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Abstract 22 

UV-C irradiation has been shown to reduce fruit decay and delay ripening. Based on an 23 

expected higher impact and applicability, UV irradiation treatments have been almost 24 

exclusively done before storage at relatively high doses. We evaluated the influence of the 25 

pattern of repeated short dose UV-C exposure on quality maintenance of strawberry fruit. 26 

Strawberries were subjected to the following treatments: Single-step UV: single 4 kJ m-2 27 

irradiation prior to storage; two-step UV: two consecutive 2 kJ m-2 UV irradiations at harvest 28 

and after 4 days of storage and multi-step UV: five 0.8 kJ m-2 after 0, 2, 4, 6 and 8 days of 29 

storage respectively. A non-irradiated group was left untreated. Samples were stored at 0 °C for 30 

13 days. All UV-C treatments decreased decay, weight loss and softening. The quality retention 31 

was higher in fruit subjected two-step and multi-step UV-C. Multiple low dose UV exposure 32 

reduced calyx browning more efficiently. Repeated low UV-C dose decreased mold and yeast 33 

counts to a higher extent. Multi-step UV treated fruit showed higher alcohol insoluble residue. 34 

Two-step UV-C treated fruit showed the highest sensorial scores. Repeated low dose UV-C 35 

treatments are more effective in preventing strawberry fruit than conventional single high-36 

fluence pre-storage irradiation. 37 

Keywords: Fragaria x ananassa Duch; UV-illumination; ripening; Botrytis cinerea 38 

 39 

1. INTRODUCTION 40 

Strawberries are widely appreciated for their bright red color, unique aroma and texture 41 

and high antioxidant capacity (Giné-Bordonaba and Terry 2016; Li et al. 2017). However, 42 

continuous distribution of premium berries is challenging due to their high perishability (Bower 43 

et al. 2003; Chen et al. 2016). Though low temperature storage effectively reduce deterioration, 44 

even under proper temperature management strawberry shelf-life life rarely exceeds 7-10 days 45 

(Erkan et al. 2008). To date, no postharvest fungicides have been approved to control Botrytis 46 
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cinerea and other wet treatments such as washing are not recommended since they may increase 47 

decay susceptibility (Mitcham 2016). Firming agents such as calcium salts (Aguayo et al. 48 

2008) which has been effectively shown to delay softening and fungal attack is mainly limited 49 

to the fresh-cut industry whereas strategies such as surface coating showing good results at lab 50 

scale (Romanazzi et al. 2016) have had difficulties to be up-scaled to commercial settings. 51 

Consequently, there is a relatively limited set of strategies to reduce postharvest losses in 52 

strawberry limited. 53 

In recent years there have been great interests in the search for non-chemical dry 54 

methods that can prevent fruit deterioration (Vicente and Lurie 2014). Several research groups 55 

have started to evaluate UV-C treatments as a potential alternative to control spoilage (Civello 56 

et al. 2006; Xu et al. 2017). Strawberry pre-storage UV-C treatments at doses ranging from 0.2 57 

to 4.2 kJ m-2 reduced decay (Baka et al. 1999; Erkan et al. 2008; Li et al. 2014; Xu et al. 58 

2017). UV-C radiation has been shown to affect fungal metabolism (Bintsis et al. 2000; 59 

Trivittayasil et al. 2016). Pan et al. (2004) reported that UV-C radiation (4 kJ m-2), reduced the 60 

rate of germination of Botrytis and Rhizopus conidia. Besides its direct effect on plant 61 

pathogens, UV-C radiation has been shown to modulate ripening-associated processes such as 62 

softening (Stevens et al. 2004; Pan et al. 2004) and to elicit the accumulation of antioxidants 63 

(Erkan et al. 2008) and phytoallexins (D´hallewin et al. 1999). Pombo et al. (2011) reported 64 

that UV-C irradiation may increase the expression of chitinases and β-1,3-glucanases. Early 65 

work by Nigro et al. (2000) also reported the induction phenylpropanoid regulatory enzymes 66 

such as phenylalanine ammonia lyase (PAL). 67 

Several factors determining the efficacy of UV treatments have been studied; the 68 

maturity stage at which the fruit is irradiated influenced the outcome of UV treatments, with 69 

early applications having more dramatic effect delaying ripening (Liu et al. 1993; Charles et 70 

al. 2002). However, strawberries must be picked at complete maturity in order to attain full 71 

flavor, what narrows the window at which UV treatments could be applied. The UV radiation 72 

dose (fluence) applied also affects the benefits of UV-C treatments on fruit quality maintenance. 73 

This has been, by far the variable most extensively studied (Civello et al. 2014). Cote et al. 74 
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(2013) showed that for a given dose radiation intensity also affects the efficacy of UV-C 75 

treatments. Other factors such as the as the pattern of UV exposure have been barely studied. 76 

Even though pre-storage applications would be more practical than cyclic UV-C understanding 77 

the responses of fruit to different irradiation conditions is very important to better understand 78 

the physiological effects of postharvest photochemical treatments. No studies have been 79 

conducted to determine if small point applications throughout the storage period could improve 80 

quality retention relative to conventional single high fluence UV treatments. The aim of this 81 

work was to determine if repeated short applications throughout the storage period could 82 

improve quality retention relative to conventional single high fluence UV treatments 83 

 84 

2 MATERIALS & METHODS 85 

 86 

2.1 Plant material, treatments and storage conditions 87 

Strawberry fruit (Fragaria x ananassa cv Camarosa) grown in La Plata, Argentina was 88 

harvested at commercial maturity and immediately transported to the laboratory. Fruit was put 89 

in polyethylene terephthalate (PET) trays, in groups of 10 and was located under an irradiation 90 

mobile bank (1.7 m x 0.8 m) consisting a closed cabinet containing on the upper side 12 UV-C 91 

lamps (UV-C peak emission at 254 nm, TUV G30T8, 30 W, Philips, Argentina) with a global 92 

maximum radiation intensity of 38 W m-2. The fruit was rotated in order to irradiate two 93 

opposite sides. Fruit was irradiated at a distance of 30 cm. UV-C radiation dose was evaluated 94 

by using a digital UV-C radiometer (ElectroLite Miodel LC 300, USA) located in the central 95 

zone of the irradiation zone. The following treatments were applied: 96 

i) Single-step UV: 4 kJ m-2 application before storage; 97 

ii) Two-step UV: two 2 kJ m-2 applications after 0 and 4 d of storage 98 

iii) Multi-step UV: five 0.8 kJ m-2 applications after 0, 2, 4, 6 and 8 d of storage. 99 
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One set of non-irradiated fruit was used as a Control. Samples were covered with a perforated 100 

plastic lid and stored 0, 10 or 13 days at 0 ºC. For those treatments requiring UV exposure 101 

during the storage period the bank was used directly into the storage area to avoid oscillations in 102 

fruit temperature.  Samples were immediately analyzed after sampling or otherwise frozen in 103 

liquid N2 and stored at -80 °C until analysis. Four trays containing 10 fruit each were used for 104 

every treatments and storage time. The whole experiment was repeated three times.   105 

 106 

2.2. Respiration rate 107 

Samples were taken and held at 20 °C until thermal equilibration. Ten fruits were placed 108 

in a 1.5 L glass jar which was hermetically sealed. An IR sensor (Alnor, USA) was used to 109 

determine the change in CO2 in the headspace during a 20 min period. The respiration rate was 110 

calculated by determining the mass of CO2 produced per kg of fruit in an hour. Three 111 

measurements were done for each treatment and sampling date. 112 

 113 

2.3. Weight loss 114 

Individual fruits were weighed at the beginning of the storage period and after 10 or 13 115 

d at 0 °C. Weight loss was calculated as: WL = 100× (Wi -Wf)/Wi, being Wi the initial sample 116 

weight and Wf the final weight. Results were expressed in percentage. 117 

 118 

2.4. Decay 119 

The percentage of fruit showing incipient symptoms of decay (local tissue maceration) 120 

or excessive softening on each tray was recorded. Decay incidence was expressed as percentage 121 

of decayed fruits. Four trays containing 10 fruit each were evaluated for each treatment and 122 

storage time. 123 

 124 
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2.5. Color 125 

Fruit calyx and receptacle color was measured with a colorimeter (Model CR-400, 126 

Minolta, Osaka, Japan) to obtain L*, a* and b* values. The hue angle was calculated as 180 - 127 

tg−1 (b*/a*) and tg−1 (b*/a*) for fruit calyx and receptacle respectively. For fruit receptacle color 128 

assessment two measurements were conducted on each fruit and averaged. Thirty fruits were 129 

evaluated for each treatment and storage time and evaluated for both receptacle and calyx color. 130 

 131 

2.6. Firmness 132 

 Fruit firmness was determined by uniaxial compression tests in a Texture Analyzer 133 

(TA.XT2, Stable Micro Systems Texture Technologies, NY, USA) equipped with a 3 mm 134 

diameter flat probe. Firmness was determined compressing the fruit tissue 4 mm in equatorial 135 

zone at a rate of 1 mm s-1. The maximum force during the test was recorded. Forty 136 

measurements were done for each treatment and time analyzed. 137 

 138 

2.7. Isolation of cell wall material and determination of alcohol insoluble residue 139 

Cell wall polysaccharides were isolated as previously described (Vicente et al. 2007). 140 

Fruit samples were immediately placed in 95% (v/v) ethanol to limit the action of cell wall 141 

modifying enzymes isolated with the tissue. Approximately 30 g of tissue (exocarp plus 142 

mesocarp) for each developmental stage was homogenized in an UltraTurrax (IKA Werke Janke 143 

& Kunkel GmbH & Co. KG, Staufen, Germany) with 75 mL of 95% ethanol and boiled for 45 144 

min to ensure the inactivation of enzymes, thus preventing autolytic activity, and to extract low 145 

molecular weight solutes. The insoluble material was filtered through Miracloth (Calbiochem, 146 

EMD Biosciences, Inc., San Diego, CA) and sequentially washed with 150 mL of boiling 147 

ethanol, 150 mL of chloroform/ methanol (1:1 v/v), and 150 mL of acetone, yielding the crude 148 
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cell wall extract (alcohol insoluble residue, AIR). The AIR was dried overnight at 37 °C and 149 

weighed. Results were expressed as milligrams of AIR per gram of fresh fruit. 150 

 151 

2.8. Titratable acidity 152 

Fruit pulp was frozen in liquid nitrogen, ground in a mill and 10 g of the resulting 153 

powder were added to 100 mL of water. Samples were titrated with 0.1 mol L-1 NaOH until pH 154 

8.2 (AOAC 1980). Results were expressed as H+ mmol per kg-1 on a fresh weight basis. Three 155 

measurements were done for each treatment and storage time. 156 

 157 

2.9. Sugars 158 

Approximately 50 g of fruit tissue were ground in a mill and 1 g of the resulting powder 159 

was homogenized with 10 mL of ethanol and vortexed for 1 min. The mixture was centrifuged 160 

at 9,000 x g for 10 min at 4 ºC; the supernatant was recovered and filtered through 0.2 mm RC 161 

membrane (Cole-Parmer, USA) and brought to 50 mL with deionized water. A high-162 

performance liquid chromatograph (HPLC, Waters 1525 Binary HPLC Pump) was used, 163 

equipped with a refractive index detector (Waters, IR 2414) and a Hypersil Gold Amino column 164 

(4.6 x 250 mm, 5 mm, Thermo Sci., USA). Samples were run with an isocratic flow rate of 1.0 165 

mL min-1 of acetonitrile: water (70: 30). Three extracts were analyzed per treatment and storage 166 

times and measurements were done in duplicate. Results were expressed as g of sugar per kg. 167 

 168 

2.10. Ascorbic acid 169 

Samples were frozen in liquid nitrogen, processed in a mill and approximately 1 g of the 170 

obtained powder was homogenized with 5 mL of 2.5% m/v metaphosphoric acid. The mixture 171 

was vortexed for 1 min and then centrifuged at 12,000 x g for 10 min at 4 ºC. The supernatant 172 

was recovered and filtered through 0.45 µm (MSI Westboro, MA 01581, 100pk acetate plus) 173 
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membrane and ascorbic acid (AsA) determination was done by using a high-performance liquid 174 

chromatograph (HPLC, Waters 1525 Binary HPLC Pump), fitted with a photo diode array 175 

detector and a C18 column (4.6 x 150 mm, 5 mm, Waters Corp., USA). The mobile phase 176 

was 0.5% m/v metaphosphoric acid/acetonitrile (93/7) at an isocratic flow rate of 1.0 mL min1 177 

and the wavelength for detection was 245 nm. For identification and quantitation a standard 178 

AsA solution was employed. Results were expressed as mg of AsA per kg. Two extracts per 179 

sample and storage time were obtained. All samples were run twice and averaged. 180 

 181 

2.11. Microbiological counts 182 

Approximately 50 g of fruit were put into two sterilized beakers containing 225 mL 183 

0.1% w/v peptone. Samples were stirred for 15 min and from each beaker a series of decimal 184 

dilutions was prepared. One mL samples from different dilutions (10-2 to 10-5) were poured in 185 

triplicate into the Yeasts and Molds culture medium (PetrifilmTM plates 6407, 3M, St. Paul, 186 

Minn., U.S.A.). Plates were incubated at 20 ºC. Results were expressed as log of viable colony 187 

forming units (CFUs) per g of fresh fruit. 188 

 189 

2.12. Sensory evaluation 190 

Fruit visual sensory evaluation was assessed by an acceptability test using a hedonic 191 

scale of 9 points. Panelist were simultaneously offered trays containing 10 whole strawberries 192 

having similar size and shape from control, one step UV, two-step UV and multi-step UV. The 193 

fruit was evaluated after 10 day of storage at 0 ºC. The panelist were asked to indicate their 194 

acceptability on a 9 point hedonic scale, being 1: unacceptable and 9: highly accepted. The 195 

evaluation considered those attributes that may be considered on an initial purchase decision 196 

(calyx color, receptacle color, freshness and overall acceptability). The panel consisted on 100 197 

non-trained panelists with equal distribution of men and women and with an age range of 25-35 198 

years.   199 
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 200 

2.13. Statistical analysis 201 

Samples were analyzed by a ANOVA with the PC-SAS software package (SAS 198 202 

Institute Inc., Cary, NC). The model assumptions of homogeneity of variance and normality 203 

were tested by means of the Levene and Shapiro-Wilk tests, respectively. Treatment means were 204 

compared using Tukey’s studentized range test (*P < 0.05). 205 

 206 

3. RESULTS AND DISCUSSION 207 

3.1 Weight loss, decay, microbial counts and phenolic compounds 208 

UV-C treatments reduced fruit weight loss during storage. After both 10 and 13 days all 209 

UV treatments reduced dehydration regardless of the mode of application. Remarkably the least 210 

water loss values were observed in the case of the fractionated UV treatments (Figure 1). Two-211 

step UV-C exposure had a similar effect on fruit weight loss than multi-step irradiation. Previous 212 

work has showed that high intensity UV radiation treatments, applied before storage, can reduce 213 

water loss in strawberry (Cote et al. 2013). Whether this effect resulted simply an improved 214 

maintenance of fruit integrity or from changes in fruit surface characteristics is unknown. In 215 

fresh-cut apple the lower water loss resulting from UV-C was associated with the formation of a 216 

thin film on the product surface hindering water evaporation (Manzocco et al. 2011). This was 217 

not evident at least by direct stereomicroscopic observations (data not shown). Other potential 218 

effects induced by UV radiation that can affect the rate of water loss include changes in surface 219 

wax deposition (Charles et al. 2008) or modifications in the degree stomata closure (He et al. 220 

2011). Though these responses seem less likely given the low storage temperature, they could 221 

not be discarded and further work aimed in understanding the mechanism by which two-step 222 

and multi-step UV-C irradiation reduces fruit susceptibility to dehydration would be of interest. 223 
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After 10 days at 0 °C no differences in fruit decay were found between control and 224 

conventionally (one-step) UV-C treated strawberries. In contrast, the both two-step and multi-225 

step UV-C treated fruit showed no decay (Figures 2). After 13 days at 0 °C a rapid increase in 226 

fruit decay was found in control strawberries. At this sampling date, fruit subjected to single 227 

pre-storage UV irradiation presented lower decay incidence than the corresponding control. This 228 

is coincident with previous work showing that single UV irradiation at doses ca. 4 kJ m-2 can be 229 

useful to control decay by Botrytis cinerea (Pan et al. 2004; Cote et al. 2013). Interestingly, 230 

also after long term storage two- and multi-step applications relying on repeated exposure at low 231 

radiation fluence were significantly more effective than single pre-storage irradiation to control 232 

decay. 233 

We subsequently evaluated the viable count of molds and yeast (Figure 3). The colonies 234 

counted represented mostly yeasts. At harvest 3.4 CFU g-1 were found. Immediately after the 235 

initial irradiation there was a significant decrease in yeast counts all the treatments. The greatest 236 

reduction was observed in one step treatments receiving the highest radiation dose at day 0 (4 kJ 237 

m-2). Work by Mercier et al. has shown that direct inactivation of microorganisms by UV 238 

radiation is highly dependent on radiation dosage (Mercier et al., 2001). The fractionated two-239 

step and multi-step treatments showed no differences in yeast counts reduction prior to storage. 240 

In this case, a significant but modest reduction (ca. 0.25 log cycles) was observed. The counts of 241 

control strawberries increased one log cycle during 10 days of storage. Fruit subjected to one-242 

step UV irradiated also showed an increasing trend. Remarkably, the counts in fruit subjected to 243 

low fluence two- and multi-step UV-C showed no changes in yeast counts throughout the 244 

storage period, but rather a decrease. This shows that, for a similar total radiation dosage, 245 

repeated low dose UV-C exposure in vivo resulted in a better more effective reduction in yeasts 246 

CFU than one step irradiation. One plausible explanation is that the repeated irradiation, even 247 

with low partial doses, was sufficient to exert inhibitory effects on yeast viability and that 248 

several treatments was more detrimental (Nhung et al. 2012; Sinha and Häder 2002). Despite 249 

of the potential direct effect that repeat low dose UV exposure could exert on fruit pathogens we 250 

cannot exclude that fractionated UV could have induced defensive responses. Early work by 251 
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Ben-Yehoshua (1992) clearly showed that UV-C irradiation induced the accumulation of the 252 

phytoalexin scoparone in citrus flavedo. Subsequent studies in even in strawberry reported that 253 

UV-C irradiation also increased the activity of enzymes related to active responses such as 254 

chitinases and β-1,3 glucanases (Pombo et al. 2011) or associated with the biosynthesis of 255 

antimicrobial phenolics (Nigro et al., 2000; Erkan et al. 2008). For successful colonization, a 256 

pathogen must succeed over the fruit’s defensive arsenal. This could be done even for a single 257 

microorganism by many different mechanisms depending on the prevailing physiological and 258 

environmental conditions. Prusky et al., (2016) recently suggested that carbon availability in 259 

the environment is a key factor triggering the production and secretion of ammonia and organic 260 

acids which could modulate the pH and result in completely different pathogenic responses. 261 

Then, it would be interesting to evaluate whether the pattern of exposure to UV-C radiation 262 

could affect carbon status within the apoplast and contribute to affect pathogen invasion. 263 

 264 

3.2 Receptacle and calyx color, respiration, sugars, acidity and ascorbic acid 265 

Fruit receptacle hue and lightness decreased indicating that ripening progressed even 266 

during storage at 0 °C (Table 1). The receptacle hue decreases during storage from 45º at the 267 

beginning to 30º at the end of storage period. No differences in hue values were recorded 268 

between control and UV irradiation fruit for any treatment schedule evaluated (Table 1). This is 269 

consistent with the results reported by Pan et al. (2004) who found subtle color changes in UV-270 

C treated strawberries. The UV treatments induced a slight reduction in receptacle lightness 271 

(L*). However, this effect was very limited compared to the browning recorded during the 13-d 272 

storage period. At the last sampling date, the two-step UV-C treatments caused lower lightness 273 

loss than control (Table 1). Calyx hue angle dropped in all treatments from values ca. 130 at 274 

harvest to 120 at the last sampling date in association with chlorophyll degradation. In 275 

accordance with Marquenie et al. (2002) we did find some calyx browning and drying in UV-C 276 

treated strawberries. The reduction of calyx L* values was delayed in two- and multi-step UV 277 

treatments (Table 1).    278 
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Fruit respiration rate showed an increasing trend during storage in control and treated 279 

fruit (Table 2). Though strawberry has a non-climacteric ripening pattern of respiration previous 280 

works have reported that CO2 production can increase especially after long term storage 281 

(Vicente et al., 2006). This has been mainly related to prolonged stress conditions occurring in 282 

the postharvest environment such as water and nutrient deprivation and pathogen challenges 283 

that may result in fruit damage (Li and Kader 1989). After 13 d at 0 ºC, UV-C irradiated fruit 284 

maintained lower respiration levels than the remaining treatments. This indicates that UV 285 

irradiation reduced fruit deterioration and may be useful to maintain lower metabolic activity. 286 

We further determined changes in acidity sugars and ascorbic acid to determine if these 287 

components contributing to fruit taste and nutritional quality were affected by the UV-C 288 

treatment schedule. Fruit acidity and ascorbic acid content did show no major changes during 289 

storage and were not affected by any of the UV-C treatments evaluated. Glucose and fructose 290 

represented 65% of total fruit sugars at harvest (Table 2). During storage, they showed an 291 

increasing trend, with a concomitant decrease in sucrose likely probably resulting from 292 

invertase action as reported by Basson et al. (2010). However, this trend was similar in control 293 

in all the UV treatments evaluated. Overall this shows that UV-C treatments did not cause major 294 

changes in soluble sugars acid or ascorbic acid metabolism at the whole fruit level. 295 

 296 

3.3 Firmness and cell wall material 297 

No significant differences were found in firmness prior to cold storage were found among 298 

treatments. As expected the fruit soften markedly during storage. Though strawberries subjected 299 

to conventional single UV-C irradiation showed a tendency to maintain higher firmness than the 300 

control the differences were not statistically significant (Figure 4). Cote et al. (2013) found that 301 

for single application of 4 kJ m-2 the efficacy of UV-C applications in firmness retention is 302 

highly dependent on the radiation intensity. Previous work showed that UV may delay 303 

strawberry softening. However, the effect was much more limited than that reported for other 304 

physical treatments such as hot air conditioning or high CO2 atmospheres. Both low dose 305 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
fractionated UV treatments improved firmness retention.  The delay in fruit softening of cyclic 306 

low dose UV-C treatments was still observed after 13 days of storage (Figure 4). The biological 307 

basis of the imporved texture of low fluence two- and multi-step treatments occurs deserves 308 

further studies. Down-regulation of genes coding for cell wall degrading proteins by pre-storage 309 

UV irradiation has been reported (Pombo et al., 2009). In this case the inhibitory effect was 310 

transient, and normal mRNA levels and enzyme activities recovered after few days. In this 311 

scenario if low UV-C doses used for cyclic irradiation are sufficient to disturb normal ripening 312 

expression pattern is plausible to hypothesize that the inhibitory effect the biochemical 313 

determinants of fruit softening be sustained longer. The effect of UV-C treatment schedule on 314 

fruit cell wall degrading proteins has not been reported and deserves further analysis. In any 315 

case, it would be valuable to establish the minimal inhibitory treatment conditions (dose and 316 

intensity) and the interval between photochemical treatments. In any case, the improved efficacy 317 

of fractionated treatments to maintain firmness has great interest given that excessive softening 318 

is one of the main factors limiting the postharvest life of strawberry fruit. 319 

We also evaluated the residue obtained the residue after extensive extraction in boiling 320 

ethanol (AIR) which for fruits having low starch levels represents mainly the insoluble cell wall 321 

material. Before cold storage the AIR ranged between 1.87 and 2.01% without differences 322 

among treatments. No significant changes were found in the AIR of control fruit. In contrast 323 

strawberries subjected to fractionated UV exposure showed an increasing trend (Table 3). The 324 

increase of insoluble material is at least unexpected given that it is know that extensive 325 

polysaccharide degradation accompanies fruit softening (El Ghaouth et al. 2003),. UV-C 326 

treatments are known to induce the formation of reactive oxygen species such as H2O2 (Civello 327 

et al. 2006) which could contribute to the formation of cross links within the cell walls. 328 

Oxidative coupling phenolics, and hydroxyproline and tyrosine in wall proteins in response to 329 

fungal attack has been reported (Bradley et al. 1992; Charles et al., 2008). The oxidative 330 

cross-linking of cell wall structural proteins is thought to be a rapid defense response to 331 

strengthen the cell wall against the invading pathogen prior to the activation of other post-332 

transcription dependent defense responses (Brisson et al. 1994). The higher levels of AIR in 333 
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cyclic low dose UV treated fruit suggests that the improved maintenance of fruit cell wall 334 

integrity contributes to reduce fruit susceptibility to pathogen attack as has been shown in other 335 

ripening fruits (Cantu et al. 2008). 336 

 337 

3.5 Sensory visual evaluation 338 

We finally conducted a sensory evaluation panel to evaluate whether untrained 339 

consumers would detect any differences among control and UV treated strawberries that may 340 

affect their purchase decision. After 10 days of storage fruit subjected to two-step UV-C 341 

irradiation had the highest scores in fruit color, freshness and overall acceptability (Figure 5). 342 

Despite of the lack of differences in instrumental color values consumers preferred UV treated 343 

fruit. Based on further analysis of such discrepancy the highest panelists score for irradiated 344 

fruits was due to higher gloss which may be more directly related to surface dehydration than to 345 

pigment contents. Scores for all the attributes after 13 d of storage were dramatically higher for 346 

two-step and multi-step treatments given the reduced decay and dehydration observed in these 347 

groups (data not shown). 348 

 349 

CONCLUSIONS 350 

UV-C treated strawberries showed, after 13 d at 0 °C, lower respiration than the control, 351 

suggesting that fruit deterioration was reduced. UV-C exposure also caused a marked decrease 352 

in decay, molds, weight loss and softening; with the effect being significantly greater in fruit 353 

subjected to two step and multi-step treatments. Instead, the UV-C irradiation schedule did not 354 

affect acidity, sugars and ascorbic acid content. Repeated low dose UV exposure was more 355 

effective to yeast counts than single pre-storage high fluence irradiation. Multi-step treated 356 

strawberries showed an increase in alcohol insoluble material during storage indicating that 357 

repeated UV-C irradiation may be inducing de novo deposition and/or cross linking of cell wall 358 

material. Finally subjected to two-step UV showed highest sensory scores in calyx color, 359 
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freshness and acceptability when presented to non-trained consumers. Overall, results show that 360 

cyclic low dose UV-C treatments retain strawberry fruit quality more effectively than 361 

conventional pre-storage single high fluence applications. 362 
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 521 

FIGURE CAPTIONS 522 

Figure 1. Weight loss in strawberry fruit during storage at 0 °C for 0, 10 and 13 days. Different 523 

letters indicate differences based on a Tukey test at a level of significance of *P<0.05. Control: 524 

Without UV-C application ( ); One-step UV: single UV-C 4 kJ m-2 application before storage 525 

( ); Two-step UV: two 2 kJ m-2 applications after 0 and 4 d of storage () and Multi-step: five 526 

0.8 kJ m-2 after 0, 2, 4, 6 and 8 d of storage ( ). 527 

 528 

Figure 2. Decay in strawberry fruit during storage at 0 °C for 0, 10 and 13 days. Different 529 

letters indicate differences based on a Tukey test at a level of significance of *P<0.05. Control: 530 

Without UV-C application ( ); One-step UV: single UV-C 4 kJ m-2 application before storage 531 

( ); Two-step UV: two 2 kJ m-2 applications after 0 and 4 d of storage () and Multi-step: five 532 

0.8 kJ m-2 after 0, 2, 4, 6 and 8 d of storage ( ). 533 

 534 

Figure 3. Viable colony counts of mold and yeast in strawberry fruit during storage at 0 °C for 535 

0, 10 and 13 days. Different letters indicate differences based on a Tukey test at a level of 536 

significance of *P<0.05. Control: Without UV-C application ( ); One-step UV: single UV-C 4 537 

kJ m-2 application before storage (); Two-step UV: two 2 kJ m-2 applications after 0 and 4 d of 538 

storage ( ) and Multi-step: five 0.8 kJ m-2 after 0, 2, 4, 6 and 8 d of storage ( ). 539 

 540 

 541 
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Figure 4. Firmness in strawberry fruit during storage at 0 °C for 0, 10 and 13 days. Different 542 

letters indicate differences based on a Tukey test at a level of significance of *P<0.05. Control: 543 

Without UV-C application ( ); One-step UV: single UV-C 4 kJ m-2 application before storage 544 

( ); Two-step UV: two 2 kJ m-2 applications after 0 and 4 d of storage () and Multi-step: five 545 

0.8 kJ m-2 after 0, 2, 4, 6 and 8 d of storage ( ). 546 

 547 

Figure 5. Sensory scores for color, freshness appearance and overall acceptability in strawberry 548 

fruit stored at 0 °C for 10 days. Different letters indicate differences based on a Tukey test at a 549 

level of significance of *P<0.05. Control: Without UV-C application ( ); One-step UV: single 550 

UV-C 4 kJ m-2 application before storage (); Two-step UV: two 2 kJ m-2 applications after 0 551 

and 4 d of storage () and Multi-step: five 0.8 kJ m-2 after 0, 2, 4, 6 and 8 d of storage ( ). 552 

 553 

 554 
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Table 1: Receptacle and calyx color in control or irradiated strawberry fruit (one-step UV: single 

UV-C 4 kJ m-2 application before storage; two-step UV: two 2 kJ m-2 applications after 0 and 4 d of 

storage and multi-step UV: five 0.8 kJ m-2 after 0, 2, 4, 6 and 8 d of storage) during storage at 0 °C 

for 0, 10 and 13 days. Different letters indicate differences based on a Tukey test at a level of 

significance of *P<0.05. 

  Time at 0 °C (d) 
   
  0 10 13 
 

Receptacle 
lightness  

(L*) 

Control 51.9g     ±3.2 47.7e     ±2.0 44.9a       ±3.9 
One-step UV 49.9f      ±2.9 46.9cde ±2.5 45.3ab     ±4.4 
Two-step UV 50.6f      ±2.8 46.9de   ±2.6 46.3bcd   ±2.2 
Multi-step UV 50.5f      ±2.9 46.8cde ±1.9 45.0abc   ±3.3 

 
Receptacle 

ºHue  

Control 47.5ef    ±5.1 28.4ab   ±3.8 31.8c       ±4.0 
One-step UV 45.8d     ±4.3 29.8ab   ±3.9 28.6ab     ±4.9 
Two-step UV 46.2de   ±3.9 28.3ab   ±8.5 29.9bc     ±5.2 
Multi-step UV 47.9f      ±4.6 28a        ±4.0 29.8ab     ±4.6 

 
Calyx 

lightness 
(L*) 

Control 51.1d     ±3.1 49.4c     ±2.6 47.2a       ±4.0 
One-step UV 49.4c     ±2.5 48.7abc ±3.4 48.7abc   ±3.4 
Two-step UV 50.1c     ±2.8 47.9ab   ±2.8 49.3bc     ±2.9 
Multi-step UV 50c        ±2.9 49.4c     ±1.7  49.1bc     ±2.8 

 
Calyx  
ºHue 

Control 134d      ±4.3 119.3ab ±7.9 121.7b     ±6.6 
One-step UV 133.5cd ±4.3 116.4a   ±9.2 116.6a     ±12.9 
Two-step UV 134.2d   ±3.4 120.7ab ±10.5 119.4ab   ±6.1 
Multi-step UV 132.1c   ±5.1 120.8b   ±7.2 118.0ab   ±10.8 
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Table 2: Respiration rate, acidity, glucose, fructose, sucrose and ascorbic acid content in control or 

irradiated strawberry fruit (one-step UV: single UV-C 4 kJ m-2 application before storage; two-step 

UV: two 2 kJ m-2 applications after 0 and 4 d of storage and multi-step UV: five 0.8 kJ m-2 after 0, 2, 

4, 6 and 8 d of storage) during storage at 0 °C for 0, 10 and 13 days. Different letters indicate 

differences based on a Tukey test at a level of significance of *P<0.05. 

  Time at 0 °C (d) 
   
  0 10 13 

Respiration 
rate 

(mL kg -1 h-1) 

Control 24.4ab   ± 8.3 45.5b     ±9.1 61.1c    ±1.2 
One-step UV 29.8a     ± 0.5 49.8b     ±10.3 50.3b    ±9.0 
Two-step UV 30.3a     ±0.4 53.6b     ±3.4 54.7b    ±4.7 
Multi-step UV 23.2a     ±11.0 52.2b     ±0.6 51.1b    ±7.7 

 
Acidity 

(meq. H+ kg) 

Control 0.3ab     ±0.3x10-2 0.3ab     ±0.9x10-2 0.3a      ±0.3x10-2 
One-step UV 0.4 c      ±1.8x10-2 0.3ab     ±2.3x10-2 0.3ab    ±3.7x10-2 
Two-step UV 0.3bc     ±3.7x10-2 0.3ab     ±1.3x10-2 0.3ab    ±0.4x10-2 
Multi-step UV 0.3ab     ±0.2x10-1 0.3ab     ±1.3x10-2 0.3ab    ±0.1x10-3 

 
Glucose 

(%) 

Control 1.2abc   ±0.3 1.5c       ±0.1 1.5c      ±4.3x10-2 
One-step UV 1.1ab     ±0.1 1.3bc     ±0.1 1.4bc    ±0.1 
Two-step UV 1.0a       ±0.2 1.2abc   ±0.1 1.5c      ±0.2  
Multi-step UV 1.0a       ±0.1 1.2abc   ±0.4   1.36c    ±0.1 

 
Fructose 

(%) 

Control 1.2ab     ±0.1 1.5c   ±3.7x10-2 1.6c      ±0.1 
One-step UV 1.1ab     ±0.1 1.4bc     ±0.1 1.5c      ±8.2x10-2 
Two-step UV 1.1a       ±0.1 1.3abc   ±0.2 1.6c      ±0.1 
Multi-step UV 1.0a       ±0.3 1.3abc   ±0.4 1.5c      ±0.1 

 
Sucrose  

(%) 

Control 1.5c       ±0.3 1.1a        ±0.166 0.7a      ±0.2 
Single-step UV 1.5c       ±9.7x10-2 1.0ab      ±0.2 0.8ab    ±0.1 
Two-step UV 1.5c       ±0.2 0.9ab      ±0.2 0.8ab    ±7x10-3 
Multi-step UV 1.5c       ±0.1 0.8ab      ±0.1 0.8ab    ±0.1 

 
Ascorbic 

acid 
(mg 100 g-1) 

Control 34.7a     ±1.2 46.1abc  ±3.3 35.0a    ±4.6   
Single-step UV 41.6abc ±1.2 52.2c      ±5.1 38.0ab  ±9.9 
Two-step UV 39.8bc   ±1.7 40.0ab   ±10.8 46.1abc ±8.2 
Multi-step UV 45.2abc ±1.3 48.1bc    ±1.5  44.8abc ±2.6 
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Table 3: AIR (one-step UV: single UV-C 4 kJ m-2 application before storage; two-step UV: two 2 kJ 

m-2 applications after 0 and 4 d of storage and multi-step UV: five 0.8 kJ m-2 after 0, 2, 4, 6 and 8 d 

of storage) during storage at 0 °C for 0, 10 and 13 days. Different letters indicate differences based 

on a Tukey test at a level of significance of *P<0.05. 

  Time at 0 °C (d) 
   
  0 10 13 
 

AIR  
(g 100g-1) 

Control 1.81ab      ±0.22 1.87ab     ±0.04 2.05bc     ±0.17 
One-step UV 2.00ab      ±0.0 1.83ab     ±0.03 2.27cd     ±0.08 
Two-step UV 1.99ab      ±0.21 1.77a       ±0.08 2.42d       ±0.03 
Multi-step UV 1.85ab      ±0.04 2.01abc   ±0.15 2.44d       ±0.08 
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Highlights 

 

• Low-dose cyclic UV_C exposure extended the postharvest life of refrigerated 

strawberry 

 

 

• Two and multi-step UV-C irradiation maintained firmness and markedly reduced decay 

 

 

• Fruit exposed to repeated low dose irradiation showed highest consumer sensory 

scores 

 

 

• For a fixed total dose the irradiation schedule has great impact on the efficacy of UV-C 

treatments 

 

 

• Repeated low dose exposure was more effective than conventional single-step 

irradiation 


