2(x, y) = f4(x, y) = x

(
1 +

1

1 + .5 exp(−y)

)
,

f3(x, y) = x

(
2 +

2

1 + .5 exp(−y)

)
, f5(x), f6(x) = 2x.

f7(x, y) = x

(
1 +

1

1 + exp(−y)

)

The covariate process is a VAR(2) process: xt = A1xt−1 + A2xt−2 + ηt, where A1 =

{.3|i−j|+1}i,j≤mn , A2 = {.2|i−j|+1}i,j≤mn , and Ση = {−.3|i−j|}i,j≤mn . As before, ηt
iid∼

N(0,Ση) or ηt
iid∼ t5(0, 3/5 ∗ Ση).
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Model 4:

Yt = .25Yt−1 + .3Yt−2 + .3Yt−3 + f1(Xt−1,1) + f2(Xt−2,1)

+ β1,tf3(Xt−1,2, Xt−1,3) + β2,tf4(Xt−2,2, Xt−2,3) + β3,tf5(Xt−1,3)

+ β4,tf6(Xt−2,3) + f7(Xt−1,2) + f8(Xt−2,2, Xt−1,2) + εt,

where the functions are defined as:

f1(x), f7(x) = 1.5x+ .4x(x > 0), f2(x) = 1.2x, f3(x, y) = f4(x, y) = xy,

f5(x), f6(x) = x, f8(x, y) = 1.2x+ .4x(y > 0), β1,t, β2,t, β3,t, β4,t
iid∼ Unif(.5, 1) ∀t.

The covariate process is generated as in (2.2), with A1 = {.4|i−j|+1}i,j≤mn and Ση =

{−.3|i−j|}i,j≤mn . As in the previous examples, ηt
iid∼ N(0,Ση) or ηt

iid∼ t5(0, 3/5 ∗Ση).

We also note that the coefficients β1,t, β2,t, β3,t, β4,t, are random at each time t.

Model 5: Yt = .25Yt−1 + .3Yt−2 + .3Yt−3 +Xt−1,1 −Xt−2,1 + .5Xt−1,2 + .5Xt−2,2 + εt.

The covariate process is generated as in (2.2), with A1 = {.4|i−j|+1}i,j≤mn and

we set Ση = Imn with ηt
iid∼ N(0,Ση) or ηt

iid∼ t5(0, 3/5 ∗ Ση). Additionally we set

εt
iid∼ N(0, 1) or t5.

2.5.2 Results

The results are displayed in table 2.10, and the entries below “Gaussian" corre-

spond to the setting where both et and ηt are drawn from a Gaussian distribution.

Accordingly the entries under “t5" correspond to the case where et and ηt are drawn

from a t5 distribution. For DGP 1, We see that all methods besides CD-SIS perform

well in this scenario, with GLSS performing best and PDC-SIS following closely even
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though the lags of Yt are not significant variables in this example. The results also

show that including heavier tails deteriorates the performance of all methods for this

model. As we seen previously, CDC-SIS is not able to hand conditional sets larger

than 1 or 2 predictors, and as such performs very poorly for all DGPs. As for the

computational burden of CDC-SIS, when mn = 500, PDC-SIS takes about 15 seconds

to compute, while CDC-SIS takes nearly 20 minutes to compute.

For DGP 2, the nonlinear transformations used are mainly threshold functions

which are popular nonlinear transformations for time series data (Teräsvirta et al.,

2010). We see that our method clearly outperforms the other methods across all

scenarios. As seen in table 4 of the supplementary file, the covariate Xt−2,1 seems

to be the most difficult to detect for the competing methods, and it appears our

conditioning scheme greatly improves the detection of this signal. For DGP 3, we

apply a logistic smooth transition function to the covariates, and for the autoregressive

terms we mainly employ a hard threshold function. The results are displayed in table

2.10, and the median ranks of each of our significant variables can be found in table

5 of the supplementary file. The variable which appears to be the most difficult

to detect seems to be the transition variable, Xt−1,4. DGP 4 contains a mix of

threshold functions, interactions, and random coefficients. Looking at table 6 in the

supplementary file, we notice that the covariates Xt−1,3, Xt−2,3, which only appear

through random coefficient effects, are the most difficult to predict. Overall, we see

that for models 1-5, PDC-SIS+ does as good and in most cases better than PDC-SIS.

2.6 Real Data Application: Forecasting Portfolio Returns

In this section, we present an application to forecasting US monthly equity port-

folio returns. We first focus on forecasting market returns as measured by the CRSP
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Table 2.2: Median Minimum Model Size

Gaussian, pn = 1500
Model 1 Model 2 Model 3 Model 4 Model 5

PDC-SIS 7 61 76 42 24
PDC-SIS+ 7 34 41 40 14.5
CDC-SIS 1150 1000 418 439 1010
DC-SIS 11 488 124 306.5 650
NIS 11 488 135 275 709
SIS 10 343.5 92 234.5 630

GLSS 6 179.5 194 800.5 1500
Gaussian, pn = 4500

Model 1 Model 2 Model 3 Model 4 Model 5
PDC-SIS 11 149 239 100.5 59
PDC-SIS+ 9 84 114.5 79 37
CDC-SIS 3424 2991 1257 1269 1009
DC-SIS 19 1051 444 842.5 1918
NIS 16 861 405 704 1950
SIS 13 722 326 588 1691

GLSS 6 592 1257 2214 4500
t5, pn = 1500

Model 1 Model 2 Model 3 Model 4 Model 5
PDC-SIS 13 79.5 56 51 52
PDC-SIS+ 12 77.5 49.5 36.5 28.5
CDC-SIS 1208 522 418 415 3041
DC-SIS 20 408.5 146 306 680
NIS 33 513.5 172 328 681
SIS 21.5 447 148 265 647

GLSS 6 450.5 522 891.5 1500
t5, pn = 4500

Model 1 Model 2 Model 3 Model 4 Model 5
PDC-SIS 36.5 275.5 92 104 162
PDC-SIS+ 31.5 121.5 85.5 99 78
CDC-SIS 3548 1930 1249 1237 3010
DC-SIS 68 951.5 314 814.5 1565
NIS 114 1100.5 413 851.5 1732
SIS 66.5 905 350 761 1567

GLSS 7 1386.5 1277 2843.5 4500
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value weighted index, and the SP500 index. Additionally, we also focus on forecast-

ing returns from 5 Fama-French portfolios sorted on Market Cap. For our predictor

series we use book to market valuation ratios for Fama-French (FF) size and value

sorted portfolios, in which U.S. stocks are divided into 25 or 100 portfolios sorted by

market cap and book to market ratios. Kelly and Pruitt (2013) build on the present

value identity and argue both theoretically and empirically that this cross section

of disaggregated valuation ratios is predictive of future market returns. We use the

same dataset which was originally analyzed in Kelly and Pruitt (2013), and can be

obtained from the second author’s website.4

Let xt denote the 100 (or 25) FF portfolios at time t, and let Yt+1 denote the

portfolio return at time t+1. Given that there seems to be some slight autocorrelation

in the returns, we treat Yt as a possible predictor and set it as a conditioning variable

in PDC-SIS and PDC-SIS+. We also expand our predictor set to include zt =

(xt,xt−1,xt−2,xt−3). The linear factor augmented autoregression model in which the

factors are estimated by principal components is very commonly used in econometrics

(Stock and Watson, 2002a). Rather than estimating the principal components over

the entire set of predictors zt, Bai and Ng (2008) and Bair et al. (2006) among others

have shown that estimating the principal components on a targeted set of predictors

can often lead to greater predictive accuracy. This procedure is sometimes known as

supervised principal components, especially when marginal correlation screening is

used to form our targeted set of predictors. This procedure can possibly be improved

by using additional conditioning predictors, and non-linear measures of association,

given that the marginal relationship between the response and individual predictors

can be non-linear even when the joint relationship is linear.

4There were a small number of missing values (∼ 1 percent for 100 portfolio dataset), which we
imputed using the cross sectional median of the time period.
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Given the above discussion, we report the forecasting performance of 8 different

models. The first is a linear AR(1) model: Ŷt+1 = α̂0 + α̂Yt. We then combine each of

the six screening methods under consideration (we exclude CDC-SIS due to its poor

performance in simulations) with a second stage Factor augmented autoregression

(FAAR). For each of the screening methods we select the top dn = pn/10 predictors

of zt, and add Yt to form the screened subset of predictors. Using this subset of

predictors, our forecasts are: Ŷt+1 = β̂0 + α̂1Yt+ γ̂F̂t, where F̂t = (F̂t,1, . . . , F̂t,k) are k

factors which are computed as the first k principal components of the top dn = pn/10

predictors of zt, as ranked by the screening procedures. We select k using BIC and

we allow for values between 2 and 5. Lastly, we include the performance of a factor

augmented autoregression estimated using the full set of predictors.

We form expanding window out of sample forecasts , where the first out of sample

forecast is for the time period 1980:1 (January 1980), and the last forecast is for

time 2010:11. To construct the forecast for 1980:1, we use the observations between

1930:1 to 1979:11 to estimate the factors, and model parameters. Therefore for the

models described previously, t =1930:1 to 1979:10. We then use the predictor values

at t =1979:11 to form our forecast for 1980:1. The next window uses observations

from 1930:1 to 1980:1 to forecast 1980:2. We use the same data split point for our

out of sample forecasts as Kelly and Pruitt (2013), which gives us a total of 372 out

of sample forecasts. For each of our 8 models, predictive ability is assessed through

the out of sample R2 which is defined as:

R2
OOS = 100 ∗

(
1−

∑2010:11
t=T0

(Ŷt − Yt)2∑2010:11
t=T0

(Ȳt − Yt)2

)
(2.3)

where T0 =1980:1 and Ȳt =
∑t

i=1 Yi/t is the prevailing mean at time t. The R2
OOS

ranges from (−∞, 100], where 100 indicates a perfect out of sample fit, and negative
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values indicating that the method is outperformed by using a simple mean forecast.

We report the results when forecasting the SP500 and CRSP market index using

either 25 FF portfolios and 100 FF portfolios in table 2.3. We observe that in both

cases that finding targeted predictors via PDC-SIS and PDC-SIS+ easily outperform

the alternatives, with the next best model is formed using DC-SIS. On the other

hand, linear screening procedures such as SIS and GLSS underperform a factor model

estimated on all the predictors, and underperform the mean forecast as well. From the

results, we see that even non-linear screening methods all outperform linear methods.

Given that DC-SIS does not condition on any predictors, this suggests that accounting

for non-linearities in marginal relationships is important even when using linear second

stage procedures. In order to assess the predictive ability of the models without the

AR(1) term, we estimate our second stage forecasts using only the k factors. This

makes our results directly comparable to previous works which ignored the AR(1)

term. The results are in table 2.4, and although we have lower R2
OOS values, we

observe that our PDC methods easily outperform their competitors.

In table 2.5 we report the results when forecasting the 5 FF size sorted portfolios,

and table 2.6 contains the results when excluding the AR(1) term.5. The first quintile

corresponds to small cap stocks, and we see distance correlation methods strongly

outperform other methods for this portfolio. Interestingly, in contrast to Kelly and

Pruitt (2013), we obtain the highest predictability for this portfolio. And we generally

find portfolios corresponding to smaller cap stocks easier to forecast than larger cap

stocks using distance correlation methods, and we observe that the other methods we

consider have the opposite trend.

As stated previously, we used a sample split date of 1980:1 for our out of sample

5We used the 25 FF portfolios as possible predictors along with their lags. The results were qual-
itatively similar for the 100 FF portfolio setting, thus we omit its results due to space considerations.
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Table 2.3: R2
OOS(%)

CRSP SP 500
25 FF Portfolios 100 FF Portfolios 25 FF Portfolios 100 FF Portfolios

AR (1) 1.17 1.17 .15 .15
SIS FAAR .12 -2.17 -3.84 -1.80

PDC-SIS FAAR 1.95 2.02 .70 .71
DC-SIS FAAR .88 1.18 -.54 -.29

PDC-SIS+ FAAR 1.55 1.97 .70 .71
NIS FAAR 1.42 .85 -1.44 -1.06
GLSS FAAR .05 -2.01 -3.33 -1.78

FAAR 1.45 -.22 .04 -.07

Table 2.4: R2
OOS(%), Excluding AR(1) Term

CRSP SP 500
25 FF Portfolios 100 FF Portfolios 25 FF Portfolios 100 FF Portfolios

SIS Factor -1.25 -3.75 -2.10 -4.63
PDC-SIS Factor .61 .77 .56 .56
DC-SIS Factor -.04 .14 -.66 -.85

PDC-SIS+ Factor .26 .64 .56 .56
NIS Factor .26 -.35 -1.41 -1.89
GLSS Factor -1.19 -3.59 -2.00 -4.01

Factor .38 -2.46 -.25 -1.82

forecasts. In order to show the robustness of our results to this choice of split date, we

plot the R2
OOS for the range of sample split dates between T0 = 1960:1 to T0 = 1995:1

in figure 2.1. We plot this for both the CRSP index and the SP 500 index, using 100

FF portfolios as predictors. For convenience of presentation we omit the performance

of GLSS-FAAR and PDC-SIS+ FAAR models in our plot, given their very close

performance with PDC-SIS FAAR and SIS-FAAR respectively. We see from the

plot, that PDC-SIS Factor models outperform the alternatives over almost the entire

range of sample split points. We also observe using a factor model estimated on all

the predictors, along with linear screening rules underperform the historical mean

forecast over the range of sample split points. Taken together, the results in this

section show the benefits of screening using distance correlation based measures even

for linear factor models.
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Figure 2.1: R2
OOS by Sample Split Date. We select each date between 1960:1-1995:1 as our

sample split point and plot the corresponding R2
OOS . We omit the values for GLSS-FAAR and

PDC+-FAAR due to having very close results to SIS-FAAR and PDC-FAAR respectively. We used
100 FF portfolios and their lags as possible predictors.
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Table 2.5: R2
OOS(%), Size Sorted Portfolios

Quintile 1
(Small) Quintile 2 Quintile 3 Quintile 4 Quintile 5

(Large)
AR(1) 5.12 1.69 1.83 1.45 .16

SIS FAAR 3.42 .57 .1 -.86 -1.4
PDC-SIS FAAR 5.42 2.85 2.63 1.57 -.6
DC-SIS FAAR 5.74 2.64 2.73 1.34 -.63

PDC-SIS+ FAAR 5.80 2.92 2.54 1.13 -.39
NIS FAAR 2.88 .26 .35 -.66 -.42
GLSS FAAR 4.0 1.26 .58 -.54 -1.47

FAAR 4.11 1.28 1.38 .57 .03

Table 2.6: R2
OOS(%), Size Sorted Portfolios

Quintile 1
(Small) Quintile 2 Quintile 3 Quintile 4 Quintile 5

(Large)
SIS Factor -2.16 -1.92 -2.4 -3.01 -1.74

PDC-SIS Factor 1.95 -.02 .62 -.05 -.60
DC-SIS Factor 3.23 -.09 -.57 -1.02 -.43

PDC-SIS+ Factor 2.48 .95 1.63 1.19 -.49
NIS Factor -2.52 -2.01 -1.91 -2.61 -.68
GLSS Factor -2.24 -2.45 -2.28 -2.89 -1.63

Factor -1.14 -.69 -.57 -1.09 -.16

2.7 Asymptotic Properties

2.7.1 Dependence Measures

In order to establish asymptotic properties, we rely on two widely used dependence

measures, the functional dependence measure and β-mixing coefficients. We give an

overview of the functional dependence measure framework here, and one can consult

(Davidson, 1994) for an overview of β-mixing coefficients. For univariate processes,

(Yi ∈ R)i∈Z, we assume Yi is a causal, strictly stationary, ergodic process with the

following form:

Yi = g (. . . , ei−1, ei) , (2.4)

where g(·) is a real valued measurable function, and ei are iid random variables. And

for multivariate processes, such as the covariate process (xi ∈ Rpn)i∈Z, we assume the
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following representation:

xi = h (. . . ,ηi−1,ηi) . (2.5)

Where ηi, i ∈ Z, are iid random vectors, h(·) = (h1(·) . . . , hpn(·)), xi = (Xi1, . . . , Xipn),

and Xij = hj(. . . ,ηi−1,ηi).

Processes having these representations are sometimes known as Bernoulli shift

processes (Wu, 2009), and include a wide range of stochastic processes such as linear

processes with their nonlinear transforms, Volterra processes, Markov chain models,

nonlinear autoregressive models such as threshold auto-regressive (TAR), bilinear,

GARCH models, among others (Wu, 2011, 2005). These representations allow us

to quantify dependence using a functional dependence measure introduced in Wu

(2005). The functional dependence measure for a univariate process and multivariate

processes is defined respectively as:

δq(Yi) = ||Yi − g (F∗i ) ||q = (E|Yi − g (F∗i ) |q)1/q,

δq(Xij) = ||Xij − hj (H∗i ) ||q = (E|Xij − hj (H∗i ) |q)1/q, (2.6)

where F∗i = (. . . , e−1, e
∗
0, e1, . . . , ei) with e∗0, ej, j ∈ Z being iid. And for the multi-

variate case, H∗i = (. . . ,η−1,η
∗
0,η1, . . . ,ηi) with η∗0,ηj, j ∈ Z being iid. Since we are

replacing e0 by e∗0, we can think of this as measuring the dependency of yi on e0,

since we are keeping all other inputs the same. We assume the cumulative functional

dependence measures are finite:

∆0,q(y) =
∞∑
i=0

δq(Yi) <∞, and Φm,q(x) = max
j≤pn

∞∑
i=m

δq(Xij) <∞. (2.7)

This short range dependence condition implies, by the proof of theorem 1 in Wu and
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Pourahmadi (2009), the auto-covariances are absolutely summable.

We note that compared to functional dependence measures, β-mixing coefficients

can be defined for any stochastic processes, and are not limited to Bernoulli shift

processes. On other hand, functional dependence measures are easier to interpret

and compute since they are related to the data generating mechanism of the under-

lying process. In many cases using the functional dependence measure also requires

less stringent assumptions (see Wu and Wu (2016), Yousuf (2018) for details). Al-

though there is no direct relationship between these two dependence frameworks,

fortunately there are a large number of commonly used time series processes which

are β-mixing and satisfy (2.7). For example, under appropriate conditions, linear

processes, ARMA, GARCH, ARMA-ARCH, threshold autoregressive, Markov chain

models, amongst others, can be shown to be β-mixing (see Pham and Tran (1985),

Carrasco and Chen (2002), An and Huang (1996), Lu (1998) for details).

2.7.2 Asymptotic Properties: PDC-SIS

To establish sure screening properties, we introduce the following conditions.

Condition 2.7.1. Assume |pdcor(Yt, Zt−1,k;Ck)| ≥ c1n
−κ for k ∈ M∗ and κ ∈

(0, 1/2).

Condition 2.7.2. Assume the response and the covariate processes have representa-

tions (2.4) and (2.8), respectively. Additionally, we assume the following decay rates

Φm,r(x) = O(m−αz),∆m,q(y) = O(m−αy), for some αz, αy > 0, q > 2, r > 4 and

τ = qr
q+r

> 2.

Condition 2.7.3. Assume the response and the covariate processes have representa-

tions (2.4) and (2.8) respectively. Additionally assume

υz = supq≥2 q
−α̃zΦ0,q(x) <∞ and υy = supq≥2 q

−α̃y∆0,q(y) <∞, for some α̃z, α̃y ≥ 0.
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Condition 2.7.4. Assume the process {(Yt,xt)} is β-mixing, with mixing rate βxy(a) =

O(exp(−aλ1)), for some λ1 > 0.

Condition 2.7.1 is a standard population level assumption which allows covari-

ates in the active set to be detected by our screening procedure. Condition 2.7.2

is similar to the one used in Yousuf (2018) and Wu and Wu (2016), and assumes

both the response and covariate processes are causal Bernoulli shift processes, and

have at least 2 and 4 finite moments respectively. Additionally it presents the

dependence conditions on these processes, where higher values of αx, αε indicate

weaker temporal dependence. Examples of response processes which satisfy condi-

tion 2.7.2 include stationary, causal, finite order ARMA, GARCH, ARMA-GARCH,

bilinear, and threshold autoregressive processes, all of which have exponentially de-

caying functional dependence measures (see Wu (2011) for details). For the covariate

process, assume xi is a vector linear process: xi =
∑∞

l=0 Alηi−l. where {Al} are

mn ×mn coefficient matrices and {ηi = (ηi1, . . . , ηimn)} are iid random vectors with

cov(ηi) = Ση. For simplicity, assume {ηi,j, j = 1, . . . ,mn} are identically distributed,

then δq(Xij) = ||Ai,jη0 − Ai,jη
∗
0||q ≤ 2|Ai,j|||η0,1||q, where Ai,j is the jth column of

Ai. Define ||Ai||∞ as the maximum absolute row sum of Ai, then if ||Ai||∞ = O(i−β)

for β > 1, we have Φm,q(x) = O(m−β+1). Other examples include stable VAR

processes, and multivariate ARCH processes which have exponentially decaying cu-

mulative functional dependence measures (Wu and Wu, 2016; Yousuf, 2018). We note

that it is clear that if xi satisfies condition 2.7.2, then zi trivially satisfies it as well.

Condition 2.7.3 strengthens the moment requirements of condition 2.7.2, and requires

that all moments of the covariate and response processes are finite. To illustrate the

role of the constants α̃z and α̃y, consider the example where yi is a linear process:

yi =
∑∞

j=0 fjei−j with ei iid and
∑∞

l=0 |fl| < ∞, then ∆0,q(y) = ||e0 − e∗0||q
∑∞

l=0 |fl|.
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If we assume e0 is sub-Gaussian, then α̃y = 1/2, since ||e0||q = O(
√
q). Similarly, if

ei is sub-exponential, we have α̃y = 1.

To understand the inclusion of condition 2.7.4, consider the U -statistic:

Ur(St1 , . . . , Str) =

(
n

r

) ∑
t1≤t2≤...≤tr≤n

h(St1 , . . . , Str),

which aims to estimate θ(h) =
´
h(St1 , . . . , Str)dP(S1) . . . dP(Sr). When S1, . . . , Sn

are iid, the U -statistic is an unbiased estimator of θ(h), however for r > 1 the U -

statistic is no longer unbiased if St is serially dependent. Since our sample distance

correlation estimate can be written as a sum of U -statistics (Li et al., 2012b), condition

2.7.4 is needed to control the rate at which the above bias vanishes as n → ∞.

Conditions 2.7.2 and 2.7.4 are frequently used when dealing with time series data

(Wu and Pourahmadi, 2009; Xiao and Wu, 2012; Davis et al., 2016b).

Throughout this paper, let α = min(αx, αy), and % = 1, if αz > 1/2 − 2/r,

otherwise % = r/4 − αzr/2. Let ι = 1 if α > 1/2 − 1/τ , otherwise ι = τ/2 − τα,

and let ζ = 1, if αy > 1/2 − 2/q, otherwise ζ = q/4 − αyq/2. Additionally, let

Ky,q = supm≥0(m+ 1)αy∆m,q(y), and Kz,r = supm≥0(m+ 1)αzΦr(x). Given condition

2.7.3, it follows that Kε,q, Kz,r < ∞. Let tn = maxj dim(Cj), be the maximum

dimension of the conditional vectors. We define ψ̃ = 2
1+2α̃z+2α̃y

, ϕ̃ = 2
1+4α̃z

, α̃ = 2
1+4α̃y

.

Lastly, for ease of presentation, let ω̂ = (ω̂1, . . . , ω̂pn), ω = (ω1, . . . , ωpn), where
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ωk = pdcor(Yt, Zt−1,k;Ck), ω̂k = p̂dcor(Yt, Zt−1,k;Ck). In addition, let

an = n2

[
exp

(
−n

1/2−κ

tnυ2
y

)α̃
+ exp

(
−n

1/2−κ

tnυzυy

)ψ̃
+ exp

(
−n

1/2−κ

tnυ2
z

)ϕ̃]
,

bn = n2

[
t
r/2
n nζKr

y,r

nr/2−rκ/2
+
t
r/2
n nιK

r/2
z,r K

r/2
y,r

nr/2−r/2κ
+
t
r/2
n n%Kr

z,r

nr/2−rκ/2

+ exp

(
− n

1−2κ

t2nK
4
z,r

)
+ exp

(
− n1−2κ

t2nK
2
z,rK

2
y,r

)
+ exp

(
− n

1−2κ

t2nK
4
y,r

)]
,

cn =
t
r/2
n Kr

y,r

nr/4−rκ/2
+
t
r/2
n K

r/2
z,r K

r/2
y,r

nr/4−r/2κ
+

t
r/2
n Kr

z,r

nr/4−rκ/2
.

For simplicity and convenience of presentation, we assume q = r, and one can con-

sult the proof for the general case. The following theorem presents the sure screening

properties of PDC-SIS.

Theorem 3. 1. Suppose conditions 2.7.1, 2.7.3, and 2.7.4 hold. For any c2 > 0,

we have:

P (max
j≤pn
|ω̂k − ωk| > c2n

−κ) ≤ O(pnan).

2. Suppose conditions 2.7.1, 2.7.3, and 2.7.4 hold. For γn = c3n
−κ with c3 ≤ c1/2,

we have:

P
(
M∗ ⊂ M̂γn

)
≥ 1−O(snan).

3. Suppose conditions 2.7.1, 2.7.2, and 2.7.4 hold. For any c2 > 0, we have:

if r < 12, P (max
j≤pn
|ω̂j − ωj| > c2n

−κ) ≤ O(pncn);

if r ≥ 12, P (max
j≤pn
|ω̂k − ωk| > c2n

−κ) ≤ O(pnbn).

4. Suppose conditions 2.7.1, 2.7.2, and 2.7.4 hold. For γn = c3n
−κ with c3 ≤ c1/2,
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we have:

if r < 12, P
(
M∗ ⊂ M̂γn

)
≥ 1−O(sncn);

if r ≥ 12, P
(
M∗ ⊂ M̂γn

)
≥ 1−O(snbn).

From the above theorem, we observe that the range of pn depends on the temporal

dependence in both the covariate and the response processes, the strength of the

signal (κ), and the moment conditions. We also have two cases for finite polynomial

moments, one for r < 12 and one for r ≥ 12. This is due to our proof technique

which relies on both Nagaev and Rosenthal type inequalities. For the case of low

moments, we obtain a better bound using a Rosenthal type inequality combined with

the Markov inequality, whereas for higher moments Nagaev type inequalities lead

to a better bound; more details can be found in the proof which is provided in the

supplementary file.

For example, if we assume only finite polynomial moments with r = q and r < 12,

then pn = o(nr/4−rκ/2). If we assume α ≥ 1/2− 2/r and r > 12, pn = o(nr/2−rκ/2−3).

The constants Kz,r and Ky,q, which are related to the cumulative functional depen-

dence measures, represent the effect of temporal dependence on our bounds when

α ≥ 1/2− 2/r. However, when using Nagaev type inequalities, there is an additional

effect in the case of stronger dependence in the response or covariate process (i.e.

α < 1/2− 2/r). For instance, if αx = αε and q = r, the range for pn is reduced by a

factor of nr/4−αr/2 in the case of stronger dependence. We observe that if the response

and covariates are sub-Gaussian, pn = o(exp(n
1−2κ

3 )), and if they are sub-exponential,

pn = o(exp(n
1−2κ

5 )).

By choosing an empty conditional set for all the variables, our procedure reduces

to the distance correlation screening (DC-SIS) introduced in Li et al. (2012b) for

the iid setting. Assuming sub-Gaussian response and covariates, Li et al. (2012b)
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obtained pn = o(exp(n
1−2κ

3 )) for DC-SIS, which matches our rate. In the iid setting

with finite polynomial moments, we can use the truncation method in their proof

and combined with the Markov inequality to obtain pn = o(exp(nr/4−rκ/2−1)). Our

results, which rely on a different proof strategy than the truncation method, provide

a better bound even in this setting.

2.7.3 Asymptotic Properties: PDC-SIS+

To show the asymptotic properties associated with PDC-SIS+, we denote

Sk,l =
(
Yt−1, . . . , Yt−hn , Xt−1,k, . . . , Xt−l+1,k, zt−1,Uλn1

, . . . ,zt−1,Uλnl−1

)
,

as the population level counterpart to Ŝk,l. In addition, let the threshold Γn =

λn + c1n
−κ, C = {S1,1, . . . ,Smn,1,S1,2, . . . ,Smn,hn}, and

UΓn
l−1 =

{
(l − 1)mn + 1 ≤ j ≤ lmn : |pdcor(Yt, Zt−1,j;Cj)| ≥ λn + c1

2
n−κ

}
,

represent the population level strong conditional signal set and the population level

set of conditioning vectors, respectively. One of the difficulties in proving uniform

convergence of our estimated partial distance correlations in this algorithm is the

presence of an estimated conditioning set Ĉ. This issue becomes compounded as we

estimate the conditioning vector for higher lag levels, since these rely on estimates

of the conditioning vectors for lower ones. To overcome this, we first denote the

collection of strong signals from lag 1 to hn− 1 as: UΓn =
{
UΓn

1 , . . . ,UΓn
hn−1

}
. We will

assume the following condition:

Condition 2.7.5. For any j ∈ {1, . . . , (hn − 1) ∗mn} \ Uλn , assume

|pdcor(Yt, Zt−1,j;Cj)| ≤ λn, where λnnκ →∞.
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Condition 2.7.5 assumes the variables in the strong conditional signal set, UΓn , are

easily identifiable from the rest of the covariates. This separation in the signal strength

will allow us to ensure with high probability that our estimated conditional sets match

their population level counterparts. The assumption λnn
κ → ∞, is introduced to

ensure dn = |M̃γn| � |Uλn|. Although the hope is that Uλn ⊂ M∗, this is not

required to prove sure screening properties of our algorithm. The sure screening

properties for PDC-SIS+ are similar to PDC-SIS, but for the sake of completeness,

we state the theorem in full.

Theorem 4. 1. Suppose conditions 2.7.1, 2.7.3, 2.7.4, and 2.7.5 hold. For γn =

c3n
−κ with c3 ≤ c1/2, we have

P
(
M∗ ⊂ M̃γn

)
≥ 1−O(snan).

2. Suppose conditions 2.7.1, 2.7.2, 2.7.4, and 2.7.5 hold. For γn = c3n
−κ with

c3 ≤ c1/2, we have

if r < 12, P
(
M∗ ⊂ M̃γn

)
≥ 1−O(sncn);

if r ≥ 12, P
(
M∗ ⊂ M̃γn

)
≥ 1−O(snbn).

2.8 Discussion

In this work, we have introduced two classes of partial distance correlation based

screening procedures, which are applicable to univariate or multivariate time series

models. These methods aim to utilize the unique features of time series data as

an additional source of information, rather than treating temporal dependence as
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a nuisance. The methods introduced can be easily utilized by researchers, given

that distance correlation methods are easily computable at low computational cost

by existing statistical packages. Lastly, by using a model free first stage procedure

we are able to expand the choice of models which can be considered for a second

stage procedure. This is especially helpful for the case of nonlinear or non-parametric

models where estimation in high dimensions can be computationally challenging.

There are many opportunities for further research, such as developing a theoretical

or data driven approach to selecting the number of lags considered in our algorithms.

Additionally, we can develop screening algorithms for time series data using measures

which are more robust to heavy tailed distributions. Lastly, our procedures were

developed under the assumption that the underlying processes are weakly dependent

and stationary. Although these assumptions are satisfied for a very wide range of

applications, there are many instances where they are violated. For example, non-

stationarity is commonly induced by time varying parameters, structural breaks, and

cointegrated processes, all of which are common in the fields of macroeconomics and

finance. Therefore, developing new methodologies for certain classes of non-stationary

processes, such as locally stationary processes, would be particularly welcome.

2.9 Appendix A

The Appendix is organized as follows: Section 2.9.1 compares the empirical power

of the Partial DC and Conditional DC measures, section 2.10 contains the sure screen-

ing properties, simulations, as well as a real data application of our group PDC-SIS

procedure. Section 2.11 contains the proofs of theorems 1 and 2 found in our main

paper. Lastly section 2.12 provide more detailed results of the simulations in section

5.1 of our main paper.
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2.9.1 Comparing Partial DC vs Conditional DC

In this subsection we will compare the power of Partial DC vs Conditional DC in

detecting conditional dependencies. We repeat examples 5-12 in Wang et al. (2015),

as these were the examples in their work in which there existed a non-zero conditional

distance correlation. For each example, we run 500 simulations, and for each simu-

lation we test the significance of p̂dcor(Y,X|Z) at the .05 level using the R package

energy. The empirical power for Conditional DC for each of the examples is obtained

directly from the results in Wang et al. (2015). We report the empirical power of Par-

tial DC and Conditional DC for each example in Table 2.7. We reprint the details

of examples 5-12 for completeness , and to avoid confusion we use the notation used

in the original work by Wang et al. (2015). For more details on Conditional DC, we

refer readers to Wang et al. (2015).

Example 5:

X, Y, Z have a multivariate normal distribution with mean vector 0, and covariance

matrix:

Σ =


1 .7 .6

.7 1 .6

.6 .6 1


Therefore, the Y,X are conditionally dependent given Z.

Example 6:

X1, Z ∼iid Binomial(10, .5), and define X = X1 + Z, Y = (X1 − 5)4 + Z

Example 7:
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X1, Y1, Z, ε ∼iid N(0, 1), and define:

Z1 = .5(Z3/7 + Z/2), Z2 = (Z3/2 + Z)/3, X2 = Z1 + tanh(X1), X3 = X2 +X3
2/3

Y2 = Z2 + Y1, Y3 = Y2 + tanh(Y2/3)

We then standardize X3, Y3 and define X = X3 = cosh(ε), and Y = Y3 + cosh(ε2).

Therefore, X and Y are not conditionally independent given Z.

Example 8:

X1, Z1, Z2 ∼iid Binomial(10, .5), and define X = X1 + Z1 + Z2, Y = (X1 − 5)4 +

Z1 + Z2, Z = (Z1, Z2).

Example 9:

Suppose Z1, . . . , Z6 ∼iid t(1), the t distribution with 1 degree of freedom, and

define:

Xi = Zi, i = 1, 2, 3, X4 = Z4 + Z5, Y =
6∑
i=1

Zi

Therefore X = (X1, . . . , X5), and Y are not conditionally independent given Z =

Z5

Example 10:

Suppose Z1, . . . , Z13 ∼iid t(1), and define:

Xi = Zi, i = 1, . . . , 9. X10 = Z10 + Z11, Y1 = Z1Z2 + Z3Z4 + Z5Z11 + Z12,

Y2 = Z6Z7 + Z8Z9 + Z10Z11 + Z13
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Therefore X = (X1, . . . , X10) and Y = (Y1, Y2) are not conditionally independent

given Z = Z11

Example 11:

Suppose Z1, . . . , Z4 ∼iid t(2), and define:

Xi = Zi, i = 1, . . . , 4. Y1 = sin(Z1) + cos(Z2) + Z2
3 + Z2

4 ,

Y2 = Z2
1 + Z2

2 + Z3 + Z4

Therefore, X = (X1, X2, X3, X4) and Y = (Y1, Y2) are not conditionally indepen-

dent given Z = (Z1, Z2).

Example 12:

Suppose Z1, . . . , Z4 ∼iid t(2), and define:

Xi = Zi, i = 1, . . . , 4. Y1 = Z1Z2 + Z3
3 + Z2

4 ,

Y2 = Z3
1 + Z2

2 + Z3Z4

Therefore, X = (X1, X2, X3, X4) and Y = (Y1, Y2) are not conditionally indepen-

dent given Z = (Z1, Z2).

We see from the results in Table 2.7, that partial DC is very effective at detect-

ing the conditional relationship in all the examples given. Additionally, for Examples

5,9,10,11, and 12 partial DC has more power to detect the conditional relationship,

whereas only for example 6 does conditional DC outperform partial DC.
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Table 2.7: Partial DC (PDC) vs Conditional DC (CDC): Empirical Power

n = 50 n = 100 n = 150 n = 200
PDC CDC PDC CDC PDC CDC PDC CDC

Ex 5 1 .898 1 .993 1 1 1 1
Ex 6 .405 .752 .795 .995 .975 1 1 1
Ex 7 .99 .918 1 .998 1 1 1 1
Ex 8 .365 .361 .71 .731 .925 .949 .995 .977
Ex 9 1 .802 1 .955 1 .975 1 .983
Ex 10 1 .355 1 .789 1 .912 1 .935
Ex 11 .95 .768 .995 .973 1 .994 1 .995
Ex 12 .99 .812 1 .956 1 .976 1 .995

2.10 Appendix B: Group PDC-SIS

2.10.1 Sure Screening Properties for Group PDC-SIS

As in our main paper, we assume the multivariate response process has the rep-

resentation:

xi = h (. . . ,ηi−1,ηi) . (2.8)

Where ηi, i ∈ Z, are iid random vectors. To prove sure screening properties of our

group PDC-SIS procedure, we need the following conditions:

Condition 2.10.1. Assume |pdcor(Gt,i, Gk,j;Gt−1,i)| ≥ c1n
−κ for (i, k, j) ∈M∗ , κ ∈

(0, 1/2).

Condition 2.10.2. Assume our multivariate response process has the representation

(2.8). Additionally, we assume the following decay rate Φm,r(x) = O(m−αx), for some

αx > 0, r > 4.

Condition 2.10.3. Assume our multivariate response process xt has the represen-

tation (2.8). Additionally assume υz = supq≥2 q
−α̃xΦ0,q(x) <∞, for some α̃x ≥ 0.
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Condition 2.10.4. Assume the process {xt} is β-mixing, with mixing rate βx(a) =

O(exp(−aλ1)), for some λ1 > 0.

Let % = 1, if αx > 1/2 − 2/r, otherwise % = r/4 − αxr/2. And let Kx,r =

supm≥0(m + 1)αxΦr(x). Recall that tn = maxj dim(Cj) is the maximum dimension

of the conditional vectors. Lastly let ϕ̃ = 2
1+4α̃x

. The results are similar to those in

theorem 1, but for the sake of completeness we present them here as well:

Corollary 5. 1. Suppose conditions 2.10.1, 2.10.3, 2.10.4 hold. For γn = c3n
−κ

with c3 ≤ c1/2, we have:

P
(
M∗ ⊂ M̂γn

)
≥ 1−O

(
snn

2 exp

(
−n

1/2−κ

tnυ2
z

)ϕ̃)
.

2. Suppose conditions 2.10.1, 2.10.2, 2.10.4 hold. For γn = c3n
−κ with c3 ≤ c1/2,

we have

if r < 12, P
(
M∗ ⊂ M̂γn

)
≥ 1−O(sn

t
r/2
n Kr

x,r

nr/4−rκ/2
);

if r ≥ 12, P
(
M∗ ⊂ M̂γn

)
≥ 1−O

(
snn

2

[
t
r/2
n n%Kr

x,r

nr/2−rκ/2
+ exp

(
− n1−2κ

t2nK
4
x,r

)])
.

From the above results we can infer the maximum size of the groups is o(n1/2−κ).

The proof for this corollary is very similar to the proof of theorem 1, therefore we

omit the details.

2.10.2 Simulations for group PDC-SIS

We consider the following VAR(1) process,

Model 6:

xt = A1xt−1 + ηt, (2.9)
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and assume we have 25 groups at each lag level (en = 25) with equal size gn = 20.

We assume a block upper triangular structure for A1, with two scenarios.

A1 =



B 0 C 0

. . . . . . . . .
. . . . . . C

. . . 0

0 B


. (2.10)

We set the number of lags considered, h = 2, therefore we have to compute 1225 group

distance and partial distance correlations for each scenario. In the first scenario we

set the main diagonal blocks to B = {.3|i−j|+1}i,j≤gn , the second upper diagonal blocks

to C = {.2|i−j|+1}i,j≤gn , and the rest of the matrix to zero. In the second scenario, we

assume the same number of groups and group size, but we set the diagonal group B =

{.3|i−j|+1}i,j≤10, and the second upper diagonal block to C = {.2|i−j|+1}i,j≤10. We can

view this scenario as one in which we have misspecified the groups (Basu et al., 2015),

or one in which we have sparsity within each group. We set Ση = {.4|i−j|+1}i,j≤mn or

Ση = {−.4|i−j|+1}i,j≤mn . And lastly, ηt
iid∼ N(0,Ση) or ηt

iid∼ t3(0, 1/3 ∗ Ση).

Since we are assuming the first lag for each group is in the model, we have 23

off-diagonal group connections we want to detect for each scenario. As in our main

paper, the sample size is n = 200, and we report the median MMS for group DC-SIS,

and group PDC-SIS procedure for each scenario in Table 2.8. The MMS in this case

is defined as the minimum number of group connections which need to be selected

for M∗ to be captured. In order to ensure a fair comparison, we do not evaluate

dcor(Gt,i, Gt−1,i) for each group i when using group DC-SIS. The results show that

the procedures are robust to the level of sparsity within each group, and our group
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Table 2.8: Model 6

Scenario 1
PDC-SIS

Scenario 1
DC-SIS

Scenario 2
PDC-SIS

Scenario 2
DC-SIS

N(0,Ση = {.4|i−j|+1}) 33 53 32 52
N(0,Ση = {−.4|i−j|+1}) 68 139.5 66 140
t3, Ση = {.4|i−j|+1}) 38 46.5 37 45
t3, Ση = {−.4|i−j|+1}) 89 159.5 83.5 145.5

PDC-SIS procedure significantly outperforms the group DC-SIS for all scenarios.

2.10.3 Real data application: Group PDC-SIS

For the multivariate response setting, we focus on the group selection performance.

We partition the 132 economic series into 8 broad economic groups: 1) Output and

income (17 series) 2) Labor Market (32 series) 3) Housing (10 series) 4) Consumption,

Orders, and Inventories (14 series) 5) Money and Credit (11 series) 6) Bonds and

Exchange rates (22 series) 7) Prices (21 series) 8) Stock market (4 series). We then

supplement this with 300 additional exogenous series (vt) partitioned into groups of

size 10. Where vt = A1vt−1 + ηt, A1 = α ∗ I, where we vary α from .4 to .8, and

we ηt
iid∼ N(0, I) or ηt

iid∼ t3(1/3 ∗ I). We have 38 groups for each lag level, and we

set the number of lags considered, h = 2, giving us about 2900 group comparisons to

compute. Let xt represent our 132 economic series, and let zt = (xt,vt) with vt being

independent of xt. We assume the following one step ahead forecasting strategy:

zt = f(zt−1, zt−2) + εt. (2.11)

We utilize a rolling window scheme similar to the one described previously, except

we are not computing out of sample forecasts. For the first window we use data from

t =1984:3 to t =1999:12 to compute our correlations. We then move the window for-
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Table 2.9: Group Selection

PDC-SIS DC-SIS
Gaussian, α = .4 37 34
Gaussian, α = .6 32 25
Gaussian, α = .8 22 9

t3, α = .4 36 31
t3, α = .6 31 21.5
t3, α = .8 23 8

ward by one month, which gives us 144 windows in total and 191 observations for each

window. As discussed in section 4 of our main paper, for each group Gt,i we condition

on the first lag Gt−1,i for PDC-SIS. Let {Gt,j}j≤8 represents the 8 economic groups

at time t, and let B = {(i, k, j) : i, j ≤ 8, k ∈ {t− 1, t− 2}} \ {(i, t− 1, i) : i ≤ 8} de-

notes the set of possible group connections between the 8 economic groups minus

the connection between a group and its first lag. For each window, we select the

top dn/ log(n)e = 37 group connections, and record the number of group connections

which belong to B. We note that all group connections which are to be screened and

do not belong to B are spurious connections by construction.

The results are in Table 2.9, and we report the median number of group connec-

tions which belong to B over the 144 windows. In order to ensure a fair comparison

between group DC-SIS and group PDC-SIS, we do not evaluate dcor(Gt,i, Gt−1,i) for

each group i when using group DC-SIS. We see that when α = .4 and the noise is

Gaussian, both group PDC-SIS and group DC-SIS are very effective at selecting con-

nections between economic groups. When the dependence increases and heavy tailed

variables are introduced, the performance of group DC-SIS greatly deteriorates with

many spurious group connections selected, whereas group PDC-SIS remains effective.
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2.11 Appendix C: Proofs of Theorems 3 and 4

Proof of Theorem 3.

We start with part (iii) first. The population version of the partial distance correlation

is defined as:

pdcor(Yt, Zt−1,k;Ck) =
dcor2(Yt, Zt−1,k)− dcor2(Yt, Ck)dcor

2(Zt−1,k, Ck)√
1− dcor4(Yt, Ck)

√
1− dcor4(Zt−1,k, Ck)

. (2.12)

To estimate this quantity, Székely and Rizzo (2014) proposed an unbiased estimator

of the distance correlation to serve as the plug-in estimate. This estimate is different

from the estimator proposed for the distance correlation in Székely et al. (2007),

which is a biased but consistent estimate. In proving asymptotic properties we can

use either estimate, and we will use the original estimator given in Székely et al.

(2007).

To obtain a bound for |p̂dcor(Yt, Zt−1,k;Ck)− pdcor(Yt, Zt−1,k;Ck)|, we start with

|d̂cor
2
(Yt, Zt−1,k)− dcor2(Yt, Zt−1,k)| in the numerator of (2.12). Recall that:

d̂cor
2
(Yt, Zt−1,k) =

d̂cov
2
(Yt, Zt−1,k)

d̂cov(Yt, Yt)d̂cov(Zt−1,k, Zt−1,k)
. (2.13)

Let T̂1 = d̂cov
2
(Yt, Zt−1,k),T̂2 = d̂cov(Yt, Yt)d̂cov(Zt−1,k, Zt−1,k),

and T1 = dcov2(Yt, Zt−1,k), T2 = dcov(Yt, Yt)dcov(Zt−1,k, Zt−1,k), then

|d̂cor
2
(Yt, Zt−1,k)− dcor2(Yt, Zt−1,k)| = |

T̂1

T̂2

− T1

T2

|

= |(T̂−1
2 − T−1

2 )(T̂1 − T1) + (T̂1 − T1)/T2 + (T̂−1
2 − T−1

2 )T1|. (2.14)
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Therefore

P (| T̂1

T̂2

− T1

T2

| > cn−κ) ≤ P (|(T̂−1
2 − T−1

2 )(T̂1 − T1)| > c2n
−κ/3) (2.15)

+ P (|(T̂1 − T1)/T2| > c2n
−κ/3|) (2.16)

+ P (|(T̂−1
2 − T−1

2 )T1| > c2n
−κ/3). (2.17)

For the RHS of (2.15), we obtain:

P (|(T̂−1
2 − T−1

2 )(T̂1 − T1)| > c2n
−κ/3) ≤ P (|T̂1 − E(T1)| > Cn−κ/2)

+ P (|T̂−1
2 − E(T2)−1| > Cn−κ/2).

So we focus on terms (2.16) and (2.17). For (2.16), recall that:

ˆdcov2(Yt, Zt−1,k) = Ŝk1 + Ŝk2 − 2Ŝk3, (2.18)

where

Ŝk1 = n−2

n∑
j=1

n∑
i=1

|Yi − Yj||Zi,k − Zj,k|,

Ŝk2 = n−2

n∑
j=1

n∑
i=1

|Yi − Yj|n−2

n∑
j=1

n∑
i=1

|Zi,k − Zj,k|,

Ŝk3 = n−3

n∑
j=1

n∑
i=1

n∑
l=1

|Yi − Yj||Zi,k − Zl,k|. (2.19)

We begin with the term |Ŝk1 − Sk1|, let

Ŝ∗k1 = [n(n− 1)]−1
∑
i 6=j

|Yi − Yj||Zi,k − Zj,k|,
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then by equation (B.1) in Li et al. (2012b):

P (|Ŝk1 − Sk1| > Cn−κ) ≤ P (|Ŝ∗k1 − Sk1| > Cn−κ). (2.20)

We also have the following decomposition:

|Ŝ∗k1 − Sk1| ≤ |Ŝ∗k1 − E(Ŝ∗k1)|+ |E(Ŝ∗k1)− Sk1|. (2.21)

Observe that Ŝ∗k1 is a U -statistic, and is a biased estimate of Sk1 due to temporal

dependence. By condition 3.4, we can control this bias, and we have |E(Ŝ∗k1−Sk1)| =

O(n−
1
2 ) by Yoshihara (1976). Obtaining a bound on P (|Ŝ∗k1−Sk1| > Cn−κ) is difficult

in a time series setting. Borisov and Volodko (2009) and Han (2016) introduced

exponential inequalities for U -statistics in a time series setting under uniform mixing

type conditions, in addition to restrictions on the kernel function. These restrictions

are often too strict and rule out most commonly used time series. For example, even

AR(1) processes where the innovations have unbounded support are not uniform

mixing (see example 14.8 in Davidson (1994)).

As a result, we will instead rely on Nagaev and Rosenthal type inequalities (Wu

and Wu, 2016; Liu et al., 2013) to obtain our bounds. We first show the bounds

obtained by using Nagaev inequalities, and then we show the results obtained using

Rosenthal type inequalities. Let ψi = (ei,ηi) and Hi,j = |Yi − Yj||Zi,k − Zj,k|. We

have

Hi,j = f(. . . , ψ0, . . . , ψmax(i,j)) and Ŝ∗k1 = 2[n(n− 1)]−1

n−1∑
l=1

n−l∑
i=1

Hi,i+l. (2.22)
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We can then write:

P (|
n−1∑
l=1

n−l∑
i=1

(Hi,i+l − E(Hi,i+l))| > Cn2−κ) (2.23)

≤
n−1∑
l=1

P (|
n−l∑
i=1

(Hi,i+l − E(Hi,i+l))| > Cn1−κ). (2.24)

Note that for any fixed l, {Hi,i+l}i∈Z is a Bernoulli shift process, and we can compute

the cumulative functional dependence measure as:

∞∑
i=m

|||Yi − Yi+l||Zi,k − Zi+l,k| − |Y ∗i − Y ∗i+l||Z∗i,k − Z∗i+l,k|||τ

≤
∞∑
i=m

||Yi − Yi+l||r|||Zi,k − Zi+l,k| − |Z∗i,k − Z∗i+l,k|||q

+
∞∑
i=m

||Z∗i,k − Z∗i+l,k||q|||Yi − Yi+l| − |Y ∗i − Y ∗i+l|||r

≤
∞∑
i=m

||Yi − Yi+l||r|||Zi,k − Z∗i,k|+ |Zi+l,k − Z∗i+l,k|||q

+
∞∑
i=m

||Z∗i,k − Z∗i+l,k||q|||Yi − Y ∗i |+ |Yi+l − Y ∗i+l|||r

≤ 2∆0,q(y)Φm,r(x) + 2∆m,q(y)Φ0,r(x) = O(m−α). (2.25)

The last inequality holds since ||Zik||r ≤ Φ0,r(x), by section 2 in Wu and Wu (2016).

Therefore,

sup
m

(m+ 1)α
∞∑
i=m

|||Yi − Yi+l||Zi,k − Zi+l,k| − |Y ∗i − Y ∗i+l||Z∗i,k − Z∗i+l,k|||τ ≤ 4Kz,rKy,q.

(2.26)
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Using the above result, and theorem 2 in Wu and Wu (2016), we obtain:

P (|
n−l∑
i=1

(Hi,i+l−E(Hi,i+l))| > Cn1−κ) ≤ O(
nιKτ

z,rK
τ
y,q

nτ−τκ
)+O(exp(− n1−2κ

K2
z,rK

2
y,q

)). (2.27)

Using condition 3.4 along with (2.20),(2.21),(2.24), and (2.27), we obtain:

P (|Ŝk1 − Sk1| > Cn−κ) ≤ O(n
nιKτ

z,rK
τ
y,q

nτ−τκ
) +O(n exp(− n1−2κ

K2
z,rK

2
y,q

)). (2.28)

Next let Ŝk2 = Ŝk2,1Ŝk2,2, where

Ŝk2,1 = n−2
∑n

j=1

∑n
i=1 |Yi − Yj| and Ŝk2,2 = n−2

∑n
j=1

∑n
i=1 |Zi − Zj|. Using this

representation we obtain:

P (|Ŝk2 − Sk2| > Cn−κ) ≤ P (|(Ŝk2,1 − Sk2,1)Sk2,2| > Cn−κ)

+ P (|(Ŝk2,2 − Sk2,2)Sk2,1| > Cn−κ)

+ P (|(Ŝk2,1 − Sk2,1)(Ŝk2,2 − Sk2,2)| > Cn−κ). (2.29)

Using the same methods as used for Ŝk1, we obtain:

P (|Ŝk2 − Sk2| > Cn−κ) ≤ O(n
nζKr

z,r

nr−rκ
) +O(n exp(−n

1−2κ

K2
z,r

))

+O(n
n%Kq

y,q

nq−qκ
) +O(n exp(−n

1−2κ

K2
y,q

)). (2.30)



133

We now proceed to Ŝk3. As in Li et al. (2012b), we define:

Ŝ∗k3 = [n(n− 1)(n− 2)]−1
∑
i<j<l

[|Zik − Zjk||Yj − Yl|+ |Zik − Zlk||Yj − Yl|

+ |Zik − Zjk||Yi − Yl|+ |Zlk − Zjk||Yi − Yl|

+ |Zlk − Zjk||Yi − Yj|+ |Zlk − Zik||Yi − Yj|]. (2.31)

Note that Ŝ∗k3 is a U -statistic. Using condition 3.4 and Yoshihara (1976), we can

control its bias: |E(Ŝ∗k3 − Sk3)| = O(n−
1
2 ). By equation (A.15) in Li et al. (2012b):

P (|Ŝk3 − Sk3| > Cn−κ) ≤ P (|Ŝ∗k3 − Sk3| > Cn−κ) (2.32)

+ P (|Ŝ∗k1 − Sk1| > Cn−κ). (2.33)

We have already dealt with (2.33), so we will proceed to (2.32). It suffices to deal

with the first term in (2.31), since the rest can be bounded similarly. Let Hi,j,l =

|Zik − Zjk||Yj − Yl| = f(. . . , ψ0, . . . , ψmax(i,j,l)). We can then represent

∑
i<j<l

|Zik − Zjk||Yj − Yl| =
n−2∑
l=1

n−l−1∑
j=1

n−j−l∑
i=1

Hi,i+j,i+j+l. (2.34)

Note that for fixed j, l, {Hi,i+j,i+j+l}i∈Z is a Bernoulli shift process, whose cumulative

functional dependence measure is the same as (2.25). We can then write:

P (|
n−2∑
l=1

n−l−1∑
j=1

n−j−l∑
i=1

[Hi,i+j,i+j+l − E(Hi,i+j,i+j+l)]| > Cn3−κ)

≤
n−2∑
l=1

n−l−1∑
j=1

P (|
n−j−l∑
i=1

[Hi,i+j,i+j+l − E(Hi,i+j,i+j+l)]| > Cn1−κ). (2.35)

Using condition 3.4, along with (2.28),(2.31),(2.32),(2.33),(2.35), and theorem 2 in
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Wu and Wu (2016), we obtain:

P (|Ŝk3 − Sk3| > Cn−κ) ≤ O(n2
nιKτ

z,rK
τ
y,q

nτ−τκ
) +O(n2 exp(− n1−2κ

K2
z,rK

2
y,q

)). (2.36)

This gives us a bound for (2.16). For (2.17): |T̂−1
2 − T−1

2 | = | T̂2−T2

T2T̂2
| and T2 is finite

by condition 3.4. Using this, we obtain:

P (|T̂−1
2 − T−1

2 | > Cn−κ) ≤ P (|T̂2 − T2| > |T̂2|Cn−κ)

≤ P (|T̂2 − T2| > CMn−κ) + P (|T̂2| < M). (2.37)

We will deal with the first term in (2.37) and the second term can be handled

similarly. Using the definition of T̂2, T2 and the decomposition we used in (2.29), it

suffices to analyze

P (|d̂cov(Yt, Yt)− dcov(Yt, Yt)| > Cn−κ) (2.38)

and P (|d̂cov(Zt−1,k, Zt−1,k)− dcov(Zt−1,k, Zt−1,k)| > Cn−κ). (2.39)

For (2.38) and (2.39), note that for a > 0, b > 0 we have |
√
a−
√
b| = |a−b|√

a+
√
b
< |a−b|√

b
.

Using this, along with (2.37) and the methods used to bound T̂1, we obtain:

P (|T̂−1
2 − T−1

2 | > Cn−κ) ≤ O(n2
nζKr

z,r

nr/2−rκ/2
) +O(n2 exp(− n1−2κ

(Kz,r)2
))

+O(n2
n%Kq

y,q

nq/2−qκ/2
) +O(n2 exp(− n1−2κ

(Ky,q)2
)). (2.40)
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By (2.28),(2.30),(2.36),(2.40), we obtain:

P (| T̂1

T̂2

− T1

T2

| > cn−κ) ≤ O(n2
nζKr

z,r

nr/2−rκ/2
) +O(n2 exp(−n

1−2κ

K2
z,r

))

+O(n2
n%Kq

y,q

nq/2−qκ/2
) +O(n2 exp(−n

1−2κ

K2
y,q

))

+O(n2
nιKτ

z,rK
τ
y,q

nτ−τκ
) +O(n2 exp(− n1−2κ

K2
z,rK

2
y,q

)). (2.41)

The other terms in (2.12) deal with the conditioning vectors Cj, and we need to

account for the maximum dimension of the conditioning vectors maxj[dim(Cj)] =

tn. This comes into effect when computing the cumulative functional dependence

measure. Recall that Ck+(h−1)∗mn = Sk,h, and for analyzing the cumulative functional

dependence measure, we define

Sk,h(i) = {Yi−1, . . . , Yi−h, Xi−1,k, . . . , Xi−h+1,k} , (2.42)

as the conditional vector of the hth lag of series k at time i. Additionally recall that

|a|p stands for the Euclidean norm of a ∈ Rp. Assume dim(Sk,h) = tn and q = r, we
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therefore have:

∞∑
i=m

(
|||Sk,h(i)− Sk,h(i+ j)|tn |Sk,h(i)− Sk,h(i+ j)|tn (2.43)

− |S∗k,h(i)− S∗k,h(i+ j)|tn|S∗k,h(i)− S∗k,h(i+ j)|tn||q/2
)

≤
∞∑
i=m

|||Sk,h(i)− Sk,h(i+ j)|tn||q|||Sk,h(i)− Sk,h(i+ j)|tn − |S∗k,h(i)− S∗k,h(i+ j)|tn||q

+
∞∑
i=m

|||S∗k,h(i)− S∗k,h(i+ j)|tn||q|||Sk,h(i)− Sk,h(i+ j)|tn − |S∗k,h(i)− S∗k,h(i+ j)|tn||q

≤
∞∑
i=m

|||Sk,h(i)− Sk,h(i+ j)|tn||q|||Sk,h(i)− S∗k,h(i)|tn + |Sk,h(i+ j)− S∗k,h(i+ j)|tn||q

+
∞∑
i=m

|||S∗k,h(i)− S∗k,h(i+ j)|tn||q|||Sk,h(i)− S∗k,h(i)|tn + |Sk,h(i+ j)− S∗k,h(i+ j)|tn||q

≤ tn(∆0,q(y) + Φm,q(x))2.

To explain the last inequality, we analyze the term:

∞∑
i=m

|||Sk,h(i)− S∗k,h(i)|tn||q =
∞∑
i=m

|||Sk,h(i)− S∗k,h(i)|2tn||
1/2
q/2

≤ (tn/2)1/2(∆0,q(y) + Φ0,q(x)). (2.44)

Where the last inequality follows from Minkowski’s inequality and the definition of

Sk,h(i). Using this, the rest of the terms in (2.12) can be handled as done previously.

We now show the bounds obtained using a Rosenthal type inequality. We follow

the same steps as previously, and it suffices to consider (2.32). As before we focus on
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the following term

∑
i<j<l

[|Zik − Zjk||Yj − Yl|] =
n−2∑
l=1

n−l−1∑
j=1

n−j−l∑
i=1

Hi,i+j,i+j+l. (2.45)

Let Q = [(n − 1)(n − 2)]−1
∑n−2

l=1

∑n−l−1
j=1

∑n−j−l
i=1 Hi,i+j,i+j+l. Then by Markov’s in-

equality we obtain:

P (|Q− E(Q)| > cn1−κ) ≤ ||Q− E(Q)||ττ
nτ−τκ

. (2.46)

Then using Minkowski’s inequality, we obtain:

||Q− E(Q)||τ ≤ ||
n−2∑
i=1

Hi,i+1,i+2 − E(Hi,i+1,i+2)||τ . (2.47)

As we stated previously, for fixed j, l, {Hi,i+j,i+j+l}i∈Z is a Bernoulli shift process

whose cumulative functional dependence measure is the same as (2.25). By theorem

1 in Liu et al. (2013), we have:

||
n−2∑
i=1

Hi,i+1,i+2 − E(Hi,i+1,i+2)||τ ≤ O(Kz,rKy,qn
1
2 ). (2.48)

Combining the above with (2.47), we obtain:

P (|Q− E(Q)| > cn1−κ) ≤ O(
Kτ
z,rK

τ
y,qn

τ
2

nτ−τκ
). (2.49)

By repeating the same techniques we obtain:

P (|ω̂k − ωk| > c2n
−κ) ≤ O(

Kq
y,qn

q
4

nq/2−qκ/2
) +O(

Kτ
z,rK

τ
y,qn

τ
2

nτ−τκ
) +O(

Kr
z,rn

r
4

nr/2−rκ/2
). (2.50)
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For simplicity we assume r = q, and we now compare the above result to (2.41), which

was obtained using Nagaev type inequalities. Note that when q = r the above bound

is of the order O(nr/4−rκ/2). Using Nagaev type inequalities leads to the bound at

most O(nr/2−rκ/2−3). Therefore, when r < 12, (2.50) provides a better bound. When

r > 12, the comparison depends on the values of %, ι, ζ which are related to the de-

pendence of the covariate and response processes. Applying the union bound gives

us the desired result.

For part (iv), let An = {maxk∈M∗ |ρ̂k−ρk| ≤ c1n−κ

2
}. On the set An, by condition 3.1,

we have:

|ρ̂k| ≥ |ρk| − |ρ̂k − ρk| ≥ c1n
−κ/2, ∀k ∈M∗. (2.51)

Hence by our choice of γn, we obtain P
(
M∗ ⊂ M̂γn

)
> P (An). By applying part

(i), the result follows.

For part(i), we first define the predictive dependence measure introduced by Wu

(2005). The predictive dependence measure for a univariate process and multivariate

processes is defined respectively as:

θq(yi) = ||E (yi|F0)− E (yi|F−1) ||q,

θq(Zij) = ||E (Zij|H0)− E (Zij|H−1) ||q. (2.52)

With the cumulative predictive dependence measures defined as:

Θ0,q(x) = max
j≤pn

∞∑
i=0

δq(Zij), and Θ0,q(ε) =
∞∑
i=0

δq(εi). (2.53)
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We follow the steps of the proof of part (iii). For |d̂cor
2
(Yt, Zt−1,k)−dcor2(Yt, Zt−1,k)|,

it suffices to provide a bound for (2.35). Note that for fixed j, l, we have:

sup
q≥4

q−(α̃z+α̃y)

∞∑
i=1

θq(Hi,i+j,i+j+l) ≤ sup
q≥4

q−(α̃z+α̃y)

∞∑
i=1

δq(Hi,i+j,i+j+l)

≤ sup
q≥4

q−(α̃z+α̃y)∆0,q(y)Φ0,q(x) <∞, (2.54)

where the first inequality follows from theorem 1 in Wu (2005), and the last inequality

follows from condition 3.3. Using the above we have by theorem 3 in Wu and Wu

(2016):

(2.35) ≤ O

(
n2 exp

(
−n

1/2−κ

υzυy

)ψ̃)
. (2.55)

We now provide a bound for (2.38) in a similar way. Let Si,j,l = |Yi − Yj||Yj − Yl| =

f1(. . . , e0, . . . , emax(i,j,l)). We then have:

sup
q≥4

q−2α̃y

∞∑
i=1

θq(Si,i+j,i+j+l) ≤ sup
q≥4

q−2α̃y

∞∑
i=1

δq(Si,i+j,i+j+l)

≤ sup
q≥4

q−2α̃y∆2
0,q(y) <∞. (2.56)

Then by theorem 3 in Wu and Wu (2016):

n−2∑
l=1

n−l−1∑
j=1

P (|
n−j−l∑
i=1

(Si,i+j,i+j+l − E(Si,i+j,i+j+l))| > Cn1−κ)

≤ O

(
n2 exp

(
−n

1/2−κ

υ2
y

)α̃)
. (2.57)

A similar result holds for (2.39). Following the steps in the proof of part (iii), and
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using the results above we obtain:

P (max
j≤pn
|ω̂k − ωk| > c2n

−κ) ≤ pn

[
O(n2 exp

(
−n

1/2−κ

υ2
y

)α̃
)

+O(n2 exp

(
−n

1/2−κ

υzυy

)ψ̃
)

+O(n2 exp

(
−n

1/2−κ

υ2
z

)ϕ̃
)

]
.

The proof for part (ii) is similar to the proof for part (iv) and we omit its details.

Proof of Theorem 4.

For simplicity we only prove part (i), and the proof for part (iii) follows similarly.

Let ω̃ = (ω̃1, . . . , ω̃pn), where ω̃k = p̂dcor(Yt, Zt−1,k; Ĉk). We will work on the following

set,

An = {max
k≤pn
|ω̃k − ωk| ≤

c1

2
n−κ}.

The main difference in the proof for this procedure vs. PDC-SIS lies in the randomness

which results from estimating the conditional sets at each lag level. We claim that on

the set An, Ĉ = C. To see this, note that on the first lag level: maxk≤mn |ω̃k−ωk| ≤
c1
2
n−κ, which implies Ûλn1 = Uλn1 . Now due to Ûλn1 = Uλn1 , we have Ĉj = Cj for

k ∈ mn + 1, . . . , 2mn, which implies ω̃k = ω̂k for k ∈ mn + 1, . . . , 2mn. Continuing

this argument we see that on the set An we have Ĉ = C, and therefore ω̃ = ω̂. The

result then follows from the results in theorem 1.
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2.12 Appendix D: Tables for Section 2.5

Tables 2.10-2.13 provide more detailed results of the simulations in section 5.1.

As stated in our main paper, tables 2.10-2.13 report the median minimum model

size needed to include all the relevant predictors, as well as the median rank of the

significant covariates for each procedure.
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Table 2.10: Model 1

Gaussian, pn = 1500
MMS Xt−1,1 Xt−1,2 Xt−1,3 Xt−1,4 Xt−1,5 Xt−1,6

PDC-SIS 7 6 3 2 2 3 5
DC-SIS 11 7 3.5 2 2 3 5.5
NIS 11 6 3 2 2 3 6
SIS 10 6 3 2 2 3 6

GLSS 6 5 3 2 2 3 5
Gaussian, pn = 4500

MMS Xt−1,1 Xt−1,2 Xt−1,3 Xt−1,4 Xt−1,5 Xt−1,6

PDC-SIS 11 5 3 3 3 3 5
DC-SIS 19 6 3 3 3 3 6
NIS 16 6 3 3 3 3 6
SIS 13 5 3 2.5 3 3 6

GLSS 6 5 3 2 2 3 5
t5, pn = 1500

MMS Xt−1,1 Xt−1,2 Xt−1,3 Xt−1,4 Xt−1,5 Xt−1,6

PDC-SIS 13 5 3 3 3 3 5
DC-SIS 20 6 4 3 3 3 6
NIS 33 7 4 3 3 3 6
SIS 21.5 6 3 3 3 3 5

GLSS 6 5 3 2 2 3 5
t5, pn = 4500

MMS Xt−1,1 Xt−1,2 Xt−1,3 Xt−1,4 Xt−1,5 Xt−1,6

PDC-SIS 36.5 7 4 2 2 3 5
DC-SIS 68 10.5 4 2 3 3 7
NIS 114 16.5 4 2 3 4 9
SIS 66.5 10.5 4 3 3 4 7

GLSS 7 5 3 2 2 3 5
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Table 2.11: Model 2

Gaussian pn=1500
MMS Xt−1,1 Xt−2,1 Xt−1,2 Xt−2,2

PDC-SIS 61 1 40.5 2 5
DC-SIS 488 1 488 2 3
NIS 488 1 488 2 3
SIS 343.5 1 341.5 2 3

GLSS 179.5 1 160.5 2 6.5
Gaussian pn=4500

MMS Xt−1,1 Xt−2,1 Xt−1,2 Xt−2,2

PDC-SIS 149 1 141 2 4
DC-SIS 1051 1 1051 2 3
NIS 861 1 861 2 3
SIS 722 1 722 2 3

GLSS 592 1 412.5 2 8
t5 pn=1500

MMS Xt−1,1 Xt−2,1 Xt−1,2 Xt−2,2

PDC-SIS 79.5 1 57.5 2 5
DC-SIS 408.5 1 408.5 2 3
NIS 513.5 1 492 2 4
SIS 447 1 440 2 4

GLSS 450.5 1 330.5 2 22
t5 pn=4500

MMS Xt−1,1 Xt−2,1 Xt−1,2 Xt−2,2

PDC-SIS 275.5 1 239.5 2 5
DC-SIS 951.5 1 951.5 2 3
NIS 1100.5 1 984 2 4
SIS 905 1 859.5 2 3

GLSS 1386.5 1 995 2 18.5
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Table 2.12: Model 3

Gaussian, pn = 1500
MMS Xt−1,1 Xt−2,1 Xt−1,2 Xt−2,2 Xt−1,3 Xt−1,4

PDC-SIS 29 2 4 4 3 7 11
DC-SIS 112 8 4.5 8 4 19 34.5
NIS 119.5 8 4 8 3 18 48.5
SIS 100.5 7 4 7 3 16 42

GLSS 813 14.5 164 535.5 13 2 18
Gaussian, pn = 4500

MMS Xt−1,1 Xt−2,1 Xt−1,2 Xt−2,2 Xt−1,3 Xt−1,4

PDC-SIS 78.5 3 4 3.5 2 10 20
DC-SIS 337 15 6.5 10 3 19 34.5
NIS 309 14 6 9 3 39 137
SIS 281 11.5 5 8 2 31 130

GLSS 2325.5 30.5 364 1709.5 36.5 2 73.5
t5, pn = 1500

MMS Xt−1,1 Xt−2,1 Xt−1,2 Xt−2,2 Xt−1,3 Xt−1,4

PDC-SIS 43 3 3.5 4 3 6.5 16
DC-SIS 114 8 5 9 4 16 64.5
NIS 167 9 4 11 4 15 51
SIS 166.5 8 4 10 4 18.5 71

GLSS 969.5 42 202 453 60.5 3 44
t5, pn = 4500

MMS Xt−1,1 Xt−2,1 Xt−1,2 Xt−2,2 Xt−1,3 Xt−1,4

PDC-SIS 78 2 5 4 3 11 24.5
DC-SIS 301.5 14.5 8 11.5 4 33 113.5
NIS 436.5 14.5 8 14 4 33.5 124
SIS 438 13 7 13 4 33 149.5

GLSS 3008 85.5 690 1362 99.5 9 117.5
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Table 2.13: Model 4

Gaussian, pn = 1500
MMS Xt−1,1 Xt−2,1 Xt−1,2 Xt−2,2 Xt−1,3 Xt−2,3

PDC-SIS 42 5 5 3 2 20 10
DC-SIS 306.5 114.5 53 64 22.5 162.5 73
NIS 275 105.5 47 46 16 149 80
SIS 234.5 95 42 41 15 129.5 72.5

GLSS 800.5 1 12 5.5 10 552.5 103
Gaussian, pn = 4500

MMS Xt−1,1 Xt−2,1 Xt−1,2 Xt−2,2 Xt−1,3 Xt−2,3

PDC-SIS 100.5 8 6 4 2 33 16
DC-SIS 842.5 338 144 148 53 350 181
NIS 704 255.5 104.5 119 38 322 158
SIS 588 224 95.5 103.5 35 307 142

GLSS 2214 1 29 13.5 22 1490.5 291.5
t5, pn = 1500

MMS Xt−1,1 Xt−2,1 Xt−1,2 Xt−2,2 Xt−1,3 Xt−2,3

PDC-SIS 51 4 5 5 4 19 9
DC-SIS 306 108.5 54.5 75 34.5 132 59
NIS 328 90.5 39 70 27 136 61
SIS 265 79.5 33 62.5 24.5 133 57

GLSS 891.5 3 48.5 47.5 43 476 162
t5, pn = 4500

MMS Xt−1,1 Xt−2,1 Xt−1,2 Xt−2,2 Xt−1,3 Xt−2,3

PDC-SIS 104 8 8 4 3 33 18.5
DC-SIS 814.5 322 157 155.5 61.5 395 196
NIS 851.5 283 139.5 144 54.5 418.5 181
SIS 761 249 120 120.5 46 372 181

GLSS 2843.5 5 137 81 80 1760 554.5
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Chapter 3

Variable Selection for Linear High Dimensional Time Series

Models

This chapter is based on the article Yousuf (2018) with the title "Variable Screen-

ing for High Dimensional Time Series", authored by Kashif Yousuf. It is published

in the Electronic Journal of Statistics.

3.1 Introduction

With the advancement of data acquisition technology, high dimensionality is a

characteristic of data being collected in fields as diverse as health sciences, genomics,

neuroscience, astronomy, finance, and macroeconomics. Applications where we have a

large number of predictors for a relatively small number of observations are becoming

increasingly common. For example, in disease classification we usually have thousands

of variables, such as expression of genes, which are collected, while the sample size

is usually in the tens. Other examples include fMRI data, where the number of

voxels can number in the thousands and far outnumber the observations. For an

overview of high dimensionality in economics and finance, see Fan et al. (2011b). For

the biological sciences, see Fan and Ren (2006); Bickel et al. (2009a) and references
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therein. The main goals in these situations according to Bickel (2008) are:

• To construct as effective a method as possible to predict future observations.

• To gain insight into the relationship between features and response for scientific

purposes, as well as hopefully, to construct an improved prediction method.

More formally we are dealing with the case where

y = Xβ + ε (3.1)

with y = (Y1, . . . , Yn)T being an n-vector of responses, X = (x1, . . . ,xn)T being an

n × pn random design matrix, and ε = (ε1, . . . , εn)T is a random vector of errors.

In addition, when the dimensionality of the predictors (pn) is large we usually make

the assumption that the underlying coefficient vector (β) is sparse. Sparsity is a

characteristic that is frequently found in many scientific applications Fan and Lv

(2008),Johnstone (2009). For example, in disease classification it is usually the case

that only a small amount of genes are relevant to predicting the outcome.

Indeed, there are a wealth of theoretical results and methods that are devoted

to this issue. Our primary focus is on screening procedures. Sure Independence

Screening (SIS) as originally introduced in Fan and Lv (2008), was applicable to

the linear model, and is based on a ranking of the absolute values of the marginal

correlations of the predictors with the response. This method allows one to deal

with situations in which the number of predictors is of an exponential order of the

number of observations, which they termed as ultrahigh dimensionality. Further

work on the topic has expanded the procedure to cover the case of generalized linear

models Fan and Song (2010), non-parametric additive models Fan et al. (2011a), Cox

proportional hazards model Fan et al. (2010), single index hazard rate models Gorst-
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Rasmussen and Scheike (2013), and varying coefficient models Fan et al. (2014).

Model-free screening methods have also been developed. For example; screening

using distance correlation was analyzed in Li et al. (2012b), a martingale difference

correlation approach was introduced in Shao and Zhang (2014), additional works

include Zhu et al. (2011), Huang and Zhu (2016) among others. For an overview of

works related to screening procedures, one can consult Liu et al. (2015). The main

result introduced with these methods is that, under appropriate conditions, we can

reduce the predictor dimension from size pn = O (exp (nα)), for some α < 1, to a size

dn, while retaining all the relevant predictors with probability approaching 1.

Another widely used class of methods is based on the penalized least squares ap-

proach. An overview of these methods is provided in Fan and Lv (2010) and Bickel

et al. (2009a). Examples of methods in this class are the Lasso Tibshirani (1996),

and the adaptive Lasso Zou (2006a). Various theoretical results have been discov-

ered for these class of methods. They broadly fall into analyzing the prediction error

|X(β̂ − β)|22, parameter estimation error |β̂ − β|1, model selection consistency, as

well as limiting distributions of the estimated parameters (see Buhlmann and Van de

Geer (2011) for a comprehensive summary). Using screening procedures in conjunc-

tion with penalized least squares methods, such as the adaptive Lasso, presents a

powerful tool for variable selection. Variable screening can allow us to quickly reduce

the parameter dimension pn significantly, which weakens the assumptions needed for

model selection consistency of the adaptive Lasso Huang et al. (2008); Medeiros and

Mendes (2016).

A key limitation of the results obtained for screening methods, is the assumption

of independent observations. In addition, it is usually assumed that the covariates

and the errors are sub-Gaussian (or sub-exponential). However, there are many exam-

ples of real world data where these assumptions are violated. Data which is observed
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over time and/or space such as meteorological data, longitudinal data, economic and

financial time series frequently exhibit covariates and/or errors which are serially cor-

related. One specific example is the case of fMRI time series, where there can exist

a complicated spatial-temporal dependence structure in the errors and the covariates

(see Worsley et al. (2002)). Another example is in forecasting macroeconomic indi-

cators such as GDP or inflation rate, where we have large number of macroeconomic

and financial time series, along with their lags, as possible covariates. Examples of

heavy tailed and dependent errors and covariates can be found most prominently in

financial, insurance and macroeconomic data.

These examples stress why it is extremely important for variable selection meth-

ods to be capable of handling scenarios where the assumption of independent sub-

Gaussian (or sub-exponential) observations is violated. Some works related to this

goal for the Lasso include Wang et al. (2007), which extended the Lasso to jointly

model the autoregressive structure of the errors as well as the covariates. However,

their method is applicable only to the case where pn < n, and they assume an au-

toregressive structure where the order of the process is known. Whereas Wu and

Wu (2016) studied the theoretical properties of the Lasso assuming a fixed design in

the case of heavy tailed and dependent errors. Additionally ?, and Kock and Callot

(2015) investigated theoretical properties of the Lasso for high-dimensional Gaussian

processes. Most recently Medeiros and Mendes (2016) analyzed the adaptive Lasso

for high dimensional time series while allowing for both heavy tailed covariate and

errors processes, with the additional assumption that the error process is a martingale

difference sequence.

Some works related to this goal for screening methods include Li et al. (2012a),

which allows for heavy tailed errors and covariates. Additionally Chang et al. (2013),

Wu et al. (2014), and Zhu et al. (2011) also relax the Gaussian assumption, with the
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first two requiring the tails of the covariates and the response to be exponentially

light, while the latter allows for heavy tailed errors provided the covariates are sub-

exponential. Although these works relax the moment and distributional assumptions

on the covariates and the response, they still remain in the framework of independent

observations. A few works have dealt with correlated observations in the context of

longitudinal data (see Cheng et al. (2014),Xu et al. (2014)). However, the dependence

structure of longitudinal data is too restrictive to cover the type of dependence present

in most time series. Most recently Chen et al. (2017) proposed a non-parametric ker-

nel smoothing screening method applicable to time series data. In their work they

assume a sub-exponential response, covariates that are bounded and have a density,

as well as assuming the sequence {(Yi,xi)} is strong mixing, with the additional as-

sumption that the strong mixing coefficients decay geometrically. These assumptions

can be quite restrictive; they exclude, for example, heavy tailed time series, and dis-

crete valued time series which are common in fields such as macroeconomics, finance,

neuroscience, amongst others Davis et al. (2016a).

In this work, we study the theoretical properties of SIS for the linear model with

dependent and/or heavy tailed covariates and errors. This allows us to substantially

increase the number of situations in which SIS can be applied. However, one of

the drawbacks to using SIS in a time series setting is that the temporal dependence

structure between observations is ignored. In an attempt to correct this, we introduce

a generalized least squares screening (GLSS) procedure, which utilizes this additional

information when estimating the marginal effect of each covariate. By using GLS

to estimate the marginal regression coefficient for each covariate, as opposed to OLS

used in SIS, we correct for the effects of serial correlation. Our simulation results show

the effectiveness of GLSS over SIS, is most pronounced when we have strong levels

of serial correlation and weak signals. Using the adaptive Lasso as a second stage
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estimator after applying the above screening procedures is also analyzed. Probability

bounds for our combined two stage estimator being sign consistent are provided, along

with comparisons between our two stage estimator and the adaptive Lasso as a stand

alone procedure.

Compared to previous work, we place no restrictions on the distribution of the

covariate and error processes besides existence of a certain number of finite moments.

In order to quantify dependence, we rely on the functional dependence measure frame-

work introduced by Wu (2005), rather than the usual strong mixing coefficients. Com-

parisons between functional dependence measures and strong mixing assumptions are

discussed in section 3.2. For both GLSS and SIS, we present the sure screening prop-

erties and show the range of pn can vary from the high dimensional case, where pn

is a power of n, to the ultrahigh dimensional case discussed in Fan and Lv (2008).

We detail how the range of pn and the sure screening properties are affected by the

strength of dependence and the moment conditions of the errors and covariates, the

strength of the underlying signal, and the sparsity level, amongst other factors.

The rest of the paper is organized as follows: Section 3.2 reviews the functional and

predictive dependence measures which will allow us to characterize the dependence

in the covariate (xi, i = 1, ..., n) and error processes. We also discuss the assumptions

placed on structure of the covariate and error processes; these assumptions are very

mild, allowing us to represent a wide variety of stochastic processes which arise in

practice. Section 3.3 presents the sure screening properties of SIS under a range of

settings. Section 3.4 introduces the GLSS procedure and presents its sure screening

properties. Combining these screening procedures with the adaptive Lasso will dis-

cussed in Section 3.5. Section 3.6 covers simulation results, while section 3.7 discusses

an application to forecasting the US inflation rate. Lastly, concluding remarks are in

Section 3.8, and the proofs for all the results follow in the appendix.
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3.2 Preliminaries

We shall assume the error sequence is a strictly stationary, ergodic process with

the following form:

εi = g (. . . , ei−1, ei) (3.2)

Where g(·) is a real valued measurable function, and ei are iid random variables.

This representation includes a very wide range of stochastic processes such as lin-

ear processes, their non-linear transforms, Volterra processes, Markov chain models,

non-linear autoregressive models such as threshold auto-regressive (TAR), bilinear,

GARCH models, among others (for more details see Wu (2011),Wu (2005)). This

representation allows us to use the functional and predictive dependence measures

introduced in Wu (2005). The functional dependence measure for the error process

is defined as the following:

δq(εi) = ||εi − g (F∗i ) ||q = (E|εi − g (F∗i ) |q)1/q (3.3)

where F∗i = (. . . , e−1, e
∗
0, e1, . . . , ei) with e∗0, ej, j ∈ Z being iid. Since we are replacing

e0 by e∗0, we can think of this as measuring the dependency of εi on e0 as we are

keeping all other inputs the same. The cumulative functional dependence measure is

defined as ∆m,q(ε) =
∑∞

i=m δq(εi). We assume weak dependence of the form:

∆0,q(ε) =
∞∑
i=0

δq(εi) <∞ (3.4)

The predictive dependence measure is related to the functional dependence measure,
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and is defined as the following:

θq(εl) = ||E (εl|F0)− E (εl|F−1) ||q = ||P0εl||q (3.5)

where Fi = (. . . , e−1, e0, e1, . . . , ei) with ei, i ∈ Z being iid. The cumulative predictive

dependence measure is defined as Θq(ε) =
∑∞

l=0 θq(εl), and by Theorem 1 in Wu

(2005) we obtain Θq(ε) ≤ ∆0,q(ε).

Similarly the covariate process is of the form:

x
(n)
i = h

(
. . . ,η

(n)
i−1,η

(n)
i

)
(3.6)

Where η(n)
i ∈ Rpn , i ∈ Z, are iid random vectors, h(·) = (h1(·) . . . , hpn(·)), x(n)

i =

(Xi1, ..., Xipn) and Xij = hj(...,η
(n)
i−1,η

(n)
i ). The superscript (n) denotes that the di-

mension of vectors is a function of n, however for presentational clarity we suppress the

superscript (n) from here on and use xi and ηi instead. LetH∗i = (. . . ,η−1,η
∗
0,η1, . . . ,ηi).

As before the functional dependence measure is δq(Xij) = ||Xij − hj (H∗i ) ||q and the

cumulative dependence measure for the covariate process is defined as:

Φm,q(x) =
∞∑
i=m

max
j≤pn

δq(Xij) <∞ (3.7)

The representations (3.2), and (3.6), along with the functional and predictive de-

pendence measures have been used in various works including Wu and Pourahmadi

(2009),Xiao and Wu (2012), and Wu and Wu (2016) amongst others. Compared to

strong mixing conditions, which are often difficult to verify, the above dependence

measures are easier to interpret and compute since they are related to the data gen-

erating mechanism of the underlying process Wu (2011). In many cases using the

functional dependence measure also requires less stringent assumptions. For exam-
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ple, consider the case of a linear process, εi =
∑∞

j=0 fjei−j, with ei iid. Sufficient

conditions for a linear process to be strong mixing involve: the density function of

the innovations (ei) being of bounded variation, restrictive assumptions on the de-

cay rate of the coefficients (fj), and invertibility of the process (see Theorem 14.9

in Davidson (1994) for details). Additional conditions are needed to ensure strong

mixing if the innovations for the linear process are dependent Doukhan (1994).

As a result many simple processes can be shown to be non-strong mixing. A

prominent example involves an AR(1) model with iid Bernoulli (1/2) innovations:

εi = ρεi−1 + ei is non-strong mixing if ρ ∈ (0, 1/2] Andrews (1984). These cases

can be handled quite easily in our framework, since we are not placing distributional

assumptions on the innovations, ei, such as the existence of a density. For linear

processes with iid innovations, representation (3.2) clearly holds and (3.4) is satisfied

if
∑∞

j=0 |fj| < ∞. For dependent innovations, suppose we have: ei = h(. . . , ai−1, ai),

where h(·) is a real valued measurable function and ai, i ∈ Z, are iid. Then εi =∑∞
j=0 fjei−j, has a causal representation, and satisfies (3.4) if:

∑∞
i=0 δq(ei) <∞, and∑∞

j=0 |fj| <∞ (see Wu and Min (2005)).

3.3 SIS with Dependent Observations

Sure Independence Screening, as introduced by Fan and Lv Fan and Lv (2008), is

a method of variable screening based on ranking the magnitudes of the pn marginal

regression estimates. Under appropriate conditions, this simple procedure is shown

to possess the sure screening property. The method is as follows, let:

ρ̂ = (ρ̂1, . . . , ρ̂pn), where ρ̂j = (
n∑
t=1

X2
tj)
−1(

n∑
t=1

XtjYt) (3.8)
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Therefore, ρ̂j is the OLS estimate of the linear projection of Yt onto Xtj. Now let

M∗ = {1 ≤ i ≤ pn : βi 6= 0} (3.9)

and let |M∗| = sn << n be the size of the true sparse model. We then sort the

elements of ρ̂ by their magnitudes. For any given γn, define a sub-model

M̂γn = {1 ≤ i ≤ pn : |ρ̂i| ≥ γn} (3.10)

and let |M̂γn| = dn be the size of the selected model. The sure screening property

states that for an appropriate choice of γn, we have P
(
M∗ ⊂ M̂γn

)
→ 1.

Throughout this paper let: Yt =
∑pn

i=1Xtiβi + εt, xt = (Xt1, ..., Xtpn), Σ = cov(xt),

and Xk be kth column of X. In addition, we assume V ar(Yt), V ar(Xtj) = O(1),

∀j ≤ pn. Note that xt can contain lagged values of Yt. Additionally, let ρj =

(E(X2
tj))
−1E(XtjYt), andMγn = {1 ≤ i ≤ p : |ρi| ≥ γn}. For a vector a = (a1, ..., an),

sgn(a) denotes its sign vector, with the convention that sgn(0) = 0, and |a|pp =∑n
i=1 |ai|p. For a square matrix A, let λmin(A) and λmax(A), denote the minimum

eigenvalue, and maximum eigenvalue respectively. For any matrix A, let ||A||∞, and

||A||2 denote the maximum absolute row sum of A, and the spectral norm of A

respectively. Lastly we will use C, c to denote generic positive constants which can

change between instances.

3.3.1 SIS with dependent, heavy tailed covariates and errors

To establish sure screening properties, we need the following conditions:
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Condition A: |ρk| ≥ c1n
−κ for k ∈M∗, κ < 1/2

Condition B: E(εt), E(Xtj), E(Xtjεt) = 0 ∀j, t.

Condition C: Assume the error and the covariate processes have representations

(3.2), and (3.6) respectively. Additionally, we assume the following decay rates

Φm,r(x) = O(m−αx),∆m,q(ε) = O(m−αε), for some αx, αε > 0, q > 2, r > 4 and

τ = qr
q+r

> 2.

Condition A is standard in screening procedures, and it assumes the marginal

signals of the active predictors cannot be too small. Condition B assumes the covari-

ates and the errors are contemporaneously uncorrelated. This is significantly weaker

than independence between the error sequence and the covariates usually assumed.

ConditionC presents the structure, dependence and moment conditions on the covari-

ate and error processes. Notice that higher values of αx, αε indicate weaker temporal

dependence.

Examples of error and covariate processes which satisfy Condition C are: If εi

is a linear process, εi =
∑∞

j=0 fjei−j with ei iid and
∑∞

j=0 |fj| < ∞ then δq(εi) =

|fi|||e0 − e∗0||q. If fi = O(i−β) for β > 1 we have ∆m,q = O(m−β+1) and αε = β − 1.

We have a geometric decay rate in the cumulative functional dependence measure,

if εi satisfies the geometric moment contraction (GMC) condition, see Shao and Wu

(2007). Conditions needed for a process to satisfy the GMC condition are given in

Theorem 5.1 of Shao and Wu (2007). Examples of processes satisfying the GMC

condition include stationary, causal finite order ARMA, GARCH, ARMA-GARCH,

bilinear, and threshold autoregressive processes, amongst others (see Wu (2011) for

details).



157

For the covariate process, if we assume xi is a vector linear process: xi =∑∞
l=0 Alηi−l. Where Al are pn × pn coefficient matrices and ηi = (ηi1, . . . , ηipn) are

iid random vectors with cov(ηi) = Ση. For simplicity, assume ηi,j(j = 1, . . . , pn) are

identically distributed, then

δq(Xij) = ||Ai,jη0 − Ai,jη∗0||q ≤ 2|Ai,j|||η0,1||q (3.11)

where Ai,j is the jth column of Ai. If ||Ai||∞ = O(i−β) for β > 1, then Φm,q =

O(m−β+1).

In particular for stable VAR(1) processes,

xt = B1xt−1 +ηt, Φm,q(x) = O(||λmax(B)1||m) Chen et al. (2013). For stable VAR(k)

processes, xt =
∑k

i=1Bixt−i + ηt, we can rewrite this as a VAR(1) process, x̃t =

B̃1x̃t−1 + η̃t, with:

x̃t =



xt

xt−1

...

xt−k+1


kp×1

B̃1 =



B1 · · · Bk−1 Bk

Ipn · · · 0 0

... . . . ...
...

0 · · · Ipn 0


kp×kp

η̃t =



ηt

0

...

0


kp×1

(3.12)

And by section 11.3.2 in Lütkepohl (2005), the process x̃t is stable if and only if

xt is stable. Therefore if B̃1 is diagonalizable, we have Φm,q(x) = O(am), where a

represents the largest eigenvalue in magnitude of B̃1. And by the stability of xt, a ∈

(0, 1). Additional examples of error and covariate processes which satisfy Condition

C are given in Wu and Pourahmadi (2009) and Wu and Wu (2016) respectively.

Define α = min(αx, αε) and let ω = 1 if αx > 1/2−2/r, otherwise ω = r/4−αxr/2.

Let ι = 1 if α > 1/2 − 1/τ , otherwise ι = τ/2 − τα. Additionally, let Kε,q =
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supm≥0(m + 1)αε∆m,q(ε) and Kx,r = maxj≤pn supm≥0(m + 1)αx
∑∞

i=m δr(Xij). Given

Condition C, it follows that Kε,q, Kx,r <∞. For ease of presentation we let:

ϑn =
snn

ωKr
x,r

(n/sn)r/2−rκ/2
+
nιKτ

x,rK
τ
ε,q

nτ−τκ
+ exp

(
− n1−2κ

s2
nK

4
x,r

)
+ exp

(
− n1−2κ

K2
x,rK

2
ε,q

)
(3.13)

The following theorem gives the sure screening properties, and provides a bound

on the size of the selected model:

Theorem 6. Suppose Conditions A,B,C hold.

(i) For any c2 > 0, we have:

P

(
max
j≤pn
|ρ̂j − ρj| > c2n

−κ
)
≤ O(pnϑn)

(ii) For γn = c3n
−κ with c3 ≤ c1/2, we have:

P
(
M∗ ⊂ M̂γn

)
≥ 1−O(snϑn)

(iii) For γn = c3n
−κ with c3 ≤ c1/2, we have:

P
(
|M̂γn| ≤ O(n2κλmax(Σ))

)
≥ 1−O(pnϑn)

In Theorem 6 we have two types of bounds, for large n the polynomial terms dom-

inate, whereas for small values of n the exponential terms dominate. The covariate

dimension (pn) can be as large as o(min( sn(n/sn)r/2−rκ/2

nω
, n

τ−τκ

nι
)). The range of pn de-

pends on the dependence in both the covariate and the error processes, the strength

of the signal (κ), the moment condition, and the sparsity level (sn). If we assume

sn = O(1), r = q, and α ≥ 1/2 − 2/r then pn = o(nr/2−rκ/2−1). For the case of iid
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errors and covariates, we would replaceKx,r, Kε,q in Theorem 6 with maxj≤pn ||Xij||r/2

and ||εi||q respectively. Therefore for the case of weaker dependence in the covariate

and error processes (i.e. αx > 1/2 − 2/r and α > 1/2 − 1/ε), our range for pn is

reduced only by a constant factor. However, our range for pn is significantly reduced

in the case of stronger dependence in the error or covariate processes (i.e. either

αx < 1/2− 2/r or αε < 1/2− 2/q). For instance if αx = αε and q = r, our range for

pn is reduced by a factor of nr/4−αr/2 in the case of stronger dependence.

In the iid setting, to achieve sure screening in the ultrahigh dimensional case, Fan

and Lv (2008) assumed the covariates and errors are jointly normally distributed.

Future works applicable to the linear model, such as Fan and Song (2010),Fan et al.

(2011a) among others, relaxed this Gaussian assumption, but generally assumed the

tails of the covariates and errors are exponentially light. Compared to the existing

results for iid observations, our moment conditions preclude us from dealing with

the ultrahigh dimensional case. However, our setting is far more general in that it

allows for dependent and heavy tailed covariates and errors. In addition, we allow

for the covariates and error processes to be dependent on each other, with the mild

restriction that E(Xtjεt) = 0, ∀j ≤ pn.

3.3.2 Ultrahigh Dimensionality under dependence

It is possible to achieve the sure screening property in the ultrahigh dimensional

setting with dependent errors and covariates. However, we need to make stronger

assumptions on the moments of both the error and covariate processes. Until now we

have assumed the existence of a finite qth moment, which restricted the range of p to

a power of n. If the error and covariate processes are assumed to follow a stronger

moment condition, such as ∆0,q(ε) < ∞ and Φ0,q(x) < ∞ for arbitrary q > 0, we
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can achieve a much larger range of pn which will cover the ultrahigh dimensional case

discussed in Fan and Lv (2008). More formally, we have:

Condition D: Assume the error and the covariate processes have representations

(3.2), and (3.6) respectively. Additionally assume υx = supq≥2 q
−α̃xΦ0,q(x) < ∞ and

υε = supq≥2 q
−α̃ε∆0,q(ε) <∞, for some α̃x, α̃ε ≥ 0.

By Theorem 3 in Wu and Wu (2016), Condition D implies the tails of the covariate

and error processes are exponentially light. There are a wide range of processes which

satisfy the above condition. For example, if εi is a linear process: εi =
∑∞

j=0 fjei−j

with ei iid and
∑∞

l=0 |fl| <∞ then ∆0,q(εl) = ||e0 − e∗0||q
∑∞

l=0 |fl|. If we assume e0 is

sub-Gaussian, then α̃ε = 1/2, since ||e0||q = O(
√
q). Similarly if ei is sub-exponential

we have α̃ε = 1. More generally, for εi =
∑∞

j=0 fje
p
i−j, if ei is sub-exponential, we

have α̃ε = p. Similar results hold for vector linear processes discussed previously.

Condition D is primarily a restriction on the rate at which ||εi||q,maxj≤pn ||Xij||q

increase as q → ∞. We remark that, for any fixed q, we are not placing additional

assumptions on the temporal decay rate of the covariate and error processes besides

requiring ∆0,q(ε),Φ0,q(x) < ∞. In comparison, in the ultrahigh dimensional setting,

Chen et al. (2017) requires geometrically decaying strong mixing coefficients, in addi-

tion to requiring sub-exponential tails for the response. As an example, if we assume

εi =
∑∞

j=0 fjei−j, geometrically decaying strong mixing coefficients would require the

coefficients, fj, to decay geometrically. Whereas in Condition D, the only restrictions

we place on the coefficients, fj, is absolute summability.

Theorem 7. Suppose Conditions A,B,D hold. Define α̃′ = 2
1+2α̃x+2α̃ε

, and α̃ = 2
1+4α̃x

.
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(i) For any c2 > 0 we have:

P

(
max
j≤pn
|ρ̂j − ρj| > c2n

−κ
)
≤O

(
snpn exp

(
−n

1/2−κ

υ2
xsn

)α̃)

+O

(
pn exp

(
−n

1/2−κ

υxυε

)α̃′)

(ii) For γn = c3n
−κ with c3 ≤ c1/2, we have:

P
(
M∗ ⊂ M̂γn

)
≥ 1−O

(
s2
n exp

(
−n

1/2−κ

υ2
xsn

)α̃)

−O

(
sn exp

(
−n

1/2−κ

υxυε

)α̃′)

(iii) For γn = c3n
−κ with c3 ≤ c1/2, we have:

P
(
|M̂γn| ≤ O(n2κλmax(Σ))

)
≥ 1−O

(
snpn exp

(
−n

1/2−κ

υ2
xsn

)α̃)

−O

(
pn exp

(
−n

1/2−κ

υxυε

)α̃′)

From Theorem 7, we infer the covariate dimension (pn) can be as large as

o(min[exp
(
Cn1/2−κ

sn

)α̃
/sn, exp(Cn1/2−κ)α̃

′
]). As in Theorem 6, the range of pn depends

on the dependence in both the covariate and the error processes, the strength of the

signal (κ), the moment condition, and the sparsity level (sn). For the case of iid

covariates and errors, we would replace υx and υε with µr/2 = maxj≤pn ||Xij||r/2 and

||εi||q respectively. In contrast to Theorem 6, temporal dependence affects our range

of pn only by a constant factor.

If we assume sn = O(1), and both the covariate and error processes are sub-

Gaussian we obtain pn = o(exp(n
1−2κ

3 )), while for sub-exponential distributions we
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obtain pn = o(exp(n
1−2κ

5 )). In contrast, Fan and Lv Fan and Lv (2008), assuming

independent observations, allow for a larger range pn = o(exp(n1−2κ). However, their

work relied critically on the Gaussian assumption. Fan and Song Fan and Song

(2010), relax the Gaussian assumption by allowing for sub-exponential covariates and

errors, and our rates are similar to theirs up to a constant factor. Additionally, in our

work we relax the sub-exponential assumption, provided the tails of the covariates

and errors are exponentially light.

3.4 Generalized Least Squares Screening (GLSS)

Consider the marginal model:

Yt = Xtkρk + εt,k (3.14)

where ρk is the linear projection of yt onto Xtk. In SIS, we rank the magnitudes of

the OLS estimates of this projection. In a time series setting, if we are considering

the marginal model (3.14) it is likely the case that the marginal errors (εt,k) will be

serially correlated. This holds even if we assume that the errors (εt) in the full model

(3.1) are serially uncorrelated. A procedure which accounts for this serial correlation,

such as Generalized Least Squares (GLS), will provide a more efficient estimate of ρk.

We first motivate our method by considering a simple univariate model. Assume

Yt = βXt + εt and the errors follow an AR(1) process, εt = ρεt−1 + θt, where θt,

and Xt are iid standard Gaussian. We set β = .5, n = 200, and estimate the model

using both OLS and GLS for values of ρ ranging from .5 to .95. The mean absolute

errors for both procedures is plotted in figure 3.1. We observe that the performance
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Figure 3.1: GLS vs OLS error comparison for values of ρ between .5 and .95 incre-
menting by .05. Absolute error averaged over 200 replications.

of OLS steadily deteriorates for increasing values of ρ, while the performance of GLS

stays constant. This suggests that a screening procedure based on GLS estimates

will be most useful in situations where we have weak signals and high levels of serial

correlation.

The infeasible GLS estimate for ρk is:

β̃Mk = (XT
k Σ−1

k Xk)
−1XT

k Σ−1
k y (3.15)

Where Xk is the kth column of X, and Σk = (γi−j,k)1≤i,j≤n is the auto-covariance

matrix of εk = (εt,k, t = 1, ..., n). Given that Σk needs to be estimated to form our

GLS estimates, we use the banded autocovariance matrix estimator introduced in Wu

and Pourahmadi (2009), which is defined as:

Σ̂k,ln =
(
γ̂i−j,k1|i−j|≤ln

)
1≤i,j≤n (3.16)
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Where ln is our band length, γ̂r,k = 1
n

∑n−|r|
t=1 ε̂t,k ε̂t+|r|,k, with ε̂t,k = yt −Xtkρ̂k, and ρ̂k

is the OLS estimate of ρk. Our GLS estimator is now:

β̂Mk = (XT
k Σ̂−1

k,ln
Xk)

−1XT
k Σ̂−1

k,ln
y (3.17)

When E(εk|Xk) = 0, by the Gauss-Markov theorem it is clear that β̃Mk is efficient

relative to the OLS estimator. Amemiya (1973) showed that under non-stochastic

regressors and appropriate conditions on the error process, a two stage sieve type GLS

estimator has the same limiting distribution as the infeasible GLS estimator β̃Mk . In

the appendix, we provide the appropriate conditions under which our GLS estimator,

β̂Mk , and the infeasible GLS estimate, β̃Mk , have the same asymptotic distribution.

For positive definite Σk, the banded estimate for Σk is not guaranteed to be posi-

tive definite, however it is asymptotically positive definite (see Lemma 9). For small

samples, we can preserve positive definiteness by using the tapered estimate: Σ̂k∗Rln ,

where Rln is a positive definite kernel matrix, and ∗ denotes coordinate-wise multi-

plication. For example, we can choose Rln = (max(1 − |i−j|
ln
, 0))1≤i,j≤n. We need the

following conditions for the sure screening property to hold:

Condition E: Assume the marginal error process, εt,k, is a stationary AR(Lk) pro-

cess, εt,k =
∑Lk

i=1 αiεt−i,k + et. Where Lk < K <∞, ∀k ≤ pn.

Condition F: For k ∈M∗, κ < 1/2:

βMk = E(yt−
∑Lk

i=1 αiyt−i)(Xt,k−
∑Lk

i=1 αiXt−i,k)/(E(Xt,k−
∑Lk

i=1 αiXt−i,k)
2) ≥ c6n

−κ.

Condition G: Assume E(Xtk), E(εt), E(XT
k Σ−1

k ε) = 0
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Condition H: Assume εt,k, εt are of the form (3.2), and the covariate process is of

the form (3.6). Additionally we assume the following decay rates ∆m,q(ε) = O(m−αε),

Φm,r(x) = O(m−αx), χm,q′ =
∑∞

i=m maxk≤pn δq(εi,k) = O(m−α), for some αx, αε > 0,

α = min(αx, αε), and q′ = min(q, r) ≥ 4.

Condition I: Assume εt,k, εt are of the form (3.2), and the covariate process is

of the form (3.6). Additionally assume υx = supq≥4 q
−α̃xΦ0,q(x) <∞

,υε = supq≥4 q
−α̃ε∆0,q(ε) < ∞, φ = supq≥4 q

−ϕχ0,q < ∞ for some α̃x, α̃ε ≥ 0, and

ϕ = max(α̃ε, α̃x).

In Condition E, we can let the band length K diverge to infinity at a slow rate,

e.g O(log(n)), for simplicity we set K to be a constant. Assuming a finite order AR

model for the marginal error process is reasonable in most practical situations, since

any stationary process with a continuous spectral density function can be approxi-

mated arbitrarily closely by a finite order linear AR process (see corollary 4.4.2 in

Brockwell and Davis (1991)). For further details on linear AR approximations to

stationary processes, see Amemiya (1973) and Bühlmann (1995). We remark that

compared to previous works Amemiya (1973); Koreisha and Fang (2001), knowledge

about the structure of the marginal errors is not necessary in estimating βMk , since

we use a non-parametric estimate of Σk. Therefore Condition E is assumed strictly

for technical reasons.

For Condition F, from (3.14), we have βMk = ρk, iff E(εt,k −
∑Lk

i=1 αiεt−i,k)(Xt,k −∑Lk
i=1 αiXt−i,k) = 0. When βMk 6= ρk, recall that:

βMk = E(yt −
Lk∑
i=1

αiyt−i)(Xt,k −
Lk∑
i=1

αiXt−i,k)/(E(Xt,k −
Lk∑
i=1

αiXt−i,k)
2) (3.18)
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If we assume the cross covariance, γXk,Y (h), is proportional toE(XtkYt), i.e. γXk,Y (h) ∝

E(XtkYt), for h ∈ {−Lk, . . . ,−1, 1, . . . , Lk}, then βMk ∝ ρk whenever |βMk | > 0.

And for |ρk| > 0, it is likely the case that βMk ∝ ρk if we assume γXk,Y (h) ∝

E(XtkYt), for h ∈ {−Lk, . . . ,−1, 1, . . . , Lk}. When βMk 6= ρk, we believe the ad-

vantage in using GLSS is due to the GLS estimator being robust to serial correlation

in the marginal error process (see the appendix for details).

For Condition H, since εt,k = Yt−Xtkρk, we have εt,k = rk(. . . ,θt−1,θt), where rk(·)

is a measurable function and θt = (ηt, et). If we assume et, and ηi are independent

for i 6= t, then θi are iid. We then have:

δq′(εt,k) =||
∑
i∈M∗

Xtiβi + εt −Xtkρk − (
∑
i∈M∗

X∗tiβi + ε∗t −X∗tkρk)||q′

≤
∑
i∈M∗

|βi|δq′(Xti) + δq′(εt) + |ρk|δq′(Xtk)

Therefore, χm,q′ = O(m−α), if we assume
∑

i∈M∗ |βi| = O(1), ∆m,q(ε) = O(m−αε),

and Φm,r(x) = O(m−αx).

For GLSS; define M̂γn =
{

1 ≤ i ≤ pn : |β̂Mk | ≥ γn

}
, α = min(αx, αε),

τ = qr
q+r

, τ ′ = qq′

q+q′
= min(q/2, τ). Let ι = 1 if α > 1/2−1/τ ′, otherwise ι = τ ′/2−τ ′α.

Let ζ = 1, if α > 1/2 − 2/q′, otherwise ζ = q′/4 − αq′/2 and let ω = 1, if αx >

1/2− 2/r, otherwise ω = r/4− αxr/2. Additionally, let Kx,r = maxj≤pn supm≥0(m+

1)αx
∑∞

i=m δr(Xij), K̃ε,q′ = maxk≤pn supm≥0(m + 1)α
∑∞

i=m δq′(εi,k). Given Condition

H, it follows that Kx,r, K̃ε,q′ <∞. For the case of exponentially light tails, we define
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ϕ̃′ = 2
1+2α̃x+2ϕ

, ϕ̃ = 2
1+4ϕ

, and α̃ = 2
1+4α̃x

. Lastly, for ease of presentation let:

an = ln

[
nιlτ

′
nK

τ ′
x,rK̃

τ ′

ε,q′

nτ ′−τ ′κ
+
nζl

q′/2
n K̃q′

ε,q′

nq′/2−q′κ/2
+
nωl

r/2
n Kr

x,r

nr/2

]
(3.19)

bn = ln

[
exp

(
−n

1/2

lnυ2
x

)α̃
+ exp

(
−n

1/2−κ

lnυxφ

)ϕ̃′
+ exp

(
−n

1/2−κ

lnφ2

)ϕ̃]
(3.20)

We first present the following lemma, which provides deviation bounds on ||Σ̂k,ln−

Σk||2. This lemma, which is of independent interest, will allow us to obtain deviation

bounds on our GLSS estimates.

Lemma 9. Assume the band length, ln = c log(n) for sufficiently large c > 0.

(i) Assume Condition H holds. For κ ∈ [0, 1/2) we have the following:

P (||Σ̂k,ln − Σk||2 > cn−κ) ≤ O(an)

(ii) Assume Condition I holds. For κ ∈ [0, 1/2) we have the following:

P (||Σ̂k,ln − Σk||2 > cn−κ) ≤ O(bn)

The following theorem gives the sure screening properties of GLSS:

Theorem 8. Assume the band length, ln = c log(n) for sufficiently large c > 0.

(i) Assume Conditions E,F,G,H hold, for any c2 > 0 we have:

P

(
max
j≤pn
|β̂Mk − βMk | > c2n

−κ
)
≤ O(pnan)
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(ii) Assume Conditions E,F,G,H hold, then for γn = c5n
−κ with c5 ≤ c6/2:

P
(
M∗ ⊂ M̂γn

)
≥ 1−O(snan)

(iii) Assume Conditions E,F,G,I hold, for any c2 > 0 we have:

P

(
max
j≤pn
|β̂Mk − βMk | > c2n

−κ
)
≤ O(pnbn)

(iv) Assume Conditions E,F,G,I hold, then for γn = c5n
−κ with c5 ≤ c6/2:

P
(
M∗ ⊂ M̂γn

)
≥ 1−O(snbn)

In Lemma 9, the rate of decay also depends on the band length (ln). The band

length primarily depends on the decay rate of the autocovariances of the process εt,k.

Since we are assuming an exponential decay rate, we can set ln = O(log(n)). If

γi,k = O(i−β) for β > 1, then we require l−β+1
n = o(n−κ). We omit the exponential

terms in the bounds for part part (i) of Lemma 9, and parts (i), and (ii) of Theorem

8 to conserve space and provide a cleaner result. For GLSS, the range for pn also

depends on the band length (ln), in addition to the moment conditions and the

strength of dependence in the covariate and error processes. For example, if we

assume r = q, and α ≥ 1/2− 2/r then pn = o(nr/2−rκ/2−1/l
r/2+1
n ). Compared to SIS,

we have a lower range of pn by a factor of lr/2+1
n . We conjecture that this is due to our

proof strategy, which relies on using a deviation bound on ||Σ̂k,ln−Σk||2, and uses the

functional dependence measure, rather than autocorrelation, to quantify dependence.

In practice, we believe using GLSS, which corrects for serial correlation, and uses

an estimator with lower asymptotic variance will achieve better performance. We
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illustrate this in more detail in our simulations section, and in the appendix (section

3.9.2).

Similar to SIS, we can control the size of the model selected by GLSS. For the

case when βMk = ρk ∀k, the bound on the selected model size is the same as in SIS.

However, we need to place an additional assumption when βMk 6= ρk: If the cross

covariance, γXk,Y (h) ∝ E(XtkYt), for h ∈ {−Lk, . . . ,−1, 1, . . . , Lk}, we can bound

the selected model size by the model size selected by SIS. More formally we have:

Corollary 9. Assume the cross covariance, γXk,Y (h) ∝ E(Xk,tYt), for

h ∈ {−Lk, . . . ,−1, 1, . . . , Lk}

(i) Assume Conditions E,F,G,H hold, then for γn = c5n
−κ with c5 ≤ c6/2:

P
(
|M̂γn| ≤ O(n2κλmax(Σ))

)
≥ 1−O(pnan)

(ii) Assume Conditions E,F,G,I hold, then for γn = c5n
−κ with c5 ≤ c6/2:

P
(
|M̂γn| ≤ O(n2κλmax(Σ))

)
≥ 1−O(pnbn)

3.5 Second Stage Selection with Adaptive Lasso

The adaptive Lasso, as introduced by Zou (2006a), is the solution to the following:

argminβ ||y −Xβ||2 + λn

pn∑
j=1

wj|βj|, where wj = |β̂I,j|−1, (3.21)

and β̂I,j is our initial estimate. For sign consistency; when pn >> n, the initial esti-

mates can be the marginal regression coefficients provided the design matrix satisfies
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the partial orthogonality condition as stated in Huang et al. (2008), or we can use

the Lasso as our initial estimator provided the restricted eigenvalue condition holds

(see Medeiros and Mendes (2016)). Both of these conditions can be stringent when

pn >> n. This makes the adaptive Lasso a very attractive option as a second stage

variable selection method, after using screening to significantly reduce the dimension

of the feature space. We have the following estimator:

β̃M̂γn
= argminβM̂γn

||y −XM̂γn
βM̂γn

||2 + λn

dn∑
j=1

wj|βj|, wj = |β̂I,j|−1 (3.22)

Where XM̂γn
denotes the n × dn submatrix of X that is obtained by extracting its

columns corresponding to the indices in M̂γn . We additionally define XMγn
accord-

ingly. Our initial estimator β̂I = (β̂I,1, . . . , β̂I,dn) is obtained using the Lasso. Let

Σ̂Mγn
= XT

Mγn
XMγn

/n, and let ΣMγn
be its population counterpart. Our two stage

estimator, β̂M̂γn
, is then formed by inserting zeroes corresponding to the covariates

which were excluded in the screening step, and inserting the adaptive Lasso esti-

mates, β̃M̂γn
, for covariates which were selected by the screening step. We need the

following conditions for the combined two stage estimator to achieve sign consistency:

Condition J: The matrix ΣM γn
2

satisfies the restricted eigenvalue condition,

RE(sn,3)(see Bickel et al. (2009b) for details):

φ0 = min
S⊆{1,...,d′n},|S|≤sn

min
v 6=0,|vSc |≤3|vS |

vTΣM γn
2

v

vTv
≥ c > 0, (3.23)

where v = (v1, . . . , vd′n) and vS = (vi, i ∈ S),vSc = (vi, i ∈ Sc).

Condition K: Let λn and λI,n be the regularization parameters of the adaptive
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lasso and the initial lasso estimator respectively. For some ψ ∈ (0, 1), we assume:

cn1−ψ
2 (
φ0

sn
)3/2 ≥ λI,n ≥ λnn

ψ/2 (3.24)

Condition L: Let βmin = mini≤sn |βi|, and wmax = maxi≤sn wi > 0. Assume

βmin >
2

wmax
and βmin > 2c

λI,nsn
φ0n

.

Condition J allows us to use the Lasso as our initial estimator. Notice that we placed

the RE(sn,3) assumption on the matrix ΣM γn
2

, rather than the matrix Σ̂M̂γn
, given

the indices in M̂γn are random as a result of our screening procedure. Recall that

for SIS, M γn
2

= {1 ≤ i ≤ p : |ρi| ≥ γn/2}, and |M γn
2
| = d′n = O(dn), and for GLSS

we have a similar definition. Therefore, we are placing the RE(sn,3) assumption on

the population covariance matrix of a fixed set of d′n predictors. Conditions K and L

are standard assumptions, and are similar to the ones used in Medeiros and Mendes

(2016). Condition K primarily places restrictions on the rate of increase of λn, and

λI,n. Condition L places a lower bound on the magnitude of the non-zero parameters

which decays with the sample size.

The next theorem deals with the two stage SIS-Adaptive Lasso estimator. A very

similar result applies to the two stage GLSS-Adaptive Lasso estimator, if we replace

Conditions A,B,C (resp. D) with Conditions E,F,G,H (resp. I), to avoid repetition

we omit the result. For the following theorem, the terms ι, ω,Kx,r, and Kε,q have

been defined in the paragraph preceding Theorem 6, and α̃′, α̃ have been defined in

Theorem 7.

Theorem 10. (i) Assume Conditions A,B,C,J,K,L hold, then for γn = c3n
−κ with
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c3 ≤ c1/2 we have:

P (sgn(β̂M̂γn
) = sgn(β)) ≥ 1−O

(
snpn

[
nωKr

x,r

(n/sn)r/2−rκ/2
− exp(− n1−2κ

s2
nK

4
x,r

)

])
−O

(
pn

[
nιKτ

x,rK
τ
ε,q

nτ−τκ
− exp(− n1−2κ

K2
x,rK

2
ε,q

)

])
−O

(
d
′2
n

[
nωKr

x,r

(n/sn)r/2
− exp(− n

s2
nK

4
x,r

)

])
−O

(
d′n

[
nιKτ

x,rK
τ
ε,q

λτnn
τψ/2

+ exp(− λ2
nn

ψ−1

K2
x,rK

2
ε,q

)

])

(ii) Assume Conditions A,B,C,J,K,L hold, then for γn = c3n
−κ with c3 ≤ c1/2 we

have:

P (sgn(β̂M̂γn
) = sgn(β)) ≥ 1−O(snpn exp

(
−n

1/2−κ

υ2
xsn

)α̃
)

−O(pn exp

(
−n

1/2−κ

υxυε

)α̃′
)−O(d

′2
n exp

(
− n

1/2

υ2
xsn

)α̃
)

−O(d′n exp

(
−λnn

ψ/2−1/2

υxυε

)α̃′
)

To achieve sign consistency for the case of finite polynomial moments we require:

Condition M: Assume λnnψ/2−1/2 → ∞ and pn = o(min( sn(n/sn)r/2−rκ/2

nω
, n

τ−τκ

nι
)),

d′n = o(min((n/sn)r/4−ω/2, λτnn
τψ/2−ι))

For the case of exponential moments, we require:

Condition N: Assume λnnψ/2−1/2 →∞,

pn = o(min(exp
(
Cn1/2−κ

sn

)α̃
/sn, exp(Cn1/2−κ)α̃

′
)),

and d′n = o(min(exp
(
n1/2

sn

)α̃/2
, exp

(
λnn

ψ/2−1/2
)α̃′

))
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From Conditions M, N, and Theorem 8, we see an additional benefit of using

the two stage selection procedure as opposed to using the adaptive Lasso as a stand

alone procedure. For example, if we assume dn ≤ n2κλmax(Σ) = O(n), and that both

the error and covariate processes are sub-Gaussian, we obtain pn = o(exp(n
1−2κ

3 )) for

the two stage estimator. By setting d′n = pn, we obtain the result when using the

adaptive Lasso as a stand alone procedure, with the Lasso as its initial estimator.

Under the scenario detailed above, the dimension of the feature space, which depends

on λn and ψ, for the stand alone adaptive Lasso can be at most pn = o(exp(n
1
6 )).

Therefore for κ < 1/4, we obtain a larger range for pn and a faster rate of decay using

the two stage estimator. For κ ≥ 1/4 it is not clear whether the two stage estimator

has a larger range for pn, compared to using the adaptive Lasso alone.

The sign consistency of the stand alone adaptive Lasso estimator in the time

series setting was established in Medeiros and Mendes (2016). Their result was ob-

tained under strong mixing assumptions on the covariate and error processes, with

the additional assumption that the error process is a martingale difference sequence.

Additionally, in the ultrahigh dimensional setting they require a geometric decay rate

on the strong mixing coefficients. In contrast, we obtain results for both the two

stage and stand alone adaptive lasso estimator, and our results are obtained using

the functional dependence measure framework. Besides assuming moment conditions,

we are not placing any additional assumptions on the temporal decay of the covariate

and error processes other than ∆0,q(ε),Φ0,q(x) < ∞. Furthermore, we weaken the

martingale difference assumption they place on the error process, thereby allowing

for serial correlation in the error process. Finally, by using Nagaev type inequalities

introduced in Wu and Wu (2016), our results are easier to interpret and also allow us

obtain a higher range for pn.
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3.6 Simulations

In this section, we evaluate the performance of SIS, GLSS, and the two stage

selection procedure using the adaptive Lasso. For GLSS instead of using the banded

estimate for Σk we use a tapered estimate: Σ̂k ∗ Rln , where Σ̂k = (γ̂i−j,k)1≤i,j≤n and

Rln = (max(1 − |i−j|
ln
, 0))1≤i,j≤n is the triangular kernel. We fix ln = 15, and we ob-

served the results were fairly robust to the choice of ln. In our simulated examples, we

fix n = 200, sn = 6 and dn = n − 1, while we vary pn from 1000 to 5000. We repeat

each experiment 200 times. For screening procedures, we report the proportion of

times the true model is contained in our selected model. For the two stage procedure

using the adaptive Lasso, we report the proportion of times there was a λn on the

solution path which selected the true model.

Case 1: Uncorrelated Features

Consider the model (3.1), for the covariate process we have:

xt = A1xt−1 + ηt (3.25)

Where A1 = diag(γ), and we vary γ from .4 to .6. We set ηt ∼ N(0,Ση), or ηt ∼

t5(0, V ) in which case the covariance matrix is Ση = (5/3) ∗ V . For this scenario we

will be dealing with uncorrelated predictors, we set Ση = Ipn . For the error process,

we have an AR(1) process: εi = αεi−1 +ei. We let α vary from .6 to .9, and let ei ∼ t5

or ei ∼ N(0, 1). We set β = (β1,β2), where β1 = (.5, .5, .5, .5, .5, .5) and β2 = 0.

Even though the features are uncorrelated, this is still a challenging setting, given the

low signal to noise ratio along with heavy tails and serial dependence being present.
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Table 3.1: Case 1

SIS GLSS
(γ, α) (.4,.6) (.5,.8) (.6,.9) (.4,.6) (.5,.8) (.6,.9)

Gaussian
pn = 1000 .95 .63 .15 .99 .99 .98
pn = 5000 .62 .11 .01 .95 .95 .97

t5
pn = 1000 .58 .26 .06 .83 .84 .83
pn = 5000 .21 .01 0 .55 .49 .50

The results are displayed in table 3.1. The entries below “Gaussian" correspond to

the setting where both ei and ηi are drawn from a Gaussian distribution. Accordingly

the entries under “t5" correspond to the case where ei and ηi are drawn from a t5

distribution. We see from the results that the performance of SIS, and GLSS are

comparable when pn = 1000, with moderate levels of temporal dependence, along

with Gaussian covariates and errors. Interestingly, in this same setting, switching to

heavy tails seems to have a much larger effect on the performance of SIS vs GLSS.

In all cases, the performance of GLSS appears to be robust to the effects of serial

correlation in the covariate and the error processes. Whereas, for SIS the performance

severely deteriorates as we increase the level of serial correlation. For example, for our

highest levels of serial correlation, SIS nearly always fails to contain the true model.

Case 2: Correlated Features

We now compare the performance of SIS and GLSS for the case of correlated

predictors. We have two scenarios:

Scenario A: The covariate process is generated from (3.25), with A1 = diag(.4).

ηt ∼ N(0,Ση), or ηt ∼ t5(0, V ), with Ση = {.3|i−j|}i,j≤pn for both cases. Therefore

Σ =
∑∞

i=0 .4
2iΣη. We set β1 = (1,−1, 1,−1, 1,−1) and β2 = 0. We have an AR(1)
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Table 3.2: Case 2: Scenario A

SIS GLSS
α .4 .6 .8 .4 .6 .8

Gaussian
pn = 1000 .83 .73 .55 .95 .90 .90
pn = 5000 .38 .30 .07 .63 .63 .57

t5
pn = 1000 .44 .42 .21 .56 .56 .53
pn = 5000 .01 .04 0 .16 .14 .16

process for the errors: εi = αεi−1 + ei, we vary α from .4 to .8, and set ei ∼ t5 or

ei ∼ N(0, 1)

Scenario B: The covariate process is generated from (3.25), with A1 = {.4|i−j|+1}i,j≤pn .

And ηt ∼ N(0,Ση), or ηt ∼ t5(0, V ), with Ση = Ipn for both cases. Therefore

Σ =
∑∞

i=0(AT1 )iAi1. We set β1 = (1,−1, 1,−1, 1,−1) and β2 = 0. We have an AR(1)

process for the errors: εi = αεi−1 + ei, and we vary α from .4 to .8. The errors are

generated in the same manner as in scenario A above.

The results are displayed in tables 3.2, and 3.3 respectively. In scenario A, we

have a Toeplitz covariance matrix for the predictors, and moderate levels of serial

dependence in the predictors. The trends are similar to the ones we observed in case

1. The performance of SIS is sensitive to the effects of increasing the serial corre-

lation in the errors, with the effect of serial dependence being more pronounced as

we encounter heavy tail distributions. In contrast, increasing the level of serial de-

pendence has a negligible impact on the performance of GLSS. For scenario B, we

observe similar trends as in scenario A.

Case 3: Two Stage Selection
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Table 3.3: Case 2: Scenario B

SIS GLSS
α .4 .6 .8 .4 .6 .8

Gaussian
pn = 1000 .90 .82 .68 .99 1.00 1.00
pn = 5000 .71 .64 .26 .95 .97 .98

t5
pn = 1000 .76 .63 .40 .92 .90 .92
pn = 5000 .37 .26 .06 .76 .74 .75

We test the performance of the two stage GLSS-AdaLasso procedure. We also

compare its performance with using the adaptive Lasso on its own. We use the Lasso

as our initial estimator and select λI,n using the modified BIC introduced in Wang

et al. (2009). Fan and Tang (2013) extended the theory of the modified BIC to the

case where p > n, p = o(na), a > 1, and independent observations. We conjecture

that the same properties hold in a time series setting. We have two scenarios:

Scenario A: The covariate process is generated from (3.25), with A1 = diag(.4).

And ηt ∼ N(0,Ση), or ηt ∼ t5(0, V ), with (Ση)i,j = {.8|i−j|}i,j≤pn . We set β1 =

(.5, .5, .5, .5, .5, .5) and β2 = 0. We have an AR(1) process for the errors: εi =

αεi−1 + ei, we vary α from .4 to .6, and set ei ∼ t5 or ei ∼ N(0, 1)

Scenario B: The covariate process is generated from (3.25), with A1 = {.4|i−j|+1}i,j≤pn .

And ηt ∼ N(0,Ση), or ηt ∼ t5(0, V ), with (Ση)i,j = .8 for i 6= j and 1 otherwise. We

set β1 = (.75, .75, .75, .75, .75, .75) and β2 = 0. The errors are generated the same as

in scenario A above.

In both scenarios we have a high degree of correlation between the predictors,

low signal to noise ratio, along with mild to moderate levels of serial correlation in

the covariate and error processes. The results are displayed in tables 3.4 and 3.5 for
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Table 3.4: Case 3: Scenario A

GLSS-AdaLasso AdaLasso
α .4 .5 .6 .4 .5 .6

Gaussian
pn = 1000 .79 .65 .49 .60 .49 .35
pn = 5000 .84 .65 .46 .66 .43 .29

t5
pn = 1000 .45 .37 .23 .32 .22 .14
pn = 5000 .36 .32 .18 .24 .18 .10

Table 3.5: Case 3: Scenario B

GLSS-AdaLasso AdaLasso
α .4 .5 .6 .4 .5 .6

Gaussian
pn = 1000 .86 .72 .59 .57 .49 .34
pn = 5000 .69 .59 .43 .60 .44 .25

t5
pn = 1000 .48 .41 .22 .30 .19 .10
pn = 5000 .35 .25 .19 .25 .16 .11

scenarios A and B respectively. We observe that the two stage estimator outperforms

the standalone adaptive Lasso for both scenarios, with the difference being more

pronounced in scenario B. For both scenarios, going from mild to moderate levels of

serial correlation in the errors appears to significantly deteriorate the performance of

the adaptive Lasso. This affects our results for the two stage estimator primarily at

the second stage of selection. This sensitivity to serial correlation appears to increase

as we encounter heavy tailed distributions.

3.7 Real Data Example: Forecasting Inflation Rate

In this section we focus on forecasting the 12 month ahead inflation rate. We use

two major monthly price indexes as measures of inflation: the consumer price index

(CPI), and the producer price index less finished goods (PPI). Specifically we are
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forecasting:

y12
t+12 = 100× log

(
CPIt+12

CPIt

)
, or y12

t+12 = 100× log

(
PPIt+12

PPIt

)
(3.26)

Therefore the above quantities are approximately the percentage change in CPI or

PPI over 12 months. Our data was obtained from the supplement to Jurado et al.

(2015), and it consists of 132 monthly macroeconomic variables from January 1960 to

December 2011, for a total of 624 observations. Apart from log(CPI) and log(PPI)

which we are treating as I(1), the remaining 130 macroeconomic time series have

been transformed to achieve stationarity according to Jurado et al. (2015). Treating

log(CPI), and log(PPI) as I(1), has been found to provide an adequate description

of the data according to Stock and Watson (2002c),Stock and Watson (1999),Medeiros

and Mendes (2016).

We consider forecasts from 8 different models. Similar to Medeiros and Mendes

(2016); Stock and Watson (2002c) our benchmark model is an AR(4) model: ŷ12
t+12 =

α̂0 +
∑3

i=0 α̂iyt−i , where yt = 1200 × log(CPIt/CPIt−1) when forecasting CPI, and

yt = 1200×log(PPIt/PPIt−1) when forecasting PPI. For comparison, we also consider

an AR(4) model augmented with 4 factors. Specifically we have:

ŷ12
t+12 = β̂0 +

3∑
i=0

α̂iyt−i + γ̂F̂t (3.27)

Where F̂t are four factors which are estimated by taking the first four principal com-

ponents of the 131 predictors along with three of their lags. We also consider forecasts

estimated by the Lasso and the adaptive Lasso. And lastly we include forecasts es-

timated by the following two stage procedures: GLSS-Lasso, GLSS-adaptive Lasso,

SIS-Lasso, and SIS-Adaptive Lasso. Our forecasting equation for the penalized re-
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gression and two stage forecasts is:

y12
t+12 = β0 + xtβ + ε12

t+12 (3.28)

Where xt consists of yt and three of its lags along with the other 131 predictors and

three of their lags, additionally we also include the first four estimated factors F̂t.

Therefore xt consists of 532 covariates in total. For each of the two stage methods,

we set dn = dn/ log(n)e = 73 for the first stage screening procedure. For the second

stage selection, and the standalone lasso/adaptive lasso models, we select the tuning

parameters and initial estimators using the approach described in section 3.6.

We utilize a rolling window scheme, where the first simulated out of sample fore-

cast was for January 2000 (2000:1). To construct this forecast, we use the observations

between 1960:6 to 1999:1 (the first five observations are used in forming lagged co-

variates and differencing) to estimate the factors, and the coefficients. Therefore for

the models described above, t=1960:6 to 1998:1. We then use the regressor values

at t=1999:1 to form our forecast for 2000:1. Then the next window uses observa-

tions from 1960:7 to 1999:2 to forecast 2000:2. Using this scheme, in total we have

144 out of sample forecasts, and for each window we use n = 451 observations for

each regression model. The set-up described above allows us to simulate real-time

forecasting.

Table 3.6 shows the mean squared error (MSE), and the mean absolute error

(MAE) of the resulting forecasts relative to the MSE and MAE of the baseline AR(4)

forecasts. We observe that the two stage GLSS methods clearly outperform the

benchmark AR(4) model, and appear to have the best forecasting performance overall

for both CPI and PPI, with the difference being more substantial when comparing by

MSE. Furthermore GLSS-lasso and GLSS-adaptive Lasso do noticeably better than
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Table 3.6: Inflation Forecasts: 12 month horizon

CPI-MSE CPI-MAE PPI-MSE PPI-MAE
AR(4) 1.00 1.00 1.00 1.00
Lasso .94 .99 .69 .89

Adaptive Lasso 1.08 1.05 .80 .99
SIS-Lasso .96 .97 .76 .95

SIS-Adaptive Lasso 1.03 1.00 .82 1.00
GLSS-Lasso .84 .98 .65 .87

GLSS-Adaptive Lasso .94 1.00 .70 .92
AR(4) + 4 Factors 1.18 .99 1.08 1.09

their SIS based counterparts with the differences being greater when forecasting PPI.

We also note that the widely used factor augmented autoregressions do worse than

the benchmark model AR(4) model.

3.8 Discussion

In this paper we have analyzed the sure screening properties of SIS in the presence

of dependence and heavy tails in the covariate and error processes. In addition,

we have proposed a generalized least squares screening (GLSS) procedure, which

utilizes the serial correlation present in the data when estimating our marginal effects.

Lastly, we analyzed the theoretical properties of the two stage screening and adaptive

Lasso estimator using the Lasso as our initial estimator. These results will allow

practitioners to apply these techniques to many real world applications where the

assumption of light tails and independent observations fails.

There are plenty of avenues for further research, for example extending the theory

of model-free screening methods such as distance correlation, or robust measures

of dependence such as rank correlation to the setting where we have heavy tails

and dependent observations. Other possibilities include extending the theory in this

work, or to develop new methodology for long range dependent processes, or certain
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classes of non-stationary processes. Long range dependence, is a property which is

prominent in a number of fields such as physics, telecommunications, econometrics,

and finance (see Samorodnitsky (2006) and references therein). If we assume the

error process (εi) is long range dependent, then by the proof of Theorem 1 in Wu and

Pourahmadi (2009) we have ∆0,q(ε) = ∞. A similar result holds for the covariate

process, therefore we may need to use a new dependence framework when dealing with

long range dependent processes. Lastly, developing new methodology which aims to

utilize the unique qualities of time series data such as serial dependence, and the

presence of lagged covariates, would be a particularly fruitful area of future research.

3.9 Appendix

3.9.1 Proofs of Results

Proof of Theorem 7.

We first prove part (i), we start by obtaining a bound on:

P (|ρ̂j − ρj| > c2n
−κ) (3.29)

Let T1 =
∑n

t=1X
2
tj/n, T2 =

∑n
t=1XtjYt/n. Then |ρ̂j−ρj| = |T2/T1−E(T2)/E(T1)| =

|(T−1
1 − E(T1)−1)(T2 − E(T2)) + (T2 − E(T2))/E(T1) + (T−1

1 − E(T1)−1)E(T2)|
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Therefore:

P (|ρ̂j − ρj| > c2n
−κ) ≤ P (|(T−1

1 − E(T1)−1)(T2 − E(T2))| > c2n
−κ/3) (3.30)

+ P (|(T2 − E(T2))/E(T1) > c2n
−κ/3|) (3.31)

+ P (|(T−1
1 − E(T1)−1)E(T2)| > c2n

−κ/3) (3.32)

For the RHS of (3.30), we obtain:

(3.30) ≤ P (|(T2 − E(T2))| > Cn−κ/2) + P (|(T−1
1 − E(T1)−1)| > Cn−κ/2) (3.33)

Therefore it suffices to focus on terms (3.31), (3.32). For (3.31), recall that

Recall that T2 =
∑n

t=1 Xtj(xtβ + εt)/n =
∑n

t=1 Xtj(
∑pn

k=1 Xtkβk + εt)/n. Now we

let:

S1 =
n∑
t=1

Xtj(

pn∑
k=1

Xtkβk)/n and S2 =
n∑
t=1

Xtjεt/n (3.34)

By Condition B, E(Xtjεt) = 0, therefore

P (|T2 − E(T2)| > Cn−κ) ≤ P (|S1 − E(S1)| > Cn−κ/2) + P (|S2| > Cn−κ) (3.35)

Recall that
∑pn

k=1 1|βk|>0 = sn, thus:

P

(
|S1 − E(S1)| > c2n

−κ

2

)
≤
∑
k∈M∗

P

(
|

n∑
t=1

Xtj(Xtkβk)

n
− βkE(XtjXtk)| >

c2n
−κ

2sn

)
(3.36)

From section 2 in Wu and Wu (2016): ||Xij||r ≤ ∆0,r(Xj) ≤ Φ0,r(x). Using this we
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compute the cumulative functional dependence measure of XtkXtj as:

∞∑
t=m

||XtjXtk −X∗tjX∗tk||r/2 ≤
∞∑
t=m

(||Xtj||r||Xtk −X∗tk||r + ||Xtk||r||Xtj −X∗tj||r)

≤ 2Φ0,r(x)Φm,r(x) = O(m−αx) (3.37)

Therefore we obtain: supm(m+1)αx
∑∞

t=m ||XtjXtk−X∗tjX∗tk||r/2 ≤ 2K2
x,r. Combining

this with (3.36), and Theorem 2 in Wu and Wu (2016), yields:

P

(
|S1 − E(S1)| > c2n

−κ

2

)
≤Csn

(
nωKr

x,r

(n/sn)r/2−rκ/2
+ exp

(
− n1−2κ

s2
nK

4
x,r

))
(3.38)

Similarly for Xtjεt, by using Holder’s inequality we obtain:

∞∑
t=m

||Xtjεt −X∗tjε∗t ||τ ≤
∞∑
t=m

(||Xtj||r||εt − ε∗t ||q + ||εt||q||Xtj −X∗tj||r)

≤ ∆0,q(ε)Φm,r(x) + ∆m,q(ε)Φ0,r(x) = O(m−α) (3.39)

Therefore supm(m+1)α
∑∞

t=m ||Xtjεt−X∗tjε∗t ||τ ≤ 2Kx,rKε,q. Using Theorem 2 in Wu

and Wu (2016), we obtain:

P

(
|S2| >

c2n
−κ

2

)
≤ O

(
nιKτ

x,rK
τ
ε,q

nτ−τκ
+ exp

(
− n1−2κ

K2
x,rK

2
ε,q

))
(3.40)

For (3.32), assuming E(X2
ij) = O(1) ∀j ≤ pn, and maxj≤pn E(XtjYt) < L <∞ we

obtain:

(3.32) ≤ P (|T1 − E(T1)| > T1Cn
−κ) ≤ P (|T1 − E(T1)| > MCn−κ) + P (T1 < M)

(3.41)
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We set M < minj≤pn E(X2
ij)− ε, for ε > 0. We then have:

P (T1 < M) ≤ P (|T1 − E(T1)| > E(T1)−M) (3.42)

We can then bound the above two equations similar to (3.38). By combining

(3.33)(3.35),(3.38),(3.40),(3.41), along with union bound we obtain:

P

(
max
j≤pn
|ρ̂j − ρj| > c2n

−κ
)
≤ O

(
snpn

[
nωKr

x,r

(n/sn)r/2−rκ/2
+ exp

(
− n1−2κ

s2
nK

4
x,r

)])
+O

(
pn

[
nιKτ

x,rK
τ
ε,q

nτ−τκ
+ exp(−n1−2κ/K2

x,rK
2
ε,q)

])

To prove part (ii), we follow the steps in the proof of Theorem 2 in Li et al.

(2012a). Let An = {maxk∈M∗ |ρ̂k − ρk| ≤ c1n−κ

2
}. On the set An, by Condition A, we

have:

|ρ̂k| ≥ |ρk| − |ρ̂k − ρk| ≥ c1n
−κ/2, ∀k ∈M∗ (3.43)

Hence by our choice of γn, we obtain P
(
M∗ ⊂ M̂γn

)
> P (An). By applying part

(i), the result follows.

For part (iii) we follow the steps in the proof of Theorem 3 in Li et al. (2012a).

Using V ar(Yt), V ar(Xtj) = O(1) for j ≤ pn, along with Condition B, we obtain∑pn
k=1 ρ

2
k = O(λmax(Σ)). Then on the set Bn = {maxk≤pn |ρ̂k − ρk| ≤ c4n

−κ}, the

number of {k : |ρ̂k| > 2c4n
−κ} cannot exceed the number of {k : |ρk| > c4n

−κ} which

is bounded by O(n2κλmax(Σ)). Therefore, by setting c4 = c3/2 we obtain:

P
(
|M̂γn| < O(n2κλmax(Σ))

)
> P (Bn) (3.44)

The result then follows from part (i).
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Proof of Theorem 7.

We follow the steps from the proof of Theorem 6. Let T = (T1, . . . , Tn) where

Ti = XijXik, and let R = (R1, . . . , Rn) where Ri = Xijεi. We need to bound the

sums:
∑n

i=1(Ti − E(Ti))/n and
∑n

i=1Ri/n.

By Theorem 1 in Wu (2005), Θq(T ) ≤ ∆0,q(T ), and from Section 2 in Wu and Wu

(2016): ||Xij||q ≤ ∆0,q(Xj) ≤ Φ0,q(x). Additionally, by Holders inequality we have

∆0,q(T ) ≤
∞∑
t=0

(||Xtj||2q||Xtk −X∗tk||2q + ||Xtk||2q||Xtj −X∗tj||2q) ≤ 2Φ2
0,2q(x) (3.45)

Using these, along with Condition D we obtain:

sup
q≥4

q−2α̃xΘq(T ) ≤ sup
q≥4

q−2α̃x∆0,q(T ) ≤ sup
q≥4

2q−2α̃xΦ2
0,2q(x) <∞ (3.46)

Combining the above and using Theorem 3 in Wu and Wu (2016), we obtain:

P

(∣∣∣∣ n∑
i=1

Ti − E(Ti)

∣∣∣∣ > c2n
1−κ

2

)
≤ C exp

(
−n

1/2−κ

υ2
x

)α̃
(3.47)

Similarly, using the same procedure we obtain:

P

(∣∣∣∣ n∑
i=1

Ri

∣∣∣∣ > c2n
1−κ

2

)
≤ C exp

(
−n

1/2−κ

υxυε

)α̃′
(3.48)

Now using the above bounds and following the steps in the proof of Theorem 6 we

obtain the results.
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Proof of Lemma 9.

By the proof of Theorem 2 in Wu and Pourahmadi (2009), we have:

||Σ̂k,ln − Σk||2 ≤ 2
ln∑
i=1

|γ̂i,k − γi,k|+ 2
∞∑

i=ln+1

|γi,k| (3.49)

Recall that ρ̂k is the OLS estimate of the marginal projection, by (3.14) we have

ε̂t,k = εt,k −Xtk(ρ̂k − ρk) = εt,k −Xtk(
∑n
j=1 Xjkεj,k/n∑n
j=1X

2
jk/n

). Which gives us:

γ̂i,k =
1

n

n−|i|∑
t=1

[
εt,kεt+|i|,k − εt,kXt+|i|,k

( n∑
j=1

Xjkεj,k/n

)
(3.50)

− εt+|i|,kXtk

( n∑
j=1

Xjkεj,k/n

)
+XtkXt+|i|,k

( n∑
j=1

Xjkεj,k/n

)2
]

(3.51)

By Condition E and ln = c log(n), for sufficiently large c, we have:
∑∞

i=ln+1 |γi,k| =

o(n−κ), so we focus on the term
∑ln

i=1 |γ̂i,k − γi,k| in (3.49). We then have:

P (||Σ̂k,ln − Σk||2 > cn−κ) ≤
ln∑
i=1

P
(
|γ̂i,k − γi,k| > cn−κ/ln

)
(3.52)
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And

P (|γ̂i,k − γi,k| >
cn−κ

ln
) ≤ P

(∣∣∣∣ 1n
n−|i|∑
t=1

εt,kεt+|i|,k − E(
1

n

n−|i|∑
t=1

εt,kεt+|i|,k)

∣∣∣∣ (3.53)

+

∣∣∣∣E(
1

n

n−|i|∑
t=1

εt,kεt+|i|,k)− γi,k
∣∣∣∣ > cn−κ/4ln

)
(3.54)

+ P

∣∣∣∣ 1n
n−|i|∑
t=1

εt,kXt+|i|,k

(∑n
j=1 Xjkεj,k/n∑n
j=1 X

2
jk/n

)∣∣∣∣ > cn−κ/4ln

 (3.55)

+ P

∣∣∣∣ 1n
n−|i|∑
t=1

εt+|i|,kXtk

(∑n
j=1Xjkεj,k/n∑n
j=1X

2
jk/n

)∣∣∣∣ > cn−κ/4ln

 (3.56)

+ P

∣∣∣∣ 1n
n−|i|∑
t=1

XtkXt+|i|,k

(∑n
j=1 Xjkεj,k/n∑n
j=1X

2
jk/n

)2 ∣∣∣∣ > cn−κ/4ln

 (3.57)

For (3.54), the bias |E(
∑n−|i|

t=1

εt,kεt+|i|,k
n

− γi,k| ≤ iγi,k
n

. Using the techniques in the

proof of Theorem 6 we can then bound (3.53). For (3.55) we have:

(3.55) ≤ P

(
|
∑n

j=1Xjkεj,k/n|∑n
j=1X

2
jk/n

> cn−κ/Mln

)
+ P

∣∣∣∣ 1n
n−|i|∑
t=1

εt,kXt+|i|,k

∣∣∣∣ > M


(3.58)

And P
(∣∣∣ 1

n

∑n−|i|
t=1 εt,kXt+|i|,k

∣∣∣ > M
)

≤ P

∣∣∣∣ 1n
n−|i|∑
t=1

εt,kXt+|i|,k − E(
1

n

n−|i|∑
t=1

εt,kXt+|i|,k)

∣∣∣∣ > M −
∣∣∣∣E(

1

n

n−|i|∑
t=1

εt,kXt+|i|,k)

∣∣∣∣


(3.59)

And we set M > maxk≤pn maxi≤ln 2|E(εt,kXt+|i|,k)| + ε, for some ε > 0. Similarly we

have P (
|
∑n
j=1Xjkεj,k/n|∑n
j=1 X

2
jk/n

> cn−κ/Mln)

≤ P

(∣∣∣∣ n∑
j=1

Xjkεj,k/n

∣∣∣∣ > M1Cn
−κ/ln

)
+ P

(
n∑
j=1

X2
jk/n < M1

)
(3.60)
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Where we set M1 < minj≤pn E(X2
ij) − ε, for ε > 0. The same method we used for

(3.53) can be applied to (3.56), (3.57). Using the techniques in the proof of Theorem

6, and (3.52), we obtain the result. For (ii), we follow the same procedure as in (i),

and apply the methods seen in the proof of Theorem 7.

Proof of Theorem 8.

For (i), as before we start with a bound on: P (|β̂Mk − βMk | > c2n
−κ). Using

Condition E, we can write:

βMk = (E(XT
k Σ−1

k Xk)/n)−1E(XT
k Σ−1

k y
k/n) +O(1/n)

After combining this with (3.14), it suffices to obtain a bound for:

P (|(XT
k Σ̂−1

k,ln
Xk/n)−1XT

k Σ̂−1
k,ln
εk/n− (E(XT

k Σ−1
k Xk))

−1E(XT
k Σ−1

k ε
k)| > cn−κ)

(3.61)

Similar to the proof of Theorem 6 we let T1 = XT
k Σ̂−1

k,ln
Xk/n,

T2 = XT
k Σ̂−1

k,ln
εk/n, T3 = E(XT

k Σ−1
k Xk), and T4 = E(XT

k Σ−1
k ε

k). Then:

|β̂Mk − βMk | = |T2/T1 − T4/T3| = |(T−1
1 − T−1

3 )(T2 − T4)

+ (T2 − T4)/T3 + (T−1
1 − T−1

3 )T4| (3.62)

Following the steps in the proof of Theorem 6, it suffices to focus on the terms:

P (|T1 − T3| > cn−κ) and P (|T2 − T4| > cn−κ) (3.63)



190

We then have:

P (|T2 − T4| > Cn−κ) ≤ P (|XT
k (Σ̂−1

k,ln
− Σ−1

k )εk/n| > Cn−κ/2) (3.64)

+ P (|XT
k Σ−1

k ε
k/n− E(XT

k Σ−1
k ε

k)| > Cn−κ/2)

We first deal with the termXT
k Σ−1

k ε
k/n. We can rewrite this term as X̃T

k ε̃
k/n, where

X̃k = VkXk, ε̃
k = Vkε

k/n, Vk is a lower triangle matrix and the square root of Σ−1
k .

Ignoring the first Lk observations, we can express:

X̃T
k ε̃

k/n =
n∑

t=Lk+1

(
εt,k −

Lk∑
i=1

αi,kεt−i,k

)(
Xt,k −

Lk∑
i=1

αi,kXt−i,k

)
(3.65)

, where (α1,k, . . . , αLk,k) are the autoregressive coefficients of the process εt,k.

We compute the cumulative functional dependence measure of X̃t,k ε̃t,k as:

∞∑
l=m

||X̃l,k ε̃l,k − X̃∗l,k ε̃∗l,k||τ ′ ≤
∞∑
l=m

(||X̃l,k||r||ε̃l,k − ε̃∗l,k||q′ + ||ε̃l,k||q′ ||X̃l,k − X̃∗l,k||r)

(3.66)

We have: ||X̃l,k − X̃∗l,k||r ≤ ||Xl,k −X∗l,k||r +
∑Lk

i=1 |αi|||Xk,l−i −X∗k,l−i||r. And by our

assumptions ||ε̃l,k − ε̃∗l,k||q′ = 0, for l > 0. From which we obtain:

∞∑
l=m

||X̃l,k ε̃l,k − X̃∗l,k ε̃∗l,k||τ ′ ≤ CΦm,r = O(m−αx) (3.67)

Using Theorem 2 in Wu and Wu (2016):

P (|XT
k Σ−1

k ε
k/n− E(XT

k Σ−1
k ε

k)| > Cn−κ) ≤ O

(
nιKτ ′

x,r

nτ ′−τ ′κ

)
(3.68)
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For the term |XT
k (Σ̂−1

k,ln
− Σ−1

k )εk/n|, using Cauchy-Schwarz inequality:

|XT
k (Σ̂−1

k,ln
− Σ−1

k )εk/n|
||Xk||2||εk||2

≤
||(Σ̂−1

k,ln
− Σ−1

k )εk||2
n||εk||2

≤
||Σ̂−1

k,ln
− Σ−1

k ||2
n

(3.69)

Using (3.69) we obtain:

P (|XT
k (Σ̂−1

k,ln
− Σ−1

k )εk/n| > Cn−κ) ≤ P (||Xk||2||εk||2||Σ̂−1
k,ln
− Σ−1

k ||2/n > Cn−κ)

(3.70)

Where the right hand side of (3.70) is:

≤ P (||Σ̂−1
k,ln
− Σ−1

k ||2 > Cn−κ/
√
M) + P

(( n∑
i=1

X2
ik/n

)( n∑
i=1

ε2i,k/n

)
> M

)
(3.71)

Let M = M1M2, where M1 ≥ maxk≤pn E(X2
i,k) + ε, and M2 = maxk≤pn E(ε2i,k) + ε, for

some ε > 0. The second term of (3.71) is:

≤ P

(
n∑
i=1

X2
ik/n > M1

)
+ P

(
n∑
i=1

ε2i,k/n > M2

)
(3.72)

We can bound the above using the same techniques as in the previous proofs.

By Condition E, the spectral density of the process εt,k,∀k ≤ pn is bounded away

from zero and infinity. Therefore, 0 < C1 ≤ λmin(Σk) ≤ λmax(Σk) ≤ C2 <∞,∀k ≤ pn

Wu and Pourahmadi (2009). We then use:

λmin(Σk)||Σ̂−1
k,ln
− Σ−1

k ||2 ≤ ||Σ
1
2
k (Σ̂−1

k,ln
− Σ−1

k )Σ
1
2
k ||2

= ||Σ
1
2
k Σ̂−1

k,ln
Σ

1
2
k − In||2 (3.73)

Let a1 ≥ a2 ≥ . . . ≥ an be the ordered eigenvalues of Σ
− 1

2
k Σ̂k,lnΣ

− 1
2

k , therefore



192

||Σ
1
2
k Σ̂−1

k,ln
Σ

1
2
k − In||2 = maxi | 1

ai
− 1| = maxi |ai−1

ai
|. We then have

max
i
|ai − 1| = ||Σ−

1
2

k Σ̂k,lnΣ
− 1

2
k − In||2 ≤ λmax(Σ−1

k )||Σ̂k,ln − Σk||2 (3.74)

Let aj = argminai|a−1
i |, using this and (3.73),(3.74) we obtain:

P (||Σ̂−1
k,ln
− Σ−1

k ||2 > Cn−κ) ≤ P (||Σ̂k,ln − Σk||2 > Cajn
−κ)

≤ P (||Σ̂k,ln − Σk||2 > CM3n
−κ) + P (|aj| < M3) (3.75)

Where M3 ∈ (0, 1− ε) for ε > 0. We then have

P (|aj| < M3) ≤ P (|aj − 1| > 1−M3) ≤ P (||Σ̂k,ln − Σk||2 > 1−M3)

Combining the above with (3.75) and Lemma 9, we obtain:

P (||Σ̂−1
k,ln
− Σ−1

k ||2 > Cn−κ) ≤ lnO

(
nιlτ

′
nK

τ ′
x,rK̃

τ ′

ε,q′

nτ ′−τ ′κ
+
nζl

q′/2
n K̃q′

ε,q′

nq′/2−q′κ/2
+
nωl

r/2
n Kr

x,r

nr/2

)
(3.76)

By (3.64),(3.68),(3.70),(3.72),(3.76) we obtain a bound for P (|T2 − E(T2)| >

Cn−κ). For the term P (|T1 − E(T1)| > Cn−κ), we proceed in a similar fashion:

P (|T1 − E(T1)| > Cn−κ) ≤ P (|XT
k (Σ̂−1

k,ln
− Σ−1

k )Xk/n| > Cn−κ/2)

+ P (|XT
k Σ−1

k X
k/n− E(XT

k Σ−1
k X

k)| > Cn−κ/2)

We can then obtain a bound on the above terms by following a similar procedure as

before. Combining these gives us the result for (i). For (ii), using the result from

(i) we follow a similar procedure to the proof of Theorem 6. For (iii) and (iv) we

follow the same procedure as (i) and (ii), and apply the methods seen in the proof of
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Theorem 7; we omit the details.

Proof of Corollary 9.

Recall that:

βMk = E(yt −
Lk∑
i=1

αiyt−i)(Xt,k −
Lk∑
i=1

αiXt−i,k)/(E(Xt,k −
Lk∑
i=1

αiXt−i,k)
2)

Therefore by our assumption, we have that βMk ∝ ρk whenever βMk > 0. Using this we

obtain
∑pn

k=1(βMk )2 = O(
∑pn

k=1 ρ
2
k) = O(λmax(Σ)). We obtain the result, by following

the procedure in the proof of Theorem 6 and using the results from Theorem 8.

Proof of Theorem 10.

For simplicity we only prove part (i), the proof for part (ii) follows similarly. We

will work on the following set Dn = An ∩ Bn ∩ Cn, where

An = {maxk≤pn|ρ̂k − ρk| ≤ c3n
−κ/2}

Bn = {maxi,j≤d′n |[ΣM γn
2

− Σ̂M γn
2

]i,j| ≤
φ0

16sn
}

Cn = {maxk≤d′n|
n∑
i=1

Xikεi| ≤ λnn
ψ/2}

On the set An, if we apply screening as a first stage procedure, by our choice of

γn, we obtain:

M∗ ⊂ M̂γn ⊂Mγn/2 (3.77)

Next we need to use Lemma 7 and 8 in Medeiros and Mendes (2016), specifically we
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need to show our reduced model satisfies conditions DGP 3,DESIGN, and WEIGHTS

in Medeiros and Mendes (2016). On the set Bn, by Lemma 1 in Medeiros and Mendes

(2016), we have φΣM̂γn/2
= φΣMγn/2

= φ0. Therefore, we have:

φΣM̂γn
= min

S⊆{1,...,dn},|S|≤sn
min

v 6=0,|vSc |≤3|vS |

vTΣM̂γn
v

vTv
≥ φ0 (3.78)

Using this along with Lemma 1 in Medeiros and Mendes (2016) and Condition

J, we have that DESIGN 3a is satisfied with φmin = φ0/16, where infvT v=1 v
TΣ11v >

2φmin > 0, and Σ11 is the covariance matrix of the relevant predictors. On the set

Dn, by Conditions K and L in our work, and Lemma 2 and proposition 1 in Medeiros

and Mendes (2016), assumption WEIGHTS is satisfied. On the set An ∩ Bn, DGP 3

and DESIGN 3b are satisfied, while DESIGN 2 is satisfied by Condition L.

Now by proposition 2, Lemmas 7 and 8 in Medeiros and Mendes (2016) we obtain:

P (sgn(β̂M̂γn
) = sgn(β)) ≥ P (An ∩ Bn ∩ Cn) ≥ 1− P (A{

n)− P (B{
n)− P (C{n) (3.79)

P (A{
n) is given in Theorem 6 part i. For P (B{

n) using the method in the proof for

Theorem 6, we obtain:

P (B{
n) ≤ d

′2
nO

(
nωKr

x,r

nr/2
+ exp

(
−n/K4

x,r

))
(3.80)

And for P (C{n):

P (C{n) ≤ d′nO

(
nιKτ

x,rK
τ
ε,q

λτnn
τψ/2

+ exp
(
−λ2

nn
ψ−1/K2

x,rK
2
ε,q

))
(3.81)

To prove part ii) we follow the same steps from part i). We obtain P (A{
n),

P (B{
n), P (C{n) by following the method in the proof of Theorem 7, and using The-
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orem 3 in Wu and Wu (2016).

3.9.2 Asymptotic Distribution of GLS estimator

Lemma 10. Assume conditions E,F,G,H hold, then
√
n(β̂Mk −βMk ) and

√
n(β̃Mk −βMk )

have the same asymptotic distribution.

Proof of Lemma 10. It is clear that sufficient conditions for the feasible GLS estima-

tor β̂Mk , and β̃Mk to have the same asymptotic distribution are Davidson and MacK-

innon (2004):

XT
k (Σ̂−1

k,ln
− Σ−1

k )εk/
√
n→ 0

XT
k (Σ̂−1

k,ln
− Σ−1

k )Xk/n→ 0

By the proof of theorem 8, both these conditions are satisfied, therefore β̂Mk , and β̃Mk

have the same asymptotic distribution.

We use the above lemma, and rely on the asymptotic distribution of β̃Mk to provide

an explanation for the superior performance of GLSS, and its robustness to increas-

ing levels of serial correlation in εt,k. We deal with three cases, and we assume an

AR(1) process for the errors for simplicity and ease of presentation. The results can

be generalized to AR(p) processes, by using the moving average representation of εt,k:

Case 1:

We start with the setting used in figure 3.1, assume xt,k is iid and εt,k = αεt−1,k + et,

with xt,k, and εt,k being independent ∀t. Using Gordin’s central limit theorem Hayashi

(2000), we calculate the asymptotic distribution of
√
n(β̃Mk − βMk )→ N(0, J), where
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J = σ2
e

σ2
xk

(1+α2)
, σ2

e = var(et), and σ2
xk

= var(xt,k) . Using the same methods we cal-

culate the asymptotic distribution of the marginal OLS estimator as
√
n(ρ̂k − ρk)→

N(0, V ), where V = σ2
e

σ2
xk

(1−α2)
. Therefore the variance of the OLS estimator increases

without bound as α increases towards 1. Whereas the variance of the GLS estimator

actually decreases as α increases.

Case 2:

We expand this to the case when xt,k is temporally dependent, for simplicity we let

xt,k = φxt−1,k+ηt. We still assume xj,k and εt are independent ∀j, t, and εt,k = αεt−1,k+

et. This is the setting for the first model in the simulations section. Using Gordin’s

central limit theorem, and elementary calculations:
√
n(β̃Mk − βMk )→ N(0, J), where

J = (1−φ2)σ2
e

(1+α2−2φα)σ2
η
. And for the marginal OLS estimator

√
n(ρ̂k−ρk)→ N(0, V ), where

V = (1+φ2)σ2
e

(1−α2)σ2
η
. We clearly see that for fixed φ, the GLS estimate is robust to increasing

α, whereas the variance of the OLS estimator increases without bound as α increases

towards 1. This sensitivity to α provides an explanation for the results seen in case 1

of the simulations, which show the performance of SIS severely deteriorates for high

levels of serial correlation in εt,k

Case 3:

In both the previous cases, it is easy to see the GLS estimator is asymptotically

efficient to the OLS estimator. For the case where Xk = (xt,k, t = 1, . . . , n) and

εk = (εt,k, t = 1, . . . , n) are dependent on each other, it is more complicated. In

this setting, it is likely the case that ρk 6= βMk . Assume εt,k = αεt−1,k + et, and let

xt,k − αxt−1,k = x̃t,k, and W1 =
∑∞

i=−∞ γ(i), where γ(i) = cov(x̃t,ket, x̃t−i,ket−i). We
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start by examining the asymptotic distribution of
√
n(β̃Mk − βMk ) → N(0, J), where

J = W1/(var(x̃t,k))
2. By the proof of theorem 1 in Wu and Pourahmadi (2009),

W1 ≤ (
∑∞

t=0 δ2(x̃t,ket))
2, which gives us:

J ≤ (
∑∞

t=0 δ2(x̃t,kεt))
2

var(x̃t,k)2
≤

(
2||et||4∆0,4(X̃k)

var(x̃t,k)

)2

Where the last inequality follows from: δ2(x̃t,ket) = ||e0||4||x̃t,k− x̃∗t,k||4 + ||x̃0,k||4||et−

et∗||4. Since et is iid ||et − et∗||4 = 0, ∀t > 0. If we assume, xt,k = φxt−1,k + ηt, by

writing x̃t,k = ηt + (φ− α)xt−1,k, we have:

J ≤
(

2||et||4||ηt||4|φ− α|
(1− |φ|)var(x̃t,k)

+
2||et||4||ηt||4
var(x̃t,k)

)2

From these results we see that the asymptotic variance of the GLS estimator is

bounded when α increases towards 1, and is largely robust to increasing levels of

serial correlation in εt,k. This result seems to provide an explanation for GLSS being

robust to increasing levels of serial correlation in our simulations.

For the OLS estimator we obtain, (ρ̂k−ρk)→ N(0, V ), where V = W2/(var(xt,k))
2

and W2 =
∑∞

i=−∞ cov(xt,kεt, xt−iεt−i). As before, we can bound:

V ≤ (
∑∞

t=0 δ2(xt,ket))
2

var(xt,k))2
≤
(
||εt,k||4∆0,4(Xk)

var(xt,k)
+

2||Xk,t||4||et||4
(1− |α|)var(xt,k)

)2

We see the above bound is very sensitive to increasing serial correlation in εt,k.

Although this is an upper bound to the asymptotic variance, it seems to explain the

deterioration in performance of SIS when increasing the serial correlation of εt,k in

our simulations.
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