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Abstract

In recent years an increasing interest in the development of discriminative methods based on
sparse representations with discrete dictionaries for signal classification has been observed. It is still
unclear, however, what is the most appropriate way for introducing discriminative information into
the sparse representation problem. It is also unknown which is the best discrepancy measure for
classification purposes. In the context of feature selection problems, several complexity-based mea-
sures have been proposed. The main objective of this work is to explore a method that uses such
measures for constructing discriminative sub-dictionaries for detecting apnea-hypopnea events using
pulse oximetry signals. Besides traditional discrepancy measures, we study a simple one called dif-
ference of conditional activation frequency (DCAF). We additionally explore the combined effect of
over-completeness and redundancy of the dictionary as well as the sparsity level of the representation.
Results show that complexity-based measures are capable of adequately pointing out discriminative
atoms. Particularly DCAF yields competitive averaged detection accuracy rates of 72.57% at low
computational cost. Additionally, ROC curve analyses show averaged diagnostic sensitivity and
specificity of 81.88% and 87.32%, respectively. This shows that discriminative sub-dictionary con-
struction methods for sparse representations of pulse oximetry signals constitute a valuable tool for
apnea-hypopnea screening.

Keywords: Discriminative information, discrepancy measures, sparse representation, apnea-hypopnea1

events, pulse oximetry signal.2

1 Introduction3

Although it is widely used and accepted, the notion of complexity has very often avoided a rigorous4

formalization. It is therefore not surprising that no universally accepted measure exists yet for quantifying5

such a concept. In particular, within information theory, the complexity of any element of a code, or6

of any feature of a signal representation in the context of signal processing, is known to be strongly7

related to the information it carries or, more precisely, to the value of its entropy. It is important to8

point out however that, in the context of signal classification, the more informative features (in terms9

of classification) are not necessarily the ones with larger entropy. Hence more “ad-hoc” measures are10

needed. In fact, any appropriate complexity measure corresponding to a given feature should be instead,11

strongly related to the amount of information about class membership provided by such a feature. One12

could then think of using as measure of complexity the conditional entropy of the class given the feature.13

However, features providing the most discriminative information regarding a class are almost always those14

with lower conditional entropy values, and hence the best features for classification purposes will be the15

least complex ones.16

Information theory was originally based on the engineering of noisy communication channels, and17

it is closely associated to a large number of disciplines such as signal processing, artificial intelligence,18

complex systems and pattern recognition, to name only a few. We are particularly interested in the latter.19

Pattern recognition is a discipline which is mainly oriented to the generation of algorithms or methods20

that can decide an action based upon certain recognized similarities (patterns) in the input data. Within21

signal classification, which is perhaps one of the most important subfields of pattern recognition, several22

discrepancy measures have been used in problems coming from a wide variety of areas such as machine23
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learning [1], image and speech processing [2], neural networks [3] and biomedical signal processing [4, 5],24

among others. Among them the most commonly used is probably the Kullback-Leibler (KL) divergence25

[6, 7]. This divergence, also known as relative entropy, was used as a discriminative measure for selecting,26

from a large collection of orthonormal bases, the one attaining maximum information [1]. A more recent27

approach was introduced by Gupta et.al. [8] who used this divergence as a discrepancy measure in the28

traditional k-nearest neighbor (k-NN) algorithm, yielding competitive classification performances in the29

context of raw electroencephalographic signal classification. Although it provides certain computational30

and theoretical advantages, the lack of symmetry of the KL divergence has motivated the development31

of several symmetric versions such as the so called J-divergence [9] and the well known and widely used32

Jensen-Shannon divergence [10].33

Sparse representation of signals constitute a useful technique which has drawn wide interest in recent34

years due to its success in many applications such as signal and image processing [11]. This technique35

allows the analysis of the signals by means of only a few well-defined basic waveforms. Due to its36

advantages, such as robustness to noise and dimension reduction, among others, sparse representation37

has acquired a large popularity in the area of biomedical signal processing. For example, this technique38

has been successfully applied to several problems including the estimation of the human respiratory rate39

[12] and electrocardiographic signal processing, both for signal enhancement and QRS complex detection,40

for improving heart disease analysis and diagnosis [13]. It is timely to point out however that, up to our41

knowledge, no applications of discrepancy measures to sparse representation for signals classification are42

known yet.43

All reconstructive methods, such as principal components analysis (PCA), independent components44

analysis (ICA) and the previously mentioned sparse representations [14], produce particular types of45

signal representations minimizing a given cost functional which usually involves both fidelity and regular-46

ization terms. These methods have been successfully applied in a wide variety of problems such as signal47

denoising, missing data and outliers, among many others. On the other hand, discriminative methods48

such as linear discriminant analysis (LDA) are oriented to find optimal decision boundaries to be used49

for classification tasks. It is well known that for signal classification, which is our main interest in this50

work, discriminative methods generally outperform reconstructive methods. It is mainly for this reason51

that several authors have recently developed supervised approaches based on sparse representation which52

are simultaneously reconstructive and discriminative [15, 16].53

The obstructive sleep apnea-hypopnea (OSAH) syndrome [17] is one of the most common sleep disor-54

ders and more often that not it remains undiagnosed and therefore not treated. This syndrome is caused55

by repeated events of partial or total blockage of the upper airway during sleeping, which correspond to56

events of hypopnea and apnea, respectively. To evaluate the severity degree of the OSAH syndrome, med-57

ical physicians have created the so called apnea-hypopnea index (AHI), which is defined as the average58

number of apnea-hypopnea events per hour of sleep. In terms of this index OSAH is classified as normal,59

mild, moderate or severe depending on whether such an index falls in the interval [0, 5), [5, 15), [15, 30),60

or [30,∞), respectively. The gold standard test for OSAH diagnosis is a study called polysomnography61

(PSG). However, PSG is both costly and lengthy and the accessibility to this type of study is limited.62

Additionally, PSG studies require of information coming from a variety of physiological signals such as63

electroencephalography (EEG), airflow, pulse oximetry (SaO2), etcetera. It is known however that ces-64

sation of breathing associated with apnea-hypopnea events are always accompanied by a drop in the65

oxygen saturation level in the SaO2 signal record, although quite often such a drop is very small and66

almost impossible to detect by a human observer.67

The main objective of this work is precisely to develop a technique based on sparse representations68

and the use of appropriate discriminative information that be able to accurately and efficiently detect69

apnea-hypopnea events by using only the SaO2 signal. Several ways exists for combining discriminative70

information and sparse representations within the context of signal classification. We shall follow one71

consisting of using the discriminative information for detecting those atoms having the most frequent72

activations in order to provide them as input for a classifier. This approach was initially introduced in73

[4] where two methods using the absolute value of the activation differences of the atoms as a measure74

of the discriminative information for the detection of OSAH were presented. In this work a rigorous75

formalization of such a measure is introduced and compared with several other discrepancy measures for76

classifying apnea-hypopnea events. Also, the combined effect of using different sizes of non-redundant77

dictionaries and different sparsity degree is explored in detail. Results show clearly that the proposed78

measure is capable of adequately pointing out discriminative atoms in a full dictionary, yielding competi-79

tive accuracy rates in the detection of individual apnea-hypopnea events. Additionally, this new approach80

is computationally very cheap. In fact, it has proved to be at least twice faster than those associated to81

all other discrepancy measures.82
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The rest of this article is organized as follows: in Section 2 the obstructive sleep apnea-hypopnea83

syndrome is explained. Sparse representation of signals is introduced in Section 3. In Section 4 sev-84

eral discriminative information measures are presented. Section 6 contains a detailed description about85

the performed experiments. Results and discussions are introduced in Section 7 while conclusions are86

presented in Section 8.87

2 Sleep apnea-hypopnea88

Apnea-hypopnea events occur as a consequence of a functional-anatomic disturbance of the upper airway89

producing its partial or total blockage. At the end of an apnea-hypopnea event, a pronounced desaturation90

of the blood hemoglobin commonly occurs. These desaturations generate characteristic patterns in the91

pulse oximetry record known as intermittent hypoxemias. The hypoxemia-reoxygenation cycles promote92

oxidative stress, angiogenesis and tumor growth, favor the sympathetic activation with increment of93

blood pressure and systemic and vascular inflammation with endothelial dysfunction which contributes94

to multi-organic chronic morbility, metabolic abnormalities and cognitive impairment [18]. Additionally,95

strong correlations between neoplastic diseases and the OSAH syndrome have been described in [19].96

Also, a recent study among male mice suggests that OSAH’s intermittent hypoxia can be associated to97

fertility reduction [20]. Currently this pathology affects more than 4% of the human population around98

the world [21]. Additionally, it was found that aging, male gender, snoring and obesity are all risk factors99

for OSAH syndrome [22].100

Although very limited in many countries, overnight polysomnography (PSG) is currently the gold101

standard tool for diagnosing OSAH syndrome. As previously mentioned, a full PSG consists of the102

simultaneous measurement of several physiological signals such as EEG, electrocardiography (ECG),103

respiratory effort, airflow, SaO2 and electrical activity produced by skeletal muscles (EMG), etc. Mainly104

due to its ease of acquisition, we are particularly interested in the SaO2 signal. Figure 1 shows a typical105

temporal plot of just a few physiological signals coming from a full PSG. This figure also depicts a106

portion of an original raw airflow signal as well as the corresponding portion of the SaO2 signal. The107

corresponding labels of apnea-hypopnea events (dashed lines) are also shown. Finally, at the bottom of108

this figure, the electrical activity of the heart as well as the sleep stages are shown. In a typical PSG109

study, after a normal period of sleep the recorded signals are provided to medical experts who analyze the110

whole record and mark the apnea-hypopnea events and sleep stages, needed for the posterior evaluation111

the AHI index. Due to its complexity and cost, a few alternatives to PSG have been adopted. One112

of the most popular ones is the so called home respiratory polygraphy (HRP) [23] which requires no113

neurophysiological signals. Although studies have shown that there exists a high correlation between114

AHI values generated by HRP and PSG studies [24], HRP still needs of several physiological signals,115

whose acquisition strongly affects the normal sleeping of the person. It is therefore highly desirable to116

develop a reliable OSAH screening system which makes use of as few as possible physiological signals. In117

this regard, pulse oximetry, being a cheap and non-invasive technique, has become a suitable alternative118

for screening purposes [25].119

In this work we shall develop a method for the detection of apnea-hypopnea events that uses only the120

SaO2 signals. Our approach leads to a binary classification problem whose main purpose is the detection121

of the presence (or not) of events of apnea and hypopnea. It is timely to point out that although our122

method does take into consideration an appropriate fidelity term, we are by no means interested in123

achieving accurate signal representation.124

3 Sparse representations125

As previously mentioned, one of the most popular reconstructive methods is based on sparse represen-126

tations of the signals involved. Sparsity can be enforced by including upper bounds for the number of127

non-zero coefficients in the representation of the given signals in terms of atoms in a dictionary.128

Formally, the problem of sparse representations of signals can be separated into two sub-problems, the
so-called sparse coding problem and the dictionary learning problem. We shall now proceed to describe
in detail each one of these sub-problems. To be more precise, let x ∈ RN be a discrete signal and let
Φ ∈ RN×M (generally with M ≥ N) be a dictionary whose columns φj ∈ RN are atoms that we want to
use for obtaining a representation of x of the form x = Φa. Here, and in the sequel, we shall refer to the
vector a = [a1 a2 · · · aM ]T ∈ RM as a “representation” of x. Sparsity consists essentially of obtaining
a representation with as few non-zero elements as possible. A way of obtaining such a representation
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Figure 1: A portion of a few number of physiological signals coming from a full PSG. Dashed lines (brown)
are apnea-hypopnea labels introduced by the medical expert.

consists of solving the following problem:

(P0) : min
a
||a||0 subject to x = Φa,

where ||a||0 denotes the l0 pseudo-norm, defined as the number of non-zero elements of a.129

Several questions regarding problem (P0) immediately arise. Among them: i) does there exist an130

exact representation x = Φa?, ii) if an exact representation exists, is it unique?, iii) in the case of non-131

uniqueness, how do we find the “sparsest” representation?, iv) how difficult is it, from the computational132

point of view, to solve problem (P0)?. Although it is not an objective of this article to get into details133

about the answers to these questions, it turns out that imposing exact representation is most often a too134

restrictive and therefore inappropriate constrain and, on the other hand, solving (P0) is generally an NP135

hard problem yielding this approach highly unsuitable for most applications. For more details we refer136

the reader to [26, §1.8].137

In order to overcome some of the difficulties which entail solving problem (P0), several relaxed versions
of it have been considered. One of them consists of allowing a small representation error while imposing
an upper bound on the l0 pseudo-norm of the representation:

(P q
0 ) : min

a
||x− Φa||2 subject to ||a||0 ≤ q,

where q is a prescribed integer parameter. This formulation takes into account the existence of possible138

additive noise terms; in other words it assumes that x = Φa + e where e ∈ RN is a small energy noise139

term. Thus, this approach is particularly suitable in most real applications (such as biomedical signal140

processing) where measured signals are always contaminated by noise. Several greedy strategies have141

been proposed for solving problem (P q
0 ) [27, 28]. Among them, orthogonal matching pursuit (OMP)142

[28] is perhaps the most commonly used strategy. This greedy algorithm guarantees convergence to the143

projection of x into the span of the dictionary atoms, in no more than q iterations. Figure 2 shows an144

example of the values of a particular coefficient aj∗ associated to the atom φj∗ obtained by applying145

the OMP algorithm for a large number (almost half a million) of segments of SaO2 signals and its146

corresponding activation histogram.147

Although pre-constructed dictionaries, such as the well known wavelet packets [29], typically lead to148

fast sparse coding, they are almost always restricted to certain classes of signals. Is is mainly for this149

reason that new approaches introducing data-driven dictionary learning techniques emerged. A dictionary150

learning (DL) problem consists of simultaneously finding a dictionary Φ and representations of n signals151

xi, 1 ≤ i ≤ n, (in terms of atoms of such a dictionary) complying with a sparsity constraint for each one152

of the n signals, while minimizing the total representation error. The (DL) problem associated to the153

data: q, M , N ∈ N, M ≥ N and n signals in RN , x1, · · · ,xn, can be formally written as:154
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(DL) : min
n∑
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Figure 2: The values of the activations of a particular atom for each signal (left) and the corresponding
histogram of activations (right).

The first data-based dictionary learning algorithms were originally developed almost three decades155

ago [30, 31, 32]. Some of them have their roots in probabilistic frameworks by considering the observed156

data as realizations of certain random variables [30, 31]. In [31] for example, the authors developed an157

algorithm for finding a redundant dictionary that maximizes the likelihood function of the probability158

distribution of the data. In that work, an analytic expression for the likelihood function was derived159

by approximating the posterior distribution by Gaussian functions. An iterative approach for dictionary160

learning, known as the “method for optimal directions” (MOD), was presented in [32]. The sparse coding161

stage of this method makes use of the OMP algorithm followed by a simple dictionary updating rule.162

A new iterative algorithm was recently proposed by Aharon et.al. in [14]. This new approach, called163

“K singular value decompositions” (KSVD), consists mainly of two stages: a sparse coding stage and a164

dictionary learning stage. The OMP algorithm is used for the sparse coding stage, which is followed by a165

dictionary updating step where the atoms are updated one at a time and the representation coefficients166

are allowed to change in order to minimize the total representation error.167

4 Discriminative sub-dictionary construction168

Although data-driven dictionary learning algorithms produce sparse representations of signals which are169

robust against noise and missing data, such representations turn out to be unsuitable if the final objective170

is signal classification. This is mainly so because those algorithms do not take into account any a-priori or171

available information concerning class membership. In order to overcome this difficulty, some strategies172

which incorporate appropriate class information have been proposed [4, 33, 16]. In [33], for instance, the173

authors developed a discriminative dictionary learning method by efficiently integrating a single predictive174

linear classifier into the cost function of the KSVD algorithm. A method incorporating a discriminative175

term into the cost function of the standard KSVD algorithm was presented in [16]. This method finds an176

optimal dictionary which is simultaneously representative and discriminative for face recognition tasks.177

In this work, we make use of a simple approach for detecting discriminative atoms from a previously178

learned dictionary and using them to build a new sub-dictionary. This approach, which was originally179

presented in [4], consists of solving two problems, namely: i) the above mentioned full (DL) problem180

and ii) a discriminative sub-dictionary (DSD) construction problem. We shall now proceed to describe181

problem ii). One way to obtain discriminative sub-dictionaries consists of maximizing an appropriate182

discriminative value functional G (·). Given a data matrix X ∈ RN×n, a class label vector c ∈ Cn (where183

C is the set of all classes; in the binary case C = {c1, c2}), a dictionary Φ ∈ RN×M and p ∈ N (with184

p < M), the most discriminative sub-dictionary Φ̂d ∈ RN×p, according to an appropriate prescribed185

discriminative value functional GX,c,Φ : RN×p → R+
0 is defined as:186

(DSD) : Φ̂d = argmax GX,c,Φ

(
Φd
)

d
.
=[i1 i2 ··· ip]

ij∈{1,2,··· ,M}
ij 6=ik∀j 6=k,

where for d
.
= [i1 i2 · · · ip], Φd denotes the N × p matrix whose jth-column is the ithj -column of Φ.187
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The function G, which must be provided, quantifies the discriminative power of each sub-dictionary Φd.188

Thus, large values of G correspond to highly discriminative sub-dictionaries while small values of G are189

associated to sub-dictionaries with low discriminability.190

Several questions concerning problem (DSD) clearly emerge. Among them: i) how do we find an191

appropriate discriminative value function G?, ii) given the functional G, does problem (DSD) have a192

solution?, iii) if it does, is it unique?, iv) in the case of non-uniqueness, how do we decide which sub-193

dictionary, among the optimizers, is the best for our classification purposes?, v) how difficult is it, in194

terms of computational cost, to solve problem (DSD)?. Although this problem has not been extensively195

studied, is it known that solving (DSD) is computationally very challenging for p > 1, mainly due to the196

combinatorial explosion problem. A way to overcome the computational complexities entailed by problem197

(DSD) consists of defining an appropriate discriminative value functional G for p = 1. In that way G is198

independently evaluated at each one of the atoms (columns) of Φ and the discriminative sub-dictionary199

Φd ∈ RN×p∗
is constructed by stacking side-by-side the first p∗ ranked columns of Φ with largest G200

values. This simplification is based on the assumption that each atom in the dictionary is used to model201

specific characteristics that are not completely modeled by the other atoms. Thus, the discriminative202

information provided by a particular atom will be different from the information contributed by other203

atoms.204

5 Discriminative value functions for atom selection205

Several ways for appropriately constructing discriminative value functions G exists. In this section we206

present two different approaches to define such a function. Namely i) using traditional discrepancy mea-207

sures and ii) using a new discriminative measure to which we shall refer as the “difference of conditional208

activation frequency” (DCAF). We shall previously need to introduce an appropriate setting and termi-209

nology regarding probability density functions (PDFs) in the context of sparse representations for signal210

classification.211

Here, and in the sequel, we shall consider the vectors x1,x2, · · · ,xn as realizations of a particular212

random vector X . Any sparse representation of those vectors will result in the PDFs of each coefficient213

aj (associated to the atom φj) showing a very concentrated peak at zero with heavy tails (as depicted in214

Figure 2). In the context of binary signal classification it is reasonable to think that if a given atom φj∗215

is highly discriminative, then the conditional PDFs π(aj∗ |c1) and π(aj∗ |c2) will be significantly different.216

Thus, if a dictionary Φ is poorly discriminative, then one should expect π(aj |c1) ≈ π(aj |c2) for all j.217

Although the elements aj of the representation vector a are in general real numbers, for practical218

reasons it is appropriate to discretize them. That can be done in the usual way by partitioning the219

real line R into intervals Ik
.
=
((
k − 1

2

)
∆,
(
k + 1

2

)
∆
]
, k ∈ Z, of length ∆ and the associated discretized220

random variable Kj
.
=
∑

k∈Z k χIk (aj). The corresponding probability mass function (PMF) is pKj (k) =221

P (aj ∈ Ik) =
∫
Ik
π (aj) daj , k ∈ Z. Figure 3 shows the estimated PMF and the corresponding conditional222

PMFs (given each one of the two classes), both for a non-discriminative and a discriminative atom using223

SaO2 signals.
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Figure 3: Estimated probability mass functions for a non-discriminative atom φj (left) and a discrimina-
tive one (right).
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We shall now proceed to define how we compute the discriminative value function G. Given the data225

matrix X ∈ RN×n, the corresponding class label vector c ∈ Cn and a full dictionary Φ ∈ RN×M , the first226

step consists of obtaining the sparse matrix A
.
= [a1 a2 · · · an] ∈ RM×n by applying the OMP algorithm.227

The jth-row of this sparse matrix is then used for estimating the conditional PMFs pKj
(·|c1) and pKj

(·|c2).228

Finally, the value of G at the atom φj is computed as the discrepancy (as quantified by an appropriate229

discrepancy measure) between these two PMFs. In what follows, we introduce the discrepancy measures230

that we shall use in this work.231

5.1 Traditional discrepancy measures232

A great diversity of measures whose purpose is performing comparisons between probability distributions233

exists [34]. In this work the best known and more commonly used ones are compared in terms of their234

performance for selecting the most discriminative atoms in a dictionary. The KL, J and JS divergence235

measures were utilized, along with the Fisher score (F).236

The KL divergence [7] is probably the most widely used information “distance” measure from a237

theoretical framework and it was successfully applied in numerous problems for signal classification [1,238

35, 36]. To compare the two conditional PMFs associated with the activation of the jth-atom the KL239

distance was used as follows:240

KL
(
pKj

(·|c1), pKj
(·|c2)

) .
=
∑
k∈Z

pKj
(k|c1) log

(
pKj(k|c1)

pKj
(k|c2)

)
, (1)

assuming that 0 log(0)
.
= 0.241

Despite the computational and theoretical properties provided by KL distance, what usually becomes242

a trouble in many problems of signal classification is its lack of symmetry. It can be easily seen that243

altering the order of the arguments in (1) can change the output value. To solve this issue a symmetric244

version of the KL distance can be used such as the J-divergence [9], which, even though was not initially245

created as a symmetric version of the KL distance, is the sum of the two possible KL distances between246

probability distributions. In this article the J-divergence is defined as follows:247

J
(
pKj

(·|c1), pKj
(·|c2)

) .
= KL

(
pKj

(·|c1), pKj
(·|c2)

)
+ KL

(
pKj

(·|c2), pKj
(·|c1)

)
. (2)

Another symmetric smoothed version of the KL distance is the JS divergence [10]. For the problem248

of comparing the two conditional probabilities associated to each class it is defined as:249

JS
(
pKj

(·|c1), pKj
(·|c2)

) .
= w1KL

(
pKj

(·|c1), qKj
(·)
)

+ w2KL
(
pKj

(·|c2), qKj
(·)
)
, (3)

where qKj(·) = w1pKj(·|c1)+w2pKj(·|c2) and w1 and w2 are the weights associated to each of the conditional250

PMFs, with w1, w2 ≥ 0 and w1 + w2 = 1. An interesting feature of the JS-distance is the fact that251

different values of weights (w1 and w2) can be assigned to the probability distributions according to their252

importance. In this work w1 = P (c1) and w2 = P (c2) i.e. the weights are associated with the a-priori253

probabilities of the classes. Note that computing the JS-distance as defined here is the same as computing254

the mutual information between the class and the activations, i.e. JS
(
pKj(·|c1), pKj(·|c2)

)
= MI(Kj , C).255

Within signal classification problems, F is a measure which has been extensively used. Unlike the other256

measures presented here, that require estimations of the conditional PMFs, F uses just two parameters257

of the distributions (the means and standard deviations). This makes this measure much less expensive258

computationally speaking, but implicitly assumes certain characteristics of the distribution under study259

(i.e. second order characteristics). In the case of univariate binary problem at hand the F can be defined260

as:261

F(pKj
(·|c1), pKj

(·|c2))
.
=

(µ1 − µ2)2

σ2
1 + σ2

2

, (4)

where µ` and σ2
` are the mean and standard deviation of pKj

(·|c`) [37].262

Although the above mentioned discrepancy measures provide, in a certain sense, “measures” of dis-263

tance between two probability distribution functions, most of them (such as the KL divergence and those264

symmetric variants) are not strictly a metric. For instance, the KL divergence is a non-symmetric dis-265

crepancy measure where the triangular inequality is not satisfied. Nevertheless, KL(pKj
(·|c1), pKj

(·|c2))266

is a non-negative measure, i.e. KL(pKj
(·|c1), pKj

(·|c2)) ≥ 0 and KL(pKj
(·|c1), pKj

(·|c2)) = 0 if and only if267

pKj
(·|c1) = pKj

(·|c2).268
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5.2 Difference of conditional activation frequency269

In a previous work a method called most discriminative column selection (MDCS) for the construction of270

a discriminative sub-dictionary was originally presented [4]. The sparse representations of the signals in271

terms of sub-dictionaries constructed using MDCS provided good performance in the detection of apnea-272

hypopnea events. In the mentioned work, the most discriminative atoms were identified by comparing273

the difference of conditional activation frequency (DCAF).274

The candidates to be considered as “most discriminative” according to [4] are those atoms with275

higher absolute difference between conditional activation probabilities given the class. That is, an atom276

is considered as highly discriminative if it is active, in proportion, more times for one of the classes. The277

use of this approach as a measure of discriminative power follows from the idea that one of the most278

expressive parameters regarding the importance of a given atom is its activation probability. Moreover, if279

certain atoms are active mostly for a given class, then it is assumed they represent features of importance280

in the description of that particular class.281

Following this idea, DCAF is defined as:282

DCAF(ηj1, η
j
2)

.
= |ηj1 − η

j
2|, (5)

where:283

ηj`
.
= number of activations of the jth-atom for c`

number of c` samples . (6)

The measure defined in (5) is symmetric, its value is always≥ 0, and is inexpensive in terms of computing1.284

It can easily be seen that the definition of ηj` in (6) is equal to the maximum likelihood estimation of285

the conditional probability of activation, i.e.:286

pKj
(k 6= 0|c`) ≈ ηj` . (7)

Replacing this expression in (5) we can write,287

DCAF(ηj1, η
j
2) ≈ |pKj

(k 6= 0|c1)− pKj
(k 6= 0|c2)|,

≈ |
(
1− pKj

(k = 0|c1)
)
−
(
1− pKj

(k = 0|c2)
)
|,

≈ |pKj
(k = 0|c2)− pKj

(k = 0|c1)|,
(8)

finally expressing the DCAF in terms of the complementary conditional probabilities that the atoms will288

not be activated. With the exception of the F, all the measures presented in Section 5.1 can be expressed289

as summations, where only one of the terms is computed using the probabilities that k = 0. However, due290

to the high sparsity of the representations the terms associated with k = 0 are particularly important.291

This fact allows us to expect some correlation between the results obtained with the different discrepancy292

measures and the DCAF.293

Figure 4 shows a representation of the conditional PMFs associated to the activations of two different294

atoms (left side) as well as an illustration of such functions where the peaks centered at zero (k = 0)295

were discarded (middle). It is important to note that, when excluding the zero-centered peak from the296

graphic, a significant reduction in the magnitude of the y-axis scale is produced which highlights the297

importance of the activation probability of sparse representations. However, the discrepancy between298

the distributions is not only due to the atoms activation probability, since slight differences between299

the probability values for all k 6= 0 exist (zoom-in region). Additionally, the absolute values of these300

differences are represented by the gray regions. It is also important to point out that, these area values301

shown in gray (
∑

k 6=0 |pK (̀k|c1)−pK (̀k|c2)|) are not necessarily equal to those corresponding to the DCAF302

values. Nevertheless, for symmetric PMFs with high kurtosis and heavy tails (such is the case of the303

PMFs used in this work), the conditional and a-priori distributions are similar and therefore both area304

values are close to each other.305

6 Experimental setup306

This section presents the proposed system and its configuration settings, aimed at detecting patients307

suspected of suffering from moderate-severe OSAH syndrome. It also describes the database used for308

training and testing the method along with the measures selected for assessing its performance.309

The main objective of our research is to explore the effect of using discrepancy measures to rank310

the atoms according to their discriminative power. Also, the experiments are designed to determine the311

1If the classes are balanced the DCAF can be replaced just by simply counting, without the necessity of dividing with
the number of samples.

8



pK (̀k|c1)
pK (̀k|c2)

pK (̀k|c1)|k 6=0

pK (̀k|c2)|k 6=0

|pK (̀k|c1)− pK (̀k|c2)||k 6=0

ηj2 ηj1 DCAFj

ηi2 ηi1 DCAFi

-200 -100 0 100 200 -200 -100 0 100 200

-200 -100 0 100 200 -200 -100 0 100 200

0.001

0.002

1

0.001

0.002

1

0.001

0.002

0.003

0.001

0.002

0.003

Figure 4: A representation of the conditional PMFs corresponding to the activations of two different
atoms (left side), the same functions excluding the peaks centered at zero (k = 0) and the absolute
value of their differences (middle) and a graphical interpretation of the DCAF (right side). The top row
corresponds to a non-discriminative atom (φj) while the bottom row corresponds to a discriminative one
(φi).

effect of using dictionaries with different degree of over-completeness (redundant dictionaries) for the312

detection of apnea-hypopnea events. Additionally, the performance of the system for different sizes of313

sub-dictionaries and sparsity degrees is analyzed.314

Figure 5 shows a simplified block diagram of the presented system. It can be observed that our system315

comprises a training phase (above) and a testing phase (below). To clarify the system’s description, we316

divided it into three different stages, namely Stage I, Stage II and Stage III. It can be seen that stages I317

and II are included into training and testing phases while Stage III is only used during testing. Stage I318

is composed by a pre-processing block whose inputs are the raw SaO2 signals and its outputs are filtered319

segments of such signals, as described in Section 6.1. At the training phase, Stage II receives segmented320

signals and finds an optimal discriminative sub-dictionary. During the testing phase, Stage II obtains a321

sparse matrix in terms of the previously found sub-dictionary. These processes are thoroughly described322

in Section 6.2. Finally, the obtained sparse codes are used as input of Stage III. This stage detects323

apnea-hypopnea events and estimates the AHI value, as described in Section 6.3.324

6.1 Database and signal’s pre-processing325

The sleep heart health study (SHHS) dataset [38, 39] was originally designed to study correlations between326

sleep-disordered breathing and cardiovascular diseases. This dataset includes a large number of PSG327

studies, each of them containing several physiological signals such as EEG, ECG, nasal airflow, SaO2,328

among others. Medical expert annotations of sleep stages, arousals and apnea-hypopnea events are also329

provided. In this work, only the SaO2 signal (sampled at 1Hz) and its corresponding apnea-hypopnea330

labels are considered for performing the experiments. In this article, the first online version of such a331

database (SHHS-2) is used. This version of the database contains a total of 995 freely available PSG332
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Figure 5: Block diagram of the proposed system during training (top) and testing (bottom).

studies2.333

The SaO2 signals are mainly degraded by patient movements, baseline wander, disconnections and the334

limited resolution of pulse oximeters, among others factors. When a disconnection occurs, the recording335

during the time interval where the sensor signal is blocked is lost. In order to overcome this inconvenient,336

the values of blood oxygen saturation during such an interval are linearly interpolated. To denoise the337

signals, a wavelet processing technique [40] is used. The denoising process is performed by zeroing the338

approximation coefficients at level 8, as well as the coefficients of the first three detail levels of the discrete339

dyadic wavelet transform with mother wavelet Daubechies 2. The signals are then synthesized using the340

modified wavelet coefficients by inverse discrete dyadic wavelet transform. The application of this wavelet341

decomposition technique has the effect of a band-pass filter where the baseline wander and both the low342

frequency noise and the high frequency noise, as well as the quantization noise are eliminated. Figure 6343

shows a small fragment of the original raw SaO2 signal (top) and its wavelet-filtered version (bottom).344

Labels of apnea-hypopnea events (dashed lines) introduced by the medical experts are also added. These345

labels were generated by medical experts using the airflow information and thus are not aligned to the346

desaturations, i.e. there is a variable delay between the start time of an event and the corresponding347

desaturation.348

The application of the sparse representation technique requires an appropriate segmentation of the349

signals. Segments of length N = 128 (corresponding to 128 seconds of the signal recording) with a 75%350

overlapping between two consecutive segments are taken. It is appropriate to point out that although351

several overlapping percentages were tested, the best system performances were yielded by a 75% over-352

lapping. This redundancy prevents apnea-hypopnea events from being undetected. In this segmentation353

process, the time intervals where a disconnection occurs are discarded. The segments of pulse oximetry354

signals are then simultaneously arranged as column vectors xi ∈ RN and labeled with ones (c1) and355

minus ones (c2), where a one corresponds to apnea-hypopnea events, and a minus one to the lack of it.356

Finally a signal matrix X is built by stacking side-by-side the column vectors xi, i.e. the signal matrix357

is defined as X
.
= [x1 x2 · · · xn].358

As mentioned above, the entire dataset used in this work contains 995 complete studies, 41 of which359

were not taken into account for performing the experiments since the size of the signal vectors differs from360

the corresponding vector of class labels. Among the remaining 954 studies, a subset of 667 (70%) studies361

were randomly selected and fixed for learning the dictionary and training the classifier. The remaining362

287 (30%) studies were left out for the final test. The SaO2 signals were filtered using wavelet filters and363

segmented as explained previously into column vectors of size 128. After performing the filtering and364

segmentation process, a signal matrix Xtrain of size 128× 455515 is assembled by joining two previously365

constructed signal matrices, one for each class, Xtrain .
= [Xtrain

c1 Xtrain
c2 ], which contain 183163 and 272352366

2https://physionet.org/physiobank/
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Figure 6: A small fragment of a pulse oximetry signal (top) and its wavelet-filtered version (bottom).
Dashed lines represent labels of apnea-hypopnea events established by the medical expert.

segments, respectively. On the other hand, for each study included into the testing dataset, a testing367

matrix Xtest is built.368

6.2 Sparse coding and sub-dictionary construction369

In our experiments, the learning of the dictionaries is performed by using the traditional KSVD method370

[14]. Optimized MATLAB codes for dictionary learning using KSVD as well as for sparse coding using the371

OMP algorithm are freely available for academic and personal use at the Ron Rubinstein’s personal web372

page3. At the beginning, the atoms assigned to conform the initial dictionary are randomly selected from373

the input signal matrix for training without tacking into account any information about the classes. If374

the signal’s space dimension is fixed, which should be the effect of constructing dictionaries with different375

over-completeness degree?. To answer this question, three types of dictionaries denoted by Φ1 of size376

128 × 128, Φ2 of size 128 × 256 and Φ4 of size 128 × 512, corresponding to redundancy factors of 1,377

2 and 4, respectively, were built. First the dictionary Φ1 was constructed by joining two sub-complete378

dictionaries of sizes 128×64 denoted by Φ1c1 and Φ1c2 learned using a large number of training segments379

(a total of 100,000 segments for each of the classes) belonging to the classes c1 and c2, respectively.380

Following the same idea, redundant dictionaries denoted by Φ2 (256 atoms) and Φ4 (512 atoms) were381

appropriately built. At the dictionary learning stage the number of non-zero elements was selected and382

fixed as a percentage value of 12.5 of the atoms conforming the dictionary. Also a total of 30 iterations383

of the KSVD algorithm were performed.384

Once the dictionary has already been trained, the sparse representation vectors a1,a2, · · · ,an cor-385

responding to the input signals x1,x2, · · · ,xn are obtained by applying the OMP algorithm. In such a386

procedure, the nearest integer number to a percentage value of 12.5 of M is selected and fixed. The reason387

for having chosen this percentage value is because it presented the best trade-off between representativity388

and discriminability of the segments. Thus, sparsity values of q = 16, q = 32, and q = 64 are selected to389

represent the input signals for training in terms of the full dictionaries Φ1, Φ2, and Φ4, respectively.390

Histograms are typically used to approximate data distributions. In this work we make use of his-391

tograms of the atom’s activations to approximate the PDFs. The discretization process was performed392

by using a ∆ value of 0.5. The detection of the most discriminative atoms is obtained by maximizing the393

discrepancy between the conditional PMFs of the atom’s activations given the classes. This objective is394

achieved using the proposed DCAF measure as well as those denoted by KL, J, JS and F. The application395

of different discrepancy measures to the sparse vectors allows for the selection of different “discriminative396

atoms”, which implies the construction of discriminative sub-dictionaries which are essentially different.397

The construction of sub-dictionaries, here denoted by Φ1d, Φ2d, and Φ4d, is performed by selecting atoms398

from Φ1, Φ2, and Φ4, respectively. Once the most discriminative atoms are detected, the sub-dictionary399

is built and consequently the feature vectors are obtained by applying the OMP algorithm. Finally each400

feature vector is assigned to be the input of the ELM classifier.401

3http://www.cs.technion.ac.il/~ronrubin/software.html
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6.3 Events detection and AHI estimation402

Multilayer perceptron (MLP) neural networks trained for signal classification have proved to be a tool403

which provides quite good performances for OSAH syndrome detection [4], however, the process of train-404

ing this class of neural network becomes very costly mainly in terms of time. For this reason, in this work405

we propose the use of extreme learning machine (ELM) [41] which is a type of single-hidden layer feed-406

forward neural networks (SLFNs), instead of using MLP neural networks. Theoretically, this algorithm407

(ELM) results in providing a good generalization performance at extremely fast learning speed. The ex-408

perimental results based on a few artificial and real benchmark function approximation and classification409

problems including large complex applications show that ELM can produce good generalization perfor-410

mance in most cases and can learn thousands times faster than conventional popular learning algorithms411

for feedforward neural networks [42].412

Basic ELM classifier’s MATLAB codes are available for download on the Guang-Bin Huang’s web413

page4. To train such a classifier, the main parameters to be fixed are the number of neurons in the414

hidden layer as well as the activation function of the neurons. In our experiments, the number of neurons415

in the hidden layer of the ELM corresponds to four times the feature vector dimension. Also the well416

know sigmoid activation function, which is the most common activation function in the nodes of the417

hidden and/or output layer, is chosen.418

In order to evaluate the performance of the proposed classifier in the detection of individual apnea-419

hypopnea events (a local approach), or more specifically, in the identification of persons suspected of420

suffering from moderate-severe OSAH syndrome (a global approach), three performance measures are421

used. For the identification of single segments containing apnea-hypopnea events, the sensitivity (SEAH)422

represents the total number of correctly classified segments of signals for which any apnea-hypopnea event423

occurred. Following the same idea, for the detection of individual segments of signals “not containing”424

any apnea-hypopnea event, the specificity (SPAH) is defined as the total number of correctly classified425

segments for which any apnea-hypopnea is not present. The accuracy (ACAH) is finally defined as follows:426

ACAH
.
=

1

n

n∑
i=1

δ(ci, ĉi), (9)

where n represents the total number of segments, ci and ĉi denote the corresponding class label of the427

ith-segment and the corresponding prediction of the classifier, respectively, and δ(x, y) represents the428

delta function whose output is true (one) if the condition x = y is satisfied and false (zero) otherwise.429

The differences in performance obtained for the event detection between each discrepancy measure430

were evaluated in order to test whether or not they are statistically significant. The test was performed431

assuming statistical independence of the classification errors for the different studies and approximating432

the error’s Binomial distribution by means of a normal distribution. This assumptions are reasonable due433

to the large number of SaO2 signal segments available for each study (about 1100 segments per study,434

totaling 301306 segments).435

The estimated AHI index (AHIest) is defined as the average number of predicted events per hour of436

study. This new index is used for OSAH syndrome detection. In this case, the sensitivity (SEOSAH) is437

defined as the ratio of persons with OSAH syndrome for whom the final test is positive, and the specificity438

(SPOSAH) is defined as the ratio of health patients for whom the final test is negative. Also the area439

under the ROC curve (AUC) derived from a receiver operating characteristic (ROC) analysis [43] is used.440

A ROC analysis consists of computing the values of the sensitivity and specificity across all the possible441

detection threshold (DT) values. Then, the ROC curve is built by performing a plot of 1-specificity versus442

sensitivity values. This curve has been widely used by medical physicians for evaluating diagnostic tests443

[44]. A comparison between two different methods can be effectively done by finding the “optimal” (in444

certain sense) cut-off point of the curve and evaluating their corresponding performances. Finally, the445

accuracy ACOSAH is defined as follows:446

ACOSAH
.
=

1

m

m∑
i=1

δ(AHI
(i)
est > DT,AHI(i) > 15), (10)

where m corresponds to the total number of studies coming from the testing dataset and “DT” is the447

detection threshold value which adjusts over-estimation of the events produced in the segmentation448

process. The value of DT results in the best cut-off point of the ROC curve. This point, which maximizes449

simultaneously sensitivity and specificity, corresponds to the minimum euclidean distance (dmin) to the450

point (0;1) of the ROC curve.451

4http://www.ntu.edu.sg/home/egbhuang/elm_codes.html
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7 Results and discussion452

In this section results of the performed experiments are presented and discussed. This section is mainly453

separated into two sub-sections, namely i) the performance tunning section and ii) the optimal system454

performance section.455

7.1 Performance tunning456

This section presents results of the exploratory experiments performed to find optimal configurations457

of the proposed system. As explained in Section 6.2, three different full dictionaries called Φ1, Φ2458

and Φ4 were learned by applying the standard KSVD algorithm. In this process, it is expected that459

most dictionary atoms would capture high frequency oscillations and normal respiration cycles in SaO2460

signals. It is important to point out however that, typical desaturations in signals associated to apnea-461

hypopnea events should be encoded by some atoms. Secondly, the sparse matrices A1, A2 and A4 were462

obtained by applying the OMP algorithm. As described in Section 6.2 several measures were used to463

quantify the discriminative degree of individual atoms of each one of the studied dictionaries. Finally, the464

dictionary atoms were ranked in decreasing order of magnitude according to their discriminative power.465

Figure 7 shows the waveforms of the first seven ranked atoms of the dictionary Φ1 according to our466

measure (first row) as well as the first seven ranked atoms of such a dictionary according to all other467

discrepancy measures (rows from two to five). It can be seen that the most discriminative atom selected468

by DCAF (dashed waveform) provides information about two well-defined desaturations in the signal. It469

is also important to point out that, this atom corresponds to the most discriminative one when using J470

divergence, or eventually when using the JS divergence. Moreover, one can clearly note that no highly471

discriminative atoms were taken when using Fisher score.

Most discriminative atoms

DCAF

KL

J

JS

F

1st 2nd 3rd 4th 5th 6th 7th

Figure 7: Waveforms corresponding to the first seven ranked atoms according to each one of the evaluated
measures.

472

Discriminative sub-dictionaries called Φ1d, Φ2d and Φ4d were built by stacking side-by-side the first p473

ranked atoms from Φ1, Φ2 and Φ4, respectively, according to their discriminative degree. It is appropriate474

to mention that, the evaluation of several discrepancy measures leads to the construction of different475

discriminative sub-dictionaries. However, optimal values of p (sub-dictionary size) and q (sparsity level)476

are parameters that need to be tuned. In order to find optimal values of such hyper-parameters, a grid477

search was performed.478

The performance of our system was first tested by performing a “random selection” of the dictionary479

atoms. The involved results were fixed and appropriately used as reference. The random selection of the480

atoms was performed ten times. Additionally, for each one of the atoms random selection, 60 iterations481

of the grid search were performed. Thus, the accuracy rate’s variations introduced by the classifier were482

minimized. Figure 8 shows three images corresponding to averaged accuracy rates for each one of the483

evaluated dictionaries. Averaged accuracy rates (reference values) obtained by using the dictionary Φ1484

for the detection of apnea-hypopnea events are shown on the left of this figure. It can be seen that485

sparse representations in terms of Φ1, using the smallest sub-dictionary size and the highest sparsity486
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degree, result in better performance than the ones obtained by using all other configurations of Φ1 and487

the over-complete dictionaries Φ2 and Φ4. In this way, two regions can be distinguished corresponding to488

a high performance region and a low performance one. The first one, which is or our interest, is yielded489

by simultaneously employing a small sub-dictionary size (10%) and a high sparsity degree (5%).490
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Figure 8: Averaged accuracy rates obtained by varying the percentages of the sub-dictionary size and
the sparsity level according to a random ranking of the atoms.

Next, DCAF and four other discrepancy measures were used for appropriately constructing discrim-491

inative sub-dictionaries. Then, a grid search of hyper-parameters was performed by analyzing the per-492

formance that yields our system when using each one of the sub-dictionaries. Figure 9 shows five images493

corresponding to DCAF (upper-left) and the other four discrepancy measures. These images represent494

the differences between accuracy rates obtained by using discriminative measures and the reference one495

(random selection) for Φ1. Also, each pixel of these images correspond to particular percentages of sub-496

dictionary size and sparsity level. It can be observed that, independently of the discriminative measure,497

small percentages of sub-dictionary size yield good performances. It is appropriate to point out however498

that, the effect of the dimension (sub-dictionary size) in the performance of the system is more important499

than the one induced by using discriminative measures.
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Figure 9: Five images representing differences between accuracy rates yielded by DCAF and all other
discrepancy measures and random selection for Φ1.

500

Analogously, Figures 10 and 11 show five images which correspond to DCAF (upper-left) and all501

other discrepancy measures. The images depicted in Figures 10 and 11 represent the differences between502

accuracy rates obtained by using these measures and the reference one for dictionaries Φ2 and Φ4,503

respectively.504

If we compare the results shown in Figures 9, 10, and 11, then it can be conclude that the proposed505

system presents the best performance, in terms of accuracy rate in the detection of apnea-hypopnea506

events, when using the full dictionary Φ1. Although similar results were obtained applying the proposed507

DCAF measure and those traditional ones (see Figure 9), it is important to point out that the use of508
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Figure 10: Five images representing differences between accuracy rates yielded by DCAF and all other
discrepancy measures and random selection for Φ2.
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Figure 11: Five images representing differences between accuracy rates yielded by DCAF and all other
discrepancy measures and random selection for Φ4.

discrepancy measures resulted in a significantly high improvement with respect to a “random” selection509

of the atoms. As discussed above, the dimension reduction in the sub-dictionary size as well as high510

sparse levels yielded high accuracy rates. This is the reason for which a small sub-dictionary size (10%)511

and high sparse level (5%) were chosen to perform the final test.512

System performance changes were analyzed by performing a comparison between averaged accuracy513

rates obtained by using discriminative sub-dictionaries and the ones obtained by using full dictionaries.514

Table 1 shows averaged accuracy percentages obtained by taken into account fixed discriminative sub-515

dictionary sizes (10%) while allowing the sparsity level to change (rows from 3 to 7). The last row of516

this table presents averaged accuracy percentages yielded by using full dictionaries for different sparsity517

levels. It can be observed that, in all of cases, discriminative sub-dictionaries outperform full dictionaries518

in the detection of apnea-hypopnea events.519

The impact of sparsity degree in the performance of our system is illustrated in Table 2. These results520
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Table 1: Averaged accuracy rates for sub-dictionary sizes of 10% regarding to each one of the evaluated
full dictionaries.

Φ1d(128× 12) Φ2d(128× 24) Φ4d(128× 50)
Measure Max Avg Max Avg Max Avg
DCAF 72.62 64.68 65.20 63.15 65.19 64.21

KL 73.20 64.91 65.44 63.53 65.42 63.66
J 72.82 64.88 64.50 62.82 65.39 63.68
JS 72.55 64.10 65.02 63.18 65.87 64.01
F 72.23 65.21 64.57 63.04 65.64 62.71

Full dictionary 66.39 59.77 68.13 59.57 69.28 69.21

were yielded by averaging accuracy rates obtained for a sparsity level of 5% and considering all possible521

sub-dictionary sizes (from 10% to 90%). For example, the second row shows averaged accuracy rates522

obtained by means of discriminative sub-dictionaries whose atoms were taken from Φ1, Φ2 and Φ4 by523

using DCAF measure.

Table 2: Averaged accuracy rates by considering a sparsity level of 5% regarding to all possible sub-
dictionary sizes.

Measure Φ1 Φ2 Φ4
DCAF 66.41 66.51 67.95

KL 66.49 66.72 67.98
J 66.60 66.56 67.98
JS 66.41 66.57 68.15
F 66.53 66.54 67.58

524

7.2 Optimal system performance525

Optimal system configurations were selected and fixed to perform the final test. In the previous section526

it was found that discriminative sub-dictionaries constructed by taken atoms from the dictionary Φ1527

yields better performances than the ones constructed by selecting atoms from the dictionaries Φ2 and528

Φ4. Additionally, it was found that a discriminative sub-dictionary composed by only 12 atoms (10%)529

and a sparsity level of one (5%) yield in the best accuracy rate of our system.530

In order to overcome the variance introduced by ELM predictors, 60 repetitions of the testing process531

were performed. Table 3 shows percentage values of minimum (Min), maximum (Max), average (µ)532

and standard deviation (σ) corresponding to obtained accuracy rates in the detection of apnea-hypopnea533

events. Although, DCAF perform similarly to the four other discrepancy measures, its performance is534

achieved with a relatively low computational cost. Additionally, results show that performances obtained535

by using discriminative measures for constructing sub-dictionaries always outperform the ones yielded by536

making use of randomly constructed sub-dictionaries.537

Table 3: Averaged accuracy rates for a sub-dictionary percentage of 10 for the detection of apnea-
hypopnea events.

Measure Min Max µ σ
DCAF 71.72 73.14 72.57 0.345

Kullback-Leibler 72.06 73.78 73.26 0.390
Jeffrey 71.77 73.31 72.66 0.319

Jensen-Shannon 71.79 73.11 72.55 0.295
Fisher 71.01 72.77 72.18 0.325

Random Selection 70.01 71.51 70.91 0.372

We have also evaluated the statistical significance of the results presented in Table 3 by computing538

the probability that using each one of the evaluated measures, including random selection (RS), yields in539

better classification performances than the others. In order to perform this test, we assumed the statistical540

independence of the classification errors for each study. Also it was possible to approximate the error’s541

binomial probability distribution by a normal distribution due to a wide availability of signals (301,306).542

Table 4 summarizes the results of the performed statistical significance tests by considering a p-value543
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of 0.01. It can be seen that DCAF and three other discrepancy measures (KL, J and JS divergences)544

are significant different respect to random selection. Also, no significant difference was found between F545

score and random selection. Additionally is was found that DCAF does not perform significantly better546

that the KL, J and JS divergences.

Table 4: A summary of the performed statistical significance tests.

R
S

D
C

A
F

K
L J J
S F

RS - 3 3 3 3 7

DCAF - - 7 7 7 7

KL - - - 7 7 7

J - - - - 7 7

JS - - - - - 7

F - - - - - -

547

To determine the severity degree of OSAH syndrome, a ROC curve analysis was successfully performed548

by considering a detection AHI of 15. This index was selected in order to identify patients suspected549

of suffering from moderate-severe OSAH syndrome. Table Table 5 shows the minimum operating (cut-550

off) point of the ROC curves and maximum percentages of sensitivity, specificity and accuracy as well as551

maximum values of area under the ROC curve for AHI diagnostic threshold values of 15 (Figure 12 (left)).552

It can be seen that DCAF resulted in a maximum area under the ROC curve of 0.9250 and sensitivity and553

specificity percentages of 81.88 and 87.32, respectively. These are the maximum performance measures at554

which the minimum cut-off point of the ROC curve is attained. If we compare the performances attained555

between all of the evaluated measures, then the maximum SE and AUC value is yielded by J divergence.556

Also, JS divergence outperformed all the others in terms of ACC and DCAF resulted in the minimum557

cut-off point of the ROC curve.

Table 5: Maximum cut-off points for testing accuracy for a sub-dictionary percentage of 10 for the
detection of apnea-hypopnea events.

Measure dmin SE SP ACC AUC
DCAF 0.2211 81.88 87.32 84.60 0.9250

Kullback-Leibler 0.2242 81.46 87.39 84.43 0.9271
Jeffrey 0.2311 80.86 87.04 83.95 0.9283

Jensen-Shannon 0.2267 80.75 88.03 84.39 0.9244
Fisher 0.2280 80.66 87.91 84.29 0.9252

558

We additionally performed a ROC curve analysis of the averaged performances of DCAF and all559

the other discrepancy measures (Figure 12 (right)). A random selection was additionally included in our560

results in order to be able to compare performance changes. Table 6 the averaged minimum operating (cut-561

off) point of the ROC curves and averaged maximum percentages of sensitivity, specificity and accuracy562

as well as averaged maximum values of AUC values for the same OSAH syndrome diagnostic threshold.563

The result show that DCAF outperforms all the other discrepancy measures in terms of minimum optimal564

operating cut-off point of the ROC curve as well as in terms of sensitivity and accuracy rate. Also KL565

divergence resulted in the best averaged area under the curve ROC and the maximum averaged specificity566

was yielded by JS divergence. A significant performance improvement was observed when using DCAF567

or any of the other discrepancy measures compared to random selection.568

Several applications exist where it is desirable to maximize the sensitivity. For instance, if the primary569

purpose of the test is “screening”, i.e. detection of early disease in a large numbers of apparently healthy570

persons, then a high sensitivity is generally desired. With this in mind, if a sensitivity of 98% is chosen571

in the ROC curves in Figure 12, for all used measures, the method achieves a specificity close to 45%.572

This fact shows that the analysis of pulse oximetry signals by means of the proposed method could be573

potentially applied as an efficient diagnostic screening tool in clinical practice.574

In a previous work [4] it was shown that the MDCS method using DCAF to select discriminative575

atoms in a given dictionary, provides good accuracy rates in the detection of apnea-hypopnea events. In576

that work, a comparative analysis of the performances yielded by MDCS and other methods [45, 46, 47]577

has shown that MDCS outperforms all the others. It was also observed that the computational cost of578

MDCS is slightly higher than those required by the other three methods. On the other hand, in this579

work we show that MDCS using DCAF for selecting discriminative atoms performs similarly than MDCS580
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using several other traditional discrepancy measures. It is important to highlight that DCAF is very easy581

to compute and yields competitive performance rates in the detection of apnea-hypopnea events at a low582

computational cost.583

Table 6: Averaged cut-off points for testing accuracy for a sub-dictionary percentage of 10 for the detection
of apnea-hypopnea events.

Measure dmin SE SP ACC AUC
DCAF 0.2211 81.88 87.32 84.60 0.9250

Kullback-Leibler 0.2242 81.46 87.39 84.43 0.9271
Jeffrey 0.2311 80.86 87.04 83.95 0.9283

Jensen-Shannon 0.2267 80.75 88.03 84.39 0.9244
Fisher 0.2280 80.66 87.91 84.29 0.9252

Random Selection 0.2396 80.85 85.60 83.23 0.9222
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Figure 12: ROC curves corresponding to the performance measures described in Tables 5 and 6.

8 Conclusions584

Sparse representations of signals constitute a powerful technique which yields high accuracy rates in585

the detection of apnea-hypopnea events. In this work the difference of conditional activation frequency586

(DCAF) measure was successfully used for accurately pointing out discriminative atoms in a full dic-587

tionary. Additionally, we compared the performance of the DCAF with four widely used discrepancy588

measures. It was found that the DCAF and three other discrepancy measures (KL, J y JS divergences)589

outperform the random selection of atoms, unlike F score. Additionally, DCAF is cheaper to compute.590

Discriminative sub-dictionaries were successfully constructed by taking the best ranked atoms of full dic-591

tionaries according to their discriminative power. Results show that sparse representations of signals in592

terms of discriminative sub-dictionaries result in better performances than the ones obtained in terms of593

full dictionaries in the detection of apnea-hypopnea events by using only pulse oximetry signals. In this594

context, it was found that more sparse solutions almost always yielded in better performances. Addi-595

tionally, it was observed that larger dictionary over-completeness worsens the performance of the system.596
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Future research lines include more analysis of the DCAF measure, the study of its properties and an597

extension of such a measure to multi-class problems, among others.598
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