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ABSTRACT

Optimization for Probabilistic Machine Learning

by

Ghazal Fazelnia

We have access to great variety of datasets more than any time in the history. Everyday, more

data is collected from various natural resources and digital platforms. Great advances in the area

of machine learning research in the past few decades have relied strongly on availability of these

datasets. However, analyzing them imposes significant challenges that are mainly due to two

factors. First, the datasets have complex structures with hidden interdependencies. Second, most

of the valuable datasets are high dimensional and are largely scaled. The main goal of a machine

learning framework is to design a model that is a valid representative of the observations and

develop a learning algorithm to make inference about unobserved or latent data based on the

observations. Discovering hidden patterns and inferring latent characteristics in such datasets is

one of the greatest challenges in the area of machine learning research. In this dissertation, I will

investigate some of the challenges in modeling and algorithm design, and present my research

results on how to overcome these obstacles.

Analyzing data generally involves two main stages. The first stage is designing a model that

is flexible enough to capture complex variation and latent structures in data and is robust enough

to generalize well to the unseen data. Designing an expressive and interpretable model is one of

crucial objectives in this stage. The second stage involves training learning algorithm on the

observed data and measuring the accuracy of model and learning algorithm. This stage usually

involves an optimization problem whose objective is to tune the model to the training data and

learn the model parameters. Finding global optimal or sufficiently good local optimal solution is

one of the main challenges in this step.

Probabilistic models are one of the best known models for capturing data generating process

and quantifying uncertainties in data using random variables and probability distributions. They

are powerful models that are shown to be adaptive and robust and can scale well to large



datasets. However, most probabilistic models have a complex structure. Training them could

become challenging commonly due to the presence of intractable integrals in the calculation.

To remedy this, they require approximate inference strategies that often results in non-convex

optimization problems. The optimization part ensures that the model is the best representative

of data or data generating process. The non-convexity of an optimization problem take away the

general guarantee on finding a global optimal solution. It will be shown later in this dissertation

that inference for a significant number of probabilistic models require solving a non-convex

optimization problem.

One of the well-known methods for approximate inference in probabilistic modeling is

variational inference. In the Bayesian setting, the target is to learn the true posterior distribution

for model parameters given the observations and prior distributions. The main challenge involves

marginalization of all the other variables in the model except for the variable of interest. This

high-dimensional integral is generally computationally hard, and for many models there is no

known polynomial time algorithm for calculating them exactly. Variational inference deals with

finding an approximate posterior distribution for Bayesian models where finding the true posterior

distribution is analytically or numerically impossible. It assumes a family of distribution for

the estimation, and finds the closest member of that family to the true posterior distribution

using a distance measure. For many models though, this technique requires solving a non-convex

optimization problem that has no general guarantee on reaching a global optimal solution. This

dissertation presents a convex relaxation technique for dealing with hardness of the optimization

involved in the inference.

The proposed convex relaxation technique is based on semidefinite optimization that has a

general applicability to polynomial optimization problem. I will present theoretical foundations

and in-depth details of this relaxation in this work. Linear dynamical systems represent the

functionality of many real-world physical systems. They can describe the dynamics of a linear

time-varying observation which is controlled by a controller unit with quadratic cost function

objectives. Designing distributed and decentralized controllers is the goal of many of these systems,

which computationally, results in a non-convex optimization problem. In this dissertation, I will

further investigate the issues arising in this area and develop a convex relaxation framework to

deal with the optimization challenges.



Setting the correct number of model parameters is an important aspect for a good probabilistic

model. If there are only a few parameters, model may lack capturing all the essential relations and

components in the observations while too many parameters may cause significant complications

in learning or overfit to the observations. Non-parametric models are suitable techniques to deal

with this issue. They allow the model to learn the appropriate number of parameters to describe

the data and make predictions. In this dissertation, I will present my work on designing Bayesian

non-parametric models as powerful tools for learning representations of data. Moreover, I will

describe the algorithm that we derived to efficiently train the model on the observations and

learn the number of model parameters.

Later in this dissertation, I will present my works on designing probabilistic models in

combination with deep learning methods for representing sequential data. Sequential datasets

comprise a significant portion of resources in the area of machine learning research. Designing

models to capture dependencies in sequential datasets are of great interest and have a wide

variety of applications in engineering, medicine and statistics. Recent advances in deep learning

research has shown exceptional promises in this area. However, they lack interpretability in their

general form. To remedy this, I will present my work on mixing probabilistic models with neural

network models that results in better performance and expressiveness of the results.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Probabilistic models are one of the most powerful techniques for discovering and describing

underlying structures in a dataset [48]. They can infer possible models to explain observed data.

This approach is flexible to adjust to different variations in data and is robust to tolerate noise

in data. Uncertainty in data is a crucial part for this type of models. Due to their probabilistic

nature, they are capable of modeling uncertainty and incorporating it for predicting. Generative

models assume a generating process from which the data is drawn. Using them enables us to

not only train the model and make prediction on unobserved data but also to quantify our

uncertainty about the model assumptions and prediction results. Latent variable models are a

subcategory of probabilistic models which assume that data is affected by unobserved factors or

latent variables. Latent variables could represent the unobserved structures in the data. Latent

variable models include factor analysis models, mixture models, and latent class models among

others.

Factor analysis models assume that data can be described via a linear combination of

unobservable latent variables called factors. Collection of these factors is called dictionary. Sparse

coding seeks to decompose data points into combination of a small subset of patterns selected

from the dictionary. The goal of dictionary learning is to simultaneously learn these patterns

in the dictionary (factors) and the sparse representation of the signals [2]. In this dissertation,

I will present my work on dictionary learning and sparse signal representation with Bayesian

nonparametric priors in which the number of factors is learned by the model [41].
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I derive probabilistic orthogonal matching pursuit (PrOMP), a stochastic Expectation Maxi-

mization (EM) algorithm for learning sparse data representations, and extend the algorithm to

the sparse Bayesian nonparametric dictionary learning task using the beta process. The core

EM algorithm provides a new way for doing inference in nonparametric dictionary learning

models. Our theoretical analysis builds upon the previous theory for Orthogonal Matching

Pursuit (OMP) [31, 102, 128]. Like OMP, PrOMP is a greedy algorithm for regression that

iteratively selects columns of a matrix according to a score. This score is based on an atypical

use of the EM algorithm and thus optimizes a marginal probability distribution [42].

Mixed membership models provide a probabilistic approach to modeling groups of data

through a combination of shared and group-specific parameters [3]. A learning algorithm aims to

learn the shared components alongside membership assignment weights for representing each

data point using the components. In this dissertation, I will present my work on using mixed

membership models when learning sequential data. Deep Neural Networks (DNN) have been

widely used for modeling sequential data and have shown great performance in capturing recurring

patterns in data. Models of sequential data such as the recurrent neural network (RNN) often

implicitly treat a sequence as having a fixed time interval between observations and do not

account for group-level effects when multiple sequences are observed. I propose a model for

grouped sequential data based on the RNN that accounts for varying time intervals between

observations in a sequence by learning a group-level parameter to which each sequence reverts as

more time passes between observations. Our approach is motivated by the mixed membership

framework, and can be used for dynamic topic modeling-type problems in which the distribution

on topics (not the topics themselves) are evolving in time [45].

Probabilistic models with Bayesian hierarchical priors are powerful techniques for creating

interpretable and expressive models. However, a major challenge in Bayesian modeling is posterior

inference. For many models this requires calculating normalizing integrals that neither have

a closed form, nor are solvable numerically in polynomial time. There are two fundamental

approaches to addressing the posterior inference problem. One uses Markov chain Monte Carlo

(MCMC) sampling techniques that are asymptotically exact. However, these methods tend to

be slow compared with point-estimates and not scalable to large datasets [46, 58]. Mean-field
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variational inference is another approach that approximates the posterior distribution by first

defining a simpler family of distributions and then finding a member that is closest to the desired

posterior [67] according to the KullbackLeibler (KL) divergence. This turns the inference problem

into an optimization problem. This approach introduces new challenges since it mostly results in

non-convex optimization problems. In this dissertation, I will present a method to deal with the

non-convexities in variational inference (VI) optimization for conjugate prior models that can

achieve near globally optimal solutions [43].

The proposed optimization technique is based on convex relaxation and semidefinite program-

ming (SDP). In our approach, an SDP relaxation converts a non-convex polynomial optimization

of vector parameters to a convex optimization with matrix parameters via a lifting technique.

The exactness of the relaxation can then be interpreted as the existence of a low-rank solution to

this SDP. In the last part of this dissertation, I will present theoretical details on this method as

well as its implications in linear dynamical systems with decentralized controls [39].

The rest of this dissertation is organized as follows. Chapter 2 presents our results for

developing inference algorithm in nonparametric Bayesian modeling. It will be followed by

Chapter 3 in which I demonstrate our work on Bayesian nonparametric factor analysis model for

dictionary learning and sparse representation. In chapter 4 I introduce our work on probabilistic

analysis for sequential data modeling using deep learning techniques. Chapter 5 presents my work

on convex relaxation process for variational inference which is followed by Chapter 6 that gives

more detail about the relaxation technique and its application for linear time varying datasets. I

will conclude this dissertation in the Chapter 7 and bring a discussion for the future directions.



CHAPTER 2. PROBABILISTIC ORTHOGONAL MATCHING PURSUIT 4

Chapter 2

Probabilistic Orthogonal Matching

Pursuit

In this chapter, I present probabilistic orthogonal matching pursuit (PrOMP) for learning sparse

data representations, and extend the algorithm to the sparse Bayesian nonparametric dictionary

learning task using the beta process [42]. Like OMP, PrOMP is a greedy algorithm for regression

that iteratively selects columns of a matrix according to a score. This score is based on an

atypical use of the EM algorithm and thus optimizes a marginal probability distribution. Our

theoretical analysis builds on the previous theory for OMP. We also present experimental results

on dictionary learning for the image denoising and compressed sensing magnetic resonance

imaging (CS-MRI) problems, where we empirically demonstrate that PrOMP, when used in a

dictionary learning algorithm, can lead to improved performance over other sparse dictionary

learning and inference approaches by converging to a better local optimal solution. I will expand

the applications of PrOMP to more Bayesian nonparametric models in the next chapter.

2.1 Introduction

Sparse data representation is a fundamental problem of signal processing that aims to decompose

data into combinations of small subsets of patterns selected from a larger dictionary. Due
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to its significant applications in areas such as applied mathematics, statistics, and electrical

engineering, this field has received much attention. Various methods for sparse data representation

and recovery have been proposed using sparse penalties. For instance, least squares with l1

norm penalties (lasso) [23,35,124] are very effective in recovering sparse representation. Many

fundamental approaches are build on this l1 approach [57].

Another important family are matching pursuit (MP) methods, based on iterative greedy

algorithms that search for a sparse representation of data [88]. The main idea of MP is to

iteratively select columns to incorporate in the representation from a set of given patterns

based on correlation with the current residual, after which the residual is updated. This greedy

algorithm continues to run until reaching some convergence threshold. For example, orthogonal

matching pursuit (OMP) expedites convergence to the final solution by finding the least squares

solution on a growing subset of basis functions [102,128].

The computational simplicity of OMP in addition to its effectiveness for approximating l0

minimization problems have made it a very appealing method for sparse data representation, and

inspired many modifications. For example, stagewise orthogonal matching pursuit (StOMP) [31],

allows for multiple simultaneous patterns to be included at once. Issues with threshold selection

have been addressed in regularized OMP [92] and compressive sampling OMP [91] that are more

robust to noisy conditions and are more efficient in resource usage.

In this chapter, I propose probabilistic orthogonal matching pursuit (PrOMP), which builds

upon OMP via a probabilistic model. PrOMP follows an identical algorithmic outline as OMP, but

with modified scores calculation and weight (posterior) updates to account for the probabilistic

approach. We rigorously derive PrOMP using the expectation-maximization (EM) algorithm,

meaning our objective is a marginal likelihood on the sparsity pattern. Our approach to EM,

while correct, is not typical since the hidden variables used are growing based on the current

active set and thus each E-M step does not correspond to the same breakdown of the marginal.

We provide a theoretical analysis of PrOMP inspired by [128] for OMP, with the necessary

modification.

I then extend this basic model to the dictionary learning problem using a Bayesian non-

parametric beta process prior. In this problem, the additional goals are to learn the patterns
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themselves based on multiple signals, as well as the number of patterns to use [70,71,95]. This

approach has proven effective in tasks such as image denoising, inpainting [140], and compressed

sensing [64]. Inference for the beta-Bernoulli process has focused on variational methods [95]

and Markov Chain Monte Carlo (MCMC) sampling [64, 140] without considering scalability. We

address this issue by proposing a novel scalable EM-based algorithm. [2] deals with large data

sets by incorporating OMP step used by KSVD, however, our scalable extension is an EM special

case of stochastic variational inference [61].

In Section 2.2 I present the problem setup and PrOMP algorithm along with detailed

theoretical analysis, making connections to OMP along the way. PrOMP is extended to the

sparse dictionary learning problem in Section 2.3 We present the experiments on dictionary

learning in Section 5.4.

2.2 Probabilistic Orthogonal Matching Pursuit

I focus on PrOMP for sparse coding of one signal and extend to multiple observations when

discussing dictionary learning in Section 2.3. Given a signal x ∈ Rd and matrix W ∈ Rd×K , our

goal is to find a sparse representation s for x such that x ≈W s. We do this via the model

x ∼ N (W s, σ2I). (2.1)

Further, we formulate s = z� c where z is a sparse binary coding that indicates the columns

of W used in the representation, and c represents corresponding real-valued weights. Their

respective probability distributions are

zk ∼ Bern(πk), c ∼ N (0, λ−1I), (2.2)

thus z ∈ {0, 1}K and c ∈ RK . The Bernoulli prior regularization will be a more significant factor

for dictionary learning, where each πk will have a beta prior.

2.2.1 PrOMP via the EM algorithm

In inference procedure, we learn a point estimate for the binary z, and conditional posterior

q distribution on c. Following the general regression setup, we assume W is known here and
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make the appropriate modifications for dictionary learning. In the EM algorithm, the goal is to

maximize p(x, z) over the sparse coding vectors z with c treated as the marginalized variables.

To this end, we can introduce an arbitrary distribution q on these hidden variables and set up

the EM objective function on the log marginal distribution,

ln p(x, z) = Eq
[

ln
p(x, z, c)

q(c)

]
︸ ︷︷ ︸

L(z)

+ Eq
[

ln
q(c)

p(c|x, z)

]
︸ ︷︷ ︸

KL(q‖p)

. (2.3)

We note that the sparse coding step based on Eq. (2.3) is not as straightforward as it might

appear, since if zk = 0, then the corresponding updated q distribution on ck will revert to the

zero-mean prior, which makes it effectively impossible to set zk in the following iteration. This is

a common problem encountered by Bayesian nonparametric dictionary learning algorithms [115].

However, our less conventional route will be to construct a sequence of the RHS each equal

to the LHS. Define the index set A ⊂ {1, ...,K} and let cA denote the subvector of c defined by

A. Then equivalently,

ln p(x, z) = Eq
[

ln
p(x, z, cA)

q(cA)

]
︸ ︷︷ ︸

LA(z)

+Eq
[

ln
q(cA)

p(cA|x, z)

]
︸ ︷︷ ︸

KL(q‖pA)

. (2.4)

We note that the RHS of Eq. (2.3) & (2.4) are equal, yet L 6= LA and KL(q‖p) 6= KL(q‖pA)

because they correspond to different joint distributions.1 Our key observation is that, by setting

q = pA and updating z according to LA in one iteration of EM, we are monotonically increasing

ln p(x, z) regardless of the index set used for that particular iteration. This simply follows from

the original proof of EM. We will see here that defining A and updating LA in a particular way

will lead to an OMP-like algorithm.

For example, let A correspond to dimensions in z set to 1. What the equality in Eq. (2.4)

shows is that we can arbitrarily integrate out portions of the vector c corresponding to those

dimensions in which zk = 0 (among other possible options). Furthermore, the conditional

posterior p(cA|x, z) is easily shown to be Gaussian and the calculation of LA is straightforward.

We use this observation to derive a two step greedy algorithm for jointly learning z and q(c).

1p(x, z, cA) is a marginal of p(x, z, c) over a subset of c.
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Our two step greedy procedure first calculates the E-step in Eq. (2.4) using the current A. It

then picks the dimension of z to set to 1 that increases LA the most. Calling this dimension j, it

finally increments A ← A∪{j}. The next iteration then recomputes LA based on the augmented

set A. Therefore, each iteration optimizes over a different function LA using a q(cA) that is

growing in dimensionality. If including no dimension of z can increase LA, then the algorithm

terminates. Unlike OMP, for which this never can happen and thus termination criteria are

necessary, the prior regularization of our Bayesian model allows for automatic termination based

on the marginal likelihood.

2.2.2 The PrOMP algorithm

As discussed previously, regardless of the index set A, by setting q(cA) = p(cA|x, z) and updating

z such that LA(z) increases, we are guaranteed to monotonically improve ln p(x, z). Our proposal

is to greedily add columns of W by setting the corresponding dimensions of z to 1 based on

how much LA improves. The score for dimension j is denoted by ξ+
j − ξ

−
j . This is the difference

between LA for zj = 1 (+) or 0 (-). For all j, ξ−j will be the same for the current iteration, but

is included as a stopping criterion since it indicates whether there are no j that increases LA, at

which point the algorithm terminates. The PrOMP outline is shown in Algorithm 1 with the

equations below.

For the E-step, we have a Gaussian conditional posterior on the subset of c given by the

active dimensions in z, q(cA) = N (cA|µA,ΣA) where

ΣA = (λI + W>
AWA/σ

2)−1, µA = ΣAW>
Ax/σ2. (2.5)

Here we let WA denote the submatrix of W formed by selecting the columns of W indexed by

A. For a particular iteration, the likelihood p(x|z, cA) with hidden data cA is also Gaussian

where the appropriate dimensions in c have been integrated out of the joint likelihood term.

Since those dimension correspond to zj = 0 (as defined by the set A), the result gives

p(x|cA, zj = 1) = N (x|WAcA, σ
2I + λ−1wjw

>
j ),

p(x|cA, zj = 0) = N (x|WAcA, σ
2I). (2.6)
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Algorithm 1 PrOMP

1: input: W and values (later, distributions) for each πk

2: output: Coding set A and weight distribution q(cA)

3: Set A = ∅

4: For each j, set ξ±j = ln p(x, zj = {0, 1}) (Eq. 2.7)

5: while maxj ξ
+
j − ξ

−
j > 0 do

6: Set j′ = arg maxj ξ
+
j − ξ

−
j

7: Set A ← A∪ {j′}, zj′ = 1 and ξ+
j′ = −∞

8: Set q(cA) = p(cA|x, z) (Eq. 2.5)

9: For each j /∈ A, update (Eq. 2.7)

ξ+
j = Eq[ln p(x|cA, zj = 1)] + lnπj ,

ξ−j = Eq[ln p(x|cA, zj = 0)] + ln(1− πj)

10: end while

Thus, for a given active set A, the score for activating a particular dimension j of z can be found.

Define the approximation residual to be rA = x−WAµA. Then

ξ+
j − ξ

−
j = Eq

[
ln
p(x, zj = 1|cA)

p(x, zj = 0|cA)

]
(2.7)

=
1

2σ2

(r>Awj)
2 + w>j WAΣAW>

Awj

λσ2 + w>j wj

− ln(1 +
w>j wj

λσ2
) + ln

πj
1− πj

.

The difference between PrOMP and OMP consists of the following modification: If µA ≡

(W>
AWA)−1W>

Ax and ξ+
j − ξ−j ≡ (r>Awj)

2/(w>j wj), then the OMP algorithm results. The

additional values are probabilistic terms accounting for uncertainty in cA, as well as the penalty

term πj for dimension j. As mentioned above, in our extension to dictionary learning we will see

how inferring πj with a sparse beta process prior can make this a nonparametric algorithm.
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2.2.3 Theoretical guarantees for PrOMP

As seen, PrOMP consists of a modification to OMP that accounts for probabilistic uncertainty.

Like the extensive theory developed for OMP, we modify these results for PrOMP by considering

two general problems: (1) The sparsest representation problem, whose goal is to identify the

representation of the input signal that uses the least number of atoms; (2) m-sparse problem in

which the signal x is required to have an m-term representation and the goal is to identify m

terms in the dictionary to represent x.

Theorem 2.1 (Sparsest Representation). Assume that the sparsest representation is unique.

Then, PrOMP will find that representation if

max
j /∈Aopt

d‖W+
Aopt

wj‖2 < 1, (2.8)

and provided that ln
πj

1−πj ≥ ln
π′j

1−π′j
and ‖wj‖2 ≤ ‖wj′‖2 for all j and j′ in the optimal set and

outside the optimal set, respectively.

We note that the condition in Eq. 2.8 has resemblance to the Exact Recovery Condition

(ERC) in [128].

Proof 2.1. Let us define WAopt
, Wj /∈Aopt

. According to Algorithm 1, at step k, in order to

select an index, we need to find a j for which ξ+
j − ξ

−
j is positive and has the highest value among

all of the candidates. Suppose that we have performed k steps of PrOMP and achieved Ak. Define

ρ(rAk) ,
maxj′∈Aopt

(ξ+
j′ − ξ

−
j′ )

maxj∈Aopt(ξ
+
j − ξ

−
j )

= (2.9)

maxj′∈Aopt
w>j′(rAkr

>
Ak + WAkΣAkW

>
Ak)>wj′ + f(j′)

maxj∈Aopt w>j (rAkr
>
Ak + WAkΣAkW

>
Ak)>wj + f(j)

.

Note that maxj∈Aopt(ξ
+
j − ξ

−
j ) = maxj∈Aopt\Ak(ξ

+
j − ξ

−
j ) as we set ξ+

j = −∞ if j have been

previously chosen and the search is only over positive score values inside or outside the optimal

set. Also, the conditions of this theorem guarantee that f(j′) < f(j). PrOMP will pick an index

from the optimal set at the next step if and only if ρ(rAk) < 1. PrOMP will not pick the same
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index twice, and j and j′ are not previously chosen. So, in order to have ρ(rAk) < 1, it suffices

to have
maxj′∈Aopt

w>j′(rAkr
>
Ak + WAkΣAkW

>
Ak)>wj′

maxj∈Aopt w>j (rAkr
>
Ak + WAkΣAkW

>
Ak)>wj

< 1. (2.10)

Let us define rAkr
>
Ak + WAkΣAkW

>
Ak = l>k lk. Note that this decomposition is possible due to the

positive definiteness of the left hand side. The left hand side of Eq. 2.10 equals the following:

‖lkWAopt
‖2,∞

‖lkWAopt‖2,∞
=
‖lkWAoptW

+
Aopt

WAopt
‖2,∞

‖lkWAopt‖2,∞

≤
d ‖lkWAopt‖2,∞‖W+

Aopt
WAopt

‖2,∞
‖lkWAopt‖2,∞

= d ‖W+
Aopt

WAopt
‖2,∞

= max
j /∈Aopt

d‖W+
Aopt

wj‖2

(2.11)

where ‖ · ‖2,∞ is the maximum of the column-wise L2 norm for a matrix. Hence, if

maxj /∈Aopt
d‖W+

Aopt
wj‖2 < 1, this guarantees that PrOMP will pick an index from the optimal

set. �

Theorem 2.2. [128] Let m indicate the number of columns inWAopt. Then, condition in

Theorem 2.1 holds if

dω1(m− 1) + dω1(m) < 1. (2.12)

In other words, this condition will recover every signal with m-term representation.

where ω1(m) represents the cumulative coherence function defined as

ω1(m) , maxΛ maxj∈Ω\Λ ‖W>
ΛWj‖1 with Λ being an index set of m columns of W, and Ω

showing all the indices . ω1(0) is set to 0. We should point out that the proof of 2.2 follows the

same steps as the ones in [128] noting that L2 norm of a vector is upper bounded by its L1 norm

value.

2.3 BNP dictionary learning

In this section, we expand the sparse representation problem to learning the matrix W and

probabilities πk using Bayesian nonparametrics (BNP) similar to previous approaches, with the
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contribution being the novel inference algorithm. Extending the problem to N signals, BNP

dictionary learning uses the generative process

xn ∼ N (W(zn � cn), σ2I),

cn ∼ N (0, λ−1I), zn,k ∼ Bern(πk),

wk ∼ N (0, η−1I), πk ∼ beta(α γ
K , α(1− γ

K )),

(2.13)

for α, γ > 0 and k = 1, . . . ,K in the limit K → ∞.When K is finite but large for practical

implementation, this model gives a good approximation in that it will learn a subset of indexes k

such that πk is substantial.

2.3.1 Inference for BNP dictionary learning

In the inference process, we learn point estimates for W and each z = {zn}. We propose a new

MAP-EM algorithm that uses PrOMP to learn sparse codings of x = {xn} with π and c = {cn}

the hidden variables. Similar to the discussion in Section 2.2, the EM algorithm now aims to

maximize p(x, z,W) over z and W using the equality

ln p(x, z,W) = Eq
[

ln
p(x, z,W, c, π)

q(c, π)

]
︸ ︷︷ ︸

L(z,W)

+ Eq
[

ln
q(c, π)

p(c, π|x, z,W)

]
︸ ︷︷ ︸

KL(q‖p)

(2.14)

We give an outline in Algorithm 2 and the relevant new equations below. We note that PrOMP

requires the modification that lnπj is replaced with Eq[lnπj ], and similarly for ln(1− πj), since

πj is being marginalized with EM. We discuss these values below.

First we observe that c and π are conditionally independent given W. Furthermore, the cn

and πk are also conditionally independent in their posterior. Thus we have

q(c, π) =
[∏N

n=1 q(cn)
] [∏K

k=1 q(πk)
]
. (2.15)

Since this follows the factorization of p(c, π|x, z,W) we are not doing mean field variational

inference.
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Algorithm 2 Sparse Dictionary Learning with PrOMP

1: Initialize dictionary W.

2: while not converged do

3: Update each zn and q(cn) (Algorithm 1∗)

4: Update W and q(π) with EM (Eqs. 2.16 & 2.17)

5: end while

∗Replace ln
πj

1−πj
with Eq

[
ln

πj

1−πj

]
. See Sec. 2.3.1 for discussion.

After performing PrOMP to update each zn and q(cn), we update the global variables W

and π using a straightforward application of EM as follows:

E-Step: For each k, update q(πk) = beta(ak, bk), where

ak = αγ
K +

N∑
n=1

zn,k, bk = α(1− γ
K ) +

N∑
n=1

(1− zn,k) (2.16)

and using q(cn) from PrOMP, calculate L(z,W). We note that for PrOMP we now use

Eq
[

πk
1−πk

]
= ψ(ak)− ψ(bk), where ψ(·) is the digamma function.

M-Step: Let ẑn = diag(zn). arg maxW L(z,W) gives

W =
[ N∑
n=1

xnµ
>
n ẑn

][
ησ2I +

N∑
n=1

ẑn(µnµ
>
n + Σn)ẑn

]−1
. (2.17)

After updating W and each q(πk), we return to the PrOMP algorithm to sparse code each xn by

updating zn and q(cn).

Next, we present some theoretical results when learning dictionary W. We note that this

optimizes the function

L(z,W) =− 1

2σ2

N∑
n=1

‖xn −W(zn � µn)‖2

− 1

2σ2

N∑
n=1

trace(Σn(W>W � znz
>
n ))

− η

2
trace(WW>) + const.

(2.18)

The following lemma is useful for our results.
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Lemma 2.1. [108] For a general real-valued matrix M , minimizing trace(MM>) have impact

on reducing the rank of M and penalizes its largest singular value.

Proposition 2.1. In light of Lemma 2.1 and Theorem 2.1 for PrOMP, the terms in the second

and third lines are penalties with the following properties:

• The first penalty reduces Ck and increases ω1(m), which results in tightening the approx-

imation bound. It also lowers the rank of Wdiag(zn)
√

Σn resulting in more dependency

among columns of this matrix, and more robustness regarding selection of columns when

evaluating ξ+
j − ξ

−
j in the sparse coding step. In other words, when iteratively performing

PrOMP algorithm and dictionary EM update, the chances of changing dictionary elements

selected decreases.

• The second penalty term reduces the rank of W. This results in more dependency between

columns of W and limits the candidate dictionary elements since PrOMP will not pick a

column of W that is linearly dependent to a column previously selected.

Table 2.1: SSIM | PSNR performance. K-SVD sees the ground truth when choosing the number

of dictionary elements for each image.

σ = 10 σ = 15 σ = 20 σ = 25 σ = 50

House BPFA 0.941 | 35.58 0.914 | 33.64 0.887 | 32.32 0.872 | 31.20 0.811 | 27.64

K-SVD 0.924 | 35.43 0.888 | 33.56 0.879 | 32.61 0.864 | 31.51 0.800 | 28.01

MFA 0.880 | 29.05 0.868 | 28.97 0.859 | 26.77 0.847 | 26.52 0.803 | 25.82

Lena BPFA 0.937 | 34.64 0.919 | 32.99 0.901 | 31.70 0.885 | 30.66 0.806 | 27.37

K-SVD 0.932 | 34.87 0.906 | 33.01 0.878 | 31.53 0.857 | 30.48 0.761 | 26.82

MFA 0.865 | 29.34 0.856 | 28.72 0.850 | 27.02 0.839 | 26.99 0.783 | 26.01

Barbara BPFA 0.959 | 33.90 0.943 | 32.04 0.926 | 30.52 0.907 | 29.27 0.800 | 25.48

K-SVD 0.956 | 33.96 0.934 | 31.72 0.909 | 30.16 0.882 | 28.80 0.735 | 24.62

MFA 0.902 | 29.11 0.894 | 26.14 0.853 | 24.70 0.822 | 24.34 0.767 | 24.11

Boat BPFA 0.887 | 33.54 0.850 | 31.71 0.818 | 30.40 0.785 | 29.32 0.675 | 26.08

K-SVD 0.881 | 33.56 0.840 | 31.70 0.810 | 30.37 0.775 | 29.30 0.659 | 26.08

MFA 0.872 | 29.80 0.814 | 27.55 0.793 | 26.67 0.747 | 25.38 0.625 | 24.79
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2.4 Experiments

We consider two problems: image denoising and compressed sensing for MRI, which is an

application of image denoising. Our experiments show the benefits of PrOMP in the BNP

dictionary learning setting compared with K-SVD, the classic dictionary learning algorithm, and

also compared with the superior MCMC technique, but applied to an empirically worse inference

approach to the same model.

2.4.1 Image Denoising

We compare BPFA using PrOMP with K-SVD [2] and mixtures of factor analyzers (MFA) [49]

on an image denoising task. All algorithms performed better than total variation denoising [52],

which we omit for space. We observe that BPFA is a Bayesian nonparametric extension of

K-SVD that uses OMP instead of PrOMP. MFA is a mixture of non-sparse dictionary learning

models (i.e., z is removed) where each signal chooses one model.

2.4.1.1 Setup

We use four classic test images shown in Figure 2.1. To each image, we add white Gaussian noise

with standard deviation σ ∈ {10, 15, 20, 25, 50}. To quantitatively assess performance, we use

the Structural Similarity Index Measure (SSIM) and PSNR [134] of the denoised image to the

ground truth. For K-SVD, we use the code provided by [2] and set the dictionary size to give the

best results (more discussed later). In all algorithms, we use the technique in [83] to set the noise

parameter. To set the parameters for MFA, we follow the suggestions of [49]. Therefore, all the

algorithms are compared under the same noise assumption, which we observed was close to the

ground truth. For BPFA, K-SVD and MFA, we extracted 16× 16 patches from each image using

shifts of one pixel, which overall produced the best results for all algorithms compared with 8× 8

and 12× 12. We ran the algorithms with the following settings: For BPFA K = 256 and K-SVD

K = 200. (Figure 2.2 shows that BPFA used less than 256 elements.). We set η = 2552 and for

MFA we set the mixture size to M = 50 and D = 20 to be the subspace size of each mixture.
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Figure 2.1: Denoising images: House, Lena, Barbara, Boat.

2.4.1.2 Denoising results

In Table 2.1 we show quantitative results for image denoising. We see that the sparse coding

algorithms perform similarly, but overall augmenting with BPFA improved the denoising result

over K-SVD. We notice that MFA performs significantly worse than the dictionary learning meth-

ods, which shows the advantage of sparse coding versus clustering. However, a key observation is

that since K-SVD is not a BNP model, all initialized dictionary elements will be used by the

model. Here the number of dictionary elements set for K-SVD changes according to the best

result. In practice this would require cross-validation, which is more difficult than our unrealistic

approach, which allowed K-SVD to compare with the ground truth when setting this value. We

attribute the improvement of BPFA over K-SVD at its best setting to the additional probabilistic

structure of the model.

To emphasize this, in Figure 2.2, we show the SSIM results for K-SVD and BPFA for different

images and noise settings as a function of dictionary elements set for K-SVD. The results for

K-SVD are shown in blue with shaded uncertainty calculated over 20 random initializations. The

solid red line shows performance of BPFA. Since BPFA learns the number of dictionary elements

we indicate this number with red dashed lines. As it evident, the performance of K-SVD is highly

influenced by the number of elements chosen for the dictionary.
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Figure 2.2: (Blue: K-SVD, Red: BPFA) Average SSIM results for different images and noise

settings as a function of number of dictionary elements for K-SVD, each repeated for 20 trials.

The red line indicates the results for BPFA which is not a function of the x-axis. The dashed red

lines are the number of dictionary elements in BPFA responsible for representing 95%, 97% and

99% of all input data.

2.4.2 Compressed Sensing MRI

Magnetic resonance imaging (MRI) is a widely used non-invasive medical imaging method that

provides high resolutions images from the anatomy [84]. However, its data acquisition process

is slow due to physiological and hardware constraints. The data is produced sequentially in

the Fourier measurement domain called k-space, and one way to speed up the process is to

undersample from this space. However, this violates the Nyquist theorem, and causes aliasing

effects in the reconstructed image when the missing values are replaced with zeros. Compressed

sensing has had a major impact on MRI (CS-MRI) and allowed for signal reconstruction from

very few samples if the signal is sparse in a particular transform domain [84].

Sparse dictionary learning aims learn this transform domain for CS-MRI directly for the

data being considered [24, 107]. Let xn ∈ Cd be a patch of an MR image X in a vectorized

form. Let F ∈ Cu×d be the undersampled Fourier encoding matrix and y = FX ∈ Cu represent
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Figure 2.3: Two masks considered. Left: 1D Cartesian sampling with random phase encodes

(30% sample rate shown); Right: 2D random sampling (25% sample rate shown).

the sub-sampled set of k-space measurements. The goal of CS-MRI is to estimate X from the

small fraction of k-space measurements y. The dictionary learning approach to this optimization

problem is to find a dictionary W as well as sparse representation sn for each xn such that

xn u Wsn and FX̂ ≈ y, with X̂ the dictionary learning reconstruction of X.

[64] consider BNP dictionary learning for this task using BPFA, and show that this outper-

forms a similar method based on K-SVD [107]. That paper uses MCMC sampling for dictionary

learning, which technically should give better results than EM for the same model. However, a

major drawback of MCMC, as well as the variational inference approach of [95], is that updating

each dimension of zn is conditioned on the current values of the other dimensions. This can lead

to slow mixing, i.e., bad local optimal solutions, because selecting a dictionary element depends

on which other elements are currently selected. PrOMP for BPFA (and OMP for K-SVD) are

fundamentally different in their sparse coding in that all elements are initialized to zero and

greedily selected. We compare this PrOMP version of BPFA with the MCMC sampler used

by [64] to illustrate that this greedy EM approach to dictionary learning improves the MCMC

approach, which is state-of-the-art for this BNP model.

We experiment on two publicly available 512× 512 MRI of a shoulder and lumbar. We apply

the masks in Figure 2.3 to subsample MRI in the Fourier domain. We consider various sampling

rates for each mask and different sample noise settings. Figure 2.4 shows one example of the

reconstruction replacing the missing values with zeros. For all images, we extract 6× 6 patches

and set other parameters according to [64].

It is well-known that CS inversion is closely related to image denoising, with the noise due to

image artifacts from subsampling; [64] provide a discussion on this in the context of dictionary
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Figure 2.4: (left) Original Shoulder, (middle) Shoulder distorted by Cartesian 35% mask, (right)

Shoulder distorted by Cartesian 35% mask and noise with σ = 0.05.

learning for CS-MRI. Therefore, comparing PrOMP-EM with MCMC for CS-MRI is essentially

a comparison of how the denoising abilities of these two inference approaches to the same model

translates to a particular task. We first consider the noise-free setting. Figure 2.5 compares

the results of PrOMP and MCMC Gibbs sampling for different MRI, masks and sampling

percentages. It is evident that PrOMP performs better at reconstructing original image. We

also evaluate performance on the same setup, but with additive sampling noise with standard

deviation σ = 0.05. (The original MRI was scaled to [0, 1]. Other settings of σ showed the same

pattern.) For these experiments we use the original noise-free MRI as ground truth. Figure 2.6

shows the PSNR results for lumbar image for different masks, sampling percentages and noise

values. It is evident that PrOMP performs better in reconstructing the original image as well as

denoising it. Figure 2.7 shows that PrOMP is capable of learning a sparser representation than

MCMC with far fewer dictionary elements required.

2.5 Conclusion

I proposed probabilistic orthogonal matching pursuit (PrOMP) for sparse data representation.

Our probabilistic approach extends orthogonal matching pursuit (OMP), making it suitable for

statistical dictionary learning models with Bayesian nonparametric priors. We derived theory

for PrOMP similar to that of OMP, and discussed how PrOMP can improve existing dictionary

learning models. We evaluated the performance on image denoising and compresses sensing for
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Figure 2.5: PSNR results in the noiseless setting for different MRI, masks and sampling percent-

ages. PrOMP for EM outperforms MCMC for the same BNP dictionary learning model.

magnetic resonance imaging (CS-MRI), showing that PrOMP for BPFA improves the classic

K-SVD model, as well as MCMC sampling for the same BNP dictionary learning model.
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Figure 2.6: PSNR results with additive sampling noise (σ = 0.05) for the lumbar MRI, using

the Cartesian (left) and Random (right) masks and different sampling percentages. PrOMP

outperforms MCMC for the same BNP dictionary learning model.
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Figure 2.7: Stem plots of πk (sorted) for lumbar MRI with Cartesian 25% sampling mask.

PrOMP (bottom) shows the expectation and MCMC (top) shows the best performing iteration.

PrOMP learns a much sparser representation for this model.
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Chapter 3

Beta Process Subspace Analysis

In this chapter, I present a new model for latent subspace analysis in which the number

of subspaces and dimensionality of each subspace are inferred using Bayesian nonparametric

priors [41]. Latent membership models enable us to discover underlying structures in a dataset

where in this chapter the latent members are subspaces.In our formulation, a beta process prior

allows for an unbounded number of subspaces, while gamma process priors on the variances of

dictionary elements in each subspace allow for unbounded subspace dimensionality. We call our

model beta process subspace analysis (BPSA), which can be thought of as a subspace extension

of a related factor analysis model that uses the beta process. We derive a scalable EM algorithm

and demonstrate performance on image denoising tasks and learning on large image dataset.

3.1 Introduction

Latent membership models are useful techniques in discovering and describing underlying structure

in a dataset. Latent members of the model are designed such that each observation can be

constructed from those members. In this work we focus on learning these latent members in the

format of a dictionary that consists of subspaces, as well as sparse coding for the observations

using dictionary subspaces.

Sparse coding seeks to decompose a signal into a combination of a small subset of patterns

selected from the dictionary. The goal of dictionary learning is to simultaneously learn these
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patterns in the dictionary and the sparse representation of the signals [2]. Bayesian nonparametric

(BNP) models based on the beta process prior represent one approach to this problem in which

model selection parameters such as dictionary size are inferred directly from data [55, 71, 95, 140].

In such models, an infinite collection of beta priors constitute prior distributions on the activation

probabilities of a corresponding infinite collection of dictionary elements; Bayesian nonparametric

analysis ensures that a finite data set generated from a Bernoulli process will use a finite, but

random number of these dictionary elements with probability one.

Typically, sparsely coding data with a dictionary entails learning which dictionary vectors a

signal possesses [2, 71, 95]. Previous works have further used it in classifying images [4, 105,136]

and in encoding data with linear dynamical systems [63]. To a lesser extent, previous work has

also been done on representing signals with latent subspaces [22,49,65,77]. This generalization

allows for groups of signals to be learned such that dictionary elements within the same subspace

capture correlated structure within the signal. Such a representation can result in a more precise

and efficient signal representation. Independent subspace analysis (ISA) [65] and mixtures of

factor analyzers (MFA) [49] represent two approaches; in ISA, signals are represented as linear

combinations of multiple weighted subspaces, while with MFA a signal is assigned via a mixture

on subspaces to a single factor analysis model.

In the same spirit that has motivated BNP extensions to factor analysis, MFA and ISA are

restricted by the fact that the number of subspaces and the dimensionality of each subspace must

be defined in advance. In this work we aim to address these shortcomings using BNP priors.

Specifically, we propose a beta-Bernoulli process for sparsely coding signals via subspaces, while

we define gamma process priors on the variances of the Gaussian priors on dimensions in each

subspace; posterior inference of the first prior learns the number of subspaces, while inference

for the second prior learns the dimensionality of each subspace. We observe that in our model

definition, each subspace can have a different dimensionality, which has a significant advantage of

side-stepping the combinatorial and local-optima problem this would present for cross-validation.

We refer to our proposed model as beta process subspace analysis (BPSA). We develop a new

scalable EM-based algorithm along the lines of other scalable dictionary learning approaches

[87, 114,115]. Our scalable algorithm can be viewed as a special case of stochastic variational
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inference [19, 61]. We show that BPSA is a competitive method for nonparametric dictionary

learning on a denoising problem [115,140].

3.2 Beta Process Subspace Analysis

We propose beta process subspace analysis (BPSA) for nonparametric dictionary learning. We

assume that we have a set of signals x = {x1, . . . ,xN}, where xn ∈ Rd. We model these vectors

as Gaussian random variables in which the mean vectors are represented hierarchically as follows.

For fixed and large integer values K and D, first generate global variables

wi
k | ηik ∼ N(0, ηikId), ηik ∼ gamma(

δ

D
, 1),

πk ∼ beta
(
α
γ

K
,α(1− γ

K
)
)
. (3.1)

The index values are i = 1, . . . , D and k = 1, . . . ,K. Parameters α, γ, δ > 0 are positive and set

such that αγ � K and δ � D. The vector wi
k ∈ Rd corresponds to the ith dimension vector

of the kth subspace and Id indicates a d-dimensional identity matrix. In principal, we can let

K,D →∞, but for inference purposes we let them be finite, but large integer values. Let Wk

be the set of all wi
k for a particular k organized in a d ×D matrix. In the limit K → ∞ the

random measure HK =
∑K

k=1 πkδWk
constructed from these random variables converges to a

beta process, and the larger the value of K the more accurate the approximation. Similarly, the

random measure GkD =
∑D

i=1 η
i
kδwi

k
converges to a marked Poisson process as D →∞ with the

measures following a gamma process. We note that a well known property of these two priors is

that only a small number of Wk will have πk > ε for all ε > 0, and similarly only a small number

of ηik > ε for a fixed k. We make a more precise statement about these asymptotics for BPSA in

Proposition 3.1 below.

For each patch xn, sparse coding then proceeds as follows. First, independently generate

znk ∼ Bernoulli(πk), ckn ∼ N(0, ID). (3.2)
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Then, the nth observation xn is drawn

xn ∼ N
( K∑
k=1

znk(Wkc
k
n) , σ2Id

)
. (3.3)

Sparsity dictionary learning is enforced by the beta prior on each πk. This prior on πk encourages

znk = 0 for each n over all but a small number of values of k. Sparse coding results from the

values of k for which πk is large, but still allows for factors to turn on and off according to the

Bernoulli process. Though the limit as K,D →∞ is a doubly-infinite sum of weighted vectors,

the following proposition shows that xn has finite magnitude almost surely.

Proposition 3.1. For a vector xn generated by BPSA, ‖xn‖2 <∞ almost surely as K,D →∞.

Proof 3.1. We analyze this in the known beta and gamma process limits, rather than asymptot-

ically. We use the facts that E[‖xn‖22] <∞ implies E[‖xn‖2] <∞, and for a vector v ∼ N(µ,Σ),

the expected squared norm is E[‖v‖22] = µTµ + trace(Σ). We define the sets F1 = {W , zn, cn}
and F2 = {π,η}. Suppressing some conditioning on the RHS, by the tower property we have

E[‖xn‖22] = E[E[E[‖xn‖22|F1]F2]] (3.4)

= E
[
‖
∑∞
k=1 znk

(∑∞
i=1 c

k
niw

i
k

)
‖22
]

+ dσ2

=
∑∞
k=1 E[znk]

(∑∞
i=1 E[(ckni)

2]E[‖wi
k‖22]

)
+ dσ2

=
∑∞
k=1 E[πk]

(
d
∑∞
i=1 E[ηik]

)
+ dσ2

= d(δγ + σ2).

The value
∑∞

i=1 E[ηik] = δ is the expected total measure of a gamma process with parameters δ

and 1, while
∑∞

k=1 E[πk] = γ is the expected total measure of a beta process with parameters α

and γ. The result follows from Chebyshev’s inequality.

3.3 Example: Tiny Images

We show an illustrative example of what BPSA learns on the 80 million tiny images dataset [126].

Each color image is 32 × 32 × 3 in size, giving a vectorized dimensionality of d = 3072. For

this problem we initialized the model to K = 100 subspaces, each of D = 10 dimensions. We
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randomly initialized the dictionary and ran the scalable inference algorithm described in Section

3.4. In this experiment we were able to process almost of of the images with the algorithm seeing

each of these images one time. The algorithm inferred 24 subspaces in this time, pruning away

the remaining 76. The number of learned vectors inside each subspace varies between 1 to 9.

Figure 3.1: Final dictionary learned on Tiny images dataset. Each column represents a subspace

and each learned vector of a subspace is reshaped to be shown by an image. From left to right,

subspaces are ordered to show the most used to the least used ones in image representation.

Figure 3.1 shows the final learned dictionary. Each column shows a dictionary subspace, and

vectors in subspaces are shown as 32× 32× 3 images. We show the 17 most-used subspaces in

this figure (24 were learned in total). These subspaces are shown ordered by their probability of

usage from left to right. We scale the vectors of each subspace to better visualize see the learned

patterns inside each subspace. It can be observed that our nonparametric model has learned

only a portion of the vectors inside each subspace and pruned away the remaining.

Figure 3.2 shows the ordered probability of using each dictionary subspaces. We notice that

only 24 subspaces are learned, while the remaining 76 subspaces have been pruned out by virtue

of their having zero probability (i.e., not being used by data).

Finally, we randomly selected 100,000 images to investigate how many dictionary subspaces

they use in their final representation. In Figure 3.3 we show a histogram of the number of used
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Figure 3.2: Probabilities of using each dictionary subspace in representing images ordered form

the most probable to the least.

subspaces for representing particular images. As seen, almost 60,000 images used 8 subspaces in

their representation, with all images using less than 9 total subspaces. Simpler images required

significantly fewer subspaces. This initial experiment supports our goal in developing BPSA to

nonparametrically and simultaneously learn a sparse set of varying-dimensional subspaces for

data representation.

3.4 Inference for BPSA

We derive a MAP-EM algorithm for BPSA that uses a marginalization trick similar to MFA,

with the result being similar to the sparse coding algorithm used by K-SVD. We then present

a scalable approach for inference using stochastic optimization. We learn point estimates for

each Wk and zn, and conditional posterior q distributions on all other model variables. The

conditional independence induced by Wk and zn is what makes this an exact EM algorithm,

rather than a mean-field variational approximation using delta-function q distributions on Wk

and zn (see discussion below).

Let x, z, c, π, η and W indicate sets of all of the respective variables and data. In EM for

BPSA, the goal is to maximize p(x, z,W) over the sparse coding vectors zn and subspaces Wk

with c, π and η treated as marginalized variables. To this end, we define q distributions on these
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Figure 3.3: A histogram of number of subspaces used in representing 100,000 randomly selected

images.

hidden variables and set up the EM objective function on the log marginal distribution,

ln p(x, z,W) = Eq
[

ln
p(x, z,W, c, π, η)

q(c, π, η)

]
︸ ︷︷ ︸

L(z,W)

+ Eq
[

ln
q(c, π, η)

p(c, π, η|x, z,W)

]
︸ ︷︷ ︸

KL(q‖p)

. (3.5)

The conditional posterior distribution factorizes nicely, and so we have an exact forms for q(c, π, η)

that mirrors the factorization

p(c, π, η|x, z,W)︸ ︷︷ ︸
q(c,π,η)

=
[∏N

n=1 p(cn|xn, zn,W)︸ ︷︷ ︸
q(cn)

]
×
[∏K

k=1 p(πk|z)︸ ︷︷ ︸
q(πk)

][∏K
k=1

∏D
d=1 p(η

i
k|wi

k)︸ ︷︷ ︸
q(ηik)

]
. (3.6)

All three of the distributions above are in closed form and are in the Gaussian, beta and

generalized inverse Gaussian families, respectively. We can update each factorized q in this way

to locally optimize Eq. (3.5) over z and W.

3.4.0.0.1 Connection to variational inference. We can re-frame the MAP-EM objec-

tive function of Eq. (3.5) as variational inference by using delta-function q distributions on z

and W. In this case, defining the factorization q(c, π, η, z,W) = q(c, π, η)δzδW and writing

p(c, π, η, z,W|x) = p(c, π, η|x, z,W)p(z,W|x), we can derive a variational inference algorithm

that is identical to the MAP-EM algorithm described below. The choice q(W) = δW is reasonable
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because the posterior is tied to the data size; with large data sets, or even large individual images,

a Gaussian q(W) would be a highly peaked distribution. The other natural choice for q(z) is a

set of Bernoulli distributions, as used in [95,115], but since this effectively acts as a second weight

on the dictionary elements, it can lead to scaling issues when combined with q(c). We therefore

believe that 0–1 sparse coding for zn and allowing q(cn) to capture all weight information is more

appropriate, and so q(z) = δz is a good choice.

3.4.1 Sparse coding EM step

We break the algorithm into two parts: In the first part, we derive a greedy algorithm for jointly

learning zn and q(cn). This sparse coding step is not as straightforward as it might appear, since

if znk = 0, then the corresponding updated q distribution on ckn will revert to the zero-mean prior,

which makes it effectively impossible to set znk = 1 in the following iteration after computing the

E-step over ckn. To mitigate this, we can integrate out cn when learning zn. We first observe that

ln p(x, z,W) can be directly optimized greedily over z, which would be one approach. However,

updating W is not in closed form here. Since Eq. (3.5) is an equality, one solution is to iteratively

(i) update the LHS of (3.5) over z, and then (ii) update the RHS of (3.5) over W and all q

distributions.

We define a similar greedy algorithm, where instead of fully optimizing each zn on the LHS

of (3.5) and then updating the full q(cn) on the RHS, we construct a sequence of EM equalities.

Since the joint likelihood factorizes over xn the objective sums over each data point and so we

can sparsely code each observation independently. We can marginalize out arbitrary subsets of

dimensions of cn to equivalently write

ln p(xn, zn|W) = Eq
[

ln
p(xn, zn, cnA, π|W)

p(cnA|xn, zn,W)p(π|z)

]
= Eq

[
ln

p(xn, zn, cnA, c
j
n, π|W)

p(cnA, c
j
n|xn, zn,W)p(π|z)

]
, (3.7)

for a particular observation xn and current sparse coding vector zn and using the following

definitions: A ⊂ {1, 2, ...,K}, j /∈ A and cnA denotes the subset of cn corresponding to subspaces

indexed by A. We have also compressed the EM equality of Eq. (3.5) on the RHS side for space.

What the equality in Eq. (3.7) shows is that we can arbitrarily integrate out portions of

the vector cn corresponding to subspaces for which znk = 0. Let A = {k : znk = 1}, the set of
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Algorithm 3 Sparse coding greedy EM algorithm
1: input: Dictionary W and q(πk) = p(πk|z1, . . . , zN ).

2: output: Sparse coding zn and q(cn) (index ignored)

3: for each patch x do

4: Set z = 0 and index set A = ∅

5: For all j, initialize

ξ+j = ln p(x|W, zj = 1) + Eq[lnπj ]

ξ−j = ln p(x|W, zj = 0) + Eq[ln (1− πj)]

6: while maxj ξ
+
j − ξ

−
j > 0 do

7: Set j′ = arg maxj ξ
+
j − ξ

−
j (see Eq. (3.9))

8: Augment A ← A∪ {j′}. Set zj′ = 1 and ξ+j = −∞

9: Update q(cA) = p(cA|x, z,W ) (see Eq. (3.10))

10: For all j /∈ A, update

ξ+j = Eq[ln p(x|cA,W, zj = 1)] + Eq[lnπj ],

ξ−j = Eq[ln p(x|cA,W, zj = 0)] + Eq[ln (1− πj)]

11: end while

12: end for

active subspaces for observation n. (We will ignore the index n from now on.) Then our two

step greedy procedure (i) calculates the marginal log likelihood in Eq. (3.7) using the equality

in the first row, picking the subspace with index j that increases this value the most, and then

(ii) increments the set A by adding index j, sets the corresponding dimension of z to one and

recomputes the log marginal likelihood using the equality on the second row of Eq. (3.7). This

augmented set then is redefined to be the first row and the procedure continues by expanding

over new dimensions of cn. If no subspace increases the marginal likelihood, then sparse coding

terminates. In this way, the Bayesian approach provides an automatic means for determining

the number of subspaces appropriate for each observation.

The outline of the greedy sparse coding algorithm is given in Algorithm 1. Using the sequence

of equalities constructed as in Eq. (3.7), this algorithm can be shown to monotonically increase

the objective in Eq. (3.5) using the standard EM proof.
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3.4.1.0.2 Procedure: As mentioned, each step of the sparse coding algorithm consists of

two parts: determining which new subspace to add (or terminating) and then recomputing the log

marginal likelihood using a new latent variable expansion via EM. To determine which subspace

to add, we compute as a score the amount of increase in the objective function in Eq. (3.5) from

adding each potential subspace. In Algorithm 1 we refer to this score as ξ+
j − ξ

−
j , where ξ+

j is the

objective function using subspace j and ξ−j not using it. Again suppressing observation index n,

the likelihoods used in this calculation are

p(x|cA,W, zj = 1) = N(x|
∑
k∈AWkc

k, σ2I + WjW
T
j ),

p(x|cA,W, zj = 0) = N(x|
∑
k∈AWkc

k, σ2I).
(3.8)

Let q(cA) = N(cA|µA,ΣA) and define the residual of the approximation given the active set

A to be rA = x −
∑

k∈AWkµ
k. Using the matrix inversion lemma and defining the stacked

matrix WA = [Wk]k∈A, the score of subspace j equals

ξ+j − ξ
−
j =

1

2σ2
rTAWj(σ

2I + WT
j Wj)

−1WT
j rA

+
1

2σ2
tr{WT

A Wj(σ
2I + WT

j Wj)
−1WT

j WAΣA}

− 1

2
ln |Id + σ−2WjW

T
j |

+ Eq[lnπj ] − Eq[ln(1− πj)].

(3.9)

The expectations Eq[lnπj ] and Eq[ln(1−πj)] are in the next section. The parameters of q(cA)

are

ΣA = (I + 1
σ2 WT

A WA)−1, µA = 1
σ2 ΣAWT

A x. (3.10)

These are of size D|A| × D|A| and D|A| × 1, respectively. Parsing Eq. (3.9) shows that the

score measures how correlated subspace j is with the residual, and takes into account the prior

probability of subspace j, as well as two other probabilistic factors. The running time of this

algorithm is comparable to orthogonal matching pursuits.

3.4.2 Dictionary EM steps

After sparse coding the vectors xn with zn, we run EM on cn, η and each Wk, and update the

q distribution for each πk. In general, this part of the algorithm is very fast. Using statistics
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accumulated during the sparse coding step, it is limited by the matrix inversion in Eq. (3.13)

below.

Given zn, we can collect all subspaces into a d×DK matrix W = [W1, . . . ,WK ] and define

the binary coding matrix Zn = diag([zn11D, . . . , znK1D]), where 1D is a 1 ×D vector of ones.

Then, the updates can be easily written as follows:

3.4.2.0.3 E-Step: This step entails updating q(cn), q(ηik) and q(πk), and then calculat-

ing Eq[ln p(x, z,W, c, π, η)]. We first calculate q(cn) for the entire vector, which is q(cn) =

N(cn|µn,Σn), where

Σn = (I + 1
σ2 ZnW

TWZn)−1, µn = 1
σ2 Σn(WZn)Txn. (3.11)

The conditional posterior of the gamma process variance of vector wi
k—the ith dimension of the

kth subspace—is q(ηik) = GiG(ηik|eik, f ik, pik), where

eik = 2, f ik = 〈wi
k,w

i
k〉, pik = −d

2 + δ
D . (3.12)

For dictionary probabilities, q(πk) = beta(πk|ak, bk) is updated ak = αγ
K +

∑
n znk and bk =

α(1− γ
K ) +

∑
n(1− znk).

3.4.2.0.4 M-Step: Maximizing Eq. (3.5) over W gives the new dictionary

W =

[
N∑
n=1

xnµ
T
nZn

][
σ2Eq[η−1] +

N∑
n=1

ZnEq[cncTn ]Zn

]−1
(3.13)

where Eq[cncTn ] = µnµ
T
n + Σn and Eq[η−1] is the diagonal matrix

Eq
[
η−1

]
=



Eq
[

1
η11

]
. . .

Eq
[

1
ηD1

]
. . .

Eq
[

1
η1
K

]
. . .

Eq
[

1
ηD
K

]


Each of the diagonal entries can be found by calculating

Eq[(ηik)−1] =

√
2

‖wi
k‖2

K(− d
2

+ δ
D
−1)

(√
2‖wi

k‖2
)

K(− d
2

+ δ
D

)

(√
2‖wi

k‖2
) . (3.14)

K is the modified Bessel function of the second kind.
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Figure 3.4: Accuracy of the Bessel approximation in Eq. (3.14) and (3.15) (with δ = 1,

D = 25, d = 100). (left) The true and approximate functions, (middle) the absolute error of the

approximation, (right) the approximation error as a fraction of the true value.

3.4.2.0.5 Approximation: When the dimensionality of wi
k is large, or as its magnitude

goes to zero, calculating the numerator and denominator of Eq. (3.14) separately can lead to

numerical issues. We can approximate this ratio using their asymptotic forms,

Ka(b) ∼ 1
2Γ(|a|)(1

2b)
−|a|

Eq[(ηik)−1] ≈ 2(1 + d
2 −

δ
D )/‖wi

k‖22
(3.15)

The positive reinforcement of the shrinkage property of the gamma process is clear since, as

‖wi
k‖2 becomes small, the update for wi

k is shrunk even more to the zero vector. We show the

accuracy of this approximation in Figure 3.4. As shown in this figure, the approximation is

almost exact for small norm subspace vectors in log scale. After these updates, we return to

sparse coding steps to update each zn and iterate until convergence.

3.4.3 Scalable inference with stochastic EM

We can also scale inference for larger data sets with stochastic EM [19]. At iteration t, let Lt be

the corresponding portion of (3.5) restricted to xn for n ∈ St ⊂ {1, . . . , N}, where St is selected

uniformly at random at each iteration, and scaled by N/|St|. We update W with the gradient

step

W(t+1) = W(t) + ρt(−∇2
WLt)−1∇WLt. (3.16)



CHAPTER 3. BETA PROCESS SUBSPACE ANALYSIS 34

Here, ρt > 0, and
∑

t ρt =∞,
∑

t ρ
2
t <∞ [16]. This produces the straightforward update

W′
t =

[∑
n∈St

xnµ
T
nZn

]
×

[
σ2 |St|

N
Eq[η−1] +

∑
n∈St

Zn(µnµ
T
n + Σn)Zn

]−1

,

(3.17)

W(t+1) = (1− ρt)W(t) + ρtW
′
t. (3.18)

In other words, we first calculate the optimal update of W restricted to subset St, using the

scaling factor N/|St|, and then take a weighted average of this update with the current value.

Stochastic optimization for the other global variables π follows exactly from the stochastic

variational inference framework [61] (see, e.g., [115]). In short, to update each q(πk) we form the

updates for ak and bk of q(πk), but limited to the set St and scaled appropriately [61]. Then

take a ρt-weighted average of these values with the old values similar to the update of W above.

At step t, for k = 1, ...,K first set

a′k =
αγ

K
+

N

|St|
∑
n∈St

znk,

b′k = α(1− γ

K
) +

N

|St|
∑
n∈St

(1− znk).
(3.19)

This focuses on sparse coding of the data in St. Then set

a
(t+1)
k = (1− ρt)a(t)

k + ρta
′
k,

b
(t+1)
k = (1− ρt)b(t)k + ρtb

′
k.

(3.20)

3.5 Experiments

We compare BPSA with BPFA [95], K-SVD [2], mixtures of factor analyzers (MFA) [49] and

total variation denoising [52] on denoising tasks. We observe that, with the exception of total

variation, the algorithms we compare with belong to a closely related family of dictionary learning

models: BPFA is a special case of BPSA with the subspace dimensionality set to one, while

BPFA is a Bayesian nonparametric extension of K-SVD. MFA can be viewed as a version of
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BPSA where each observation possess exactly one subspace, which is drawn from a multinomial

distribution instead of a Bernoulli process. In this way, MFA can be viewed as another special

case of BPSA in the other “direction” from the special case of BPFA. Total variation represents a

fundamentally different modeling approach, which we include to show the advantage of dictionary

learning for denoising.

3.5.1 Setup

We present experimental results on an image denoising task. We use four classic test images,

“Peppers,” “House,” “Lena,” and “Barbara,” shown in Figure 3.5. To each image, we add

white Gaussian noise with standard deviations σ ∈ {10, 15, 20, 25, 50}. To quantitatively assess

performance, we use the Structural Similarity Index Measure (SSIM) and Peak Signal to Noise

Ratio (PSNR) [134] of the denoised image to the ground truth.

For BPFA, we use the implementation of [114]. For K-SVD, we use the code provided by [2].

In all algorithms, we use the technique in [83] to set the noise parameter; for TV-minimization

this provides us with the target empirical noise when setting the regularization parameter on the

L1 penalty. To set the parameters for MFA, we use cross validation as suggested in the paper

by [49]. Therefore, all the algorithms are compared under the same noise assumption, which we

observed was close to the ground truth.

For BPSA, BPFA, K-SVD and MFA, we extracted 16× 16 patches from each image using

shifts of one pixel, which overall produced the best results for all algorithms compared with 8× 8

and 12 × 12. We ran the algorithms with the following settings: For BPFA and K-SVD, we

set η = 2552 and K = 256, for MFA we set the mixture size to M = 50 and D = 20 to be the

subspace size of each mixture, for BPSA we set D = 20, K = 200, δ = 0.1, α = 1 and γ = 1. For

stochastic BPSA and stochastic BPFA, we set |St| = 1000 and use a step size ρt = (t0 + t)−κ,

with t0 = 10 and κ = 0.75.
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Figure 3.5: Images used in our denoising experiments: House, Peppers, Lena, Barbara.

3.5.2 Denoising results

In Table 3.1 we show example PSNR and SSIM results for denoising the images in Figure 3.5.

The baseline is the noisy image. The sparse coding algorithms all perform similarly, but overall

augmenting with subspaces as BPSA does improve the denoising results. We notice that MFA

performs significantly worse than the dictionary learning methods, which clearly shows the

advantage of sparse coding versus clustering. Total variation performs the worst of all algorithms,

showing the advantage of a local optimal solution to a non-convex model that captures greater

structure over a global optimal solution of a simpler, but convex model.

The dictionary learning for BPSA and BPFA took approximately 20 and 3.5 minutes,

respectively, for each image, followed by one iteration over all dictionary elements for recon-

struction. Although BPSA is slower than BPFA, it is able to more effectively capture the data

structures that improves the performance of denoising.

We show the sparsity of the model and subspaces in Figure 3.6 for three images and σ = 15.

For each image, we show the histogram for the number of learned dimensionality of each subspace

in their dictionary We see that BPSA infers subspaces of varying size, including one-dimensional

subspaces as learned with BPFA and K-SVD, while learning between 50 and 100 subspaces

overall. Note that for each image, the number of learned subspaces in their dictionary is different.

To show the sparsity in representing the data, we compare the average number of dictionary

vectors used by a patch. We show these results as a function of σ for three images in Figure
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Table 3.1: SSIM | PSNR for image as a function of noise standard deviation.
HOU. σ = 10 σ = 15 σ = 20 σ = 25 σ = 50
BPSA 0.943 | 35.75 0.922 | 34.06 0.903 | 32.89 0.890 | 31.81 0.829 | 28.58
BPFA 0.941 | 35.58 0.914 | 33.64 0.887 | 32.32 0.872 | 31.20 0.811 | 27.64
K-SVD 0.924 | 35.43 0.888 | 33.56 0.879 | 32.61 0.864 | 31.51 0.800 | 28.01
MFA 0.880 | 29.05 0.868 | 28.97 0.859 | 26.77 0.847 | 26.52 0.803 | 25.82
TV.aiso 0.874 | 33.76 0.847 | 31.89 0.831 | 30.76 0.817 | 29.91 0.753 | 27.04
TV.iso 0.873 | 33.72 0.846 | 31.85 0.831 | 30.73 0.819 | 29.96 0.762 | 27.12
Baseline 0.627 | 28.12 0.481 | 24.63 0.387 | 22.15 0.319 | 20.13 0.161 | 14.13
PEP. σ = 10 σ = 15 σ = 20 σ = 25 σ = 50
BPSA 0.960 | 32.84 0.944 | 31.62 0.928 | 30.03 0.916| 29.11 0.847 | 25.92
BPFA 0.955 | 33.00 0.930 | 30.85 0.926 | 29.98 0.913 | 28.98 0.840 | 25.54
K-SVD 0.952 | 32.99 0.911 | 31.25 0.900 | 29.53 0.894 | 28.35 0.809 | 24.71
MFA 0.911 | 28.77 0.910 | 27.70 0.890 | 26.67 0.881 | 26.20 0.841 | 25.80
TV.aiso 0.903 | 32.40 0.872 | 30.44 0.850 | 29.25 0.828 | 28.26 0.744 | 25.37
TV.iso 0.905 | 32.56 0.875 | 30.59 0.853 | 29.42 0.832 | 28.40 0.751 | 25.48
Baseline 0.718 | 28.15 0.584 | 24.61 0.485 | 22.09 0.411 | 20.17 0.215 | 14.12
LENA σ = 10 σ = 15 σ = 20 σ = 25 σ = 50
BPSA 0.937 | 34.65 0.917 | 33.04 0.902 | 31.78 0.888| 30.93 0.810 | 27.85
BPFA 0.937 | 34.64 0.919 | 32.99 0.901 | 31.70 0.885 | 30.66 0.806 | 27.37
K-SVD 0.932 | 34.87 0.906 | 33.01 0.878 | 31.53 0.857 | 30.48 0.761 | 26.82
MFA 0.865 | 29.34 0.856 | 28.72 0.850 | 27.02 0.839 | 26.99 0.783 | 26.01
TV.aiso 0.874 | 32.71 0.841 | 30.96 0.816 | 29.84 0.793 | 28.87 0.725 | 26.47
TV.iso 0.874 | 32.78 0.843 | 31.04 0.818 | 29.93 0.796 | 28.98 0.731 | 26.57
Baseline 0.646 | 28.14 0.493 | 24.61 0.390 | 22.12 0.318 | 20.19 0.145 | 14.14
BAR. σ = 10 σ = 15 σ = 20 σ = 25 σ = 50
BPSA 0.959 | 33.76 0.945 | 32.34 0.928 | 30.61 0.911 | 29.57 0.816 | 26.23
BPFA 0.959 | 33.90 0.943 | 32.04 0.926 | 30.52 0.907 | 29.27 0.800 | 25.48
K-SVD 0.956 | 33.96 0.934 | 31.72 0.909 | 30.16 0.882 | 28.80 0.735 | 24.62
MFA 0.902 | 29.11 0.894 | 26.14 0.853 | 24.70 0.822 | 24.34 0.767 | 24.11
TV.aiso 0.877 | 29.77 0.820 | 27.49 0.770 | 26.00 0.728 | 25.07 0.609 | 22.96
TV.iso 0.877 | 29.77 0.822 | 27.50 0.773 | 26.01 0.734 | 25.12 0.618 | 23.02
Baseline 0.739 | 28.13 0.614 | 24.63 0.518 | 22.13 0.444 | 20.18 0.227 | 14.15
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Figure 3.6: A histogram of the subspace dimensionality for σ = 15. Many inferred subspaces are

one dimensional, similar to BPFA and K-SVD, but BPSA learns subspaces with other sizes as

well.
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Figure 3.7: The average number of vectors used from the dictionary by a patch for various

noise settings. For BPSA, since all vectors in an activated subspace are used, we calculated this

number by summing the dimensionality of each subspace used by a patch.

3.7. For BPFA, we take the average number of dictionary elements used per patch. For BPSA,

we first find which subspaces are used by a patch and then sum the inferred dimensionality of
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Figure 3.8: The 13 most probable subspaces learned from the “House” image with σ = 15.

each of these subspaces, since a subspace is not sparsely used in our model. As can be seen

in Figure 3.7, BPSA results in a sparser signal representation (less number of used dictionary

elements) as the noise decreases, and is comparable to BPFA as it increases. In Figure 3.8 we

show the learned subspaces for the “House” images with σ = 15. As is evident, each subspace

shares a common structure learned from the data.

3.6 Conclusion

We presented a new Bayesian nonparametric model called beta process subspace analysis (BPSA)

for dictionary learning that sparsely codes signals in latent subspaces. The is model an extension

of related methods such as BPFA and MFA. Using beta and gamma processes, it can infer both

the number of subspaces and the dimensionality of each subspace. We derived a new MAP-EM

based algorithm that is related to variational inference and the OMP algorithm used by K-SVD.

We illustrated the model procedure on Tiny Images data set and demonstrated the advantage of

sparse coding with subspaces on denoising problems.
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Chapter 4

Mixed Membership Recurrent

Neural Networks

Models of sequential data such as the recurrent neural network (RNN) often implicitly treat a

sequence as having a fixed time interval between observations and do not account for group-level

effects when multiple sequences are observed. We propose a model for grouped sequential data

based on the RNN that accounts for varying time intervals between observations in a sequence

by learning a group-level parameter to which each sequence reverts as more time passes between

observations. Our approach is motivated by the mixed membership framework, and can be used

for dynamic topic modeling-type problems in which the distribution on topics (not the topics

themselves) are evolving in time. We demonstrate our approach on two datasets: The Instacart

set of 3.4 million online grocery orders made by 206K customers, and a UK retail set consisting

of over 500K orders [45].

4.1 Introduction

Recurrent neural networks (RNNs) are now standard models for sequential data analysis [36,111].

Each time step of an RNN models an observation via a neural network using the observation

and hidden states from previous time points. Sequential models such as the RNN (as well as the
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hidden Markov model and others) often implicitly assume a fixed time interval between these

observations. They also often do not account for group-level variation when multiple sequences

are observed, each assigned to one group. For example, consider the individual sequences of

purchases by a set of customers, with one sequence per customer. A vanilla RNN implementation

models these sequences with a shared network that removes customer-level information, and

according to an indexing that removes the time interval information between orders. However,

this information is important, since an interval of one day versus one month between orders

significantly impacts the items likely to be purchased next, while modeling customer information

can help inform what this impact should be.

Although some common methods exist, there is no standard technique for addressing varying

time-lags in a sequence, and none that consider this with additional group-level local information.

Previous work tends to simply impute the missing values with either zeros, the last observed

value or the global mean of the data [7, 26, 82, 99, 127]. In [21], the authors propose a method to

directly address the missingness pattern in a single data sequence by modifying a gated recurrent

unit (GRU), but this is not obviously modifiable to learn local effects for groups of sequences,

or to other RNN architectures such as LSTM. Group-level information was addressed for topic

models by [138] through an evolving sequence of topic distributions, but the approach does not

consider time lag as existing in the data. Time lag is of interest to [66] for predicting the time to

the next event, but not for how a distribution on that event should evolve as a result, while [132]

and [32] also do not factor user-level variation as being relevant to their formulations.

In this chapter we propose a sequential modeling approach that can be viewed as a continuous-

time mixed membership RNN (Section 4.3). Our perspective is to assume that, as more time

passes between any two observations, the value of the sequential information for making the next

prediction decreases. To this end, each set of sequences shares the same RNN parameters as being

sufficiently powerful to model user behavior, while having a local bias vector to which that group

can revert as more time passes between observations (illustrated in Figure 4.1). Experiments on

two datasets demonstrate the advantage of this added model flexibility (Section 4.4).
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Figure 4.1: The unrolled proposed framework we use in our experiments shown for the dth

sequence. Each prediction uses a weighted combination of an RNN and a customer-specific

parameter. As the time between observations decreases the RNN prediction is favored more heavily.

As the time lag increases the prediction is more biased towards an independent distribution

parameterized by φd. (This difference is indicated by arrow thickness above.)

4.2 Background

4.2.1 Recurrent Neural Networks

A recurrent neural network models a sequence of vectors y = (y1, . . . , yT ) with a neural network

that takes as input a corresponding sequence of vectors x = (x1, . . . , xT ) along with internal

hidden states from the network, h = (h1, . . . , hT ). When the model is probabilistic, this can

be viewed as defining a joint likelihood of the data, p(y|θ) = p(y1|θ)
∏
t>1 p(yt|y1:t−1, θ), where

p(yt|y1:t−1, θ) ≡ p(yt|ht) and ht = fθ(xt, ht−1) for t > 0, usually with xt ≡ yt−1. The non-linear

function fθ can be a standard RNN cell, or a more complex GRU [25] or LSTM [60], and θ are

its parameters. We will use a function of the form fθ(xt, ht−1) ≡ fθ̂(Wxt + Uht−1), where W

and U are matrices. Possible forms of the distribution p(yt|ht) include Gaussian, multinomial

and Poisson, as determined by the problem. The goal is typically to do maximum likelihood or

MAP inference, depending on whether priors are on θ.

When multiple sequences are observed, a typical and straightforward approach is to treat

them as independent from the same RNN, p(y1, . . . ,yD|θ) =
∏
d p(yd|θ). This explicitly treats
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each observation sequence as having the same distribution. This may be sufficient with large

model capacity, but has difficulty adapting to varying time lags between observations. For

example, imputation techniques can cause a sequence to revert to the same base prediction; more

data-tailored methods can be useful here. To account for variations in sequences across multiple

groups, mixtures of RNNs are one straightforward approach. In this work we take a different

approach motivated by the mixed membership modeling framework described below.

4.2.2 Mixed membership models

Mixed membership models provide a probabilistic approach to modeling groups of data through

a combination of shared and group-specific parameters [3]. The best known mixed membership

model is latent Dirichlet allocation (LDA) [13], but many variations exist. The basic generative

structure of a mixed membership model is:

1. Generate global variables θ ∼ p(θ) shared by all groups of data.

2. For the dth group of data: Generate local variables φd ∼ p(φ), and data yd ∼ p(yd|φd, θ).

The distribution p(yd|φd, θ) is a mixture where the variables θ define the globally shared set of

distributions and φd is used to define the weights on these distributions.

LDA and related models let θ = {β1, . . . , βk} be a set of distributions on a discrete item set

(often words in a vocabulary), and φd be a probability vector on those topics. One example

closely related to our work is the correlated topic model (CTM) [12], in which φd ∼ N (µ,Σ),

and a softmax function σ(φd) transforms this vector into a distribution on topics. A key benefit

of such models is that each group of data can mix over the same set of distributions, allowing

them to share statistical strength during inference, while also allowing a meaningful comparison

across groups via their shared representation in these distributions. In the next section, we are

motivated by this mixed membership modeling perspective when defining a shared RNN for

multiple sequences that also allows each sequence to have its own unique characteristics.
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Algorithm 4 Basic MM-RNN

1: Define ∆t be time since last observation at

2: time t and ρ(∆t) ∈ [0, 1] decreasing in ∆t.

3: Given RNN cell fθ and nonlinearity σ:

4: Generate RNN parameters θ ∼ p(θ)

5: Generate group vectors φd ∼ N (µ,Σ)

6: for dth group sequence yd(t) do

7: Compute ht = fθ(xt, ht−1)

8: Compute σt = σ(ρ(∆t)ht + (1− ρ(∆t))φd)

9: Generate yd(t) ∼ p(y|σt)

10: end for

Algorithm 5 MM-RNN topic model

1: After first 5 lines of Algorithm 1, make

2: the additional modifications:

3: Generate topics βk ∼ Dir(α), k ∈ [K]

4: for dth group sequence yd(t) do

5: Compute ht = fθ(xt, ht−1)

6: Compute topic distribution vector

7: σt = softmax(ρ(∆t)ht + (1− ρ(∆t))φd)

8: Generate yd(t) according to a mixture of

9: multinomial parameters,
∑

d σt,kδβk

10: end for

4.3 Mixed Membership RNN Models

Recurrent neural networks work well on sequential data, but have difficulty capturing global

semantic information. By contrast, topic models have the ability to capture global semantics, but

are usually not sequential models and lack the modeling power of the RNN in this regard. Recent

work by [30] has demonstrated the advantage of combining these two modeling paradigms for
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natural language models of text, which motivates our significantly different approach to modeling

grouped count sequences.

As mentioned, we are motivated by the sequence modeling problem in which a long delay

between observations results in the loss of value of the previous sequential information for

predicting the next observation. To this end, we propose a model that accounts for the following:

1) each prediction within a group’s sequence is influenced by both the previous sequential

information and biases that are group-specific; 2) as the time intervals increase, the prediction

smoothly adapts toward the base prediction and away from what the purely sequential prediction

of the RNN would be. For example, in a dynamic topic modeling problem in which the topics

are fixed and a sequence of topic distributions are generated, the topic distribution smoothly

reverts to a group-specific base topic distribution as the time between documents increases.

4.3.1 The basic framework

We first present the basic idea of the model directly on data yd, d = 1, . . . , D, where each yd

is a sequence of vectors with corresponding sequence of time stamps. In this model, we define

ρ(∆t) ∈ [0, 1] to be a function of the time interval between two particular observations in a

sequence, ∆t. This value produces a weighted average and decreases as ∆t increases. For example,

in our experiments we use ρ(∆t) = (t0 + ∆t)−κ with t0, κ > 0. ρ(·) will allow us to define a

continuous-time RNN that adjusts to periods of no observations.

The basic MM-RNN model is shown in Algorithm 1. To give two specific examples, if yt

were a histogram of counts, then σt could be the softmax function and p(y|σ) a multinomial

leading to the cross entropy penalty. Or p(y|σ) could be a (technically inappropriate) Gaussian

distribution on the normalized y with σ as the mean, resulting in an L2 penalty. In the proposed

framework, we modify the RNN by including a group-specific bias vector φd ∈ RK . Then, rather

than generate yd(t) dependent on hd(t) as in the typical RNN setup, in Step 3(b) we average

hd(t) with φd according to the function ρ. As discussed, ρ decreases as the time interval between

yd(t − 1) and yd(t) increases. When ρ = 0, yd(t) is independently generated from the base

distribution for group d. The definition of ρ(·) determines the rate at which the RNN is forgotten;
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the RNN can have its own forgetting mechanism as well. When ρ = 1 the sequence is being fully

modeled by an RNN. We show the basic graphical model of our network in Figure 4.2.

We anticipate that this approach can give better predictions by: 1) not artificially learning

sequential information that it isn’t there, and 2) allowing a better RNN to be learned by focusing

on the part of the data where sequential information is present, which we consider to be when

the time between observations is short.

4.3.2 A mixed membership RNN topic model

We extend the basic MM-RNN idea to address the topic modeling problem. Topic models

capture semantic meaning through a mixture of K topics β = {β1, . . . , βK}, being probability

distributions on a vocabulary of size V . Each document is a set of words generated using a

K-dimensional mixing weight vector on these topics, σ(d) for document d. A document y(d)

consists of nd words, where for each word instance a topic index is chosen according to σ(d) and

the word value is then chosen by drawing from the distribution in β with that index. The topics

learned are semantically meaningful, and topic models are powerful in that they can be used for

far more than text data.

The canonical topic model for sequential data is the dynamic topic model (DTM) [11]. There,

the topics vary in time, while each document generates its own σ(d) independently and uses

the snapshot of topics at the moment of its generation. This allows prominent words within

a coherent topic (e.g., the “politics” topic) to evolve over time. Here we consider a different

problem where the topics are fixed in time, and the distributions on topics evolve. For example

shopping behavior data consists of products (words) in an order (document), and each customer’s

sequence of orders can be modeled by a mixed membership model where each order’s distribution

on a fixed set of topics evolves over time.

We describe our general MM-RNN topic model in Algorithm 2. The data-generating distri-

bution in Step 4(c) can be the standard mixture of multinomials used by LDA, or it could be a

Poisson matrix factorization, or other distribution on count data. To connect this with previous

topic models, we observe that if ρ ≡ 0 and each group consists of one “document,” then this
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Algorithm 3 MM-RNN learning outline

Initialize RNN parameters θ and initialize all φd =

0.

Iterate the following:

1. Update each φd via gradient descent

2. Update RNN θ via automatic differentiation

3. (optional) Update topic matrix via multiplica-

tive update. (Otherwise fix B = I.)
Figure 4.2: MM-RNN graphical

model.

model reduces to the correlated topic model (CTM) [12]. In this sense the proposed model is one

possible version of a dynamic CTM.

4.3.3 Discussion on model inference

We have presented our MM-RNN approach in fairly general terms. In this section we discuss

two possible instances that we consider in our experiments and discuss an outline of how we

optimized them. We discuss MAP optimization for these models.

In our models, we let fθ, used to construct the hidden state h, be a single layer LSTM cell as

is standard in PyTorch. Let yd,t be a probability vector or histogram, for example constructed

from items purchased in order t by customer d. Using zero-mean Gaussian priors on all model

variables, we can write one possible objective function as

L =
1

2a
‖θ‖2 +

D∑
d=1

1

2b
‖φd‖2 +

Td∑
t=1

L(yd,t, vd,t) (4.1)

where

vd,t ≡ ρd,thd,t + (1− ρd,t)φd,

and again, ρd,t is a deterministic, decreasing function of the time between orders (ρd,1 = 0).

Depending on the model that we choose, the loss function L(.) could be an average cross entropy

loss 1
Td

CEL(yd,t, σ(vd,t)) or squared norm error 1
2c‖yd,t −Bσ(vd,t)‖2.
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We give a rough outline of what the learning algorithm looks like in Algorithm 3. We note

here that we take the perspective of nonnegative matrix factorization (NMF) using the L2 penalty

when the matrix of “topics” B is incorporated. In this case, we are doing maximum likelihood

on B and the columns do not need to sum to one, yet are still interpretable. B can be learned

using the simple multiplicative update strategy of [78] as follows,

Bi,j ← Bi,j
(yσT )i,j

(BσσT )i,j
, (4.2)

where y and σ show matrix of all target vectors and RNN outputs, respectively.

4.4 Experiments

We experiment with two data sets described in the following sections. We first perform a more

detailed quantitative evaluation of the advantage of our time-adaptive MM-RNN approach

compared with purely sequential and purely i.i.d. approaches. This is followed by a comparative

quantitative evaluation against other possible approaches.

4.4.1 Instacart online grocery shopping dataset

In this section, we present experiments on the Instacart 2017 online grocery shopping data set.1

This data consists of 3.4 million orders made by 206K users. The time interval between orders is

number of days (capped at 30 days). Each order consists of a count of the number of each product

purchased from 50K products and each product belongs to one of 134 aisles. In our experiments,

we consider the basic MM-RNN model at the aggregated aisle level, and the MM-RNN topic

model at the product level. We train all models on the orders of all customers except for the last

order of each customer, which we hold out for prediction to evaluate performance.

We implement our models in PyTorch using automatic differentiation [100] and stochastic

gradient descent with a learning rate of 0.01. For our selected RNN, we an LSTM with hidden

dimension of 10. When ρ ≡ 1, our MM-RNN reverts to this LSTM, which is one of the models

1https://instacart.com/datasets/grocery-shopping-2017

https://instacart.com/datasets/grocery-shopping-2017
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we compare with. Experiments are done on a cluster node with two NVIDIA Tesla K80 GPUs

and 128 GB memory.

4.4.1.1 Aisle level model

In our first experiment, we consider the basic MM-RNN model of Section 4.3.1 on Instacart

data aggregated at the aisle level as defined by this online shopping website (e.g., coffee, milk,

cereal, tofu meat alternatives—134 aisles in total). Each order is represented as a normalized

histogram giving an empirical distribution of that order across the aisles. We use the softmax

function for σ to predict this distribution for the next order in the sequence. Using the function

ρ(∆t) = (t0 + ∆t)−κ, we set t0 = 1 and experiment with various values of κ. For each experiment,

we learned the model by running 20 epochs over the data, where each epoch took approximately

5 minutes. For each setting we ran 50 experiments with random initialization.

In Figure 4.3(a) we show box plots of dimensional average of mean squared error over the

206K customers’ predictions as a function of κ. As mentioned, when κ = 0, the MM-RNN reduces

to its base LSTM model. An increase in κ indicates that this RNN prediction is being forgotten

more quickly as the time between orders increases and the customer-level base distribution

is being used. We see that performance improves as κ increases, followed by a decrease in

performance. Clearly for this data a combination of sequential/non-sequential modeling that

takes into consideration customer-level effects and the time between orders is appropriate.

In Figure 4.3(b), we break down these results for κ ∈ {0, 0.1} using the output of the run

closest to the mean of their corresponding box plots in Figure 4.3(a). We also show results

for ρ ≡ 0, which reduces the MM-RNN to an exchangeable, i.i.d. model conditioned on φd for

customer d. Here, we show the mean and standard deviation of the prediction errors as a function

of days between the previous order and the predicted order.

As we expected, the RNN (κ = 0) makes worse predictions as this time lag increases, likely

because it relies completely on previous sequential information that is less useful in this case.

The MM-RNN (κ = 0.1) is able to adapt and focus more on using the base distribution defined

by φd for customer d. In fact, the performance slightly improves, perhaps indicating that as more

time passes the customer runs out of more things and makes and order based on a non-sequential
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(a) (b)

Figure 4.3: Exploratory results on Instacart grocery dataset. (a) Box plots of MSE as a function

of κ over multiple runs for t0 = 1. When κ = 0, the MM-RNN reduces to its base LSTM model.

An increase in κ indicates that this RNN prediction is being forgotten more quickly as the time

between orders increases and the customer-level base distribution is being used instead. As is

evident, a combination of sequential/non-sequential modeling gives more accurate predictions.

(b) The error between the aisle distribution and predicted distribution for the last order as

a function of time passed since the previous order. We use our basic MM-RNN model (with

κ = 0.1) and compare with an LSTM RNN (equivalent to κ = 0). As is evident, the LSTM

decreases in predictive performance as more time passes between observations. When ρ ≡ 0, the

model reduces to an exchangeable model on orders, giving further support to our belief in the

decreasing sequential value as time lag increases.

distribution on aisles representing that customer’s overall preference. In other words, guessing

precisely what a customer needs next is inherently more difficult than guessing what that customer

needs “when the cupboard is empty.” The RNN does not adapt well here, while our simple

modification does. We also observe that when the time lag decreases our model still outperforms

the RNN. This may be due to the fact that the learned RNN in the MM-RNN was able to better
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focus on the meaningful sequential content in the data during inference, while the vanilla RNN

considers all parts of the sequence as equally meaningful.

Significantly, when ρ = 0 we see the same MM-RNN pattern, only worse since no sequential

information is being modeled. As time lag increases, the observations from a customer are more

approximately conditionally i.i.d., while when the time lag decreases sequential information is

important when considering what does and doesn’t need to be purchased. This shows that our

approach can meaningfully adapt by blending sequential and non-sequential information in the

data.

4.4.1.2 Product level model

We also experiment at the product level using the MM-RNN topic model discussed in Section

4.3.2. To initialize the non-negative topic matrix B, we run stochastic LDA [62] one the individual

orders as documents to learn 25 topics and use the means of their respective q distributions as

initialization. We use the products as vocabulary, but we aggregate products that were purchased

less than 20 total times by their aisle. As a result, B is an approximately 36K × 25 matrix

with topics on the columns. When we ran the MM-RNN model, we then updated B using the

multiplicative update rule of [78].

Figure 4.4(a) shows the box plots of 50 experiments with random initializations for multiple

values of κ and t0 = 1. These values are normalized to be the mean squared error averaged over

the 36K dimensions of all 206K predictions. The conclusions for this MM-RNN approach to

the dynamic topic model is the same as in Section 4.4.1.1; at κ = 0 the model reduces to an

LSTM-RNN. We see a clear improvement as κ increases, followed by a decline.

4.4.2 UK online retail dataset

In this section, we present results on the UK online retail dataset from the UCI repository.The

data contains information about all transactions in 2010 and 2011 from UK-based and registered

non-store online retailers. Similar to the Instacart dataset, this data contains the timestamp of

orders purchased by 4373 users from 4070 different products and their corresponding quantity,

giving a total of 500K orders. However, in this case the time lag between orders is not truncated
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(a) (b)

Figure 4.4: (a) Boxplot of MSE using the aisle level data when t0 = 1 for Instacart. Similar to

the product level case, a combination of sequential/nonsequential modeling gives more accurate

predictions. (b) Exploratory results on UK retail dataset. Prediction error for the last order of

the users as a function of days since their prior purchase. The details of what is being shown is

the same as Figure 4.3(b) (please see caption for description), only cross entropy was used here,

and the time lag is not truncated at 30 days in the dataset. The wider error bars are due to the

fewer customers and greater variation in time lag.

at 30 days. For each user, we aggregated the daily purchases, and then normalized them to

produce vectors of probabilities.

In Figure 4.4(b) we again plot the prediction error using cross entropy loss as a function of

time lag between the two final orders for each customer. Since the lag is not truncated to 30

days we are able to plot up to 365 days, but note that there are far fewer samples meaning that

the error bars are much wider. Here we observe the same meaningful pattern as in Figure 4.3(b).

We note that at around 150 days the RNN (blue) actually performs worse than the non-temporal

i.i.d. model (green). MM-RNN (red) outperforms both, again indicating that better RNN and

user-specific i.i.d. components were able to be learned by accounting for time lag.
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Table 4.1: Quantitative evaluation comparing with other approaches using mean squared error

(MSE) and cross entorpy loss (CEL). Direct imputation approaches perform the worst. LSTM-

based approaches tend to outperform GRU-based approaches, while our time-adaptive approach

tends to improve performance of these respective architectures. Thus, the proposed MM-RNN

approach is able to use time between observations to improve predictive performance.

Dataset Instacart (aisle) Instacart (product) UK Retail

Loss MSE CEL MSE CEL MSE CEL

Impute Mean 0.0437 0.225 0.0877 0.295 0.0593 0.272

Impute Forward 0.0402 0.269 0.0673 0.283 0.0547 0.275

Impute Zero 0.0611 0.318 0.0898 0.349 0.0602 0.304

Che, et al. [21] (GRU-based) 0.0283 0.264 0.0681 0.201 0.0311 0.185

LLSTM [138] 0.0207 0.219 0.0173 0.183 0.0264 0.168

LSTM RNN (vanilla) 0.0297 0.288 0.0229 0.261 0.0302 0.193

MM-RNN with LSTM 0.0192 0.214 0.0153 0.181 0.0225 0.174

MM-RNN with GRU 0.0216 0.223 0.0262 0.205 0.0294 0.213

4.4.3 Quantitative evaluation with other approaches

For all these experiments we compare with various imputation strategies described in [82,103].

We call these three techniques: 1) Impute Mean, which fills in any missing time step with the

global mean; 2) Impute Forward, which fills in missing time points with a copy of the most recent

observation; 3) Impute Zero, which fills in missing time points with a vector of zeros. We also

compare with [21], a method that also uses a continuous-time weighting strategy to account for

different time lags. However, this approach does not take a mixed membership perspective by
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learning group-level parameters, and the weighting strategy is within the RNN itself, rather than

outside of the RNN as in our MM-RNN model. We also compare with [138], which considers

an evolving sequence of topics without adjustments for the time interval. In this experiment,

we used the Topic LLA model and reported the best result when setting the number of topics

to 25, 50 or 100 for each setting. As a special case of our model, we compare with with the

vanilla LSTM-RNN (κ = 0), which represents a purely sequential model with shared parameters.

Finally, we compare to the case when we use GRU units instead of LSTM in our model.

We show these results in Table 4.1 with two different choices of loss functions: mean squared

error (MSE) and cross entropy loss (CEL) with normalizing input data over the dimensions. As

is clear, all imputation methods significantly hurt performance by creating unhelpful sequential

information for the RNN that do not help the RNN learning or predictions. While [21] often

has better performance relative with the Impute methods, it performs worse than our proposed

method since this RNN architecture does not do any group-level modeling, meaning every user’s

order sequence is treated as being i.i.d.; this indicates the advantage of a mixed membership

approach for this type of problem. The MM-RNN also improves over the vanilla RNN with LSTM,

which simply ignores the time stamps of the sequences. We can also see that the MM-RNN

frequently outperforms [138], which like the vanilla RNN also does not model varying time

intervals between the samples. We also see that LSTM performs better than GRU on these data

sets for our approach.

4.5 Conclusion

We have presented a mixed membership recurrent neural network (MM-RNN) approach for

modeling multiple sequences. The model was motivated by the observation that, in many

sequential data sets the sequential information is not of the same value across the sequence.

As more time passes between observations, the distribution on the next observation may be

better modeled as independent from some initial group-specific distribution. To this end, we

made a simple modification to the RNN architecture by generating a unique base vector for each

group and use a weighted combination of this base vector with the RNN hidden state to make



CHAPTER 4. MIXED MEMBERSHIP RECURRENT NEURAL NETWORKS 55

predictions. The weight emphasizes the RNN in the part of the sequences that is densely sampled,

and emphasizes the group-specific i.i.d. model when two consecutive observations are spread

far apart in time. We demonstrated on two online shopping data sets that this combination of

sequential/non-sequential modeling can allow for the RNN to focus on learning to make better

predictions when sequential information is meaningful, and to defer to the base model when

much time has passed in a smooth transition.
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Chapter 5

Convex Relaxation for Variational

Inference

In this chapter, I present a new technique for solving non-convex variational inference optimization

problems [43]. Variational inference is a widely used method for posterior approximation in

which the inference problem is transformed into an optimization problem. For most models, this

optimization is highly non-convex and so hard to solve. I introduce a new approach to solving

the variational inference optimization based on convex relaxation and semidefinite programming

that further will be extended to other applications in the next chapter. Our theoretical results

guarantee very tight relaxation bounds that get nearer to the global optimal solution than

traditional coordinate ascent. We evaluate the performance of our approach on regression and

sparse coding.

5.1 Introduction

A major challenge of Bayesian modeling is posterior inference. For many models this requires

calculating normalizing integrals that neither have a closed form, nor are solvable numerically in

polynomial time. There are two fundamental approaches to addressing the posterior inference

problem. One uses Markov chain Monte Carlo (MCMC) sampling techniques that are asymp-
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totically exact. However, these methods tend to be slow compared with point-estimates and

not scalable to large datasets [46,58]. Mean-field variational inference is another approach that

approximates the posterior distribution by first defining a simpler family of distributions and then

finding a member that is closest to the desired posterior [67] according to the KullbackLeibler

(KL) divergence. This turns the inference problem into an optimization problem. However, this

introduces new challenges due to the resulting non-convex optimization.

In this chapter, I present a method to deal with the non-convexities in variational inference

(VI) optimization for conjugate models that achieve near globally optimal solutions. Our

method is based on convex relaxation and semidefinite programming (SDP). In our approach,

an SDP relaxation converts a non-convex polynomial optimization of vector parameters to a

convex optimization with matrix parameters via a lifting technique. We call this approach

convex relaxation for variational inference (CRVI). The exactness of the relaxation can then be

interpreted as the existence of a low-rank solution to this SDP. Our main contribution is to solve

this variational optimization problem in an accurate way and provide theoretical guarantees for

the exactness of our solution using graph theoretic tools. To the best of our knowledge, this is

the first time that a relaxation for variational inference could guarantee and produce optimal

solutions that are either globally optimal solution or very close to it. Our experimental results

demonstrate the effectiveness of CRVI compared with coordinate ascent for sparse regression

and sparse coding models.

Convex optimization problems are one of the most important areas of optimization theory.

They are guaranteed to have global optimal solutions that can be found with a numerical

algorithm. On the other hand, there is no such theory for solving generic non-convex problems.

Recent advances in the area of convex optimization provide a variety of methods for approaching

and solving non-convex optimization problems exactly or approximately [17, 133, 137]. For

instance, several works have studied the existence of a low-rank solution to matrix optimizations

with linear or nonlinear constraints [40,86,98,101,122]. We build on the method in [86] to obtain

theoretical bounds for the exactness of CRVI.

There are a number of works that have addressed problems with probabilistic inference

using convex optimization methods. These works have mostly focused on convex relaxation for
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maximum entropy and message passing algorithms [56,94,113]. In general, they lack control over

the exactness of their approximations in that there is no estimate of the closeness of the solution

of the relaxed problem to the optimal solution of the original problem.

In this work, we apply convex relaxation techniques to the optimization problem introduced

by variational inference with more focus on the cases where the hardness of the problem is due

to quadratic or higher order polynomial terms. We first break down the objective function into

two parts, one representing the polynomial and non-convex part and one for the rest of the

objective function. In this method, we lift the domain of optimization from vectors to matrices,

and capture all of non-convexities in the optimization within the transformed problem. As we

show, tight relaxation bounds can be achieved to guarantee near-global optimal solution. We also

observe that, in models with many parameters this matrix may be prohibitively large. In this

case, we still demonstrate how CRVI can be beneficial by relaxing a locally non-convex problem

over a subset of variational parameters.

In Section 5.2 we review variational inference and our proposed convex relaxation technique.

In Section 5.3 we illustrate our method and discuss theoretical contributions. In Section 5.4, we

show experimental results.

5.2 Background

5.2.1 Variational Inference

Variational inference approximates the posterior distribution of variables in a probabilistic model.

Let D be a dataset that is analyzed with a model having variables in the set θ. The model

assumption is D|θ ∼ p(D|θ), θ ∼ p(θ).

The goal is to calculate the posterior distribution p(θ|D) after observing the data. Due to

complexities in most models, finding the true posterior distribution is a difficult task. Instead,

we can approximate it by q(θ) such that this approximation is close to the true distribution

according to some notion of similarity. For variational inference, this closeness is measured by
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the Kulback-Leibler (KL) divergence. To optimize the KL-divergence, one can observe that

ln p(D) = Eq
[

ln
p(D, θ)
q(θ)

]
︸ ︷︷ ︸

L(q(θ))

+Eq
[

ln
q(θ)

p(θ|D)

]
︸ ︷︷ ︸

KL(q‖p)

, (5.1)

and since the LHS is constant, one can minimize KL by maximizing the variational objective

function L over the parameters of a predefined distribution family q(θ). To define this family

in a way that is amenable to optimization, one often assumes that q(θ) belongs to a family

of distributions that factorizes over the variables in θ. Seeking to find parameters for this

distribution, φ, results in optimizing the following problem,

max
φ
L(q(θ)) subject to φ ∈ feasible set, (5.2)

where the feasible set is the intersection of possible regions for all of the constraints on the

parameters. For a very large set of models, this optimization is non-convex or combinatorial,

and hard to solve. Numerical algorithms are only able to achieve a local maximum, and most of

the time there is no evaluation about how close this local optimum is to the global one.1 In this

work, we consider the cases where this optimization is non-convex and NP-hard. While the global

optimum for these optimizations might not be achievable, we aim to find a local optimum that is

close to the global solution. Better local optima assure us that we obtain lower KL-divergence

and a more accurate posterior approximation. Without loss of generality, we convert the problem

to minimizing −L(q(θ)) over the same feasible set to make the problem more compatible with

the convex optimization framework and notations.

We propose a new optimization approach to VI that we call convex relaxation for variational

inference (CRVI). This technique approximates the optimization problem to overcome the issues

related to non-convexities. As we will show, CRVI can result in near-global optimal solutions

that are not only a better local optima compared to the standard coordinate ascent approach,

but also provides a means for assessing closeness to the global optimum.

1We note that by this we do not mean how close q(θ) is to p(θ|D), but how close we are to optimizing the

chosen q(θ).
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5.2.2 Convex Relaxation

We next present the general technique that we adopt and build on in this work in its abstract

representation. We then apply it to two specific variational inference optimization problems.

Although there are exceptions, polynomial terms in an objective or constraint tend to add

non-convexities and make the optimization intractable to solve. The technique that we use deals

with these hard polynomial parts by converting them into near-exact tractable terms.

First we note that any polynomial function or expression can be represented as a quadratic

function, possibly by introducing new variables [8]. This conversion is straightforward, and every

high order term could be broken down into lower order terms by introducing new parameters

and quadratic equality constraints. As a result, without loss of generality, we assume that all

of the polynomial terms are quadratic. Let the following be a general polynomial optimization

problem,

min
x∈Rd

f0(x)

subject to fk(x) ≤ 0 for k = 1, . . . ,K,

(5.3)

where fk = x>Akx+ b>k x+ ck for k = 0, . . . ,K. Since there are no limitations on the coefficient

choices, the terms in (5.3) can represent any polynomial optimization or expression.

If all of the matrices {A0, A1, ..., AK} are positive semidefinite, the optimization in (5.3) is

convex. Otherwise, it is non-convex, and there is no numerical or analytical procedure that

guarantees achieving a global optimum. We use a lifting technique that involves changing the

variable space from vectors to matrices [17]. More specifically, define Fk and Xk as follows,

FK =

 ck
1
2b
>
k

1
2bk Ak

 , X =

1 x>

x xx>

 (5.4)
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Then the equivalent optimization to (5.3) is

min
X∈R(d+1)×(d+1)

trace(F0X)

subject to trace(FkX) ≤ 0 for k = 1, ..,K,

X1,1 = 1, X � 0,

rank(X) = 1.

(5.5)

The entry equal to 1 in matrix X is to ensure that we have a way to represent the terms that are

linear with respect to x. It should be pointed out that matrix X is designed such that it replaces

[1 x>]> × [1 x>]. This transformation requires us to be able to decompose back the solution X

of optimization (5.5) to get the vector x after solving it. To assure this, X needs to be positive

semidefinite and have rank 1.

All terms in (5.5) are linear with respect to X and consequently convex, except for the last

constraint on the rank of the matrix. To avoid this non-convex rank constraint, we can simply

drop it. By dropping the rank constraint, we achieve an optimization that is linear in terms

of a matrix variable that has to be positive semidefinite. As a result, we obtain a semidefinite

program (SDP) relaxation for the optimization in (5.3) [130]. Although SDP methods may not

be fast in general, by carefully designing them and avoiding redundancies, they can run in a

reasonable amount of time. The following shows the relaxed optimization problem,

min
X∈R(d+1)×(d+1)

trace(F0X)

subject to trace(FkX) ≤ 0 for k = 1, ..,K,

X1,1 = 1, X � 0.

(5.6)

One of the important steps here is to quantify the exactness of this relaxation. Naturally we

seek approximations that result in finding global optimal or near-global optimal solutions. The

only constraint that we dropped is that the matrix has to be rank 1. Hence, in this relaxation,

the final rank of X carries information on the exactness of this approximation. After solving

the relaxed semidefinite program, if the rank of the optimal X is 1, we have found the global

optimal solution for the original problem (5.3). Otherwise, we reach an approximate solution

to the original problem. It should be noted that the lower the rank of the optimal solution of
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the relaxed problem, the closer the approximation to the global optimal solution of the original

problem. Thus, the closer the rank of the optimal solution gets to 1, the closer we are to the

global optimal solution. This rank of the relaxed problem helps us measure the closeness of the

approximate solution to the global optimal solution of the original problem.

Fortunately, the rank of the solution of the relaxed problem cannot be arbitrary large, as

shown by [86]. In fact, it is upper bounded by a property of a defined graph structure for

the original problem which is its treewidth. The treewidth of an undirected graph is a number

associated with the graph that is mainly used for complexity analysis of graphs. It can be

calculated from the minimum size of largest node over all tree-decomposition of the graph

or from the size of the largest clique in a chordal completion of the graph. The treewidth

mainly parametrizes and describes the sparsity of a graph, meaning that sparser graphs tend to

have smaller treewidths. The process is to first construct a graph from the original quadratic

optimization problem (5.3), and then calculate an upper bound on the rank of the semidefinite

relaxation using the treewidth of the constructed graph.

To build the graph, we need to assign a vertex to every entry of the vector [1 x>]> and add

edges between vertices whose product appears in the objective function or any of the constraints

of the original problem (5.3). All of the constants or non-variable coefficients are neglected in this

process. For instance, if cross-term xixj appears somewhere in (5.3), we put an edge between

vertices that correspond to entry xi and xj . Or if term xk appears, we add an edge between

vertices corresponding to xk and 1 since xk = xk × 1. Hence, every term in the optimization

problem can be translated into a graph edge. Interestingly, one interpretation of adding entry

‘1’ in the matrix definition (5.4) is to be able to represent linear terms as an edge here in the

construction of the graph. The fewer the number of cross terms in the optimization, the fewer

edges and the sparser the graph.

Now with the graph constructed, we can find an upper bound for the rank of the optimal

solution of the relaxed problem in (5.6). The rank of the optimal solution to the relaxed problem

is less than or equal to one plus the treewidth of its enriched super-graph. As a result, the

lower the treewidth of the graph of the problem, the better approximation to the global optimal

solution. As we show in the examples, no matter how large the dimensionality of the matrix X
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in (5.6), the rank of the optimal solution matrix will be smaller than or equal to the calculated

upper bound.

Overall, in this relaxation and transformation, all approximations are pulled into the rank

of the optimal solution. An important advantage of this is that if the structure of the sparsity

graph of a problem is good enough for us to have a low upper bound, we can achieve a strong

relaxation that gives a near global optimal solution. To show how we use this in variational

inference, we use a simple example model next. We then generalize it to other models.

5.3 Convex Relaxation for Variational Inference

5.3.1 CRVI for Bayesian Linear Regression

We first show the proposed CRVI method on two Bayesian linear regression models in which the

posterior distribution is approximated with variational inference. We start with a simple model.

Consider the dataset D = {xi, yi}Ni=1 with x ∈ Rd and y ∈ R, and the model,

yi∼Normal(x>i w,α
−1),

w∼Normal(0, λ−1I),

α∼Gamma(a0, b0). (5.7)

The goal is to find p(w,α|D), the posterior distribution of the model parameters given the input

data. Since the true posterior is hard to find, we apply variational inference to approximate it.

Let q(w,α) denote the approximate posterior density and define

q(w,α) = q(w)q(α) (5.8)

= Normal(w|µ,Σ)Gamma(α|a, b),

where the factorization comes from the mean-field approximation. The variational objective L
for this optimization problem is

L(q) =(a0 − 1)(ψ(a)− ln b)− b0
a

b
− λ

2
(µ>µ+ trace(Σ))

+
N

2
(ψ(a)− ln b)−

N∑
i=1

1

2

a

b
((yi − x>i µ)2 + x>i Σxi)

+ a− ln b+ ln Γ(a) + (1− a)ψ(a) +
1

2
ln |Σ|+ const.

(5.9)
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where ‘const.’ is a constant with respect to the variational parameters of this model, {a, b, µ,Σ},

which this function should be maximized over. This objective function is non-concave with

respect to its parameters and coordinate ascent variational updates—in which the parameters are

cycled over and locally optimized holding the others fixed during each iteration—using arbitrary

initialization will likely only achieve locally optimal solutions. We will next show how CRVI can

significantly improve this result. We consider the variational inference optimization problem that

minimizes −L subject to a, b > 0, Σ � 0.

Our approach is to use the relaxation technique presented in the previous section on the

polynomial part of this optimization that contains all of the non-convexities associated with this

optimization problem. Consider the following reformulated optimization problem,

min

N∑
i=1

1

2
((ey2i − 2x>i u+ x>i uµ

>xi) + x>i eΣxi)

+
λ

2
(µ>µ+ trace(Σ)) + b0e

− (a0 − 1)(ψ(a) + ln c)− N

2
(ψ(a) + ln c)

− a− ln c− ln Γ(a)− (1− a)ψ(a)− 1

2
ln |Σ|

subject to a, c, e > 0, Σ � 0, e = ac, u = eµ.

(5.10)

This optimization is over the variables a, c, e, µ, u,Σ. Note that we introduced new variables c to

replace 1
b , e to represent ac and u to replace e×µ . This enables us to reformulate the polynomial

part as a quadratic optimization problem. Hence, optimization problems (5.9) and (5.10) are

identical. We refer to the first two lines of (5.10) as f(a, c, e, µ, u,Σ) which is in polynomial form

and contains all of the non-convexities in this problem, while we refer to the rest as g(a, c,Σ),

which is non-linear and convex. This is due to convexity of negative ψ function for positive

scalars as well as the convexity of the negative log and negative entropies. Therefore, by relaxing

the first part, we get a convex relaxation for the optimization problem. In order to perform

the relaxation, we need to rewrite f(a, c, e, µ, u,Σ) as a quadratic function of a vector variable.

Based on the semidefinite relaxation construction in the previous section, we define the following

vector

ν =

[
1 a c e µ> u> Σ1,1 Σ1,2 · · ·Σd,d

]>
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Figure 5.1: Constructed graph for the optimization problem (5.9) on the left side, and its tree

decomposition on the right side. Some edges are removed for better legibility of the graphs.

It is easy to see that f(a, c, e, µ, u,Σ) is quadratic with respect to entries of ν. We reformulate

the function f to use ν as an argument in fCR. Thus the transformed optimization problem is

as follows

min
ν,a,c,Σ

fCR(ν) + g(a, c,Σ)

subject to a, c, e ≥ 0, e = ac, u = eµ, Σ � 0

a = ν2, c = ν3,

vector(Σ) = [ν(5+2∗d) . . . ν(4+2d+d2)]

(5.11)

where vector(·) vectorizes the matrix. Convex relaxation can now be defined for the optimization

(5.11) by introducing new matrix variable A := ν × ν> ∈ S(4+2d+d2)×(4+2d+d2) and following the

relaxation steps. A in this formulation plays the role of X in optimization (5.6). The following

proposition gives our theoretical bounds for the exactness of this relaxation.

5.3.1.0.1 Proposition 1. The matrix solution obtained by CRVI for (5.11) has a rank less

than or equal to 3.

Proof. Figure 5.1 shows the constructed graph for the original quadratic optimizations (5.9)

on the left side, and its tree decomposition on the right side. Treewidth is the cardinality of

the largest vertex in a graph’s tree decomposition minus 1 where its enriched super-graph is
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constructed. Since the cardinality of the largest vertex in its tree decomposition is 3, its treewidth

is 2. This guarantees that the rank of the optimal solution of CRVI is upper bounded by 3. �

Note that in Figure (5.1) on the left side, vertex 1 is connected to e, all u entries and all Σ

entries. Similarly, e is connected to all entries of µ and Σ. Big blue circles on the right side show

the bag of nodes created in the tree decomposition construction.

Although the dimensionality of this optimization can be very large ((4+2d+d2)×(4+2d+d2)),

the rank of its solution is very low (upper bounded by 3 here). This indicates that the relaxation

result will be in a close neighborhood of the global optimal solution considering the fact that a

rank 1 solution specifies the global optimal solution. Furthermore, this bound exists regardless

of dimensionality or scale of the input data.

5.3.2 Model Expansion Using Sparse Priors

We next generalize the Bayesian linear regression model by including dimension specific precisions

to w that can be learned to prune irrelevant coefficients in a similar spirit as the Lasso [125]. This

model is also known as the relevance vector machine or automatic relevance determination [10].

It modifies the Bayesian linear regression model by defining a separate prior on the diagonal

entries of the covariance matrix of w as follows,

yi∼Normal(x>i w,α
−1),

α∼Gamma(a0, b0),

w∼Normal(0,diag(λ1, . . . , λd)
−1),

λk ∼Gamma(m0, l0). (5.12)

Defining a posterior approximating variational distribution q as in the previous case, we now

include q(λk) = Gamma(mk, lk) for k = 1, . . . , d. Calculating the objective results in the same
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form as before,

L(a, b,m1, . . . ,md, l1, . . . , ld, µ,Σ) =

−
N∑
i=1

1

2

a

b
((yi − x>i µ)2 + x>i Σxi) +

N

2
(ψ(a)− ln b)

+

d∑
i=1

(ψ(mi)− ln(li))−
1

2
(µ>diag(

m1

l1
, ...,

md

ld
)µ)

− 1

2
trace(diag(

m1

l1
, ...,

md

ld
)Σ)

+

d∑
i=1

(m0 − 1)(ψ(mi)− ln(li))− l0
mi

li

+ (a0 − 1)(ψ(a)− ln b)− b0
a

b
+

1

2
ln |Σ|

+ a− ln b+ ln Γ(a) + (1− a)ψ(a)

+

d∑
i=1

(mi − ln li + ln Γ(mi) + (1−mi)ψ(mi)) + const.

(5.13)

By reformulating this objective appropriately for convex relaxation, the procedure is very similar

to the simpler model. We introduce new variables to replace high order polynomial terms. These

new variables are

si =
1

li
, ri = misi, ζi = riµi for i = 1, . . . , d. (5.14)

Repeating the relaxation steps described earlier, we achieve a convex relaxation for the op-

timization of (5.13). Similar to the simpler model, we can achieve the following theoretical

result.

5.3.2.0.2 Proposition 2. The matrix solution obtained by CRVI for (5.13) has a rank less

than or equal to 3.

The graph structure and tree decomposition for this problem is very similar to the simpler

model in (5.3.1), and the same theoretical upper bounds are guaranteed. This strong upper

bound exists regardless of the dimensionality of data or size of the input, even though this

Bayesian model has a more complex prior structure and many more model parameters. Still, this

is only a bound; as we will show in the experiments section the actual rank of the solution to the

relaxed optimization is less than 3, and in fact is very close to 1. This means that although the

theoretical bound assure us that the rank is less than or equal to 3, in practice on real data sets

we can get almost exactly the global optimal solutions of the original problem.
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5.3.3 CRVI for Nonparametric Factor Analysis

We illustrate CRVI on a more complex model, Bayesian nonparametric factor analysis [96] of data

D = {xi ∈ Rd}Ni=1 . This will also allow us to propose another modification for the application of

this framework due to the much larger number of parameters in the model. The model is

xi∼Normal(WZiCi, σ
2I), (5.15)

Ci∼Normal(0, λ−1I),

πk ∼Beta(α γ
K , α(1− γ

K )),

zi,k ∼Bernoulli(πk),

Zi = diag(zi,1, . . . , zi,K),

where k = 1, ...,K are the latent factor indexes. In the limit K → ∞ this converges to a

nonparametric beta process model [97]. In addition, due to the model specifications in (5.15), a

sparse representation in enforced by beta-Bernoulli prior for Z.

Given a matrix W ∈ Rd×K , for each vector xi we seek a sparse zero-one coding Zi of this

vector as well as weight coefficients Ci. The Z’s specify which factors in W are used to represent

the data, while the C’s indicate the weights of those selected factors. In this model we will seek

to find the posterior distribution of C as well as point estimates for Z as well as W . Therefore,

the algorithm is actually EM and not variational inference since there is no forced factorization of

q. However, we do this to focus on another area where CRVI may be useful, as described below.

For each data point i we define q(Ci) =Normal(Ci|µ,Σ). Here, we only focus on learning the

local variables for a specific data point xi, being Zi, Ci. Therefore, we drop the subscripts below.

The optimization problem corresponding to this part of the model is

min
Z,µ,Σ

1

2σ2
(x−WZµ)>(x−WZµ)

+
1

2σ2
trace(WZΣZW>)

(5.16)

+
λ

2
µ>µ+

λ

2
trace(Σ)− 1

2
log(|Σ|) + Z>h

subject to Zk,k ∈ {0, 1}, for k = 1, ...,K, Σ � 0
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where h is a constant vector with respect to optimization variables. Note that this optimization

can be done in parallel for data points due to their independence. All of objective terms are

polynomial with respect to the optimization variables. In addition, the log term is also convex

with respect to Σ. To make all of the constraints quadratic, we replace the zero or one constraint

for Zk,k with Z2
k,k − Zk,k = 0. Therefore, we obtain a non-convex optimization with polynomial

terms containing all of the non-convexities.

5.3.3.0.3 Motivation and discussion. Following the steps described in the previous section,

we are able to define the convex relaxation optimization for this problem. Another novelty

introduced here is that we have not relaxed the entire problem globally, which is computationally

impossible for a model of this size (the dimensionality of X would be too massive). Instead, we

only relaxed locally on the parameters for each observation. However, since optimizing over C

and Z is both non-convex and combinatorially hard, we use this model to illustrate a proposed

approach to local relaxation of the objective. Contrasting this with coordinate ascent, which

would update one variable holding another fixed, we anticipate that this can find better local

optimal values over subsets of parameters, and therefore hopefully over the entire objective

function. After constructing the graph of this problem, we find that the rank of the optimal

solution of the relaxed problem is upper bounded by 3. Accordingly, we anticipate to find

near-global optimal solutions over these interacting local parameters.

5.3.4 CRVI in General Form

Following the ideas introduced by these examples, we present CRVI as a general framework. Let

us consider the generic variational inference problem in (5.2). We split the objective into two

functions, one containing polynomial terms, f , and one for the remaining parts, g. Transforming

f to be a quadratic function, possibly by adding new constraints and variables, we get the

optimization

min
ϕ(1),ϕ(2)

f(ϕ(1)) + g(ϕ(2))

subject to ϕ(1), ϕ(2) ∈ feasible set.

(5.17)
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Note that ϕ(1) and ϕ(2) might have overlapping parameters. To complete the relaxation, we

introduce a new matrix variable Φ(1) and obtain CRVI for the general form,

min
Φ(1),ϕ2

f(Φ(1)) + g(ϕ(2))

subject to Φ(1), ϕ(2) ∈ feasible set,

Φ(1)
1,1 = 1, Φ(1) � 0.

(5.18)

If g is a convex function, (5.18) is a convex optimization problem solvable in polynomial time.

By constructing the graph for this relaxation approximation bounds can be achieved. The

lower the rank of the optimal solution Φ
(1)
opt, the more exact the approximation. As seen in the

above examples, variational inference do have this structure, for which low rank recovery and

near-global optimal solutions are guaranteed. In the cases where g is non-convex, CRVI could be

used to partially convexify the optimization problem. We can reduce the hardness related to f

with this relaxation technique, get approximation bounds, and improve the results compared to

the cases where we have to deal with both non-convex f and g.

5.4 Experimental Results

5.4.1 CRVI for Sparse Bayesian Linear Regression

We focus on comparing the optimal value of the variational objective calculated by our method

CRVI in Section (5.3.2), and using coordinate ascent variational inference (CAVI) which is the

standard method for variational optimization. We implemented CRVI code using CVX, which

is a package for specifying and solving convex programs [53,54]. We experiment on 9 datasets

from the UCI repository with various sizes and dimensions. These data sets are: Iris, Birth rate

and economic growth, Yacht, Pima Indian diabetes, Bike sharing, Parkinson data, Wisconsin

breast cancer (WDBC), Online news popularity, Year of release prediction for a million songs.

We experimented using 100 different hyper-parameter settings and initial values for each dataset.

Table (5.1) shows some details about these datasets, as well as the average running time for our

simulations and the average rank of the optimal solution found by CRVI.
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Table 5.1: Information about the datasets, running time of the algorithms, and rank of the found

solution using CRVI. We see that CRVI is slower than CAVI (coordinate ascent). However, the

rank of the found CRVI solution is near 1 (and less than the theoretical upper bound of 3),

indicating a solution nearer the global optimum. This is confirmed in Figure 5.2.

DataSet Dim. # of Samples CAVI time (s) CRVI time (s) Rank

Birth Rate & Econ 4 30 0.281 1.115 1.11

Iris 4 150 0.231 1.807 1.20

Yacht 6 308 0.402 2.111 1.10

Pima Indian Diabetes 8 768 0.571 3.040 1.67

Bike Sharing 13 731 0.884 6.749 1.61

Parkinson 21 5875 0.962 7.309 1.98

WDBC 31 569 1.059 10.766 1.73

Online News Popularity 58 39644 9.341 15.223 1.52

Year Prediction Songs 90 515345 18.809 22.050 1.78

As can be seen, CRVI is slower than CAVI, which is not unexpected. Although the actual

dimensionality of the semidefinite matrix variables for these datasets varies from 28 × 28 to

8284 × 8284, the average ranks found show that, regardless of the size of the data, the rank

remains small and close to 1. This means that the CRVI is able to find nearly-global optimal

solutions, considering that a rank 1 solution gives the exact global optimum solution. To evaluate

the improvement according to the variational objective function, for each simulation of each

dataset we subtracted the local optimal value of CAVI from CRVI, and divided it by optimal

value found by CAVI to get the relative improvement to the maximization problem. We show

a summary of these results in a boxplot for each dataset in Figure 5.2. As can be seen, CRVI

significantly improved the local optimal solution of the optimization over coordinate ascent,

which can be interpreted as finding a more accurate posterior approximation.



CHAPTER 5. CONVEX RELAXATION FOR VARIATIONAL INFERENCE 72

R
el

at
ive

 In
cr

em
en

t i
n 

th
e 

O
pt

im
al

 V
al

ue
0.

0
0.

1
0.

2
0.

3

Birth
 Econ Iris Yacht

Pima Ind. D
iab.

Bike
 Sharing

Parkin
sons

WDBC

Online News P
op.

Year P
red. S

ongs

Figure 5.2: Boxplot of relative improvement in the calculated local optimal value of CRVI

compared to CAVI. Each box represents the summary of the fractional improvement of CRVI

over CAVI for 100 simulations using different prior hyper-parameters and initializations. After

calculating the respective local optimal variational objective functions, the value found by CAVI

is subtracted from the value from CRVI and divided by the values from CAVI to obtain the

relative improvement score. As is evident, CRVI gave a significant improvement over CAVI.
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5.4.2 CRVI for Nonparametric Factor Analysis

We also compare the accuracy of CRVI for sparse signal representation for dictionary learning

with K-SVD [1] on synthetic data. K-SVD uses orthogonal matching pursuits (OMP) to encode

each signal in a dictionary [128], which is also learned during the optimization process. Our goal

is to compare the number of correctly recovered entries in the binary Z. We generate N = 300

observations of D = 100 dimensions and set K = 100 and λ = 0.1. We change the sparsity level

of the generated Z over different simulations.

In Figure 5.3, the x-axis represents the probability of a ‘1’ in each entry of Z when generating

this binary encoding, while the y-axis shows the percentage of correctly recovered values in Z

over the entire data set. As can be seen, CRVI is able to better learn the correct values for Z by

finding the correct sparsity. Figure 5.4 shows the percentage of correctly recovered 1’s for CRVI

and KSVD. As can be seen from the figure, CRVI has a better performance in recovering the

correct locations of 1’s in the original Z matrix. Also, since we are focusing on the local optimal

solution over Z and C as discussed in Section 5.3.3, we use the correct W in this experiment.

Therefore, KSVD actually reduces to OMP in this experiment.
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Figure 5.3: The fraction of agreement in the recovered Z’s with original Z using CRVI and

K-SVD (here, OMP). The x-axis shows the probability of a 1 in every entry of the original sparse

matrix.



CHAPTER 5. CONVEX RELAXATION FOR VARIATIONAL INFERENCE 74

0 0.05 0.1 0.15 0.2 0.25
0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

c.
 o

f c
or

re
ct

ly
 r

ec
ov

er
ed

 1
 

 

CRVI
KSVD

Figure 5.4: The fraction of correctly recovered 1’s in the original Z using CRVI and K-SVD

(here, OMP). The x-axis shows the probability of a 1 in every entry of original sparse matrix.

5.5 Discussion

Convex relaxations are a powerful technique for approximating (convexifying) hard optimization

problems associated with variational inference. However, one of the caveats of this method is

its runtime complexity, arising mostly from the positive semidefinite constraint. Fortunately,

recent advances in this area have suggested faster ways to impose these types of constraints by

breaking them into several smaller-sized semidefinite constraints. This significantly improves the

running time of these types of relaxations [68]. We expect that incorporating these techniques

can improve the computational performance of this algorithm. Another future direction is to

find tighter bounds for the relaxation exactness using the treewidth measure. Finding the exact

treewidth of a graph is an NP-hard problem in general, and the bounds given in this work used

the treewidth’s that were within our computational power. There may be better ways to reach

smaller treewidth’s and make the theoretical bounds tighter. The observed ranks in Table (5.1),

smaller than the theoretical upper bound of 3, indicate that there is room for improvement in

the theory in this direction.

5.6 Conclusion

In this chapter, I presented convex relaxation for variational inference (CRVI), a method to learn

parameters of approximate posterior distributions using mean-field variational inference. We
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focused on Bayesian linear regression and sparse coding models. By lifting the domain of the

optimization, we were able to relax the non-convex parts of the variational objective function

and approximate the variational parameters. Graph theoretic tools enabled us to quantify the

exactness of this approximation, and estimate the closeness of the obtained solution to the global

optimal solution. We showed that CRVI can significantly improve the traditional coordinate

ascent (CAVI) optimization technique on various datasets for sparse Bayesian linear regression

and sparse coding for nonparametric factor analysis.
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Chapter 6

Convex Relaxation for Distributed

Control Problem

This chapter is concerned with the optimal distributed control (ODC) problem for discrete-time

deterministic and stochastic systems. The objective is to design a fixed-order distributed controller

with a pre-specified structure that is globally optimal with respect to a quadratic cost functional.

It is shown that this NP-hard problem has a quadratic formulation, which can be relaxed to a

semidefinite program (SDP). If the SDP relaxation has a rank-1 solution, a globally optimal

distributed controller can be recovered from this solution. By utilizing the notion of treewidth, it

is proved that the nonlinearity of the ODC problem appears in such a sparse way that an SDP

relaxation of this problem has a matrix solution with rank at most 3. Since the proposed SDP

relaxation is computationally expensive for a large-scale system, a computationally-cheap SDP

relaxation is also developed with the property that its objective function indirectly penalizes

the rank of the SDP solution. Various techniques are proposed to approximate a low-rank SDP

solution with a rank-1 matrix, leading to recovering a near-global controller together with a

bound on its optimality degree. The above results are developed for both finite-horizon and

infinite horizon ODC problems. While the finite-horizon ODC is investigated using a time-domain

formulation, the infinite-horizon ODC problem for both deterministic and stochastic systems is

studied via a Lyapunov formulation. The SDP relaxations developed in this work are exact for
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the design of a centralized controller, hence serving as an alternative for solving Riccati equations.

The efficacy of the proposed SDP relaxations is elucidated in numerical examples.

6.1 Introduction

The area of decentralized control is created to address the challenges arising in the control of

real-world systems with many interconnected subsystems. The objective is to design a structurally

constrained controller—a set of partially interacting local controllers—with the aim of reducing

the computation or communication complexity of the overall controller. The local controllers of a

decentralized controller may not be allowed to exchange information. The term distributed control

is often used in lieu of decentralized control in the case where there is some information exchange

between the local controllers (possibly distributed over a geographical area). It has been long

known that the design of a globally optimal decentralized (distributed) controller is a daunting

task because it amounts to an NP-hard optimization problem in general [129,135]. Great effort

has been devoted to investigating this highly complex problem for special types of systems,

including spatially distributed systems [5, 27,33,73,90], dynamically decoupled systems [15,69],

weakly coupled systems [117], and strongly connected systems [74]. Another special case that has

received considerable attention is the design of an optimal static distributed controller [37,81].

Early approaches for the optimal decentralized control problem were based on parameterization

techniques [28, 47], which were then evolved into matrix optimization methods [112, 139]. In

fact, with a structural assumption on the exchange of information between subsystems, the

performance offered by linear static controllers may be far less than the optimal performance

achievable using a nonlinear time-varying controller [135].

Due to the recent advances in the area of convex optimization, the focus of the existing

research efforts has shifted from deriving a closed-form solution for the above control synthesis

problem to finding a convex formulation of the problem that can be efficiently solved numerically

[6, 29, 34, 89, 104]. This has been carried out in the seminal work [109] by deriving a sufficient

condition named quadratic invariance, which has been specialized in [116] by deploying the

concept of partially order sets. These conditions have been further investigated in several other
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papers [72,79,110]. A different approach is taken in the recent papers [123] and [106], where it

has been shown that the distributed control problem can be cast as a convex optimization for

positive systems.

There is no surprise that the decentralized control problem is computationally hard to

solve. This is a consequence of the fact that several classes of optimization problems, including

polynomial optimization and quadratically-constrained quadratic program as a special case, are

NP-hard in the worst case. Due to the complexity of such problems, various convex relaxation

methods based on linear matrix inequality (LMI), semidefinite programming (SDP), and second-

order cone programming (SOCP) have gained popularity [18, 131]. These techniques enlarge the

possibly non-convex feasible set into a convex set characterizable via convex functions, and then

provide the exact or a lower bound on the optimal objective value. The effectiveness of these

techniques has been reported in several papers. For instance, [50] shows how SDP relaxation

can be used to find better approximations for maximum cut (MAX CUT) and maximum 2-

satisfiability (MAX 2SAT) problems. Another approach is proposed in [51] to solve the max-3-cut

problem via a complex SDP. The approaches in [50] and [51] have been generalized in several

papers, including [59,93].

Semidefinite programming relaxation usually converts an optimization with a vector variable

to a convex optimization with a matrix variable, via a lifting technique. The exactness of the

relaxation can then be interpreted as the existence of a low-rank (e.g., rank-1) solution for

SDP relaxation. Several papers have studied the existence of a low-rank solution to matrix

optimizations with linear or nonlinear (e.g., LMI) constraints. For instance, the papers [85, 101]

provide upper bounds on the lowest rank among all solutions of a feasible LMI problem. A

rank-1 matrix decomposition technique is developed in [122] to find a rank-1 solution whenever

the number of constraints is small. We have shown in [76] and [118] that SDP relaxation is able

to solve a large class of non-convex energy-related optimization problems performed over power

networks. We related the success of the relaxation to the hidden structure of those optimizations

induced by the physics of a power grid. Inspired by this positive result, we developed the notion

of “nonlinear optimization over graph” in [119–121]. Our technique maps the structure of an

abstract nonlinear optimization into a graph from which the exactness of SDP relaxation may
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be concluded. By adopting the graph technique developed in [121], the objective of the present

work is to study the potential of SDP relaxation for the optimal distributed control problem.

In this work, we cast the optimal distributed control (ODC) problem as a non-convex

optimization problem with only quadratic scalar and matrix constraints, from which an SDP

relaxation can be obtained. The goal is to show that this relaxation has a low-rank solution

whose rank depends on the topology of the controller to be designed. In particular, we prove that

the design of a static distributed controller with a pre-specified structure amounts to a sparse

SDP relaxation with a solution of rank at most 3. This positive result is a consequence of the

fact that the sparsity graph associated with the underlying optimization problem has a small

treewidth. The notion of “treewidth” used in this work could potentially help to understand

how much approximation is needed to make the ODC problem tractable. This is due to a recent

result stating that a rank-constrained optimization problem has an almost equivalent convex

formulation whose size depends on the treewidth of a certain graph [9]. In this work, we also

discuss how to round the rank-3 SDP matrix to a rank-1 matrix in order to design a near-global

controller.

The results of this work hold true for both a time-domain formulation corresponding to a

finite-horizon control problem and a Lyapunov-domain formulation associated with an infinite-

horizon deterministic/stochastic control problem. We first investigate the ODC problem for

the deterministic systems and then the ODC problem for stochastic systems. Our approach

rests on formulating each of these problems as a rank-constrained optimization from which an

SDP relaxation can be derived. With no loss of generality, this work focuses on the design

of a static controller. Since the proposed relaxations with guaranteed low-rank solutions are

computationally expensive, we also design computationally-cheap SDP relaxations for numerical

purposes. Afterwards, we develop some heuristic methods to recover a near-optimal controller

from a low-rank SDP solution. Note that the computationally-cheap SDP relaxations associated

with the infinite-horizon ODC are exact in both deterministic and stochastic cases for the classical

(centralized) LQR and H2 problems. Although the focus of this chapter is static controllers, its

results can be naturally generalized to the dynamic case as well.



CHAPTER 6. CONVEX RELAXATION FOR DISTRIBUTED CONTROL PROBLEM 80

We conduct case studies on a mass-spring system and 100 random systems to elucidate the

efficacy of the proposed relaxations. In particular, the design of many near-optimal structured

controllers with global optimality degrees above 99% will be demonstrated.

This work is organized as follows. The problem is introduced in Section 6.2, and then

the SDP relaxation of a quadratically-constrained quadratic program (QCQP) is studied via a

graph-theoretic approach. Three different SDP relaxations of the finite-horizon deterministic

ODC problem are presented for the static controller design in Section 6.3. The infinite-horizon

deterministic ODC problem is studied in Section 6.4. The results are generalized to an infinite-

horizon stochastic ODC problem in Section 6.5, followed by a brief discussion on dynamic

controllers in Section 6.6. Various experiments and simulations are provided in Section 6.7.

Concluding remarks are drawn in Section 6.8.

6.1.1 Notations

R, Sn and S+
n denote the sets of real numbers, n × n symmetric matrices and n × n positive

semidefinite matrices, respectively. The m by n rectangular identity matrix whose (i, j) entry is

equal to the Kronecker delta δij is denoted by Im×n or alternatively In when m = n. rank{W}

and trace{W} denote the rank and trace of a matrix W . The notation W � 0 means that W

is symmetric and positive semidefinite. Given a matrix W , its (l,m) entry is denoted as Wlm.

Given a block matrix W, its (l,m) block is shown as Wlm. Given a matrix M , its Moore Penrose

pseudoinverse is denoted as M+. The superscript (·)opt is used to show a globally optimal value

of an optimization parameter. The symbols (·)T and ‖ · ‖ denote the transpose and 2-norm

operators, respectively. The symbols 〈·, ·〉 and ‖ · ‖F denote the Frobinous inner product and

norm of matrices, respectively. The notation |.| shows the size of a vector, the cardinality of a set

or the number of vertices a graph, depending on the context. The expected value of a random

variable x is shown as E{x}. The submatirx of M formed by rows form the set S1 and columns

from the set S2 is denoted by M{S1,S2}. The notation G = (V, E) implies that G is a graph

with the vertex set V and the edge set E .
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6.2 Preliminaries

In this work, the Optimal Distributed Control (ODC) problem is studied based on the following

steps:

• First, the problem is cast as a non-convex optimization problem with only quadratic scalar

and/or matrix constraints.

• Second, the resulting non-convex problem is formulated as a rank-constrained optimization.

• Third, a convex relaxation of the problem is derived by dropping the non-convex rank

constraint.

• Last, the rank of the minimum-rank solution of the SDP relaxation is analyzed.

Since there is no unique SDP relaxation for the ODC problem, a major part of this work is

devoted to designing a sparse quadratic formulation of the ODC problem with a guaranteed

low-rank SDP solution. To achieve this goal, a graph is associated to each SDP, which is then

sparsified to contrive a problem with a low-rank solution.

6.2.1 Problem Formulation

The following variations of the Optimal Distributed Control (ODC) problem are studied in this

work.

6.2.1.1 Finite-horizon deterministic ODC problem

Consider the discrete-time system

x[τ + 1] = Ax[τ ] +Bu[τ ], τ = 0, 1, . . . , p− 1 (6.1a)

y[τ ] = Cx[τ ], τ = 0, 1, . . . , p (6.1b)

with the known matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n, and x[0] = x0 ∈ Rn, where p is the

terminal time. The goal is to design a distributed static controller u[τ ] = Ky[τ ] minimizing a

quadratic cost function under the constraint that the controller gain K must belong to a given
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linear subspace K ⊆ Rm×r. The set K captures the sparsity structure of the unknown constrained

controller and, more specifically, it contains all m× r real-valued matrices with forced zeros in

certain entries. The cost function

p∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α‖K‖2F (6.2)

is considered in this work, where α is a nonnegative scalar, and Q and R are positive-semidefinite

matrices. This problem will be studied in Section 6.3.

Remark 6.1. The third term in the objective function of the ODC problem is a soft penalty term

aimed at avoiding a high-gain controller. Instead of this soft penalty, we could impose a hard

constraint ‖K‖F ≤ β, for a given number β. The method to be developed later can be adopted for

the modified case.

6.2.1.2 Infinite-horizon deterministic ODC problem

The infinite-horizon ODC problem corresponds to the case p = +∞ subject to the additional

constraint that the controller must be stabilizing. This problem will be studied through a

Lyapunov domain formulation in Section 6.4.

6.2.1.3 Infinite-horizon stochastic ODC problem

Consider the discrete-time stochastic system

x[τ + 1] = Ax[τ ] +Bu[τ ] + Ed[τ ], τ = 0, 1, . . . (6.3a)

y[τ ] = Cx[τ ] + Fv[τ ], τ = 0, 1, . . . (6.3b)

with the known matrices A, B, C, E, and F , where d[τ ] and v[τ ] denote the input disturbance

and measurement noise, which are assumed to be zero-mean white-noise random processes. The

ODC problem for the above system will be investigated in Section 6.5.

The extension of the above results to the design of dynamic controllers will be briefly discussed

in Section 6.6.
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Figure 6.1: A minimal tree decomposition for a ladder graph.

6.2.2 Graph Theory Preliminaries

Definition 6.1. For two simple graphs G1 = (V, E1) and G2 = (V, E2) with the same set of

vertices, their union is defined as G1 ∪ G2 = (V, E1 ∪ E2).

Definition 6.2. The representative graph of an n×n symmetric matrix W , denoted by G(W ), is

a simple graph with n vertices whose edges are specified by the locations of the nonzero off-diagonal

entries of W . In other words, two disparate vertices i and j are connected if Wij is nonzero.

Consider a graph G identified by a set of “vertices” and a set of edges. This graph may have

cycles in which case it cannot be a tree. Using the notion to be explained below, we can map G

into a tree T identified by a set of “nodes” and a set of edges where each node of T contains a

group of vertices of G.

Definition 6.3 (Treewidth). Given a graph G = (V, E), a tree T is called a tree decomposition

of G if it satisfies the following properties:

1. Every node of T corresponds to and is identified by a subset of V.

2. Every vertex of G is a member of at least one node of T .

3. For every edge (i, j) of G, there should be a node in T containing vertices i and j simulta-

neously.

4. Given an arbitrary vertex k of G, the subgraph induced by all nodes of T containing vertex

k must be connected (more precisely, a tree).

Each node of T is a bag (collection) of vertices of G and hence it is referred to as bag. The width

of T is the cardinality of its biggest bag minus one. The treewidth of G is the minimum width

over all possible tree decompositions of G and is denoted by tw(G).
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Every graph has a trivial tree decomposition with one single bag consisting of all its vertices.

Figure 6.1 shows a graph G with 6 vertices named a, b, c, d, e, f , together with its minimal tree

decomposition T . Every node of T is a set containing three members of V. The width of this

decomposition is therefore equal to 2. Observe that the edges of the tree decomposition are

chosen in such a way that every subgraph induced by all bags containing each member of V is a

tree (as required by Property 4 stated before).

Note that if G is a tree itself, it has a minimal tree decomposition T such that: each bag

corresponds to two connected vertices of G and every two adjacent bags in T share a vertex in

common. Therefore, the treewidth of a tree is equal to 1. The reader is referred to [14] for a

comprehensive literature review on treewidth.

6.2.3 SDP Relaxation

The objective of this subsection is to study SDP relaxation of a quadratically-constrained

quadratic program (QCQP) using a graph-theoretic approach. Consider the standard nonconvex

QCQP problem

minimize
x∈Rn

f0(x) (6.4a)

subject to fk(x) ≤ 0, k = 1, . . . , q, (6.4b)

where fk(x) = xTAkx+ 2bTk x+ ck for k = 0, . . . , q. Define

Fk ,

ck b
T
k

bk Ak

 . (6.5)

Each fk has the linear representation fk(x) = 〈Fk,W 〉 for the following choice of W :

W , [x0 xT ]T [x0 xT ] (6.6)

where x0 is considered as 1. On the other hand, an arbitrary matrix W ∈ Sn+1 can be factorized

as (6.6) if and only if it satisfies three properties: W11 = 1, W � 0, and rank{W} = 1. In
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this representation of QCQP, the rank constraint carries all the nonconvexity. Neglecting this

constraint yields the convex problem

minimize
W∈Sn+1

〈F0,W 〉 (6.7a)

subject to 〈Fk,W 〉 ≤ 0 k = 1, . . . , q, (6.7b)

W11 = 1, (6.7c)

W � 0, (6.7d)

known as a semidefinite programming (SDP) relaxation of the QCQP (6.4). The existence of a

rank-1 solution for an SDP relaxation guarantees the equivalence of the original QCQP and its

relaxed problem.

6.2.4 Connection Between Rank and Sparsity

To explore the rank of the minimum-rank solution of SDP relaxation, define G = G(F0)∪· · ·∪G(Fq)

as the sparsity graph associated with the problem (6.7). The graph G describes the zero-nonzero

pattern of the matrices F0, . . . , Fq, or alternatively captures the sparsity level of the QCQP

problem (6.4). Let T = (VT , ET ) be a tree decomposition of G. Denote its width as t and its

bags as B1,B2, ...,B|T |. It is known that given such a decomposition, every solution W ref ∈ Sn+1

of the SDP problem (6.7) can be transformed into a solution W opt whose rank is upper bounded

by t+ 1 [85]. To perform this transformation, a suitable polynomial-time recursive algorithm

will be proposed below.

Rank reduction algorithm:

1. Set T ′ := T and W := W ref .

2. If T ′ has a single node, then consider W opt as W and terminate; otherwise continue to the

next step.

3. Choose a pair of bags Bi,Bj of T ′ such that Bi is a leaf of T ′ and Bj is its unique neighbor.
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4. Using the notation W{·, ·} introduced in Section 6.1.1, define

O ,W{Bi ∩ Bj ,Bi ∩ Bj} (6.8a)

Vi ,W{Bi \ Bj ,Bi ∩ Bj} (6.8b)

Vj ,W{Bj \ Bi,Bi ∩ Bj} (6.8c)

Hi ,W{Bi \ Bj ,Bi \ Bj} ∈ Rni×ni (6.8d)

Hj ,W{Bj \ Bi,Bj \ Bi} ∈ Rnj×nj (6.8e)

Si , Hi − ViO+V T
i = QiΛiQ

T
i (6.8f)

Sj , Hj − VjO+V T
j = QjΛjQ

T
j (6.8g)

where QiΛiQ
T
i and QjΛjQ

T
j denote the eigenvalue decompositions of Si and Sj with the

diagonals of Λi and Λj arranged in descending order. Then, update a part of W as follows:

W{Bj \ Bi,Bi \ Bj} := VjO
+V T

i

+Qj
√

Λj Inj×ni
√

Λi Q
T
i

and update W{Bi \ Bj ,Bj \ Bi} accordingly to preserve the Hermitian property of W .

5. Update T ′ by merging Bi into Bj , i.e., replace Bj with Bi ∪Bj and then remove Bi from T ′.

6. Go back to step 2.

Theorem 6.1. The output of the rank reduction algorithm, denoted as W opt, is a solution of

the SDP problem (6.7) whose rank is smaller than or equal to t+ 1.

Proof 6.1. Consider one run of Step 4 of the rank reduction algorithm. Our first objective is to

show that W{Bi ∪ Bj ,Bi ∪ Bj} is a positive semidefinite matrix whose rank is upper bounded by

the maximum ranks of W{Bi,Bi} and W{Bj ,Bj}. To this end, one can write:

W{Bi ∪ Bj ,Bi ∪ Bj} =



O V T
i V T

j

Vi Hi Z
T

Vj Z Hj


(6.9)
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where Z ,W{Bj \ Bi,Bi \ Bj}. Now, define

S ,

Hi Z
T

Z Hj

−
Vi
Vj

O+

[
V T
i V T

j

]

=

Qi 0

o Qj

N
Q

T
i 0

0 QTj

 (6.10)

where

N ,

 Λi
√

Λi Ini×nj
√

Λj√
Λj Inj×ni

√
Λi Λj

 (6.11)

It is straightforward to verify that

rank{S} = rank{N} = max {rank{Si}, rank{Sj}}

On the other hand, the Schur complement formula yields:

rank {W{Bi,Bi}} = rank{O+}+ rank{Si}

rank {W{Bj ,Bj}} = rank{O+}+ rank{Sj}

rank {W{Bi ∪ Bj ,Bi ∪ Bj}} = rank{O+}+ rank{S}

(see [20]). Combining the above equations leads to the conclusion that the rank of W{Bi ∪

Bj ,Bi ∪Bj} is upper bounded by the maximum ranks of W{Bi,Bi} and W{Bj ,Bj}. On the other

hand, since N is positive semidefinite, it follows from (6.10) that W{Bi ∪ Bj ,Bi ∪ Bj} � 0. A

simple induction concludes that the output W opt of the matrix completion algorithm is a positive

semidefinite matrix whose rank is upper bounded by t + 1. The proof is completed by noting

that W opt and W ref share the same values on their diagonals and those off-diagonal locations

corresponding to the edges of the sparsity graph G.
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6.3 Finite-horizon Deterministic ODC Problem

The primary objective of the ODC problem is to design a structurally constrained gain K. Assume

that the matrix K has l free entries to be designed. Denote these parameters as h1, h2, . . . , hl.

To formulate the ODC problem, the space of permissible controllers can be characterized as

K ,

{
l∑

i=1

hiNi

∣∣∣∣∣ h ∈ Rl
}
, (6.12)

for some (fixed) 0-1 matrices N1, . . . , Nl ∈ Rm×r. Now, the ODC problem can be stated as

follows.

Finite-Horizon ODC Problem: Minimize

p∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α‖K‖2F (6.13a)

subject to

x[0] = x0 (6.13b)

x[τ + 1] = Ax[τ ] +Bu[τ ] τ = 0, 1, . . . , p− 1 (6.13c)

y[τ ] = Cx[τ ] τ = 0, 1, . . . , p (6.13d)

u[τ ] = Ky[τ ] τ = 0, 1, . . . , p (6.13e)

K = h1N1 + . . .+ hlNl (6.13f)

over the variables {x[τ ] ∈ Rn}pτ=0, {y[τ ] ∈ Rr}pτ=0, {u[τ ] ∈ Rm}pτ=0, K ∈ Rm×r and h ∈ Rl.

6.3.1 Sparsification of ODC Problem

The finite-horizon ODC is naturally a QCQP problem. Consider an arbitrary SDP relaxation of

the ODC problem and let G be the sparsity graph of this relaxation. Due to existence of nonzero

off-diagonal elements in Q and R, certain edges (and probably cycles) may exist in the subgraphs

of G associated with the state and input vectors x[τ ] and u[τ ]. Under this circumstance, the

treewidth of G could be as high as n. To understand the effect of a non-diagonal controller
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(a) (b)

Figure 6.2: Effect of a nonzero off-diagonal entry of the controller K on the sparsity graph

of the finite-horizon ODC: (a) a subgraph of G for the case where K11 and K22 are the only

free parameters of the controller K, (b) a subgraph of G for the case where K12 is also a free

parameter of the controller.

K, consider the case m = r = 2 and assume that the controller K under design has three free

elements as follows:

K =

K11 K12

0 K22

 (6.14)

(i.e., h1 = K11, h2 = K12 and h3 = K22). Figure 6.2 shows a part of the graph G. It can be

observed that this subgraph is acyclic for K12 = 0 but has a cycle as soon as K12 becomes a free

parameter. As a result, the treewidth of G is contingent upon the zero pattern of K. In order to

guarantee existence of a low rank solution, we diagonalize Q, R and K through a reformulation

of the ODC problem. Note that this transformation is redundant if Q, R and K are all diagonal.

Let Qd ∈ Rn×n and Rd ∈ Rm×m be the respective eigenvector matrices of Q and R, i.e.,

Q = QTd ΛQQd, , R = RTd ΛRRd (6.15)

where ΛQ ∈ Rn×n and ΛR ∈ Rm×m are diagonal matrices. Notice that there exist two constant

binary matrices Φ1 ∈ Rm×l and Φ2 ∈ Rl×r such that

K =
{

Φ1diag{h}Φ2 | h ∈ Rl
}
, (6.16)
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where diag{h} denotes a diagonal matrix whose diagonal entries are inherited from the vector

h [75]. Now, a sparse formulation of the ODC problem can be obtained in terms of the matrices

Ā , QdAQ
T
d , B̄ , QdBR

T
d ,

C̄ , Φ2CQ
T
d , x̄0 , Qdx0,

and the new set of variables x̄[τ ] , Qdx[τ ], ȳ[τ ] , Φ2y[τ ] and ū[τ ] , Rdu[τ ] for every τ =

0, 1, . . . , p.

Reformulated Finite-Horizon ODC Problem: Minimize

p∑
τ=0

(
x̄[τ ]TΛQx̄[τ ] + ū[τ ]TΛRū[τ ]

)
+ α‖h‖22 (6.17a)

subject to

x̄[0] = x̄0 × z2 (6.17b)

x̄[τ + 1] = Āx̄[τ ] + B̄ū[τ ] τ = 0, 1, . . . , p− 1 (6.17c)

ȳ[τ ] = C̄x̄[τ ] τ = 0, 1, . . . , p (6.17d)

ū[τ ] = RdΦ1diag{h}ȳ[τ ] τ = 0, 1, . . . , p (6.17e)

z2 = 1 (6.17f)

over the variables {x̄[τ ] ∈ Rn}pτ=0, {ȳ[τ ] ∈ Rl}pτ=0, {ū[τ ] ∈ Rm}pτ=0, h ∈ Rl and z ∈ R.

To cast the reformulated finite-horizon ODC as a quadratic optimization, define

w ,
[
z hT x̄T ūT ȳT

]T ∈ Rnw (6.18)

where x̄ ,
[
x̄[0]T · · · x̄[p]T

]T
, ū ,

[
ū[0]T · · · ū[p]T

]T
, ȳ ,

[
ȳ[0]T · · · ȳ[p]T

]T
and nw , 1 + l +

(p+ 1)(n+ l+m). The scalar auxiliary variable z plays the role of number 1 (it suffices to impose

the additional quadratic constraint (6.17f) as opposed to z = 1 without affecting the solution).

6.3.2 SDP Relaxations of ODC Problem

In this subsection, two SDP relaxations are proposed for the reformulated finite-horizon ODC

problem given in (6.17). For the first relaxation, there is a guarantee on the rank of the solution.
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In contrast, the second relaxation offers a tighter lower bound on the optimal cost of the ODC

problem, but its solution might be high rank and therefore its rounding to a rank-1 solution

could be more challenging.

6.3.2.1 Sparse SDP relaxation

Let e1, . . . , enw denote the standard basis for Rnw . The ODC problem consists of nl , (p+1)(n+l)

linear constraints given in (6.17b), (6.17c) and (6.17d), which can be formulated as

DTw = 0 (6.19)

for some matrix D ∈ Rnw×nl . Moreover, the objective function (6.17a) and the constraints in

(6.17e) and (6.17f) are all quadratic and can be expressed in terms of some matrices M ∈ Snw ,

{Mi[τ ] ∈ Snw}i=1,...,m; τ=0,1,...,p and E , e1e
T
1 . This leads to the following formulation of (6.17).

Sparse Formulation of ODC Problem: Minimize

〈M,wwT 〉 (6.20a)

subject to

DTw = 0 (6.20b)

〈Mi[τ ], wwT 〉 = 0 i = 1, . . . ,m, τ = 0, 1, . . . , p (6.20c)

〈E,wwT 〉 = 1 (6.20d)

with the variable w ∈ Rnw .

For every j = 1, . . . , nl, define

Dj = D:,je
T
j + ejD

T
:,j (6.21)

where D:,j denotes the j-th column of D. An SDP relaxation of (6.20) will be obtained below.

Sparse Relaxation of Finite-Horizon ODC: Minimize

〈M,W 〉 (6.22a)
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subject to

〈Dj ,W 〉 = 0 j = 1, . . . , nl (6.22b)

〈Mi[τ ],W 〉 = 0 i = 1, . . . ,m, τ = 0, 1, . . . , p (6.22c)

〈E,W 〉 = 1 (6.22d)

W � 0 (6.22e)

with the variable W ∈ Snw .

The problem (6.22) is a convex relaxation of the QCQP problem (6.20). The sparsity graph

of this problem is equal to

G =G(D1) ∪ . . . ∪ G(Dnl) ∪ G(M1[0]) ∪ . . . ∪ G(Mm[0])

∪ . . . ∪ G(M1[p]) ∪ . . . ∪ G(Mm[p])

where the vertices of G correspond to the entries of w. In particular, the vertex set of G can be

partitioned into five vertex subsets, where subset 1 consists of a single vertex associated with the

variable z and subsets 2-5 correspond to the vectors x̄, ū, ȳ and h, respectively. The underlying

sparsity graph G for the sparse formulation of the ODC problem is drawn in Figure 6.3, where

each vertex of the graph is labeled by its corresponding variable. To maintain the readability of

the graph, some edges of vertex z are not shown in the picture. Indeed, z is connected to all

vertices corresponding to the elements of x̄, ū and ȳ due to the linear terms in (6.20b).

Theorem 6.2. The sparsity graph of the sparse relaxation of the finite-horizon ODC problem

has treewidth 2.

Proof 6.2. It follows from the graph drawn in Figure 6.3 that removing vertex z from the sparsity

graph G makes the remaining subgraph acyclic. This implies that the treewidth of G is at most 2.

On the other hand, the treewidth cannot be 1 in light of the cycles of the graph.

Consider the variable W of the SDP relaxation (6.22). The exactness of this relaxation is

tantamount to the existence of an optimal rank-1 solution W opt for (6.22). In this case, an optimal

vector wopt for the ODC problem can be recovered by decomposing W opt as (wopt)(wopt)T (note

that w has been defined in (6.18)). The following observation can be made.
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Figure 6.3: Sparsity graph of the problem (6.22) (some edges of vertex z are not shown to

improve the legibility of the graph).

Corollary 6.1. The sparse relaxation of the finite-horizon ODC problem has a matrix solution

with rank at most 3.

Proof 6.3. This corollary is an immediate consequence of Theorems 6.1 and 6.2.

Remark 6.2. Since the treewidth of the sparse relaxation of the finite-horizon ODC problem

(6.22) is equal to 2, it is possible to significantly reduce its computational complexity. More

precisely, the complicating constraint W � 0 can be replaced by positive semidefinite constraints

on certain 3× 3 submatrices of W , as given below:

W{Bi,Bi} � 0, k = 1, . . . , |T | (6.23)

where T is an optimal tree decomposition of the sparsity graph G, and B1, . . . ,B|T | denote its

bags. After this simplification of the hard constraint W � 0, a quadratic number of entries of

W turn out to be redundant (not appearing in any constraint) and can be removed from the

optimization [44, 85].

6.3.2.2 Dense SDP relaxation

Define D⊥ ∈ Rnw×(nw−nl) as an arbitrary full row rank matrix satisfying the relation DTD⊥ = 0.

It follows from (6.20b) that every feasible vector w satisfies the equation w = D⊥w̃, for a vector
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w̃ ∈ R(nw−nl). Define

M̃ = (D⊥)TMD⊥ (6.24a)

M̃i[τ ] = (D⊥)TMi[τ ]D⊥ (6.24b)

Ẽ = (D⊥)T e1e
T
1 D
⊥. (6.24c)

The problem (6.20) can be cast in terms of w̃ as shown below.

Dense Formulation of ODC Problem: Minimize

〈M̃, w̃w̃T 〉 (6.25a)

subject to

〈M̃i[τ ], w̃w̃T 〉 = 0 i = 1, . . . ,m; τ = 0, 1, . . . , p (6.25b)

〈Ẽ, w̃w̃T 〉 = 1 (6.25c)

over w̃ ∈ R(nw−nl).

The SDP relaxation of the above formulation is provided next.

Dense Relaxation of Finite-Horizon ODC: Minimize

〈M̃, W̃ 〉 (6.26a)

subject to

〈M̃i[τ ], W̃ 〉 = 0 i = 1, . . . ,m; τ = 0, 1, . . . , p (6.26b)

〈Ẽ, W̃ 〉 = 1 (6.26c)

W̃ � 0 (6.26d)

over W̃ ∈ S(nw−nl).

Remark 6.3. Let Fs and Fd denote the feasible sets for the sparse and dense SDP relaxation

problems in (6.22) and (6.26), respectively. It can be easily seen that

{D⊥W̃ (D⊥)T | W̃ ∈ Fd} ⊆ Fs (6.27)
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Therefore, the lower bound provided by the dense SDP relaxation problem (6.26) is equal to or

tighter than that of the sparse SDP relaxation (6.22). However, the rank of the SDP solution of

the dense relaxation may be high, which complicates its rounding to a rank-1 matrix. Hence, the

sparse relaxation may be useful for recovering a near-global controller, while the dense relaxation

may be used to bound the global optimality degree of the recovered controller.

6.3.3 Rounding of SDP Solution to Rank-1 Matrix

Let W opt either denote a low-rank solution for the sparse relaxation (6.22) or be equal to

D⊥W̃ opt(D⊥)T for a low-rank solution W̃ opt (if any) of the dense relaxation (6.26). If the rank

of W opt is 1, then W opt can be mapped back into a globally optimal controller for the ODC

problem through an eigenvalue decomposition W opt = wopt(wopt)T . Assume that W opt does not

have rank 1. There are multiple heuristic methods to recover a near-global controller, some of

which are delineated below.

Direct Recovery Method: If W opt had rank 1, then the (2, 1), (3, 1), . . . , (|h|+ 1, 1) entries

of W opt would have corresponded to the vector hopt containing the free entries of Kopt. Inspired

by this observation, if W opt has rank greater than 1, then a near-global controller may still be

recovered from the first column of W opt. We refer to this approach as Direct Recovery Method.

Penalized SDP Relaxation: Recall that an SDP relaxation can be obtained by eliminating a

rank constraint. In the case where this removal changes the solution, one strategy is to compensate

for the rank constraint by incorporating an additive penalty function, denoted as Ψ(W ), into

the objective of SDP relaxation. A common penalty function Ψ(·) is ε× trace{W}, where ε is

a design parameter. This problem is referred to as Penalized SDP Relaxation throughout this

chapter.

Indirect Recovery Method: Define x as the aggregate state vector obtained by stacking

x[0], ..., x[p]. The objective function of every proposed SDP relaxation depends strongly on x and

only weakly on k if α is small. In particular, if α = 0, then the SDP objective function is not in

terms of K. This implies that the relaxation may have two feasible matrix solutions both leading

to the same optimal cost such that their first columns overlap on the part corresponding to x
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and not the part corresponding to h. Hence, unlike the direct method that recovers h from the

first column of W opt, it may be advantageous to first recover x and then solve a second convex

optimization to generate a structured controller that is able to generate state values as closely to

the recovered aggregate state vector as possible. More precisely, given an SDP solution W opt,

define x̂ ∈ Rn(p+1) as a vector containing the entries (|h|+2, 1), (|h|+3, 1), . . . , (1+|h|+n(p+1), 1)

of W opt. Define the indirect recovery method as the convex optimization problem

minimize

p∑
τ=0

‖x̂[τ + 1]− (A+BKC)x̂[τ ]‖2 (6.28a)

subject to K = h1M1 + . . .+ hlMl (6.28b)

with the variables K ∈ Rm×r and h ∈ Rl. Let K̂ denote a solution of the above problem. In

the case where W opt has rank 1 or the state part of the matrix W opt corresponds to the true

solution of the ODC problem, x̂ is the same as xopt and K̂ is an optimal controller. Otherwise,

K̂ is a feasible controller that aims to make the closed-loop system follow the near-optimal state

trajectory vector x̂. As tested in [38], the above controller recovery method exhibits a remarkable

performance on power systems.

6.3.4 Computationally-Cheap SDP Relaxation

Two SDP relaxations have been proposed earlier. Although these problems are convex, it may

be difficult to solve them efficiently for a large-scale system. This is due to the fact that the size

of each SDP matrix depends on the number of scalar variables at all times from 0 to p. There is

an efficient approach to derive a computationally-cheap SDP relaxation. This will be explained

below for the case where Q and R are non-singular and r,m ≤ n.

Notation 6.1. For every matrix M ∈ Rn1×n2, define the sparsity pattern of M as follows

S(M) , {S ∈ Rn1×n2 | ∀(i, j) Mij = 0⇒ Sij = 0} (6.29)

With no loss of generality, we assume that C has full row rank. There exists an invertible

matrix Φ ∈ Rn×n such that CΦ =

[
Ir 0

]
. Define also

K2 , {Φ1SΦT
1 | S ∈ S(Φ2ΦT

2 )}. (6.30)



CHAPTER 6. CONVEX RELAXATION FOR DISTRIBUTED CONTROL PROBLEM 97

Indeed, K2 captures the sparsity pattern of the matrix KKT . For example, if K consists of

block-diagonal (rectangular) matrix, K2 will also include block-diagonal (square) matrices. Let

µ ∈ R be a positive number such that Q � µ× Φ−TΦ−1, where Φ−T denotes the transpose of

the inverse of Φ. Define

Q̂ := Q− µ× Φ−TΦ−1. (6.31)

Using the slack matrix variables

X , [x[0] x[1] . . . x[p]] , (6.32a)

U , [u[0] u[1] . . . u[p]] , (6.32b)

an efficient relaxation of the ODC problem can be obtained.

Computationally-Cheap Relaxation of Finite-Horizon ODC: Minimize

trace{XT Q̂X + µ W22 + UTRU}+ α trace{W33} (6.33a)

subject to

x[τ + 1] = Ax[τ ] +Bu[τ ], τ = 0, 1, . . . , p− 1, (6.33b)

x[0] = x0, (6.33c)

W =



In Φ−1X [K 0]T

XTΦ−T W22 UT

[K 0] U W33


, (6.33d)

K ∈ K, (6.33e)

W33 ∈ K2, (6.33f)

W � 0, (6.33g)

over K ∈ Rm×r, X ∈ Rn×(p+1), U ∈ Rm×(p+1) and W ∈ Sn+m+p+1 (note that W22 and W33 are

two blocks of the variable W).
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Note that the above relaxation can be naturally cast as an SDP problem by replacing each

quadratic term in its objective with a new variable and then using the Schur complement. We

refer to the SDP formulation of this problem as computationally-cheap SDP relaxation.

Theorem 6.3. The problem (6.33) is a convex relaxation of the ODC problem. Furthermore,

the relaxation is exact if and only if it possesses a solution (Kopt, Xopt, Uopt,Wopt) such that

rank{Wopt} = n.

Proof 6.4. It is evident that the problem (6.33) is a convex program. To prove the remaining

parts of the theorem, it suffices to show that the ODC problem is equivalent to (6.33) subject to

the additional constraint rank{W} = n. To this end, consider a feasible solution (K,X,U,W)

such that rank{W} = n. Since In has rank n, taking the Schur complement of the blocks (1, 1),

(1, 2), (2, 1) and (2, 2) of W yields that

0 = W22 −XTΦ−T (In)−1Φ−1X (6.34)

Likewise,

0 = W33 −KKT (6.35)

On the other hand,

p∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
= trace{XTQX + UTRU} (6.36)

It follows from (6.34), (6.35) and (6.36) that the ODC problem and its computationally cheap

relaxation lead to the same objective at the respective points (K,X,U) and (K,X,U,W). In

addition, it can be concluded from the Schur complement of the blocks (1, 1), (1, 2), (3, 1) and

(3, 2) of W that

U = [K 0]Φ−1X = KCX (6.37)

or equivalently

u[τ ] = KCx[τ ] for τ = 0, 1, . . . , p (6.38)

This implies that (K,X,U) is a feasible solution of the ODC problem. Hence, the optimal objective

value of the ODC problem is a lower bound on that of the computationally-cheap relaxation under

the additional constraint rank{W} = n.
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Now, consider a feasible solution (K,X,U) of the ODC problem. Define W22 = XTΦ−TΦ−1X

and K2 = KKT . Observe that W can be written as the rank-n matrix WrW
T
r , where

Wr =

[
In Φ−1X [K 0]T

]T
(6.39)

Thus, (K,X,U,W) is a feasible solution of the computationally-cheap SDP relaxation. This

implies that the optimal objective value of the ODC problem is an upper bound on that of the

computationally-cheap SDP relaxation under the additional constraint rank{W} = n. The proof

is completed by combining this property with its opposite statement proved earlier.

The sparse and dense SDP relaxations were both obtained by defining a matrix W as the

product of two vectors. However, the computationally-cheap relaxation of the finite-horizon ODC

Problem is obtained by defining W as the product of two matrices. This significantly reduces

the computational complexity. To shed light on this fact, notice that the numbers of rows for

the matrix variables of sparse and dense SDP relaxations are on the order of np, whereas the

number of rows for the computationally-cheap SDP solution is on the order of n+ p.

Remark 6.4. The computationally-cheap relaxation of the finite-horizon ODC Problem auto-

matically acts as a penalized SDP relaxation. To explain this remarkable feature of the proposed

relaxation, notice that the terms trace{W22} and trace{W33} in the objective function of the

relaxation inherently penalize the trace of W. This automatic penalization helps significantly

with the reduction of the rank of W at optimality. As a result, it is expected that the quality of

the relaxation will be better for higher values of α and µ.

Remark 6.5. Consider the extreme case where r = n, C = In, α = 0, p = ∞, and the

unknown controller K is unstructured. This amounts to the famous LQR problem and the

optimal controller can be found using the Riccati equation. It is straightforward to verify that the

computationally-cheap relaxation of the ODC problem is always exact in this case even though it

is infinite-dimensional. The proof is based on the following facts:

• When K is unstructured, the constraint (6.33e) and (6.33f) can be omitted. Therefore,

there is no structural constraint on W33 and W31 (i.e., the (3, 1) block entry).
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• Then, the constraint (6.33d) reduces to W22 = XTΦ−TΦ−1X due to the term trace{W22}

in the objective function. Consequently, the objective function can be rearranged as∑∞
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
.

• The only remaining constraints are the state evolution equation and x[0] = x0. It is

known that the remaining feed-forward problem has a solution (Xopt, Uopt) such that Uopt =

KoptXopt for some matrix Kopt.

6.3.5 Stability Enforcement

The finite-horizon ODC problem studied before had no stability conditions. It is verified in some

simulations in [38] that the closed-loop stability may be automatically guaranteed for physical

systems, provided p is large enough. In this subsection, we aim to directly enforce stability by

imposing additional constraints on the proposed SDP relaxations.

Theorem 6.4. There exists a controller u[τ ] = Ky[τ ] with the structure K ∈ K to stabilize the

system (6.1) if and only if there exist a (Lyapunov) matrix P ∈ Sn, a matrix K ∈ Rm×r, and

auxiliary variables L ∈ Rm×n and G ∈ S2n+m such that P − In AP +BG32

PAT + G23B
T P

 � 0, (6.40a)

K ∈ K, (6.40b)

G � 0, (6.40c)

G33 ∈ K2, (6.40d)

rank{G} = n, (6.40e)

where

G ,



In Φ−1P [K 0]T

PΦ−T G22 G23

[K 0] G32 G33


(6.41)
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Proof 6.5. It is well-known that the system (6.1) is stable under a controller u[τ ] = Ky[τ ] if

and only if there exists a positive-definite matrix P ∈ Sn to satisfy the Lyapunov inequality:

(A+BKC)TP (A+BKC)− P + In � 0 (6.42)

or equivalently  P − In AP +BKCP

PAT + PKTCTBT P

 � 0 (6.43)

Due to the analogy between W and G, the argument made in the proof of Theorem 6.3 can be

adopted to complete the proof of this theorem (note that G32 plays the role of KCP ).

Theorem 6.4 translates the stability of the closed-loop system into a rank-n condition. Consider

one of the aforementioned SDP relaxations of the ODC problem. To enforce stability, it results

from Theorem 6.4 that two actions can be taken: (i) addition of the convex constraints (6.40a)-

(6.40d) to SDP relaxations, (ii) compensation for the rank-n condition through an appropriate

convex penalization of G in the objective function of SDP relaxations. Note that the penalization

is vital because otherwise G22 and G33 would grow unboundedly to satisfy the condition G � 0.

6.4 Infinite-horizon Deterministic ODC Problem

In this section, we study the infinite-horizon ODC problem, corresponding to p = +∞ and

subject to a stability condition.

6.4.1 Lyapunov Formulation

The finite-horizon ODC was investigated through a time-domain formulation. However, to deal

with the infinite dimension of the infinite-horizon ODC and its hard stability constraint, a

Lyapunov approach will be taken here. Consider the following optimization problem.

Lyapunov Formulation of ODC: Minimize

xT0 Px0 + α‖K‖2F (6.44a)
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subject to 

G G (AG+BL)T LT

G Q−1 0 0

AG+BL 0 G 0

L 0 0 R−1


� 0, (6.44b)

P In

In G

 � 0, (6.44c)

K ∈ K, (6.44d)

L = KCG, (6.44e)

over K ∈ Rm×r, L ∈ Rm×n, P ∈ Sn and G ∈ Sn.

It will be shown in the next theorem that the above formulation is tantamount to the

infinite-horizon ODC problem.

Theorem 6.5. The infinite-horizon deterministic ODC problem is equivalent to finding a con-

troller K ∈ K, a symmetric Lyapunov matrix P ∈ Sn, an auxiliary symmetric matrix G ∈ Sn

and an auxiliary matrix L ∈ Rm×n to solve the optimization problem (6.44).

Proof 6.6. Given an arbitrary control gain K, we have:

∞∑
τ=0

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
= x[0]TPx[0] (6.45)

where

P = (A+BKC)TP (A+BKC) +Q+ (KC)TR(KC) (6.46a)

P � 0 (6.46b)

On the other hand, it is well-known that replacing the equality sign “=” in (6.46a) with the

inequality sign “�” does not affect the solution of the optimization problem [18]. After pre- and
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post-multiplying the Lyapunov inequality obtained from (6.46a) with P−1 and using the Schur

complement formula, the constraints (6.46a) and (6.46b) can be combined as

P−1 P−1 ST P−1(KC)T

P−1 Q−1 0 0

S 0 P−1 0

(KC)P−1 0 0 R−1


� 0 (6.47)

where S = (A+BKC)P−1. By replacing P−1 with a new variable G in the above matrix and

defining L as KCG, the constraints (6.44b) and (6.44e) will be obtained. On the other hand,

(6.44c) implies that G � 0 and P � G−1 . Therefore, the minimization of xT0 Px0 subject to

the constraint (6.44c) ensures that P = G−1 is satisfied for at least one optimal solution of the

optimization problem.

Theorem 6.6. Consider the special case where r = n, C = In, α = 0 and K contains the set of

all unstructured controllers. Then, the infinite-horizon deterministic ODC problem has the same

solution as the convex optimization problem obtained from the nonlinear optimization (6.44) by

removing its non-convex constraint (6.44e).

Proof 6.7. It is easy to verify that a solution (Kopt, P opt, Gopt, Lopt) of the convex problem stated

in the theorem can be mapped to the solution (Lopt(Gopt)−1, P opt, Gopt, Lopt) of the non-convex

problem (6.44) and vice versa (recall that C = In by assumption). This completes the proof.

6.4.2 SDP Relaxation

Theorem 6.6 states that a classical optimal control problem can be precisely solved via a

convex relaxation of the nonlinear optimization (6.44) by eliminating its constraint (6.44e).

However, this simple convex relaxation does not work satisfactorily for a general control structure

K = Φ1diag{h}Φ2. To design a better relaxation, define

w =
[
1 hT vec{Φ2CG}T

]T
(6.48)
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where vec{Φ2CG} is an nl × 1 column vector obtained by stacking the columns of Φ2CG. It is

possible to write every entry of the bilinear matrix term KCG as a linear function of the entries

of the parametric matrix wwT . Hence, by introducing a new matrix variable W playing the role

of wwT , the nonlinear constraint (6.44e) can be rewritten as a linear constraint in term of W.

Notation 6.2. Define the sampling operator samp : Rl×nl → Rl×n as follows:

samp{X} =
[
Xi,(n−1)j+i

]
i=1,...,l; j=1,...,n

. (6.49)

Now, one can relax the non-convex mapping constraint W = wwT to W � 0 and another

constraint stating that the first column of W is equal to w. This yields the following convex

relaxation of problem (6.44).

SDP Relaxation of Infinite-Horizon Deterministic ODC: Minimize

xT0 Px0 + α trace{W33} (6.50a)
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subject to 

G G (AG+BL)T LT

G Q−1 0 0

AG+BL 0 G 0

L 0 0 R−1


� 0, (6.50b)

P In

In G

 � 0, (6.50c)

L = Φ1 × samp{W32}, (6.50d)

W =



1 vec{Φ2CG}T hT

vec{Φ2CG} W22 W23

h W32 W33


, (6.50e)

W � 0, (6.50f)

over h ∈ Rl, L ∈ Rm×n, P ∈ Sn, G ∈ Sn and W ∈ S1+l(n+1).

If the relaxed problem (6.50) has the same solution as the infinite-horizon ODC in (6.44),

the relaxation is exact.

Theorem 6.7. The following statements hold regarding the relaxation of the infinite-horizon

deterministic ODC in (6.50):

i) The relaxation is exact if it has a solution (hopt, P opt, Gopt, Lopt,Wopt) such that

rank{Wopt} = 1.

ii) The relaxation always has a solution (hopt, P opt, Gopt, Lopt,Wopt) such that rank{Wopt} ≤

3.
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Proof 6.8. Consider a sparsity graph G of (6.50), constructed as follows. The graph G has

1 + l(n+ 1) vertices corresponding to the rows of W. Two arbitrary disparate vertices i, j ∈ {1, 2,

. . . , 1 + l(n+ 1)} are adjacent in G if Wij appears in at least one of the constraints of the problem

(6.50) excluding the global constraint W � 0. For example, vertex 1 is connected to all remaining

vertices of G. The graph G with its vertex 1 removed is depicted in Figure 6.4. This graph is

acyclic and therefore the treewidth of G is at most 2. Hence, it follows from Theorem 1 that

(6.50) has a matrix solution with rank at most 3.

Theorem 6.7 states that the SDP relaxation of the infinite-horizon ODC problem has a

low-rank solution. However, it does not imply that every solution of the relaxation is low-rank.

Theorem 1 provides a procedure for converting a high-rank solution of the SDP relaxation into a

low-rank one.

6.4.3 Computationally-Cheap Relaxation

The aforementioned SDP relaxation has a high dimension for a large-scale system, which makes it

less interesting for computational purposes. Moreover, the quality of its optimal objective value

can be improved using some indirect penalty technique. The objective of this subsection is to

offer a computationally-cheap SDP relaxation for the ODC problem, whose solution outperforms

that of the previous SDP relaxation. For this purpose, consider again a scalar µ such that

Q � µ× Φ−TΦ−1 and define Q̂ according to (6.31).

Computationally-Cheap Relaxation of Infinite-horizon Deterministic ODC: Minimize

xT0 Px0 + α trace{W33} (6.51a)
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Figure 6.4: The sparsity graph for the infinite-horizon deterministic ODC in the case where K

consists of diagonal matrices (the central vertex corresponding to the constant 1 is removed for

simplicity).

subject to 

G− µW22 G (AG+BL)T LT

G Q̂−1 0 0

AG+BL 0 G 0

L 0 0 R−1


� 0, (6.51b)

P In

In G

 � 0, (6.51c)

W =



In Φ−1G [K 0]T

GΦ−T W22 LT

[K 0] L W33


, (6.51d)

K ∈ K, (6.51e)

W33 ∈ K2, (6.51f)

W � 0, (6.51g)

over K ∈ Rm×r, L ∈ Rm×n, P ∈ Sn, G ∈ Sn and W ∈ S2n+m.

The following remarks can be made regarding (6.51):
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• The constraint (6.51b) corresponds to the Lyapunov inequality associated with (6.46a),

where W22 in its first block aims to play the role of P−1Φ−TΦ−1P−1.

• The constraint (6.51c) ensures that the relation P = G−1 occurs at optimality (at least for

one of the solution of the problem).

• The constraint (6.51d) is a surrogate for the only complicating constraint of the ODC

problem, i.e., L = KCG.

• Since no non-convex rank constraint is imposed on the problem to maintain the convexity

of the relaxation, the rank constraint is compensated in various ways. More precisely,

the entries of W are constrained in the objective function (6.51a) through the term

α trace{W33}, in the first block of the constraint (6.51b) through the term G − µW22,

and also via the constraint (6.51e) and (6.51f). These terms aim to automatically penalize

the rank of W indirectly.

• The proposed relaxation takes advantage of the sparsity of not only K, but also KKT

(through the constraint (6.51f)).

Theorem 6.8. The problem (6.51) is a convex relaxation of the infinite-horizon ODC problem.

Furthermore, the relaxation is exact if and only if it possesses a solution

(Kopt, Lopt, P opt, Gopt,Wopt) such that rank{Wopt} = n.

Proof 6.9. The objective function and constraints of the problem (6.51) are all linear functions

of the tuple (K,L, P,G,W). Hence, this relaxation is indeed convex. To study the relation-

ship between this optimization problem and the infinite-horizon ODC, consider a feasible point

(K,L, P,G) of the ODC formulation (6.44). It can be deduced from the relation L = KCG that

(K,L, P,G,W) is a feasible solution of the problem (6.51) if the free blocks of W are considered

as

W22 = GΦ−TΦ−1G, W33 = KKT (6.52)

(note that (6.44b) and (6.51b) are equivalent for this choice of W). This implies that the problem

(6.51) is a convex relaxation of the infinite-horizon ODC problem.
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Consider now a solution (Kopt, Lopt, P opt, Gopt,Wopt) of the computationally-cheap SDP

relaxation such that rank{Wopt} = n. Since the rank of the first block of Wopt (i.e., In) is

already n, a Schur complement argument on the blocks (1, 1), (1, 3), (2, 1) and (2, 3) of Wopt

yields that

0 = Lopt − [Kopt 0](In)−1Φ−1Gopt (6.53)

or equivalently Lopt = KoptCGopt, which is tantamount to the constraint (6.44e). This implies

that (Kopt, Lopt, P opt, Gopt) is a solution of the infinite-horizon ODC problem (6.44) and hence

the relaxation is exact. So far, we have shown that the existence of a rank-n solution Wopt

guarantees the exactness of the relaxation. The converse of this statement can also be proved

similarly.

The variable W in the first SDP relaxation (6.50) had 1 + l(n+ 1) rows. In contrast, this

number reduces to 2n + m for the matrix W in the computationally-cheap relaxation (6.51).

This significantly reduces the computation time of the relaxation.

Corollary 6.2. Consider the special case where r = n, C = In, α = 0 and K contains the set of

all unstructured controllers. Then, the computationally-cheap relaxation problem (6.51) is exact

for the infinite-horizon ODC problem.

Proof 6.10. The proof follows from that of Theorem 6.6.

6.4.4 Controller Recovery

In this subsection, two controller recovery methods will be described. With no loss of generality,

our focus will be on the computationally-cheap relaxation problem (6.51).

Direct Recovery Method for Infinite-Horizon ODC: A near-optimal controller K for the

infinite-horizon ODC problem is chosen to be equal to the optimal matrix Kopt obtained from

the computationally-cheap relaxation problem (6.51).

Indirect Recovery Method for Infinite-Horizon ODC: Let (Kopt, Lopt, P opt, Gopt,Wopt)

denote a solution of the computationally-cheap relaxation problem (6.51). Given a pre-specified
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nonnegative number ε, a near-optimal controller K̂ for the infinite-horizon ODC problem is

recovered by minimizing

ε× γ + α‖K‖2F (6.54a)

subject to 

(Gopt)−1 −Q+ γIn (A+BKC)T (KC)T

(A+BKC) Gopt 0

(KC) 0 R−1


� 0 (6.54b)

K = h1N1 + . . .+ hlNl. (6.54c)

over K ∈ Rm×r, h ∈ Rl and γ ∈ R. Note that this is a convex program. The direct recovery

method assumes that the controller Kopt obtained from the computationally-cheap relaxation

problem (6.51) is near-optimal, whereas the indirect method assumes that the controller Kopt

might be unacceptably imprecise while the inverse of the Lyapunov matrix is near-optimal. The

indirect method is built on SDP relaxation by fixing G at its optimal value and then perturbing

Q as Q− γIn to facilitate the recovery of a stabilizing controller. The underlying idea is that

the SDP relaxation depends strongly on G and weakly on P (note that G appears 9 times in

the formulation, while P appears only twice to indirectly account for the inverse of G). In other

words, there might be two feasible solutions with similar costs for the SDP relaxation whose G

parts are identical while their P parts are very different. Hence, the indirect method focuses on

G.

6.5 Infinite-Horizon Stochastic ODC Problem

This section is mainly concerned with the stochastic optimal distributed control (SODC) problem,

which aims to design a stabilizing static controller u[τ ] = Ky[τ ] to minimize the cost function

lim
τ→+∞

E
(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)
+ α‖K‖2F (6.55)
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subject to the system dynamics (6.3) and the controller requirement K ∈ K, for a nonnegative

scalar α and positive-definite matrices Q and R. Define two covariance matrices as

Σd = E{Ed[0]d[0]TET } Σv = E{Fv[0]v[0]TF T } (6.56)

Consider the following optimization problem.

Lyapunov Formulation of SODC: Minimize

〈P,Σd〉+ 〈M +KTRK,Σv〉+ α‖K‖2F (6.57a)

subject to 

G G (AG+BL)T LT

G Q−1 0 0

AG+BL 0 G 0

L 0 0 R−1


� 0, (6.57b)

P In

In G

 � 0, (6.57c)

 M (BK)T

BK G

 � 0, (6.57d)

K ∈ K (6.57e)

L = KCG (6.57f)

over the controller K ∈ Rm×r, Lyapunov matrix P ∈ Sn and auxiliary matrices G ∈ Sn, L ∈ Rm×n

and M ∈ Sr.

Theorem 6.9. The infinite-horizon SODC problem adopts the non-convex formulation (6.57).
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Proof 6.11. It is straightforward to verify that

x[τ ] = (A+BKC)τx[0]

+
τ−1∑
t=0

(A+BKC)τ−t−1(Ed[t] +BKFv[t]) (6.58)

for τ = 1, 2, . . . ,∞. On the other hand, since the controller under design must be stabilizing,

(A+BKC)τ approaches zero as τ goes to +∞. In light of the above equation, it can be verified

that

E
{

lim
τ→+∞

(
x[τ ]TQx[τ ] + u[τ ]TRu[τ ]

)}
= E

{
lim

τ→+∞
x[τ ]T

(
Q+ CTKTRKC

)
x[τ ]

}
+ E

{
lim

τ→+∞
v[τ ]TF TKTRKFv[τ ]

}
= 〈P,Σd〉+ 〈(BK)TP (BK) +KTRK,Σv〉 (6.59)

where

P =
∞∑
t=0

(
(A+BKC)t

)T
(Q+ CTKTRKC)(A+BKC)t

Similar to the proof of Theorem 6.5, the above infinite series can be replaced by the expanded

Lyapunov inequality (6.47): After replacing P−1 and KCP−1 in (6.47) with new variables G

and L, it can be concluded that:

• The condition (6.47) is identical to the set of constraints (6.57b) and (6.57f).

• The cost function (6.59) can be expressed as

〈P,Σd〉+ 〈(BK)TG−1(BK) +KTRK,Σv〉+ α‖K‖2F

• Since P appears only once in the constraints of the optimization problem (6.57) (i.e., the

condition (6.57c)) and the objective function of this optimization includes the term 〈P,Σd〉,

an optimal value of P is equal to G−1 (Notice that Σd � 0).

• Similarly, the optimal value of M is equal to (BK)TG−1(BK).
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The proof follows from the above observations.

The traditional H2 optimal control problem (i.e., in the centralized case) can be solved

using Riccati equations. It will be shown in the next proposition that dropping the nonconvex

constraint (6.57f) results in a convex optimization that correctly solves the centralized H2 optimal

control problem.

Proposition 6.1. Consider the special case where r = n, C = In, α = 0, Σv = 0, and K

contains the set of all unstructured controllers. Then, the SODC problem has the same solution

as the convex optimization problem obtained from the nonlinear optimization (6.57a)-(6.57) by

removing its non-convex constraint (6.57f).

Proof 6.12. It is similar to the proof of Theorem 6.6.

Consider the vector w defined in (6.48). Similar to the infinite-horizon ODC case, the bilinear

matrix term KCG can be represented as a linear function of the entries of the parametric

matrix W defined as wwT . Now, a convex relaxation can be attained by relaxing the constraint

W = wwT to W � 0 and adding another constraint stating that the first column of W is equal

to w.

Relaxation of Infinite-Horizon SODC: Minimize

〈P,Σd〉+ 〈M +KTRK,Σv〉+ α trace{W33} (6.60a)
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subject to 

G G (AG+BL)T LT

G Q−1 0 0

AG+BL 0 G 0

L 0 0 R−1


� 0, (6.60b)

P In

In G

 � 0, (6.60c)

K = Φ1diag{h}Φ2, (6.60d) M (BK)T

BK G

 � 0, (6.60e)

L = Φ1samp{W32}, (6.60f)

W =



1 vec{Φ2CG}T hT

vec{Φ2CG} W22 W23

h W32 W33


, (6.60g)

W � 0, (6.60h)

over the controller K ∈ Rm×r, Lyapunov matrix P ∈ Sn and auxiliary matrices G ∈ Sn,

L ∈ Rm×n, M ∈ Sr, h ∈ Rl and W ∈ S1+l(n+1).

Theorem 6.10. The following statements hold regarding the convex relaxation of the infinite-

horizon SODC problem:

i) The relaxation is exact if it has a solution (hopt,Kopt, P opt, Gopt, Lopt,Mopt,Wopt) such

that rank{W opt} = 1.
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ii) The relaxation always has a solution (hopt,Kopt, P opt, Gopt, Lopt,Mopt,Wopt) such that

rank{W opt} ≤ 3.

Proof 6.13. The proof is omitted (see Theorems 6.7 and 6.9).

As before, it can be deduced from Theorem 6.10 that the infinite-horizon SODC problem has

a convex relaxation with the property that its exactness amounts to the existence of a rank-1

matrix solution Wopt. Moreover, it is always guaranteed that this relaxation has a solution such

that rank{Wopt} ≤ 3.

A computationally-cheap SDP relaxation for the SODC problem will be derived below. Let

µ1 and µ2 be two nonnegative numbers such that

Q � µ1 × Φ−TΦ−1, Σv � µ2 × Ir (6.61)

Define Q̂ := Q− µ1 × Φ−TΦ−1 and Σ̂v := Σv − µ2 × Ir.

Computationally-Cheap Relaxation of Infinite-Horizon SODC: Minimize

〈P,Σd〉+ 〈M,Σv〉+ 〈KTRK, Σ̂v〉+ 〈µ2R+ αIm,W33〉 (6.62a)
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subject to 

G− µ1W22 G (AG+BL)T LT

G Q̂−1 0 0

AG+BL 0 G 0

L 0 0 R−1


� 0, (6.62b)

P In

In G

 � 0, (6.62c)

 M (BK)T

BK G

 � 0, (6.62d)

W =



In Φ−1G [K 0]T

GΦ−T W22 LT

[K 0] L W33


, (6.62e)

K ∈ K, (6.62f)

W33 ∈ K2, (6.62g)

W � 0, (6.62h)

over K ∈ Rm×r, P ∈ Sn, G ∈ Sn, L ∈ Rm×n, M ∈ Sr and W ∈ S2n+m.

It should be noted that the constraint (6.62d) ensures that the relation M = (BK)TG−1(BK)

occurs at optimality.

Theorem 6.11. The problem (6.62) is a convex relaxation of the SODC problem. Furthermore,

the relaxation is exact if and only if it possesses a solution (Kopt, Lopt, P opt, Gopt,Mopt,Wopt)

such that rank{Wopt} = n.
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Proof 6.14. Since the proof is similar to that of the infinite-horizon case presented earlier, it is

omitted here.

For the retrieval of a near-optimal controller, the direct recovery method delineated for the

infinite-horizon ODC problem can be readily deployed. However, the indirect recovery method re-

quires some modifications, which will be explained below. Let (Kopt, Lopt, P opt, Gopt,Mopt,Wopt)

denote a solution of the computationally-cheap relaxation of SODC. A near-optimal controller

K for SODC may be recovered by minimizing

〈KT (BT (Gopt)−1B +R)K,Σv〉+ α‖K‖2F + ε× γ (6.63a)

subject to 
(Gopt)−1 −Q+ γIn (A+BKC)T (KC)T

(A+BKC) Gopt 0

(KC) 0 R−1

 � 0 (6.63b)

K ∈ h1N1 + . . .+ hlNl. (6.63c)

over K ∈ Rm×r, h ∈ Rl and γ ∈ R, where ε is a pre-specified nonnegative number. This is a

convex program.

6.6 Extension to Dynamic Controllers

Consider the problem of finding an optimal fixed-order dynamic controller with a pre-specified

structure. To formulate the problem, denote the unknown controller as
zc[τ + 1] = Aczc[τ ] +Bcy[τ ]

u[τ ] = Cczc[τ ] +Dcy[τ ]

(6.64)

where zc[τ ] ∈ Rnc represents the state of the controller, and nc denotes its known degree. The

unknown quadruple (Ac, Bc, Cc, Dc) must belong to a given polytope K. More precisely, Ac, Bc,

Cc, and Dc are often required to be block matrices with certain forced zero blocks. It is shown
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in [?] how the design of a fixed-order distributed controller for an interconnected system adopts

the above formulation. The augmentation of the system (6.1) with the above unknown controller

leads to the closed-loop system x̃[τ + 1] = Ãx̃[τ ], where x̃[τ ] =

[
x[τ + 1]T zc[τ + 1]T

]T
and

Ã =

A+BDcC BCc

BcC Ac

 (6.65)

Note that this closed-loop system reduces to x[τ + 1] = (A+BKC)x[τ ] in the static case. Since

Ã is a linear structured matrix with respect to (Ac, Bc, Cc, Dc), the state evolution equation

x̃[τ + 1] = Ãx̃[τ ] is bilinear, similar to its static counterpart x[τ + 1] = (A+BKC)x[τ ]. Hence,

the parameterized matrix Ã plays the role of A+BKC, which makes it possible to naturally

generalize all results of this work to the dynamic case in both finite- and infinite-horizon cases.

Note that the existence of a Lyapunov matrix guarantees the stability of Ã or the internal

stability of the system.

6.7 Numerical Examples

In what follows, we offer multiple experiments on random systems and mass-spring systems.

More simulations are provided in [38].

6.7.1 Random Systems

Consider the system (6.1) with n = 5 and m = r = 3. The goal is to design a decentralized static

controller u[τ ] = Ky[τ ] (i.e., a diagonal matrix K) minimizing the cost function(
20∑
τ=0

x[τ ]Tx[τ ] + u[τ ]Tu[τ ]

)
+ 10−3‖K‖F (6.66)

This function accounts for the state regulation, input energy, and controller gain. The SDP

relaxation problems (6.22), (6.26) and (6.33) have a 235× 235, 168 × 168 and 29 × 29 matrix

variables, respectively. According to Corollary 6.1, it is guaranteed that the sparse SDP relaxation

problem (6.22) has a solution W opt with rank at most 3 (i.e., at least 233 eigenvalues of this
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Figure 6.5: The ratio λ2
λ1

obtained from the dense SDP relaxation of the finite-horizon ODC

Problem (6.26) for 100 random systems.

solution must be zero), independent of the values of the matrices A, B, C, and x[0]. Note

that this result does not imply that all solutions of problem (6.22) have rank at most 3, but

Theorem 6.1 can be used to find such a low-rank solution.

Since real-world systems are normally highly structured in many ways, we consider some

structure for the system under study by assuming that B can be expressed as [b b b] for some

vector b ∈ R5. Assume that A, b, and x[0] are normal random variables with the standard

deviations 0.2, 1, and 1, respectively, while C is equal to [I3 03×2]. We generated 100 random

systems according to the above probability distributions for the parameters of the system and

checked the rank of a low-rank solution of the sparse, dense, and computationally-cheap SDP

relaxation problems for every trial. Let λ1 and λ2 denote the largest and the second largest

eigenvalues of W opt associated with the dense relaxation. We arranged the obtained 100 ratios λ2
λ1

in ascending order and subsequently labeled their corresponding trials as 1, 2, . . . , 100. Figure 6.5

plots the ratio λ2
λ1

for the ordered trials. It can be observed that this ratio is equal to 0 for 53

trials, implying that the dense SDP relaxation has found the solution of the ODC problem for

53 samples of the system. In addition, λ2
λ1

is less than 0.1 in 95 trials. Also, three near-global

solutions of the ODC problem were found using different relaxations in all 100 cases. Figure 6.6

(a) depicts the (global) optimality degrees of these solutions after re-arranging the trials based

on their associated optimality degrees for the dense SDP relaxation problem. Optimality degree
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Figure 6.6: Optimal degrees of different relaxations for 100 random systems.

is defined as

Optimality degree (%) = 100− upper bound - lower bound

upper bound
× 100

where “upper bound” and ‘lower bound” denote the cost of the near-global controller recovered

using the direct method and the optimal SDP cost, respectively. The optimality degree is an

upper bound on the closeness of the cost of the near-optimal controller to the minimum cost,

which is expressed in percentage. Notice that the employed optimality measure evaluates the

global performance within the specified set of controllers. For example, the optimality degree

of 100% means that a globally optimal controller is found among all linear static structured

controllers.

As an alternative, we solved a penalized SDP relaxation with the penalty term Ψ(W ) =

0.5 trace{W} added to the objective of the SDP relaxation. Interestingly, the matrix W̃ opt
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Figure 6.7: Mass-spring system with two masses

became rank 1 for all of the 100 trials. Figure 6.6 (b) depicts the optimality degrees associated

with the penalized dense SDP relaxation problem of the 100 random systems. It can be seen

that the optimality degree is greater than 99.8% for 69 trials and is never less than 98.2%.

6.7.2 Mass-Spring Systems

In this subsection, the aim is to evaluate the performance of the developed controller design

techniques in Lyapunov domain on the Mass-Spring system, as a classical physical system.

Consider a mass-spring system consisting of N masses. This system is exemplified in Figure 6.7

for N = 2. The system can be modeled in the continuous-time domain as

ẋc(t) = Acxc(t) +Bcuc(t) (6.67)

where the state vector xc(t) can be partitioned as [o1(t)T o2(t)T ] with o1(t) ∈ Rn equal to

the vector of positions and o2(t) ∈ Rn equal to the vector of velocities of the N masses. We

assume that N = 10 and adopt the values of Ac and Bc from [80]. The goal is to design a

static sampled-data controller with a pre-specified structure (i.e., the controller is composed of

a sampler, a static discrete-time structured controller and a zero-order holder). Consider two

different control structures shown in Figure 6.8. The free parameters of each controller are colored

in red in this figure. Notice that Structure (a) corresponds to a fully decentralized controller,

where each local controller has access to the position and velocity of its associated mass. In

contrast, Structure (b) allows limited communications between neighboring local controllers.

Two ODC problems will be solved for these structures below.

Infinite-Horizon Deterministic ODC: In this experiment, we first discretize the system with the

sampling time of 0.1 second and denote the obtained system as

x[τ + 1] = Ax[τ ] +Bu[τ ], τ = 0, 1, . . . (6.68)

It is aimed to design a constrained controller u[τ ] = Kx[τ ] to minimize the cost function∑∞
τ=0

(
x[τ ]Tx[τ ] + u[τ ]Tu[τ ]

)
. Consider 100 randomly-generated initial states x[0] with entries
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(a) Decentralized (b) Distributed

Figure 6.8: Two different structures (decentralized and distributed) for the controller K: the

free parameters are colored in red (uncolored entries are set to zero).

Figure 6.9: Optimality degree (%) of the decentralized controller K̂ for a mass-spring system

under 100 random initial states.

drawn from a normal distribution. We solved the computationally-cheap SDP relaxation of the

infinite-horizon ODC problem combined with the direct recovery method to design a controller

of Structure (a) minimizing the above cost function. The optimality degrees of the controllers

designed for these 100 random trials are depicted in Figure 6.9. As can be seen, the optimality

degree is better than 95% for more than 98 trials. It should be mentioned that all of these

controllers stabilize the system.

Infinite-Horizon Stochastic ODC: Assume that the system is subject to both input disturbance

and measurement noise. Consider the case Σd = In and Σv = σIr, where σ varies from 0 to

5. Using the computationally-cheap relaxation problem (6.62) in conjunction with the indirect

recovery method, a near-optimal controller is designed for each of the aforementioned control
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(a) Optimality degree

(b) Cost of near-optimal controller

Figure 6.10: The optimality degree and optimal cost of the near-optimal controller designed for

the mass-spring system for two different control structures. The noise covariance matrix Σv is

assumed to be equal to σIr, where σ varies over a wide range.
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structures under various noise levels. The results are reported in Figure 6.10. The designed

structured controllers are all stable with optimality degrees higher than 95% in the worst case

and close to 99% in many cases.

6.8 Conclusions

This chapter studies the optimal distributed control (ODC) problem for discrete-time deterministic

and stochastic systems. The objective is to design a fixed-order distributed controller with a pre-

determined structure to minimize a quadratic cost functional. Both time domain and Lyapunov

domain formulations of the ODC problem are cast as rank-constrained optimization problems

with only one non-convex constraint requiring the rank of a variable matrix to be 1. We propose

semidefinite programming (SDP) relaxations of these problems. The notion of tree decomposition

is exploited to prove the existence of a low-rank solution for the SDP relaxation problems with

rank at most 3. This result can be a basis for a better understanding of the complexity of

the ODC problem because it states that almost all eigenvalues of the SDP solution are zero.

Moreover, multiple recovery methods are proposed to round the rank-3 solution to rank 1, from

which a near-global controller may be retrieved. Computationally-cheap relaxations are also

developed for finite-horizon, infinite-horizon, and stochastic ODC problems. These relaxations

are guaranteed to exactly solve the LQR and H2 problems for the classical centralized control

problem. The results are tested on multiple examples.
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Chapter 7

Conclusion

In this dissertation, I presented my work on probabilistic modeling and optimization for scalable

inference. Probabilistic models are powerful techniques for expressing underlying structures in

data and inferring hidden information from them. Training probabilistic models is challenging in

that it mainly requires dealing with non-convex optimization problems. In this dissertation, I

presented my research results on designing interpretable models that could capture latent themes

from data, deriving learning algorithms to train the model, and relaxing hard optimization

problems.

I presented a new Bayesian nonparametric model called beta process subspace analysis (BPSA)

for dictionary learning that sparsely codes signals in latent subspaces in Chapter 3. The is model

an extension of related methods such as Beta Process Factor Analysis (BPFA) and Mixture

of Factor Analysis (MFA). Using beta and gamma processes, it can infer both the number of

subspaces and the dimensionality of each subspace. I derived a new Maximizing a Posteriori and

Expectation Maximization (MAP-EM) based algorithm that is related to variational inference

and the Orthogonal Matching Pursuit (OMP) algorithm. I illustrated the model procedure

on Tiny Images data set and demonstrated the advantage of sparse coding with subspaces on

denoising problems.

The proposed learning algorithm is further investigated in Chapter 2. I proposed probabilistic

orthogonal matching pursuit (PrOMP) for sparse data representation. Our probabilistic ap-
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proach extends OMP, making it suitable for statistical dictionary learning models with Bayesian

nonparametric priors. I derived theory for PrOMP similar to that of OMP, and discussed how

PrOMP can improve existing dictionary learning models. We evaluated the performance on

image denoising and compresses sensing for magnetic resonance imaging (CS-MRI), showing that

PrOMP for BPFA improves the classic K Singular Value Decomposition (K-SVD) model, as well

as Markov Chain Monte Carlo (MCMC) sampling for the same Bayesian nonparametric prior

dictionary learning model.

Next, I investigated model developments for sequential data in Chapter 4. I presented

a mixed membership recurrent neural network (MM-RNN) approach for modeling multiple

sequences. The model was motivated by the observation that, in many sequential data sets the

sequential information is not of the same value across the sequence. As more time passes between

observations, the distribution on the next observation may be better modeled as independent

from some initial group-specific distribution. To this end, we made a simple modification to

the RNN architecture by generating a unique base vector for each group and use a weighted

combination of this base vector with the RNN hidden state to make predictions. The weight

emphasizes the RNN in the part of the sequences that is densely sampled, and emphasizes the

group-specific i.i.d. model when two consecutive observations are spread far apart in time. I

demonstrated on two online shopping data sets that this combination of sequential/non-sequential

modeling can allow for the RNN to focus on learning to make better predictions when sequential

information is meaningful, and to defer to the base model when much time has passed in a

smooth transition.

In Chapter 5, I derived convex relaxation for variational inference (CRVI), a method to

learn parameters of approximate posterior distributions using mean-field variational inference. I

focused on Bayesian linear regression and sparse coding models. By lifting the domain of the

optimization, we were able to relax the non-convex parts of the variational objective function

and approximate the variational parameters. Graph theoretic tools enabled us to quantify the

exactness of this approximation, and estimate the closeness of the obtained solution to the global

optimal solution. I showed that CRVI can significantly improve the traditional coordinate ascent
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(CAVI) optimization technique on various datasets for sparse Bayesian linear regression and

sparse coding for nonparametric factor analysis.

In the last Chapter, 6, I studied the optimal distributed control (ODC) problem for discrete-

time deterministic and stochastic systems. The objective was to design a fixed-order distributed

controller with a pre-determined structure to minimize a quadratic cost functional. Both time

domain and Lyapunov domain formulations of the ODC problem were cast as rank-constrained

optimization problems with only one non-convex constraint requiring the rank of a variable matrix

to be 1. We proposed semidefinite programming (SDP) relaxations of these problems. The notion

of tree decomposition was exploited to prove the existence of a low-rank solution for the SDP

relaxation problems with rank at most 3. This result can be a basis for a better understanding

of the complexity of the ODC problem because it states that almost all eigenvalues of the SDP

solution are zero. Moreover, multiple recovery methods were proposed to round the rank-3

solution to rank 1, from which a near-global controller may be retrieved. Computationally-cheap

relaxations are also developed for finite-horizon, infinite-horizon, and stochastic ODC problems.

These relaxations are guaranteed to exactly solve the LQR and H2 problems for the classical

centralized control problem. The results are tested on multiple examples.

The ideas explored in theses can lead to various future research directions. Bayesian nonpara-

metric models and PrOMP are powerful techniques that can be further extended for applications

in online datasets. This will make the inference process fast, and scalable to larger datasets. This

could lead to a generalized way of designing mixed membership recurrent neural networks for

sequential datasets. The convex relaxation technique proposed in this dissertation can be investi-

gated for becoming more suitable to larger models and datasets. The semidefinite constraint

is a bottleneck in the computation. Developing a technique to break down this constraint into

smaller portions or replacing it with other conditions can significantly make the process faster.
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