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Abstract

Sequential games under positional uncertainty

Christopher D. Gibson

This dissertation focuses on sequential games of imperfect information. I study settings

in which not only do agents face imperfect information in the traditional sense of not

possessing all payoff-relevant information, but they also face uncertainty about their position

of movement in the sequence. I have utilized this framework to study financial investment

decisions by individuals, production decisions by firms, and implications on information

aggregation in observational learning.

In order to study production decisions by firms I utilize a Stackelberg oligopoly model

with a stochastic consumer demand. In this setting firms do not know their position of

movement, and as a result of the stochastic demand they cannot infer from the prevailing

price if another firm has yet entered the market. I find that as a result of uncertainty firms

produce a higher quantity than they otherwise would have, resulting in a more competitive

outcome. In fact, as the number of firms in the market increases, with positional uncertainty

the equilibrium quantity actually exceeds the perfectly competitive quantity.

I then investigate the impact of positional uncertainty when agents must choose levels of

investment in a financial asset. Investors receive a signal about the value of the asset but

are not necessarily aware of their position in the sequence of investors. As a result, they are

unsure to what extent the signal they receive represents profit-relevant information, or if the

signal is “stale” in the sense that the information has been incorporated into the price by

other investors. This results in more cautious levels of investment, and an asset price that

does not represent the true underlying value.

To study the behavioral aspects of financial investment, I introduce in this model a notion

of confidence. While much work in the area of behavioral finance has studied the role of



confidence over the accuracy of information, my interest is in confidence over the timing of

information. I define an agent as overconfident if they believe they are more likely to have

received the signal earlier than other agents, and are thus more likely to be early investors.

The effect of overconfidence can overwhelm the cautious nature of positionally uncertain

investors, even potentially leading to an overreaction to information. This effect can explain

overvaluation of assets and volatility of prices in response to information.

In a model of observational learning, limited information about the history of actions

slows the integration of information. However, I show that in the limit, even in the presence of

limited histories complete learning occurs. In the environment of limited access to historical

information I introduce uncertainty over position of action. This uncertainty even further

dampens the process of learning from a welfare standpoint, but as the number of agents

grows large complete learning still obtains in the limit for all levels of uncertainty.

The common finding in all these settings is that uncertainty about the order of action

causes agents to be cautious about exploiting profitable opportunities. In the case of

oligopoly this leads to more competitive outcomes, whereas in the cases of investment and

social learning uncertainty leads to less effective information aggregation.
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Chapter 1

Sequential quantity setting under

positional uncertainty

Abstract: In a Stackelberg oligopoly setting two firms set quantity without

knowing whether they are the first or second in the market. I find that with a

common prior positional uncertainty always leads to a more competitive level of

quantity. This finding is exacerbated when firms do not share a common prior

and the sum of their prior beliefs of moving first exceeds unity. Even in the

presence of a common prior and many identical firms as the number of firms

increases the equilibrium quantity in the presence of positional uncertainty can

exceed that of perfect competition.
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1.1 Introduction

Sequential models of firms deciding on whether to enter a market and the quantity to

produce are as natural as the idea of competition itself. Under the assumption of free

entry, firms look at the prevailing price and incumbent firms and enter if there are profitable

opportunities. The sequential model has been extensively used to study the behavior of

oligopolies, sequential quantity setting à la Stackelberg serving as the workhorse in this

area. The standard result is that the leading firm anticipates the reaction of the following

firm, enabling it to suppress downstream quantity and produce more than if they moved

simultaneously.

The Stackelberg leader has a first-mover advantage because it can commit to a quantity

before another firm enters the market. But of course this advantage depends on the leader

knowing they are the leader. Likewise, the quantity decision of the following firm depends

on their awareness that they are the follower. In practice this assumption may not withstand

scrutiny, either in the case of duopoly or an arbitrary oligopoly setting. Since minimal effort

would be required to determine whether there is an incumbent firm, the scrutiny would

not target whether a firm knows if it is a follower. Rather, a firm may not know if it is

a leader. That is, a firm deciding on quantity in a certain period may be unsure if a new

entrant will subsequently infuse the market with supply, thereby introducing uncertainty to

the profit-maximizing decision of the initial firm.

Notice that the strategic element of the Stackelberg model of oligopolistic competition

begins and ends with the leading firm. The following firm merely takes the residual demand

and sets quantity q to maximize profit subject to p(q) = a− bq1 − bq. As far as the follower

is concerned, they behave as a monopoly facing linear demand with intercept a′ = a − bq1.

However, if the downstream firm believes there may be yet another follower, the problem

becomes game theoretic with the follower responding to linear demand with intercept a′′ =
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a′ − bq2 after downstream firm 2 sets quantity q2. If there is any possibility of another firm

entering a market, each firm essentially plays a Stackelberg competition game as a mix of a

leader and a follower.

We will use a basic linear demand to model a Stackelberg competition setting. Two firms

will be unsure of their position as leader or follower, but will face a prevailing market price

p which is either the demand intercept p = a (if they are the Stackelberg leader), or the

residual price after the leader p = a − bq1 (if they are the follower). In order that position

cannot be perfectly inferred from the prevailing price, demand intercept a will be stochastic.

The improper uniform distribution a ∼ U [0,∞] will be the focus of analysis but the results

apply to other distributions as well.

1.2 Related Literature

To our knowledge no work has yet undertaken the study of sequential quantity setting in

oligopoly markets with uncertainty over position. However, there has been much work on

uncertainty in oligopoly markets with quantity setting firms, mostly focused on uncertainty

over demand.

Gal-Or (1985) presents a model of linear demand with a normally distributed intercept,

about which each firm receives a private noisy signal [4]. She shows that firms choosing

quantity simultaneously after receiving informative signals have no incentive to share their

private information about the demand intercept with other firms. Vives (1984) examines the

case of heterogenous goods, confirming the result of Gal-Or if goods are complements but

shows that information sharing is a dominant strategy if they are substitutes [6].

Other studies consider sequential quantity setting with stochastic demand. De Wolf

and Smeers investigate a two period setting in which a Stackelberg leader chooses quantity

without knowing the demand intercept, and a group of firms choose quantity simultaneously
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in the second period after demand has resolved [1]. DeMiguel and Xu generalize this to

multiple Stackelberg leaders choosing quantity simultanously in the first period, and they

identify conditions under which a unique equilibrium exists [2].

Ferreira and Ferreira (2009) study a two-period stochastic demand environment in which

firms have a choice of which period to move. They identify conditions on the resolution

of uncertainty in which a sequential decision is preferred to a simultanous decision. If

uncertainty is high and it is resolved in the second period, the first-mover advantage reverses,

favoring the following firm that faces no uncertainty.

1.3 The model

We consider a multi-period market in which informed market participants (firms) receive

signals and trade according to the information they infer from these signals. Each firm sets

quantity in a market with linear demand p(q) = p0− b · q, with p0 determined stochastically

from some distribution F over [0,∞] so that Pr(p0 ≤ p) = F (p) for all p ∈ [0,∞]. Then given

cost of production c(q) and the order in which they move, firms set quantity to maximize

profit. We will assume that cost of production takes the form c(q) = c · q2.

Due to the stochastic nature of demand, however, the order in which firms set quantity is

unknown. When deciding on the quantity they wish to produce, firms only see the prevailing

market price. This price could be the result of the stochastic draw p0 (in the case that the

firm moves first), or could be the residual price after quantity is set by another firm (in the

case that the firm moves second).

While the stochastic demand intercept makes it impossible for either firm to perfectly

infer their order of play, each has a prior belief Pr(First) = µ that they are the first mover.

Upon seeing the price p, firms use Bayesian updating to infer their posterior probability

γ(p) = Pr(First|p) of being the first mover. In order to calculate this posterior then, they
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must weight the probability that they are seeing the price p = p0 as the first mover, or if

they are seeing the residual price p = p0 − b · q1 as the second mover.

In order to capture the role position plays in the strategic interaction it is useful to focus

on the timing of the game.

t=0: The leading firm observes price p0 ∼ F and decides on q1.

t=1: (i) The leading firm collects profits q1(p0 − bq1)− c · q2
1.

(ii) The following firm observes price p1 = p0 − bq1 and chooses q2.

t=2: Firm i collects profit qi(p0 − b(q1 + q2))− c · q2
i for i = 1, 2.

We will typically be looking at games of two firms, a leader and a follower, but our

sequential quantity game in general takes the following form.

Definition 1.1. Let ΛN(F ) = (N,F, µi)
N
i=1 denote an N-firm sequential entry oligopoly where

firms face linear demand p0−bQ, p0 ∈ [0,∞) given by distribution F (·), and firm i has prior

belief µji of entering the market in position j.

In the case of N = 2, if q∗(p − b · q) is the best response for the follower to quantity q,

expected profit is

π(p, q) = γ(p)
{
q(p− b · q)− c · q2 + [q(p− b(q + q∗(p− b · q)))− c · q2]

}
+ (1− γ(p))[q(p− b · q)− c · q2]

The posterior γ(p) of setting quantity first can equivalently be viewed as the probability that

another period will occur and the following firm will best respond to this quantity setting.

With this interpretation, the profit reduces to the intuitive form

π(p, q) = q(p− b · q)− c · q2 + γ(p) · q[p− b(q + q∗(p− b · q))− c · q2]

= (1 + γ(p))(q(p− b · q)− c · q2)− γ(p) · bqq∗(p− b · q)

5



Given the objective function each firm seeks to maximize, the standard notion of equilibrium

follows naturally.

Definition 1.2. An equilibrium of the game Λ2(F ) is a function q∗i (·), i = 1, 2 such that for

all p, q∗i (p) solves

qi = arg max
q

q(p− b · q)− c · q2 + γ(p) · q[p− b(q + q∗(p− b · q))− c · q2]

1.3.1 The case of no uncertainty

To fix ideas we can look no further than the extreme cases where there is no uncertainty

(γ(p) = 0 or γ(p) = 1). This is the reduced game form Λ2(δp(p0)), where δp(p0) is the

Dirac measure that has mass only on p = p0. In this extreme, each firm knows which is

the quantity leader and which is the follower, so that the market reduces to the familiar

Stackelberg oligopoly setting. Through backward induction, the first mover solves

max
q1

q(p− b · q)− c · q2 + q[p− b(q + q∗(p− b · q))− c · q2]

where q2(p) maximizes q2((p0 − b · q1) − q2(b + c)). Solving this system of equations the

equilibrium in this case is

q1 = p0

(
3b+ 4c

2(3b2 + 8bc+ 4c2)

)
and q2 = p0

(
3b2 + 12bc+ 8c2

4(b+ c)(3b2 + 8bc+ 4c2)

)

1.4 Introducing uncertainty: A uniform intercept

Now return to the case of an uncertain linear demand, and therefore an uncertain order of

quantity setting. The linear demand intercept p0 is distributed over [0,∞) according to the

distribution F . Now, however, suppose that every demand intercept p0 ∈ [0,∞] is equally
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likely, so that F is the improper uniform distribution.

Apart from the technical tractability the improper uniform distribution offers, we will

see that there are compelling reasons to analyze this case. Not least of these reasons is

that without additional information about the linear demand, each firm has no reason to

believe any initial price p0 to be more likely than any other. Moreover, while this particular

distribution over p0 sacrifices some generality, we will see later that the loss of generality is

actually minimal. Not only is the uniform distribution the limiting case of many distributions

for p0 that may be of interest, but the cases short of the limits are locally well approximated

by the normal distribution with little error as is demonstrated in section 4.

In order to determine the equilibrium in the uniform case it is necessary to first characterize

the posterior γ(p) of being the first mover under this distribution.

Lemma 1.1. In the Stackelberg game Λ2(U [0,∞)), let γ(p) = Pr(First|p) be the posterior

probability of being first upon observing price p and Pr(First) = µ the prior probability.

Then in a pure strategy equilibrium, γ(p) ∈ {0, µ, 1}.

This lemma shows that if any point is equally likely to be the initial price p0 and if the

observed p is a possible residual price from some initial p0, then it is equally likely that price

p is observed by a first mover or a second mover, so the posterior collapses to the prior µ.

The only cases in which the posterior will not be the prior is if either p cannot be the residual

price from any initial p0, so price p is a “hole,” or if p is a “mass point” and as such is the

residual price of a non-zero mass of initial p0.

In this case that p is a hole and there is no possible initial price such that p0−b·q∗(p0) = p,

then the probability of being a follower is zero so a firm observing the price p knows they must

be the first mover and γ(p) = 1. In the case that p is a mass point, there are uncountably

infinitely many initial prices p0 such that p0 − b · q∗(p0) = p, and only one possible way for

p to be the initial price. As such this mass overwhelms the probability of being the first

mover, so that the posterior is γ(p) = 0.
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These equilibrium pathologies involving holes or mass points in the support of p−b ·q∗(p)

both complicate equilibrium analysis and detract from its interest in describing reasonable

market behavior. As such we will focus on an equilibrium devoid of such cases in order to

focus on firms’ reactions to market variables instead of abstract equilibrium considerations.

In doing so we will highlight the interactions that result from a multi-period market with

positional uncertainty, and how firms respond to beliefs of their own position as well as their

beliefs over other firms’ beliefs.

Given the absence of holes or mass points in the distribution, the posterior γ(p) = µ for

all values of p > 0. This leads to a natural equilibrium result.

Proposition 1.1. In the Stackelberg game Λ2(U [0,∞)) such that p0 is distributed according

to the improper uniform distribution, a linear equilibrium exists.

Proposition 1 states that for a given firm i there is a constant ki such that q∗i (p) = kip.

But to determine exactly what form this constant takes more needs to be said of the beliefs

of each firm. In particular, we know each firm has some prior µ, but we have not yet

considered how these priors may relate to one another. If both firms have identical structures

and information it may be natural to assume they have identical priors as well. If firms’

structures are not identical but their information over this asymmetry is shared, then they

may not have identical priors but instead a common prior in that the sum of prior beliefs

still sum to one. In fact the equilibrium composition and comparative statics will differ

depending on how firms form these beliefs, differences that will be revealed in turn.

1.4.1 Identical priors

In the case of identical priors if we denote Pri(First) = µi, then µi = µj = µ and the linear

equilibrium takes simple form.
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Figure 1.1: Plot of k with
identical priors, b=1, and
c=1/2

Figure 1.2: Total quantity
with identical priors, b=1,
and c=1/2

Proposition 1.2. If priors are identical so that µi = µj = µ, then a linear equilibrium of

Λ2(U [0,∞)) exists and takes the form q∗(p) = k · p for all p > 0 with

k =
b(2 + 3µ) + 2c(1 + µ)−

√
(b(µ+ 2) + 2c(µ+ 1))2 − 8bcµ(µ+ 1)

4b2µ

It can be shown that for all values of parameters b and c, equilibrium parameter k is

decreasing in prior belief µ. This is to be expected, as the prior µ is also the posterior γ(p)

of being the first mover. For a given price p, as the probability of being first increases,

by definition the probability of a subsequent firm setting quantity in the market increases.

Just as in the Stackelberg case the leading firm must reduce the production quantity in

anticipation of the following firm’s quantity reducing price even further, so too does the

increase in the probability µ of a follower add weight to the trade-off between maximizing

profit under current demand versus final demand if another firm were to enter.

Considering the parameters b = 1 and c = 1/2, the linear equilibrium constant takes the

simplified form k =
3+4µ−

√
8µ2+16µ+9

4µ
. Total quantity for initial price p0 is then kp0 + k(p0 −

kp0) = p0(2k − k2).

9



The plot on the left shows the relationship between prior µ and the linear parameter

k. As described above k is a decreasing function of µ. The figure on the right plots total

quantity as a proportion of initial price (q/p0). As total quantity is a decreasing function of

k it is also to be expected that it too would be a decreasing function of prior belief µ for

the exact same reason. In fact, as the belief of each firm that they move first increases and

each becomes more certain that their production will be followed with an additional infusion

of quantity from the following firm, total quantity in the case of uncertainty actually drops

below the Stackelberg equilibrium with no uncertainty.

Recalling from above that in the Stackelberg equilibrium q1 = p0 · b+2c
6b2+8bc+4c2

and q2 =

p0· (3b2+6bc+4c2)
4(b+c)(3b2+4bc+2c2)

, with the parameters b = 1 and c = 1/2 total quantity q1+q2 = 0.5238·p0.

This total quantity is shown by the horizontal line in the right graph. As can be seen from

this comparison, for low values of µ the total quantity in the uncertain case is higher than in

the case of certainty but for high values of µ this relationship reverses. In fact this pattern

holds for all values of b and c.

While we have no cause to question this pattern at the moment, we will see later there

is indeed plenty of reason to expect that the introduction of uncertainty will lead to a

strictly higher quantity. The Stackelberg case is that in which the order of quantity setting

is commonly known: one agent has prior µ = 1 of moving first and the other has prior

µ = 0. But if the quantity leader had even a little uncertainty of their position, the firm

would have an incentive to increase quantity as the trade-off between maximizing current

and final demand has shifted toward current. If at the same time the quantity follower had

an equal amount of uncertainty in their position but in the reverse direction, this firm would

have an incentive to decrease quantity as their quantity setting trade-off has shifted toward

maximizing final demand. If the leading firm were able to anticipate the quantity reduction

of the follower, the leading firm would be incentivized to even further increase quantity. And

so forth.
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While the end result of this iterative loop of backward induction is unclear in terms of

how total quantity is effected, it is at least clear that being able to anticipate the rival firm’s

response to a new prior will mitigate the declining total quantity as µ increases. In the case of

identical priors this anticipation fails because firms have − and expect the other firm to have

− the exact same prior. Thus when their own prior changes each firm expects the prior of the

other to change in exactly the same way. Barring the case where µ = 1/2, the identical prior

assumption comes with it the untenable shared belief that the total probability of moving

first could exceed or fall short of unity, and moreover that firms are aware that they share

this belief.

1.4.2 A common prior

The case of identical priors provided a simple solution characterizing the linear equilibrium

that allowed for the analysis of firm behavior in the presence of uncertainty and how behavior

changes with beliefs about their position of quantity setting. But valuable as a foothold into

the problem at hand, the assumption that firms have exactly the same belief of moving first

and are aware of this shared contradiction of probability theory seems an unlikely reality in

which otherwise rational firms might operate.

In light of this incongruity a more fitting environment might be one in which firms

correctly anticipate the rival firm’s prior belief in relation to their own. The assumption

that gives us this belief congruity is the common prior assumption. Defined in the usual way

the common prior imposes the following structure on how the prior belief of each firm relate

to one another.

Definition 1.3. Firms i and j share a common prior if µi + µj = 1.

The common prior assumption is useful because not only do priors beliefs accord with

probability theory under this structure but also it introduces a consistency of beliefs that
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would be expected of rational profit-maximizing firms. From a technical standpoint a market

in which firms may have different beliefs µ introduces a layer of complication to firms’

interaction, but we can still find a linear equilibrium, one with notably more desirable and

realistic properties.

Proposition 1.3. If firms have a common prior so that µi+µj = 1, then a linear equilibrium

of Λ2(U [0,∞)) exists and takes the form q∗(p) = k(µ) ·p for all p > 0 with a linear parameter

k(µ) of the form

k(µ) =
b2(3µ2 + µ− 10) + 8bc(µ+ 1)(µ− 2) + 4c2(µ+ 1)(µ− 2) +

√
A(b, c, µ)

4b2(1− µ)(b(2 + µ) + 2c(1 + µ))

where

A(b, c, µ) = b4(µ2 − µ− 6)2 + 16b3c(µ4 − 2µ3 − 7µ2 + 8µ+ 12)

+ 8b2c2(7µ4 − 14µ3 − 29µ2 + 36µ+ 44) + 16c3(4b+ c)(µ2 − µ− 2)2

In order to highlight the differences between the equilibrium under a common prior and

that under an identical prior a sketch of the proof is useful. Each firm i solves for an

equilibrium under the assumption that the other firm plays a linear strategy. However now

the linear parameter depends on prior µi, as the prior is no longer the same for both firms.

Firm i solves maxki(µi) pki(µi)[p− pki(µi)p(b+ c)]− bpki(µi)µikj(1−µi). This yields for each

firm a first order condition for ki(µi) and an inferred condition for kj(1 − µi), from which

the constants ki(µi) and kj(µj) can be solved.

As in the previous case − and for the same reason − it can be shown that k is decreasing

in the prior belief µ. As the probability of being first increases, the trade-off between

maximizing current and final demand shifts toward final and quantity is decreased. However
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Figure 1.3: Plot of k with
common/identical priors,
b=1, and c=1/2

Figure 1.4: Total quantity
with common priors, b=1,
and c=1/2

unlike in the previous case, this decrease in quantity is amplified by the common prior

realization that at the same time the prior belief of the other firm decreases, leading to an

increase in quantity in the case of a following quantity setter.

For the parameters b = 1 and c = 1/2 the linear equilibrium parameter simplifies to

k(µ) =
20+4µ−8µ2−

√
32µ4−64µ3−152µ2+184µ+256

4(2µ+3)(1−µ)
. If initial price is p0 and µ1 is the prior belief of

the leading firm, total quantity is k(µ1)p0 +k(1−µ1)(p0− bk(µ1)p0) = p0[k(µ1)+k(1−µ1)−

bk(µ1)k(1− µ1)]

The plot on the left shows the inverse relationship of linear parameter k with µ. Moreover,

this graph highlights the different behavior of the parameter k in the case of a common prior

as compared to an identical prior. The two values of k meet at µ = 0 and µ = 1/2.

when the prior is zero, in both cases the firm acts as a stand alone entity given the price,

maximizing profit by equating marginal revenue and marginal cost, ruling out the possibility

of a following quantity setter. When the prior µ = 1/2 the priors are both identical and

common so the cases overlap.

An increase in the prior will lead to a decrease in quantity as the firm becomes more

confident that there is a follower. But now when µ ∈ (0, 1/2) the parameter k is higher than
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in the case of an identical prior. In this region, while k still decreases with µ, this decrease

is mitigated by the awareness given by the common prior assumption that the rival firm’s

prior is in the higher region (1−µ > 1/2), so that while the rival’s declining belief of having

a follower will lead to a quantity increase, this increase will be much lower than if their prior

were less than 1/2. As a result, under a common prior a firm with µ ∈ (0, 1/2) can afford

less of a decrease in quantity in response to an increase in µ than if their rival shared the

same prior µ ∈ (0, 1/2).

For µ > 1/2 this logic reverses, and now any increase in prior µ is met with an equal

and yet more formidable change in behavior from the rival firm. Equal in the sense that

the rival’s prior will decrease by the same magnitude with which µ increases, but more

formidable in that the rival is in the more quantity-responsive region where 1−µ ∈ (0, 1/2).

Thus increases to the prior µ > 1/2 are exacerbated by the common prior assumption as

compared to the case of identical priors.

The figure on the right shows the total quantity summed across the two periods (2q1 +

q2) in proportion to initial price (q/p0) in the case of a common prior compared with the

Stackelberg case of no uncertainty. Unsurprisingly we see that these cases intersect when

µ = 1, when order is known. More interestingly, it is clear that in the case of uncertainty

with a common prior, the total quantity in the market lies above the certain case for all

values of µ.

As described, this is due to the inverse relationship between prior µ and linear parameter

k, and the joint awareness of how this is influenced by the common prior. For prior µ < 1/2,

an increase in µ causes a decrease in k and the resultant linear quantity. But if at the same

time the rival firm sees an decrease in its own µ, this and a higher residual price left by

the leading firm causes an increase in quantity. These two factors, coupled with the more

precipitous slope of the rival’s parameter k in the high µ region more than compensate for

the initial quantity drop, leading to a total quantity increase. The case of a decrease of
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µ > 1/2 is symmetric from the other firm’s perspective, leading to a peak quantity at the

neutral prior µ = 1/2.

The common prior case characterizes a richer environment in which firms interact in the

case of positional uncertainty. The mutual awareness that the change in a firm’s own prior

must be met with an equal change of the rival’s prior restores a consistency to this interaction

and a strengthening of the explanatory power of the model. The common prior solves the

violations of probability theory suffered by the previously identical prior µ, and highlights a

key result. Introducing uncertainty in the position of quantity setting leads to a

higher total level of production in equilibrium.

This result is intuitive, as a movement away from certainty introduces to the following

firm possibility being the leader, and to the leading firm the possibility of not having a

follower. As we was the decrease in quantity of the former is more than compensated for by

the increase in quantity from the latter, leading to a net increase in total quantity over the

certain case.

For the remainder of the analysis we will focus on the case of the common prior. In

many instances this will not matter as the cases intersect with a neutral prior, a natural

assumption for otherwise identical firms. This assumption becomes even more important in

the case of n > 2 identical firms, where both intuition and tractability call upon the neutral

prior.

1.4.3 The case of N firms

In a market of N > 2 firms, while tractability concerns impede an explicit solution for the

linear equation parameter k the logic is very much the same. In such an environment we

will assume the firms are identical and as such the trivial prior of µ = 1/N is assumed. To
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illustrate, if there are three firms then profit for any given firm (say firm 1 without loss) is

1

3

(
q1(p− bq1)− cq2

1

)
+

1

3

(
q1(p− b(q1 + q2))− cq2

1

)
+

1

3

(
q1(p− b(q1 + q2 + q3))− cq2

1

)
This can be simplified to q1(p − q1(b + c)) − 1

3
bq1(2q2 + q3). The technical complication

arises from the observation that in a linear equilibrium, q3 = k(p − b(pk + k(p − bpk))),

and iteratively when the market reaches N firms the parameter k must be solved from a

polynomial equation of order N . While an explicit solution is no longer guaranteed the

general case can still be solved implicitly for any N .

Proposition 1.4. For the game ΛN(U [0,∞)) with N ≥ 2 firms and a shared uniform prior

µij = 1/N that firm i chooses quantity after j − 1 predecessors, a linear equilibrium q = kp

is defined implicitly by

(1− 2bk)(1− (1− bk)N) = 2bcNk2

We saw in the case of two firms that the introduction of position uncertainty resulted in a

higher total quantity than if positions are certain. In fact, this is a result that generalizes to

the case of N firms. Moreover since sequential quantity setting always results in a higher level

of production than Cournot oligopoly, sequential quantity setting with positional uncertainty

is too bounded below by Cournot.

The figure below shows the total output in the case of Cournot oligopoly, sequential

quantity with positional uncertainty, and the perfectly competitive outcome (where firms

make zero profit). As expected the case of sequential quantity setting with uncertainty

lies above the simultaneous quantity setting of Cournot. But the surprising result is the

relationship with the perfectly competitive quantity. It is known that Cournot converges to

the perfectly competitive case as the number of firms goes to infinity, but it is striking how

quickly the uncertain case converges. In fact, with the parameters b = 1 and c = 1/2, when

the number of firms is more than 14 the quantity actually surpasses the perfectly competitive
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outcome.

Figure 1.5: Total quantity for various market structures, b=1 and c=1/2

That the sequential quantity case with uncertainty exceeds the perfectly competitive

outcome gives pause as it must imply that some firms make negative profit. While this is

true, it is not true that all firms make losses, nor is it true than any firm expects losses

ex-ante. It is only the leading firms who make losses, as they produce the most given the

initial price p0, and as such are shouldered with consequences of this low probability event

of being an early quantity setter.

Given the uncertainty in this environment, it is understandable that in the case of low

probability events, an a priori optimal strategy yields losses a posteriori. The possibility of

losses highlights another departure from certainty in quantity setting. Not only does the case

of sequential quantity setting with positional uncertainty converge quickly (even surpassing)

the perfectly competitive outcome, but this convergence comes at the expense of leading
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firms’ profits. While for a low number of firms there is a leading advantage in terms of

profits, when the number of profits grows this advantage switches as the gains from being

a quantity leader are outweighed by proximity to the final price. A leading firm can inject

more quantity into the market than can a following firm, but if the price drops too much (if

too many firms follow), the leader’s high quantity turns out to be too high.

1.5 A generalization: A normal intercept

Previously the intercept p0 that determined the linear demand curve was distributed over

[0,∞) according to the improper uniform distribution so that any initial p0 was equally

likely. As a generalization, suppose now that demand intercept p0 is distributed over [0,∞)

according to the truncated normal distribution N(µ, σ2). For ease of exposition suppose

that µ = 0 so that the truncated distribution is given by the density function f(x, σ2) =√
2
πσ2 exp{− x2

2σ2} with mean
√

2σ2

π
.

Notice that finding the equilibrium q∗(p0) which maps p0 into residual price p according

to p = p0 − bq∗(p0) is equivalent to finding the inverse mapping of p to initial price p0

according to p∗0(p) = p + bq∗(p∗0(p)). This latter mapping is solved as a fixed point problem

but a unique solution will exist as long the mapping p0 7→ p is injective. Then upon seeing

price p, the initial price, or demand intercept, if the firm is the first mover is p, while the

initial price if second is p∗0(p). Then the probability of being first given the observed price p

can be found through Bayesian updating as follows:

γ(p) =
Pr(F ) Pr(p|F )

Pr(F ) Pr(p|F ) + Pr(S) Pr(p|S)
=

µ exp{− p2

2σ2}
µ exp{− p2

2σ2}+ (1− µ) exp{−p∗0(p)2

2σ2 }

The assumption of a normal distribution is a generalization in the sense that as variance

σ2 increases, the distribution of p0 increasingly resembles the improper uniform distribution,
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converging to it in the limit. However, the updated probability γ(p) of being the first hints

at the complication the normal distribution introduces. This posterior can be reduced to

µ/[µ+(1−µ) exp{−p∗0(p)2−p2

2σ2 }], which makes clear its dependency on the difference p∗0(p)2−p2.

However, as price increases the optimal quantity will increase, leading to an increase in the

difference between initial and residual prices p∗0(p)−p. This alone is not unique to the normal

case, as we saw the same in the uniform case - constant in the case of a uniform intercept

was not the difference between initial and residual prices but the ratio between them.

This problem becomes more complicated because now the rival firm’s optimal response

q∗(p− bq) changes not just on the residual price p− bq, but also with the induced posterior

γ(p − bq). Moreover, since for any quantity q1 the responding firm maximizes q(p − bq1) −

q2(b+ c)− q · bγ(p− bq1)q1, varying q1 will affect the responding firm’s first order condition

with respect to q both linearly and exponentially, so there is no closed form solution to the

original first order condition with respect to q1. This points to an numeric solution.

The positional uncertainty and infinite state space of this problem join to present another

complication: the problem is infinitely recursive. This is in itself is not new but the constant

posterior of the uniform case allowed us to conjecture a linear equilibrium; the dynamic

posterior here suggests a dynamic programming solution. However, the infinite recursiveness

on both sides of the distribution - since for any price p > 0 it is always possible that there

was a leader facing initial price p∗0(p) or will be a follower facing residual price p − bq -

leaves a dynamic programming problem with no initial point. Fortunately under the normal

distribution we can find a “good enough” starting point in the following sense.

Lemma 1.2. In the game Λ2(N) where demand intercept p0 is distributed according to the

truncated normal distribution on the interval [0,∞), then limp→0 γ(p) = µ.
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The essence of this result is that since the posterior takes the form

γ(p) =
µ

µ+ (1− µ) exp
{
−p∗0(p)2−p2

2σ2

}
then if p∗0(p)→ 0 as p→ 0 then γ(p)→ µ. If this were not the case some ε2 > ε1 > 0 could

be found such that p < ε1 and p0 > ε2 for p0 − bq∗(p0) = p. But this induces a hole in the

range p ∈ (ε1, ε2) so that γ(p) = 0 which by assumption does not exist.

Lemma 1.3. In the game Λ2(N) where demand intercept p0 is distributed according to the

truncated normal distribution on the interval [0,∞) and q∗(·) is an equilibrium, then

limp→∞ γ(p) = 1.

This result relies on the fact that

γ(p) =
µ exp

{
p∗0(p)2−p2

2σ2

}
µ exp

{
p∗0(p)2−p2

2σ2

}
+ (1− µ)

and that as p → ∞ the inducing p∗0(p) must increase in distance so p∗0(p)2 − p2 diverges. If

this were not true then

Then for a small enough initial price p0 it can be assumed with little error that the a

firm will behave as in the näıve case of a uniform prior, assuming the posterior of itself and

any potential follower to be µ and setting the quantity q(p) = k(µ) · p as above. From here,

the best response q∗(p) to any initial p can be determined recursively by choosing a suitably

small starting point p so γ(p) ≈ µ and iterating a finite number of steps.

Consider the case where each firm has prior Pr(F ) = µ. Then for our canonical case

of b = 1 and c = 1/2 let variance σ2 = 1 to start and consider the lower bound for our

numerical approximation of p = 1/100, 000.

For such a small lower bound p we would expect that γ(p) ≈ µ for p near p, and that the

optimal quantities for such prices would approximate k(µ) · p as in the uniform case. Since
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Figure 1.6: Optimal quantity
and price under normal
demand intercept

Figure 1.7: Posterior
probability of first as a
function of observed price

the lowest price player has posterior γ(p) = µ and assumes any follower will have the same,

then by design this holds.

As figure 1.6 shows, the relationship between price and quantity is roughly linear but

not quite. As described, the best response to a low price is approximately p · k(µ), but as p

increases the posterior moves away from γ(p) ≈ µ and approaches γ(p) = 1.

However, the speed of this movement depends on the variance of the signal σ2. As the

variance increases, high prices become less informative of position and the posterior does not

update as much. This leads to the optimal q and k∗(µ) · p coinciding for a larger number of

prices As figure 1.8 shows, while in the case of σ2 = 1 the linear equilibrium with posterior

γ = µ and the optimal quantity under the normal distribution diverged around p = 1, for

σ2 = 100 this difference is only perceptible near p = 100. This corresponds to the slowing of

the posterior γ(p) to update away from µ, as the following graph shows.

Beginning with a prior of µ = 1
4

the speed at which the posterior updates slows significantly.

This is no surprise given that γ(p) = µ

µ+(1−µ) exp

{
−
p∗0(p)2−p2

2σ2

} , so that limσ2→∞ γ(p) = µ.

Given the stubbornness of γ(p), the assumption of the previous section that price is

distributed uniformly is even more appealing. A uniform price intercept is a good approximation
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Figure 1.8: Effect of normal variance on optimal quantity and price

Figure 1.9: Posterior belief of moving first as a function of price

for small p and large variance σ2, offering credence to the improper uniform distribution as

more than just a tractable choice.
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1.6 Concluding remarks

We have introduced a model of Stackelberg competition in which firms are unsure of their

position as leader or follower. As a result, the probability of a competitor subsequently

responding to quantity causes the downstream firm to reduce output, while the nonzero

probabiltiy of being the follower causes the upstream firm to produce more than if position

were perfectly known. Of these two opposing effects the incentive to increase production

in response to the chance of being the downstream firm outweighs the incentive of the true

follower to restrict quantity.

As a result of this interplay of incentives, uncertainty over position ultimately leads to

a higher level of output in the market and a more competitive outcome for consumers. As

the number of firms increases this difference widens, with the total quantity under positional

uncertainty approaching − in some cases surpassing − quantity under perfect competition.

While the focus of this study was a model in which the stochastic demand intercept

was uniformly distributed. The key feature of the uniform distribution that lends so much

tractability is that since every price is equally likely, no price gives agents any more information

about their position and the belief of being first remains as the prior. The results presented

hold under other distributions, including the truncated normal. Moreover, as the variance of

the intercept increases and the signal becomes less informative, the posterior belief remains

close to the prior and the truncated normal case is well approximated by the uniform

distribution.
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Appendix: Proofs

Proof of Lemma 1. A firm observes p which induces a belief γ(p). By Bayesian updating

with prior Pr(First) = µ and given p0 ∼ U [0, a0]

γ(p) =
Pr(p|F ) Pr(F )

Pr(p|F ) Pr(F ) + Pr(S) Pr(p|S)

=
µPr(p|F )

µPr(p|F ) + (1− µ) Pr(p|S)

=
µ limε→0

∫ p+ε
p−ε f(s)ds

µ limε→0

∫ p+ε
p−ε f(s)ds+ (1− µ) limε→0

∫ p+ε
p−ε

∫
f(q = p0−s

b
|s)f(s)dp0 · ds

Where because initial price is distributed uniformly f(s) = 1
a0

. The value of the posterior

hinges on the integral
∫ p+ε
p−ε

∫
f(q = p0−s

b
|s)f(s)dp0 · ds. There are three possibilities

(i) There is no initial p0 such that q∗(p0) satisfies p = p0 − b · q∗(p0) in which case we

will say p is a hole in the support. If p is a hole then f(q = p0−p
b
|p) = 0 for all p0, so

that limε→0

∫ p+ε
p−ε

∫
f(q = p0−s

b
|s)f(s)dp0 · ds = 0. Thus if p is a hole in the distribution

γ(p) = 1.

(ii) p is a mass point so that there is a set P0 with non-zero measure such that for all p0 ∈ P0,

q∗(p0) = p0−p
b

. Suppose the measure of P0 = λ > 0. Also, since we are considering

only full strategies, f(q = p0−p
b
|p) = 1 for all p0 ∈ P0. Then limε→0

∫ p+ε
p−ε

∫
f(q =

p0−s
b
|s)f(s)dp0 · ds ≥

∫
P0
f(s)ds = λ · 1

a
. And since the numerator of γ(p) becomes

arbitrarily small as ε→ 0, γ(p) = 0.

(iii) If p is neither a mass point or a hole then for the set P0 such that for all p0 ∈ P0,

q∗(p0) = p0−p
b

, then the measure of P0 is zero since it can contain at most countably

many points. Then
∫ p+ε
p−ε

∫
f(q = p0−s

b
|s)f(s)dp0 · ds = 2ε and γ(p) = µ

Since this holds for all values of a0, it holds for the limiting case of the improper uniform
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distribution as a0 →∞.

Proof of Proposition 2. Since we are looking for a pure strategy equilibrium with an

infinite state space, according to Lemma 1 the posterior γ(p) = µ. Moreover since firms

have an identical prior Pr(F ) = µ, each solves the problem

max
q

(1 + µ)(q · p− q2(b+ c))− µqbq∗(p− b · q)

Conjecture a linear equilibrium so q∗(p) = k · p. Then the maximization problem becomes

max
q

(1 + µ)(q · p− q2(b+ c))− µqbk(p− b · q)

Solving for the optimal quantity and isolating the first order condition for q gives q =

p
(

1+µ(1−bk)
2b(1+µ(1−bk))+2c(1+µ)

)
so that k =

(
1+µ(1−bk)

2b(1+µ(1−bk))+2c(1+µ)

)
. Isolating k yields

k =
b(2 + 3µ) + 2c(1 + µ)−

√
(b(µ+ 2) + 2c(µ+ 1))2 − 8bcµ(µ+ 1)

4b2µ

Proof of Proposition 3. As in the previous proposition firms have the posterior γi(p) =

µi, however now µi = 1−µj, where the priors are not necessarily the same. Each firm solves

max
q

(1 + µ)(q · p− q2(b+ c))− µiq · bkj(p− b · q)

Where kj is the assumed constant of the rival firm as a function of their prior. As above this

yields the equation

ki =
1 + µi(1− bkj)

2b(1 + µi(1− bkj)) + 2c(1 + µi)
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However, unlike the previous case kj is not necessarily equal to ki because they firms might

have different priors. But due to the common prior assumption firm one solves for k1 under

the assumption that

kj =
1 + µj(1− bki)

2b(1 + µj(1− bki)) + 2c(1 + µj)

Solving for k(µ) yields

k(µ) =
b2(3µ2 + µ− 10) + 8bc(µ+ 1)(µ− 2) + 4c2(µ+ 1)(µ− 2) +

√
A(b, c, µ)

4b2(1− µ)(b(2 + µ) + 2c(1 + µ))

where

A(b, c, µ) = b4(µ2 − µ− 6)2 + 16b3c(µ4 − 2µ3 − 7µ2 + 8µ+ 12)

+ 8b2c2(7µ4 − 14µ3 − 29µ2 + 36µ+ 44) + 16c3(4b+ c)(µ2 − µ− 2)2

Proof of Proposition 4. Suppose all other firms play a linear strategy q = k1p. Then

firm i will choose quantity qi = kpi, where pi is the residual price after i − 1 firms set

quantities q1, . . . , qi−1. Then qi+1 = k1pi+1 = k1(pi − bkpi) = k1pi(1 − bk), qi+2 = k1pi+2 =

k1(pi+1 − bk1pi+1) = k1pi+1(1 − bk1) = k1pi(1 − bk1)(1 − bk), and inductively, qi+j = pi(1 −

bk)k1(1− bk1)j−1. If µi is the probability for firm i can be written as

π = q(p− q(b+ c))− qb
n∑

m=1

µm

n−m∑
j=1

qi+j
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If we assume a uniform prior so that µm = 1
n

for all m

π = q(p− q(b+ c))− qb
n∑

m=1

1

n

n−m∑
j=1

p(1− bk)k1(1− bk1)j−1

= q(p− q(b+ c))− qbp(1− bk)k1
1

n

n∑
m=1

(n−m)(1− bk1)m−1

and imposing that q = kp

= p2

{
k − k2(b+ c)− kb(1− kb)k1

1

n

n∑
m=1

(n−m)(1− bk1)m−1

}

Solving for the optimal k gives first order condition

p2

{
1− 2k(b+ c)− b(1− 2kb)k1

1

n

n∑
m=1

(n−m)(1− bk1)m−1

}
= 0

Using properties of geometric sums it can be shown that
∑n

m=1(n−m)rm−1 = n(1−r)−1+rn

(1−r)2 ,

so that replacing r = 1− bk1,

n∑
m=1

(n−m)(1− bk1)m−1 =
nbk1 − 1 + (1− bk1)n

(bk1)2

so that the first order condition becomes

p2

{
1− 2k(b+ c)− b(1− 2kb)k1

(
nbk1 − 1 + (1− bk1)n

n(bk1)2

)}
= 0

Imposing symmetry in the equilibrium so that k = k1 this reduces to

(1− 2kb)(1− (1− kb)n) = 2bcnk2
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Chapter 2

The role of confidence over timing

of investment information

Abstract: I present an investment environment wherein investors demand an

asset based on perfectly informative signals, but face uncertainty about the timing

of their information acquisition. I show that this reduces the demand and price

for every period but that in the limit price as number of periods increases price

converges to the true value of the asset. By introducing a concept of confidence

over the time in which they receive a signal, I show that the impact of uncertainty

can be exaggerated in either a negative or positive direction, with the limit price

reflecting the true value of the asset depending on the type of confidence under

consideration.
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2.1 Introduction

Uncertainty is one of the most widely studied phenomena in all of economics. Without

uncertainty, all decisions could be made through a combination of incorporating economically

relevant variables and backward induction, yielding definitive answers and leaving economists

(and people in general) to dedicate themselves to other pursuits. But uncertainty pervades.

Outcomes of investment choices, information quality, and even the preferences of agents all

suffer from the whims of uncertainty. As such, in order to accurately capture behavior the

field of economics must accommodate and incorporate into models the reality of uncertainty

in any form it may take.

One form of uncertainty that has garnered much attention in the realm of financial

investment and firm profit maximizing decisions is over the quality of information. The final

value of an uncertain decision can be found in the outcome into which uncertainty resolves

itself, but when the decision must be made before such resolution the value lies solely in

the quality of information over the possible outcomes. It is no wonder then that the quality

of information is of such interest. But a metric over informational quality misses one of

uncertainty’s most important factors: timing. It is important not only to employ accurate

information in making decisions in the face of uncertainty, but it is perhaps equally important

to employ this information at the appropriate time.

In this paper I introduce a setting in which profit maximizing agents undertake decisions

in the face of uncertainty. However, it is not the quality of information that is uncertain

to agents, but rather the timing with which agents receive this information. To emphasize

the effect of timing on information driven decisions, multiple agents will receive signals at

different times, yet none will be aware of the order in which they receive this profit relevant

information.

In order to isolate the role of positional uncertainty, investors will receive a perfectly
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informative signal about the state of the world, in this case the value of an asset. While

the asset’s valuation is unambiguous, agents will must determine their investment strategies

without knowing their position of movement. That is, they must face the uncertainty of

other investors having already made their decisions, incorporating information into the asset

price, thereby diminishing the value of the informative signal.

Upon a groundwork of behavior under positional uncertainty I build the notion of confidence.

Agents who are equally likely to move in any particular period will be said to suffer from a

confidence bias if they place any weight other than the uniform distribution on their beliefs

of moving in any period. This notion of confidence encompasses both overconfidence, as is

traditionally the focus in the behavioral literature, as well as underconfidence. Overconfidence

will manifest in a type of front-loading of beliefs so that the agent believes it is more likely

they will move earlier than later, expecting that greater gains to investment are possible

than would be so with no such bias. Underconfidence will have the opposite quality, leading

agents to place greater weight on the belief that they move in later periods.

The paper will proceed as follows. In section 2 I will discuss the most closely related

literature; in section 3 I will introduce a basic model of investment; in section 4 I will

introduce uncertainty; in section 5 I develop a notion of confidence that can change based on

agents’ beliefs in equilibrium; section 6 concludes. All proofs are relegated to the appendix

unless they provide useful insight into the decision making process.

2.2 Related literature

Much work has been done on overconfidence in the trading of financial assets. Perhaps

the most closely related work is that of Gervais, Odean (2001) [4]. In this model investors

receive a perfect signal with a fixed probability or pure noise and must update their belief

of receiving the informative signal. Through varying a confidence parameter they show that
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belief of acquiring an informative can either converge to the case of perfect rationality for

low levels of overconfidence, or diverge for high levels of confidence.

This work has many related elements including accounting for the confidence of agents

and a multi-period investment setting. Among the many departures, however, is that here

I investigate the role of confidence over position, not signal acquisition. Agents know they

receive a perfect signal about the value of the asset but have imperfect information about

the period in which they receive it. In addition in their setting agents receive signals and

invest in each period. In order to isolate the role of confidence over positional uncertainty I

restrict attention to one signal although the model generalizes to more frequent signals.

In other works Odean (2008b) shows that overconfidence in investors tends to lead to

excessive trading and lower expected utility. Overconfident agents tend to overreact to

salient information and underreact to trade relevant information, thereby preventing the

information of rational agents from being fully reflected in market price [7]. Barber and

Odean (2001) also find that men trade stocks 45% more than women, a finding hypothesized

to come from overconfidence [1].

This excessive trading and overreaction to salient information is supported by an experiment

comparing traders new to online trading to their previous gains (Barber and Odean 2002)

[2]. It is found that while phone traders tended to beat the market, upon the switch traders

tend to under-perform, a finding unexplained by the reduction in market frictions alone. It

is hypothesized that overconfidence coupled with an increased trading speed cause online

investors to increase their trading volume and reduce their performance.

Other studies show similar effects of confidence in other settings. Through FMRI scans

Peterson (2005) shows that investor overconfidence may be related to reward system activation

in the brain [8]. Handy and Underwood (2005) find that overconfidence increases price

at which managers repurchase share prices [5], a finding backed up empirically by Shu

et.al (2013) [9]. Other studies demonstrate how the salience of news stories can lead to
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overconfidence and excessive trading (Barber, Odean 2008) [3] and that due to loss aversion

traders tend to keep their assets when they suffer large losses disproportionately more often

than when they enjoy small gains (Odean 1998) [6].

2.3 The model

I consider an environment in which agents receive information about the value of a financial

asset. The previous value v0 of the asset is unknown to investors but is assumed to have

already been incorporated into the market price. Agents receive a signal η about how

the value of the asset changes. Agents receive this signal privately and without distortion

but share a prior belief with all market participants that it is drawn from the distribution

η ∼ N(0, σ2).

Agents wish to maximize the difference between the value of the asset and the price they

pay. Upon receiving signal η they know the value of the asset is vt = E[v0] + η, but they

are unaware of the prior value v0. Upon viewing price pt agents will choose their demand

for the asset x in order to maximize E[x(vt − pt)]. Importantly, there will be no short sale

restrictions so that agents can demand a negative amount of the asset.

In addition to not knowing the initial value v0 of the asset, agents are also unaware of

their position of movement. If the agent moves at period t then t − 1 agents have already

had the opportunity to move. In this setting position of movement refers to the time at

which the signal is received, which is to say that if an agent moving at period t sees a price

pt, this price has already had information η incorporated into it by t− 1 other agents.

Notice that both elements of uncertainty are necessary to capture the idea of positional

uncertainty. If the agent knew v0 they could maximize x(v0 +η−pt) without any information

about their position of movement. Likewise if the agent were to know their position, through

backward induction the agent could deduce how much information η was incorporated into
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the price by the previous t− 1 agents.

In addition to the aforementioned informed traders there is a liquidity trader who demands

an amount of the asset every period. This is necessary not only to capture the reality that

investors participate in the market for reasons other than price (e.g. to raise capital or they

are uninformed) but also to guarantee trade in a market with informed investors who present

an information asymmetry for any price setting mechanism. Each period the liquidity trader

will demand zt ∼ N(0,Ω) of the asset, an amount independent of process that yields η and

independent of liquidity demands of other periods. All market participants share common

knowledge of the i.i.d. zt and its independence from η.

Finally there is a market maker that sets the price pt each period. The market maker

knows the prior distribution of η, zt, and their independence from one another. Like the

informed agents the market maker does not know the value v0 of the asset at period 0, but

in period 1 the dissemination of information η introduces the informational asymmetry. To

combat this asymmetry the market maker sets a price each period in order to match the

value vt as closely as possible given current and historical demands for the asset. That is,

pt = E[vt|ωt, ht] where ωt = xt + zt, the sum of demand from the informed and liquidity

traders, and ht = (wi)i<t is the historical series of market demand for each period.

2.3.1 The case of no uncertainty

To gain a foothold into the decision making process faced by investors it is useful to start

with the case of no uncertainty. Moreover, the case without uncertainty will provide a

benchmark against which to compare decision making when agents do not know their position

of movement.

Consider the investment setting as described with T periods and one agent moving in

each period. Each agent knows their position t ≤ T and chooses demand to maximize the

difference between the value of the asset and price per share. To describe how agents make
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this decision, recall that they maximize E[x(vt − pt)]. While vt is perfectly known as agents

know their position of movement, there remains uncertainty in the price.

As we will see the linear equilibrium takes the form pt = pt−1 + λtωt. Since demand

ωt includes liquidity traders that behave randomly, agents cannot perfectly predict price

movements in period t and must take an expectation. The optimal demand then comes from

maximizing E[x(vt − (pt−1 + λt(x + zt)))] = x(E[v0] + η − pt−1 − λtx), where it is assumed

that price information in p0 already contains v0; in fact this assumption can (with some error

induced by the liquidity trader) be verified by the agent through backward induction. The

agent’s optimal solution is then xt = E[v0]+η−pt−1

2λt
.

The market maker sets a price attempting to match the asset’s value, taking into account

noise from the liquidity investor. Then in a linear equilibrium pt = E[v0 + η|βtxt + zt, ht].

In equilibrium the value of βt is known to the market maker so price setting becomes an

exercise in signal extraction with noise zt ∼ N(0,Ω) induced by the liquidity trader and a

prior belief pt−1 − p0 of the value η. This yields an updated estimated value of the asset

pt = pt−1 +λtωt. In this environment the equilibrium values of βt and λt take a simple form.

Proposition 2.1. For T ∈ N ∪ {∞} periods, if each agent knows their position t ≤ T then

there exists a linear equilibrium of the form pt = pt−1 + λtωt, x1 = β1η, and xt = βtη + Zt

for t > 1 with

λ1 =
1

2

√
σ2

Ω
, β1 =

√
Ω

σ2
, λt =

1√
8
, βt =

√
2

2t−1
for t > 1, and Zt ∼ N(0, Vt)

Moreover pt = p0 +
[
1−

(
1
2

)t]
η + Z ′t where Z ′t ∼ N(0, V ′t )

As expected from the investor’s first order condition, the equilibrium demand for the

asset more or less halves each period in proportion to the value of the asset. In fact, for

periods t = 2 and onward demand xt = βtη exactly halves every period. The reason for this

is that in equilibrium β is a ratio of the variance of liquidity trading Ω and of the market
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maker’s inferred variance from the procedure of noise signal updating. In the first period

the market uses prior belief σ2 of the asset’s variance. But thereafter updated variance of

the market maker is constant at Ω
2
. This result actually holds in a more general setting.

Lemma 2.1. For any T period investment setting as above where agents demand βtη and

βt = y
λt

is a constant multiple of 1
λ

and for any initial asset variance V0, variance is constant

in all periods t ≥ 2 and takes the form Vt−1 = yΩ

A technical detail that explains the constancy of βt and λt for periods t ≥ 2 to be sure,

the instant convergence of inferred variance is also interesting in its own right. Not only

does this result apply to the present case where agents are aware of their position, but it

also applies when agents face positional uncertainty. This can be seen from the fact that

the term y above can be any function of priors over positions of movement, so as long as y

is constant so too is the inferred variance vt−1. Another surprising feature of the updated

variance is that it is independent of the distribution of signal η, depending only the liquidity

trading variance Ω.

In addition to being an expected consequence of the agent’s first order condition the

result that demand halves in each period also provides insight into the rationality of the

market price updating. In equilibrium the change in price can be expressed as pt − pt−1 =

λt(βtηt + zt) = 1
2t
η + λtzt. In each period the market receives half as much information

as in the prior period so that the rate of information transmission slows. Price is thus a

geometric series save for the error in each period resulting from the presence of liquidity

demands. While liquidity traders introduce noise that prevents the market maker from

perfectly inferring the value of η, thereby enabling an equilibrium in pure strategies, their

presence also hinders the interpretation of price as the true value of the asset even at the

limit. However, the fact that liquidity noise has mean zero allows us to at least comment on

its expectation.
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Corollary 2.1. E[pt] = p0 +
[
1−

(
1
2

)t]
η and limt→∞ E[pt] = p0 + η.

The form of the error Z ′t is not important from the perspective of interpreting the price

or its expectation. It will always introduce randomness that prevents the market price from

perfectly reflecting the underlying value of the asset, but will always be present for reasons

described above. This error does, however, take a convenient form.

Proposition 2.2. In the above equilibrium for which T ∈ N ∪ {∞} periods and each agent

knows their position t ≤ T , the error term Zt takes the form Zt = − 1
λt

∑t−1
i=1

(
1
2

)t−i
λizi so

that equilibrium demand for each period is xt = βtη− 1
λt

∑t−1
i=1

(
1
2

)t−i
λizi for t > 1. Moreover

pt = p0 +
[
1−

(
1
2

)t]
η +

∑t
i=1 λizi

(
1
2

)t−i
As the formulation of Zt makes clear, each period noise from all previous periods becomes

less relevant to price. But even though the Zt follows a process in proportion to a geometric

sum there is always λtzt incorporated in price pt, preventing the price from converging to

the true value of the asset. Fortunately a metric that is often referenced as an indication of

an asset’s value is the moving average, and with good reason.

Proposition 2.3. In the above equilibrium for which T ∈ N ∪ {∞} periods and each agent

knows their position t ≤ T , plimT→∞
1
T

∑T
t=1 pt = p0 + η.

As this proposition shows, the price may not converge to the true value of the asset but

the moving average converges in probability. So in a probabilistic sense the market fully

incorporates the value η.

2.4 Introducing uncertainty

Now suppose agents face uncertainty over their position over movement, but suppose that

agents assume with a common prior belief over the order. We begin with the case of two

agents.
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2.4.1 Two agents

As above suppose investors invest in an asset that evolves according to an unobservable

process vt+1 = vt + ηt+1 but in different periods each receives the same signal η about the

process. Again there is a liquidity investor who demands zt ∼ N(0,Ω) independent of ηt.

In the case of two agents the common prior assumption provides that if agent 1 has

prior belief Pr1(F ) = γ1 of moving first then it anticipates that agent 2 has prior belief

Pr2(F ) = 1− γ1. The agent receives a signal η about the how the value of the asset evolves

but does not know the initial valuation and thus cannot infer if this valuation is already

incorporated in price. With two agents, each can either be first or second and each observes

a price p which may or may not incorporate the information η. Supposing pt is the price

before information enters the market,

(i) If the agent is first then the observed price p = pt

(ii) If the agent is second then the observed price p = pt+λt+1yt+1, where yt+1 was demand

from the first moving agent.

The difference between the first price p and the second is that the second price already

incorporates information about the asset’s value from the first agent. Thus the remaining

profit left to the second mover is less because the price relative the the value of the asset is

higher. Given that the agent has no prior information about the value of the asset it must

be assumed that pt = E[vt]. Then agents solve

max
x

xE[vt+1 − pt+1] = max
x

xE[vt+1 − (p+ λt+1ωt+1)]

= max
x

x · γE[vt + ηt+1 − (pt + λt+1ωt+1)] + max
x

x · (1− γ)E[vt + ηt+1 − (pt + λtyt + λt+1ωt+1)]

= max
x

x · γ(η − λt+1x)− x · (1− γ)(η − λt+1x− λtyt)
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where yt is the expected quantity of the first mover in the event this agent is in fact choosing

second. The profit maximization problem then becomes maxx x · (η−λt+1x− (1−γ)λtE[y]).

Notice that while p = pt or p = pt−λtyt, the maximization function does not contain the

term p. This is because the agent does not know price pt or value vt, but on the expectation

the best guess is that the market sets price pt = E[vt]. Then these two terms cancel and the

difference we are left with is that between the future valuation and current price.

Notice also that the linear price parameter λt is potentially different in every period. This

is a result of the fact that the market maker’s belief Vt of the informative signal η updates

each period. However according to Lemma 1 the variance Vt is constant for all t ≥ 2 as

long as βt is constant. Given that this is the sort of equilibrium of interest we will make the

simplifying assumption that λt is constant for all t.

Assumption 2.1. In any linear equilibrium price of the form pt = αt + λtωt where ωt is

total market demand and αt is a period specific constant, assume that λt = λ for all t.

With this additional assumption we are ready to characterize an equilibrium for two

agents.

Proposition 2.4. For T = 2 periods and agents do not know their position but have prior

beliefs γ1 and γ2 and assume a common prior then there exists a linear equilibrium of the

form pt = p0(1 − ϕ) + ϕpt−1 + λωt where p0 is the price before information η entered the

market, x1 = β1(γ1)η and x2 = β2(γ2)η with

βi(γi) =
2− ϕ(1− γi)

λ[4− ϕ2γi(1− γi)]
, Ei[βj(γi)] =

2− ϕγi
λ[4− ϕ2γi(1− γi)]

λ =
√
ϕ(1− ϕ) and ϕ2 + 3ϕ− 2 = 0 (ϕ ≈ 0.562)

From this result we can see the manner in which information about the asset’s value

translates into movements in the price. In equilibrium, p2 = p0 + λ(ϕx1 + x2) + λ(ϕz1 + z2).
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Then

E[p2] = λ(ϕβ1η + β2η) =

{
ϕ[2− ϕ(1− γ1)]

4− ϕ2γ1(1− γ1)
+

2− ϕ(1− γ2)

4− ϕ2γ2(1− γ2)

}
η

and if agents share a common prior so that γ1 = 1− γ2 this reduces to

=

[
2 + ϕ(2− γ1)− ϕ2(1− γ1)

4− ϕ2γ1(1− γ1)

]
η =

ϕ[5− γ1(1− ϕ)]η

4− ϕ2γ1(1− γ1)

where the last equality comes from the fact that ϕ2 + 3ϕ = 2.

Figure 2.1: Final price p2 as a function of prior γ1

As figure 3.8 shows, as the common prior γ1 increases, the degree to which the price

reflects the informational content of demand diminishes. This is due to the weight ϕ on the

demand of the first mover and the inability of the market maker to respond to changes in

the common prior due to the information asymmetry.
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2.4.2 T identical agents

We can generalize this case to one in which there are T agents, each receiving the signal η

in a different period t ≤ T and sharing a common prior over their position of movement. A

natural prior is uniform, where each agent believes that their probability of moving in period

t ≤ T is Pr(t) = 1
T

for all periods. Furthermore, each agent believes that all other agents

share this common prior.

As in the case of no uncertainty we will find a linear equilibrium in demand ωt. Now,

however, since agents do not know if the price they see is the original valuation or the price

after t−1 periods of agents acting on information η, they will not assign a unit value to pt−1.

They weight the previous price based on their beliefs Pr(t) of moving in every t and their

beliefs about other agents’ actions. To compensate for this, in equilibrium price at period t

will be a weight ϕ < 1 of the previous period price and current demand ωt.

To see why this is, consider the pricing decision of the market maker. As before, each

agent demands x = E[v0]+η−pt−1

2λ
but now, with equal probability pt−1 could have information

η incorporated in any number of periods t ≤ T − 1. Thus the agent will shade their demand

down by the expected amount of information already incorporated into the price. Each

period the market sets pt in order to estimate v0 + η. Then pt = E[v0 + η|βxt + zt] =

p0 + 1
β
E[βη|βη + zt] = p0 + Ω(pt−1−p0)+βV ωt

Ω+β2V
so that pt = p0(1 − ϕ) + ϕpt−1 + λωt where

ϕ = Ω
Ω+β2V

and λ = βV
Ω+β2V

.

With this formulation price in each period is a ϕ discounted sum of previous demands

plus initial price. If the agent moves in the second period price is p1 = p0 +λω1. If the agent

moves in the third period then price is p2 = p0 +λω2 +ϕλω1. Inductively if the agent moves

in period t then t− 1 agents move before and pt−1 = p0 +
∑t−1

i=1 λϕ
(t−1)−iωi. So to the agent,

without knowledge of initial value v0, pt−1 is a combination of demand in previous periods,

containing p0 = E[v0]. This gives rise to a linear equilibrium of the following form.
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Proposition 2.5. For T ∈ N ∪ {∞} periods, if agents do not know their position but have

a uniform and common prior belief over t ≤ T then there exists a linear equilibrium of the

form pt = p0(1 − ϕ) + ϕpt−1 + λωt where p0 is the price before information η enters the

market and xt = βtη with

βt =
1
√
ϕ
, λ =

√
ϕ(1− ϕ), and ϕ = 1− ϕ(1− ϕT )

T (1− ϕ)

This equilibrium can be solved down to the variable ϕ which itself cannot be solved for

explicitly. Yet it still provides interesting insight. The most obvious result to note is that

this equilibrium does not depend on liquidity noise Ω. This comes from the fact that the

updated variance of η converges immediately as described above, so βλ need not include this

term. As the market maker gains information from demand each period, since the variance of

η does not change, noise introduced by the liquidity traders offers no additional information.

Equilibrium behavior for the informed agents also accords closely to what we would

expect. Since agents do not know which of the T positions they occupy when they choose

their investment strategies, they tend to behave more cautiously than in the case with no

uncertainty.

This figure compares the price for each number of time periods in the certain and

uncertain cases, given that the true value of η is 1 and p0 = 0. As we can see comparing the

cases of certainty with uncertainty, as the number of periods T increases the information η

is more quickly incorporated into the price of the asset in the certain case. Indeed in the

certain case information is integrated at the geometric rate 1 − 1
2

t
, while in the uncertain

case the rate is not quite as fast.

While slower than in the case of certainty, we can say something about the rate of

convergence to the true value η as the following proposition describes.

Proposition 2.6. In the above equilibrium for which T ∈ N∪ {∞} and agents do not know
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Figure 2.2: Final market price for certain and uncertain position

their position but have a uniform and common prior belief over t ≤ T , E[pt] = p0 + η(1−ϕt)

In the case of positional uncertainty, for every number of possible time periods the price

is lower than if position of movement were certain, but this price too converges at a (pseudo)

geometric rate of 1−ϕt, with ϕ as defined above. The difference is that the ϕ is higher than

the 1
2

of the certain case for all t, and in fact limt→∞ ϕ = 1. However, since price depends on

ϕt it is this term whose convergence determines the integration of signal η into the price as

the number of periods T increases. As the figure makes clear this term indeed does converge

to zero.

Proposition 2.7. In the above equilibrium for which T ∈ N∪ {∞} and agents do not know

their position but have a uniform and common prior belief over t ≤ T , limT→∞ E[pt] = p0 +η

and plimT→∞
1
T

∑T
t=1 pt = p0 + η.

As Proposition 7 describes we have an analogous limit result in the case of positional

uncertainty - albeit with a slower rate of convergence. This slower convergence reflects the

fact that symmetric agents are more cautious in acting on their signal as there may be up
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to T − 1 periods of signal information already incorporated into the market price, making

the gains uncertain. However, as the number of periods increases, the effect each agent has

on equilibrium price by placing their optimal demand diminishes, so that demands in the

certain and uncertain case merge and information η is fully incorporated.

2.5 A notion of confidence

Now that we have investigated the informed investing environment with certain and uncertain

positions of movement, we can turn attention to how confidence plays a role in investment

decisions. In particular, we saw in the environments with and without certainty that as the

number of periods T increases price increased to the true value η of the asset. Furthermore

we saw that this convergence was slower in the case of positional uncertainty but hardly by

much; for T ≥ 40 the prices were barely distinguishable.

Now we introduce the notion of confidence and attempt to answer the same questions. In

particular, we would like to investigate in the presence of confidence over uncertain outcomes:

1. How does equilibrium price with confident agents compare to the case of no uncertainty?

2. How does equilibrium price with confident agents compare to the case of uncertainty

with neutral agents possessing uniform priors over positions t ≤ T?

3. As number of periods T grows large does price reflect the value η of the underlying

asset?

In order to begin to answer these questions we will need to introduce a notion of

confidence.

Definition 2.1. In a T period investment setting, an agent is neutral in terms of confidence

if their belief of moving in period t, Pr(t) = µt, is equal for all t so that µt = 1
T

.
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Given this definition, in the uncertain case previously analyzed all agents were neutral.

The concept of non-neutrality in terms of confidence takes the obvious definition.

Definition 2.2. In a T period investment setting, an agent is non-neutral in terms of

confidence if they are not confidence neutral. That is, if for some t1, t2 µt1 6= µt2.

There are infinitely many ways in which an agent can stray from confidence neutrality.

In order to narrow the scope of this definition, we will restrict attention to confidence over

the first period. An agent will be said to be overconfident if she overweighs the probability

of moving in the first period, and underconfident if she underweighs this probability.

Definition 2.3. In a T period investment setting, an agent who has beliefs µ1 = γ
T

, µt =

T−γ
T (T−1)

for t ≥ 2 is overconfident if γ > 1 and underconfident if γ < 1.

In the scope of this definition it is the belief of moving first that determines confidence.

The probability of receiving the signal η in any other period is then spread uniformly across

all other periods.

2.5.1 Confidence: The mindful investor

With these definitions regarding the confidence of investors over their uncertain position

of movement we can define the equilibrium. Of course equilibrium behavior will depend

on beliefs of other agents as well. In particular we begin with agents who are non-neutral

(γ 6= 1) and take into account the non-neutrality of other agents. In this way we can think

of these agents as “mindful” of their departure from neutrality and that other agents make

the same departure. The market maker, unaware that investors behave anything other than

fully rational, will set price exactly as before.

Proposition 2.8. In a T ∈ N ∪ {∞} period investment setting, if informed agents do not

know their position but hold a common belief µ1 = γ
T

, uniform µt = T−γ
T (T−1)

for t > 2 then
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there exists a linear equilibrium of the form pt = p0(1 − ϕ) + ϕpt−1 + λωt where p0 is the

price before information η enters the market and xt = βη with

β =
(1− ϕ)

λ
T−1

[(T − 1)− (2ϕ− 1)(γ − 1)]
, λ =

√
ϕ(1− ϕ), and ϕ = 1− ϕ(1− ϕT )

T (1− ϕ)

As the parameter β makes clear γ has a predictable effect on demand for the asset.

Agents tend to demand more (less) if γ > 1 (γ < 1) as is easily seen in the denominator

into which γ enters negatively. When γ = 1 we return to the case of neutral uncertainty

described above. Having no way to know or reason to suspect non-neutrality the market

maker behaves as in the case of neutral agents. If the market maker were able to compensate

for non-neutrality the price would more closely resemble that of the neutral case.

The figures below depict the movements of price as number of periods increases comparing

the neutral case to the over/underconfident case when the true value of η is 1 and p0 = 1.

The figure on the left shows that in the case of overconfidence (γ = 2 here) the market price

is always higher than in the confidence neutral case. Investors underweight the possibility

that the price already contains information about the value η and thus demand more than

they otherwise would. In fact as the graph shows, for early periods the price actually exceeds

the value of η. With underconfidence we see even more caution than in the case of neutral

uncertainty with the underconfident agent even further believing that the price already

contains information about the value of the asset.

As the figures below demonstrate, comparing the results to initial market with no uncertainty

paints an even more dramatic picture. In the overconfident case with just a few periods the

price surpasses the geometric pricing schedule of no uncertainty. The underconfident case

takes appreciably longer to integrate information about value into the price.

From these figures it does seem like eventually given enough periods the price does

integrate the true value of η; it appears that after 150 periods of investment the value is
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Figure 2.3: Final market
price for neutral and mindful
overconfidence

Figure 2.4: Final market
price for neutral and mindful
underconfidence

almost completely incorporated. In fact as with the cases of no uncertainty and neutral

uncertainty we can say this unambiguously.

Proposition 2.9. For a T ∈ N ∪ {∞} period investment setting, if informed agents hold a

common belief Pr(t = 1) = γ
T

, uniform Pr(t) = T−γ
T (T−1)

for T > 2, limT→∞ E[pt] = p0 + η and

plimT→∞
1
T

∑T
t=1 pt = p0 + η.

This proposition confirms that even if over(under)confident agents over(under)shoot the

price for small T , for a large enough T all information about the value η is incorporated into

the market price.

2.5.2 Confidence: The myopic investor

In the previous section we made the assumption that the non-neutral agent was “mindful”

in the sense of being aware other agents share the same confidence bias. But it is at least

as likely - if not more likely - that the agent is so confident that she believes she is the only

agent with the informational advantage that increases (decreases) her likelihood of moving

first. This would mean that in solving the maximization problem, it is assumed that other
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Figure 2.5: Final market
price for certain and mindful
overconfidence

Figure 2.6: Final market
price for certain and mindful
underconfidence

agents behave as if they were neutral investors, and the confident investor would dismiss the

possibility of others also biasing their belief of moving first.

Proposition 2.10. In a T ∈ N ∪ {∞} period investment setting, if informed agents do not

know their position but believe µ1 = γ
T

, µt = T−γ
T (T−1)

for t > 2 and believe other agents have

a uniform prior Pr(t) = 1
T

for all t ≤ T then there exists a linear equilibrium of the form

pt = p0(1 − ϕ) + ϕpt−1 + λωt where p0 is the price before information η enters the market

and xt = βtη with

β =
1

λ

[
(1− ϕ) +

(γ − 1)(2ϕ− 1)

2(T − 1)

]
, λ =

√
ϕ(1− ϕ), and ϕ = 1− ϕ(1− ϕT )

T (1− ϕ)

Again the market maker sets price as in the neutral case having no information about

the confidence bias of investors. As we have seen, even knowing the existence and magnitude

of a bias is insufficient because of they many ways investors can operationalize their bias,

mindfully and myopically among them.

In the following figures we see the comparison of naive confidence and the neutral and

certain cases with the true value of η = 1 and p0 = 0 as in all previous analyses. We
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see again that demand is increasing in confidence γ which appears positively in both the

β and δ terms. Clearly as γ → 1 this approaches our previous equilibrium of confidence

neutrality. The magnitude of this difference, however, is difficult to interpret from the first

order conditions.

As figures 2.11 and 2.12 show, we have the same pattern of the overconfident investor

Figure 2.7: Final market
price for neutral and myopic
overconfidence

Figure 2.8: Final market
price for neutral and myopic
underconfidence

(left) investing so much more than in the neutral case that in very few periods price exceeds

the true value of η = 1. Now, however, convergence of price to the true value of the asset

seems questionable. Even after 200 periods the price of the over(under)confident investor

over(under) estimates the value by about 3 percent; p200 = 1.032 (p200 = 0.971). Despite the

persistence in price distortion the bias introduces, we can in fact establish a limit result.

Proposition 2.11. In the above equilibrium for which T ∈ N ∪ {∞} and agents hold belief

Pr(t = 1) = γ
T

, uniform Pr(t) = T−γ
T (T−1)

for T > 2, and believe other agents hold a uniform

prior Pr(t) = 1
T

for all t ≤ T , limT→∞ E[pt] = p0 + η and plimT→∞
1
T

∑T
t=1 pt = p0 + η.

While this limit result confirms that even in the case of myopic confidence we have that

the asset price reflects its true value this convergence is extremely slow. This is of course

49



Figure 2.9: Final market
price for certain and myopic
overconfidence

Figure 2.10: Final market
price for certain and myopic
overconfidence

due to the weighting of µ1 that causes the agent to under/overestimate the probability that

price already contains information about the value η from other agents. But even more than

in the case of the mindfully confident investor, as more time periods/investors are added,

the fact that each investor does not account for others’ confidence γ prevents the bias from

being spread over more and more periods as efficiently.

Figure 2.11: Final market
price for all forms of
overconfidence

Figure 2.12: Final market
price for all forms of
overconfidence

The above figures show all of the cases together. As can be seen by the comparison,
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although mindful confidence suffers some pathology for small T , after a relatively short time

it converges to the certain and neutral cases. The cases of myopic confidence, however, seem

to take their time. While they reach η ± 3% in relatively short order, with increasing time

periods T this difference does not seem to relent. This is due to the slow convergence of

ϕ → 1. While all other prices depended on the convergence of ϕT → 0, the convergence of

this series depends on the convergence of ϕ. This is, of course, a direct result of agents not

considering the confidence biases of other agents.

2.6 Concluding remarks

In a investment setting with informed investors, liquidity traders, and a market maker seeking

to match the unknown value of an asset there are clear predictions in the case of certainty.

Agents who face no uncertainty - either about the value of the asset or the number of

investors who have acted before them - maximize profit in a linear equilibrium by halving

the remaining value, leading to a rapid geometric convergence of the price to the asset’s

value. A generalization of this model wherein agents do not know the period in which they

receive the informative signal, and as such do not know in which period they choose their

demand, demonstrates a similar pattern that is slightly blunted by the uncertainty of how

many investors had previously incorporated this profit relevant information into the price.

The introduction of confidence into this framework enriched the environment of uncertainty,

allowing agents to differ in how they responded to not knowing the period when they receive

the signal or how stale the information might be. Overconfident agents overweigh the

probability of being first, leading to more demand than is profitable even in the case of

certainty. This is reflected in a price that is higher than if the agents were neutral in terms

of confidence, and possibly even higher than the value of the asset. Underconfident investors,

conversely, tended to demand less of the asset than was profitable, leading to a price that
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lagged every other case and took longer to converge to the true value.

One operationalization of confidence - “mindful” confidence - led to a higher/lower

price than was otherwise profitable, and yet as the number of periods grew large the price

converged to the value of the asset rather quickly. This result is appealing in that confidence

biases of agents are not too disruptive to the information value of asset price given a suitably

large number of periods. And yet, while the concept of mindful confidence allowed for

agents’ beliefs to take into account that other agents share similar biases, the idea of being

concurrently biased about one’s own beliefs and mindful of others is in a sense contradictory.

An agent may be overconfident that they are particularly shrewd observers of the financial

news, picking up on value-relevant signals before others can catch on. But if they take into

account that others act in the same way is it true that they are more adept at interpreting

information? They may maintain an edge over some investors, but if they plan investment

strategies based on others taking the same factors in mind and undertaking the same line of

iterative induction, the belief that these investors are as näıve as all other seems to break

down.

Out of this contradiction arose the notion of “myopic” confidence whereby investors

are confident that they move first and discount the possibility that other investors share

confidence biases. This concept conforms more to our idea of what it means to be too

confident. In the setting of myopic confidence we found an even more exaggerated departure

in demand behavior and price as a measure of value. Even though the price of the asset in

this case converges to the true value in the limit it does so extremely slowly. In fact given a

200 period time horizon we saw the asset price still failed to converge.

In each of these investment environments the asset value was perfectly known (granted,

by different investors at different times) and this value never changes. It may be of comfort

to the informational value of price that in all but the most extreme case of myopic confidence

price converges quickly to the true value. But of course in a more dynamic setting the value
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is ever changing and signals are constantly being disseminated. If any of the above models

were to be repeated every 5-10 periods the informational value at the limit would never have

an opportunity to realize, leading to a potentially dramatic departure between the price of

an asset and its value. Even if the effects of confidence did not accrue but canceled as a

result of value fluctuation this still leaves the market with an undesirable level of volatility

that reduces the appeal of investment and the ability of the market operate efficiently.
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Appendix: Proofs

Proof of Proposition 1. Conjecture a linear price equilibrium of the form pt = pt−1+λtωt

and consider the first agent’s optimization problem. The anticipated market price is p1 =

p0 + λ1ω1 so the agent solves

max
x1

x1E[v0 + η − p1|θ] = x1(η − E[λ1ω1]) = x1(η − λ1x1)

which yields the optimal quantity x1 = η
2λ1

.

By induction, for a t > 1 conjecture that the optimal investment given λt is xt = 1
2tλt

η+Zt

with Zt ∼ N(0, Vt). Then the agent in period t+ 1 solves

max
xt+1

xt+1E[v0 + η − pt+1|θ] = xt+1

(
η −

(
t∑
i=1

λiωi + λt+1xt+1

))

which yields equilibrium xt+1 =
η−
∑t
i=1 λiωi

2λt+1
. By induction this holds for all preceding t so

that xt =
η−
∑t−1
i=1 λiωi
2λt

and 2λtxt = η −
∑t−1

i=1 λiωi. Also notice that

xt+1 =
η −

∑t
i=1 λiωi

2λt+1

=
η −

∑t−1
i=1 λiωi − λtωt
2λt+1

=
η −

∑t−1
i=1 λiωi − λtxt − λtzt

2λt+1

=
2λtxt − λtxt − λtzt

2λt+1

=
λtxt − λtzt

2λt+1

By the induction assumption λtxt = 1
2t
η + λtZt and

xt+1 =

(
1

2λt+1

)[
1

2t
η + λtZt − λtzt

]
=

(
1

λt+1

)[
1

2t+1
η +

1

2
λtZt −

1

2
λtzt

]

so that xt+1 = 1
2t+1λt+1

η + Zt+1 where Zt+1 = λt(Zt−zt)
2λt+1

∼ N(0,
λ2
t (Vt+Ω)

4λ2
t+1

). Letting Vt+1 =
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λ2
t (Vt+Ω)

4λ2
t+1

gives Zt+1 ∼ N(0, Vt+1). Then xt+1 = βt+1η + Zt+1 where βt+1 = 1
2t+1λt+1

Thus by

induction this holds for all t ≤ T .

Now consider the problem of the market maker. In each period the market maker sets

the price in order to match the value of the asset. That is pt = E[v0 + η|ωt, ht] where again

ωt = xt + zt is market demand, and ht is the historical series of market demand. Then in

period 1

p1 = E[v0 + η|ω1] = p0 + E[η|β1η + z1] = p0 +
1

β1

E[β1η|β1η + z1]

= p0 +
β1σ

2

β2
1σ

2 + Ω
ω1

and so λ1 = β1σ2

β2
1σ

2+Ω
. Moreover since β1 = 1

2λ1
then

λ1 =
1

2λ1
σ2(

1
2λ1

)2

σ2 + Ω
=

σ2(
1

2λ1

)
σ2 + 2Ωλ1

2σ2 = σ2 + 4Ωλ2
1

λ1 =

√
σ2

4Ω

so that

p1 = E[v0 + η|ω1] = p0 +

(√
σ2

4Ω

)
ω1

and the variance of the estimate of η is

V1 =
β2

1σ
2Ω

β2
1σ

2 + Ω
=

( 1
2λ1

)2σ2Ω

( 1
2λ1

)2σ2 + Ω
=

σ2Ω

σ2 + 4λ2
1Ω

which reduces to V1 = Ω
2
.
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Consider a general t > 1. The market maker again sets price to match the expected value

of the asset so that

pt = E[v0 + η|ωt, ht] = E[v0 + η|xt + zt, ht] = E

[
v0 + η

∣∣∣∣∣ 1

2λt

(
η −

t∑
i=1

λiωi

)
+ zt, ht

]

= E
[
v0 + η

∣∣∣∣ 1

2λt
(η − (pt−1 − p0)) + zt, ht

]
= E

[
v0 + η

∣∣∣∣ 1

2λt
(v0 + η − pt−1) + zt, ht

]
= 2λtE

[
1

2λt
(v0 + η − pt−1)

∣∣∣∣ 1

2λt
(v0 + η − pt−1) + zt, ht

]
+ pt−1

Since pt−t was the previous expectation of v0 + η, 1
2λt

(v0 + η − pt−1) ∼ N(0,
(

1
2λt

)2

Vt−1)

where Vt−1 is the previous variance estimate of η. Suppose that Vt−1 = Ω
2
. If Vt = Ω

2
as well

then by induction this is the variance of η for all t > 1. Then the above expectation becomes

pt = pt−1 + 2λt

(
1

2λt

)2
Ω
2(

1
2λt

)2
Ω
2

+ Ω
ωt = pt−1 +

(
1

2λt

)
(

1
2λt

)2

+ 2
ωt = pt−1 +

1(
1

2λt

)
+ 4λt

ωt

Then

λt =
1(

1
2λt

)
+ 4λt

⇒ 8λ2
t + 1 = 2

so that λt = 1√
8
. Also,

Vt =

(
1

2λt

)2

Vt−1Ω(
1

2λt

)2

Vt−1 + Ω
=

(
1

2λt

)2
Ω
2
Ω(

1
2λt

)2
Ω
2

+ Ω
=

(
8
4

)
1
2
Ω(

8
4

)
1
2

+ 1
=

Ω

2

and by induction Vt = Ω
2

for all t > 1.

Since it has been shown that βt = 1
2tλt

, then by the formulation of λt it holds that

β1 =
√

Ω
σ2 and βt =

√
2

2t−1 for t > 1 as desired.
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Lastly, pt = pt−1 + λtωt so inductively

pt = p0 +
t∑
i=1

λiωi = p0 +
t∑
i=1

λi(xi + zi) = p0 +
t∑
i=1

λi

(
1

2iλi
η + Zi

)
+ λizi

= p0 +
t∑
i=1

(
1

2i

)
η +

t∑
i=1

λi(Zi + zi) = p0 +

[
1−

(
1

2

)t]
η + Z ′t

where Z ′t is a linear combination of independently normally distributed random variables

with mean zero so Z ′t ∼ N(0, V ′t )

Proof of Lemma 1. Suppose the agent demands xt = βtη where βt = y
λt

. The market

maker sets price so that pt = E[vt|βtη + zt] = Vt−1βt
Vt−1β2

t+Ω
, where Vt−1 is the market maker’s

prior belief of the informative signal’s variance. Then

βtλt =
β2
t Vt−1

β2
t Vt−1 + Ω

= y

This yields β2
t Vt−1 = yΩ

1−y . When the market maker updates variance of the agent’s signal

given that liquidity noise zt ∼ N(0,Ω),

Vt =
β2
t Vt−1Ω

β2
t Vt−1 + Ω

=

yΩ
1−yΩ
yΩ

1−y + Ω
=

yΩ2

yΩ + (1− y)Ω
= yΩ

Since this was independent of the value Vt−1, variance will be Vt = yΩ for every period with

only the possible exception of V0 before variance can be updated from the prior belief.

Proof of Proposition 2. The previous proof shows that the optimal quantity for the agent

in period t is xt = λt−1xt−1−λt−1zt−1

2λt
. Then for t = 2, x2 = λ1x1−λ1z1

2λ2
= η

4λ2
− 1

λ2

(
1
2

)
λ1zt so

that β2 = 1
4λ2

and Z2 = − 1
λ2

∑2−1
i=1

(
1
2

)t−i
λizi so the result holds for t = 2.

By induction suppose that xt = 1
2tλt

η − 1
λt

∑t−1
i=1

(
1
2

)t−i
λizi for t ≥ 2. Then λtxt =
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1
2t
η −

∑t−1
i=1

(
1
2

)t−i
λizi and given that xt+1 = λtxt−λtzt

2λt+1
,

xt+1 =

(
1

2λt+1

)[(
1

2t
η −

t−1∑
i=1

(
1

2

)t−i
λizi

)
− λtzt

]

=

(
1

λt+1

)[
1

2t+1
η −

t−1∑
i=1

(
1

2

)t+1−i

λizi −
1

2
λtzt

]

=

(
1

λt+1

)[
1

2t+1
η −

t∑
i=1

(
1

2

)t+1−i

λizi

]

=

(
1

λt+1

) 1

2t+1
η −

(t+1)−1∑
i=1

(
1

2

)(t+1)−i

λizi


so that xt+1 = 1

2t+1λt+1
η− 1

λt+1

∑(t+1)−1
i=1

(
1
2

)(t+1)−i
λizi. Thus Zt+1 = − 1

λt+1

∑(t+1)−1
i=1

(
1
2

)(t+1)−i
λizi

and by induction the result holds for all t ≤ T .

As noted in proposition 1

pt = p0 +

[
1−

(
1

2

)t]
η + Z ′t

where Zt′ =
∑t

i=2 λiZi +
∑t

i=1 λizi. From the above Zi = − 1
λi

∑i−1
j=1

(
1
2

)i−j
λjzj so that

t∑
i=1

λiZi = −
t∑
i=2

i−1∑
j=1

(
1

2

)i−j
λjzj = −

t−1∑
j=1

t∑
i=j+1

(
1

2

)i−j
λjzj = −

t−1∑
j=1

λjzj

t−j∑
i=1

(
1

2

)i

= −
t−1∑
j=1

λjzj

[
1−

(
1

2

)t−j]

Together,

t∑
i=2

λiZi +
t∑
i=1

λizi =
t∑
i=1

λizi −
t−1∑
j=1

λjzj

[
1−

(
1

2

)t−j]
=

t∑
i=1

λizi −
t−1∑
i=1

λizi

[
1−

(
1

2

)t−i]

= λtzt +
t−1∑
i=1

λizi

(
1

2

)t−i
=

t∑
i=1

λizi

(
1

2

)t−i
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Then Z ′t =
∑t

i=1 λizi
(

1
2

)t−i
and pt = p0 +

[
1−

(
1
2

)t]
η +

∑t
i=1 λizi

(
1
2

)t−i
Proof of Proposition 3. Define the partial series XT = 1

T

∑T
t=1 pt.

XT =
1

T

T∑
t=1

pt =
1

T

T∑
t=1

[
p0 +

(
1−

(
1

2

)t)
η +

t∑
i=1

λizi

(
1

2

)t−i]

= p0 + η − η

T

(
1−

(
1

2

)T)
+

1

T

T∑
t=1

t∑
i=1

λizi

(
1

2

)t−i

For each T variance of XT (given that the zi are independent) is

V ar(XT ) = E

( 1

T

T∑
t=1

t∑
i=1

λizi

(
1

2

)t−i)2
 =

1

T 2

Ω

8

T∑
t=1

t∑
i=1

(
1

2

)2(t−i)

=
Ω

8T 2

T∑
t=1

t−1∑
j=0

(
1

4

)j
=

Ω

8T 2

T∑
t=1


(

1−
(

1
4

)t)
1− 1

4


=

Ω

6T 2

T∑
t=1

(
1−

(
1

4

)t)
=

Ω

6T
− Ω

6T 2

(1

4

) (1−
(

1
4

)t)
1− 1

4


=

Ω

6T
− Ω

18T 2

(
1−

(
1

4

)T)
=

Ω

6T
− Ω

18T 2
+

Ω

18T 2

(
1

4

)T

Let ε > 0. By Markov’s inequality,

Pr(|Xt − (p0 + η)| ≥ ε) ≤
E
[(
p0 + η − η

T

(
1−

(
1
2

)T)
+ 1

T

∑T
t=1

∑t
i=1 λizi

(
1
2

)t−i − (p0 + η)
)2
]

ε2

=
1

ε2


[
η

T

(
1−

(
1

2

)T)]2

+ E

( 1

T

T∑
t=1

t∑
i=1

λizi

(
1

2

)t−i)2


=

(
η
T

)2
(

1−
(

1
2

)T)2

+ Ω
6T
− Ω

18T 2 + Ω
18T 2

(
1
4

)T
ε2
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so that

Pr(|Xt − (p0 + η)| < ε) ≤ 1−

(
η
T

)2
(

1−
(

1
2

)T)2

+ Ω
6T
− Ω

18T 2 + Ω
18T 2

(
1
4

)T
ε2

−→ 1 as T →∞

so that plimT→∞
1
T

∑T
t=1 pt = p0 + η.

Note that λ2
1 = σ2

4Ω
. This was ignored for expositional clarity because V ar( 1

T
λ1z1) =

σ2

4T 2 → 0 ⇐⇒ Ω
8T 2 → 0.

Proof of Proposition 4. Recall that the agent solves the problem maxx x · (η − λt+1x −

(1− γ)λtE[y]). This yields the optimal response to y of

Conjecture a linear price equilibrium of the form pt = p0(1− ϕ) + ϕpt−1 + λωt for t > 1

where p0 is the price before information η entered the market. The agent seeks to maximize

xE[vt − pt] = xE[v0 + η − p0(1− ϕ)− ϕpt−1 − λωt]

= x (E[v0] + η − p0(1− ϕ)− ϕE[pt−1]− λx)

Which is maximized for x = ϕp0+η−ϕE[pt−1]
2λ

since p0 = E[v0]. If the agent moves in the first

period price is p0 while second period price is p1 = p0 + λω1. With prior Pr(F ) = γi the

price pt−1 = γip0 + (1− γi)p1 = p0 + (1− γi)λω1. For a second period mover, E[ω1] = E[x1],

demand can be written as

x =
η + ϕ(p0 − pt−1)

2λ
=
η − ϕ(1− γi)λE[x1]

2λ

=
η

2λ
− ϕ(1− γi)E[x1]

2
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and as a result of the common prior belief expected quantity E[x1] is

E[x1] =
η

2λ
− γiϕ

2
xt

Thus in equilibrium

xi =
2− ϕ(1− γi)

λ[4− ϕ2γi(1− γi)]
η and E[xj] =

2− ϕγi
λ[4− ϕ2γi(1− γi)]

η

so that

βi(γi) =
2− ϕ(1− γi)

λ[4− ϕ2γi(1− γi)]
and E[βj(γi)] =

2− ϕγi
λ[4− ϕ2γi(1− γi)]

The market maker sets price so that pt = E[vt|ωt, ht] so

pt = E[vt|ωt, ht] = E[v0 + η|ωt, ht] = p0 + E[η|ωt, ht] = p0 +
1

β
E[βη|βη + zt, ht]

Recall that zt ∼ N(0,Ω) and the prior belief on the value is η ∼ N(pt−1 − p0, V ). Then

βη ∼ N(β(pt−1 − p0), β2V ) and

pt = p0 +
Ωβ(pt−1 − p0) + β2V ωt

β(Ω + β2V )
= p0 +

Ω(pt−1 − p0) + βV ωt
Ω + β2V

so that

λ =
βV

Ω + β2V
and ϕ =

Ω

Ω + β2V

If the market maker cannot distinguish between agent types price must be taken assuming

a weighted average βt = µβ(γi) + (1−µ)β(γ2). Moreover if the market is not able to update

63



agents’ posterior probability it must rely on γi = µ and γj = 1− µ. Then

β =
2(1− µ(1− µ)ϕ)

λ(4− µ(1− µ)ϕ2)

Moreover, if the market maker believes both investors are equally likely to move first, then

µ = 1
2

and this reduces to β = 2
λ(4+ϕ)

. Given that βλ = 1 − ϕ = β2V
Ω+β2V

, this solves to

β2 = (1−ϕ)Ω
V ϕ

. Notice also that for any Vt−1 updated variance is

Vt =
β2Vt−1Ω

β2Vt−1 + Ω
=

(
(1−ϕ)Ω
1−εT

)
Ω

(1−ϕ)Ω
1−εT

+ Ω
=

(1− ϕ)Ω

(1− ϕ) + (1− εT )
= (1− ϕ)Ω

so that β =
√

1
ϕ

and λ =
√
ϕ(1−ϕ). From the fact that βλ = 2

4+ϕ
= 1−ϕ, ϕ2 + 3ϕ− 2 = 0

so that ϕ =
√

17−3
2
≈ 0.562 and λ ≈ 0.329

Proof of Proposition 5. Conjecture a linear price equilibrium of the form pt = p0(1 −

ϕ) + ϕpt−1 + λωt where p0 is the price before information η entered the market. The agent

seeks to maximize

xE[vt − pt] = xE[v0 + η − p0(1− ϕ)− ϕpt−1 − λωt]

= x (E[v0] + η − p0(1− ϕ)− ϕpt−1 − λx)

Which is maximized for x = ϕp0+η−ϕpt−1

2λ
since p0 = E[v0]. If the agent moves in the second

period price is p1 = p0 + λω1. If the agent moves in the third period then price is p2 =

p0 + λω2 + ϕλω1. Inductively if the agent moves in period t then t − 1 agents move before

and pt−1 = p0 +
∑t−1

i=1 λϕ
(t−1)−iωi.

If there are T periods and each agent has the belief µt that they are moving in period t

and since since ωt = xt + zt and zt are independently distributed with zero mean, ωt = xt
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is the expectation for each period. Moreover since the agent has no additional information

than the market before the first period when the signal η was released then E[v0] = p0. Then

optimal demand becomes

x =
1

2λ
(ϕp0 + η − ϕpt−1) =

1

2λ

[
η −

T∑
t=2

µt

(
t−1∑
i=1

λϕt−ixi

)]

where the outer summation starts from t = 2 because when t = 1 the agent moves in the

first period and there is no previous demand. Imposing agents’ symmetry and the uniform

belief over their period of movement, xi = x for all i and µt = 1
T

for all t. Demand then

reduces to

x =
1

2λ

[
η −

T∑
t=2

1

T

t−1∑
i=1

λϕt−ix

]
=

1

2λ

[
η − λx

T

T∑
t=2

t−1∑
i=1

ϕt−i

]

=
1

2λ

[
η −

(
λxϕ

T

)
T (1− ϕ)− (1− ϕT )

(1− ϕ)2

]
=

η

2λ
− xϕ

2

(
1

1− ϕ
− (1− ϕT )

T (1− ϕ)2

)

which simplifies to

x =
(1− ϕ)η

λ
[
(2− ϕ)− ϕ(1−ϕT )

T (1−ϕ)

]
The market maker sets price such that pt = E[vt|ωt]. Then

pt = E[vt|ωt] = E[v0 + η|xt + zt] = p0 + E[η|βη + zt] = p0 +
1

β
E[βη|βη + zt]

Recall that zt ∼ N(0,Ω) and the prior belief on the value is η ∼ N(pt−1 − p0, V ). Then

βη ∼ N(β(pt−1 − p0), β2V ) and

pt = p0 +
Ωβ(pt−1 − p0) + β2V ωt

β(Ω + β2V )
= p0 +

Ω(pt−1 − p0) + βV ωt
Ω + β2V
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so that

λ =
βV

Ω + β2V
and ϕ =

Ω

Ω + β2V

For notational convenience let εT = ϕ(1−ϕT )
T (1−ϕ)

. Then β = 1−ϕ
λ[(2−ϕ)−εT ]

and

βλ =
1− ϕ

(2− ϕ)− εT
=

β2V

Ω + β2V

β2V [(2− ϕ)− εT ] = (1− ϕ)(Ω + β2V )

β2 =
(1− ϕ)Ω

V (1− εT )

Given that ϕ = Ω
Ω+β2V

the above implies that

ϕ =
Ω

Ω + (1−ϕ)Ω
1−εT

=
1− εT

1− εT + (1− ϕ)

ϕ(2− ϕ− εT ) = 1− εT

(1− ϕ)2 = εT (1− ϕ)

ϕ = 1− εT

Notice also that for any Vt−1 updated variance is

Vt =
β2Vt−1Ω

β2Vt−1 + Ω
=

(
(1−ϕ)Ω
1−εT

)
Ω

(1−ϕ)Ω
1−εT

+ Ω
=

(1− ϕ)Ω

(1− ϕ) + (1− εT )
= (1− ϕ)Ω

Then from above

β2 =
(1− ϕ)Ω

V (1− εT )
= β2 =

(1− ϕ)Ω

(1− ϕ)Ω(1− εT )
=

1

ϕ

so that β =
√

1
ϕ

. It can be seen given the updating of the market maker that βλ = 1−ϕ so
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that λ =
√
ϕ(1− ϕ)

Proof of Proposition 6. From the above the price can be expanded as

pt = (1− ϕ)p0 + λωt + ϕpt−1 = (1− ϕ)p0 + ϕp0 +
t∑
i=1

ϕt−iλωt = p0 +
t∑
i=1

ϕt−iλ(x+ zt)

= p0 +
t∑
i=1

ϕt−iλx+
t∑
i=1

ϕt−iλzt = p0 + λx

t−1∑
j=0

ϕj +
t∑
i=1

ϕt−iλzt

= p0 + λx
1− ϕt

1− ϕ
+

t∑
i=1

ϕt−iλzt = p0 + λβη
1− ϕt

1− ϕ
+

t∑
i=1

ϕt−iλzt

= p0 + (1− ϕ)η
1− ϕt

1− ϕ
+

t∑
i=1

ϕt−iλzt = p0 + (1− ϕT )η +
t∑
i=1

ϕt−iλzt

and so E[pt] = p0 + (1− ϕT )η

Lemma 2.2. If x, ϕ ∈ (0, 1) and limt→∞ x
t = limt→∞ ϕ

t = p for some p ∈ (0, 1), then

limt→∞ t(1− ϕ)2 = limt→∞ t(1− x)2 if such a limit exists.

Proof. Let ε > 0 small enough so 0 < p − ε < p + ε < 1 and choose T ∈ N such that

t ≥ T implies both p − ε < xt < p + ε and p − ε < ϕt < p + ε. Then (p − ε)1/t < x <

(p+ ε)1/t, (p− ε)1/t < ϕ < (p+ ε)1/t, and moreover |ϕ− x| < |(p+ ε)1/t − (p− ε)1/t|. Then

|t(1− ϕ)2 − t(1− x)2| = t|ϕ2 − x2 − 2(ϕ− x)| = t|(ϕ− x)((ϕ+ x)− 2)|

< 4t|ϕ− x| < 4t|(p+ ε)1/t − (p− ε)1/t|

Since this applies for all t ≥ T it will also apply in the limit. Note that

d

dt
kc/t =

d

dt
exp

{c
t

ln(k)
}

= exp
{c
t

ln(k)
} −c
t2

ln(k)

= − c
t2

ln(k)kc/t
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Then using L’Hôpital’s Rule

|t(1− ϕ)2 − t(1− x)2| < lim
t→∞

4t|(p+ ε)1/t − (p− ε)1/t| = lim
t→∞

4|(p+ ε)1/t − (p− ε)1/t|
1
t

= lim
t→∞

4| − 1
t2

ln(p+ ε)(p+ ε)1/t + 1
t2

ln(p− ε)(p− ε)1/t|
−1
t2

= lim
t→∞

4| ln(p+ ε)(p+ ε)1/t − ln(p− ε)(p− ε)1/t|

= 4 ln

(
p+ ε

p− ε

)

since both (p−ε)1/t and (p+ε)1/t converge to 1. For any δ > 0 letting ε < p(exp{δ/4}−1)
exp{δ/4}+1

yields

the result that |t(1−ϕ)2− t(1− x)2| < δ and thus limt→∞ t(1−ϕ)2 = limt→∞ t(1− x)2.

Lemma 2.3. In equilibrium, ϕ implicitly defined by 1− ϕ = ϕ(1−ϕT )
T (1−ϕ)

must converge to 1.

Proof. In equilibrium ϕ = Ω
Ω+β2V

so ϕ ∈ (0, 1). If limT→∞ ϕ = p ∈ [0, 1) then ϕT → 0 and

1− ϕ = ϕ(1−ϕT )
T (1−ϕ)

→ 0 so ϕ→ 1. Thus it must be that ϕ→ 1.

Corollary 2.2. In equilibrium, εT = ϕ(1−ϕ)
T (1−ϕ)

must converge to 0.

Lemma 2.4. For the above where 1− ϕ = ϕ(1−ϕT )
T (1−ϕ)

, limT→∞ ϕ
T = 0.

Proof. Since ϕ ∈ (0, 1), limT→∞ ϕ
T ∈ [0, 1]. Suppose the series converges to some number

inside the interval so limT→∞ ϕ
T = p ∈ (0, 1). By definition (1− ϕ) = ϕ(1−ϕT )

T (1−ϕ)
so that

lim
T→∞

T (1− ϕ)2 = lim
T→∞

ϕ(1− ϕT ) = 1− p

Consider x = p1/T . Clearly xT converges to p and since p ∈ (0, 1) limT→∞ x = 1. Then by

the above lemma since the limit exists limT→∞ T (1− x)2 = 1− p. However,

lim
T→∞

T (1− x)2 = lim
T→∞

1− 2p1/T + p2/T

1
T

= lim
T→∞

2 1
T 2 ln(p)p1/T − 2

T 2 ln(p)p2/T

−1
T 2

= lim
T→∞

2 ln(p)(p2/T − p1/T ) = 0
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since both p1/T → 1 and p2/T → 1. This contradiction shows that p cannot be interior so

that limT→∞ ϕ
T ∈ {0, 1}.

Suppose then that limT→∞ ϕ
T = 1. Recall that given the definition of εT ,

lim
T→∞

(1− ϕ) = lim
T→∞

ϕ(1− ϕT )

T (1− ϕ)
= lim

T→∞

ϕ′(T )− ϕT+1[ln(ϕ) + (T + 1)ϕ′(T )/ϕ]

(1− ϕ)− Tϕ′(T )

= lim
T→∞

ϕ′(T )− ϕT+1 ln(ϕ)− (T + 1)ϕ′(T )ϕT

(1− ϕ)− Tϕ′(T )

=
limT→∞[ϕ′(T )(1− ϕT − TϕT )− ϕT+1 ln(ϕ)]

limT→∞[(1− ϕ)− Tϕ′(T )]

= lim
T→∞

ϕ′(T )(1− ϕT − TϕT )

−Tϕ′(T )
= 1

since ϕT → 1, ϕ → 1. Thus 1 − ϕ → 1 so ϕ → 0. Then it must be that ϕ converges to

something less than 1, but if this is so then ϕ(1−ϕT )
T (1−ϕ)

→ 0 which contradicts that limT→∞ ϕ < 1.

The only remaining possibility is that limT→∞ ϕ
T = 0.

Proof of Proposition 7. Combining Proposition 6 and lemmas 2-4

lim
t→∞

E[pt] = lim
t→∞

p0 + (1− ϕT )η = p0 + η.

Define the partial series XT = 1
T

∑T
t=1 pt. Then

XT =
1

T

T∑
t=1

pt =
1

T

T∑
t=1

[
p0 + (1− ϕt)η +

t∑
i=1

ϕt−iλzt

]

= p0 + η − ϕ(1− ϕT )

T (1− ϕ)
η +

1

T

T∑
t=1

t∑
i=1

ϕt−iλzt
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For each T variance of XT (given that the zi are independent) is

V ar(XT ) = E

( 1

T

T∑
t=1

t∑
i=1

λiziϕ
t−i

)2
 =

1

T 2
λ2Ω

T∑
t=1

t∑
i=1

ϕ2(t−i)

=
ϕ(1− ϕ)2Ω

T 2

T∑
t=1

t−1∑
j=0

(
ϕ2
)j

=
ϕ(1− ϕ)2Ω

T 2

T∑
t=1


(

1− (ϕ2)
t
)

1− ϕ2


=
ϕ(1− ϕ)2Ω

T 2(1− ϕ2)

T∑
t=1

(
1−

(
ϕ2
)t)

=
ϕ(1− ϕ)Ω

T (1 + ϕ)
− ϕ(1− ϕ)Ω

T 2(1 + ϕ)

T∑
t=1

(
ϕ2
)t

=
ϕ(1− ϕ)Ω

T (1 + ϕ)
− ϕ(1− ϕ)Ω

T 2(1 + ϕ)

(
ϕ2(1− ϕ2T )

1− ϕ2

)
=
ϕ(1− ϕ)Ω

T (1 + ϕ)
− ϕ3(1− ϕ2T )Ω

T 2(1 + ϕ)2

=
ϕ(1− ϕ)Ω

T (1 + ϕ)
−
(

(1− ϕT )

T (1 + ϕ)

)(
(1 + ϕT )

T (1 + ϕ)

)
ϕ3Ω

Let ε > 0. By Markov’s inequality,

Pr(|Xt − (p0 + η)| ≥ ε) ≤
E
[(
p0 + η − ϕ(1−ϕT )

T (1−ϕ)
η + 1

T

∑T
t=1

∑t
i=1 ϕ

t−iλzt − (p0 + η)
)2
]

ε2

=
1

ε2


[
ϕ(1− ϕT )

T (1− ϕ)
η

]2

+ E

( 1

T

T∑
t=1

t∑
i=1

ϕt−iλzt

)2


=

(
ϕ(1−ϕT )
T (1−ϕ)

)2

η2 + ϕ(1−ϕ)Ω
T (1+ϕ)

−
(

(1−ϕT )
T (1+ϕ)

)(
(1+ϕT )
T (1+ϕ)

)
ϕ3Ω

ε2

so that

Pr(|Xt − (p0 + η)| < ε) ≤ 1−

(
ϕ(1−ϕT )
T (1−ϕ)

)2

η2 + ϕ(1−ϕ)Ω
T (1+ϕ)

−
(

(1−ϕT )
T (1+ϕ)

)(
(1+ϕT )
T (1+ϕ)

)
ϕ3Ω

ε2
−→ 1

as T →∞ since ϕ→ 1 by Lemma 3, ϕT → 0 by Lemma 4, and 0 ≤ ϕ(1−ϕT )Ω
T (1+ϕ)

≤ ϕ(1−ϕT )Ω
T (1−ϕ)

→ 0

by Lemma 3 which implies ϕ(1−ϕT )Ω
T (1+ϕ)

→ 0. Therefore plimT→∞
1
T

∑T
t=1 pt = p0 + η.

Proof of Proposition 8. Since the market maker is not aware of the confidence bias it
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still sets λ =
√
ϕ(1− ϕ) and ϕ = 1− ϕ(1−ϕT )

T (1−ϕ)
. From the proof of Proposition 5 we was that

the agent’s optimal demand for the asset is

xt =
1

2λ

[
η −

T∑
t=2

µt

(
t−1∑
i=1

λϕt−ixi

)]

Now with a weight γ put on being a first mover, µ1 = γ
T

and all other beliefs µt = T−γ
T (T−1)

,

and supposing that all other xi are symmetric,

x =
1

2λ

[
η −

T∑
t=2

T − γ
T (T − 1)

t−1∑
i=1

λϕt−ixi

]
=

η

2λ
− T − γ
T (T − 1)

xi
2

T∑
t=2

t−1∑
j=1

ϕj

=
η

2λ
− T − γ
T (T − 1)

xi
2

T∑
t=2

ϕ− ϕT

1− ϕ
=

η

2λ
− T − γ
T (T − 1)

xiϕ

2(1− ϕ)

(
T − 1− ϕT

1− ϕ

)

Imposing symmetry of x = xi demand becomes

2x(1− ϕ) =
(1− ϕ)η

λ
− xT − γ

T − 1

(
ϕ− ϕ(1− ϕT )

T (1− ϕ)

)

which simplifies to

x =
(1− ϕ)η

λ
T−1

[(T − 1)− (2ϕ− 1)(γ − 1)]

Proof of Proposition 9. From the proof of Proposition 6 we determined that

pt = p0 + λx
1− ϕt

1− ϕ
+

t∑
i=1

ϕt−iλzt
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So with demand x = (1−ϕ)η
λ
t−1

[(t−1)−(2ϕ−1)(γ−1)]
expected price in time t is

E[pt] = p0 +
(1− ϕ)η

1
t−1

[(t− 1)− (2ϕ− 1)(γ − 1)]

(
1− ϕt

1− ϕ

)

Then

lim
t→∞

E[pt] = lim
t→∞

{
p0 +

(1− ϕt)η
1
t−1

[(t− 1)− (2ϕ− 1)(γ − 1)]

}

= p0 +
limt→∞(1− ϕt)η

limt→∞
1
t−1

[(t− 1)− (2ϕ− 1)(γ − 1)]
= p0 + η

since ϕ→ 1, and ϕt → 0. Thus limt→∞ E[pt] = p0 + η.

Probability limit result achieved by applying Markov’s law as in Proposition 7.

Proof of Proposition 10. From the proof of Proposition 8 we saw that

x =
η

2λ
− T − γ
T (T − 1)

xiϕ

2(1− ϕ)

(
T − 1− ϕT

1− ϕ

)

If the agent believes all others act as though they have a uniform distribution over position

t ≤ T , then xi = (1−ϕ)η
λ

and

x =
η

2λ
−
(
T − γ
T − 1

)
(1− ϕ)η

2(1− ϕ)λ

(
ϕ− ϕ(1− ϕT )

T (1− ϕ)

)
=

η

2λ

[
2(T − γ)(1− ϕ)

T − 1
+
γ − 1

T − 1

]
=
η

λ

[
(1− ϕ) +

(γ − 1)(2ϕ− 1)

2(T − 1)

]
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Proof of Proposition 11. From the proof of Proposition 6 we determined that

pt = p0 + λx
1− ϕt

1− ϕ
+

t∑
i=1

ϕt−iλzt

Given that demand is x = (1−ϕ)η
λ

+ (γ−1)(2ϕ−1)η
2λ(t−1)

from Proposition 10, the expected price in

time t becomes

E[pt] = p0 + (1− ϕt)η +

(
(1− ϕt)

(t− 1)(1− ϕ)

)
(γ − 1)(2ϕ− 1)

2
η

so that

lim
t→∞

E[pt] = p0 + η + 0

since ϕt → 0, and
(

1−ϕt
(t−1)(1−ϕ)

)
→ 0. Thus limt→∞ E[pt] = p0 + η.

Probability limit result achieved by applying Markov’s law as in Proposition 7.

73



Chapter 3

Social learning with limited histories

Abstract: I adapt the standard observational learning environment and introduce

a limited history of observation. When agents can only observe the action of the

previous agent, complete learning still occurs but with a loss of welfare. When a

limited history is coupled with uncertainty over position in the queue of actors,

welfare further drops - increasing in uncertainty - but complete learning still

occurs in the limit. These results are illustrated with a canonical linear model

but learning holds in a more general setting satisfying the usual social learning

assumptions.
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3.1 Introduction

The social learning literature has highlighted the tension between the presence of sufficient

information for full learning of the true state, and the rationality of agents ignoring their

private information and joining a herd, leading to incomplete learning with positive probability.

This literature was sparked by the work of Banerjee (1992) [2] and Bikhchandani, Hirshleifer,

and, Welch (1992) [3], who introduce a framework of identical agents receiving independent

and identically distributed signals. The critical insight is that as a result of observing the

full history of previous actions, agents may find it rational to ignore their private signal and

infer the state of the world from the actions of previous decision makers. Since agents are

identical this implies all future agents face the same decision, and an “information cascade”

occurs whereby all agents ignore their private information.

There have been many extensions to this framework that allow for heterogeneous agent

types, limited observable histories, or more generally the formation of networks of viewable

histories, either exogenously formed or formed endogenously subject to a cost. However,

little attention has been given to the social learning problem in which agents do not have

full information about their position in the chain of decision makers.

The classic social learning example of deciding whether to eat at a restaurant or stay

home suffices in demonstrating how strong are the assumptions of the social learning model.

The story goes that a new restaurant opens in town and patrons must decide whether to

visit the new eatery or stay home by using their private signal and observing the choices of

others. As it goes, the agents later in line for dinner are able to infer the signals of earlier

agents through their actions, with such inference either buttressing or altogether overriding

their own private signal. But of course this depends on a full observation of the history of

actions.

This assumption is actually a composite of two assumptions. The first is that every
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previous action is observed. This assumption may be reasonable for early diners, but the

idea of later diners spending all evening staking out the restaurant in order to make their

decision is implausible. Even if such observation were possible indirectly, through word of

mouth or consolidated review sources (i.e. Yelp or Google), observations are sure to get lost

as the restaurant remains open over a longer period of time. And as time goes on, not only do

observations get lost, but the number of choices get lost, highlighting the second assumption

in social learning that agents know their position. It may be possible on opening night for a

diner to know if they are among the first hundred patrons, but after the restaurant has been

open a year diners might not even know if they are among the first hundred thousand!

It is the goal of this paper to investigate a social learning environment in which agents

have only a limited history of observable actions. While unbounded signals ensure complete

learning in the case of a fully observable history, a limited history leads to faster learning (in

terms of convergence of decision thresholds), but a lower expected utility. Complete learning

is also shown in the case of positional uncertainty but at the cost of a further decline in

expected utility.

3.2 Related literature

The model presented here is most similar to the framework of Bikhchandani, Hirshleifer,

and, Welch (1992) [3] (henceforth BHW). BHW present a framework in which agents observe

conditionally independent signals, as well as the actions of all previous agents. They show

that rational agents enter into a herd, ignoring their private information when deciding on

the choice of action, with positive probability.

The work of Banerjee (1992) [2] also helped spark the herding literature. This model

differs in that agents face a continuum of choices, with only one (unknown) correct choice

for the state of the world. In addition, only some agents receive an informative signal, and
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it is only known to the agent whether or not she has a signal. As in BHW, Banerjee shows

that agents rationally converge to a herd, even if they have an informative signal. This

result is again driven by the fact that signals are not perfectly informative, so it may be

more reasonable to discard private information by inferring the state of the world from the

actions of others.

Smith and Sørensen (2000) [7] investigate social learning with heterogeneous agents.

They discuss the concept of full learning, where the probability of taking the right action

tends to 1 as the number of agents increases. They identify the importance of unbounded

signals: if signals can be arbitrarily precise, there is always a probability of a strong signal

overturning a herd. This differs from BHW in that signal precision is heterogeneous, so even

in the presence of a strong herd a well-informed agent can change public opinion.

The notion of endogenous timing in social learning was explored by Gul and Lundholm

(1995) [5]. They investigate a setting in which agents receive payoff-relevant signals, and

attempt to guess the sum of these signals. Agents choose when to make their prediction,

with an associated cost to waiting. They show that since agents with higher signals perceive

a higher opportunity cost to waiting, they will act sooner. Given that higher signals convey

more information, endogenizing the timing actually results in the efficient ordering of agents’

actions.

Limited observable histories has been investigated through the idea of a “network” which

describes the set of actions a given agent can observe. Acemoglu et al. (2011) [1] identify

the unboundedness of networks as the condition that guarantees full learning. That is, as

long as the size of a given agent’s network is not bounded by some integer, convergence to

the correct action occurs at the limit, so there is full learning. Song (2014) [8] arrives at a

similar finding in a setting where networks are formed endogenously subject to a cost.

An early theoretical work addressing social learning with limited histories is Çelen, B.

and Kariv, S. (2004) [4], wherein agents decide between actions sequentially with the aid
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of a private signal and observation of the previous action. This model, however, featured a

payoff as the sum of signals, a departure from the traditional framework of a correct action

for each state. In fact in their model the state itself changes as the sum of signals oscillates

between negative and positive. The present work attempts to apply the traditional social

learning framework to a setting of limited observation, showing that complete learning still

holds under the usual assumptions.

Perhaps the most closely related work is Monzón and Rapp (2014). In this model agents

receive private signals but their observational history is limited to a random sampling of

previous decision makers. They show that social learning persists under positional uncertainty,

provided that action samples satisfy a stationarity assumption whereby they cannot be from

the too distant past. This work also demonstrates the welfare loss of positional uncertainty.

The focus of this work is a stationarity assumption, whereas at present we focus on the

role of beliefs over position and how changes in these beliefs affects learning and welfare in

equilibrium.

3.3 Model

Suppose N agents decide sequentially between one of two actions, a ∈ A = {0, 1} in an

exogenously determined order. There are two states of the world, Ω = {l, h}, and all agents

agree that it is preferable to take action a = 1 in state h and a = 0 in state l. As such, agents

share common risk-neutral vN-M utilities un(1, h) = un(0, l) = 1 and un(0, h) = un(1, l) = 0.

In addition agents share a common flat prior Pr(h) = Pr(l) = 1
2
.

3.3.1 Private signals

Before deciding on an action each agent receives a private signal θ ∈ [−1, 1] about the state

of the world. The signal θ is distributed according to F = {Fω(θ)}ω∈Ω, and conditional on
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the state ω signals are drawn independently. We will assume the signal distributions are

continuous and admit density functions.

Assumption 3.1 (C1). Signal distributions Fl and Fh are continuously differentiable. Denote

their densities as fl and fh, respectively.

We will require the usual (strict) monotone likelihood ratio property suggesting it is more

likely to receive high values of signal θ in state h and low values in state l.

Assumption 3.2 (MLRP). The distribution functions fl and fh satisfy the (strict) monotone

likelihood ratio property in the sense that fh(θ)
fl(θ)

is strictly increasing in θ.

We will assume that Fh(θ) and Fl(θ) are mutually absolutely continuous on the interval

[−1, 1]. While this rules out any signal being perfectly informative of the state, we will

assume that signals can come pretty close in the sense of an unbounded likelihood ratio.

Assumption 3.3 (Unbounded signal strength). The informativeness of signal θ is

unbounded in the sense that

lim
θ→−1

fh(θ)

fl(θ)
= 0 and lim

θ→1

fh(θ)

fl(θ)
=∞

And finally, to avoid diverting the analysis from the implications of the learning environment

through unnecessary complication, we will assume that the state dependent distributions are

mutually symmetric about zero, though the results hold in the absence of this assumption.

Assumption 3.4 (Mutual Symmetry). Signal distributions Fl and Fh are mutually symmetric

in the sense that for all θ ∈ supp(F ), fl(θ) = fh(−θ).

3.3.2 Observable histories

In addition to receiving the conditionally independent private signal θ, agents observe a

history Hn ⊆ {a1, a2, . . . , an−1} of actions of preceding agents. Action profiles of the n − 1
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agents who have moved by the start of period n take realizations An−1 ∈ An−1. Letting

Hn = An−1 collapses the problem to the traditional sequential learning framework a la

Smith and Sørensen. While our focus is social learning settings with limited observable

histories, we will be interested in the traditional framework of fully observable histories as a

baseline for comparison.

3.3.3 Equilibrium

The preliminaries above define a social learning game.

Definition 3.1. Let Γ(Hn) = {F, un, an, Hn}Nn=1 denote a social learning game satisfying

assumptions (A1)-(A4) with history Hn ⊂ An−1.

In equilibrium each agent chooses an ∈ A to maximize expected utility E[u(an, ω)|θn, Hn].

Given the assumption of monotonicity on the likelihood ratio, a natural notion of equilibrium

is that of a threshold θ̂ which if exceeded will induce an agent to take action an = 1.

Definition 3.2. Agent n follows a threshold strategy if

an =


1 if θn ≥ θ̂n

0 if θn < θ̂n

for some θ̂n ∈ supp(F ).

Since the probability distribution has no masses, the tie breaking rule for θn = θ̂n will

play no role in the analysis. Under the above assumptions, an equilibrium in which players

utilize threshold strategies always exists.

Proposition 3.1. For social learning game Γ(Hn) with Hn ⊂ An−1, a threshold strategy

equilibrium exists.
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Figure 3.1: Final market price for certain and uncertain position

The existence of a threshold strategy equilibrium follows easily from the monotone

likelihood ratio property. All proofs are relegated to the appendix.

3.3.4 Social learning

Finally, we will examine the information aggregation properties of any equilibrium. In

particular it will be of interest whether given a large enough game of social learning, agents

tend to take the right action. For this we introduce a natural definition of learning.

Definition 3.3. For a social learning game Γ(Hn), we will say that complete learning occurs

if limn→∞ Pr(an = 1|h) = 1 and limn→∞ Pr(an = 0|l) = 1.

3.4 The linear case

To fix ideas consider the distribution functions Fh(θ) = 1
4
(1 + θ)2 and Fl(θ) = 1− 1

4
(1− θ)2

which admit linear densities fh(θ) = 1
2
(1 + θ) and fl(θ) = 1

2
(1− θ).

The probability densities depicted above demonstrate the linear manner in which higher

signals becoming more likely than low signals in state ω = h. It can easily be verified that

the densities fl and fh satisfy assumptions (A1)-(A4).
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3.4.1 Fully observable history

Consider first the case where the complete history of actions taken by preceding agents is

observable (e.g. Hn = An−1). The first agent has no predecessor and thus observes the

history A0 = ∅. Given that a1 = 1 is preferred in state ω = h and a1 = 0 is preferred in

state ω = l, with utilities un the agent will choose a1 = 1 if and only if

Pr(h|θ1) ≥ Pr(l|θ1) ⇐⇒ Pr(θ1|h) Pr(h) ≥ Pr(θ1|l) Pr(l) ⇐⇒ fh(θ1) ≥ fl(θ1)

and with flat prior Pr(h) = 1
2

1

2
fh(θ) ≥

1

2
fl(θ) ⇐⇒

1

2
(1 + θ) ≥ 1

2
(1− θ)

which reduces to θ1 ≥ 0 so that θ̂1 = 0.

Having observed a1, the second agent will choose a2 = 1 if and only if

Pr(h|θ2, a1) ≥ Pr(l|θ2, a1) ⇐⇒ Pr(θ2, a1|h) ≥ Pr(θ2, a1|l)

The threshold θ̂2 will depend on a1, with Pr(a1 = 1|ω) = Pr(θ ≥ θ̂1|ω) = 1 − Fω(θ1) and

Pr(a1 = 0|ω) = Fω(θ̂1). If a1 = 1, then since θ̂1 = 0 agent 2 will choose a2 = 1 if

Pr(θ2, θ1 > 0|h) Pr(h) ≥ Pr(θ2, θ1 > 0|l) Pr(l)

⇐⇒ fh(θ2)(1− Fh(0)) Pr(h) ≥ fl(θ2)(1− Fl(0)) Pr(l)

⇐⇒ 1

2
(1 + θ2)(1− 1

4
(1 + 0)2)

1

2
≥ 1

2
(1− θ2)(

1

4
(1− 0)2)

1

2

where the second inequality comes from the conditional independence of the signal. The

threshold then reduces to θ2 ≥ −1
2
. A similar calculation shows that agent 2 chooses the
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high action after a1 = 0 if θ ≥ 1
2
, yielding the conditional threshold

θ̂2 =


−1

2
if a1 = 1

1
2

if a1 = 0

The equilibrium threshold for an arbitrary agent n is solved in much the same way, taking

into account the entire history An−1 leading up to the decision to act. As above, agent n

will choose an = 1 if and only if

fh(θn) Pr(An−1|h) Pr(h) ≥ fl(θn) Pr(An−1|l) Pr(l)

so that the threshold is defined by the likelihood ratio

1 + θ̂n

1− θ̂n
=

Pr(An−1|l) Pr(l)

Pr(An−1|h) Pr(h)

While each threshold strategy θ̂n depends on the entire history of actions An−1, in comparing

thresholds θ̂n and θ̂n−1, the only informational asymmetry between agents n and (n − 1) is

in the realization of θn−1, known only to (n− 1). Since the threshold θ̂n−1 already contains

information about the full history An−2 up to the decision an−1, this suggests the possibility

of a direct relationship between adjacent thresholds, enabling a recursive formulation of θ̂n.

Indeed this is the case.

Proposition 3.2. For the social learning game with fully observable histories Γ(An−1) and

canonical signal structure defined by Fh(θ) = 1
4
(1 + θ)2 and Fl(θ) = 1− 1

4
(1− θ)2, θ̂1 = 0 and
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decision thresholds for n ≥ 2 can be expressed recursively as

θ̂n =


−1

2+θ̂n−1
if an−1 = 1

1

2−θ̂n−1
if an−1 = 0

Since the canonical case satisfies all of the traditional social learning assumptions that

guarantee complete learning (e.g. MLRP, unbounded signals), it should be no surprise that

the thresholds θ̂n converge and that complete learning is indeed achieved with a linear signal

structure. Given the form of the decision thresholds, the conditional expectation is easily

calculated as

E[θ̂n|θ̂n−1, h]− θ̂n−1 =
(θ̂n−1 + 1)2(θ̂n−1 − 1)

(2 + θ̂n−1)(2− θ̂n−1)

and

E[θ̂n|θ̂n−1, l]− θ̂n−1 =
(θ̂n−1 + 1)(θ̂n−1 − 1)2

(2 + θ̂n−1)(2− θ̂n−1)

enabling application of the Martingale Convergence Theorem to yield the result.

Proposition 3.3. For the social learning game with fully observable histories Γ(An−1) and

the canonical signal structure, state dependent thresholds θ̂n(ω) converge with limn→∞ θ̂n(l) =

1, limn→∞ θ̂n(h) = −1, and complete learning occurs.

3.4.2 Limited histories

Suppose now that instead of observing the entire history of preceding agents An−1, histories

are limited in that each agent can only observe the predecessor’s action. The viewable history

is then Hn = an−1. The first two movers will behave the same way because they observe
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the histories A0 = ∅ and A1 = a1, respectively, exactly as before. Then θ̂1 = 0; θ̂2 = −1
2

if

a1 = 1 and θ̂2 = 1
2

if a1 = 0. Now, however, Hn ( An−1 for n ≥ 2 so agents will have less

information with which to decide on an action an. With observable histories Hn = an−1, the

thresholds are now defined by the likelihood ratio

1 + θ̂n

1− θ̂n
=

Pr(an−1|l) Pr(l)

Pr(an−1|h) Pr(h)

Given that for each n there are only two possible histories Hn (with the exception of n = 1),

we can reduce the decision of agent n to two thresholds

θ̂n =


θ̄n if an−1 = 1

¯
θn if an−1 = 0

In the case of n = 2, θ̄2 = −1
2

and
¯
θ2 = 1

2
. Notice that θ̄n +

¯
θn = 0 for n = 2. In fact this

will be true for all n. Given the symmetry of the payoff function in states ω = {l, h} this

result makes sense.

The departure from the case of fully observable histories begins with n = 3. Now agent

n observes history Hn = an−1 but does not observe the action an−2. But the probability of

an−1 for a given state will depend on action an−2, which itself will depend on an−3 and so

on. The probability of observing an action then is

Pr(an−1|ω) =
∑

An−2∈An−2

Pr(an−1|An−2, ω) Pr(An−2|ω)

Given that the updated probability of a state depends on n−2 unobservable previous actions

the agent must account for 2n−2 possible history profiles, and the decision thresholds take
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the cumbersome form

1 + θ̂n

1− θ̂n
=

∑
An−2∈An−2 Pr(an−1|An−2, l) Pr(An−2|l) Pr(l)∑
An−2∈An−2 Pr(an−1|An−2, h) Pr(An−2|h) Pr(h)

In the case of fully observable histories it was possible to solve for thresholds θ̂n recursively

because both agents n and (n − 1) condition on An−2. But now agent (n − 1) conditions

action an−2 which is unobservable to agent n. Notice, however, that the thresholds θ̄n−1 and

¯
θn−1 for agent (n− 1) depend on the action an−2 according to

1 + θ̂n−1

1− θ̂n−1

=

∑
An−3∈An−3 Pr(an−2|An−3, l) Pr(An−3|l) Pr(l)∑
An−3∈An−3 Pr(an−2|An−3, h) Pr(An−3|h) Pr(h)

for θ̂n−1 = θ̄n−1 or θ̂n−1 =
¯
θn−1 corresponding to an−2 = 1 or an−2 = 0, respectively. Since

history An−3 is unknown in both period n and (n − 1), this relationship enables player n

to condition threshold θ̂n on only the two possible outcomes of an−2, greatly simplifying the

problem and giving the following result.

Proposition 3.4. For the social learning game with limited observable histories Γ(an−1)

and the canonical signal structure, θ̂1 = 0 and decision thresholds for n ≥ 2 can be expressed

recursively as

θ̂n =


θ̄n = −1

2
(1 + θ̄2

n−1) if an−1 = 1

¯
θn = 1

2
(1 +

¯
θ2
n−1) if an−1 = 0

As alluded to above and as thresholds θ̂n clearly show, the symmetric signal structure

implies that the thresholds are also symmetric about zero for every n.

Corollary 3.1. For the social learning game with limited observable histories Γ(an−1) and

the canonical signal structure, θ̄n +
¯
θn = 0.
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The evolution of thresholds θ̄n and
¯
θn is pictured below. As the figure shows, the bounds

θ̄n and
¯
θn diverge very quickly. This represents a higher standard of proof from signal θn in

order deviate from previous action an−1.

Figure 3.2: Decision thresholds under limited histories of observation

The thresholds partition the signal space into three regions. When θn >
¯
θn, the agent

will follow their signal and play an = 1 independent of previous action an−1, believing the

state ω = h to be more likely. When θn < θ̄n the agent will believe ω = l is more likely

and play an = 0. When θn ∈ (θ̄n,
¯
θn), the threshold for following the private signal is not

surpassed and the agent will always follow the previous action an−1.

The figure depicting thresholds in the case of limited observable history suggests convergence

to the limits of the distribution, so that as the periods advance the signal strength required

to deviate from imitation of the predecessor increases. This would imply complete learning

even in the case of limited histories, which the following result confirms.

Proposition 3.5. For the social learning game with limited observable histories Γ(an−1) and

the canonical signal structure, thresholds θ̄n if an−1 = 1 and
¯
θn if an−1 = 0 converge with
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limn→∞ θ̄n = −1, limn→∞
¯
θn = 1, and complete learning occurs.

With fully observable histories, the threshold θ̂n was a recursive function of the previous

agent’s threshold, the function depending on the previous action an−1. Now, however, the

threshold is solely determined by an−1, and as such sequences θ̄n and
¯
θn take a predictable

pattern. In fact as a result of this predictability of θ̄n and
¯
θn, it is possible that the martingale

θ̂n derived from fully history game Γ(An−1) does not converge as quickly as the thresholds

in limited history game Γ(an−1). In fact, as the following figure shows, on average this is the

case.

Figure 3.3: Maximum
threshold in state h

Figure 3.4: Expected
threshold in state h

The panel on the left shows the maximal threshold values in the cases of full and limited

history. In other words, these show the progression of the thresholds θn if ai = 1 for all i ≤ n.

It is clear that with a history of only action ai = 1 the threshold in the full information case

converges more quickly than in the case of limited history. The right panel, however, shows

that on average the threshold with limited history converges more quickly. In a sense, this

reflects that with a limited history of observation, thresholds depend only on the previous

action and are allowed to grow without respect to the full history. This fast growth is then

reinforced by observing an−1 = 1, given the strict threshold.
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This interplay between history independence and a growing threshold suggests an increased

possibility of error with limited observable histories. Comparing expected utilities highlights

the welfare consequences of this error.

Figure 3.5: Expected utility in for full and limited histories of observation

Figure 3.5 shows E[u(θ)|Hn = An−1] and E[u(θ)|Hn = an−1], the expected utilities with

full and limited histories. It shows, as we would expect, that on average utility is higher with

full information than under a limited history of observation. Even though the thresholds

converge faster on average with a limited history, suggesting faster learning, in fact this

reflects the loss of information as a result of limited observations.

This is again a depiction of the progression of expected thresholds θn, but the shaded

region of figure 3.6 shows where E[θn|Hn = An−1] > θ > E[θn|Hn = an−1]. This is where the

realization of signal θ falls between the thresholds in the full history case and the limited

history case. For signals in this region, agent n would follow their signal with a full history,

choosing an = 1 irrespective of the previous action, but would ignore the signal with a

limited history, choosing an = an−1 even if an−1 = 0. This increased possibility of error and
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Figure 3.6: Expected information loss from limited observation

propensity to discard information drives down expected utility under limited observational

history.

3.4.3 Positional uncertainty

Now suppose that in addition to observing only the action of the preceding agent, each agent

does not know their position. Instead agents hold beliefs µn over their positions, where µni is

the probability agent n places on moving in position i. Since the first mover easily deduces

being first by the absence of any preceding action, we introduce an agent in position 0 that

chooses as the first agent in the case of no positional uncertainty: a0 = 1 if and only if

θ0 ≥ 0.

Suppose beliefs µ take the form µnn = γ and µni = 1−γ
N−1

for i 6= n, so that the agent in

position n has a belief γ ∈ [0, 1] of their true position and spreads the additional probability

1− γ uniformly across all other N − 1 positions. Then if agent n observes an−1 the decision
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threshold is determined as before

fh(θ̂n)

fl(θ̂n)
=

Pr(an−1|l) Pr(l)

Pr(an−1|h) Pr(h)

=

∑N
i=1 µ

n
i Pr(ai−1|l) Pr(l)∑N

i=1 µ
n
i Pr(ai−1|h) Pr(h)

with the linear form of our signals and given that Pr(h) = Pr(l)

1 + θ̂n

1− θ̂n
=

∑N
i=1 µ

n
i Pr(ai−1|l) Pr(l)∑N

i=1 µ
n
i Pr(ai−1|h) Pr(h)

θ̂n =

∑N
i=1 µ

n
i (Pr(ai−1|l)− Pr(ai−1|h))∑N

i=1 µ
n
i (Pr(ai−1|l) + Pr(ai−1|h))

The assumed form of our probabilities µn yield the following result.

Proposition 3.6. For the social learning game with limited observable histories Γ(at−1),

positional uncertainty µn, and the canonical signal structure, a threshold equilibrium can be

defined recursively as

θ̄1 =
N(γ − 2) + 1

2(N − 1)
+ 2

(
1− γ
N − 1

)N−1∑
i=0

Pr(ai = 1|l)

¯
θ1 =

N(3γ − 2)− 1

2(N − 1)
+ 2

(
1− γ
N − 1

)N−1∑
i=0

Pr(ai = 0|l)

and for n ≥ 2

θ̄n = 2

(
Nγ − 1

N − 1

)
Pr(an−1 = 1|l) + θ̄1 −

Nγ − 1

2(N − 1)

¯
θn = 2

(
Nγ − 1

N − 1

)
Pr(an−1 = 0|l) +

¯
θ1 −

3(Nγ − 1)

2(N − 1)

As the thresholds make clear, the action dependent signals θ̄n and
¯
θn exhibit the same
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symmetry about zero as in the case without positional uncertainty.

Corollary 3.2. For the social learning game with limited observable histories Γ(at−1), positional

uncertainty µn, and the canonical signal structure, θ̄n +
¯
θn = 0.

The figure below shows the evolution of thresholds which display the downward trend

that we have come to expect, suggestive of convergence to a limit.

Figure 3.7: Thresholds under posional uncertainty for various N

Now, however, each agent n holds the belief γ < 1 that they act in the position n that

they indeed do. This lack of certainty over position could translate into a lack of certainty

over the true state of the world, leading to a limit θ̄ > −1 or θ̄ < 1. Fortunately, it turns

out that if such a limit exists, this limit must be θ̄ = −1 or θ̄ = 1. While the speed of this

convergence will depend on belief parameter γ, complete learning occurs in the limit for all

beliefs.

Proposition 3.7. For the social learning game with limited observable histories Γ(at−1),

positional uncertainty µn, and the canonical signal structure, limn→∞ θ̄n = −1 and limn→∞
¯
θn =

92



1 if such limits exist. Moreover, if these limits exist then complete learning occurs.

Notice also that the positional probability beliefs depend on N , and thus so do the

thresholds. As the figure above shows, the larger is the number of agents N , the faster

is the convergence of the threshold to its limit. As the number of agents increases, the

belief of moving in any position other than n becomes diluted. This applies particularly to

early positions where the predecessor faced a relatively low threshold, thereby inducing the

successor to require a higher standard of proof. As this probability decreases, each agent

relies more strongly on the true prior action an−1, thus leading to faster convergence of the

threshold.

Since the object of interest will be the evolution of learning as the number of agents

observing histories increases, we will focus on thresholds for large N , which take a convenient

form.

Proposition 3.8. For the social learning game with limited observable histories Γ(at−1),

positional uncertainty µn, and the canonical signal structure

lim
N→∞

θ̄n = −1

2
(1 + θ̄2

n−1)−
(

1− γ
2

)
(1 + θ̄n−1)2

lim
N→∞¯

θn =
1

2
(1 + θ̄2

n−1) +

(
1− γ

2

)
(1 + θ̄n−1)2

An obvious consequence of the form the thresholds take is that the introduction of term(
1−γ

2

)
(1 + θ̄n−1)2 leads to a lower (higher) value of threshold θ̄n(

¯
θn) for every n. This leads

to a faster convergence to the limit, a rate which increases as belief γ decreases.

The above graph shows this relationship between γ and the rate of convergence, and in

fact at the extreme of γ → 0 the threshold converges immediately to θ̄n = −1 for all n.

Immediate convergence is the result of total positional uncertainty, whereby it makes more

sense to each agent to follow the action of the previous agent because they have no concept
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Figure 3.8: Thresholds under posional uncertainty for large N and various γ

of their own signal’s informational value.

As in the case of limited history we can compare expected utility to get a more complete

story of the welfare implications of this convergence. We would expect that the increased

rate of convergence to lead to a further loss of welfare, increasing the region where agents

ignore their information.

As expected, the figure above shows this exact result. The panel on the left shows a lower

expected utility under positional uncertainty characterized by γ = 0.75, while the right panel

shows an even further loss of utility for γ = 0.5. In fact expected utility in the case of limited

history can be shown to take an explicit form.

Proposition 3.9. Under positional uncertainty

E[u(θ)|Hn = an−1, µ
n] =

1

2γ
(1 + θ̄2

n) +
1− γ

2γ
(θ̄2
n + 2θ̄n − 1)

Comparative analysis on the parameter γ confirms the result that expected utility under
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Figure 3.9: Relationship between expected utility and gamma in state h

positional uncertainty E[u(θ)|Hn = an−1, µ
n] indeed decreases as uncertainty γ increases.

3.5 The general case

While much of the above used the canonical signal structure Fh(θ) = 1
4
(1 + θ2) and Fl(θ) =

1 − 1
4
(1 − θ2), many of the results hold for more general signal structures that satisfy the

assumptions (A1)-(A4). Of course, the result of complete learning should be no surprise,

as it has been the focus of much theoretical work in the area of social learning.

Proposition 3.10. For the social learning game with fully observable histories Γ(At−1) and

a signal structure F satisfying (A1)-(A4), state dependent thresholds θ̂n(ω) converge with

limn→∞ θ̂n(l) = 1, limn→∞ θ̂n(h) = −1, and complete learning occurs.

The focus of this work, social learning in an environment with a limited history of

observation, also features complete learning in the more general setting.

Proposition 3.11. For the social learning game with limited observable histories Γ(at−1)

and a signal structure F satisfying (A1)-(A4), thresholds θ̄n if an−1 = 1 and
¯
θn if an−1 = 0

converge with limn→∞ θ̄n = −1, limn→∞
¯
θn = 1, and complete learning occurs.
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To avoid placing a technical burden on the analysis by restricting the signal structure in

ways that increase tractability but lack in obvious economic meaning, consider the following

intuitive assumption.

Assumption 3.5. Under limited histories with positional uncertainty θ̄n +
¯
θn = 0 for all n.

Under this assumption we have the general result of complete learning in an environment

of positional uncertainty.

Proposition 3.12. For the social learning game with limited observable histories Γ(at−1),

positional uncertainty µn, and a signal structure F satisfying (A1)-(A5), limn→∞ θ̄n = −1

and limn→∞
¯
θn = 1 if such limits exist. Moreover, if these limits exist then complete learning

occurs.

3.6 Concluding remarks

The traditional model of social learning offers powerfully intuitive results on how the courtship

of private information and observation leads to informed economic decision making. But this

marriage is only as strong as the assumptions it stands upon. In particular, if the assumptions

of fully observable histories and certainty about position in the sequence of actors come into

question, there are behavioral and welfare consequences that alter the learning dynamic. By

addressing this we gain a richer depiction of an environment in which agents learn from an

appreciably less learned starting point.

The introduction of limited observation of preceding actions to the standard social

learning model changes the integration of information, but the limit result of complete

learning remains. With agents only conditioning on the previous action, the threshold

equilibria take a predictable form, on average converging more quickly to the limit ensuring

the correct action. Despite this, the increased possibility of discarding information increases

the possibility for error, leading to a lower expected utility for each agent in finite time.
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Complete learning in the limit continues to hold even when agents are uncertain of

their position in the sequence. In fact, the threshold equilibria converge more quickly the

higher is the uncertainty over position, exacerbating the reduction in expected utility of the

limited history case. While the pace of learning in terms of welfare decreases with positional

uncertainty, complete learning in the limit does not depend on its existence or magnitude.
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Appendix: Proofs

Proof of Proposition 1. Suppose agent n observes history Hn and receives signal θn.

Then n will choose an = 1 if

Pr(h|θn, Ht) ≥ Pr(l|θn, Ht) ⇐⇒
Pr(θn, Ht|h) Pr(h)

Pr(θn, Ht)
≥ Pr(θn, Ht|l) Pr(l)

Pr(θn, Ht)

⇐⇒ fh(θn) Pr(Ht|h) ≥ fl(θn) Pr(Ht|l) ⇐⇒
fh(θn)

fl(θn)
≥ Pr(Ht|l)

Pr(Ht|h)

Given that fh(θn)
fl(θn)

is strictly increasing in θn there must be some θ̂n for which Pr(h|θn, Ht) ≥

Pr(l|θn, Ht) if θn ≥ θ̂n and Pr(h|θn, Ht) < Pr(l|θn, Ht) otherwise. Thus n follows a threshold

strategy.

Lemma 3.1. For a general signal structure Pr(θn ≤ θ|h) = Fh(θ) and Pr(θn ≤ θ|l) =

Fl(θ) that admit distribution functions fh, fl characterized by the monotone likelihood ratio

property, cutoff strategies θ̂n are determined recursively by

fh(θ̂n)

fl(θ̂n)
=


(1−Fl(θ̂n−1))fh(θ̂n−1)

(1−Fh(θ̂n−1))fl(θ̂n−1)
if an−1 = 1

Fl(θ̂n−1)fh(θ̂n−1)

Fh(θ̂n−1)fl(θ̂n−1)
if an−1 = 0

Proof. We determined that the threshold for each signal is implicitly defined by fh(θ̂n)

fl(θ̂n)
=

Pr(An−1|l) Pr(l)
Pr(An−1|h) Pr(h)

. Since this is true for all n, fh(θ̂n−1)

fl(θ̂n−1)
= Pr(An−2|l) Pr(l)

Pr(An−2|h) Pr(h)
so that Pr(An−2|l) Pr(l) =

fh(θ̂n−1)

fl(θ̂n−1)
Pr(An−2|h) Pr(h).
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In the case of an−1 = 1, θn−1 ≥ θ̂n−1 and

Pr(An−1|l) Pr(l)

Pr(An−1|h) Pr(h)
=

Pr(θn−1 ≥ θ̂n−1|l) Pr(An−2|l) Pr(l)

Pr(θn−1 ≥ θ̂n−1|h) Pr(An−2|h) Pr(h)

=
(1− Fl(θ̂n−1)) Pr(An−2|l) Pr(l)

(1− Fh(θ̂n−1)) Pr(An−2|h) Pr(h)

=
(1− Fl(θ̂n−1))fh(θ̂n−1)

fl(θ̂n−1)
Pr(An−2|h) Pr(h)

(1− Fh(θ̂n−1)) Pr(An−2|h) Pr(h)

=
(1− Fl(θ̂n−1))fh(θ̂n−1)

(1− Fh(θ̂n−1))fl(θ̂n−1)

while if an−1 = 0 then θ < θ̂n−1 and

Pr(An−1|h) Pr(h)

Pr(An−1|l) Pr(l)
=
Fl(θ̂n−1)fh(θ̂n−1)

Fh(θ̂n−1)fl(θ̂n−1)

Thus the cutoff strategy is defined recursively by

fh(θ̂n)

fl(θ̂n)
=


(1−Fl(θ̂n−1))fh(θ̂n−1)

(1−Fh(θ̂n−1))fl(θ̂n−1)
if an−1 = 1

Fl(θ̂n−1)fh(θ̂n−1)

Fh(θ̂n−1)fl(θ̂n−1)
if an−1 = 0

Proof of Proposition 2. Applying the result of lemma 1 to our canonical signal structure

defined by Fh(θ) = 1
4
(1 + θ)2 and Fl(θ) = 1− 1

4
(1− θ)2, if an−1 = 1,

1 + θ̂n

1− θ̂n
=

1
4
(1− θ̂n−1)2 1

2
(1 + θ̂n−1)

[1− 1
4
(1 + θ̂n−1)2]1

2
(1− θ̂n−1)

=
(1− θ̂n−1)(1 + θ̂n−1)

3− 2θ̂n−1 − θ̂2
n−1

=
(1− θ̂n−1)(1 + θ̂n−1)

(3 + θ̂n−1)(1− θ̂n−1)
=

1 + θ̂n−1

3 + θ̂n−1

=⇒ θ̂n =
−1

2 + θ̂n−1
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and if an−1 = 0

1 + θ̂n

1− θ̂n
=

[1− 1
4
(1− θ̂n−1)2]1

2
(1 + θ̂n−1)

1
4
(1 + θ̂n−1)2 1

2
(1− θ̂n−1)

=
3 + 2θ̂n−1 − θ̂2

n−1

(1 + θ̂n−1)(1− θ̂n−1)

=
(3− θ̂n−1)(1 + θ̂n−1)

(1 + θ̂n−1)(1− θ̂n−1)
=

3− θ̂n−1

1− θ̂n−1

=⇒ θ̂n =
1

2− θ̂n−1

Thus we have the recursive result that

θ̂n =


−1

2+θ̂n−1
if an−1 = 1

1

2−θ̂n−1
if an−1 = 0

Proof of Proposition 3. Given the recursive form of the threshold strategy determined

for the canonical case,

E[θ̂n|θ̂n−1, h] =

(
−1

2 + θ̂n−1

)
Pr(an−1 = 1|h) +

(
1

2− θ̂n−1

)
Pr(an−1 = 0|h)

=

(
−1

2 + θ̂n−1

)
(1− Pr(an−1 = 0|h)) +

(
1

2− θ̂n−1

)
Pr(an−1 = 0|h)

= Fh(θ̂n−1)

((
1

2− θ̂n−1

)
−
(
−1

2 + θ̂n−1

))
+

(
−1

2 + θ̂n−1

)
=

1

4
(1 + θ̂n−1)2

(
4

(2 + θ̂n−1)(2− θ̂n−1)

)
− 1

2 + θ̂n−1

=
1 + 2θ̂n−1 + θ̂2

n−1

(2 + θ̂n−1)(2− θ̂n−1)
− 2− θ̂n−1

(2 + θ̂n−1)(2− θ̂n−1)

=
θ̂2
n−1 + 3θ̂n−1 − 1

(2 + θ̂n−1)(2− θ̂n−1)
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so that

E[θ̂n|θ̂n−1, h]− θ̂n−1 =
θ̂2
n−1 + 3θ̂n−1 − 1

(2 + θ̂n−1)(2− θ̂n−1)
− θ̂n−1

=
θ̂2
n−1 + 3θ̂n−1 − 1

(2 + θ̂n−1)(2− θ̂n−1)
−

4θ̂n−1 − θ̂3
n−1

(2 + θ̂n−1)(2− θ̂n−1)

=
θ̂3
n−1 + θ̂2

n−1 − θ̂n−1 − 1

(2 + θ̂n−1)(2− θ̂n−1)

=
(θ̂n−1 + 1)2(θ̂n−1 − 1)

(2 + θ̂n−1)(2− θ̂n−1)

Since −1 ≤ θ̂n−1 ≤ 1, all terms of E[θ̂n|θ̂n−1, h] − θ̂n−1 are positive except (θ̂n−1 − 1) ≤ 0

so that E[θ̂n|θ̂n−1, h] ≤ θ̂n−1. Then conditional on ω = h, θ̂n is a supermartingale bounded

below by −1 and thus must converge to a limit almost everywhere.

Similarly,

E[θ̂n|θ̂n−1, l] =

(
−1

2 + θ̂n−1

)
Pr(an−1 = 1|l) +

(
1

2− θ̂n−1

)
Pr(an−1 = 0|l)

=

(
−1

2 + θ̂n−1

)
Pr(an−1 = 1|l) +

(
1

2− θ̂n−1

)
(1− Pr(an−1 = 1|l))

= (1− Fl(θ̂n−1))

((
−1

2 + θ̂n−1

)
−
(

1

2− θ̂n−1

))
+

(
1

2− θ̂n−1

)
=

1

4
(1− θ̂n−1)2

(
−4

(2 + θ̂n−1)(2− θ̂n−1)

)
+

1

2− θ̂n−1

=
2 + θ̂n−1

(2 + θ̂n−1)(2− θ̂n−1)
−

1− 2θ̂n−1 + θ̂2
n−1

(2 + θ̂n−1)(2− θ̂n−1)

=
−θ̂2

n−1 + 3θ̂n−1 + 1

(2 + θ̂n−1)(2− θ̂n−1)
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so that

E[θ̂n|θ̂n−1, l]− θ̂n−1 =
−θ̂2

n−1 + 3θ̂n−1 + 1

(2 + θ̂n−1)(2− θ̂n−1)
− θ̂n−1

=
−θ̂2

n−1 + 3θ̂n−1 + 1

(2 + θ̂n−1)(2− θ̂n−1)
−

4θ̂n−1 − θ̂3
n−1

(2 + θ̂n−1)(2− θ̂n−1)

=
θ̂3
n−1 − θ̂2

n−1 − θ̂n−1 + 1

(2 + θ̂n−1)(2− θ̂n−1)

=
(θ̂n−1 + 1)(θ̂n−1 − 1)2

(2 + θ̂n−1)(2− θ̂n−1)

Since −1 ≤ θ̂n−1 ≤ 1 all terms are nonnegative so that E[θ̂n|θ̂n−1, l] ≥ θ̂n−1. Then conditional

on ω = l, θ̂n is a submartingale bounded above by 1 and thus must converge to a limit almost

everywhere.

Let θ̄ = limn→∞ θ̂n(h) be the limit of the supermartingale θ̂n conditional on the state

ω = h. Then

θ̄ = lim
n→∞

E[θ̂n|θ̂n−1, h] = lim
n→∞

θ̂2
n−1 + 3θ̂n−1 − 1

(2 + θ̂n−1)(2− θ̂n−1)

=⇒ θ̄ =
θ̄2 + 3θ̄ − 1

(2 + θ̂)(2− θ̄)

which reduces to (θ̄ + 1)2(θ̄ − 1) = 0. Then either θ̄ = 1 or θ̄ = −1. But as we saw above,

θ̂n−1 = 0 if n = 1 so that E[θ̂n|θ̂n−1, h] ≤ 0 for all n ≥ 1. This only leaves θ̄ = −1.

Let
¯
θ = limn→∞ θ̂n(l) be the limit of the submartingale θ̂n conditional on the state ω = l.

Then

¯
θ = E[θ̂n|θ̂n−1, l] = lim

n→∞

−θ̂2
n−1 + 3θ̂n−1 + 1

(2 + θ̂n−1)(2− θ̂n−1)

=⇒
¯
θ =

−
¯
θ2 + 3

¯
θ + 1

(2 + θ̂)(2−
¯
θ)
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which reduces to (
¯
θ + 1)(

¯
θ − 1)2 = 0. Then either

¯
θ = 1 or

¯
θ = −1. But as we saw above,

θ̂n−1 = 0 if n = 1 so that E[θ̂n|θ̂n−1, l] ≥ 0 for all n ≥ 1. This only leaves
¯
θ = 1.

Finally, Pr(an = 1|h) = Pr(θn > θ̂n|h) = 1 − Fh(θ̂n) = 1 − 1
4
(1 + θ̂n)2. Similarly

Pr(an = 0|l) = Pr(θn ≤ θ̂n|l) = Fl(θ̂n) = 1− 1
4
(1− θ̂n)2. So then

lim
n→∞

Pr(an = 1|h) = lim
n→∞

1− 1

4

(
1 + θ̂n(h)

)2

= 1− 1

4

(
1 + lim

n→∞
θ̂n(h)

)2

= 1

lim
n→∞

Pr(an = 0|l) = lim
n→∞

1− 1

4

(
1− θ̂n(l)

)2

= 1− 1

4

(
1− lim

n→∞
θ̂n(l)

)2

= 1

so that limn→∞ Pr(an = 1|h) = limn→∞ Pr(an = 0|l) = 1 and complete learning occurs.

Proof of Proposition 4. As shown above, the threshold for n is given by

fh(θ̂n)

fl(θ̂n)
=

Pr(an−1|l) Pr(l)

Pr(an−1|h) Pr(h)

=

∑
An−2∈An−2 Pr(an−1|An−2, l) Pr(An−2|l) Pr(l)∑
An−2∈An−2 Pr(an−1|An−2, h) Pr(An−2|h) Pr(h)

=

∑
an−2∈{0,1}

∑
An−3∈An−3 Pr(an−1|an−2, An−3, l) Pr(an−2|An−3, l) Pr(An−3|l)∑

an−2∈{0,1}
∑

An−3∈An−3 Pr(an−1|an−2, An−3, h) Pr(an−2|An−3, h) Pr(An−3|h)

Notice that since Hn−1 = an−2 the action of (n − 1) is independent of history An−3 so this

reduces to

=

∑
an−2∈{0,1}

∑
An−3∈An−3 Pr(an−1|an−2, l) Pr(an−2|An−3, l) Pr(An−3|l)∑

an−2∈{0,1}
∑

An−3∈An−3 Pr(an−1|an−2, h) Pr(an−2|An−3, h) Pr(An−3|h)

=

∑
an−2∈{0,1} Pr(an−1|an−2, l)

∑
An−3∈An−3 Pr(an−2|An−3, l) Pr(An−3|l)∑

an−2∈{0,1} Pr(an−1|an−2, h)
∑

An−3∈An−3 Pr(an−2|An−3, h) Pr(An−3|h)

=

∑
an−2∈{0,1} Pr(an−1|an−2, l) Pr(an−2|l)∑
an−2∈{0,1} Pr(an−1|an−2, h) Pr(an−2|h)
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The threshold for agent (n− 1) is given by the solution

fh(θ̂n−1)

fl(θ̂n−1)
=

Pr(an−2|l) Pr(l)

Pr(an−2|h) Pr(h)

If thresholds θ̄n−1 and
¯
θn−1 correspond to an−2 = 1 and an−2 = 0 respectively then

fh(θ̄n−1)

fl(θ̄n−1)
=

Pr(an−2 = 1|l) Pr(l)

Pr(an−2 = 1|h) Pr(h)
and

fh(
¯
θn−1)

fl(
¯
θn−1)

=
Pr(an−2 = 0|l) Pr(l)

Pr(an−2 = 0|h) Pr(h)

Then Pr(an−2 = 1|h) Pr(h) = fl(θ̄n−1)

fh(θ̄n−1)
Pr(an−2 = 1|l) Pr(l) and Pr(an−2 = 0|l) Pr(l) =

fh(
¯
θn−1)

fl(
¯
θn−1)

Pr(an−2 = 0|h) Pr(h). Then the thresholds become

fh(θ̂n)

fl(θ̂n)
=

Pr(an−1|l) Pr(l)
Pr(an−1|h) Pr(h)

=
Pr(an−1|an−2 = 1, l) Pr(an−2 = 1|l) Pr(l) + Pr(an−1|an−2 = 0, l) Pr(an−2 = 0|l) Pr(l)

Pr(an−1|an−2 = 1, h) Pr(an−2 = 1|h) Pr(h) + Pr(an−1|an−2 = 0, h) Pr(an−2 = 0|h) Pr(h)

=
Pr(an−1|an−2 = 1, l) Pr(an−2 = 1|l) Pr(l) + Pr(an−1|an−2 = 0, l)

fh(
¯
θn−1)

fl(
¯
θn−1) Pr(an−2 = 0|h) Pr(h)

Pr(an−1|an−2 = 1, h) fl(θ̄n−1)

fh(θ̄n−1)
Pr(an−2 = 1|l) Pr(l) + Pr(an−1|an−2 = 0, h) Pr(an−2 = 0|h) Pr(h)

As noted, θ̄2 = −1
2

and
¯
θ2 = 1

2
so that θ̄2 +

¯
θ2 = 0. Also, Pr(a1 = 1|l) = (1 − Fl(0)) = 1

4

and Pr(a1 = 0|h) = Fh(0) = 1
4

so that Pr(a1 = 1|l) = Pr(a1 = 0|h). Conjecture that

θ̄n−1 +
¯
θn−1 = 0 and Pr(an−2 = 1|l) = Pr(an−2 = 0|h) for n ≥ 4. Then since Pr(h) = Pr(l),

this reduces to

fh(θ̂n)

fl(θ̂n)
=

fh(θ̄n−1)[Pr(an−1|an−2 = 1, l)fl(
¯
θn−1) + Pr(an−1|an−2 = 0, l)fh(

¯
θn−1)]

fl(
¯
θn−1)[Pr(an−1|an−2 = 1, h)fl(θ̄n−1) + Pr(an−1|an−2 = 0, h)fh(θ̄n−1)]
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If an−1 = 1

fh(θ̂n)

fl(θ̂n)
=

fh(θ̄n−1)[Pr(θ > θ̄n−1|l)fl(
¯
θn−1) + Pr(θ >

¯
θn−1|l)fh(

¯
θn−1)]

fl(
¯
θn−1)[Pr(θ > θ̄n−1|h)fl(θ̄n−1) + Pr(θ >

¯
θn−1|h)fh(θ̄n−1)]

=
fh(θ̄n−1)[(1− Fl(θ̄n−1))fl(

¯
θn−1) + (1− Fl(

¯
θn−1))fh(

¯
θn−1)]

fl(
¯
θn−1)[(1− Fh(θ̄n−1))fl(θ̄n−1) + (1− Fh(

¯
θn−1))fh(θ̄n−1)]

=
fh(θ̄n−1)[(1− Fl(θ̄n−1))fl(−θ̄n−1) + (1− Fl(−θ̄n−1))fh(−θ̄n−1)]

fl(−θ̄n−1)[(1− Fh(θ̄n−1))fl(θ̄n−1) + (1− Fh(−θ̄n−1))fh(θ̄n−1)]

and by symmetry of the signal functions

=
(1− Fl(θ̄n−1))fh(θ̄n−1) + Fh(θ̄n−1)fl(θ̄n−1)

(1− Fh(θ̄n−1))fl(θ̄n−1) + Fl(θ̄n−1)fh(θ̄n−1)

and similarly if an−1 = 0

fh(θ̂n)

fl(θ̂n)
=
fh(θ̄n−1)[Fl(θ̄n−1)fl(

¯
θn−1) + Fl(

¯
θn−1)fh(

¯
θn−1)]

fl(
¯
θn−1)[Fh(θ̄n−1)fl(θ̄n−1) + Fh(

¯
θn−1)fh(θ̄n−1)]

=
fh(θ̄n−1)[Fl(θ̄n−1)fl(−θ̄n−1) + Fl(−θ̄n−1)fh(−θ̄n−1)]

fl(−θ̄n−1)[Fh(θ̄n−1)fl(θ̄n−1) + Fh(−θ̄n−1)fh(θ̄n−1)]

=
Fl(θ̄n−1)fh(θ̄n−1) + (1− Fh(θ̄n−1))fl(θ̄n−1)

Fh(θ̄n−1)fl(θ̄n−1) + (1− Fl(θ̄n−1))fh(θ̄n−1)

For our canonical signal structure defined by Fh(θ) = 1
4
(1 + θ)2 and Fl(θ) = 1− 1

4
(1− θ)2, if
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an−1 = 1

1 + θ̂n

1− θ̂n
=

1
4
(1− θ̄n−1)2 1

2
(1 + θ̄n−1) + 1

4
(1 + θ̄n−1)2 1

2
(1− θ̄n−1)

[1− 1
4
(1 + θ̄n−1)2]1

2
(1− θ̄n−1) + [1− 1

4
(1− θ̄n−1)2]1

2
(1 + θ̄n−1)

=
(1− θ̄n−1)2(1 + θ̄n−1) + (1 + θ̄n−1)2(1− θ̄n−1)

(3− 2θ̄n−1 − θ̄2
n−1)(1− θ̄n−1) + (3 + 2θ̄n−1 − θ̄2

n−1)(1 + θ̄n−1)

=
(1− θ̄n−1)(1 + θ̄n−1)[(1− θ̄n−1) + (1 + θ̄n−1)]

6− 2θ̄2
n−1 + θ̄n−1(4θ̄n−1)

=
2(1− θ̄2

n−1)

6 + 2θ̄2
n−1

=⇒ θ̂n = −1

2
(1 + θ̄2

n−1)

and if an−1 = 0

1 + θ̂n

1− θ̂n
=

[1− 1
4
(1− θ̄n−1)2]1

2
(1 + θ̄n−1) + [1− 1

4
(1 + θ̄n−1)2]1

2
(1− θ̄n−1)

1
4
(1 + θ̄n−1)2 1

2
(1− θ̄n−1) + 1

4
(1− θ̄n−1)2 1

2
(1 + θ̄n−1)

=
(3 + 2θ̄n−1 − θ̄2

n−1)(1 + θ̄n−1) + (3− 2θ̄n−1 − θ̄2
n−1)(1− θ̄n−1)

(1 + θ̄n−1)2(1− θ̄n−1) + (1− θ̄n−1)2(1 + θ̄n−1)

=
6− 2θ̄2

n−1 + θ̄n−1(4θ̄n−1)

(1 + θ̄n−1)(1− θ̄n−1)[(1 + θ̄n−1) + (1− θ̄n−1)]

=
6 + 2θ̄2

n−1

2(1− θ̄2
n−1)

=⇒ θ̂n =
1

2
(1 + θ̄2

n−1)

Thus we have the recursive result that

θ̂n =


−1

2
(1 + θ̄2

n−1) if an−1 = 1

1
2
(1 + θ̄2

n−1) if an−1 = 0

Finally, recall that we conjectured that θ̄n−1 +
¯
θn−1 = 0 and that Pr(an−2 = 1|l) = Pr(an−2 =
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0|h) and the resulting threshold θ̂n also satisfied θ̄n +
¯
θn = 0. Moreover,

Pr(an−1 = 1|l) = Pr(an−1 = 1|an−2 = 1, l) Pr(an−2 = 1|l)

+ Pr(an−1 = 1|an−2 = 0, l) Pr(an−2 = 0|l)

= (1− Fl(θ̄n−1)) Pr(an−2 = 1|l) + (1− Fl(
¯
θn−1))(1− Pr(an−2 = 1|l))

and by symmetry of Fl and Fh and θ̄n−1 +
¯
θn−1 = 0 this becomes

= Fh(
¯
θn−1)) Pr(an−2 = 1|l) + Fh(θ̄n−1)(1− Pr(an−2 = 1|l))

= Fh(θ̄n−1) + Pr(an−2 = 1|l))(Fh(
¯
θn−1)− Fh(θ̄n−1))

Pr(an−1 = 0|h) = Pr(an−1 = 0|an−2 = 1, h) Pr(an−2 = 1|h)

+ Pr(an−1 = 0|an−2 = 0, h) Pr(an−2 = 0|h)

= Fh(θ̄n−1)(1− Pr(an−2 = 0|h)) + Fh(
¯
θn−1) Pr(an−2 = 0|h)

= Fh(θ̄n−1) + Pr(an−2 = 0|h)(Fh(
¯
θn−1)− Fh(θ̄n−1))

So that

Pr(an−1 = 1|l)− Pr(an−1 = 0|h) = (Pr(an−2 = 1|l)− Pr(an−2 = 0|h))(Fh(
¯
θn−1)− Fh(θ̄n−1))

and Pr(an−1 = 1|l) = Pr(an−1 = 0|h) since Pr(an−2 = 1|l) = Pr(an−2 = 0|h). So by

induction, θ̄n +
¯
θn = 0 and Pr(an = 1|l) = Pr(an = 0|h) for all n.

Lemma 3.2. In the case of limited histories in the sense that An = an, if Pr(an−1 = 0|l) =

Pr(an−1 = 1|h) then

Pr(an−1 = 1|h) =
fl(θ̄n)

fl(θ̄n) + fh(θ̄n)
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Proof. As noted above, in the case of limited histories beliefs are recursively related according

to

Pr(an−1 = 1|h) =
fl(θ̄n)

fh(θ̄n)
Pr(an−1 = 1|l) =

fl(θ̄n)

fh(θ̄n)
(1− Pr(an−1 = 0|l))

and with Pr(an−1 = 0|l) = Pr(an−1 = 1|h),

Pr(an−1 = 1|h) =
fl(θ̄n)

fl(θ̄n) + fh(θ̄n)

Proof of Proposition 5. We found above that in equilibrium θ̄1 = 0 and θ̄n = −1
2
(1 +

θ̄2
n−1) for n ≥ 2 so that

θ̄n+1 − θ̄n = −1

2
(1 + θ̄2

n)− θ̄n = −1

2
(1 + θ̄n)2 < 0

Then θ̄n is a decreasing sequence bounded below by −1 and as such must converge. Moreover

lim
n→∞

|θ̄n+1 − θ̄n| = lim
n→∞

1

2
(1 + θ̄n)2 = 0 ⇐⇒ lim

n→∞
θ̄n = −1

And thus θ̄n → −1. Since we proved above that
¯
θn = −θ̄n,

¯
θn → 1.

We showed in the previous proposition that Pr(an−1 = 1|l) = Pr(an−1 = 0|h). But since

Pr(an−1 = 1|l) = 1− Pr(an−1 = 0|l) and Pr(an−1 = 0|h) = 1− Pr(an−1 = 1|h) it must also

be that Pr(an−1 = 0|l) = Pr(an−1 = 1|h).

By lemma 2,

Pr(an−1 = 1|h) =
fl(θ̄n)

fl(θ̄n) + fh(θ̄n)
=

1
2
(1− θ̄n)

1
2
(1− θ̄n) + 1

2
(1 + θ̄n)

=
1

2
(1− θ̄n)
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Then limn→∞ Pr(an−1 = 1|h) = limn→∞
1
2
(1 − θ̄n) = 1. Since Pr(an−1 = 0|l) = Pr(an−1 =

1|h), limn→∞ Pr(an−1 = 0|1) = 1. Thus complete learning occurs.

Proof of Proposition 6. Assume Pr(ai−2) = 1
2

given no a priori information possible

about this action. As noted above,

θ̂n =

∑N
i=1 µ

n
i (Pr(ai−1|l)− Pr(ai−1|h))∑N

i=1 µ
n
i (Pr(ai−1|l) + Pr(ai−1|h))

Pr(ai−1|l) + Pr(ai−1|h) =
∑

ai−2∈A

Pr(ai−1|ai−2, l) Pr(ai−2|l) +
∑

ai−2∈A

Pr(ai−1|ai−2, h) Pr(ai−2|h)

= Fl(θ̄n−1) Pr(ai−2 = 1|l) + Fl(
¯
θn−1) Pr(ai−2 = 0|l)

+ Fh(θ̄n−1) Pr(ai−2 = 1|h) + Fh(
¯
θn−1) Pr(ai−2 = 0|h)

= Fl(θ̄n−1) Pr(ai−2 = 1|l) + Fl(
¯
θn−1)(1− Pr(ai−2 = 1|l))

+ Fh(θ̄n−1) Pr(an−2 = 1|h) + Fh(
¯
θn−1)(1− Pr(ai−2 = 1|h))

If Pr(ai−2|l) Pr(l) + Pr(ai−2|h) Pr(h) = 1
2
, Pr(ai−2|l) + Pr(ai−2|h) = 1 and

= Fl(θ̄n−1) Pr(ai−2 = 1|l) + Fl(
¯
θn−1)(1− Pr(ai−2 = 1|l))

+ Fh(θ̄n−1)(1− Pr(ai−2 = 1|l)) + Fh(
¯
θn−1) Pr(ai−2 = 1|l)

= Pr(ai−2 = 1|l)[Fl(θ̄n−1)− Fl(
¯
θn−1)− Fh(θ̄n−1) + Fh(

¯
θn−1)] + Fl(

¯
θn−1) + Fh(θ̄n−1)

= Pr(ai−2 = 1|l)
(

1

2
(
¯
θ2
n−1 − θ̄2

n−1)

)
+ 1 +

1

4

(
2(

¯
θn−1 + θ̄n−1) + θ̄2

n−1 − ¯
θ2
n−1

)
= 1 +

1

2
(
¯
θn−1 + θ̄n−1) + (

¯
θ2
n−1 − θ̄2

n−1)

(
1

4
− 1

2
Pr(ai−2 = 1|l)

)
= 1 +

1

2
(
¯
θn−1 + θ̄n−1)

(
1 + (

¯
θn−1 − θ̄n−1)

(
1

2
− Pr(ai−2 = 1|l)

))
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And the thresholds become

θ̄n =

∑N
i=1 µ

n
i (Pr(ai−1 = 1|l)− Pr(ai−1 = 1|h))∑N

i=1 µ
n
i (1 + 1

2
(
¯
θn−1 + θ̄n−1)

(
1 + (

¯
θn−1 − θ̄n−1)

(
1
2
− Pr(ai−2 = 1|l)

))
¯
θn =

∑N
i=1 µ

n
i (Pr(ai−1 = 0|l)− Pr(ai−1 = 0|h))∑N

i=1 µ
n
i (1 + 1

2
(
¯
θn−1 + θ̄n−1)

(
1 + (

¯
θn−1 − θ̄n−1)

(
1
2
− Pr(ai−2 = 1|l)

))
It is easy to see then that

θ̄n +
¯
θn =

∑N
i=1 µ

n
i (Pr(ai−1 = 1|l)− Pr(ai−1 = 1|h)) +

∑N
i=1 µ

n
i (Pr(ai−1 = 0|l)− Pr(ai−1 = 0|h))∑N

i=1 µ
n
i (1 + 1

2
(
¯
θn−1 + θ̄n−1)

(
1 + (

¯
θn−1 − θ̄n−1)

(
1
2
− Pr(ai−2 = 1|l)

))
=

∑N
i=1 µ

n
i ([Pr(ai−1 = 1|l) + Pr(ai−1 = 0|l)]− [Pr(ai−1 = 1|h) + Pr(ai−1 = 0|h)])∑N
i=1 µ

n
i (1 + 1

2
(
¯
θn−1 + θ̄n−1)

(
1 + (

¯
θn−1 − θ̄n−1)

(
1
2
− Pr(ai−2 = 1|l)

)) = 0

Since θ̄n +
¯
θn = 0, for each i

Pr(ai−1|l) + Pr(ai−1|h) = 1 +
1

2
(
¯
θn−1 + θ̄n−1)

(
1 + (

¯
θn−1 − θ̄n−1)

(
1

2
− Pr(ai−2 = 1|l)

))
= 1

and the threshold takes the form

θ̂n =
N∑
i=1

µni (Pr(ai−1|l)− Pr(ai−1|h))

Moreover, given that Pr(ai−1|l) + Pr(ai−1|h) = 1,

θ̂n = 2
N∑
i=1

µni Pr(ai−1|l)− 1
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If µnn = γ and µni = 1−γ
N−1

for i 6= n then

θ̂n = 2γ Pr(an−1|l) + 2
N∑
i 6=n

(
1− γ
N − 1

)
Pr(ai−1|l)− 1

= 2γ Pr(an−1|l)− 2

(
1− γ
N − 1

)
Pr(an−1|l) + 2

N∑
i=1

(
1− γ
N − 1

)
Pr(ai−1|l)− 1

= 2

(
Nγ − 1

N − 1

)
Pr(an−1|l)− 1 + 2

(
1− γ
N − 1

)N−1∑
i=0

Pr(ai|l)

Consider an−1 = 1. Since Pr(a0 = 1|l) = 1
4

threshold θ̄1 takes the form

θ̄1 = 2

(
Nγ − 1

N − 1

)
1

4
− 1 + 2

(
1− γ
N − 1

)N−1∑
i=0

Pr(ai = 1|l)

=
N(γ − 2) + 1

2(N − 1)
+ 2

(
1− γ
N − 1

)N−1∑
i=0

Pr(ai = 1|l)

and for n ≥ 2

θ̄n = 2

(
Nγ − 1

N − 1

)
Pr(an−1 = 1|l) + θ̄1 −

Nγ − 1

2(N − 1)

If an−1 = 0, since Pr(a0 = 0|l) = 3
4

threshold
¯
θ1 takes the form

¯
θ1 = 2

(
Nγ − 1

N − 1

)
3

4
− 1 + 2

(
1− γ
N − 1

)N−1∑
i=0

Pr(ai = 0|l)

=
N(3γ − 2)− 1

2(N − 1)
+ 2

(
1− γ
N − 1

)N−1∑
i=0

Pr(ai = 0|l)

and for n ≥ 2

¯
θn = 2

(
Nγ − 1

N − 1

)
Pr(an−1 = 0|l) +

¯
θ1 −

3(Nγ − 1)

2(N − 1)
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Lemma 3.3. For the canonical signal structure, if θ̄n +
¯
θn = 0, then

Pr(an = 1|l) =
1

4
(1 + θ̄n)2 − θ̄n Pr(an−1 = 1|l) and

Pr(an = 0|l) =
1

4
(3 +

¯
θn)(1−

¯
θn) +

¯
θn Pr(an−1 = 0|l)

Proof.

Pr(an = 1|l) = Pr(an = 1|an−1 = 1, l) Pr(an−1 = 1|l) + Pr(an = 1|an−1 = 0, l) Pr(an−1 = 0|l)

= (1− Fl(θ̄n)) Pr(an−1 = 1|l) + (1− Fl(
¯
θn)) Pr(an−1 = 0|l)

= (1− Fl(θ̄n)) Pr(an−1 = 1|l) + Fh(θ̄n)(1− Pr(an−1 = 1|l))

= Pr(an−1 = 1|l)
[

1

4
(1− θ̄n)2 − 1

4
(1 + θ̄n)2

]
+

1

4
(1 + θ̄n)2

=
1

4
(1 + θ̄n)2 − θ̄n Pr(an−1 = 1|l)

Pr(an = 0|l) = 1− Pr(an = 1|l) = θ̄n Pr(an−1 = 1|l)− 1

4
(1 + θ̄n)2

= 1− 1

4
(1− θ̄n)2 − θ̄n Pr(an−1 = 0|l) =

1

4
(3 + 2θ̄n − θ̄2

n)− θ̄n Pr(an−1 = 0|l)

=
1

4
(3− θ̄n)(1 + θ̄n)− θ̄n Pr(an−1 = 0|l) =

1

4
(3 +

¯
θn)(1−

¯
θn) +

¯
θn Pr(an−1 = 0|l)

Proof of Proposition 7. By definition θ̄n = 2
(
Nγ−1
N−1

)
Pr(an−1 = 1|l) + θ̄1− Nγ−1

2(N−1)
so that

θ̄n+1 − θ̄n = 2

(
Nγ − 1

N − 1

)
(Pr(an = 1|l)− Pr(an−1 = 1|l))
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From lemma 3, Pr(an = 1|l) = 1
4
(1 + θ̄n)2 − θ̄n Pr(an−1 = 1|l) and this becomes

θ̄n+1 − θ̄n = 2

(
Nγ − 1

N − 1

)[
1

4
(1 + θ̄n)2 − θ̄n Pr(an−1 = 1|l)− Pr(an−1 = 1|l)

]
=

(
Nγ − 1

2(N − 1)

)[
(1 + θ̄n)2 − 4 Pr(an−1 = 1|l)(1 + θ̄n)

]
=

(
Nγ − 1

2(N − 1)

)
(1 + θ̄n)

[
1 + θ̄n − 4 Pr(an−1 = 1|l)

]
Suppose θ̄n converges to θ̄. Then

(
Nγ − 1

2(N − 1)

)
(1 + θ̄)

[
1 + θ̄ − 4 lim

n→∞
Pr(an = 1|l)

]
= 0

This is satisfied if θ̄ = −1. If θ̄ > −1 then

4 lim
n→∞

Pr(an = 1|l) = 1 + θ̄

By definition
¯
θn = 2

(
Nγ−1
N−1

)
Pr(an−1 = 0|l) +

¯
θ1 − 3(Nγ−1)

2(N−1)
so that

¯
θn+1 −

¯
θn = 2

(
Nγ − 1

N − 1

)
(Pr(an = 0|l)− Pr(an−1 = 0|l))

From lemma 3, Pr(an = 0|l) = 1
4
(3 +

¯
θn)(1−

¯
θn) +

¯
θn Pr(an−1 = 0|l) and this becomes

¯
θn+1 −

¯
θn = 2

(
Nγ − 1

N − 1

)(
1

4
(3 +

¯
θn)(1−

¯
θn) +

¯
θn Pr(an−1 = 0|l)− Pr(an−1 = 0|l)

)
= 2

(
Nγ − 1

N − 1

)
1

4
(1−

¯
θn) ((3 +

¯
θn)− 4 Pr(an−1 = 0|l))

Suppose
¯
θn converges to

¯
θ. Then

2

(
Nγ − 1

N − 1

)
1

4
(1−

¯
θ)
(

(3 +
¯
θ)− 4 lim

n→∞
Pr(an = 0|l)

)
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This is satisfied if
¯
θ = 1. If

¯
θ < 1 then

4 lim
n→∞

Pr(an = 0|l) = 3 +
¯
θ

Then we have two cases

(i)

lim
n→∞

θ̄n = −1 and lim
n→∞¯

θn = 1

(ii)

lim
n→∞

Pr(an = 0|l) =
1

4
(3 +

¯
θ) and lim

n→∞
Pr(an = 1|l) =

1

4
(1 + θ̄)

As shown above,

θ̄n = 2

(
Nγ − 1

N − 1

)
Pr(an−1 = 1|l)− 1 + 2

(
1− γ
N − 1

)N−1∑
i=0

Pr(ai = 1|l)

If θ̄n → θ̄, then Pr(an−1 = 1|l)→ limn→∞ Pr(an = 1|l),
∑N−1

i=0 Pr(ai = 1|l)→ N limn→∞ Pr(an =

1|l), and

θ̄ = 2 lim
n→∞

Pr(an = 1|l)− 1

Similarly, if
¯
θn →

¯
θ

¯
θ = 2 lim

n→∞
Pr(an = 0|l)− 1

In case (i) θ̄ = −1 and
¯
θ = 1 so limn→∞ Pr(an = 1|l) = 0 and limn→∞ Pr(an = 0|l) = 1.
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In case (ii)

θ̄ = 2 lim
n→∞

Pr(an = 1|l)− 1 =
1

2
(1 + θ̄)− 1 =

1

2
θ̄ − 1

2

so that θ̄ = −1. Similarly, if
¯
θn →

¯
θ then

¯
θ = 2 lim

n→∞
Pr(an = 0|l)− 1 =

1

2
(3 +

¯
θ)− 1 =

1

2
θ̄ +

1

2

so that
¯
θ = 1. From above Pr(an = 1|h) = 1 − Pr(an = 1|l), and by the definition

of the limit, limn→∞ Pr(an = 1|h) = 1 − limn→∞ Pr(an = 1|l) = 1 − 1
4
(1 + θ̄) = 1 and

limn→∞ Pr(an = 0|l) = 1
4
(3 +

¯
θ) = 1

Thus in either case limn→∞ Pr(an = 1|h) = 1 and limn→∞ Pr(an = 0|l) = 1 so complete

learning occurs.

Proof of Proposition 8. From proposition 6,

θ̄1 =
N(γ − 2) + 1

2(N − 1)
+ 2

(
1− γ
N − 1

)N−1∑
i=0

Pr(ai = 1|l)

θ̄n = 2

(
Nγ − 1

N − 1

)
Pr(an−1 = 1|l) + θ̄1 −

Nγ − 1

2(N − 1)

From proposition 7, limi→∞ Pr(ai = 1|l) = 0 so that limN→∞ 2
(

1−γ
N−1

)∑N−1
i=0 Pr(ai = 1|l) = 0.

Thus limN→∞ θ̄1 = −2−γ
2

and limN→∞ θ̄n = 2γ Pr(an−1 = 1|l) − 2−γ
2
− γ

2
= 2γ Pr(an−1 =

1|l) − 1. From lemma 3, Pr(an−1 = 1|l) = 1
4
(1 + θ̄n−1)2 − θ̄n−1 Pr(an−2 = 1|l). Moreover,
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limN→∞ θ̄n−1 = 2γ Pr(an−2 = 1|l)− 1 which implies Pr(an−2 = 1|l) = θ̄n−1+1
2γ

and

Pr(an−1 = 1|l) =
1

4
(1 + θ̄n−1)2 − θ̄n−1

θ̄n−1 + 1

2γ

=
1

4
(1 + 2θ̄n−1 + θ̄2

n−1)−
θ̄2
n−1 + θ̄n−1

2γ

=
1

4γ
(γ + 2θ̄n−1(γ − 1) + θ̄2

n−1(γ − 2))

Then as N →∞,

θ̄n = 2γ Pr(an−1 = 1|l)− 1 = 2γ

[
1

4γ
(γ + 2θ̄n−1(γ − 1) + θ̄2

n−1(γ − 2))

]
− 1

=
1

2

(
γ + θ̄2

n−1(γ − 2)
)

+ θ̄n−1(γ − 1)− 1

= −2− γ
2

(
1 + θ̄2

n−1

)
− (1− γ)θ̄n−1

= −1

2
(1 + θ̄2

n−1)− 1− γ
2

(1 + θ̄n−1)2

Thus limN→∞ θ̄n = −1
2
(1 + θ̄2

n−1)− 1−γ
2

(1 + θ̄n−1)2 and since
¯
θn = −θ̄n for all n, limN→∞

¯
θn =

1
2
(1 + θ̄2

n−1) + 1−γ
2

(1 + θ̄n−1)2.

Proof of proposition 9. By definition

E[u(θ)|Hn, h] = Pr(an = 1|h)− Pr(an = 1|l) = 1− 2 Pr(an = 1|l)

From proposition 8, Pr(an = 1|l) = 1
4γ

(γ + 2θ̄n(γ − 1) + θ̄2
n(γ − 2)), so that

E[u(θ)|Hn, h] = 1− 2

(
1

4γ

)
(γ + 2θ̄n(γ − 1) + θ̄2

n(γ − 2))

=

(
1

2γ

)
(γ + 2θ̄n(1− γ) + θ̄2

n(2− γ))

=
1

2γ
(1 + θ̄2

n) +
1− γ

2γ
(θ̄2
n + 2θ̄n − 1)
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Lemma 3.4. If fh(θ)
fl(θ)

exhibits the strict Monotone Likelihood Ratio Property in the sense

that θ1 > θ0 implies fh(θ1)
fl(θ1)

> fh(θ0)
fl(θ0)

then

(i) fh(θ)
fl(θ)

> Fh(θ)
Fl(θ)

for all θ ∈ supp(F )◦

(ii) Fl strictly First Order Stochastically Dominates Fh in that Fl(θ) > Fh(θ) for all θ ∈

supp(F )◦

Proof. Let θ0, θ1 ∈ supp(F )◦ with θ1 > θ0. Then by the MLRP fh(θ1)fl(θ0) > fh(θ0)fl(θ1)

and integrating with respect to θ0,

(i)

∫ θ1

−∞
fh(θ1)fl(θ0)dθ0 >

∫ θ1

−∞
fh(θ0)fl(θ1)dθ0

=⇒ fh(θ1)Fl(θ1) > Fh(θ1)fl(θ1)

=⇒ fh(θ1)

fl(θ1)
>
Fh(θ1)

Fl(θ1)

(ii) Integrating instead with respect to θ1,

∫ −∞
θ0

fh(θ1)fl(θ0)dθ1 >

∫ −∞
θ0

fh(θ0)fl(θ1)dθ1

=⇒ (1− Fh(θ0))fl(θ0) > fh(θ0)(1− Fl(θ0))

=⇒ (1− Fh(θ0))

(1− Fl(θ0))
>
fh(θ0)

fl(θ0)

Combining the above gives (1−Fh(θ0))
(1−Fl(θ0))

> Fh(θ1)
Fl(θ1)

, or Fl(θ1) > Fh(θ1) for any interior θ1.
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Proof of Proposition 10. Recall from lemma 1 that the threshold strategy is defined

recursively by

fh(θ̂n)

fl(θ̂n)
=


(1−Fl(θ̂n−1))fh(θ̂n−1)

(1−Fh(θ̂n−1))fl(θ̂n−1)
if an−1 = 1

Fl(θ̂n−1)fh(θ̂n−1)

Fh(θ̂n−1)fl(θ̂n−1)
if an−1 = 0

Then

E

[
fh(θ̂n)

fl(θ̂n)
|θn−1, l

]
= Pr(an−1 = 0|l)Fl(θ̂n−1)fh(θ̂n−1)

Fh(θ̂n−1)fl(θ̂n−1)
+ Pr(an−1 = 1|l)(1− Fl(θ̂n−1))fh(θ̂n−1)

(1− Fh(θ̂n−1))fl(θ̂n−1)

=
fh(θ̂n−1)

fl(θ̂n−1)

[
Pr(an−1 = 0|l) Fl(θ̂n−1)

Fh(θ̂n−1)
+ (1− Pr(an−1 = 0|l)) (1− Fl(θ̂n−1))

(1− Fh(θ̂n−1))

]

=
fh(θ̂n−1)

fl(θ̂n−1)

[
Fl

(
Fl
Fh
− 1− Fl

1− Fh

)
+

1− Fl
1− Fh

]
=
fh(θ̂n−1)

fl(θ̂n−1)

[
Fl

(
Fl(1− Fh)− Fh(1− Fl)

Fh(1− Fh)

)
+
Fh(1− Fl)
Fh(1− Fh)

]
=
fh(θ̂n−1)

fl(θ̂n−1)

F 2
l − 2FlFh + Fh
Fh(1− Fh)

=
fh(θ̂n−1)

fl(θ̂n−1)

(Fl − Fh)2

Fh(1− Fh)
+
fh(θ̂n−1)

fl(θ̂n−1)

Thus E
[
fh(θ̂n)

fl(θ̂n)
|θn−1, l

]
−fh(θ̂n−1)

fl(θ̂n−1)
= fh(θ̂n−1)

fl(θ̂n−1)

(Fl(θ̂n−1)−Fh(θ̂n−1))2

Fh(θ̂n−1)(1−Fh(θ̂n−1))
, and by strict First Order Stochastic

Dominance this is strictly positive for interior signals θ. Then since it is a submartingale

the likelihood ratio fh(θ̂n)

fl(θ̂n)
either converges to a limit or diverges, but since Fl(θ)−Fh(θ) > 0

for interior signals it cannot converge to a limit and hence must diverge. By the monotone
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likelihood ratio property, since limn→∞
fh(θ̂n)

fl(θ̂n)
=∞ it must be that limn→∞ θ̂n = 1. Similarly,

E

[
fl(θ̂n)

fh(θ̂n)
|θn−1, h

]
= Pr(an−1 = 0|h)

Fh(θ̂n−1)fl(θ̂n−1)

Fl(θ̂n−1)fh(θ̂n−1)
+ Pr(an−1 = 1|h)

(1− Fh(θ̂n−1))fl(θ̂n−1)

(1− Fl(θ̂n−1))fh(θ̂n−1)

=
fl(θ̂n−1)

fh(θ̂n−1)

[
Pr(an−1 = 0|h)

Fh(θ̂n−1)

Fl(θ̂n−1)
+ (1− Pr(an−1 = 0|h))

(1− Fh(θ̂n−1))

(1− Fl(θ̂n−1))

]

=
fl(θ̂n−1)

fh(θ̂n−1)

[
Fh

(
Fh
Fl
− 1− Fh

1− Fl

)
+

1− Fh
1− Fl

]
=
fl(θ̂n−1)

fh(θ̂n−1)

[
Fh

(
Fh(1− Fl)− Fl(1− Fh)

Fl(1− Fl)

)
+
Fl(1− Fh)
Fl(1− Fl)

]
=
fl(θ̂n−1)

fh(θ̂n−1)

F 2
h − 2FhFl + Fl
Fl(1− Fl)

=
fl(θ̂n−1)

fh(θ̂n−1)

(Fh − Fl)2

Fl(1− Fl)
+
fl(θ̂n−1)

fh(θ̂n−1)

Then E
[
fl(θ̂n)

fh(θ̂n)
|θn−1, h

]
− fl(θ̂n−1)

fh(θ̂n−1)
= fl(θ̂n−1)

fh(θ̂n−1)

(Fh(θ̂n−1)−Fl(θ̂n−1))2

Fl(θ̂n−1)(1−Fl(θ̂n−1))
so the likelihood ratio fl(θ̂n)

fh(θ̂n)
is

a submartingale conditional on ω = h. Strict FOSD again implies that the likelihood ratio

diverges so that θ̂n = −1.

Together these results imply

lim
n→∞

Pr(an = 0|l) = lim
n→∞

Fl(θ̂n) = F (1) = 1

lim
n→∞

Pr(an = 1|h) = lim
n→∞

(1− Fh(θ̂n)) = 1− F (−1) = 1

so that complete learning occurs.

Lemma 3.5. Under the assumptions of social learning with limited history and general

signals as in proposition 8, decision thresholds θ̄n if an−1 = 1 and
¯
θn if an−1 = 0 satisfy

θ̄1 < 0 and θ̄n +
¯
θn = 0. Moreover Pr(an−2 = 1|l) = Pr(an−2 = 0|h) for all n.

Proof. Consider the decision of the first agent. By the assumption of symmetry on Fl, Fh,

agent 0 will play a0 = 1 if and only if θ ≥ 0. As above, with prior Pr(h) = 1
2
, agent 1 will
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then set thresholds θ̄1 if a0 = 1 and
¯
θ1 if a0 = 0 such that

fh(θ̄1)

fl(θ̄1)
=

1
2
(1− Fl(0))

1
2
(1− Fh(0))

and
fh(

¯
θ1)

fl(
¯
θ1)

=
1
2
(Fl(0))

1
2
(Fh(0))

Then fh(θ̄1)

fl(θ̄1)
< 1 since Fl(0) > Fh(0) by strict FOSD. Thus θ̄1 < 0. Also, since symmetry

gives Fl(0) = 1− Fh(0),

fl(−θ̄1)

fh(−θ̄1)
=
fh(θ̄1)

fl(θ̄1)
=

1− Fl(0)

1− Fh(0)
=
Fh(0)

Fl(0)

so that fl(−θ̄1)

fh(−θ̄1)
=

fl(
¯
θ1)

fh(
¯
θ1)

. Then by the strict monotonicity of the likelihood ratio,
¯
θ1 = −θ̄1.

In the base case of n = 2, θ̄n−1 +
¯
θn−1 = 0 and Pr(an−2 = 1|l) = 1 − Fl(0) = Fh(0) =

Pr(an−2 = 0|h). Conjecture θ̄n−1 +
¯
θn−1 = 0 and Pr(an−2 = 1|l) = Pr(an−2 = 0|h) for general

n ≥ 2. As we in the proof of proposition 3 this implies that for general n the agent will set

threshold θ̄n if an−1 = 1 and
¯
θn if an−1 = 0 such that

fh(θ̄n)

fl(θ̄n)
=

(1− Fl(θ̄n−1))fh(θ̄n−1) + Fh(θ̄n−1)fl(θ̄n−1)

(1− Fh(θ̄n−1))fl(θ̄n−1) + Fl(θ̄n−1)fh(θ̄n−1)

and similarly if an−1 = 0

fh(
¯
θn)

fl(
¯
θn)

=
Fl(θ̄n−1)fh(θ̄n−1) + (1− Fh(θ̄n−1))fl(θ̄n−1)

Fh(θ̄n−1)fl(θ̄n−1) + (1− Fl(θ̄n−1))fh(θ̄n−1)

By symmetry

fl(−θ̄n)

fh(−θ̄n)
=
fh(θ̄n)

fl(θ̄n)
=

(1− Fl(θ̄n−1))fh(θ̄n−1) + Fh(θ̄n−1)fl(θ̄n−1)

(1− Fh(θ̄n−1))fl(θ̄n−1) + Fl(θ̄n−1)fh(θ̄n−1)
=
fl(

¯
θn)

fh(
¯
θn)

which implies fl(−θ̄n)

fh(−θ̄n)
=

fl(
¯
θn)

fh(
¯
θn)

. By the strict monotonicity of the likelihood ratio
¯
θn = −θ̄n.
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Moreover,

Pr(an−1 = 1|l) = Pr(an−1 = 1|an−2 = 1, l) Pr(an−2 = 1|l)

+ Pr(an−1 = 1|an−2 = 0, l) Pr(an−2 = 0|l)

= (1− Fl(θ̄n−1)) Pr(an−2 = 1|l) + (1− Fl(
¯
θn−1))(1− Pr(an−2 = 1|l))

and by symmetry of Fl and Fh and θ̄n−1 +
¯
θn−1 = 0 this becomes

= Fh(
¯
θn−1)) Pr(an−2 = 1|l) + Fh(θ̄n−1)(1− Pr(an−2 = 1|l))

= Fh(θ̄n−1) + Pr(an−2 = 1|l))(Fh(
¯
θn−1)− Fh(θ̄n−1))

Pr(an−1 = 0|h) = Pr(an−1 = 0|an−2 = 1, h) Pr(an−2 = 1|h)

+ Pr(an−1 = 0|an−2 = 0, h) Pr(an−2 = 0|h)

= Fh(θ̄n−1)(1− Pr(an−2 = 0|h)) + Fh(
¯
θn−1) Pr(an−2 = 0|h)

= Fh(θ̄n−1) + Pr(an−2 = 0|h)(Fh(
¯
θn−1)− Fh(θ̄n−1))

So that

Pr(an−1 = 1|l)− Pr(an−1 = 0|h) = (Pr(an−2 = 1|l)− Pr(an−2 = 0|h))(Fh(
¯
θn−1)− Fh(θ̄n−1))

and Pr(an−1 = 1|l) = Pr(an−1 = 0|h) since Pr(an−2 = 1|l) = Pr(an−2 = 0|h) by our induction

conjecture. So by induction, θ̄n +
¯
θn = 0 and Pr(an = 1|l) = Pr(an = 0|h) for all n.
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Proof of Proposition 11.

fh(θ̄n)

fl(θ̄n)
− fh(θ̄n−1)

fl(θ̄n−1)
=

(1− Fl(θ̄n−1))fh(θ̄n−1) + Fh(θ̄n−1)fl(θ̄n−1)

(1− Fh(θ̄n−1))fl(θ̄n−1) + Fl(θ̄n−1)fh(θ̄n−1)
− fh(θ̄n−1)

fl(θ̄n−1)

=
fl(θ̄n−1)fh(θ̄n−1)− Fl(θ̄n−1)fl(θ̄n−1)fh(θ̄n−1) + Fh(θ̄n−1)fl(θ̄n−1)2

fl(θ̄n−1)[(1− Fh(θ̄n−1))fl(θ̄n−1) + Fl(θ̄n−1)fh(θ̄n−1)]

− fl(θ̄n−1)fh(θ̄n−1)− Fh(θ̄n−1)fl(θ̄n−1)fh(θ̄n−1) + Fl(θ̄n−1)fh(θ̄n−1)2

fl(θ̄n−1)[(1− Fh(θ̄n−1))fl(θ̄n−1) + Fl(θ̄n−1)fh(θ̄n−1)]

=
(fh(θ̄n−1)− fl(θ̄n−1))(Fl(θ̄n−1)fh(θ̄n−1) + Fh(θ̄n−1)fl(θ̄n−1))

fl(θ̄n−1)[(1− Fh(θ̄n−1))fl(θ̄n−1) + Fl(θ̄n−1)fh(θ̄n−1)]

Then fh(θ̄n)

fl(θ̄n)
− fh(θ̄n−1)

fl(θ̄n−1)
≤ 0 ⇐⇒ fh(θ̄n−1) ≤ fl(θ̄n−1). Symmetry about 0 implies fh(0)

fl(0)
= 1

and with the monotone likelihood ratio assumption fh(θ̄n−1) ≤ fl(θ̄n−1) for θ̄n−1 ≤ 0. Thus

the likelihood ratio fh(θ̄n−1) ≤ fl(θ̄n−1) is a decreasing sequence bounded below so it must

converge. Moreover, strict FOSD implies that fh(θ̄n−1) < fl(θ̄n−1) if θ̄n−1 < 0. As we showed

above θ̄1 < 0 and by the monotonicity of the likelihood ratio θn < θ̄n−1 for all n ≥ 1. Then

the likelihood ratio strictly decreases in n until Fl(θ̄n−1)fh(θ̄n−1) + Fh(θ̄n−1)fl(θ̄n−1) = 0, or

when Fl(θ̄n−1) and Fh(θ̄n−1) converge to 0. Thus limn→∞
fh(θ̄n)

fl(θ̄n)
= 0.

By lemma 2,

Pr(an = 1|h) =
fl(θ̄n+1)

fl(θ̄n+1) + fh(θ̄n+1)
=

1

1 + fh(θ̄n+1)

fl(θ̄n+1)

so that limn→∞ Pr(an = 1|h) = 1

1+limn→∞
fh(θ̄n+1)

fl(θ̄n+1)

= 1 . By lemma 3 Pr(an = 1|l) = Pr(an =

0|h) so limn→∞ Pr(an = 0|l) = 1 and complete learning occurs.

Lemma 3.6. Under mutual symmetry of Fl and Fh, if θ̄n +
¯
θn = 0 for all n

Pr(an = 1|l)− Pr(an−1 = 1|l) = Fh(θ̄n)− Pr(an−1 = 1|l)[Fl(θ̄n) + Fh(θ̄n)]

Pr(an = 1|h)− Pr(an−1 = 1|h) = Fl(θ̄n)− Pr(an−1 = 1|h)[Fl(θ̄n) + Fh(θ̄n)]
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and

Pr(an = 1|l) Pr(an−1 = 1|h)− Pr(an−1 = 1|l) Pr(an = 1|h)

= Fh(θ̄n) Pr(an−1 = 1|h)− Fl(θ̄n) Pr(an−1 = 1|l)

Proof.

Pr(an = 1|l) = Pr(an = 1|an−1 = 1, l) Pr(an−1 = 1|l) + Pr(an = 1|an−1 = 0, l) Pr(an−1 = 0|l)

= (1− Fl(θ̄n)) Pr(an−1 = 1|l) + (1− Fl(
¯
θn)) Pr(an−1 = 0|l)

= (1− Fl(θ̄n)) Pr(an−1 = 1|l) + Fh(θ̄n)(1− Pr(an−1 = 1|l))

= Fh(θ̄n) + Pr(an−1 = 1|l)(1− Fl(θ̄n)− Fh(θ̄n))

and

Pr(an = 1|h) = Pr(an = 1|an−1 = 1, h) Pr(an−1 = 1|h) + Pr(an = 1|an−1 = 0, h) Pr(an−1 = 0|h)

= (1− Fh(θ̄n)) Pr(an−1 = 1|h) + (1− Fh(
¯
θn)) Pr(an−1 = 0|h)

= (1− Fh(θ̄n)) Pr(an−1 = 1|h) + Fl(θ̄n)(1− Pr(an−1 = 1|h))

= Fl(θ̄n) + Pr(an−1 = 1|h)(1− Fl(θ̄n)− Fh(θ̄n))

The first two desired equalities are easily obtained by rearranging the above equations while
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the third is given by

Pr(an = 1|l) Pr(an−1 = 1|h)− Pr(an−1 = 1|l) Pr(an = 1|h)

= [Fh(θ̄n) + Pr(an−1 = 1|l)(1− Fl(θ̄n)− Fh(θ̄n))] Pr(an−1 = 1|h)

− Pr(an−1 = 1|l)[Fl(θ̄n) + Pr(an−1 = 1|h)(1− Fl(θ̄n)− Fh(θ̄n))]

= Fh(θ̄n) Pr(an−1 = 1|h)− Fl(θ̄n) Pr(an−1 = 1|l)

Lemma 3.7. If θ̂n converges to a limit then Pr(an|l) and Pr(an|h) also converge.

Proof. By lemma 7, Pr(an = 1|l)−Pr(an−1 = 1|l) = Fh(θ̄n)−Pr(an−1 = 1|l)(Fl(θ̄n)+Fh(θ̄n)).

If Pr(an|l) does not converge, let ε > 0 for which for any N there is always some n ≥ N with

|Pr(an = 1|l)− Pr(an−1 = 1|l)| > ε. Suppose Pr(an = 1|l)− Pr(an−1 = 1|l) > ε. Then

Pr(an−1 = 1|l) < Fh(θ̄n)

(Fl(θ̄n) + Fh(θ̄n))
− ε
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Then

Pr(an+1 = 1|l)− Pr(an = 1|l) = Fh(θ̄n+1)− Pr(an = 1|l)(Fl(θ̄n+1) + Fh(θ̄n+1))

= Fh(θ̄n+1)− (Fh(θ̄n) + Pr(an−1 = 1|l)(1− Fl(θ̄n)− Fh(θ̄n))(Fl(θ̄n+1) + Fh(θ̄n+1))

= Fh(θ̄n+1)− Fh(θ̄n)(Fl(θ̄n+1) + Fh(θ̄n+1))− Pr(an−1 = 1|l)(1− Fl(θ̄n)

− Fh(θ̄n))(Fl(θ̄n+1) + Fh(θ̄n+1))

> Fh(θ̄n+1)− Fh(θ̄n)(Fl(θ̄n+1) + Fh(θ̄n+1))

− (1− Fl(θ̄n)− Fh(θ̄n))(Fl(θ̄n+1) + Fh(θ̄n+1))

(
Fh(θ̄n)

Fl(θ̄n) + Fh(θ̄n)
− ε
)

= Fh(θ̄n+1)− Fh(θ̄n)(Fl(θ̄n+1) + Fh(θ̄n+1)) + Fh(θ̄n)(Fl(θ̄n+1) + Fh(θ̄n+1))

+ ε(1− Fl(θ̄n)− Fh(θ̄n))(Fl(θ̄n+1) + Fh(θ̄n+1))− Fh(θ̄n)(Fl(θ̄n+1) + Fh(θ̄n+1))

Fl(θ̄n) + Fh(θ̄n)

=
Fh(θ̄n+1)Fl(θ̄n)− Fh(θ̄n)Fl(θ̄n+1)

Fl(θ̄n) + Fh(θ̄n)
+ ε(1− Fl(θ̄n)− Fh(θ̄n))(Fl(θ̄n+1) + Fh(θ̄n+1))

Given the convergence of θ̄n, n can be made large enough that

Fh(θ̄n+1)Fl(θ̄n)− Fh(θ̄n)Fl(θ̄n+1) >

− ε(1− Fl(θ̄n)− Fh(θ̄n))(Fl(θ̄n+1) + Fh(θ̄n+1))(Fl(θ̄n) + Fh(θ̄n))

so that Pr(an+1|l) > Pr(an = 1|l) for n ≥ N . Thus Pr(an = 1|l) is an increasing sequence,

bounded above and must converge. If Pr(an = 1|l)−Pr(an−1 = 1|l) < −ε then Pr(an = 1|l)

is a decreasing sequence bounded below and must converge. Since Pr(an = 0|l) = 1 −

Pr(an = 1|l) this must converge as well. Finally, an analogous proof shows the convergence

of Pr(an|h).
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Proof of Proposition 12. From above the likelihood ratio takes the form

fh(θ̂n)

fl(θ̂n)
=

∑N
i=1 µ

n
i Pr(ai−1|l) Pr(l)∑N

i=1 µ
n
i Pr(ai−1|h) Pr(h)

With µnn = γ and µ = µni = 1−γ
N−1

for i 6= n this becomes

fh(θ̂n)

fl(θ̂n)
=

(γ − µ) Pr(an−1|l) + µ
∑N−1

i=0 Pr(ai|l)
(γ − µ) Pr(an−1|h) + µ

∑N−1
i=0 Pr(ai|h)

If θ̄n is the threshold in response to an−1 = 1 then

fh(θ̄n+1)

fl(θ̄n+1)
− fh(θ̄n)

fl(θ̄n)

=
(γ − µ) Pr(an|l) + µ

∑N−1
i=0 Pr(ai|l)

(γ − µ) Pr(an|h) + µ
∑N−1

i=0 Pr(ai|h)
− (γ − µ) Pr(an−1|l) + µ

∑N−1
i=0 Pr(ai|l)

(γ − µ) Pr(an−1|h) + µ
∑N−1

i=0 Pr(ai|h)

=
[(γ − µ) Pr(an|l) + µ

∑N−1
i=0 Pr(ai|l)][(γ − µ) Pr(an−1|h) + µ

∑N−1
i=0 Pr(ai|h)]

[(γ − µ) Pr(an−1|h) + µ
∑N−1

i=0 Pr(ai|h)][(γ − µ) Pr(an|h) + µ
∑N−1

i=0 Pr(ai|h)]

− [(γ − µ) Pr(an−1|l) + µ
∑N−1

i=0 Pr(ai|l)][(γ − µ) Pr(an|h) + µ
∑N−1

i=0 Pr(ai|h)]

[(γ − µ) Pr(an−1|h) + µ
∑N−1

i=0 Pr(ai|h)][(γ − µ) Pr(an|h) + µ
∑N−1

i=0 Pr(ai|h)]

=
(γ − µ)2[Pr(an|l) Pr(an−1|h)− Pr(an−1|l) Pr(an|h)]

[(γ − µ) Pr(an−1|h) + µ
∑N−1

i=0 Pr(ai|h)][(γ − µ) Pr(an|h) + µ
∑N−1

i=0 Pr(ai|h)]

+
(γ − µ)µ

[∑N−1
i=0 Pr(ai|l)(Pr(an−1|h)− Pr(an|h)) +

∑N−1
i=0 Pr(ai|h)(Pr(an|l)− Pr(an−1|l))

]
[(γ − µ) Pr(an−1|h) + µ

∑N−1
i=0 Pr(ai|h)][(γ − µ) Pr(an|h) + µ

∑N−1
i=0 Pr(ai|h)]

and with the results in lemma 7 this becomes

=
(γ − µ)2[Fh(θ̄n) Pr(an−1 = 1|h)− Fl(θ̄n) Pr(an−1 = 1|l)]

[(γ − µ) Pr(an−1|h) + µ
∑N−1

i=0 Pr(ai|h)][(γ − µ) Pr(an|h) + µ
∑N−1

i=0 Pr(ai|h)]

+
(γ − µ)µ

[∑N−1
i=0 Pr(ai|h)(Fh(θ̄n)− Pr(an−1 = 1|l)[Fl(θ̄n) + Fh(θ̄n)])

]
[(γ − µ) Pr(an−1|h) + µ

∑N−1
i=0 Pr(ai|h)][(γ − µ) Pr(an|h) + µ

∑N−1
i=0 Pr(ai|h)]

−
(γ − µ)µ

[∑N−1
i=0 Pr(ai|l)(Fl(θ̄n)− Pr(an−1 = 1|h)[Fl(θ̄n) + Fh(θ̄n)])

]
[(γ − µ) Pr(an−1|h) + µ

∑N−1
i=0 Pr(ai|h)][(γ − µ) Pr(an|h) + µ

∑N−1
i=0 Pr(ai|h)]
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which converges to

→ γ2[Fh(θ̄) Pr(a = 1|h)− Fl(θ̄) Pr(a = 1|l)]
[γ Pr(a|h) + Pr(a|h)][γ Pr(a|h) + Pr(a|h)]

+
γ
[
Pr(a|h)(Fh(θ̄)− Pr(a = 1|l)[Fl(θ̄) + Fh(θ̄)])

]
[γ Pr(a|h) + Pr(a|h)][γ Pr(a|h) + Pr(a|h)]

−
γ
[
Pr(a|l)(Fl(θ̄)− Pr(a = 1|h)[Fl(θ̄) + Fh(θ̄)])

]
[γ Pr(a|h) + Pr(a|h)][γ Pr(a|h) + Pr(a|h)]

=
γ(1 + γ)[Fh(θ̄) Pr(a = 1|h)− Fl(θ̄) Pr(a = 1|l)]

[γ Pr(a|h) + Pr(a|h)][γ Pr(a|h) + Pr(a|h)]

Then limn→∞
fh(θ̄n+1)

fl(θ̄n+1)
− fh(θ̄n)

fl(θ̄n)
= 0 if Fh(θ̄) Pr(a = 1|h) = Fl(θ̄) Pr(a = 1|l). And given that

fh(θ̄n)

fl(θ̄n)
= Pr(an−1=1|l)

Pr(an−1=1|h)
,

fh(θ̄)

fl(θ̄)
= lim

n→∞

fh(θ̄n)

fl(θ̄n)
= lim

n→∞

Pr(an−1 = 1|l)
Pr(an−1 = 1|h)

=
Pr(a = 1|l)
Pr(a = 1|h)

=
Fh(θ̄)

Fl(θ̄)

so that fh(θ̄)

fl(θ̄)
= Fh(θ̄)

Fl(θ̄)
. But Fh(θ)

Fl(θ)
< 1 for all interior θ and by symmetry and the MLRP fh(θ)

fl(θ)
> 1

for θ > 0, so θ̄ ∈ [−1, 0). By lemma 3 fh(θ)
fl(θ)

> Fh(θ)
Fl(θ)

for all interior θ so the only remaining

candidate is θ̄ = −1. Indeed, by L’Hopital’s rule, limθ→−1
Fh(θ)
Fl(θ)

= limθ→−1
fh(θ)
fl(θ)

= fh(−1)
fl(−1)

so

that θ̄ = −1.

From lemma 5, Pr(an = 1|h) = Pr(an = 0|l) = Fl(θ̄n+1)

Fl(θ̄n+1)+Fh(θ̄n+1)

lim
n→∞

Fl(θ̄n+1)

Fl(θ̄n+1) + Fh(θ̄n+1)
= lim

θ→θ̄

1

1 + Fh(θ)
Fl(θ)

= lim
θ→−1

1

1 + fh(θ)
fl(θ)

= 1

so that limn→∞ Pr(an = 1|h) = limn→∞ Pr(an = 0|l) = 1 and complete learning occurs.
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