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Abstract 

 

Experiments on the discharge of a silo with an inclined outlet are performed for three 

types of seeds. The angle of inclination is varied to cover the complete range from 0º to 

90º. The theoretical description of the flow rate behavior as a function of the aperture 

angle is achieved taking into account the two types of regimes present in the problem: 

funnel and mass flow. The former is assumed to be dominated by arch formation- 

destruction and, consequently, a free falling down of the particles from the arch dome is 

able to predict the experimental behavior through the addition of just one parameter 

closely related to the geometry of the arch. The second regime is described through a 

radial velocity picture for the flow streams close to the silo aperture and a numerical 

integration allows calculating the expected flow with good results. Finally, with the 

hypothesis that radial velocity can always be used as a good approximation for flow 

streams, an equation valid for all the range of angles is derived with the inclusion of just 

one parameter related to the drag force exerted by the flow on the particles. The 

challenge of one parameter equation for describing the mass flow rate in a wedged 

hopper is achieved and discussed. 
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1. Introduction 

Silo discharge is one of the most frequent studied problems in granular matter. Two 

main reasons could be cited to explain this interest: the intense use of silo structures for 

grain manipulation in production stages and the beautiful and intriguing way in which 

the flow of grains develops inside them [1,2]. 

Since the pioneering works of Fowler and Glastonbury [3] and Beverloo et al. [4], the 

description of flow through apertures has progressed considerably thanks to the use of 

new technological tools for measurement and visualization, like fast camera videos with 

image processing packages, X-ray and electrical capacitance tomography and optically 

active materials for tracking stress chains [1,5-8]. Besides, different simulation 

techniques to reproduce experimental scenarios and to study the interaction of grains at 

the micro scale help to quantify the effect of different parameters involved in the 

problem, otherwise difficult to follow in a real experiment [9-12]. 

Concerning the theoretical description of the outflow rate, we may say that this issue is 

still open. The complex dynamic of the discharging process is not easy to handle 

analytically and the phenomenological correlation stated by Beverloo is still very robust 

and useful in practical problems [2, 9, 13-15]. 

According to the geometrical features of the silo outlet and the particles, it is well 

known that the flow patterns found inside a silo can be classified in two main regimes 

separated by one transition region. The first is the mass flow, where a continuous 

vertical descent of the material is observed throughout the silo and the hopper; this flow 

is expected for low friction coefficients or sufficiently inclined hopper walls. The 

second is the funnel flow, where an outflow channel is developed at the central part of 

the silo, above the aperture, with typical stagnant zones next to the walls; this pattern is 

typical for flat-bottomed hoppers. Finally, the transition regime is in between the other 
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two, i.e., it is a combination of a funnel flow for particles next to the bottom outlet and a 

mass flow for particles at the top of the column. This feature is typical at low 

inclinations of the hopper walls [16, 17]. 

The main parameters involved in the development of one or the other of the above 

regimes are correlated by diagrams that delimit the range of values where each pattern is 

expected to be observed. This is very useful in silo designing, and examples of those 

diagrams can be found in [17-21] where the contributions of works by [22] and [23, 24] 

are fundamental. Nevertheless, in the diagrams correlating the hopper angle of 

inclination and the friction angles, the crossover between mass flow and funnel flow is 

not clear, sometimes it occurs sharply and other times it is represented by a more or less 

narrow region of uncertainty [25]. 

The difficulties in determining the crossover regime are in correspondence with the 

theoretical obstacles offered by the flow complexity. When the silo ends in a hopper 

with a given inclination, the Beverloo’s equation is still able to describe and predict the 

flow rate expected only if suitable parameters are provided [2, 9, 13]. These parameters 

have to be determined from experiments done especially on purpose, but they are not 

always theoretically related to the physical variables entering the problem. Recently, 

good progress has been done in correlating Beverloo’s parameters to the shape and size 

of the particles [13, 26]. Besides, old correlations exist that are of help to introduce the 

hopper angle dependence into the Beverloo’s equation. The theoretical analysis 

conducted by Brown and Richards [27] arrived, under certain assumptions, to an 

expression for the mass flow rate where a multiplicative term depending on the angle of 

the hopper is introduced through minimum energy considerations. In the same line, 

Carleton [28] derived an expression for the flow of particles through a conical section 

using a force balance at the outlet of the hopper. By assuming that the dependence on 
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the angle of the hopper could be approximated for small angles, he arrives to a simple 

equation for expressing the dependence of the flow on the hopper angle. 

On the other hand, Rose and Tanaka [29] proposed an empirical method to account for 

the hopper angle effects on the mass flow rate. Some drawbacks are associated with the 

use of these correlations, especially related to the difficulty of measuring some of the 

parameters involved in their formulation as, for instance, the angle of approach, which 

gives the inclination of the boundary between moving and static grains at the hopper [9, 

27]. 

Throughout all the investigations carried out so far, it is clear that the free fall of the 

particles at the proximity of the outlet of the silo is the starting point to understand the 

flow rates found in a discharging process, at least for the case of funnel flow. Several 

assumptions has been made to develop theoretical or empirical correlations based on the 

concept that the free fall initiates at a zone just below the arches of particles that form 

and collapse during the discharge [4, 25, 27, 30]. 

To simplify the analysis, the first considerations for the shape of the arches point to a 

spherical dome [27, 30]. Most recently, Oldal et al. proposed a model based on the idea 

of a free fall from a parabolic shaped arch [25]. They arrived to an equation that predicts 

a similar behavior like Beverloo’s for the funnel flow region but with no need of 

empirical constants. They related the unique constant entering their equation with 

physical considerations on the parabolic shape of the arch. Particles are assumed to start 

their free fall with zero initial downward velocity at the arch boundary, and the authors 

consider that this scenario is only valid for funnel flow regime. Indeed, the dynamic of 

formation and destruction of arches is observed in the funnel flow regime and has been 

successfully associated with the fluctuations of the flow rate during silo discharge [2, 

13, 31, 32]. 
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Given that the shape of an arch supporting a certain mass over it is a parabola, the 

existence of a parabolic dome at the outlet of the hopper is a suitable description for 

analyzing the dynamics of the discharge in the funnel flow range [33]. Nevertheless, for 

the mass flow regime, this assumption is no longer valid and other considerations are 

needed. 

Continuum modelling has proven that the problem of silo discharge can also be 

approached from this point of view. For the case of a 2D silo, the work of Staron et al. 

[34] demonstrates a good qualitative agreement between the results obtained through a 

discrete element model and a continuum modelling using a Navier-Stokes solver, 

especially in the regions of rapid flows. In the same way, a recent work by Zheng et al. 

[35] is able to describe the mass discharge in conical hoppers by using an Eulerian-

formulation finite element method (FEM) with an elastoplastic model. The results 

obtained for the mass discharge as a function of the angle of the hoppers are in good 

coincidence with other continuum formulations and discrete models, verifying the 

scaling of the outlet velocity and of the mass discharge with the silo aperture size. 

In this work we present experimental results for the discharge of different seeds from a 

silo whose outlet inclination ranges from 0º to 90º, thus spanning all possible flow 

regimes. We make use of a simple geometrical design to visualize the internal dynamic 

angle of approach for the particles, i.e., the angle separating the high velocity region of 

discharge from the stagnant one. Besides, a theoretical analysis of the dynamics of the 

grains as they fall in each flow regime, along with the already cited background, lead us 

to a one-parameter description of the whole range of silo discharging patterns. 

 

 

2. Experimental set up and materials 
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As expressed in the Introduction, we aim to describe the mass discharge from a whole 

range of silo outlet inclinations. For that reason our experimental set up is designed as a 

quasi 2-D silo made with plexiglass as the one sketched in Figure 1. Two flat sheets 

form the front and rear walls of the container. The lateral walls are made with 

rectangular rods that can be arranged in different ways to span all possible inclinations 

and orifice sizes for the outlet. The thickness of the rods provides the desired thickness 

of the silo, L. In our experiments, L is fixed to 25 mm. The angle of inclination of the 

walls respect to the vertical direction is  and the outlet aperture is D, as indicated in the 

figure. For the case of the flat bottom silo configuration, two rectangular rods are 

horizontally placed and the separation between their ends provides the desired outlet 

orifice size D. Care is taken to avoid that particles interact with the ending edges of the 

rods. The other dimensions of the different parts are indicated in the figure. 

Once the desired silo configuration is set, seeds are gently poured from the top with the 

help of an appropriate plexiglass chute. A plug at the bottom orifice prevents the 

outflow of the particles. 

As indicated in Figure 1, the discharge of the silo is performed inside a container placed 

on an electronic balance Ohaus Scout, with accuracy 10-2 g. The balance is connected to 

a computer that records the mass discharged as a function of time. A typical mass vs. 

time plot is shown as an inset in Figure 1. From the slope of that plot, one can easily 

compute the discharge flow rate of the particles through a linear fit of the data. 

The grains used in the experiments are three different seeds: millet, sesame and canary 

seed. To give an idea of their geometry, Figure 2 shows photographs of them taken with 

a binocular loupe. Fifty different grains for each seed type are taken for measuring their 

typical size though image analysis. The values obtained for the length and width of 
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them are reported in Table 1. The form factor, FF, shown there is the ratio between the 

mean projected length and the mean projected width of the seeds and is given just as an 

indicative of the elongation degree of the particles. 

With the assumption that the seed’s geometry can be represented by an ellipsoid of 

revolution with semi-axes given by its half length and half width, we are able to 

calculate the typical volume of a typical seed, Veq, and from it, to calculate the 

equivalent diameter dp (see Table 1) which represents the diameter of a sphere with the 

same volume Veq. In this way, dp is derived as: 

 

𝑑𝑝 = (
6𝑉𝑒𝑞

𝜋
)

1/3

                                                                                                                            (1) 

 

The bulk density, b, for each type of grain is an important quantity participating in the 

discharging flow determination. The measurement of b is performed following 

standard procedures [13]. The apparent or bulk density is determined through the 

weighing of a container with known volume into which one type of seed grains is gently 

poured from a constant height. The mass of the seeds divided by the known volume 

gives rise to the values shown in Table 1, which are the average of 20 independent 

determinations performed for each type of seed.   

 

3. Mass discharge modeling 

 

As explained in the preceding sections, we perform silo discharges at different 

inclinations for the hopper walls starting from the flat-bottom case,  = 90º, to a 

completely free fall of the particles at  = 0º. The geometry of the outlet implies a 
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rectangular orifice with front and rear walls at zero inclination respect to the vertical. 

Depending on the value of , we expect a change from mass flow regime to funnel flow 

as  becomes larger than app, i.e., than the internal dynamic angle of approach for the 

particles. Figure 3 illustrates the situation. 

For 𝛽 ≥ 𝜃𝑎𝑝𝑝, i.e., for funnel flow regime, we keep in mind the fact that the discharge is 

governed by a continuous mechanism of formation and destruction of arches. These 

arches are the result of the blockage of particles provoked by the stack of grains at the 

lateral stagnant zones resulting from the scarce or non movement of the particles near 

the outlet, whose inclination provides enough stability for the arch to survive, at least 

for a short period of time [2, 25]. The shape of those arches is assumed to be parabolic 

and their collapse means the initiation of the free fall of the particles until a new arch is 

created. As a consequence, the flow velocity of the particles at the outlet only depends 

on the height of the free fall.  

Taking into account the particular geometry of our hopper, and following the ideas of 

Oldal et al. [25], we propose that each particle freely drops from an unstable arch 

geometry like the one sketched in Figure 4. The shape of the “arched gallery” is given 

by: 

 

𝑓(𝑥, 𝑦) = ℎ (1 − (
2𝑥

𝐷 − 𝑑𝑝
)

2

)     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦                                                                          (2) 

 

Here the height of the arch is represented by h, the width of the parabola is the width of 

the orifice, D, reduced by the typical diameter of the particles, which is the so called 

empty annulus correction due to the possibility that particles can sit around the border of 

the outlet, reducing the orifice, as can be seen in Figure 3. The shape of the parabola is 
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of course independent of y. The final velocity of a particle falling from a height 𝑓(𝑥, 𝑦) 

and arriving at the outlet is given by 𝑣(𝑥, 𝑦) = √2𝑔𝑓(𝑥, 𝑦). Thus, the average velocity 

of the particles at the outlet orifice can be calculated as: 

 

𝑣̅ = ∫ 𝑑𝑦 ∫ √2𝑔ℎ (1 − (
2𝑥

𝐷 − 𝑑𝑝
)

2

) 𝑑𝑥
(𝐷−𝑑𝑝)/2

−(𝐷−𝑑𝑝)/2

𝐿

0

=  
𝜋

4
 √2𝑔𝛿(𝐷 − 𝑑𝑝)                    (3) 

 

We note that the empty annulus correction is not necessary in the first integral because 

the walls are completely vertical and no particle can sit around those sides of the orifice.    

Given that the height of the parabola is very difficult to determine, even for our present 

geometry, we introduce in Eq. (3) the parameter 𝛿 = ℎ/(𝐷 − 𝑑𝑝)  which, as in [25], 

represents an arch shape coefficient that will be the only parameter involved in the 

whole description of the flow dynamics. Its value will depend on the type of grains 

used. In this way, the flow discharging from the silo becomes: 

 

𝑊 =  
𝜋

4
 𝜌𝐿√2𝑔𝛿 (𝐷 − 𝑑𝑝)

3/2
                                                                                                  (4) 

 

To validate Eq. (4), we perform a series of silo discharges for different outlet apertures 

D, in a flat-bottomed configuration and for the three types of seeds. The experimental 

results are shown in Figure 5. The line curves are the corresponding fits using Eq. (4), 

where the best value obtained for delta is indicated in each case. These values change 

depending on the type of seed, showing a decrease with the increase of the form factor 

of the particle (see Table 1). This is in agreement with the values of delta found by 

Oldal et al. where a slight trend of decreasing is observed for the case of elongated 

particles [25]. This means that the more elongated the particles, the smaller is their 
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ability to form vaulted arches compared with the other two seeds, which seems 

reasonably and being in agreement with recent findings of other authors, as discussed 

below [36]. 

Eq. (4) is expected to be valid inside the funnel flow region but, as the hopper 

inclination increases ( decreases) arches cannot develop anymore and a crossover to a 

mass flow regime arises. The flow of the particles in this scenario can be considered as 

radial and the mathematical treatment of the problem changes. 

Following the liminar ideas of Brown and Richards [27], and Carleton [28], we analyze 

the flow of the particles by making a balance of the forces acting on them at an inclined 

outlet. 

Assuming that particles flow radially, they are accelerated from v to v + dv as they 

move from the distance 𝑅 to 𝑅 − 𝑑𝑅 from the vertex O. Figure 6 sketches the situation. 

Thus, writing the continuity equation for the present geometry we find: 

 

𝑑v𝑅

𝑑𝑅
=

v𝑅

𝑅
                                                                                                                                       (5) 

 

and the radial acceleration becomes: 

 

𝑎 = v𝑅

𝑑v𝑅

𝑑𝑅
=

v𝑅
2

𝑅
                                                                                                                         (6) 

 

When evaluating the force on an element of mass m we find: 

 

𝑚𝑎 = 𝑚
v𝑅

2

𝑅
                                                                                                                                   (7) 
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Considering that the bulk density does not change appreciably all along radial and 

continuous flow trajectories, we can apply Eq. (7) throughout the wedged outlet down 

to the orifice. The gravitational force component applied on the particles belonging to a 

stream tube at an angle  respect to the vertical is proportional to 𝑔𝑐𝑜𝑠𝜃 and if we write 

down the force balance for a mass m at the outlet orifice it results: 

 

𝑚
v𝑜

2

𝑅𝑜
= 𝑚𝑔𝑐𝑜𝑠𝜃                                                                                                                           (8) 

 

The value of Ro is related with the size of the orifice and with the inclination  of the 

hopper lateral walls, through: 

 

𝑅𝑜 =
𝐷

2𝑠𝑖𝑛𝛽
                                                                                                                                   (9) 

 

Thus, combining the last equations, we get the expression for the velocity at the outlet 

orifice as a function of the angle of the stream tube and the geometry of the hopper: 

 

vo = (
𝑔𝐷𝑐𝑜𝑠𝜃

2𝑠𝑖𝑛𝛽
)

1/2

                                                                                                                   (10) 

 

The mass flow rate can be calculated through the integration of the velocity field at the 

outlet area, where we have to account for the empty annulus correction at the lateral 

edges. The vertical component of the velocity contributing to the flow is v0𝑐𝑜𝑠𝜃, and 

the integral to be solved thus becomes: 
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𝑊 = 𝜌 2 𝐿 ∫ (
𝑔𝐷𝑐𝑜𝑠𝜃

2𝑠𝑖𝑛𝛽
)

1/2

𝑐𝑜𝑠𝜃
(𝐷−𝑑𝑝)/2

0

𝑑𝑥                                                                     (11) 

 

We have to note the dependence of cos on x through the relation: 𝑐𝑜𝑠𝜃 =
(𝑅0

2−𝑥2)
1/2

𝑅0
. 

In this way, the final expression to be integrated is: 

 

𝑊 = 𝜌 (
2𝑔

𝑠𝑖𝑛𝛽
)

1/2

 𝐿 (𝐷 − 𝑑𝑝)
1/2

 ∫ [1 − (
𝑥

𝑅0
)

2

]

3/4(𝐷−𝑑𝑝)/2

0

𝑑𝑥                               (12)    

 

where we introduce the correction of the empty annulus as before. 

The integral in Eq. (12) has a numerical solution that allows calculating, almost exactly, 

the desired flow as soon as the radial flow assumption be valid and 𝛽 ≤ 𝜃𝑎𝑝𝑝. Note the 

advantage that none parameter is needed in the expression, however the equation goes 

to infinity when  approaches to zero.  

Eq. (4) along with Eq. (12) conform one possible model description of all the flow 

regimes where the only parameter involved is . Nevertheless, to amend the non finite 

value for  = 0, we can introduce the fluid drag force in Eq. (8) under certain 

assumptions like spherical shape for the particles, non interacting particles and flow 

parameters unchanged by particle acceleration or velocity [28]. The introduction of this 

term makes hard to calculate the integral in Eq. (12). Thus, we make an approximation 

considering that  is small, and thus cos   is roughly equal to 1 in Eq. (10), avoiding 

the subsequent integral calculus. This gives rise to the following expression for the 

velocity at the outlet: 
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vo = (
𝑔𝐷

2𝑠𝑖𝑛𝛽 +
𝐶𝑑𝜌𝑎𝑖𝑟

𝑚𝑝
𝐷𝐴

)

1/2

                                                                                            (13) 

 

where 𝐴 = 𝜋
𝑑𝑝

2

4
 is the cross section area of the particle, air is the air density, mp is the 

mass of the particle and Cd is the fluid drag coefficient. The mass flow rate then 

becomes: 

 

𝑊 = 𝜌𝐿 (𝐷 − 𝑑𝑝)vo                                                                                                                 (14) 

 

We will show that Eq. (14) can be used as a good approximation for all the range of 

angle . Although Cd could be determined experimentally, we don’t know its value for 

the different seeds employed in this work and, for that reason, we keep it as a free 

parameter. 

Moreover, it is worthy to note that the dependency of the form (sin 𝛽)−1/2 has already 

been proposed in the past [35]. As pointed in the introduction, authors in that work 

discuss in an appropriated way the mass discharge rate of conical hoppers using an 

elastoplastic model implemented with an Eulerian finite element method approach. Like 

we will see below in our present model, they conclude that a continuum-like derivation 

of the mass discharge rate represents in a good way both experimental and DEM results. 

Nevertheless, the collective behavior of many particles interacting with each other is 

still a challenge and has to be taken into account in detail. 

In the next section we present experimental results for the discharge of a wedged silo 

and compare the capability of Eqs. (4), (12) and (14) to predict the whole range of flows 

expected when the angle of the hopper varies from 90º to 0º. 
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4. Experimental results and theoretical predictions 

 

In this section we present the results obtained for a sequence of discharges using the 

three different seeds described in Section 2. 

We perform over ten equal realizations for each type of seed and each value of the 

outlet angle, , keeping fixed the outlet diameter D. Ambient humidity is measured 

before each experiment and the working range values are from 22% to 36%, thus 

avoiding the presence of capillary effects in the discharges. 

Figure 7 shows the flow rate of seeds as a function of the hopper angle. The three parts 

of the figure correspond to millet, sesame and canary seeds, respectively. The 

experimental results are represented by filled circles, while the theoretical predictions of 

Eq. (12) are given by the solid line when 𝛽 ≤ 𝜃𝑎𝑝𝑝, i.e., mass flow regime. The 

horizontal line represents the value given by Eq. (4) and is valid when 𝛽 ≥ 𝜃𝑎𝑝𝑝., i.e., 

for funnel flow. The intersection of the two curves is referred as the angle of approach 

for each particle system in the figure. The values indicated for 𝜃𝑎𝑝𝑝 correspond to those 

determined, as an average, by direct observation on a video of the discharge during the 

experiments, they are accompanied by a bar representing their dispersion. The values 

for the expected constant flow in the funnel regime are indicated in each part. They are 

calculated using Eq. (4) with D =11mm and the value of  coming from the fitting 

results in Figure 5. 

For the three seeds, the agreement between experiments and theory is quite good, 

considering that just one parameter is used for funnel flow and none is needed for mass 

flow. Indeed, the horizontal line represents the constant flow obtained from Eq. (4), 
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where the value of  used is the one resulting from the fits of the data in each case 

(Figure 5). On the other hand, the theoretical prediction from Eq. (12) involves known 

parameters that are determined through direct measurement of the bulk density and the 

geometry of the particles and the silo. 

Finally, we show in the same figure the results coming from the application of Eq. (14), 

represented by the empty squares and the dashed line. For the calculations we use 

𝜌𝑎𝑖𝑟 = 1.22 𝑘𝑔/𝑚3 and the respective mass and cross area of the seeds. Given that the 

exact value of the drag constant, Cd, for each seed is unknown, we estimate it by 

choosing the value which better fits the experimental data. The obtained values are: 5, 5 

and 7 for sesame, canary seed and millet, respectively. These values are in the expected 

range considering that the Reynolds numbers involved in the problem are less than 200, 

i.e., in the so called intermediate zone [28, 37]. 

Finally, it is important to note that the role of the drag term is relevant only near  = 0, 

while for  > 0 the sine term dominates. Because our particles are not too heavy, a 

difference is observed in the results obtained through the different equations, but, were 

the particles heavier (like for instance the case of glass beads), the differences would not 

be appreciable. 

 

 

 

5. Discussion 

 

From the experiments shown so far we are able to distinguish the two main regimes 

found in a silo discharge as the angle of inclination of the hopper changes. For steep 

walls (small ), the mass flow regime is characterized by a radial velocity dynamic and 
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its theoretical description can be simply followed by a radial continuum flow picture. 

Although the equation relating the dependence of W on the silo and grains has not an 

exact solution but a numerical one, no parameters are needed to understand the basic 

physics behind the problem, at least for the particular geometry used in the present 

experiments. The equation resulting from this approach describes quite well all the 

results. 

As  increases, the radial dynamics changes because of the presence of stagnant zones 

of particles moving more slowly over the walls of the hopper. The radial description is 

no more valid and has to be changed; the concept of a granular flow has to be 

introduced and the funnel flow regime begins. Indeed, the stagnant zones favor the 

formation of arches of particles that find the way of stabilize, at least for a short time, 

force chains between the grains, slowing down the flow at the outlet. The formation and 

breaking of these arches is the clue to understand the fluctuations often observed in the 

discharge of grains. As soon as an arch is stable at the outlet (standing as a vault 

supported by the particles in the stagnant zone) the particles above it stack for a moment 

and, when the arch destabilizes, they initiate a free fall with almost zero initial velocity. 

Assuming a parabolic shape for the vault, an expression for the flow rate can be 

calculated with the sole inclusion of one parameter related to the shape of the parabolic 

vault, i.e., . In this way, as 𝛽 ≥ 𝜃𝑎𝑝𝑝, the dynamic of formation and destruction of the 

arches dominates the funnel flow regime and the flow rate becomes independent of . 

By performing a set of experiments with different outlet apertures, D, the parameter   

can be calculated through a data fitting (Figure 5). The values obtained for  are in 

agreement with the results of Börzsönyi et al. [36] in the sense that the shape of the 

dome formed at the outlet of the silo, where the density of particles is lower, has a 

height that decreases for more elongated particles. This reinforces the meaning to the 
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parameter introduced by Oldal et al. [25], making Eq. (4) to be a simple and practical 

way to describe the results and any others deduced for other geometries. 

It is important to note that theoretical results are expected to be very sensitive to the 

selected value for dp, especially for seeds being far apart from a spherical shape or with 

a wide size distribution. This feature makes  to change depending on the selected value 

of dp used to represent the particles. Besides, it is expected that the scale of the vault 

will not likely to be conserved as D changes.  For that reason, and in order to determine 

, we choose to make a fit on a complete set of data for different values of D and we 

always take dp as given by Eq. (1). 

Thus, all the range of flows can be described with this dual dynamic, where the 

intersection of the two curves describing each regime gives the internal angle of 

approach, 𝜃𝑎𝑝𝑝, as can be appreciated in Figure 7. The values of this angle can be 

verified in our experiments through direct observation from a video of the discharge.  

The theoretical prediction of Eq. (14) is almost as good as the one obtained from the 

former equations (separating the flow into two regimes) and it has the advantage of 

describing quite well the behavior for all the range of inclination angles in just one 

equation. Its predictions are less accurate for the case of canary seed, where it is evident 

that the flow is overestimated for the larger angles. This is related to the assumption that 

a radial velocity picture can be applied to all the range of hopper inclinations which, for 

the case of elongated particles, is more difficult to sustain. Indeed, as can be appreciated 

in the dynamic of the discharge, the nematic of the particles is such that, close to the 

aperture, the orientation of them at the stagnant or quasi stagnant zones is parallel to the 

orientation of the hopper, making them more stable and, thus, more difficult to move. 

For  close to 90º, particle orientation is practically perpendicular to that of the particles 

in streams closer to the vertical [36]. The overestimation of the flow could also be 
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referred to as an effect due to the particular value taken in Eq. (14) for dp, because if this 

value were taken as closer to the real “empty annulus” effect, it should well be 

considered to be greater than that resulting from Eq. (1). 

 

Conclusions 

 

We performed experiments with different seeds discharging from a silo with a wedged 

outlet geometry to study the dependence of the flow rate on the inclination angles, , 

from 0º to 90º, i.e., examining the flow patterns from mass to funnel flow. 

We show that a theoretical model can be used to predict the behavior in the funnel flow 

region using only one parameter, , with a simple geometrical interpretation, in 

agreement with the findings of other authors [25] while, for the case of mass flow, the 

assumption of a radial velocity in the flow streams is enough to describe quite well the 

results. These two different dynamic predictions meet in the proximity of the internal 

angle of approach of the grains, 𝜃𝑎𝑝𝑝, where the transition of the regime is expected. In 

this way, the crossing of the descriptions given by Eq. (4) and (12) helps to determine 

the transition zone angle, otherwise difficult to measure. 

Parameter   is directly related to the shape of the vault formed at the outlet of the silo 

in the funnel regime. Nevertheless, the fact that its experimental determination is quite 

difficult, makes it to still preserve the fitting character. This parameter shows an 

increasing trend when the form factor of the particles decreases and we may expect that, 

under very well controlled conditions,  could have some generality for a particular 

group of materials. 

It is expected that appropriate changes can be introduced from Eq. (2) to Eq. (12) to 

account for any other type of hopper and/or silo geometry. In the same way, wider size 
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distributions for particles will necessary affect the results and should be brought into the 

theoretical calculations. 

Through Eq. (14) we also introduce a model based on the hypothesis that radial velocity 

behavior is valid inside all the range of values for . This assumption allows introducing 

a drag force term in the equations and the resolution of the final expression for the flow 

velocity can be attained very easily with the sole presence of one parameter related to 

the drag coefficient of the grains due to the presence of air flow. While this last 

modeling has the advantage of predicting the whole behavior using just one equation, 

even valid for 𝛽 = 0o, it overestimates the flow rate for elongated particles. Besides, the 

continuum approaches of equations like Eq. (12) and Eq. (14) still have the drawback of 

neglecting the particle properties. We prove they give an overall good prediction but 

they still cannot account for the difference among different particles. 

Future application of the present theoretical description to other silo geometry and other 

type of particles is necessary to prove which one is the most realistic in each case and to 

add the contribution of the form factors of the particles (like, for instance FF) to 

parameters like . 
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Figure 1: Schematic representation of the set up used in the experiments. The plot 

shows a typical discharge where the mass vs. time is recorded to calculate, from the 

linear fit indicated by the line, the slope corresponding to the flow rate. 

 

Figure 2: Photographs of the three types of seeds used in the experiments: (a) millet, 

(b) sesame and (c) canary seed. They are shown over a graph paper of 1 millimeter 

scale. 

 

Figure 3: A close-up photo of a mass discharge of millet in a flat-bottomed silo. The 

angle 𝜃𝑎𝑝𝑝 is indicated (approximately 30º for those seeds). Three zones are 

distinguished according to the velocity of the grains: the central part with a high flow; 

the intermediate one with a slow movement and the stagnant zone, typical in the 𝛽 =

90o case. Note that the grain close to the aperture is screening the orifice (“empty 

annulus” effect [27, 28]). 

 

Figure 4: Sketch of the geometry of the arch temporarily formed at the outlet of the 

hopper. Particles are assumed to freely fall from this arch of shape f(x,y). At the right, a 

front draw of the parabolic surface is shown to indicate the height h. Parameter  is 

calculated as the ratio of h and the corrected outlet aperture 𝐷 − 𝑑𝑝. 

 

Figure 5: Experimental results for silo discharge with different apertures D. The line 

corresponds to the fit performed using Eq. (4) with  as the only parameter. As 

indicated in each part, the data correspond to: (a) millet, (b) sesame and (c) canary seed. 
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Figure 6: Sketch of the trajectory of a particle at position R from the vertex of the 

wedged hopper, flowing radially with a velocity v in a flow stream subtending an angle 

 with the vertical.  

 

Figure 7: Experimental results (filled circles) for the discharge of the silo with constant 

aperture of 11 mm and variable angle  for (a) millet, (b) sesame and (c) canary seed. 

The comparison with the two theoretical models developed in the text is presented. The 

bar indicates de zone close to the value of the angle of approach where the transition 

from mass flow to funnel flow is expected. 
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Table 1: Values for different parameters of the seeds used in experiments  

 

 Millet Sesame Canary seed 

length (mm) 3.4  0.2 3.4  0.2 6.0  0.3 

width (mm) 2.3  0.2 2.1  0.2 2.2  0.2 

FF 1.5  0.4 1.6  0.3 2.8  0.4 

dp (mm) 2.7  0.2 2.5  0.1 3.1  0.2 

b (kg/m3) 780  10 640  10 760  10 

 0.86 0.02 0.65 0.01 0.41 0.01 
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 Model silo discharge experiments in a wedged hopper geometry for all range of angles 

 Two possible theoretical descriptions are developed with just one parameter 

 First model can estimate the internal angle of approach of the particles 

 Second model predicts mass and funnel flow rates using a single equation 
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