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Highlights: 

 

 New scheme for species and biovar. definition of L. lactis group is presented. 

 Genomic analyses showed that L. lactis and L. cremoris are two different 

species. 

 A rank of gene markers for MLSA was performed to classify L. lactis group 

strains. 

 Industrial L. lactis biovar diacetylactis shows low citrate cluster diversity. 

 

Abstract  

Lactococcus lactis strains constitute one of the most important starter cultures 

for cheese production. In this study, a genome-wide analysis was performed including 

68 available genomes of L. lactis group strains showing the existence of two species (L. 

lactis and L. cremoris) and two biovars (L. lactis biovar. diacetylactis and L. cremoris 

biovar. lactis). The proposed classification scheme revealed coherency among 

phenotypic (through in silico and in vivo bacterial function profiling), phylogenomic 

(through maximum likelihood trees) and genomic (using overall genome sequence-

based parameters) approaches. Strain biodiversity for the industrial biovar. diacetylactis 

was also analyzed, finding they are formed by at least three variants with the CC1 clonal 

complex as the only one distributed worldwide. These findings and methodologies will 

help improve the selection of L. lactis group strains for industrial use as well as 

facilitate the interpretation of previous or future research studies on this diverse group 

of bacteria. 
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1. Introduction 

Lactococcus belongs to the Lactic Acid Bacteria (LAB) group which comprises 

twelve species. They can be isolated from different niches such as milk, fermented food, 

plants, insect gastrointestinal tract, and fish (Meucci et al., 2015; Yan Yang et al., 

2016). L. lactis strains are widely used as starter cultures in artisanal or industrial dairy. 

Industrial interest on L. lactis strains divides this group in three phenotypes: Lactis 

phenotype (growth at 40ºC in 4% NaCl, and arginine breakdown), Cremoris phenotype 

(unable to grow at 40ºC or in 4% NaCl, and unable to break down arginine) and 

Diacetylactis phenotype (citrate fermentation with acetoin and diacetyl production) 

(Garvie and Farrow, 1982). Strains with different phenotypes provide specific features 

to cheese quality, for example Cremoris phenotype strains are widely used in the 

production of cheddar cheese reducing bitterness, while Diacetylactis phenotype strains 

improve the quality of cheese with buttery aroma and CO2 production. In particular, this 

biovar. is commonly used as starter culture in cheese production of fresh cheese, soft 

ripened or unripened products such as Brie, Camembert and semi-hard cheese such as 

Gouda or Edam-like cheese (Curioni and Bosset, 2002). 

In recent years, next‐generation sequencing (NGS)‐based sequencing technology has 

allowed to develop powerful tools and procedures for the classification of highly 

phylogenetically-related microorganisms. They include whole-genome multilocus 

sequence analysis (MLSA), and overall genome parameters such as average nucleotide 

identity (ANI) and in silico DNA-DNA hybridization (is-DDH) values (Espariz et al., 

2016). Based on comparative analysis of ANI parameters Canavagh et al., have 
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suggested a revision of the taxonomy of L. lactis group strains (Cavanagh et al., 2015a; 

Cavanagh et al., 2015b). Moreover, Kelleher et al. have recently reported a functional 

comparison of completely sequenced L. lactis group strains that clearly show a 

phylogenetic division between the L. lactis and L. cremoris strains (Kelleher et al., 

2017). While these strains were historically divided into subspecies categories based on 

industrially relevant phenotypic properties (Wegmann et al., 2007), genome-wide 

analyses, currently driving the selection of strains, require a more accurate 

classification. On the other hand, biovar. diacetylactis is one of the most important 

starters used in dairy manufacture due to its capacity to increase the amount of diacetyl 

in cheese (Kelly et al., 2010). This property arises from the ability of the diacetylactis 

group to degrade citrate present in milk (Passerini et al., 2013; Zuljan et al., 2014). 

In this study, we present a simplified taxonomic scheme including relevant 

phenotypes associated with the use of lactococci in food production. Additionally, the 

presence of three evolutionary events that define the citrate-fermenting L. lactis biovar. 

diacetylactis is described. Remarkably, all diacetylactis strains used as starter culture 

belong to the same clonal complex. In sum, our results contribute to expand current 

knowledge regarding lactococcal strains used in the dairy industry, enabling its rational 

classification and future screenings. 

2. Material and Methods 

2.1. Comparative analysis of the L. lactis group genomes. 

For pipeline construction, genome sequences of L. lactis group strains listed in Table 

1 were used. Comparative genome analysis among lactococcal species was performed 

uploading all sequences of L. lactis listed in Tables 1 and S1 to the RAST server (Rapid 

Annotation using Subsystem Technology) (Aziz et al., 2008).  

2.2. Multilocus sequence typing (MLST) and phylogenomic tree construction. 
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MLST was performed with MLST 1.8 online on the Center of Genomic 

Epidemiology server (https://cge.cbs.dtu.dk/services/MLST/). Phylogenomic tree 

construction was performed as described in Espariz et al. (2016) with minor 

modifications. Briefly, orthologous genes were assigned using all CDS of L. lactis 1403 

as queries for bidirectional best hit BLAST searches (Boratyn et al., 2013) against the 

CDS of all bacterial genomes under study (Table 1) and an E-value of 1E-30. 

Orthologous genes present in all microorganisms including the outgroup strain L. 

garvieae TB25 (Blast-defined common ancestral genes) were individually aligned, 

trimmed and concatenated. The resulting alignment was used to infer the evolutionary 

history of strains with Maximum Likelihood algorithm and GTR Gamma distributed 

model using RAxML software. Support values of the branches of the tree were 

computed with 1000 bootstrap replicates. Substitution model parameters were 

optimized for each different gene segment of the alignment under study (Stamatakis, 

2014).  

2.3. Hierarchical clustering analysis. 

Hierarchical clustering of strains was performed based on their inferred biological 

functions as described in Espariz et al. (2016). Consequently, the presence or absence of 

biological functions in the microorganisms were used as binary score and analyzed by 

average hierarchical clustering implemented by the R package pvclust (Suzuki and 

Shimodaira, 2013). Distance measurements were computed by the Manhattan distance 

function. Biological functions of proteins were inferred by correlation with its ortholog 

group assignation using the OrthoMCL software (Chen et al., 2006) and an E-value of 

1E-5. In case that a particular species had more than one protein from the same group of 

orthologs, only the protein with the lower E-value was considered for the clustering 
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analysis. In case that OrthoMCL did not assign an ortholog group to a particular protein, 

its function was correlated from its best matching OrthoMCL-DB protein. 

2.4. Random Forest approach for the generation of a new MLSA scheme. 

For the construction of decision trees, a Random Forest (RF) algorithm (Breiman, 

2001) as described in Espariz et al. (2016) was used. Distances of Blast-defined 

common ancestral genes were calculated using the R package ape (Paradis et al., 2004) 

and used as variables. On the other hand, the classes (or outputs) used were the 

suggested names of species that resulted from the overall genome parameter, 

phylogenomic and functional repertoire analyses. Seventeen strains were arbitrarily 

selected and used to train the forest. To this end, 100000 classification trees were 

constructed with a seed value of 12345. Variable importance was computed using 

internal out-of-bag estimates as described by Breiman (2001). Seventeen strains of the 

testing set were used to construct a confusion table and calculate its misclassification 

rate. Strains used as training or testing sets are indicated in Table 1. The 11 most 

important genes were analyzed for the design of a new MLSA as described in section 

2.2, but including strains listed in Tables 1 and S1. 

3. Results and discussion 

3.1. Species definition and marker gene selection of L. lactis group strains. 

In order to perform a revision of species assignations for L. lactis group strains a 

pipeline recently described in Espariz et al. (2016) was conducted with 21 strains 

assigned as L. lactis subsp. lactis (here called L. lactis) and 13 strains assigned as L. 

lactis subsp. cremoris (here called L. cremoris) (Table 1). First, an MLSA was 

performed since it is considered the method of choice to efficiently resolve phylogenetic 

relationships at the genera and species levels (Glaeser and Kampfer, 2015). Thus, the 

evolutionary history of the strains was inferred using the information from the aligned, 
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concatenated and pruned sequences of 170 common ancestral genes. These genes were 

selected from the 1142 core genes associated to L. lactis and L. cremoris (here called L. 

lactis group strains) since they are also present in the outgroup strain L. garvieae TB25 

(Ricci et al., 2012). Hence, these genes could rarely be acquired after speciation through 

horizontally transferred events and presumably evolved following a topology similar to 

the organisms under study (therefore here called common ancestral genes). As shown in 

the phylogenetic tree depicted in Fig. 1A two different branches for L. lactis and L. 

cremoris strains were clearly observed.  

As previously proposed, the analysis of coherence between functional properties and 

genotypes among strains could contribute to better define species categories (Espariz et 

al., 2016; Train et al., 2017). Therefore, functions encoded in the L. lactis group strains 

listed in Table 1 were annotated and compared (Table S2). Among the 2286 inferred 

functions, 976 were found to be present in all 33 analyzed L. lactis group strains 

constituting their core functions (strain CECT 4433 could not be annotated by RAST or 

NCBI and was not considered in this analysis). Interestingly, the number of core 

functions identified was very similar to the 904 found by Kelleher et al. (2017) using 30 

completely-sequenced genomes. As expected, the dendrogram constructed according to 

the presence-absence of each assigned function (Fig. 1B) revealed a topology similar to 

the phylogenetic dendrogram (Fig. 1A). Hence, both analyses support the idea that L. 

cremoris and L. lactis strains should be considered different species (Cavanagh et al., 

2015a; Cavanagh et al., 2015b; Laroute et al., 2017) in order to better perform 

comparative analyses. 

To select specific marker genes for species classification of the L. lactis group strain, 

a procedure previously described was performed (Espariz et al., 2016). Consequently, 

the genetic distances among the 170 common ancestral genes of 34 L. lactis group 
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strains listed in Table 1 were calculated generating 5780 variables for the construction 

of a RF classifier. We found that the species assignations of strains were predicted 

accurately in all cases tested. Also, each gene was ranked according to its importance in 

the classification by using the internal out-of-bag estimation of the RF algorithm 

(Breiman, 2001) (Table S3). The 11 most important genes were listed in Table 2. 

Finally, 34 additional L. lactis group strains , listed in Table S1, that became available 

during the preparation of this manuscript were added to the original 34 strains to 

generate phylogenetic trees. Ten trees were constructed using one (pyrG) and two to ten 

gene concatenated sequences where cshA, clpE, llrC, rpsS, yjjG, ylaF, ldh, glnQ, and 

uvrA sequences were successively added to the previous concatenated one. The eno 

gene was not included in the analysis considering that only 32% of the complete GL2 

gene was available. As expected, all phylogenetic trees had similar topologies and 

clustered L. lactis and L. cremoris branches separately (data not shown). Moreover, the 

pyrG tree by itself could support L. lactis/L. cremoris bipartition with a bootstrapping 

measure of 99%. Remarkably, addition of cshA and clpE sequences could 

simultaneously resolve the L. lactis/L. cremoris node and the L. cremoris with Lactis 

phenotype branch (here called biovar lactis) with bootstrapping values superior to 99% 

(Fig. S1). This supports the idea that L. cremoris strains have two genetic lineages, the 

Lactis and Cremoris phenotype strains, as was recently suggested by Laroute et al. 

(2017). 

3.2. L. lactis biovar diacetylactis group definition based on specific features. 

Concerning the importance of citrate metabolism in the production of aroma 

compounds such as diacetyl, a thorough inspection of the cit genetic locus in L. lactis 

group strains was performed using BLAST (Boratyn et al., 2013). With this approach 

two different cit chromosomal cluster types were found (Fig. 2A and B). In the 
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archetypal strain CRL264 (Zuljan et al., 2016a; Zuljan et al., 2016b) citrate transport 

and metabolism is composed by the chromosomal cit cluster citM(citO)-I-CDEFXG 

(coding for the citrate lyase complex and soluble oxaloacetate decarboxylase) located 

near the als gene (Martin et al., 2004) and by an 8.5 kbp plasmid encoding the citP gene 

(citrate transporter) (Sesma et al., 1990) (Fig. 2A). This arrangement of the cit locus 

(here called type A) was found in diacetylactis strains IL1403 (plasmid-free strain 

derived from IL594), CRL264, TIFN2, TIFN4, and LD61, and the recently sequenced 

strains M20, DRA4, and LMG 19460 (Fig. 2A). The latter is a plasmid-free strain 

derived from the L. lactis biovar. diacetylactis Bu2 (a citrate-fermenting strain) (Jahns et 

al., 1991). In the Bpl1 and KF67 strains an alternative cit+ locus (here called type B) 

was found. Although this cit cluster has a similar genetic architecture to the type A cit 

cluster, they did not share significant nucleotide identities as discussed below (Fig. 2A 

and B). Moreover, the cit cluster was located adjacent to the lipoteichoic acid synthase 

ltaS rather than to the als gene in Bpl1 and KF67 (Fig. 2B). They shared approximately 

98% nucleotide identity between them. 

A more exhaustive analysis showed that some differences exist even in clusters of 

the same type. It was observed that M20, TIFN2, TIFN4 and KF67 strains encode a 

full-length copy of the putative CitO transporter in their respective clusters. These 

putative proteins display highly shared amino acid similarity when compared to the 

uncharacterized citrate transporter associated to the cit cluster present in Oenococcus 

oeni (Mills et al., 2005) and to the malate transporters associated with malolactic 

enzyme present in O. oeni and other related bacteria (Espariz et al., 2011). Distinctly, 

the citO gene has a stop codon in Bpl1 (two putative proteins of 248 and 76 amino acid 

residues would be produced). In addition, citO is described as a pseudogene in CRL264, 

IL1403, LD61, LMG 19460 and the Bpl1 strain.  
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When cluster A and B citrate lyase holoenzymes (complexes composed of CitD, CitE 

and CitF subunits) were compared, shared amino acid similarities of approximately 

80% were found whereas accessory proteins, such as the citrate lyase ligase CitC, 

showed amino acid similarities of ~54% (Fig. 2A and B). Enzymes CitX and CitG 

responsible for the biosynthesis of the prosthetic group of citrate lyase were fused in 

one polipeptide CitX(G) in strains Bpl1, KF67 and M20, remaining as two gene 

products in strains IL1403, CRL264, TIFN2, TIFN4, LD61, and DRA4. In the case of 

the regulator CitI and the soluble oxaloacetate decarboxylase CitM, shared amino acid 

similarities < 58 % and <63% were found, respectively (Fig. 2A and B).  

No citrate cluster was identified in the reported chromosomal genome sequence of L. 

lactis diacetylactis GL2, available from the NCBI site (Gabed et al., 2015). In this 

strain, citrate transporter CitP, the citrate lyase complex and the soluble oxaloacetate 

decarboxylase were encoded in a large 23 Kb plasmid (Drici et al., 2010), also found in 

other genus such as Leuconostoc and Weissella (Bekal-Si Ali et al., 1999; Martin et al., 

1999). A different cit gene context as well as distribution was described for GL2, which 

indicates that a third type of cit cluster may be found in L. lactis strains (here called type 

C; Fig. 2C). Altogether, these facts suggest that at least three non-related genetic events 

have come together to give origin to the diacetylactis biovar strains. This also highlights 

the fact that acquisition of cit clusters in the L. lactis strains has arisen by horizontal 

transfer, which correlates with the observation that diacetylactis biovars were not 

clustered in a single functional or phylogenetic group (Fig. 1). 

3.3. Clonal origin of the industrial L. lactis biovar diacetylactis strains. 

In an attempt to better characterize the phylogenetic relationship of diacetylactis 

strains, a MLST analysis following the scheme of the Center of Genomic Epidemiology 

was performed. It was found that IL1403, LD61, TIFN2, LMG19460 and TIFN4 strains 
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belong to ST6 showing 100% identity in all the analyzed alleles. On the other hand, 

GL2 and DRA4 belong to ST1, and ST16 haplotypes, respectively, whereas M20, Bpl1, 

and KF67 to different and undefined ST haplotypes. Notably, all starter culture strains 

analyzed belong to the same clonal complex (CC1) defined by Passerini et al. (2010) 

and encode the type A citrate-fermenting cluster. Remarkably, CRL264 was first 

isolated from a Northwestern Argentinean cheese whereas the other members of the 

CC1 diacetylactis biovar group have European origin. Since industrial processes in 

cheese production were not introduced by European immigrants in South America until 

the late nineteenth century, we propose that dissemination of CC1 has originated  

recently from the central region of Europe, where starter culture strains IL594 (IL1403 

parental), LD61, TIFN4, and TIFN6 were isolated (Erkus et al., 2013; Falentin et al., 

2014; Gorecki et al., 2011). 

On the other hand, strains isolated from soil (M20), insects (Bpl1), grape juice 

(KF67), and dromedary milk (GL2) harbor different cit clusters (Fig. 2). Therefore, 

while the diacetylactis biovar group is not a monophyletic group (Fig. 1) there is a 

correlation among industrial history of strains, their phylogenetic origin and the citrate-

degrading pathway they have acquired during their evolution. 

4. Conclusion 

Despite the existence of guidelines and recommendations to ensure stability, 

reproducibility, and coherence in taxonomy, the methodology to circumscribe strains in 

species is still subjective and arbitrary (Gevers et al., 2005; Stackebrandt et al., 2007). 

Lactococcus classification is an example of species demarcation which is not defined by 

a theory-based concept but generally by a practical necessity or industrial praxis. 

However, an accurate species assignation extremely impacts the way industrial strains 

are selected due to the fact that such assignation, implicitly or not, is used to predict 
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strains behavior or performance (Gevers et al., 2005). Nowadays, the new DNA 

sequencing techniques are increasing the amounts of data that may contribute to 

improve the accuracy in bacteria circumscription, which is mainly based on their 

phylogenetic, genomic, and phenotypic coherence (Rossello-Mora, 2012). In this study, 

a new simplified scheme that includes a phylogenetic-based analysis of the common 

ancestral genes pyrG and cshA (and optionally clpE) was established (Fig. 3). This 

allows differentiation of L. lactis from L. cremoris as well as L. cremoris biovar. lactis 

among L. cremoris strains. This scheme resolves more accurately the approach 

suggested by Rademaker et al. (2007) and will improve the classification of the new 

isolates of the genera Lactococcus (Fig. 3). Considering the incorporation of this 

methodology into industrial routine processes we have pondered in favor of simplicity 

and velocity at the cost of accuracy. We are aware that some imprecisions could arise 

from the fact that genes could be horizontally transferred and suffer recombination. 

Also, from a statistical point of view, few genes represent only a fraction of the genome 

(Colston et al., 2014; Gevers et al., 2005). To avoid these artifacts, or at least reduce 

their impact, obvious modifications to the proposed scheme will be the inclusion of 

more common ancestral genes (listed in Table S3) that would be selected based on their 

importance rank. In addition, the gene combination analyzed could be modified based 

on their availability (i.e. in case some genes are not completely or accurately 

sequenced). 

Citrate consumption was recognized as the major determinant of aroma 

production in the L. lactis biovar diacetylactis strains (Passerini et al., 2013). Hence, as 

depicted in Fig. 3 a genotypic and/or phenotypic analysis is proposed for inclusion in 

our scheme in order to identify citrate consumption as well as acetoin and diacetyl 

production capability. In this work, cit clusters not related to the well-known CRL264 

ACCEPTED M
ANUSCRIP

T



13 
 

strain were identified. Therefore, we propose that the presence of the conserved citrate 

lyase gene citF should be analyzed as a feature-encoded marker rather than the 

plasmidic citP gen (Kempler and McKay, 1980; Laroute et al., 2017). Moreover, the 

Diacetylactis phenotype should be validated while growing the strains in Kempler and 

McKay medium (Kempler and McKay, 1980; Laroute et al., 2017) and/or by the Voges-

Proskauer assay using citrate as carbon source as described by Martino et al. (2016). 

Finally, considering that the use of diverse environmental strains in industrial processes 

is widely accepted (Passerini et al., 2013), further studies on citrate fermentation and 

aroma compound generation in M20, Bpl1, and KF67 are required in order to obtain 

alternative starters available for the cheese industry.  
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Figure captions: 

Fig. 1. Comparison of phylogenomic and functional dendrograms of L. lactis group 

strains. A) Phylogenomic dendrogram. 170 Blast-defined common ancestral genes 

were individually aligned, concatenated and trimmed. The resulting final alignment was 

used to infer the evolutionary history of the indicated strains using a maximum-

likelihood approach in MEGA 5. B) Functional dendrogram. Biological functions of 

proteins encoded in the genome of the indicated strain were inferred using the 

OrthoMCL software and then used as binary score for hierarchical clustering 

implemented with the R pvcluster package. The diacetylactis ST6 strains are indicated 

with blue boxes. Strain GL2 (ST1) is highlighted with black-filled stars while the 

diacetylactis strain Bpl1, found through cit genes inspection, with black-filled circles. L. 

cremoris biovar lactis strains are indicated with green boxes. 

Fig. 2. Citrate utilization gene clusters found in L. lactis biovar. diacetylactis 

strains. A) cit cluster A architecture found in the ST6, M20 and DRA4 strains. The 

presence of the citO pseudogene (citO) is complemented with an 8.5 kb plasmid 

carrying citP. B) cit cluster B architecture found in Bpl1 and KF67. C) Reported 

plasmidic organization of the cit cluster C in GL2.  

Fig. 3. Newly simplified scheme for L. lactis group strains classification. First, a 

phylogenic approach based on a pyrG gene sequence is proposed in order to 

differentiate L. lactis and L. cremoris strains. Further classification could be performed 

with the inclusion of the cshA gene that allows the identification of L. cremoris biovar 

lactis strains. Addition of the clpE (optional) gene increases the robustness of the 

phylogenic analysis (see Fig. S1). Finally, a featured-based approach should be included 

to identify L. lactis biovar. diacetylactis strains. Citrate consumption and C4 production 

capability could be inferred by the identification of citF by PCR, or more directly by 
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growing strains in Kempler and McKay (K-M) medium and/or via the Voges-Proskauer 

(V-P) assay in M17 supplemented with citrate.  
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Tables: 

 

Table1 Lactococcus strains used in this study.  

NCBI 

taxonomi

c label 

Strain 

name 

Origin Assembly1 Size(M

b) 

Scaffol

ds 

Gen

es 

Protei

ns 

RF

2 

L. lactis   IL1403 Dairy GCA_00000686

5.1  

2.36559 1 2406 2277 Trai

n 

L. 

cremoris 

MG13

63 

Dairy GCA_00000942

5.1  

2.52948 1 2583 2400 Test 

L. 

cremoris 

SK11 Dairy GCA_00001454

5.1  

2.59835 6 2682 2412 Test 

L. lactis  KF147 Plant GCA_00002504

5.1  

2.63565 2 2595 2445 Test 

L. 

cremoris 

NZ900

0 

Dairy GCA_00014320

5.1  

2.53029 1 2583 2404 Trai

n 

L. lactis  CV56 Human GCA_00019270

5.1  

2.51874 6 2533 2378 Trai

n 

L. 

cremoris 

A76 Dairy GCA_00023647

5.1  

2.5771 5 2679 2382 Test 

L. 

cremoris 

UC509

.9 

Dairy GCA_00031268

5.1  

2.45735 9 2489 2188 Trai

n 

L. lactis  IO-1 Drain 

water 

GCA_00034457

5.1  

2.42147 1 2342 2230 Test 

L. 

cremoris 

KW2 Dairy GCA_00046895

5.1  

2.42705 1 2345 2223 Trai

n 
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L. lactis NCDO 

2118 

Plant GCA_00047825

5.2  

2.59226 2 2545 2382 Test 

L. lactis KLDS 

4.0325 

Dairy GCA_00047937

5.2  

2.59549 4 2648 2448 Trai

n 

L. lactis AI06 Amazoni

an plant 

GCA_00076111

5.1  

2.39809 1 2320 2178 Test 

L. lactis  S0 Dairy GCA_00080737

5.1  

2.4887 1 2482 2311 Trai

n 

L. lactis Dephy 

1 

Dairy GCA_00049335

5.1  

2.60355 56 2634 2459 Test 

L. lactis CNCM 

I-1631 

Dairy GCA_00028473

5.1  

2.51133 131 2546 2403 Trai

n 

L. lactis YF11 Fermente

d corn 

GCA_00034896

5.1  

2.52731 71 2452 2328 Test 

L. lactis A12 Sourdoug

h bread 

GCA_00044284

5.1  

2.7 42 2663 2425 Trai

n 

L. 

cremoris 

TIFN1 Dairy GCA_00044788

5.1  

2.67978 291 2828 2285 Trai

n 

L. lactis 

biovar. 

diacetylac

tis 

TIFN2 Dairy GCA_00044790

5.1  

2.50507 143 2603 2296 Test 

L. 

cremoris 

TIFN3 Dairy GCA_00044792

5.1  

2.72521 412 2869 2291 Test 

L. lactis 

biovar. 

TIFN4 Dairy GCA_00044798 2.55039 182 2635 2349 Trai
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diacetylac

tis 

5.1  n 

L. lactis 

biovar. 

diacetylac

tis 

LD61 Dairy GCA_00048897

5.1  

2.59924 132 2687 2490 Trai

n 

L. 

cremoris 

HP Dairy GCA_00053481

5.1  

2.26951 213 2325 2042 Test 

L. 

cremoris 

GE214 Dairy GCA_00073163

5.1  

2.80103 243 2835 2603 Trai

n 

L. lactis Bpl1 Insect GCA_00075959

5.1  

2.3057 64 2200 2092 Trai

n 

L. lactis  CECT 

44333 

Dairy GCA_00076156

5.1  

2.57915 111 2629 2290 Test 

L. lactis 1AA59 Dairy GCA_00078675

5.1  

2.57654 218 2570 2406 Test 

L. 

cremoris 

A17 Dairy GCA_00080543

5.1  

2.67994 16 2551 2372 Trai

n 

L. lactis JCM 

5805 

Dairy GCA_00083597

5.1  

2.54579 88 2553 2359 Trai

n 

L. lactis 

biovar. 

diacetylac

tis 

CRL26

4 

Dairy GCA_00145526

5.1  

2.57372 83 2650 2446 Test 

L. lactis 

biovar. 

GL2 Dromeda

ry 

GCA_00072186

5.2  

2.2454 48 2179 2022 Test 
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diacetylac

tis 

L. 

cremoris 

TIFN5 Dairy GCA_00044782

5.1  

2.54151 646 2555 2232 Trai

n 

L. 

cremoris 

TIFN7 Dairy GCA_00044796

5.1  

2.63409 370 2853 2505 Test 

L. 

garvieae 

TB25 Cheese GCA_00023651

5.3 

2.00888 91   - 

1 GeneBank assembly accession number. 

2 The sequences were used in Random Forest algorithm as Train or Test. See text for 

details 

3 This sequence was not used in ANI and is-DDH calculations.  
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Table 2. Eleven most important genes for L. lactis group strains classification. 

Genes Function1 mean2  variance2 maximun3  Importance3 

pyrG GATase1 CTP Synthase 0.04540152 8.97E-08 0.29253211 0.00166292 

cshA recombination factor 

protein RarA 

0.10504793 6.20E-07 0.43475447 0.00165721 

clpE ATP-dependent protease 

ATP-binding subunit 

0.05519423 4.73E-08 0.30766005 0.00165573 

llrC two-component systems; 

involved in acid stress 

resistance development 

0.0545341 4.67E-08 0.28488155 0.00165217 

rpsS 30S ribosomal protein 

S19 

0.01751105 4.36E-10 0.10784057 0.0016476 

eno phosphopyruvate 

hydratase 

0.15664178 4.35E-06 0.89668675 0.00164746 

yjjG hypothetycal protein 0.02865096 8.34E-10 0.2267373 0.00164598 

ylaF nicotinate 

phosphoribosyltransferase 

0.08017139 2.24E-07 0.37720716 0.00164551 

ldh lactate dehydrogenase 0.03380669 7.25E-09 0.2833626 0.00164437 

glnQ glutamine ABC 

transporter ATP-binding 

protein 

0.08334978 3.70E-07 0.33834446 0.00164403 

uvrA excinuclease ABC 

subunit A 

0.08805436 7.63E-07 0.3352154 0.00163455 

 

1 Function and locus names for each gene were obtained for the reference sequence of L. 

lactis IL1403. 
2 Distances of orthologs genes were calculated using the R package ape and then used to 

compute their means, variances and maximums. 
3 Importance of each gene was computed using internal out-of-bag estimates as 

described by Breiman, L. (2001) with a forest composed by 100000 classification trees, 

trained by the 17 strains mentioned in Table 1 and the input data of all 170 core genes.  
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