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Highlights

• A dereverberation method that needs no pre-processing nor specific infor-

mation.

• Very good performance observed in real-world recording conditions.

• Performance speed is fast enough to use as startpoint for on-line derever-

beration.

• The theoretical ground is solid and allows for easily seeking ways of im-

provement.
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Abstract

When a signal is recorded in an enclosed room, it typically gets affected by

reverberation. This degradation represents a problem when dealing with audio

signals, particularly in the field of speech signal processing, such as automatic

speech recognition. Although there are some approaches to deal with this issue

that are quite satisfactory under certain conditions, constructing a method that

works well in a general context still poses a significant challenge. In this article,

we propose a Bayesian approach based on convolutive nonnegative matrix fac-

torization that uses prior distributions in order to impose certain characteristics

over the time-frequency components of the restored signal and the reverberant

components. An algorithm for implementing the method is described and tested.

Comparisons of the results against those obtained with state-of-the-art methods

are presented, showing significant improvement.

Keywords: signal processing, dereverberation, regularization

1. Introduction

In recent years, many technological developments have attracted attention

towards human-machine interaction. Since the most natural and easiest way of

Email address: fibarrola@sinc.unl.edu.ar (Francisco J. Ibarrola)
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human communication is through speech, much research effort has been put into

achieving the same natural interaction with machines. This effort has already

generated many advances in a wide variety of fields such as automatic speech

recognition ([1]), automatic translation systems ([2]) and control of remote de-

vices through voice ([3]), to name only a few. A significant amount of work has

been recently devoted to produce robustness in speech recognition ([4]), result-

ing in several advances in the areas of speech enhancement ([1], [5]), multiple

sources separation ([6], [7]), and particularly in dereverberation techniques ([8]),

which constitute the topic of this work.

When recorded in enclosed rooms, audio signals will most certainly be af-

fected by reverberant components due to reflections of the sound waves in the

walls, ceiling, floor or furniture. This can severely degrade the characteristics

of the recorded signal ([9]), generating difficult problems for its processing, par-

ticularly when required for certain speech applications ([10]). The goal of any

dereverberation technique is to remove or to attenuate the reverberant compo-

nents in order to obtain a cleaner signal. The dereverberation problem is called

“blind” when the available data consists only of the reverberant signal itself,

and this is the problem we shall deal with in this work.

Depending on the problem, our observation might consist of a single or

multi-channel signal, that is, we might have a signal recorded by one or more

microphones. For the latter case, quite a few methods exist that work relatively

well ([11], [12]).

For the single-channel case, we may distinguish between supervised and un-

supervised approaches. The first kind refers to those that begin with a training

stage that serves to learn some characteristics of the reververation conditions,

while the second kind alludes to those methods that can be implemented di-

rectly over the reverberant signal. Some supervised methods ([13], [14], [15])

appear to perform somewhat better than unsupervised ones, but they pose the

disadvantage of needing learning data corresponding to the specific room condi-

tions, microphone and source locations, and a previous process that might take

a significant amount of time.
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In the context of unsupervised blind dereverberation, although some recently

proposed methods ([12], [16]) work reasonably well, there is still much room

for improvement. Our work is based on a convolutive non-negative matrix

factorization (NMF) reverberation model, as proposed by Kameoka et al ([16]),

along with a Bayesian approach for building a functional that takes into account

a priori expected characteristics over the elements of the representation model.

This functional can be thought of as the cost function of a mixed penalization

model, such as in [17]. This kind of approach has been also recently used and

successfully applied by several authors in many areas, mainly in signal and image

processing applications ([18], [19], [20], [21], [22]). These techniques have shown

to produce good results in terms of enhancing certain desirable characteristics

on the solutions while precluding unwanted ones.

2. A Reverberation Model

Let s, x : R→ R, with support in [0,∞), be the functions associated to the

clean and reverberant signals, respectively. As it is customary, we shall assume

that the reverberation process is well represented by a Linear Time-Invariant

(LTI) system. Thus, the reverberation model can be written as

x(t) = (h ∗ s)(t), (1)

where h : R → R is the room impulse response (RIR) signal, and “∗” denotes

convolution. This LTI hypothesis implies we are assuming the source and mi-

crophone positions to be static, and the energy of the signal to be low enough

for the effect of the non-linear components to be relatively insignificant.

When dealing with sound signals (particularly speech signals), it is often

convenient to work with the associated spectrograms rather than the signals

themselves. Thus, we make use of the short time Fourier transform (STFT),

defined as

xk(t)
.
=

∫ ∞

−∞
x(u)w(u− t)e−2πiukdu, t, k ∈ R,
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where w : R→ R+
0 is a compactly supported, even function such that ‖w‖1 = 1.

This function is called window.

In practice, we work with discretized versions of the signals involved (x[·], h[·], s[·],
and w[·]). With this in mind, we shall define the discrete STFT as

xk[n]
.
=

∞∑

m=−∞
x[m]w[m− n]e−2πimk, n, k ∈ N.

Denoting the STFTs of s and h by sk[n] and hk[n], respectively, a discretized

approximation of the STFT model associated to (1) is given by

xk[n] ≈ x̃k[n]
.
=

Nh−1∑

τ=0

sk[n− τ ]hk[τ ], (2)

where n = 1, . . . , N, is a discretized time variable that corresponds to window

location, k = 1, . . . ,K, denotes the frequency subband and Nh is a parameter of

the model associated to the expected maximum duration of the reverberation

phenomenon. The model is built as in [23], being the approximation due to

the use of band-to-band filters only. Later on, the values of n will be chosen in

such a way that the union of the windows’ supports contain the support of the

observed signal, and the values of k in such a way that they cover the whole

frequency spectrum, up to half the sampling frequency.

Now, let us write hk[τ ] = |hk[τ ]|ejφk[τ ]. It is well known ([24]) that the

phase angles φk[τ ] are highly sensitive with respect to mild variations on the

reverberation conditions. To overcome the problems derived from this, we shall

proceed (see [16]) treating the K×Nh variables φk[τ ] as i.i.d. random variables

with uniform distribution in [−π, π). Denoting the complex conjugate by “∗”
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and the Kronecker delta by δij , the expected value of |x̃k[t]|2 is given by

E|x̃k[n]|2 = E
∑

τ,τ ′

sk[n− τ ]s∗k[n− τ ′]hk[τ ]h∗k[τ ′]

= E
∑

τ,τ ′

sk[n− τ ]s∗k[n− τ ′] |hk[τ ]| ejφk[τ ] |hk[τ ′]| e−jφk[τ ′]

=
∑

τ,τ ′

sk[n− τ ]s∗k[n− τ ′] |hk[τ ]| |hk[τ ′]|Eej(φk[τ ]−φk[τ ′])

=
∑

τ,τ ′

sk[n− τ ]s∗k[n− τ ′] |hk[τ ]| |hk[τ ′]| δττ ′

=
∑

τ

|sk[n− τ ]|2 |hk[τ ]|2.

Note that the [−π, π) interval choice for φk[τ ] is arbitrary, since this result

holds for any 2π−length interval. Finally, let us define Sk[n]
.
= |sk[n]|2, Hk[n]

.
=

|hk[n]|2 and Xk[n]
.
= E|x̃k[n]|2. Then, our model reads

Xk[n] =
∑

τ

Sk[n− τ ]Hk[τ ], (3)

and the square magnitude of the observed spectrogram components can be writ-

ten as

Yk[n] = Xk[n] + εk[n], (4)

where εk[n] denotes the representation error. As shown in [16], this model

is equivalent to a convolutive NMF ([25]) with diagonal basis. In the next

section, we derive a cost function in order to find an appropriate convolutive

representation that allows us to isolate the components Sk[n].

3. A Bayesian approach

In the following, we will use a Bayesian approach to derive a cost function

which we will then minimize in order to obtain our regularized solution. Let

us begin by assuming, for every k, εk[n], Sk[n], Hk[n] are independent random

variables, also independent with respect to k. Also, let us denote by S, Y,X ∈
RK×N and H ∈ RK×Nh the non-negative matrices whose (k, n)-th elements are

Sk[n], Yk[n], Xk[n] and Hk[n], respectively.
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More often than not, some type of “patterns” can be observed in a speech

spectrogram, mainly due to the harmonics of speech (see Figure 1). However,

they seem to be strongly speaker and phoneme dependent, and although it would

be interesting to try to model this correlation, this is not viable in a blind setting

(since no a-priori information is available for estimating it). Besides, it is worth

mentioning that the frequency independency assumption has shown to lead to

quite good results.

As it is customary ([16]), for the representation error, we assume εk[n] ∼
N (0, σ2

k), where σk > 0 is an unknown parameter, and the variables are non-

correlated with respect to n. Hence, it follows from (4) that the conditional

distribution of Y given S and H (i.e. the likelihood) is given by

πlike(Y |S,H) =

K∏

k=1

N∏

n=1

1√
2πσk

exp

(
− (Yk[n]−Xk[n])2

σ2
k

)
.

Note that, strictly speaking, in the above model for the representation error,

the non-negativity constraint on the components of Y is not enforced. This

is done mainly for simplicity reasons. It is rooted in the fact that this distri-

bution provides a good model for the data Y ; thus, the probability of one of

its components be negative is very small, and enforcing non-negativity would

unnecessarily complicate the model.

Let us now turn our attention to S. Figure 1 depicts the log-spectrograms

for a clean signal and its reverberant version. As it can be observed, while

the spectrogram of the clean signal is somewhat sparse, the one corresponding

to the reverberant signal presents a smoother or more diffuse structure. The

presence of discontinuities in the spectrogram of the clean signal can be favored

by assuming S follows a generalized non-negative Gaussian distribution ([26]).

Thus,

πprior(S) =





∏K
k=1

∏N
n=1

1
Γ(1+1/p)bk

exp
(
−Sk[n]p

bpk

)
Sk[n] ≥ 0,

0 Sk[n] < 0,

where p ∈ (0, 2) is a prescribed parameter and bk > 0 is unknown.
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Figure 1: Spectrograms for a clean speech signal (left) and the corresponding reverberant

speech signal (right). The clean signal, from the TIMIT database, was sampled at 16 [kHz],

and corresponds to a female voice uttering the sentence ’She had your dark suite in greasy

wash water all year.’ The signal was artificially made reverberant by convolution with a

room impulse response, with a reverberation time of 600 [ms], to produce the reverberant

spectrogram. Both spectrograms were made using Hamming windows with 512 samples and

an overlapping of 256.

In regards to H, although no general conditions are expected on its individ-

ual components, we do expect its first order time differences to exhibit a certain

degree of regularity (see Figures 2 and 3). It can be observed that the log-

spectrograms consist of a high-energy vertical band to the left, that corresponds

to the linear impulse response, and some straight lines of less energy that corre-

spond to the non-linear distortions produced by the increase on the rate at which

the echoes reach the receiver ([27]). In fact, if windows are set close enough rel-

ative to the duration of the reverberation phenomenon, then consecutive time

components of H will capture overlapped information, which along with the ex-

ponential decay characteristic of the RIR ([28]) accounts for a somewhat smooth

structure. Therefore, we define the time differences matrix V ∈ RK×(Nh−1),

with components Vk[n]
.
= Hk[n]−Hk [n− 1] ∀n = 1, . . . , Nh − 1, k = 1, . . . ,K.

The regularity of these variations is contemplated by assuming V follows a nor-

mal distribution with zero mean and variance η2
k:

πprior(V ) =

K∏

k=1

Nh∏

n=2

1√
2πηk

exp

(
−Vk[n]2

η2
k

)
.

Let Hk ∈ RNh be the transpose kth-row of H, L ∈ RNh−1×Nh be the matrix

8
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Figure 2: Log-spectrograms for an artificial 16 [kHz] RIR signal with reverberation time of

600 [ms]. The spectrograms were made using a hamming window length of 512 and different

overlappings.

such that LHk = Vk and πprior(H) the prior induced from πprior(V ) through

this relation. Using Bayes’ theorem, the a posteriori joint distribution of S and

H conditioned to Y satisfies

πpost(S,H|Y ) ∝ πlike(Y |S,H)πprior(S)πprior(H). (5)

Our goal is to find Ŝ and Ĥ that are representative of the a posteriori distri-

bution (5). Although the immediate instinct might be to compute the expected

value, there are quite a few other ways to proceed, with different degrees of re-

liability and complexity. In the light of the assumed distributions and the high

dimensionality of the problem, the maximum a posteriori (MAP) estimator is

a reasonable choice in this case. Note that maximizing (5) is tantamount to

minimizing − log πpost(S,H|Y ). If we denote by Sk, Yk, Xk ∈ RN , Hk ∈ RNh

and Vk ∈ RNh−1 the (transposed) rows of S, Y,X,H and V , then

J(S,H)
.
= − log πpost(S,H|Y ) (6)

=
K∑

k=1

[
1

σ2
k

||Yk −Xk||22 +
1

bpk

∑

n

Sk[n]
p +

1

η2k
||LHk||22

]
+ C,

where C is a constant independent of S and H. Our goal is to minimize

J , subject to the non-negativity restrictions Sk[n] ≥ 0∀k = 1, . . . ,K, n =

1, . . . , N , Hk[n] ≥ 0∀k = 1, . . . ,K, n = 1, . . . , Nh.

9
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Figure 3: Signals corresponding to the 4[kHz] frequency subband of RIR spectrograms

H129[n], n = 1, . . . , N , with window length 512 and different overlappings. The sampling

frequency is of 16[kHz] and the reverberation time is 600 [ms]. The signals show certain

regularity, which increases with the window overlapping.

Although it is likely that different frequency sub-bands be affected differently

by the RIR, with the reverberant spectrogram being the only available data for

a blind approach, there will always be an arbitrary frequency dependent scaling

ambiguity. In this way, it is impossible to exactly recover the original scaling

of the source. Since given this fundamental indeterminacy, any frequency bin

amplitude would be arbitrary in some sense, we have imposed the constraint

||Sk||∞ = ||Yk||∞ ∀k, which means that the maximum values shall remain equal

for every frequency bin (this is similar to the minimum distortion principle

([29]) applied in frequency domain blind source separation). Additionally, we

have experimentally found this constraint to be adequate.

3.1. Model parameters

Before proceeding to minimize equation (6), some comments on the model

parameters {σk, bk, ηk, p}k=1,...,K are in order.

The value of the exponent p ∈ (0, 2) is related to the degree of sparsity of

S. While small values of p will promote high sparsity, choosing p ≈ 2 will yield

low sparsity.
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Notice that for any given k ∈ {1, . . . ,K}, the variance of the representation

error is proportional to the energy (the square of the L2-norm) of the corre-

sponding frequency sub-band. That is, we choose σ2
k
.
= σ2

0‖Yk‖2, where σ0 is a

constant independent of k. In a similar fashion, we choose bk
.
= b0‖Yk‖. Finally,

since we have no evidence of any relationship between the frequency sub-band

and the variations of H, we choose ηk
.
= η0, independent of the frequency bin.

Furthermore, since the functional (6) can be minimized separately in each fre-

quency bin, the selection of the parameters is simplified by first choosing p and

then the ratios σ2
0/b

p
0 and σ2

0/η
2
0 .

4. Hypermodel approach

To better deal with uncertainty on some of the parameter values, the previous

model can be extended to a hypermodel by considering those parameters as

random variables. For instance, due to the aforementioned uncertainty on the

variance of H, we shall assume that the standard deviations of Hk, ηk > 0, k =

1, . . . ,K, are realizations of i.i.d. random variables with gamma distribution.

That is,

πhyper(ηk)
.
=

ηα−1
k

βαΓ(α)
exp

(
−ηk
β

)
,

where α > 1 and β > 0 are shape and scale parameters, respectively. Using

this hyperprior, the new functional (the negative logarithm of the a-posteriori

distribution) turns out to be:

Jhyp(S,H, η)
.
= − log πpost(S,H, η|Y ) (7)

=
K∑

k=1

[
1

σ2
k

||Yk −Xk||22 +
1

bpk

∑

n

Sk[n]
p +

1

η2k
||LHk||22

]

+
K∑

k=1

[
(Nh + 1− α) log ηk + ηk

β

]
+ C,

where η denotes the vector whose components are ηk, k = 1, . . . ,K and C is a

constant independent of S,H, and η.

In what follows, we focus on minimizing the functionals J and Jhyp defined

by (6) and (7), respectively.
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5. Iterative minimization algorithms

5.1. Minimizing J

We begin by introducing a method for minimizing J , defined in (6). Later

on, we will show that by adding an extra step, the same method can be used

for minimizing Jhyp.

5.1.1. Auxiliary functions

The algorithm is constructed based on an auxiliary function technique, fol-

lowing similar ideas as those in [16]. Minimization procedures based in this kind

of techniques are also known as Majorization-Minimization algorithms ([30]).

Let Ω ⊂ R and f : Ω → R+
0 . Then, g : Ω × Ω → R+

0 is called an auxiliary

function for f if

(i) g(w,w) = f(w) and (ii) g(w,w′) ≥ f(w), ∀w,w′ ∈ Ω. (8)

Let w0 ∈ Ω be arbitrary and let

wj
.
= arg min

w
g(w,wj−1). (9)

With this definition, it can be shown ([31]) that the sequence {f(wj)}j is non-

increasing. We intend to use this property as a tool for alternatively updating

the matrices H and S. Let us begin by fixing H = H ′, where H ′ is an arbitrary

K × Nh matrix. Then, an auxiliary function for J(S,H ′) (as defined in (6))

with respect to S is given by

gs(S, S
′)
.
=
∑

k,n,τ

1

σ2
k

S′k[τ ]H ′k[n− τ ]

X ′k[n]

(
Yk[n]− Sk[τ ]

S′k[τ ]
X ′k[n]

)2

+
∑

k

1

η2
k

||LH ′k||22

+
∑

k,n

1

bpk

(p
2
S′k[n]p−2Sk[n]2 + S′k[n]p − p

2
S′k[n]p

)
, (10)

where X ′k[n] =
∑
τ S
′
k[n− τ ]H ′k[τ ]. The proof can be found in Appendix A.

In an analogous way, it can be shown that if we let S = S′ be fixed, where

12
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S′ is an arbitrary K ×N matrix, then

gh(H,H ′)
.
=
∑

k,n,τ

1

σ2
k

S′k[n− τ ]H ′k[τ ]

X ′k[n]

(
Yk[n]− Hk[τ ]

H ′k[τ ]
X ′k[n]

)2

+
∑

k

1

bpk
||S′k||pp +

∑

k

1

η2
k

||LHk||22

is an auxiliary function for J(S′, H) with respect to H.

Having defined auxiliary functions, we will use the updating rule derived

from (9) to build an algorithm for iteratively updating matrices S and H in

order to minimize J . Notice this requires minimizing gs and gh with respect

to the updating variables, but since gs is quadratic with respect to S and gh

is quadratic with respect to H, we can simply use the first order necessary

conditions in both cases. From this point on, in the context of the iterative

updating process, S′ and H ′ will refer not to arbitrary nonnegative matrices,

but to those estimations of S and H obtained in the immediately previous step.

5.1.2. Updating rule for S

Firstly, we shall derive an updating rule for Sk[τ ]. That is, we wish to

minimize gs w.r.t. S. The first order necessary condition on gs yields

0 =
∂gs(S, S

′)

∂Sk[τ ]

=− 2
∑

n

1

σ2
k

H ′k[n− τ ]
(
Yk[n]− Sk[τ ]

S′k[τ ]
X ′k[n]

)
+

p

bpk
S′k[τ ]

p−2Sk[τ ]

=−
∑

n

H ′k[n− τ ]Yk[n] +
Sk[τ ]

S′k[τ ]

∑

n

H ′k[n− τ ]X ′k[n] +
pσ2

k

2bpk
S′k[τ ]

p−2Sk[τ ]

=− S′k[τ ]
∑

n

H ′k[n− τ ]Yk[n] +
(∑

n

H ′k[n− τ ]X ′k[n] +
pσ2

k

2bpk
S′k[τ ]

p−1

)
Sk[τ ],

which easily leads to the multiplicative updating rule

Sk[τ ] = S′k[τ ]

∑
nH

′
k[n− τ ]Yk[n]

∑
nH

′
k[n− τ ]X ′k[n] +

pσ2
k

2bpk
S′k[τ ]p−1

.

In order to avoid the aforementioned scale indeterminacy, every updating step

is to be followed by scaling Sk so that its `∞ norm coincides with that of the

observation Yk.
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5.1.3. Updating rule for H

In order to state an updating rule for H, we begin by defining the diagonal

matrices Ak, Bk ∈ RNh×Nh , whose diagonal elements are Akτ,τ
.
=
∑
n S
′
k[n −

τ ]X ′k[n] and Bkτ,τ
.
= H ′k[τ ], and the vector ζk ∈ RNh with components ζkτ =

∑
n S
′
k[n− τ ]Yk[n].

It can be shown (see Appendix B) that with these definitions, H can be

updated by solving the linear system

(
Ak +

σ2
k

η2
k

BkLTL

)
Hk = Bkζk. (11)

Let us notice that under the assumption that the diagonal elements of Ak

and Bk are strictly positive, and since LTL is positive-semidefinite, (Bk)−1Ak+

λh,kL
TL is positive-definite, and hence the linear system has a unique solution.

Furthermore, this implies that the solution is non-negative. The assumption of

Akτ,τ > 0 is adequate, since these elements correspond to the discrete convolution

of S′k and X ′k. Although the validity of the hypothesis over Bkτ,τ is not so

clear, in practice, the matrix in system (11) has turned out to be non-singular.

Nonetheless, Hk can be computed as the best approximate solution in the least-

squares sense. Solving this Nh × Nh linear system entails no challenge, since

Nh is usually chosen relatively small, depending on the window step and the

reverberation time.

5.2. Minimizing Jhyp

It follows immediately from the fact that the additional terms on equation (7)

with respect to equation (6) do not depend on S nor H, that the minimization

steps derived for J are suitable for Jhyp as well. Thus, it only remains to

minimize Jhyp with respect to η, which can be shown (see Appendix C) to be

equivalent to solving the following equation:

η3
k + (Nh + 1− α)β η2

k − 2β||LHk||22 = 0,

for every k = 1, . . . ,K. This can be done either explicitly by means of the

general solution of the cubic equation, or by an appropriate iterative method.
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5.3. Final considerations

All steps of the dereverberation process are stated in Algorithm 1. The

updating step in line 22 only concerns functional Jhyp, and it must be skipped

when minimizing J .

In the Initialization Step we define the clean spectrogram S equal to the

observation, which is natural since in a way they both correspond to the same

signal, and Hk as a vector with exponential time decay, which is an expected

characteristic of a RIR. Note that with this initialization all the variables result

non-negative. Under this condition, it is easy to see that all the updating rules

maintain non-negativitiy, thus complying with the aforementioned restrictions

Sk[n] ≥ 0 ∀k = 1, . . . ,K, n = 1, . . . , N , and Hk[n] ≥ 0 ∀k = 1, . . . ,K, n =

1, . . . , Nh..

Finally, we set the stopping criterion over the decay of the norm of two

consecutive approximations of S. This has shown to work quite well, although

other stopping criteria might be considered.

Results to illustrate the performance of the proposed algorithms are pre-

sented in the next section.

6. Experimental results

For the experimental results we used both simulated and recorded rever-

berant signals. While a large number of artificially reverberant signals were

produced to get statistically significant results, recorded signals were used to

corroborate the performance of the methods using real data.

6.1. Experiments with simulations

For the experiments, we took 110 speech signals from the TIMIT database

([32]), recorded at 16 kHz, and artificially made them reverberant by convolution

with impulse responses generated with the software Room Impulse Response

Generator1, based on the model in [33]. Each signal was degraded under differ-

1https://github.com/ehabets/RIR-Generator
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Algorithm 1 Bayesian dereverberation

1: Initializing

2: S ← Y

3: Hk[n]← exp(−n) ∀k = 1 . . .K, n = 1 . . . N

4: MAIN LOOP

5: for i = 1 . . .maxiter

6: Xk[n]←
∑

τ

Sk[n− τ ]Hk[τ ] ∀k = 1 . . .K, n = 1 . . . N

7: for k = 1 . . .K

8: for τ = 1 . . . N

9: Sk[τ ]← Sk[τ ]

∑
nHk[n− τ ]Yk[n]

∑
nHk[n− τ ]Xk[n] +

pσ2
k

2bpk
Sk[τ ]p−1

.

10: end for

11: Sk ← Sk
‖Yk‖∞
‖Sk‖∞

.

12: end for

13: for k = 1 . . .K

14: Build the diagonal matricesAk, Bk ∈ RNh×Nh :

15: Akτ,τ =
∑
n Sk[n− τ ]Xk[n],

16: Bkτ,τ = Hk[τ ].

17: Build the vector ζk :

18: ζkτ =
∑
n Sk[n− τ ]Yk[n]

19: Solve for Hk :

20: (Ak +
σ2
k

η2
k

BkLTL)Hk = Bkζk.

21: if Using the hypermodel (Jhyp)

22: Solve for ηk : η3
k + (Nh + 1− α)β η2

k − 2β||LHk||22 = 0.

23: end if

24: end for

25: if ‖S − S′‖F ≤ δ
26: return

27: end if

28: end for 16
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ent reverberation conditions: three different room sizes, each with three different

microphone positions and four different reverberation times, which gives us a

total of 3960 signals for testing. Table 1 gives account of the room dimensions

and source and microphone positions that were chosen.2

Table 1: Simulated room settings

Length Width Height

Room 1 dimensions 5.00 [m] 4.00 [m] 6.00 [m]

Room 2 dimensions 4.00 [m] 4.00 [m] 3.00 [m]

Room 3 dimensions 10.0 [m] 4.00 [m] 5.00 [m]

Source position 2.00 [m] 3.50 [m] 2.00 [m]

Microphone 1 position 2.00 [m] 1.50 [m] 1.00 [m]

Microphone 2 position 2.00 [m] 2.00 [m] 1.00 [m]

Microphone 3 position 2.00 [m] 2.00 [m] 2.00 [m]

In order to avoid preprocessing, the choice of the probabilistic model pa-

rameters was made a priori by means of empirical rules, based upon signals

from a different database. This is supported by the fact that the parameters

were observed to be rather robust with respect to variations of the reverbera-

tion conditions, and hence they were chosen simply as σ2
k = ‖Yk‖2, ηk = 1 and

bk = ‖Yk‖ × 107. For the case of minimizing functional Jhyp, we set α = 102

and β = 10−2, so the expected value for ηk is αβ = 1, for the comparison be-

tween the Bayesian model and Hypermodel to be fair. The rest of the model

parameters were chosen as specified in Table 2.

Table 2: Model parameter values

p Nh win. window size win. overlap. δ max. iter.

1 15 Ham. 512 samples 256 samples ‖Y ‖F × 10−3 20

Let us point out that the choice of Nh was done as to allow H to capture

2A web demo can be found in sinc.unl.edu.ar/web-demo/blindder/
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early reverberation while precluding overlapped representations. In the first

place, it is desirable for H to represent the RIR along the full Early Decay

Time (EDT), the time period in which the reverberation phenomenon alters

the clean signal the most, so its effect can be nullified. On the other hand, if we

were to choose Nh too large, it might lead certain similarities in the observation

Y within a fixed frequency range to be represented as echoes from high energy

components of S. It is worth mentioning, however, that the performance of our

dereverberation method has shown no high sensitivity with respect to the choice

of Nh.

In order to evaluate the performance of our models, using both functionals J

and Jhyp, we made comparisons against three state-of-the-art methods that work

under the same conditions. Two of the methods we used were those proposed

by Kameoka et al in [16] and the mixed penalization method proposed in [17],

which are not only recent but in a sense precursors to the method proposed in

this article. Also, we included the method proposed by Wisdom et al in [12],

with a window length of 2048, because of its great performance in the Reverb

Challenge ([34]).

To measure performance, following [35], we made use of the frequency weighted

segmental signal-to-noise ratio (fwsSNR) and cepstral distance. Furthermore,

we also measured the speech-to-reverberation modulation energy ratio (SRMR,

[36]), which has the advantage of being non-intrusive (it does not use the clean

signal as an input). The results for each performance measure are stated in

Table 3, and depicted in Figures 4- 6, classified in function of the reverbera-

tion times: 300[ms], 450[ms], 600[ms] and 750[ms]. Notice that for the cases of

fwsSNR and SRMR, higher values correspond to better performance, while for

the cepstral distance, small values indicate higher quality.

Table 3 shows that the results obtained using the Bayesian methods with

functionals J and Jhyp are significantly better (p < 0.01) than those produced

by the other methods for all the considered performance measures. Also, Fig-

ures 4-6 clearly show that in all cases the improvement is more evident for

larger reverberation times, specially for the fwsSNR and the Cepstral Distance.
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Kameoka
Mix. Pen.
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Bayesian Hyp

Figure 4: Mean and standard deviations of fwsSNR for different reverberation times.

Furthermore, Figure 5 shows that no competing method is able to reduce the

Cepstral Distance for a reverberation time of 300[ms]. This most likely occurs

because the reverberation time is too short and therefore the introduced dis-

tortion, when doing dereverberation, cancels out the potential gains. Yet, for

larger reverberation times, our method does produce a significant improvement

as measured by the Cepstral Distance. It is timely to mention that all the dif-

ferences between the performance of our methods and every competing one hold

statistical significance (p < 0.01) for every reverberation time (as depicted in

Figures 4-6), with the only exception of the SRMR with a 300[ms] reverberation

time, where our methods produce no significant improvement with respect to

Wisdom’s.

6.2. Experiments with recorded signals

For this experiment we have used real recordings obtained in our own office

rooms, with a sampling frequency of 16[kHz]. Two male and two female speakers

were randomly selected from the TIMIT database, and 10 speech signals for each
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Figure 5: Mean and standard deviations of Cepstral Distance for different reverberation times.

were played in two different rooms. The dimensions of the fully furnished rooms

and microphone positions are specified in Table 4. The reverberation times,

measured using sine sweeps ([37]), were found to be 460[ms] on the first room

and 440[ms] on the second. It is timely to mention that for the recordings to

be realistic, they were made during standard office hours, with people working

in nearby offices (although no people were present in the recording room), and

some of the computers and air conditioning were left on.

The model parameters were chosen equal to those used for the experiment

with simulations, except for the variance of the distribution of S, that was

changed to cope with the considerably high noise level. The new choice was

simply bk = 10‖Sk‖/σn, where σn is the standard deviation of the noise, esti-

mated from the first 1000 samples (61[ms]) of the recordings. The parameters

for the competing methods were properly adjusted to the noise level as well.

Results are depicted in Table 5. Once again, we see that the Bayesian

methods outperform the other methods in terms of the fwsSNR and SRMR,

although Wisdom’s method performs slightly better (but not significantly, p >
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Figure 6: Mean and standard deviations of SRMR for different reverberation times.

0.01) in terms of Cepstral Distance.

6.3. Computing performance

Finally, we also compared the computing performance of the aforementioned

methods using the TIMIT database of the first experiment. The examples were

run using MatLab in a PC with an Intel Core i7-2600k CPU @3.4GHz×8, with

8Gb of RAM. The CPU-times for each method are depicted in Table 6, where

it can be seen that although not as fast as the Mixed Penalization method, it

is twice as fast as the closest competing method in terms of restoration quality.

Finally, it is appropriate to mention that the speed of our method could be

further improved using parallel computing. This is due to the fact that in our

algorithm (just as in Kameoka’s) the minimization can be performed simulta-

neously in every frequency bin.

7. Conclusions

In this work a new blind dereverberation method for speech signals based on

a Bayesian approach over a convolutive NMF representation of the spectrograms
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Table 3: Mean and standard deviation (between parenthesis) of performance measures for

each method, using simulations. Best results are shown in boldface.

Measure fwsSNR Cepstral Dist. SRMR

Reverberant 4.499 (2.73) 4.358 (0.75) 2.924 (1.48)

Kameoka 4.203 (2.52) 4.836 (0.62) 1.928 (0.78)

Mixed Pen 5.414 (1.55) 4.723 (0.47) 2.550 (0.98)

Wisdom 5.296 (2.35) 4.592 (0.61) 3.770 (1.91)

Bayesian 6.048 (2.32) 4.137 (0.55) 4.168 (1.58)

Hypermodel 5.954 (2.20) 4.144 (0.52) 4.315 (1.60)

Table 4: Office rooms settings

Length Width Height

Room 1 dimensions 4.15 [m] 3.00 [m] 3.00 [m]

Source 1 position 3.60 [m] 1.50 [m] 1.50 [m]

Microphone 1 position 1.10 [m] 1.50 [m] 1.50 [m]

Room 2 dimensions 5.85 [m] 4.55 [m] 3.00 [m]

Source 2 position 1.10 [m] 1.50 [m] 1.50 [m]

Microphone 2 position 1.10 [m] 4.00 [m] 1.50 [m]

was introduced and tested. This includes a basic Bayesian model as well as a

model with hyperpriors.

Results show the new introduced method is faster and outperforms the others

in terms of fwsSNR and SRMR, and, moreover, it is comparable to the best of

those in terms of Cepstral Distance. A significant improvement in performance

stands out for high reverberation times.

It is also worth mentioning that the proposed algorithm results fast enough

to be considered for performing on-line dereverberation, endeavor that we plan

to engage on in future work.

There is certainly much room for further improvement. Among others, the

use of other prior distributions depending on a-priori information, the introduc-

tion of time variability, and exploring the use of other time-frequency represen-
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Table 5: Mean and standard deviation (between parenthesis) of performance measures for

each method. Best results are shown in boldface.

Measure fwsSNR Cepstral Dist. SRMR

Reverberant 5.411 (3.23) 5.521 (0.87) 2.755 (0.75)

Kameoka 6.041 (3.19) 5.125 (0.68) 2.126 (0.48)

Mixed Pen 7.089 (3.19) 5.735 (0.79) 2.45 (0.58)

Wisdom 6.241 (3.60) 4.640 (0.51) 3.227 (0.77)

Bayesian 8.608 (2.83) 4.839 (0.47) 4.860 (1.13)

Hypermodel 8.660 (2.92) 4.824 (0.41) 4.878 (1.14)

Table 6: Mean CPU time for dereverberation with each algorithm.

Method Kameoka Mixed Pen Wisdom Bayesian Hyper.

CPU time 7.61[s] 4.15 [s] 11.14[s] 5.47[s] 5.58[s]

tations analogous to STFT that could help to improve the obtained restorations.
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and CAI+D-UNL 2016, PIC 50420150100036LI “Problemas Inversos y Aplica-

ciones a Procesamiento de Señales e Imágenes”.

Appendix A. Proof of the fact that gs is an auxiliary function for J

We want to prove that gs, defined as in (10), is an auxiliary function for J ,

defined in (6). That is, we must show that gs complies with both conditions

stated in (8) .
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The equality condition (i) is rather straightforward. In fact,

gs(S, S) =
∑

k,n,τ

1

σ2
k

Sk[τ ]H
′
k[n− τ ]∑

ν Sk[ν]H
′
k[n− ν]

(
Yk[n]− Sk[τ ]

Sk[τ ]

∑

ν

Sk[ν]H
′
k[n− ν]

)2

+
∑

k

1

η2k
||LH ′k||22 +

∑

k,n

1

bpk

(p
2
Sk[n]

p−2Sk[n]
2 + Sk[n]

p − p

2
Sk[n]

p
)

=
∑

k,n,τ

1

σ2
k

Sk[τ ]H
′
k[n− τ ]∑

ν Sk[ν]H
′
k[n− ν]

(
Yk[n]−

∑

ν

Sk[ν]H
′
k[n− ν]

)2

+
∑

k

1

η2k
||LH ′k||22 +

∑

k,n

1

bpk
Sk[n]

p

=
∑

k,n

1

σ2
k

(
Yk[n]−

∑

ν

Sk[ν]H
′
k[n− ν]

)2

+
∑

k

1

η2k
||LH ′k||22 +

∑

k,n

1

bpk
Sk[n]

p

=J(S,H ′).

To prove condition (ii) in (8) we begin by defining

Pk,n
.
=
∑

τ

S′k[τ ]H ′k[n− τ ]

X ′k[n]

(
Yk[n]− Sk[τ ]

S′k[τ ]
X ′k[n]

)2

,

Rk,n
.
=(Yk[n]−

∑

τ

Sk[τ ]H ′k[n− τ ])2,

and Q : R+ → R such that Q(x)
.
= p

2x
p−2Sk[n]2 + xp − p

2x
p. With these

definitions, we can write

gs(S, S
′) =

∑

k

(∑

n

(
1

σ2
k

Pk,n +
1

bpk
Q(S′k[n])

)
+

1

η2
k

||LH ′k||22

)
,

and

J(S,H ′) =
∑

k

(∑

n

(
1

σ2
k

Rk,n +
1

bpk
Sk[n]p

)
+

1

η2
k

||LH ′k||22

)
.

Hence, to prove that gs(S, S
′) ≥ J(S,H ′) ∀S, S′ it is sufficient to show that
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Pk,n ≥ Rk,n and Q(S′k[n]) ≥ Sk[n]p ∀n = 1, . . . , N, k = 1, . . . ,K. In fact,

Pk,n −Rk,n =
∑

τ

S′k[τ ]H
′
k[n− τ ]

X ′k[n]

(
Yk[n]− Sk[τ ]

S′k[τ ]
X ′k[n]

)2

− (Yk[n]−
∑

τ

Sk[τ ]H
′
k[n− τ ])2

=
∑

τ

H ′k[n− τ ]Sk[τ ]2X ′k[n]
S′k[τ ]

−
(∑

τ

Sk[τ ]H
′
k[n− τ ]

)2

=
∑

τ,ν

H ′k[n− τ ]Sk[τ ]2H ′k[n− ν]S′k[ν]
S′k[τ ]

−
∑

τ,ν

Sk[τ ]H
′
k[n− τ ]Sk[ν]H ′k[n− ν]

=
∑

τ,ν

(
H ′k[n− τ ]Sk[τ ]2H ′k[n− ν]S′k[ν]

S′k[τ ]
− Sk[τ ]H ′k[n− τ ]Sk[ν]H ′k[n− ν]

)

=
∑

τ 6=ν

(
H ′k[n− τ ]Sk[τ ]2H ′k[n− ν]S′k[ν]

S′k[τ ]
− Sk[τ ]H ′k[n− τ ]Sk[ν]H ′k[n− ν]

)

=
∑

τ<ν

H ′k[n− τ ]H ′k[n− ν]
(
Sk[τ ]

2S′k[ν]

S′k[τ ]
− 2Sk[τ ]Sk[ν] +

Sk[ν]
2S′k[τ ]

S′k[ν]

)

=
∑

τ<ν

H ′k[n− τ ]H ′k[n− ν]
S′k[ν]S

′
k[τ ]

(
Sk[τ ]S

′
k[ν]− Sk[ν]S′k[τ ]

)2 ≥ 0.

To prove that Q(S′k[n]) ≥ Sk[n]p, we begin by noting that Q ∈ C∞(R+).

Then, the first order necessary condition for Q yields

0 =
∂Q

∂x
=
p(p− 2)

2
xp−3Sk[n]2+pxp−1−p

2

2
xp−1 =

p(p− 2)

2
xp−1(x−2Sk[n]2−1),

meaning the only point at which the derivative of Q equals zero is at x = Sk[n].

Furthermore, ∂2

∂x2Q(Sk[n]) = Sk[n]p−2(2p − p2) > 0 ∀p ∈ (0, 2), meaning that

Q(Sk[n]) = Sk[n]p is the global minimum of Q. This yields

gs(S, S
′) =

∑

k

(∑

n

(
1

σ2
k

Pk,n +
1

bpk
Q(S′k[n])

)
+

1

η2
k

||LH ′k||22

)

≥
∑

k

(∑

n

(
1

σ2
k

Rk,n +
1

bpk
Sk[n]p

)
+

1

η2
k

||LH ′k||22

)
= J(S,H ′).

�

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Appendix B. Derivation of updating rule for H

In order to derive the updating rule for H, we shall write gh as a function

of the transposed rows Hk. We begin by noting

gh(H,H ′) =
∑

k,n,τ

1

σ2
k

S′k[n− τ ]H ′k[τ ]

X ′k[n]

(
Yk[n]− Hk[τ ]

H ′k[τ ]
X ′k[n]

)2

+
∑

k

1

bpk
||S′k||pp +

∑

k

1

η2
k

||LHk||22

=
∑

k,n,τ

1

σ2
k

S′k[n− τ ]H ′k[τ ]Y 2
k [n]

X ′k[n]
− 2

∑

k,n,τ

1

σ2
k

S′k[n− τ ]Yk[n]Hk[τ ]

+
∑

k,n,τ

1

σ2
k

S′k[n− τ ]X ′k[n]H2
k [τ ]

H ′k[τ ]

+
∑

k

1

bpk
||S′k||pp +

∑

k

1

η2
k

||LHk||22.

Next, we recall the definition of the diagonal matrices Ak, Bk ∈ RNh×Nh ,

whose diagonal elements are Akτ,τ
.
=
∑
n S
′
k[n− τ ]X ′k[n] and Bkτ,τ

.
= H ′k[τ ], and

the vector ζk ∈ RNh with components ζkτ =
∑
n S
′
k[n − τ ]Yk[n]. With these

definitions, we can write

gh(H,H ′) =
∑

k,n,τ

1

σ2
k

S′k[n− τ ]H ′k[τ ]Y 2
k [t]

X ′k[n]
− 2

∑

k

1

σ2
k

HT
k ζ

k

+
∑

k

1

σ2
k

HT
k A

k(Bk)−1Hk +
∑

k

1

bpk
||S′k||pp +

∑

k

1

η2
k

HT
k L

TLHk.

Now, the first order necessary condition for gh with respect to Hk is given

by

0 =
∂gh(H,H ′)

∂Hk
= − 2

σ2
k

ζk +
2

σ2
k

Ak(Bk)−1Hk +
2

η2
k

LTLHk,

which readily leads to the linear system
(
Ak +

σ2
k

η2
k

BkLTL

)
Hk = Bkζk.

Appendix C. Updating rule for η

In order to derive the updating rule for ηk, k = 1, . . . ,K, we begin by noting

that − log πpost(S,H, η|Y ) ∈ C1(0,∞) with respect to ηk, and hence a local min-
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imum must corresponds to a point with derivative equal to zero. Differentiating

(7) with respect to ηk, we obtain

∂

∂ηk
− log πpost(S,H, η|Y ) = − 2

η3
k

||LHk||22 +
Nh + 1− α

ηk
+

1

β
.

The first order necessary condition over (7) is thus tantamount to

η3
k + (Nh + 1− α)β η2

k − 2β||LHk||22 = 0.

By Descartes’ rule, this polynomial has exactly one positive root η0. Since

limηk→∞ (− log πpost(S,H, η|Y )) = ∞ and limηk→0+ (− log πpost(S,H, η|Y )) =

∞, then η0 is the global minimizer.
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