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CHAPTER 7 

N onsupereulerian Graphs with Large Size 

Paul A. Catlin* 
Zhi-Hong Chen* 

Abstract 

We study the structure of 2-edge-connected simple graphs with many edges 
that have no spanning closed trail. X. T. Cai [2] conjectured that any 3-edge­
connected simple graph G of order n has a spanning closed trail, if 

( n- 9)IE(G)I 2: 2 + 16.

This bound is best-possible. We prove this conjecture, and we obtain a stronger 
conclusion. 

1. INTRODUCTION

We follow the notation of Bondy and Murty [1], except that granhs have no loops, 
the graph of order 2 and size 2 is called a 2-cycle and denoted C2, and K1 is regarded 
as having infinite edge-connectivity. For a graph G, let 0( G) denote the set of vertices 
of odd degree in G. The set of natural numbers is denoted N. Let D1 ( G) denote the 
set of vertices of degree 1 in G. 

A graph G is called supereulerian if it has a spanning connected subgraph H

whose vertices have even degree. A graph G is called collapsible if for every even set 
X � V(G) there is a spanning connected subgraph Hx of G, such that O(Hx) = X. 
Thus , the trivial graph K1 is both supereulerian and collapsible. Denote the family of 
supereulerian graphs by SC, and denote the family of collapsible graphs by C.C. Ob­
viously, C.C C S.C, and collapsible graphs are 2-edge-connected. Examples of graphs 
in C.C include the cycles C2 , C3 , but not Ct if t � 4. 

*Wayne State University, Detroit, MI 48202.
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84 CATLIN AND CHEN 

Cai [2] conjectured that any 3-edge-connected simple graph G of order n with 

is supereulerian. We shall show that any such graph is collapsible. The Petersen 
graph is one of infinitely many graphs that show that this inequality is best-possible . 

.. 

2. THE REDUCTION METHOD

Let G be a graph, and let H be a connected subgraph of G. The contraction 
G/ H is the graph obtained from G by contracting all edges of H, and by deleting 
any resulting loops. Even when G is simple, G / H may not be. 

Theorem A (Catlin [3]) Let H be a subgraph of G. If HE CC then 

GE S£ � G/H ES£, 

and 
GEC£ � G/HEC£. □

In [3] it was shown that if H1 and H2 are both collapsible subgraphs of G with 
at least one common vertex, then G[V(H1 ) U V(H2 )] E C£. Thus, any collapsible 
subgraph of G is contained in a unique maximal collapsible subgraph. For a graph G 

where Hi, H2 , •••• ,He are all the maximal collapsible subgraphs of G, define G' to be 
the graph obtained from G by contracting each Hi (1 � i � c) to a distinct vertex. 
Since V(G) = V(H1) U .... U V(Hc), the graph G' has order c. We call the graph C? 

the reduction of G, and we call a graph reduced if it is the reduction of some graph. 
Any graph G has a unique reduction G' [3]. A graph is collapsible if and only if its 
reduction is K1 . 

Let G be a graph. The arboricity of G, denoted a( G), is the minimum number 
of forests whose union contains E(G). Let F(G) denote the minimum number of 
edges that must be added to G, to obtain a spanning supergraph containing two 
edge-disjoint spanning trees. 

Theorem B Let G be a graph and let G' be the reduction of G. Then 
(a) G E S£ � G' E S£;
(b) G' is simple, G' has no 3-cycle, and a( G') � 2;
(c) K3,3 - e (!{3 ,3 minus an edge) is collapsible;
(d) If F(G) � 1 then G' E {Ki, K2};
( e) G = G' if and only if G has no nontrivial collapsible subgraph; 
(f) If a( G) � 2 then

IE(G)I + F(G) = 2jV(G)I - 2. D

Parts (a), (b), ( d) and ( e) of Theorem B are proved in [3] and part ( c) was proved 
in [4]. Part (f) is easy. A characterization of F(G) appears in [6]. 
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3. A GENERAL RESULT

Theorem 1 Let G be a 2-edge-connected simple graph of order n and let p E N - {l}. If 
(1) IE(G)l 2:: ( n-�+l) +2p-4,
t�n exactly one of these holds: (a) The reduction of G has order less than p;(b) Equality holds in (1), G has a complete subgraph Hof order n -p + l, andthe reduction of G is G' = G/ H, a graph of order p and size 2p -4; 

or 

( c) G is a reduced graph such that either
IE(G)I E {2n-4,2n - 5} and n E {p+ l,p+ 2}

IE(G)I = 2n -4 and n = p + 3. 
Proof: The conclusions (a), (b), and ( c) are clearly mutually exclusive. 
Fix a reduced graph Go, and suppose that G is a simple graph of order n with 

G' = G0 . Any 2-edge-connected graph G arises in this manner, for some value of Go. Denote 
V(Go)= {v1,v2,••··,vc}, 

and for each 1 � i � c, let Hi denote the collapsible subgraph of G contracted to viby the reduction-contraction G--+ G0 . If IE(G)I were maximum among all simple graphs G of order n with G' = G0, then at most one Hi (l � i � c) is a nontrivial subgraph of G, and this Hi is a complete subgraph of order n - c + l. Therefore, 
(2) IE(G)I � IE(Hi)I + IE(Go)I � ( n -; + l ) + IE(Go)I,
with equality only if G has at most one nontrivial collapsible subgraph Hi and it is a complete subgraph of order n - c + l. 

If Go = K1, then (a) holds, since p 2:'. 2. Thus, we can suppose that G0 -=/ K1 . Since G is 2-edge-connected, so is its contraction G0, and so G0 -=/ I<2• Hence by part (cl) of Theorem B, F(Go) 2:: 2. By (b) of Theorem B, a(Go)::; 2, and so (f) of Theorem B gives (3) IE(Go)I ::; 2c -4. 
By (2) and (3), 

IE( G)I � ( n -; + l ) + 2c -4, 
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with strict equality only if (2) or (3) holds strictly. This and the hypothesis ofTheorem 1 give 
(4) 

.. 

( n -� + l ) + 2p -4 � IE(G)I
< ( n -; + l ) + 2c -4 .

Simplification of ( 4) yields
(5) 2n(c-p) � (c-p)(c+p+3)

Case 1 Suppose that c = p. Then equality holds throughout ( 4). This equality in(4) forces equality in (3) and in (2). Thus, (b) of Theorem 1 holds. 

(6) 

Case 2 Suppose that c < p. Then (a) of Theorem 1 holds.
Case 3 Suppose that c > p. This and (5) give

2n � c+ p +3.
By the definition of c, c � n.

Subcase 3A Suppose that c = n. This and the hypothesis of Case 3 imply p < n,and so (6) and c = n imply 
(7) p < n � p + 3. 

Since IV(Go)I = c = n, it follows that G is reduced, and so G = G0• Hence by (3),IE( G)I � 2n-4. To prove ( c) of Theorem 1, it only remains to prove the appropriatelower bound on JE(G)J. If n = p + l, then (1) gives 
JE(G)l 2:: ( ; ) + 2p -4 = 2p -3 = 2n -5.

If n = p + 2, then (1) gives
JE(G)I 2:: ( � ) + 2p -4 = 2p -1 = 2n -5.

If n = p + 3, then
JE(G)I 2:: ( ; ) + 2p -4 = 2p + 2 = 2n -4.

By (7), all cases have been considered.

(8) 

Subcase 3B Suppose c < n. By the relations on c and by (6),
p < C < n < p + 3. 
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Since each term of (8) is an integer, 

(9) C = p + 1 j n = p + 2. 

But since G is a simple graph of order n, its reduction cannot have order n - 1. By 
(9), JV(Go)I = c = n - 1, and so the reduction of G cannot be G0 • This contradicts 
the definition of G0 and G, and so Subcase 3B is impossible. D 

.. 

4. THE REDUCTION OF 4-CYCLES

Suppose that a graph G contains a 4-cycle H. The subgraph His not collapsible, 
and the equivalences of Theorem A do not apply in this case, if His an induced sub­
graph. However, the theorem below provides an extenJhm of the reduction method 
to subgraphs that are 4-cycles. 

Let G be a graph containing an induced 4-cycle xyzwx, and define 

E = {xy,yz,zw,wx}. 

Define G / 1r to be the graph obtained from G - E by identifying x and z to form a 
vertex v1, by identifying w and y to form a vertex v2, and by adding an edge v1 V2.

Theorem C (Catlin (4, p. 241]) For the graphs G and G/1r defined above, the fol-
lowing hold: 

(a) If G/1r E CC then GE CC;

(b) IV(G)I = IV(G/1r)I + 2;
(c) IE(G)I = IE(G/1r)I + 3;
(d) If G/1r ES£ then GE S£. □

5. SOME LEMMAS

Lemma 1 ( Chen [7]) Let G be a simple 2-edge-connected graph of order at most 
7. If G has at most two vertices of degree 2, then GE C.C. □

Lemma 2 (Lai [8]) Let G be a simple connected graph of order at most 11. If
5( G) � 3 then either G is the Petersen graph or the reduction of G is I{ 1 or J{ 2. D 

Chen (7) had first proved Lemma 2 with the stronger hypothesis that K'(G) � 3. 

Lemma 3 Let G be a simple 2-edge-connected graph of order at most 8, and let 
u E V(G). If u is the only vertex of degree 2 in G, then GE C.C.

Proof: Let G and u satisfy the hypothesis of Lemma 3. Then G - u is connected.
If K'(G - u) � 2, then use Lemma 1 to see that G - u E C.C. Then GE C.C follows. 
If K'(G - u) < 2 then G - u has a cut edge e such that some component, say H, of 
G- u - e has no cut edge. Since u is the only vertex of degree 2 in G, His nontrivial
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and H satisfies the hypothesis of Lemma 1 ( with H in place of G of Lemma 1). There­
fore, H is a nontrivial collapsible subgraph of G. Note that G / H also satisfies the 
hypothesis of Lemma 1 ( with G / H in place of G of Lemma 1), and hence G / H E C.C. 
By Theorem A, G E C.C. □

Lemma 4 Any 3-edge-connected reduced graph of order 12 is 3-regular. 

i:>roof: Let G be a 3-edge-connected reduced graph of order 12. By ( e) of Theorem 
B, 
(10) G has no nontrivial collapsible subgraph. 

By way of contradiction, suppose that 

(11) G is not 3-regular. 

Then G has a vertex x with d(x) 2: 4. Since G is reduced, G is simple and has no 
3-cycle, by (b) of Theorem B.

We claim
(12) x lies on a 4-cycle. 

Suppose not. Since d( x) .2: 4 and 8( G) 2: 3, at least 4 paths in G with origin x have 
length 1, and at least 8 paths with origin x have length 2. Since G has no 2-cycle 
and no 3-cycle, and since x is in no 4-cycle, no two of these 12 paths have the same 
terminus. Hence, IV(G - x)I 2: 12, a contradiction that proves (12). 

By (12), x lies on a 4-cycle, say xyzwx. Denote 

E = {xy,yz,zw,wx}. 

Define G/1r to be the graph obtained from G - E as described in Section 4 above. 
Thus, G and G/1r satisfy Theorem C. 

Since 8(G) 2: 3 and d(x) 2: 4, we have 

(13) 

where v1 is the vertex defined in Section 4. Let Go be the reduction of G/1r. If G = I<1 

then G/1r E C.C, and so (a) of Theorem C gives GE C.C, contrary to the hypothesis of 
Lemma 4. Hence G0 =/:- I<1 , and so by (b) of Theorem C, 

(14) 1 < IV(Go)I::; IV(G/1r)I = IV(G)I - 2 = 10. 

Case 1 Suppose that r;,'(G/1r) < 2. Then v1v2 is the only cut-edge of G/'1r, because 
G has no cut edge. Therefore, G - E has two components, say G1 and G2, where 
x, z E V(G1 ) and y, w E V(G2 ). 

Since the 4-cycle xyzwx is an induced subgraph, xz, wy ff. E(G). This, 8(G) 2: 3, 
and the fact that G is simple imply that each Gi (1 ::; i ::; 2) has a vertex of degree 
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at·�1east 3 that is not in {w,x,y,z}. Since G has order 12, since 8(G) 2 3, and since 
(10) precludes the presence of 3-cycles in Gi, this implies

By 8(G) 2 3, 
D1(G1) UD1(G2) � {w,x,y,z}, 

a.nd these relations imply that each Gi, 1 ::;; i ::;; 2, contains a nontrivial 2-edge­
connected subgraph Hi, where Hi has at most two vertices of degree 2. Since 
IV(H;)I ::;; 7, Lemma 1 implies Hi E C£. Thus, Hi is a subgraph of G that con­
tradicts (10). 

Case 2 Suppose that K.'(G/1r) 2: 3. Then K.'(G0 ) 2: K-
1(G/1r) 2 3. By this and (14), 

G0 is nontrivial and satisfies the hypotheses of Lemma 2 and must therefore be the 
Petersen graph. This fact and (14) force G0 = G/1r, and so G/1r is 3-regular, contrary 
to (13). 

Case 3 Suppose that K.'(G/1r) = 2. Since K.'(G) 2: 3, it follows that v1v2 is in every 
edge cut of size 2 in G/1r. Denote e,r = v1v2 . For the reduction G0 of G/1r, e,r lies in 
every edge cut of Go of size 2. By (b) of Theorem B, 

(15) G0 is simple. 

Sub case 3A Suppose that either e,r ff. E( G0) or K.1( Go) 2 3. In either case we must 
have "-'(Go) :2: 3 and 1 < IV(Go)I ::;; 9. This and (15) mean that G0 is a counterex­
ample to Lemma 2. Hence, Subcase 3A is impossible. 

Subcase 3B Suppose that e,r E E(Go) and K.'(Go) < 3. Then 

(16) 

and by a prior remark, e,r is in every edge cut of size 2 in G0 • If S( G0) 2: 3, then by 
(14), (15), and Lemma 2, G0 is the Petersen graph, contrary to (16). Hence, 

(17) 8(Go) < 3. 

Since e,r is in every edge cut of size 2 and by (16), (17) implies that G0 has a unique 
vertex u (say) of degree 2, and u is incident with e,r . Denote e,r = uv in E(G0). 

3B(i). Suppose JV(Go)I ::;; 8. By (16) and by Lemma 3, G0 E CC. Hence, 
G / 1i E C£ and by Theorem C, G E C.C, contrary to the hypothesis of Lemma 5. 

3B(ii). Suppose IV(Go)I :2: 9. By (13), 8(G/1i) 2 3, and so G/7i has no vertex u 
of degree 2. Thus, G0 is a proper contraction of G/1i, and so by (14), 

IV(Go)I = 9, IV(G/1r)I = 10. 

Hence the contraction mapping G/1i --t G0 , being a reduction as well, identifies two 
vertices of V ( G / 1i) that are joined in G / 1i by multiple edges. 
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By the nature of the derivation of G / 1r from the simple graph G, any two vertices 
of G/1r are joined by no more than two edges. Hence by the first part of (13), the 
contraction-mapping G / 1r ---t Go cannot involve an identification of v1 with another 
vertex to form the vertex u E V(Go), since u has degree 2. Instead, v2 must be 
identified with a neighbor in G /1r to form the vertex u in G0 , and so v1 has degree at 
least 4 in G0 as well as in G/1r. Thus, v = v1 in G0 . Let v' denote the other neighbor 
of u in G0 • Since e,r is in every edge-cut of size 2 in G0 , K-1(G0 - u) 2::: 2. By Lemma 
3 ( wi'th G0 - u in place of G and with v' in place of u), G0 - u is collapsible of order 
8. This contradicts the fact that G0 is reduced. This contradiction concludes this
subcase and it proves Lemma 4. □

Lemma 5 Let n be the smallest natural number such that there is a 2-edge­
connected reduced graph G of order n and size 2n - 4, such that G is not K2 ,n_2•

Then n 2:'.: 14 and G is 3-edge-connected. 

Proof: Suppose that G is a smallest 2-edge-connected reduced graph with IE(G)I 
= 2IV(G)J-4, such that G is not K2,n_2, where n denotes IV(G)J. Since G is reduced,
a(G) :S 2, by (b) of Theorem B. Hence, by (f) of Theorem B and by the definition of 
G, 
(18) F( G) = 2. 

If 8(G) = 2 then G has a vertex u of degree 2. If K-'(G - u) < 2 then since G is 2-
edge-connected, G - u has a cut edge e, say, and if G1 and G2 denote the components 
of G - u - e, then it follows from (18) that F( G1

) + F( G2
) 

= 1. By ( d) of Theorem B 
and since G is reduced, { G1, G2} = { Ki , K2}. Since G is 2-edge-connected, this forces 
G = C4• Since this contradicts the hypothesis of the lemma, we may conclude that 
K-'(G - u) 2::: 2. Hence, by the minimality of G, G - u = I<2,n_3. Since G is reduced,
( e) of Theorem B implies that u is not in a subgraph that is a 2-cycle, a 3-cycle,
or I<313 minus an edge, for these three graphs are collapsible. Since G -=/=- I<2,n_2, it 
follows that 
(19) 8(G) 2::: 3. 

If K'(G) = 2, then G has a cutset E of size 2, such that each component of G - E 
is nontrivial, by (19). If n < 14 then the smallest component of G - E satisfies the 
hypothesis of Lemma 1, and hence must be a nontrivial collapsible subgraph of G. 
This contradicts the hypothesis that G is reduced, and so K-'( G) -=/=- 2. 

If K-'(G) = 1 then G has a cut edge e (say), and we denote by G1 and G2 the two 
components of G - e. By (18), 

(20) 

By (19), G1 and G2 are nontrivial, and by (20), one of them, say G1 , has F(G1) = 0. 
By (d) of Theorem B, G1 is a nontrivial collapsible subgraph of G, contrary to (e) of 
Theorem B, since G = G'. Hence, K-'(G)-=/=- 1, and so we must have 

K'( G) 2::: 3. 
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Hence, if n ::; 11 then by Lemma 2, G E CC or G is the Petersen graph. Either 
case violates the definition of G. If n = 12 then by Lemma 4, G is 3-regular, and so 
IE(G)I = 18, contrary to the definition of G. Hence, n 2:: 13. Finally, therefore, we 
suppose 

n = 13, 

and we shall derive a contradiction . 

.. 

We claim that G has a 4-cycle. Suppose not, and let x be a vertex of degree 
d( x) = �( G) in G. Since G is reduced, x is in no cycle of length less than 5. Thus, 
each path of length at most 2 with origin x has a different terminus. There are d( x) 
such paths of length 1 and at least 2d(x) of length 2, since 8(G) 2:: 3 by (19). Hence, 

(21) 12 = IV(G - x)I 2:: d(x) + 2d(x) = 3d(x), 

with equality only if each neighbor of x has degree 3. By (19), .6..( G) � 3, and since 
G has odd order, G is not 3-regular. This and (21) imply that 

(22) d(x) = 4,

and since equality holds in (21), each vertex adjacent to x has degree 3 in G. Since 
x is arbitrary, no two vertices of degree 4 in G are adjacent. 

By IE(G)I = 2n - 4 = 22, by (19), and by .6..(G) = 4, G has 5 vertices of degree 
4 and 8 vertices of degree 3. Define 

H = G -({x} u N(x)). 

By (22) and since the four vertices of N(x) have degree 3 in G, V(H) consists of 8 
vertices, of which 4 have degree 4 and 4 have degree 3 in G. Since G has exactly 8 
paths of length 2 with origin x and since each of these paths has a distinct terminus 
in V(H), each vertex of V(H) is adjacent in G to exactly one vertex not in V(H). 
Hence, V(H) consists of 4 vertices of degree 3 in H, and 4 vertice� of degree 2 in 
H. In H there are 12 incidences of edges at the 4 vertices of degree 3, and there are
only 8 incidences at the 4 vertices of degree 2. Therefore, two vertices of degree 3 in
H are adjacent. These are adjacent vertices of degree 4 in G, a contradiction. This
contradiction proves the claim that G has a 4-cycle.

Let xyzwx be an induced 4-cycle in G. Define the graph G/1( as in Section 4, so 
that Theorem C holds. Define 

E = {wx,xy,yz, zw}, 

and denote the edge v1 v2 of G / 1( by e,r. 

Case 1 Suppose that e,r is a cut-edge of G/1(. Then G-E is disconnected. Define 
G1 and G2 to be the two components of G -E, where 2::; JV(G1)l:::; JV(G2)J. Since 
n = 1�, 2 S JV(G1 )l S 6, and by (19), G1 has at most 2 vertices of degree less than 
3. Therefore, G1 has a nontrivial 2-edge-connected simple subgrapda H1, say, with at
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most two vertices of degree 2. By Lemma 1, H1 E C£, and so G has a nontrivial 
collapsible subgraph. Since G is reduced, this violates ( e) of Theorem B. 

Case 2 Suppose that e1r is not a cut edge of G/1r. We claim 

(23) 

Supp,ose not. By Nash-Williams' arboricity formula [9], G/1r has a subgraph H (say) 
with 
(24) IE(H)I 2:: 2IV(H)I - 1. 

Now since G is reduced, a( G) � 2, and so H contains one or both vertices of { vi, v2}. 

Subcase 2A Suppose V(H) n {v1,v2} = {vi}. Then 

(25) IV(G[E(H)])I = IV(H)I + 1, 

and we combine (25) with (24) to get 

IE(G[E(H)])I IE(H)I 2:: 2IV(H)I - 1 

- 2IV(G[E(H)])I - 3.

Since a(G) � 2, it follows that G[E(H)] is one edge short of having two edge-disjoint 
spanning trees, i.e., F(G[E(H)]) = 1. Since G is reduced, (d) of Theorem B implies 
G[E(H)] = Kz. By (25), this gives 

IV(H)I = IV(G[E(H)])l -1 = 1. 

This and (24) imply IE(H)I 2:: 2IV(H)I - 1 2:: 1, and since H has no loop, we have a 
contradiction. 

Subcase 2B Suppose v1, v2 E V(H). Then 

(26) IV(G[E(H) U E])I = IV(H)I + 2. 

By (24) and (26), 

(27) IE(G[E(H) U E])I = IE(H)I + 3 2:: 2IV(H)I + 2
= 2IV(G[E(H) U E])I -2. 

Since a( G) � 2, (27) implies that the subgraph G[E(H) U E] has two edge-disjoint 
spanning trees, i.e., F(G[E(H) U El) = 0. Such a subgraph is collapsible (by (d) of 
Theorem B), contrary to the fact that G is reduced. This contradiction concludes 
Subcase 2B and proves the claim (23). 

By (23), (f) of Theorem B gives 

IE(G/1r)I + F(G/1r) = 2IV(G/1r)I -2. 
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By 1Theorem C, since n = 13, and since IE(G)I = 2n-4,
IE(G/7r)I = IE(G)I - 3 = 19

and IV(G/7r)I = IV(G)I - 2 = n - 2 = 11,
and combining these, we get F(G/7r) = 1. Since G/?r is 2-edge-connected in Case 2,(d).of Theorem B gives G/7r EC£. By (a) of Theorem C, GE C£, a contradiction,since G is reduced and nontrivial. Hence, n 2: 14, and Lemma 5 is proved. D

Catlin [5] conjectured that no smallest number n exists that satisfies the hypoth­esis of Lemma 5. 

6. PROOF OF CAl'S CONJECTURE 

Theorem 2 Let G be a simple 3-edge-connected graph of order n. If
(28)
then G is collapsible.

Proof: Let G satisfy the hypothesis of Theorem 2. If G E C£, then we are done.If not, then the reduction G' of G, has order at least 2 and is 3-edge-connected. ByLemma 2, either G' is the Petersen graph or G' has order n 2: 12. 
But G also satisfies Theorem 1 with p = 10. By remarks of the prior paragraph,if conclusion ( a) of Theorem 1 holds, then G' = I<1 and so G E C£. Conclusion (b) cannot hold, since the Petersen graph does not have size 16. If conclusion ( c) holds,then G is a reduced graph of order n :2: 12, and either

or
IE(G)I E {19,20} and n = 12,

IE(G)I = 22 and n = 13.
By Lemma 4, if n = 12 then IE(G)I = 18, which is too small. By Lemma 5, if n = 13and IE( G) I = 22 then G = I< 2,11, contrary to the hypothesis that K

1 ( G) 2: 3. Thisexhausts the cases and proves Theorem 2. D
X. T. Cai [2] conjectured a weaker form of Theorem 2, in which "collapsible"is replaced by "supereulerian". It is easy to contruct graphs to show that (28) isbest-possible, both in Theorem 2 and in Cai's conjecture. Let G be the simple graphobtained from a Petersen graph and the complete graph I<n_9 by identifying onevertex from each graph. Then G has order n = (n - 9) + 10 - 1, and if n = 10 or if

n :2: 13 then K'(G) 2: 3. Also,
IE( G) I = ( n ; 9 ) + 15,
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and since the reduction of G is the Petersen graph, G is not collapsible and (by, (.a) 
of Theorem B) G is not supereulerian. Hence, (28) is sharp. 

7. CONCLUDING REMARKS

Theorem D ( Cai [2]) Let G be a 2-edge-connected simple graph of order n. If 

• 

(29) 

then exactly one of the following holds: 
(i) GE S£;
(ii) Equality holds in (29) and G has a complete subgraph Hof order n -4 such

that G/ H = K2 ,3; 
(iii) G is either K2 ,5 or the cube minus a vertex.

Proof: Let G be a 2-edge-connected graph of order n satisfying (29), and let G' 
be the reduction of G. Then G satisfies the hypothesis of Theorem 1 with p = 5. 
If conclusion (a) of Theorem 1 holds, then G' is a 2-edge-connected reduced graph 
of order less than 5, and so G' = K1• Hence, by (a) of Theorem B, GE S£. If (b) 
of Theorem 1 holds, then equality holds in (29) and G has a complete subgraph H 
of order n -4 such that G' is G/ H, a graph of order 5 and size 6. By Lemma 5, 
G / H = K2 ,3• If ( c) holds, then G is a reduced graph such that either 

IE(G)IE{2n-4,2n-5} and nE{6,7} 

or 
IE(G)I = 2n -4 and n = 8. 

By Lemma 5, if IE( G)I = 2n -4 for n E {6, 7, 8} then G = K2,n_2 , and so either 
G E S£ or G = K2,5• If IE(G)I = 2n -5 and n = 6, then since G = G' is 2-edge­
connected and satisfies (b) of Theorem B, either G is a cube minus two adjacent 
vertices (hence in S£) or G is contractible to K2,3• If IE(G)I = 2n -5 and n = 7, 
then since G = G' is 2-edge-connected and satisfies (b) of Theorem B, G is a cube 
minus a vertex. D

There are four contraction-minimal nonsupereulerian graphs of order at most 7, 
namely K2, K2,3, K2 ,5 and Q3 - v (the cube minus a vertex). A consequence of this 
fact and Theorem 1 ( with p = 7) is this: 

Theorem 3 Let G be a connected simple graph of order n � 10. If 

(30) 

then exactly one of the following holds: 
(i) GE S£;

(ii) G is contractible to K2 or K2 ,3;
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, . (iii) Equality holds in (30), G has a complete subgraph H of order n - 6, and 
G/ H = K2,s• □ 

Conclusion ( c) of Theorem 1 is precluded by the hypothesis n 2: 10 and because 
the only 2-edge-connected reduced graph of order n = 10 and size 16 is K2,s (by 
Lemma 5), which is supereulerian. There are several graphs of orders 8 and 9 that 
violate (30) and conclusions (i), (ii), and (iii). To see that (30) is best-possible, let G 
be a simple graph containing the complete subgraph H = K

n
_6, n � 10, such that 

G/ H = Q3 - v. Then (30) barely fails and conclusions (i), (ii), and (iii) fail. 

Veldman [10] uses lower bounds on JE(G)J similar to those in this paper, in order 
to show that a given graph G has a cycle containing at least one end of each edge of 
G. 
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