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Abstract  

Health benefits are routinely attributed to whey proteins, their hydrolysates and peptides 

based on in vitro chemical and cellular assays. The objective of this study was to track the 

fate of whey proteins through the upper gastrointestinal tract, their uptake across the intestinal 

barrier and then assess the physiological impact to downstream target cells. Simulated 

gastrointestinal digestion (SGID) released a selection of whey peptides some of which were 

transported across a Caco-2/HT-29 intestinal barrier, inhibited free radical formation in 

muscle and liver cells. In addition, SGID of β-lactoglobulin resulted in the highest 

concentration of free amino acids (176 nM) arriving on the basolateral side of the co-culture 

with notable levels of branched chain and sulphur-containing amino acids. In vitro results 

indicate that consumption of whey proteins will deliver bioactive peptides to target cells. 

 

Keywords: whey peptides, gastrointestinal digestion, bioavailability, antioxidant activity, 

muscle cells   
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1. Introduction 

Bovine whey proteins are considered high quality proteins. They are a rich source of 

branched chain amino acids (BCAA), well balanced, have encrypted bioactive peptides and 

well documented health benefits to muscle, immune and redox systems (Patel 2015). As such, 

the total whey world trade volume in 2015 was more than 1.7 million tonnes with the sports 

nutrition sector of particular importance (IDF, 2016). Bovine whey proteins are β-

lactoglobulin (β-LG, 50–60%), α-lactalbumin (α-LA, 15–25%), bovine serum albumin (BSA, 

6%), lactoferrin (LF, <3%) and several immunoglobulins (<10%). 

BCAA make up 26% of the amino acid (AA) content of whey proteins and function to 

promote muscle protein synthesis via stimulation of the rapamycin (mTOR) pathway. In a 

recent study, 8 elderly men who consumed 1.9 g native whey protein/kg lean body weight for 

10 days, had significantly higher levels of myosin and mitochondrial muscle protein synthesis 

than baseline, whereas consumption of casein had no effect. This benefit of whey was 

attributed to the high content of BCAA (1,159 μM) in their plasma (Walrand et al., 2016). 

Essential amino acids (EAA) function to reduce muscle inflammation after strenuous 

exercise. Purpura et al. (2014) observed that consumption of 48 g of commercial whey 

protein isolate (WPI) resulted in 229.5 nmol EAA/mL plasma in 10 resistance-trained men 67 

min later. Bioactive peptides derived from whey proteins, if bioavailable, may also play a 

role in muscle health as suggested by in vitro data using whey hydrolysates directly on the 

C2C12 muscle cell line, for instance, activating the rapamycin complex I (Roeseler et al., 

2017). However, the effect of whey on muscle is not without controversy with some studies 

showing limited or no effects on muscle after whey consumption or compared with casein 

supplementation (Agin et al., 2001; Tipton et al., 2004). 

Whey proteins are rich in antioxidant AA including the glutathione precursor Cys (Fox, 

Uniacke-Lowe, McSweeney & O'Mahony, 2015). The once-off consumption of 3 g dairy 
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product (2.25 g milk protein concentrate plus 0.75 g whey hydrolysates) per kg body weight 

significantly increased the antioxidant capacity of plasma in 8 healthy women compared to 

baseline, albeit no control diet was included (Power-Grant, McCormack, Ramia De Cap, 

Amigo-Benavent, Fitzgerald & Jakeman, 2016). However, consumption of whey had no 

effect on antioxidant biomarkers in plasma in other studies (Kim et al., 2013; Middleton et 

al., 2004). Several individual whey peptides such as β-LG f(19–29) WYSLAMAASDI, β-LG 

f(42–46) YVEEL, β-LG f(145–149) MHIRL, α-LA f(101–104) INYW and α-LA f(115–118) 

LDQW have demonstrated antioxidant activity using in vitro chemical assays (Hernandez-

Ledesma, Davalos, Bartolome & Amigo, 2005; Sadat, Cakir-Kiefer, N’Negue, Gaillard, 

Girardet & Miclo, 2011).  

The ability of whey proteins to reduce the pro-inflammatory cytokines, IL-1β and IL-6, was 

proposed as the mechanism by which a 16 day diet containing 20% whey protein protected 

D-galactosamine-treated rats against hepatotoxicity (Kume, Okazaki & Sasaki, 2006). A 28 

day diet containing 10% WPI also protected stressed rats against liver damage by decreasing 

lipid peroxidation and increasing plasma levels of the antioxidant tripeptide glutathione 

(Ashoush, El-Batawy & El-Shourbagy, 2013). 

However, little is known about which whey peptides survive the harsh conditions of the 

gastrointestinal tract and are absorbed, via passive or active transport, across the intestinal 

barrier to reach target organs. Recently, whey protein degradation during upper gut transit 

was tracked in human jejunal effluents and using in vitro simulated gastrointestinal digestion 

(SGID) protocols (Sanchon et al., 2018). SGID is a suitable model to predict whey protein 

digestion as demonstrated by a correlation coefficient of 0.74 for β-LG and α-LA (Sanchon et 

al., 2018). 

Several studies have employed differentiated Caco-2 monolayers to assess the intestinal 

absorption of individual milk-derived peptides and AA (Goulart et al., 2014; Picariello et al., 
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2013). For example, Vermeirssen, Deplancke, Tappenden, Van Camp, Gaskins and 

Verstraete (2002) demonstrated the transport of anti-hypertensive peptide from β-LG, 

lactokinin f(142–148) ALMPHIR, across Caco-2 clone Bbe monolayers cultured in Ussing 

chambers. 

The objective of this study was to investigate the bioavailability of SGID commercial whey 

products and individual whey proteins across Caco-2/HT-29 co-culture to mimic upper gut 

transit of whey and transport across the intestinal barrier. By secreting mucus, the 

adenocarcinoma HT-29 improves the Caco-2 model. Using Peptide Ranker score, known 

bioavailability, presence of known antioxidant AA or presence of BCAA, 6 bioavailable 

peptides were selected and assayed for their ability to promote antioxidant status in muscle 

and liver cells and modulate cytokine markers in immune cells. 

 

2. Materials and methods 

2.1. Materials 

Commercial bovine WPI (Isolac, 91.4% protein content) was purchased from Carbery Food 

Ingredients (Ireland). β-LG (92.1% β-LG content) and α-LA (93% α-LA content) were 

obtained from Davisco Foods International (USA). LF (Bioferrin 2000, 95% of LF and 

0.02% of iron) was gifted by Glanbia Nutritionals (USA). BSA (98% protein content) was 

purchased from Sigma-Aldrich (Ireland). Milk-protein-based sport product (MPSPO, 47% 

protein content: WPI, whey protein concentrate, calcium caseinate, milk protein concentrate) 

was purchased from a local retailer. Human TNF-α and IL-1β/IL-1F2 DuoSet ELISA kits and 

DuoSet Ancillary Reagent Kit 2 were from R&D Systems (UK). All other reagents were 

purchased from Sigma-Aldrich. 

2.2. SGID 
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SGID was performed as described by Minekus et al. (2014). Whey protein samples (WPI, β-

LG, α-LA, BSA and LF) (1 g powder, which contained approximately 0.94 g protein) were 

reconstituted in 5 mL of Milli-Q H2O. MPSPO was reconstituted at 1.5 g powder/5 mL H2O 

(0.71 g protein) following manufacturer’s recommendations. As they were liquid 

formulations, no oral phase was performed. Gastric phase was performed for 2 hours using 

porcine pepsin (2,000 U/mL). Intestinal phase was performed for 2 hours using pancreatin 

(100 U/mL) and bile extract (10 mM). To stop the intestinal phase, protease inhibitor 4-(2-

aminoethyl) benzenesulfonyl fluoride hydrochloride (1 mM) was added. Samples were snap 

frozen in liquid nitrogen and stored at -80°C. Prior to cell exposures, the osmolarity of SGID 

proteins was measured by Osmometer Basic (Löser Messtechnik, Germany) and corrected to 

300 mOsm/kg H2O (physiological) using distilled H2O. 

2.3. Cell lines 

Cells were grown in 75 cm
2 

tissue culture flasks with the correspondent culture medium and 

kept in a humidified incubator with a 5% CO2 air atmosphere at 37°C. The intestinal cell 

lines, Caco-2 (BSTCL87) and HT-29 (BSTCL132), were purchased from Istituto 

Zooprofilattico Sperimentale di Brescia (Italy). Routinely, Caco-2 and HT-29 cells were 

cultured separately in Minimum Essential Medium Eagle and Roswell Park Memorial 

Institute-1640 (RPMI-1640) Medium respectively, supplemented with 10% foetal bovine 

serum (FBS), 2 mM L-glutamine and antibiotics (100 U/mL penicillin and 100 μg/mL 

streptomycin) and 1 mM sodium pyruvate only for MEM. Murine myoblasts C2C12 

(ATCCCRL-1772), human hepatocyctes HepG2 (ATCCHB-8065) and human monocytes 

THP-1 (ATCCTIB-202) were purchased from American Type Culture Collection (USA). 

C2C12 cells were maintained in DMEM supplemented with 10% FBS, 100 U/mL penicillin 

and 100 μg/mL streptomycin. Hepatocytes were cultured in Minimum Essential Medium 

Eagle supplemented with 10% FBS, 2 mM L-glutamine, 1% non-EAA, 100 U/mL penicillin 
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and 100 μg/mL streptomycin. Monocytes were cultured in RPMI-1640 medium 

supplemented with 10% FBS and antibiotics (100 U/mL penicillin and 100 μg/mL 

streptomycin). Passage numbers were between 25–40 (Caco-2), 10–25 (HT-29), 6–9 

(C2C12), 20–25 (HepG2) and 15–20 (THP-1). 

2.4. Co-cultures 

70% of Caco-2 and 30% of HT-29 cells were seeded together in RPMI-1640 at a density of 4 

x 10
4
 cells/cm, as previously described by Ferraretto et al. (2018). Cell confluence was 

achieved 4 days after seeding. After 6 days post confluence, transport studies were 

performed. After 6 days post confluence, co-culture cells showed the presence of (1) 

microvilli with active enzymes, (2) mucus and (3) barrier properties characterized by a 

permeability value similar to the human small intestine in vivo (Ferraretto et al., 2018).   

2.5. Cytotoxicity 

Co-cultures growing in 24 well plates were incubated for 2 hours with SGID proteins 

prepared in complete RPMI-1640. Cells were washed with PBS and MTT assays performed 

using 510 μL thiazolyl blue tetrazolium bromide solution (98 μg/mL) in RPMI-1640 for 4 

hours, followed by 400 μL DMSO. Absorbance was expressed as relative % of untreated co-

culture. 

2.6. Co-culture transport studies 

Co-cultures were grown in Transwell
®
 Millicell

®
 24 insert plates (1.0 µm) assembled to a 

Millicell
®
 24 well receiver tray (EMD Millipore, USA) and maintained in complete RPMI-

1460 medium. Transepithelial electrical resistance (TEER) was measured at 37°C on 0, 3 and 

6 days post-confluence using a Millicell
®
-ERS voltohmmeter (EMD Millipore, USA). 

On treatment days, TEER values were recorded, and then co-cultures were gently washed 3 

times with Hank's Balanced Salt Solution (HBSS) and incubated for 30 min in HBSS at 

37°C. After the acclimatisation period, 175 μg SGID proteins in 400 μL HBSS were added to 
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the apical side of the inserts (0.7 cm
2
 surface area, equates to 250 μg/cm

2
) and 800 μL HBSS 

were added to the basolateral compartments. TEER values were monitored immediately and 

then again, at 1 hour and 2 hours. After the 2 hours treatment, apical and basolateral solutions 

were collected and stored at -40°C prior to analysis. 

The paracellular permeability was determined using the fluorescent probe lucifer yellow as 

previously described by Ferraretto et al. 2018. Co-cultures were treated at 6 days post 

confluence with 175 μg SGID proteins together with 100 μM lucifer yellow in HBSS. After 2 

hours, apical and basolateral solutions were collected and the fluorescence was measured at 

excitation of 398 nm and emission of 518 nm using a fluorescence spectrometer (Perkin 

Elmer, UK). The apparent permeability coefficient (Papp) was calculated following the 

equation: 

Papp (cm/s) = [1/(S * C0)] * dQ/dt 

where S is the surface area of the insert (0.7 cm
2
), C0 is initial concentration of lucifer yellow 

added in the apical side and dQ/dt is the amount of lucifer yellow detected in the basolateral 

compartment as a function of time (μmol/s) (Ferrareto et al., 2018). 

Co-cultures incubated only with lucifer yellow were included as controls. The transport of 

lucifer yellow through inserts without co-culture was determined at 4.3 x 10
-6

 cm/s. 

2.7. Amino Acid Determination 

The protocol described by McDermott et al. (2016) was followed to determine the free AA in 

apical and basolateral compartments using Jeol JLC-500/V AA analyzer (Jeol, Welwyn 

Garden City, UK) fitted with a Jeol Na+ high performance cation exchange column. 

2.8. Peptide identification 

Peptides in the apical and basolateral solutions were identified by UPLC-HR-MS using an 

Acquity UPLC module (Waters, USA) fitted to a Q Exactive hybrid quadrupole-Orbitrap 

mass spectrometer (Thermo Scientific, USA). The samples were eluted on an Aeris PEPTIDE 
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XB–C18 column (150×2.1 mm, 1.7 μm, 100 Å) with a SecurityGuard ULTRA cartridge 

(Phenomenex, USA) following the analytical conditions previously described (Corrochano et 

al., 2018). Peptide sequences were identified with the Proteome Discoverer 1.4 software 

(Thermo Scientific, USA) using the Bos taurus database (UniProt taxon ID 9913) as reported 

in Corrochano et al. (2018). Briefly, settings were as follows: mass accuracy window for 

precursor ions, 5 ppm; mass accuracy window for fragment ions, 0.02 Da; no fixed 

modifications; variable modifications: phosphorylation of serine and threonine, deamidation 

of asparagine, glutamine and arginine, oxidation of methionine and cyclisation of an N-

terminal glutamine to pyro-glutamic acid. Peptides were searched using the Sequest engine 

(Eng, McCormack & Yates, 1994), which is included into the PD 1.4 software and allows the 

identification of peptides as short as two amino acids (M. Scigelova, personal 

communication). A strict false discovery rate of peptide identification was set (FDR = 0.01). 

The peptides ALPM, GDLE, TKIPA, VEELKPT from β-LG, VGIN from α-LA and 

AVEGPK from BSA were synthesised and purified following the method previously 

described by Lafarga, Aluko, Rai, O'Connor and Hayes (2016) and using the resins: H-Met-

HMPB-ChemMatrix, H-Ala-HMPB-ChemMatrix, H-Asn-HMPB-ChemMatrix, H-Glu-

HMPB-ChemMatrix, H-Thr-HMPB-ChemMatrix and H-Lys-HMPB-ChemMatrix (PCAS 

Biomatrix Inc., Canada). Each peptide eluted in a single peak. 

2.9. Cellular antioxidant activity 

Synthetic peptides were tested for cellular antioxidant activity using C2C12 and HepG2 cells. 

C2C12 or HepG2 were seeded at 8 x 10
4
 cells/well in 96 well plates, in their culture medium, 

for 24 or 48 hours, respectively. Before treatment, cells were washed twice with PBS and 

treated with 50 μL of each peptide (final concentrations: 2.5 or 5 mM were selected based on 

previous in vitro studies by others (Komatsu et al., 2019; Lacroix et al., 2017; Le Nevé & 

Daniel, 2011)), reconstituted in HBSS, and 50 μL 2′,7′-dichlorofluorescin di-acetate (DCFH-
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DA, 25 μM final) for 1 hour. Cells were washed twice with PBS, and 100 μL 2,2′-azobis(2-

methylpropionamidine) dihydrochloride (ABAP, 600 μM in HBSS) was added. The plate 

was immediately placed in a Synergy HT BioTek micro plate reader (USA) at 37°C. 

Fluorescence was registered every minute for 1 hour with excitation at 485 nm and emission 

at 535 nm. Negative control (cells treated only with HBSS and DCFH-DA) and positive 

control for cellular oxidation (cells incubated only with ABAP) were included. N-

acetylcysteine (NAC) was used at 2.5 or 5 mM (final concentrations) as the positive control 

for antioxidant protection. The assay was performed in triplicate on two different days. 

2.10. Immunomodulatory activity  

THP-1 cells were seeded at 5 x 10
5
 cells/well in 24 well plates. Cells were maintained for 48 

hours in complete culture medium supplemented with 100 ng/mL of phorbol 12-myristate 13-

acetate (PMA) to induce macrophage differentiation. Fresh medium without PMA was added, 

and cells were grown for 24 hours. Macrophages were then washed with PBS and stimulated 

with 0.05 μg/mL lipopolysaccharide (LPS) in the presence of peptides (1 μM–5 mM) for 24 

hours in medium without FBS. After treatment, supernatants were collected and frozen at -

80°C. Cytokines TNF-α and IL-1β were quantified in supernatants by ELISA. 

2.11. Peptide cytotoxicity 

C2C12 or HepG2 cells were seeded at 8 x 10
4
 cells/well in 96 well plates and allowed to 

reach confluence for 24 or 48 hours, respectively. Cells were washed twice with PBS and 

treated with peptides (2.5 or 5.0 mM) reconstituted in HBSS for 1 hour. Control cells were 

incubated only with HBSS. After treatment, cells were washed once with PBS and incubated 

with 50 μL MTT (0.5 mg/mL) in complete medium. For THP-1, cells were differentiated in 

24 well plates and then exposed to peptides (1 μM–5 mM) for 24 hours. Supernatants were 

removed and 500 μL MTT solution (0.5 mg/mL) were added. After 3 hours, MTT solution 

was removed, 50 μL (or 500 μL for THP-1 cells) of 1:1 DMSO:ethanol were added and 
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absorbance read at 570 nm in a Synergy HT microplate reader. Cell viability was calculated 

as a percentage of control. 

2.12. Statistical analysis 

Co-culture experiments were performed in duplicate on 3 different days. Cellular antioxidant 

assays were performed in triplicate on 2 different days. Cellular exposures to determine pro-

inflammatory biomarkers were performed in duplicate on 2 different days. One-way ANOVA 

followed by Bonferroni’s Multiple Comparison post-hoc test was employed to compare 

results using the PASW Statistics 18 software. p-value < 0.05 indicated statistical 

significance. Results were expressed as means ± standard deviations. 

 

3. Results 

3.1. Co-culture integrity and cytotoxicity of SGID proteins 

Whey products (WPI, MPSPO) and individual whey proteins (β-LG, α-LA, BSA, LF) were 

subjected to static upper SGID in duplicate. As SGID samples can be cytotoxic to cells, 3 

concentrations were initially tested (10.5, 50.0, 250.0 μg protein/cm
2
) by MTT assay. These 

initial concentrations were selected based on the total surface area of the small intestine (200 

m
2
) together with (a) the recommended intake of MSPSO (21 g protein/day) which equates to 

10 μg protein/cm
2
, (b) daily high protein intake in a western diet (100 g/day) (50 μg 

protein/cm
2
) or (c) a 5 fold increase to compensate for in vitro lack of microclimate (250.0 μg 

protein/cm
2
). None of the tested SGID sample concentrations (10.5, 50.0, 250.0 μg 

protein/cm
2
) were cytotoxic to Caco-2/HT-29co-culture (Figure S1A) so the highest 

concentration was selected (250.0 μg protein/cm
2
) to proceed to transport studies.  

After 6 days post confluence, co-cultures showed absorptive and secretive enteric phenotypes 

(Ferraretto et al. 2018) allowing commencement of transport studies with SGID samples. Co-

culture integrity was monitored during transport studies at 0, 1 and 2 hours. TEER values 
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were not altered due to sample exposure (190–250 Ω/cm
2
) and did not significantly change 

over time (Figure S1B). 

To evaluate if SGID proteins (250 μg protein/cm
2
 (175 g protein/well)) interfered with 

intestinal epithelium permeability, the transport of the fluorescent probe lucifer yellow was 

assessed (Figure 1). The permeability of the lucifer yellow through the untreated co-culture 

was 8.9 x 10
-7

 cm/s. All SGID protein samples, including SGID control (gastrointestinal 

fluids with gut enzymes and bile extract), reduced intestinal permeability from 5.1 x 10
-7

 to 

6.1 x 10
-7

 cm/s. 

3.2. Free amino acids transport 

Free AA were quantified in the apical and basolateral compartments after incubating Caco-

2/HT-29 co-cultures with SGID proteins for 2 hours (Table 1). The apical sample from LF 

treated co-cultures had the highest concentration of free AA (630 nM) followed by the apical 

samples from WPI (621.1 nM) and α-LA (614.4 nM). Leu (72.9–100 nM) and Lys (69.8–

88.5 nM) were the most abundant AA in the apical compartments. Analysis of the basolateral 

compartments revealed that the amount of free AA was highest for β-LG (176.5 nM), BSA 

(161.9 nM) and WPI (159.1 nM) treated co-cultures. Most abundant AA in the basolateral 

solutions of co-cultures treated with whey proteins were Arg (20.1–23.7 nM), Ala (16.1–23.8 

nM) and Leu (11.1–18.0 nM). Co-cultures treated with β-LG had the highest concentration of 

EAA (84.7 nM), BCAA (39.9 nM) and sulphur-containing AA (15.9 nM) in the basolateral 

solution (Table 1). The antioxidant AA, Trp, was more abundant in the basolateral sample 

collected from co-cultures treated with α-LA (6.5 nM). 

3.3. Peptide transport 

Peptide sequences identified by UPLC-HR-MS in the apical and basolateral samples from co-

cultures treated with SGID whey samples are listed in Tables S1–S6. 
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The apical solution of WPI-treated co-cultures contained 123 peptides of which 15 were also 

detected in the basolateral solution with a further 16 unique to basolateral (Figure 2). The 

apical solution of β-LG showed 47 peptides with 16 common to basolateral and 6 peptides 

exclusive to the basolateral compartment. The apical solution of BSA-treated cells yielded 62 

peptides of which 14 were common to basolateral and a further 3 unique to the basolateral 

solution. The MPSPO showed 209 peptides, including casein peptides, in the apical solution 

with 31 common to basolateral and 24 additional peptides in the basolateral compartment. 

Whereas 23 and 84 peptides were identified in the apical side of α-LA- and LF-treated co-

cultures respectively, no peptides were identified in the corresponding basolateral solutions at 

the 250 μg protein/cm
2
 concentration tested. 

From the peptides identified in basolateral solutions, 6 peptides were synthetized for 

bioactivity testing based on (a) a high Peptide Ranker score (ALPM (derived from β-LG) = 

0.82, Table S1), (b) known bioavailability (GDLE (β-LG) and VEELKPT (β-LG)), (c) 

presence of known antioxidant AA (ALPM, AVEGPK (BSA), GDLE and TKIPA (β-LG) or 

(d) presence of BCAA (VEELKPT, VGIN (α-LA)). 

3.4. Cellular antioxidant protection of milk peptides  

The antioxidant benefit to muscle cells of the synthesised peptides were investigated by 

measuring the peptide ability to inhibit intracellular peroxyl radical formation in a mouse 

muscle cell line C2C12 (Figure 3A). Results were expressed as % of cells treated only with 

the radical producer ABAP, considered as 100% cellular oxidative stress. Peptide VEELKPT 

at both concentrations tested (2.5, 5 mM) significantly reduced C2C12 viability (72.4% and 

93.8%, respectively) and was therefore omitted. Peptides ALPM, GDLE, VGIN and 

AVEGPK (5 mM) reduced cellular oxidation in ABAP-treated muscle cells, 34.4% - 53%, 

compared to the free radical control and similar to the effect obtained with the antioxidant 

molecule NAC (31.8%). For HepG2 liver cells, peptides VEELKPT (5 mM) and AVEGPK 
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(5 mM) were omitted as they significantly reduced cell viability by 94.1% and 92%, 

respectively. The levels of oxidation significantly decreased between 35 and 52.6% in 

stressed ABAP-treated HepG2 cells with the treatment of ALPM, GDLE or VGIN (5 mM). 

Peptide VEELKPT (2.5 mM) was the most potent in decreasing cellular oxidation by 51.1% 

although it also reduced cell viability by a notable 30%. 

3.5. Effect of milk peptides on the release of pro-inflammatory cytokines 

THP-1 monocytes were initially differentiated into macrophages and then activated with LPS 

for 24 hours prior to peptide exposure. Secreted levels of the pro-inflammatory cytokines, 

TNF-α and IL-1β, from THP-1 macrophages exposed to peptides (1 μM–5 mM) are depicted 

in Figure 4. Peptides ALPM, GDLE, VEELKPT, VGIN and AVEGPK (5 mM) significantly 

increased the levels of IL-1β (131.9–245.5%) in activated macrophages compared to the LPS 

control (p < 0.05). Secretion of TNF-α was not altered after peptide treatment at any of the 

concentrations tested (p > 0.05). Peptides were not cytotoxic to macrophages after 24 hours 

incubation (data not represented). 

4. Discussion 

Whey peptides were identified post SGID, and transported across Caco-2/HT29 intestinal 

barrier. Of 6 bioavailable peptides selected, 4 inhibited free radicals in muscles and liver 

cells, 2 reduced cellular viability of liver cells and 5 increased secretion of IL-1β from 

stimulated macrophages. In addition, SGID of β-LG resulted in the highest concentration of 

free AA (176 nM) arriving on the basolateral face of the intestinal barrier with notable levels 

of BCAA and sulphur-containing AA.  

Picariello et al. (2013) identified peptides primarily derived from two regions within β-LG, 

(40–60AA and 125–135AA) and 3 α-LA peptides, within regions 56–69AA and 114–121AA, 

in the basolateral compartment of Caco-2 cells treated with SGID WPI. In agreement, 

peptides f(43–51)VEELKPTPE, f(52–55) GDLE and EVDDE f(127–131) were located from 
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these β-LG regions in the basolateral solution after co-culture treatment with SGID WPI and 

β-LG. α-LA f(99–102) VGIN peptide was also transported across our co-culture after 

exposure to WPI and MPSPO. The absence of α-LA and LF peptides in the basolateral 

solutions agrees with the limited number of LF peptides identified in human jejunum by 

Boutrou et al. (2013) and the noteworthy rapid digestion of α-LA into free AA (Pantako & 

Amiot, 2001). The large number of casein-derived (154) compared to whey-derived peptides 

in MPSPO agrees with reports that there are fewer peptides released from whey proteins 

(146) than from casein (365) after gut transit (Boutrou et al., 2013). Surprisingly, several 

casein-derived peptides were also identified in both the apical (66) and basolateral (14) 

compartments of Caco-2/HT-29 barriers exposed to WPI, which suggest casein peptide 

leakage from the casein micelle during thermal processing. Five peptides from β-CN region 

133–142AA were found in the apical solution of co-cultures treated with MPSPO of which 

only β-CN f(134–139) HLPLPL was transported across the barrier. In agreement, Wang, 

Wang and Li (2016) observed HLPLPL in the basolateral side of Caco-2 monolayers treated 

with SGID casein hydrolysates (10 mg/mL) for 2 hours. Similar to our results, peptides from 

β-CN 81–92AA were also abundant in the basolateral compartment (Wang et al. 2016). 

Agreement of bioavailable peptides in our study with others (Picariello et al., 2013; Wang et 

al., 2016), together with absorptive and secretive enteric phenotype data (Ferraretto et al. 

2018) supports our view that the co-culture model compares well with the established 21 day 

differentiated model Caco-2.  

Previously, β-LG peptides f(15–18) VAGT, f(24–26) MAA and f(71–74) IIAE inhibited 

peroxyl radicals, using the oxygen reactive absorbance capacity (ORAC) assay with values 

between 0.33 and 1.79 μmol trolox equivalents (TE)/mmol peptide (O’Keeffe, Conesa & 

FitzGerald, 2017). Of these, our study revealed that the peptides VAGT and IIAE were able 

to pass through the intestinal co-culture. 
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Previously, β-LG peptides f(19–29) WYSLAMAASDI, f(145–149) MHIRL, f(42–46) 

YVEEL (0.306–2.621 μmol TE/μmol peptide) and many of their derivatives exhibited 

antioxidant activity by ORAC (Hernandez-Ledesma et al., 2005). Additionally, other studies 

have provided evidence that YVEEL or its derivatives survive gut transit in vivo and in vitro. 

Our study and that of Picariello et al. (2013) confirmed transport of the related peptide 

VEELKPT across the intestinal barrier. However, VEELKPT (5 mM) is cytotoxic to HepG2 

and C21C12 cells undermining its ability to reduce oxidative stress at 2.5 mM in HepG2 

cells. β-LG peptide f(76–81) TKIPAV was identified in the most antioxidant fraction of 

infant formula post SGID (Hernandez-Ledesma, Quirós, Amigo & Recio, 2007). Derivatives 

of TKIPA, peptides TKIPAVFK and KIPAVFKIDAL were also found in antioxidant 

fractions of buttermilk, whey proteins and skim milk powder (Conwey, Gauthier & Pouliot, 

2013; Bertucci, Liggieri, Colombo, Vairo Cavalli & Bruno, 2015). We confirmed transport 

across the intestinal barrier of TKIPA but it did not protect liver and muscle cells against 

radicals (2.5 -5 mM). 

Peptide PEGDLEI (β-LG 50–56) was detected in whey hydrolysed by Corolase PP (Mann et 

al., 2015) which was capable of scavenging the synthetic radical 2,2′-Azinobis(3-

ethylbenzothiazoline-6-sulfonic acid). In our study, related peptide GDLE (5 mM) survived 

gut transit, was bioavailable, boosted antioxidant cellular response and protected stressed 

hepatocytes against cellular oxidation. The peptides f(101–104) INYW, f(115–118) LDQW 

at 2.5 μM derived from α-LA inhibited ABTS by 100% (Sadat et al., 2011). Although LDQW 

was not detected in the basolateral chamber of our Caco-2/HT-29 co-culture, VGIN was and 

exerted an antioxidant protection on both C2C12 and HepG2 cells.  

Peptides ALPM and AVEGPK from β-LG have not been previously reported as antioxidants, 

however, they possess hydrophobic AA at the N or C terminus, a common characteristic of 

antioxidant peptides (Nielsen, Beverly, Qu & Dallas, 2017). Both peptides (5 mM) 
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counteracted free radicals in C2C12. ALPM also exerted an antioxidant effect in HepG2 

cells. In total, 3 dipeptides were identified in the basolateral compartments post Caco-2/HT-

29 exposure to β-LG, BSA and MPSPO of which EL (5 mM) had proven antioxidant activity 

by inhibiting the synthetic radical 1,1-diphenyl-2-picrylhydrazyl (Suetsuna, Ukeda & Ochi, 

2000).  

Peptides ALPM, GDLE, VEELKPT, VGIN and AVEGPK (5 mM) increased the pro-

inflammatory cytokine IL-1β, but levels of TNF-α remained unchanged. TNF-α also 

remained unchanged in vascular endothelial cells after direct treatment with 0.5–5.0 mg/mL 

WPI or hydrolysates (p > 0.05) (Da Silva, Bigo, Barbier & Rudkowska, 2017). However, 

TNF-α was significantly increased, 10-200 fold, in THP-1 cells after exposure to intact or 

hydrolysed WPI (2 mg/mL) (Kiewiet et al., 2017). Human intervention studies also provide 

conflicting results about the role of dairy products in the immune system (Bordoni et al., 

2017). Meyer, Elmadfa, Herbacek and Micksche (2007) reported increased levels of IL-1β 

(40%) and TNF-α (63%) on 33 healthy young women receiving 100–200 g yogurt/day 

compared to baseline. In contrast, 3 hours after ingestion of 400 mL reduced fat milk 

significantly decreased plasma IL-1β (31%) and TNF-α (27%) in 12 overweight subjects 

(Nestel et al., 2012). 

It is interesting to note that several peptides identified in the apical and basolateral had 

proven bioactivities other than antioxidant and immunomodulation. Peptides GDLE, ALPM 

and VGIN were encrypted within the peptides PEGDL, LPMH, KVGIN. These latter 

peptides were identified in WPI hydrolysates produced by pepsin and were active against 

Listeria ivanovii at 37.5 mg/mL (Theolier, Hammami, Labelle, Fliss & Jean, 2013). The 

peptides TKIPA and ALPM share 3 AA with LPMH and IPA that have proven 

antihypertensive activity by inhibiting the angiotensin-I-converting enzyme (ACE) in vitro. 

Additionally, in hypertensive rats, IPA (8 mg/kg) reduced the systolic blood pressure by 31 
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mm Hg after 6 hours administration (Mullally, Meisel & FitzGerald, 1997; Abubakar, Saito, 

Kitazawa, Kawai & Itoh, 1998). The BSA peptide f(568–573) AVEGPK was found in a 

bioactive fraction of Phaseolus vulgaris post SGID which was capable of 50% ACE 

inhibition when assayed at 105.6 mg peptide/mL (Tagliazucchi, Martini, Bellesia & Conte, 

2015). The rate and mode of transport (passive V active) of the bioavailable peptides across 

the intestinal co-culture were not investigated in our study. 

Arg, Ala and Leu were predominant in the basolateral side, at concentrations of 11.1 nM (Leu 

in SGID MPSPO) to 23.8 nM (Ala in β-LG). Goulart et al. (2014) also reported that Arg and 

Leu were predominant basolateral AA (21.8% and 4.1% respectively) post Caco-2 treatment 

with SGID fresh whey (6 μg/μL). The absence of Pro diffusion was notable in this study and 

agrees with previous data that Pro-containing peptides are resistant to gut enzymatic 

hydrolysis and epithelial proteases suggesting that peptides surviving the gut are likely to 

contain Pro (Boutrou et al., 2013). It also agrees with our data, where Pro appeared in 73% of 

the peptides identified in the basolateral compartment.  

β-LG (250 μg protein/cm
2
) delivers the most EAA (84.7 nM), BCAA (39.9 nM) and sulphur-

containing AA (15.9 nM) to the baslateral. Interestingly, Caco-2/HT-29 exposure to SGID α-

LA (250 μg protein/cm
2
) resulted in the highest concentration of the antioxidant AA, Trp (6.5 

nM). In a human intervention study, a diet supplemented with 141 g of α-LA increased the 

ratio between Trp and large neutral AA by 43% compared to the control diet containing 

casein (Markus, Olivier & de Haan, 2002).  

Co-culture treatment with SGID proteins did not alter TEER values, whereas the paracellular 

permeability of lucifer yellow significantly decreased in the presence of milk peptides 

compared to untreated cells. This intestinal modulation may arise from the presence of 

transforming growth factor-β in whey proteins, which is thought to increase the tight junction 

protein claudin-4 (Hering et al., 2011). 
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5. Conclusion 

This study provides evidence that individual whey peptides survive gut transit, are 

bioavailable across the intestinal barrier and are bioactive on muscle and liver cell lines. 
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Table 1. Free amino acids (nM) in apical and basolateral compartments after 2 hours of Caco-

2/HT-29 co-culture treatment with 175 μg gastrointestinal digested (SGID) proteins
1
 

Amino acid (nM) 
 

SGID 

WPI  

SGID β-

LG 

SGID α-

LA 

SGID 

BSA  

SGID 

LF 
SGID MPSPO  

Ala Apical 46.4 46.9 29.6 40.6 47.9 34.8 

 
Basolateral 21.6 23.8 18.4 21.1 18.9 16.1 

Arg Apical 27.8 28.5 18.8 46.8 60.0 34.8 

 
Basolateral 23.6 22.5 21.6 23.7 20.9 20.1 

Asp Apical 6.8 6.5 8.4 3.9 6.7 5.9 

 
Basolateral 0.8 1.9 1.3 1.3 1.2 1.3 

Cysteic acid Apical 9.2 3.3 3.6 3.2 6.1 12.9 

 
Basolateral 2.6 2.7 2.7 2.8 2.9 1.6 

Cys Apical 19.1 14.8 18.2 14.8 16.8 14.0 

 
Basolateral 10.3 10.2 6.9 9.4 9.2 9.9 

Glu Apical 29.3 22.1 37.9 24.0 19.6 25.4 

 
Basolateral 4.2 5.2 5.0 4.8 4.2 4.0 

Gly Apical 11.5 9.4 18.7 9.8 18.9 13.3 

 
Basolateral 4.5 4.2 4.9 4.6 5.2 4.3 

His Apical 24.0 23.9 21.7 30.0 28.7 25.8 

 
Basolateral 8.2 9.1 7.7 8.2 7.6 7.3 

Ile Apical 36.3 31.4 35.7 14.9 20.7 24.8 

 
Basolateral 8.9 9.7 9.6 8.0 7.3 7.8 

Leu Apical 92.6 100.0 72.9 82.9 79.1 78.8 

 
Basolateral 11.7 17.9 12.3 13.7 11.5 11.1 

Lys Apical 83.3 79.4 88.5 69.8 70.5 73.4 

 
Basolateral 7.8 11.5 8.9 9.1 7.5 7.4 

Met Apical 16.0 15.1 10.6 5.1 8.4 13.0 

 
Basolateral 2.1 2.9 1.9 1.6 1.5 1.7 

Phe Apical 30.2 26.7 36.7 56.9 47.2 36.5 

 
Basolateral 3.8 5.1 5.0 5.7 4.7 4.4 

Ser Apical 18.5 17.8 13.1 19.5 22.3 18.9 

 
Basolateral 6.0 6.4 6.5 6.7 6.0 5.2 

Tau Apical 8.5 7.5 8.9 7.2 8.0 8.2 

 
Basolateral 10.8 9.2 8.9 9.4 9.0 5.0 

Thr Apical 39.8 26.1 40.2 31.3 36.8 30.0 

 
Basolateral 11.4 10.6 11.1 11.8 9.2 9.2 

Trp Apical 45.5 35.6 79.0 23.2 53.6 34.8 

 
Basolateral 6.0 5.7 6.5 4.5 4.6 5.5 

Tyr Apical 27.5 29.5 31.6 41.5 33.0 32.6 

 
Basolateral 4.9 5.7 5.4 5.6 5.1 5.6 

Val Apical 48.7 37.1 40.3 41.5 45.8 38.1 

 
Basolateral 9.8 12.2 6.6 9.8 9.3 9.5 

Total Apical 621.1 561.7 614.4 566.9 630.0 556.0 
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Basolateral 159.1 176.5 151.2 161.9 145.8 137.1 

 
1
WPI = Whey protein isolate 

β-LG = β-Lactoglobulin  

α-LA = α-Lactalbumin 

BSA = Bovine serum albumin 

LF = Lactoferrin 

MPSPO = Milk protein sport product 
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Figure 1 

 

 

Corrochano et al.   
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Figure 1 

Caco-2/HT-29 (70:30) paracellular permeability after 2 hours treatment with 175 μg 

simulated gastrointestinal digested (SGID) whey samples: WPI, β-LG, α-LA, BSA, LF, 

MPSPO, SGID control (gastrointestinal fluids with gut enzymes, bile salts and electrolytes 

Caco-2/HT-29 were seeded together at a density of 4 x 10
4
 cells/cm

2
. Paracellular 

permeability was measured by lucifer yellow quantification in the basolateral compartment as 

a % of initial apical concentration (100 μM) in the presence of SGID samples. * p < 0.05 

indicates significant difference to untreated cells. 
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Figure 2 

 

Corrochano et al.   
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Figure 2 

Number of peptides found in SGID samples in the apical (blue circle) and basolateral (purple 

circle) compartments of Caco-2/HT-29 co-cultures treated for 2 hours with 175 μg SGID 

whey protein isolate, β-lactoglobulin, bovine serum albumin, milk protein sport product, α-

lactalbumin and lactoferrin. 
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Figure 3  
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Figure 3  

Relative oxidative stress in (A) muscle (C2C12) and (B) liver (HepG2) cells after 1 hour 

exposure to 5 (black bars) or 2.5 mM (grey bars) synthesised peptides derived from whey: 

ALMP (β-LG), GDLE (β-LG), TKIPA (β-LG), VEELKPT (β-LG) VGIN (α-LAC) and 

AVEGPK (BSA). C2C12 and HepG2 cells were seeded at a density of 8 x 10
4
 cells/well for 

24 hours or 48 hours, respectively, before peptide exposure. VEELKPT was cytotoxic to 

C2C12 cells at 2.5 and 5 mM. VEELKPT and AVEGPK at 5 mM were cytotoxic to HepG2. 

Results are expressed as % relative to cells treated only with the peroxyl radical producer 

ABTS, labelled “radical”. “Untreated” corresponds to cells incubated only with Hank's 

Balanced Salt Solution. * p < 0.05 indicates significant difference to radical control. 
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Figure 4 
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Figure 4 

Relative secretion of TNF-α (black bars) and IL-1β (grey bars) from LPS-stimulated 

macrophages after 24 hours peptide treatment (1 μM–5 mM) expressed as % of LPS-

activated cells without peptide treatment (100%). Unstressed macrophages (differentiated 

THP-1 cells, seeded at 5 x 10
5
 cells/well) were considered as negative control with values of 

2.6±0.2% for TNF-α and 3.2±0.5% for IL-1β. * p < 0.05 indicates significant difference to 

LPS-stimulated macrophages. 
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Highlights 

- Whey peptides identified after simulated gastrointestinal digestion 

- Whey peptides transported across Caco-2/HT-29 intestinal barrier 

- ALPM, GDLE, VGIN and AVEGPK inhibited free radical formation in C2C12 muscle cells 


