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Abstract  

Aims 

Isolate and characterize a laccase-encoding gene (lac I) of Phlebia brevispora BAFC 633, as well 

as cloning and expressing cDNA of lac I in Pichia pastoris. And to obtain a purified and 

characterized recombinant laccase to analyze the biotechnological application potential. 

Methods and Results 

lac I was cloned and sequenced, it contains 2447 pb obtained by PCR and long-distance inverse 

PCR.  Upstream of the structural region of the laccase gene, response elements such as metals, 

antioxidants, copper, nitrogen and heat-shock were found. The coding region consisted in a 

1563-pb ORF encoding 521 amino acids. Lac I was functionally expressed in Pichia pastoris and 

it was shown that the gene cloned using the α-factor signal peptide was more efficient than 

the native signal sequence, in directing the secretion of the recombinant protein.  Km and 

highest kcat/Km values towards ABTS, followed by 2,6-dimethylphenol were similar to other 

laccases. Lac I showed tolerance to NaCl and solvent and nine synthetic dyes could be 

degraded to different degrees.  

Conclusions 

Lac I-encoding gene could be successfully sequenced having cis-acting elements located at the 

regulatory region. It was found that lac I cDNA expressed in P. pastoris using the α-factor signal 

peptide was more efficient than the native signal sequence. The purified Lac I exhibited high 

tolerance towards a NaCl and various solvents and degraded some recalcitrant synthetic dyes. 

Significance and Impact of Study 

The cis-acting elements may be involved in the transcriptional regulation of laccase gene 

expression. These results may provide a further insight into potential ways of optimizing 

fermentation process and also open new frontiers for engineering strong promoters for 

laccase production. The Lac I stability in chloride and solvents and broad decolorization of 
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synthetic dyes are important for its use in organic synthesis work and degradation of dyes from 

textile effluents respectively.  

key words: Phlebia brevispora; Laccase; Characterization; Gene isolation; heterologous 

expression. 

Introduction 

Laccases [benzenediol: oxygen oxidoreductases (EC1.10.3.2)] are copper-containing enzymes 

capable of oxidizing a broad spectrum of phenolic compounds and non-phenolic substrates 

using molecular oxygen as the electron acceptor. In fungi, laccases probably play critical roles 

in several physiological functions, such as morphogenesis, fungal plant-pathogen/host 

interaction, degradation of lignocellulosic material, and pigment production (Baldrian 2006). 

The low substrate specificity makes this enzyme interesting for biotechnology purposes in 

various industries such as pulp and paper and textiles, and bioremediation of industrial 

pollutants (Mayer and Staples 2002). Several authors have reported laccases with interesting 

properties for their biotechnological application (Moredo et al. 2003; Wang et al. 2008; 

Fonseca et al. 2010; Preussler et al. 2010; Shimizu et al. 2010; Giorgio et al. 2013; Fonseca et 

al. 2015). The white rot fungus Phlebia brevispora Nakasone BAFC 633 produces a main 

laccase of 60 kDa that is constitutively expressed and other induced by the presence of CuSO4 

of 75 KDa (Fonseca et al. 2010). Both enzymes have been purified and thoroughly 

characterized (Fonseca et al. 2015). The presence of isoforms with similar chemico-physical 

properties makes difficult to purify individual enzymes for analysis, a problem that can be 

overcome by expressing the corresponding gene in a heterologous host (Colao et al. 2006). 

The methylotrophic yeast Pichia pastoris is frequently used for heterologous expression and 

can be grown in methanol as the only source of carbon and energy (Cereghino and Cregg 

2000). P. pastoris has the potential to express high levels of protein, with efficient secretion of 

extracellular proteins, post-translational modifications, such as glycosylation, and the ability to 

growth at high cell densities over a defined minimum medium. Other possible advantage with 
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P. pastoris compared to many filamentous fungi is that it does not produce cellulolytic 

enzymes and laccase produced in this host could, therefore, potentially be applied directly in 

the pulp and paper industry without any purification. In addition, molecular genetics methods 

for P. pastoris are rapid and well developed, and the organism can be easily cultivated on a 

large scale (Hong et al. 2002). Laccase genes of Laccaria bicolor (Wang et al. 2016), and 

Ganoderma lucidum (You et al. 2014) were expressed in P. pastoris, indicating the suitability of 

this system for laccase production and also revealing that the system seems to be the most 

cost effective to use in ecological strategies.  

In this work we describe the isolation and the characterization of the chromosomal lac I from 

the white rot fungi (WRF) Phlebia brevispora BAFC 633. The lac I cDNA was successfully 

expressed in P. pastoris. Nucleotidic as well as the in-silico deduced Lac aminoacidic sequences 

were compared with other well-known Lac sequences available throughout databases and the 

corresponding analysis is herein discussed. The laccase was then purified and the biochemical 

properties and decolorization potentials were analyzed. 

Materials and methods 

Chemicals 

2.2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 2.6-

dimethoxyphenol (DMP, Catalog Number D135550), sodium dodecyl sulfate (SDS, Catalog 

Number L3771) were purchased by Sigma-Aldrich. 

Microorganism and culture conditions 

The WRF isolated from the Misiones rainforest (Argentina) identified as Phlebia brevispora 

BAFC 633, is deposited in the Filamentous Fungi Culture Collection at the Biological Sciences 

Department, Faculty of Exact and Natural Sciences, UBA, Argentina. Stock cultures were 

maintained at 4°C by periodic subculturing on malt extract agar (MEA: malt extract, 12.7 g l-1; 

agar, 20 g l-1). To prepare the liquid inocula, 4 cm2-agar plugs from 5-7-day-old MEA plates 
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were cut and transferred to 100 ml Erlenmeyer flasks containing 10 ml of malt extract liquid 

medium (ME: malt extract, 12.7 g l-1) and incubated at 29ºC under static conditions. 

The Pichia pastoris strain GS115 (his4) was purchased from Thermo Fisher Scientific (Pichia 

Expression Kit, original kit, Invitrogen, Catalog Number K1710-01, USA) and the yeast media 

and agar plates were prepared as described by the manufacturer.  

Genomic DNA isolation 

Mycelia from 6-day-old cultures of P. brevispora BAFC 633 grown in 10 ml ME at 29ºC under 

static conditions were harvested by filtration. Filtrated mycelium was washed with 0.1 M Tris-

HCl pH 8, 0.02 M  EDTA. DNA extraction was carried out with a lysis buffer solution (100 mM,  

Tris-HCl pH 8, 1.5 M  NaCl, 50 mM, EDTA pH 8) at 60ºC containing 0.1 mg ml -1 proteinase K, 10 

mM β-mercaptoethanol and 2% (wt/vol) SDS. DNA was purified with chloroform: isoamylic 

alcohol (24:1, v/v) and 3 M potassium acetate, and finally precipitated with isopropyl alcohol 

(Fonseca et al. 2015).  

Laccase gene fragments cloning and sequencing 

The cloning strategy to amplify the Lac I gene (lac I) is summarized in Figure 1. 

Amplification of lac I was performed by PCR using P. brevispora BAFC 633 genomic DNA (gDNA) 

as template. Primer sequences used in this work are listed in Table 1. The accurate size PCR-

amplified products were cut out from the agarose gel, purified, cloned into pGEM-T Easy 

Vector (pGEM®-T Easy Vector System II, Promega, Catalog Number A1380, USA) and 

sequenced (Macrogen, Korea). Plasmids were isolated by standard molecular biology methods 

(Sambrook et al. 1989). 

PCR amplifications were carried out in a 20 μl final volume containing 1X KCl buffer, 2.5 mM   

MgCl2, 200 μM  dNTPs, 10 pmol of each primer, 0.5 U of Pfu DNA polymerase, and 25 ng DNA. 

PCR cycling consisted in 4 min at 94ºC, 35 × (40 sec 94ºC, 40 sec 50ºC, 40 sec 72ºC) and a final 

extension for 10 min at 72ºC. Escherichia coli JM109 cloning host was obtained from Promega 

and competent cells were prepared by means of the classical CaCl2 method. An A-tailing 
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procedure for blunt-ended PCR was carried out and ligated into the pGEM-T vectors 

(pGEM®-T Easy Vector System II, Promega, Catalog Number A1380, USA) following the 

manufacturer's instructions. All reagents were analytical grade and specific PCR products 

were purified using the DNA gel extraction kit (Wizard® SV Gel and PCR Clean-Up System, 

Promega, Catalog Number A9280, USA). Twelve clones with target fragments were analyzed by 

sequencing. 

Amplification of laccase gene flanking sequences 

Long distance inverse PCR (LD-IPCR) was used to amplify the flanking sequences of lac I. To 

perform the reaction, P. brevispora BAFC 633 gDNA was digested with BamHI endonuclease 

(with no target sites in lac I). The product from each restriction (0.3 µg) was self-ligated in 1 ml 

reaction system using T4 DNA ligase. After phenol/chloroform purification steps and ethanol 

precipitation, the self-ligated products were used as templates for LD-IPCR using Kit Pfu 

polimerasa (Kit Pfu polimerasa 100U, Highway, Catalog Number K1100, Argentina) and the 

relevant inverse pair of primers Lac-Inv-S and Lac-Inv-AS (Table 1). 

Thus, the flanking sequences adjacent to the known lac I gDNA fragments were amplified. The 

LD-IPCR products with A-tailing were inserted into pGEM-T vector, and 12 clones of each 

product were sequenced. To assemble the final sequence, new primers hybridizing within the 

promoter and at the 3' end of the gene (Lac-Es-S and Lac-Es-AS) were designed, and the PCR-

amplified product was cloned and sequenced.  

Nucleotide sequence accession number 

The P. brevispora BAFC 633 lac I sequence is currently deposited at the EMBL Nucleotide 

Sequence Data Bank under the accession number JQ728448. 

RNA isolation and Amplification of Lac DNAc by PCR  

P. brevispora cultures were grown in ME liquid medium (Fonseca et al. 2010) and induced with 

0,5 mM CuSO4 (Fonseca et al. 2010). To isolate the total RNA, fungal mycelium was collected 

14 days after induction by filtration and washed twice with sterile cold 0.1 M Tris, 0.02 M EDTA 
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(Fonseca et al. 2014a). The samples were treated with DNases previous to retrotranscription 

step. The first strand of cDNA was synthesized using MMuLV-Transcriptase (RevertAid Reverse 

Transcriptase (200 U/µL), Life-Technologies, Catalog Number EP0441, USA). The primers used 

for PCR technique are described in Table 1. The PCR reaction and conditions were the same as 

used by Fonseca et al. (2014). The Signal P prediction 

(http://www.cbs.dtu.dk/services/SignalP/) was used to predict the start of the mature laccase. 

A 1563 pb fragment corresponding to the laccase cDNA and a 1476 pb without the signal 

peptide encoding the fragment were amplified using primer described in the table 1. The PCR 

product was cloned into pGEMT easy vector in E. coli cells as per instructions (Promega). The 

presence of the desired PCR product was verified by restriction enzyme digestion, agarose gel 

electrophoresis and sequencing. 

Cloning and expression of lac I gene from P. brevispora in P. pastoris through yeast shuttle 

vector 

The cDNA of lcc1 from P. brevispora was cloned under control of the methanol-inducible 

alcohol oxidase (AOX1) promoter of P. pastoris into the expression vectors pPIC3.5K and 

pPIC9.K (Catalog Numbers V17320 and V17520 respectively, Invitrogen, USA). Two 

recombinant plasmids were obtained: pPIC3.5K /lac I, containing the lac I cDNA including the 

native signal sequence, and pPIC9.K /lac I, in which the cDNA sequence encoding the native 

LacL signal peptide was exchanged for that encoding the Saccharomyces cerevisiae α-mating 

factor signal peptide. Plasmids DNA were digested with Sac I (Thermo Scientific, Catalog 

Number ER1131, USA) prior to transformation for efficient integration into the P. 

pastoris genome. P. pastoris GS115 (his4) cells were transformed by EasyComp TM 

Transformation Kit (Pichia EasyCompTM Kit, Catalog Number K1730-01, Invitrogen, USA). 

Vectors without lac I cDNA were also used to prepare control strains. The cells were plated 

onto histidine-deficient RDB agar plates and incubated at 30°C for 72 h, after which His+ 

transformants were screened on minimal methanol (MM) agar plates and twenty or so 
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transformants were screened on minimal methanol plates supplemented with 0.2 mM ABTS 

for development of green color. One (pPIC3.5K /lac I and pPIC9.K /lac I) of the recombinants 

was selected on the basis of development of intense green color in plate assay to continue in 

liquid media.  Inocula was prepared by transferring cells from minimal dextrose (MD) agar 

plates into 500 ml Erlenmeyer flasks containing 50 ml of phosphate buffered yeast nitrogen 

base supplemented with glycerol (2%) and biotin (400 μg/l). Cultures were grown at 30°C in 

an orbital shaker (200 rpm) and cells harvested in log-phase growth were used as inoculum 

for shake-flask cultivations. 

Shake-flask cultivations were performed at 30°C in phosphate buffered minimal methanol 

(BMM). Cells harvested from the inoculum were directly resuspended in BMM to an OD600 of 

1.0. The culture was monitored for 6 days for production of extracellular laccase with the 

induction of the promoter being maintained by daily addition of 0.5% (v/v) methanol. 

Bioinformatic and phylogenetic analyses of lac I protein sequence 

The obtained nucleotide sequence of laccase was translated carried out using ExPASy: 

Translate tool program (http://web.expasy.org/translate/). This was compared to the 

sequence obtained by cDNA sequencing. The obtained sequence was then in silico analyzed 

using online available bioinformatic tools. The signal peptide identification was carried out by 

using Signal P (http://www.cbs.dtu.dk/services/SignalP/), and the putative glycosylation sites 

were identified by means of NetNGlyc (http:// www.cbs.dtu.dk/services/NetNGlyc-

1.0/output.php). The theoretical properties of the protein were obtained with the ProtParam 

software (http://web.expasy.org/protparam/). 

Translated aminoacidic sequence deduced of cDNA clone of lac I was compared to other fungal 

laccase aminoacidic sequences with BLAST (http://www.ncbi.nih.gov/blast). The searched 

protein sequences included the most similar (Max identity 65-75%) and those with moderate 

identities (Max identity 45-46%) from homobasidiomycetous and the lower level homologous 

laccases (Max identity 42%) of Rhizoctonia solani (Thanatephorus cucumeris) in the order 
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Ceratobasidiales (Homobasidiomycetes). Analysis included 38 retrieved laccase amino acids 

sequences and also a laccase protein sequence from Fusarium oxysporum (Max identity 34%), 

an Ascomycota used as outgroup. 

All sequences were analyzed with BLASTp, BioEdit and CLUSTAL W before phylogenetic tree 

construction. Phylogenetic analysis was carried out with the T.N.T program (Goloboff 1999). 

Gaps (indels) were treated as a 5th state, since they represented insertion-deletion events. 

Because of the reduced data set, the heuristic searches were implemented using 1000 RAS, 

saving one tree per TBR. 

To assess the support for the identified groups, Bootstrap and Parsimony Jackknifing tests 

were performed (Moncalvo et al. 2000). Both analyses included 1000 resampled matrices. For 

each resampled matrix, 100 RAS + TBR cycles were performed.  

Purification and characterization of laccase 

The supernatant (300 mL) was harvested from a BMM culture of the recombinant P. pastoris 

GS115-lac (6 days old). The supernatant was obtained from the culture by centrifugation at 

6000 g for 10 min; afterwards, the centrifuged sampled was purified by the ultrafitration using 

a filter Pierce Concentrator 20 ml/20 K (Pierce® Concentrator 20K MWCO 20Ml, Catalog 

Number 89887A, Thermo Scientific, USA). The resulting filtrate thus obtained was subjected to 

the total protein precipitation with ammonium sulphate at 100 % saturation. The protein was 

dissolved in 0.1 M sodium acetate buffer (pH 3.6) and dialyzed 12 h against the same buffer.  

The purity of the enzyme was checked on SDS-PAGE was carried out according to the protocol 

of Laemmli (1970) with 4% stacking gel and 12% resolving gel. The molecular mass of the 

purified laccase was determined by calculating the relative mobility of molecular marker 

(Precision Plus ProteinTM Standards Dual Color, Catalog Number 161-0374, Bio-Rad, USA) 

running alongside.  Proteins were stained with a silver reagent (Blum et al. 1987) and 

Coomassie Brilliant Blue (Wang et al. 2007). Laccase activity was confirmed by zymogram 

analysis on native PAGE was performed as described by Fonseca et al. (2010). Staining was 
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carried out after native PAGE by incubating the gel in 0.1 M sodium acetate buffer containing 5 

mM of DMP or ABTS before detecting laccase activity. After incubating the gel for 5min, the 

dye solution was discarded; the gel was immediately scanned using a scanner (HP Deskjet F300 

All-in-One series). 

The purified laccase enzyme was used for biochemical characterization. 

Laccase (EC 1.10.3.2) activity was measured at 30°C using 5 mM 2,6-dimethoxyphenol (DMP) 

as substrate in 0.1 M sodium acetate buffer (pH 3.6) (Field et al. 1993). The absorbance 

increase of the reaction mixture was monitored at 469 nm (ε469 =7.5 mM-1 cm-1) in a Shimadzu 

UV-3600 spectrophotometer. Enzyme activity was expressed as International Units (U), 

defined as the amount of enzyme needed to produce 1 µmol of product min-1 at 30 °C. 

The purified laccase activity towards DMP as substrate was tested at a pH range of 3.6-5.6 in 

50 mM sodium-acetate buffer and was examined between 30 and 90 °C at the determined 

optimal pH value. Laccase thermal stability was assessed by incubating the enzyme 

preparation at 30, 40, 50, 60 and 70 °C and testing its residual activity at various time intervals 

during 7 h. The effect of pH on the stability of pure laccase was determined at pH 3.6, 4.8 and 

5.6, and the remaining activity was determined at various periods time for 6 h. Residual 

activity was calculated considering as 100% the maximal enzymatic activity at optimal pH and 

temperature, and was expressed as percent of the remaining activity. 

The laccase substrate specificity of pure enzymes was tested using 2,2´-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid) or ABTS (ε436 =29.3 mM cm-1 ), 2,6-DMP (ε469 = 27.5 mM 

cm-1 ). Rates of substrate oxidation were determined by measuring the absorbance increase in 

a given time interval, at the corresponding wavelengths (Ryan et al. 2003; Colao et al. 2006). 

Km and Vmax values of purified laccase were determined by measuring enzyme activity at 

various concentrations (0.01-5 mM) of ABTS and 2,6-DMP as substrate, at optimal pH.  Kinetic 

constants were calculated by the Michaelis-Menten method using nonlinear regression fit in 
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the Graphpad Prism 5 software. Tolerance to chloride ions (NaCl) was determined by 

incubating laccase solution (0.5 IU) with varying concentrations 

of NaCl for 3 h in a total volume of 1.5 ml. The effect of EDTA and SDS at different 

concentrations (5-100 mM) as some potential laccase inhibitors were monitored using 5 mM 

DMP as substrate in sodium acetate buffer (pH 3.6). Activity in EDTA-free medium was defined 

as 100%. All measurements were carried out in triplicate. 

Dyes decolorization  

Nine different dyes were used for this study. The reaction mixture (2 ml) contained 100 mM 

acetate buffer pH 3.6, individual dye (each 50 mg/l in final concentration), and 0.5 IU laccase. 

The reaction was initiated by the addition of laccase and incubated at 30°C for 12 h. 

Decolorization was determined by monitoring the decrease in absorbance at the peak of 

maximum visible absorbance and expressed as percentage of decolorization. Decolorization 

was defined as: Decolorization (%) = 100*(Ao - At)/Ao. Where Ao is the absorbance of the 

reaction mixture before incubation with the enzyme and At is absorbance after incubation. 

The heat-denatured laccase solutions were used as controls and the blanks contained all 

components of the reaction mixture except the dyes. 

Results 

Isolation and characterization of a new Lac-coding gene from P. brevispora 

Using P. brevispora BAFC 633 total gDNA as template, a 1800-bp partial fragment was obtained 

by means of degenerate primers able to hybridize on I and IV copper binding sites, whereas 

with primers hybridizing regions II and III, another fragment of 1600-bp could be amplified. The 

inverse PCR strategy yielded a fragment of 1200-bp.  

The sequenced region from gDNA consisted of 2145 bp, including a gene structural region and 

473 bp of the 5´-upstream region with several putative cis-acting elements (see Additional file 

1). The coding region of lac I gene consisted in a 1563-pb ORF encoding 521 amino acids (aa). 

The region contained 12 introns with the relative positions of the splicing junctions and 
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internal lariat formation sites, deduced on the basis of comparisons with other described 

fungal Lac genes, and conserved motifs found at the 5 'and 3' introns ends. The consensus 

poly-adenylation signal sequence (AATAAA) (Proudfoot 1991), was not found at the 

3´untranslated region.  

The lac I 5’-uncoding region contained two TATA boxes found at positions 45 and 398, three 

CAAT boxes at positions 107, 142 and 169 and two putative CAAT inverted boxes at positions 

328 and 352. Different transcription factor binding sites were detected at position 284, 

corresponding to ACE1 adhering to the consensus sequences 5-HTHNNGCTGD-3 (Zhu and 

Thiele 1996), an inverted metal response element (MRE) 5-TGCRCNC-3 (Thiele 1992) at 

position 288, a heat responsive element (HSE) C-GAA- TTC- G (Pelham 1982) at 196, an 

antioxidant response element (ARE) TGACNNNGC (Rushmore et al.1991) at position 207, and a 

nitrogen response element (NIT) TATCT (Marzluf 1997) at 217. 

The putative translated Lac I aa-sequence included a 20-aa signal peptide with an A-I cleavage 

site (see Figure S1). The mature Lac I would be 501-aa-residues in length with a calculated 

molar mass of 54.14 kDa, and an estimated pI value of 5.53. Eight putative N-glycosylation 

sites could be deduced from the consensus sequence (N-X-T/S, in which X is not P). The 

deduced Lac I aa sequence of P. brevispora BAFC 633 shared 63-73% identity with other 

basidiomycetous laccases, including those from Coriolopsis gallica (AAF70119.2), Trametes sp. 

AH28-2 laccase B (AAW31597.1), Trametes sp. 420 (AAW28938.1), Phlebia radiata LAC2 

(CAI56705.1) and Steccherinum murashkinskyi lac 1 (AFI41888), especially in the copper 

binding region, with all the His and Cys residues conserved. 

All the expected Lac Cu (II)-ligands could be identified in the deduced Lac I sequence: eight His 

residues in the highly conserved motif of four His-X-His repeats that coordinate the trinuclear 

Type 2/Type 3 copper (red boxes); additional four Cys and His were also found to be 

conserved, and these would be likely involved in binding to Type 1 copper site (Garg et al. 

2012). The LEL sequence adjacent to the last conserved His is conserved in laccases of high 
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redox potential, being Ala the most replaceable aa at this position, in contrast with low 

potential redox laccases which harbor VSG replacing LEA tripeptide. The finding of the LNA 

tripeptide in Lac I (see Figure S2, green box), in association to the presence of Leu at the T1 

copper binding position, led us to suggest that P. brevispora BAFC 633 Lac I would be a high-

redox potential Lac.  

Likewise, according to the analysis of the deduced protein sequence, Lac I from P. brevispora 

BAFC 633 showed to be closely related to Lac2 of P. radiata (Figure 2).  

Heterologous expression of Lac I in P. pastoris 

To express the Lac I in P. pastoris, four different expression plasmids were monitored under 

the control of the tightly regulated AOX1 promoter, in frame with the native signal sequence 

or the α-factor signal peptide from S. cerevisiae to direct the secretion of the recombinant 

protein with or without polyhistidine tag. By the plate detection, the dark green zones 

appeared around the transformant both constructs pPIC9/lac I and pPIC3.5K/lac I implied that 

bioactive lac I was expressed and secreted into the extracellular medium in both  transformant 

without polyhistidine tag. Transformants showing a deeper green colour were used for the 

production of the recombinant protein using liquid cultures. The laccase positive 

transformants with construcs pPIC9.K/lac I, pPIC3.5K/lac I, were then fermented in BMM liquid 

medium at 30ºC and induced by addition of 0.5% methanol daily and different copper 

concentration. After 6 days growth, the laccase activities reached 30U/L and 500 U/L for 

pPIC9.K/lac I and pPIC3.5K/lac I respectively (Figure 3).  

The laccase activity was found in the culture medium and no intracellular activity was detected 

at any time during the growth in minimal medium with methanol as a carbon source.  

Purification and characterization of recombinant Lac I 

The recombinant Lac I was purified with two steps procedure.  SDS PAGE analysis revealed that 

the molecular masses of purified recombinant lack were about 110 kDa (Figure 4), a higher 
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value higher than the predicted masses of 54.14 kda. The zymogram shows the active laccase 

with DMP and ABTS. (Figure 4) 

The optimal pH values of Lac I was 3.6 and the optimal temperature values was 50°C for DMP 

(Figure 5 A,B respectively). The recombinant laccases were stable at temperature of 40 and 

50ºC for 4 h maintaining above the 50% of activity while at 30°C it was for 6 h (Figure 5, C). 

Recombinant laccase enzyme showed high pH stability, maintaining a constant activity after 6 

h of incubation at pH 3.6 and 4.6, and decreasing by only 20% in case of pH 5.8 after 5 h 

(Figure 5, D). It was very sensitive to SDS and EDTA (Table 2). The metal ions such as Ca2+, K+, 

NH4+, Mn2+ Increased the Lac I activity while  Zn2+and Cu2+ decreased the activity (Table 2).  

Kinetic parameters of the laccase were determined by using ABTS and DMP as substrates and 

summarized in Table 3. The oxidizing power and catalytic coefficient (kcat Km-1) of purified Lac 

I was higher for ABTS than DMP.  

The effect of various water miscible organic solvents (acetone, ethanol, dimethylsulfoxide or 

DMSO), was investigated on laccase activity and the results are shown in Figure 6 A. Lac I was 

stable in ethanol up to 3h at 70% (v/v) concentration retaining 90% activity. Lac I in the 

presence of acetone and DMSO retained until 40 % and 20 % of activity respectively to the 

highest concentration used. With chloride ions, the stability was monitored for 3 h and Lac I 

retained more than 50% of activity until 300 mM of concentration Figure 6 B. 

Dye decolorization by recombinant Lac I 

Nine synthetic dyes were used to evaluate the decolorization ability of the recombinant Lac I. 

All the dyes were discolored whit different efficiency, the Thymol Blue the most discolored 

with 90% (Table 4). The broad decolorization specificity of Lac I rendered great potential in 

industrial applications, such as degradation of dyes from textile effluents.  

Discussion 

Many fungal laccases are blue copper oxidases (Messerschmidt and Huber 1990; Desai and 

Nityanand 2010) and given that nucleotide sequences of the copper binding regions are highly 
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conserved, they have been frequently used for PCR primers design in order to clone laccase 

gene fragments in several basidiomycetes (D’Souza et al. 1996). Based on this knowledge, a 

laccase gene harboring four copper binding sites could be successfully cloned in this work. 

Within the regulatory region of lac I, characteristic eukaryotic regulatory elements such as 

TATA and CAAT motifs were identified. CAAT motifs play a pivotal role in determining the 

efficiency of the promoter. The spacing of these motifs is consistent with those seen for other 

fungal promoters (Padgett et al. 1984). Neither the TATAAA nor CAAT motifs are strictly 

conserved in filamentous fungal genes (Padgett et al. 1984).  Several potential consensus 

transcriptional regulation elements which might affect the production of P. brevispora BAFC 

633 laccase were also found. Such potential regulation sites specific for laccase were: an 

inverted MRE, an antioxidant response element (ARE), a nitrogen-responsive element (NIT) 

and an ACE-like element. Overall response elements are differentially distributed throughout 

the promoter sequence and some of them are characteristic of laccase sub-families, such as 

the presence of ARE and the absence of XRE (Piscitelli et al.2011). 

MRE elements have been identified in animals and plants as target sites for transcription 

factors when are exposed to toxic concentrations of Cd, Cu and Zn (Whitelaw  et al. 1997). 

Some authors (Karahanian et al. 1998; Mansur et al. 1998; Klonowska et al. 2001; Galhaup et 

al. 2001) found other promoters containing multiple putative MRE sites with consensus 

sequences 5-TGCRCNC-3 (Thiele  et al. 1992). Although MREs are included in the promoters of 

poxc and poxa 1b in P. ostreatus in both orientations (Faraco et al. 2003), only an inverted MRE 

could be detected in P. brevispora BAFC 633 lac I. Metal regulated gene transcription plays an 

important role in homeostasis and metal detoxification (Kagi and Shaffer 1998) and is widely 

distributed in eukaryotes (Hagen et al. 1988; Greco et al. 1990; 1991 Hill and Li). 

We also found a putative ACE1 transcription factor binding site. This latter was originally 

reported in metallothioneins (Furst  et al. 1988) and superoxide dismutase promoters from 

Saccharomyces cerevisiae as a recognition site for the ACE1 transcription factor which 
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responds to Cu(I) and Ag(I), but not to Zn(II) (Gralla  et al. 1991). Metallothioneins have been 

suggested to be involved in several cellular processes including metal storage and 

detoxification (Marbach et al. 1989). Several heavy metals induce the expression of these 

genes, with regulation via a metal-regulatory protein that functions both as a metal receptor 

and as a trans-acting transcription factor (Mansur et al. 1998). 

It has been shown that protein factors could bind MREs of the laccase gene promoters from 

Pleurotus ostreatus only when copper is absent (Faraco et al. 2003). Copper has been 

previously reported to increase laccase activity in Neurospora crassa (Huber and Lerch 1987) 

Trametes pubescens (Mansur et al.1998) and P. ostreatus (Palmieri et al. 2000), and to 

enhance laccase gene transcription in T. versicolor (Collins and Dobson 1997) and P. ostreatus 

(Palmieri et al. 2000). We found that copper has an important effect on both the activity 

(Fonseca et al. 2010) and gene transcription of laccases in P. brevispora BAFC 633 (Fonseca et 

al. 2014a). Copper requirement for high expression of P. brevispora BAFC 633 laccase suggests 

that MREs and ACE in the promoters of lac I have important physiological functions. However, 

the mechanism of how copper ion at different concentrations is able to modulate differential 

expression of extracellular laccases remains unknown. 

The HSE from lac I was also detected in a promoter gene coding for MnP in Phanerochaete 

chrysosporium and it showed to be heat-shock regulated (Collins and Dobson 1997). 

Homologous to the HSE consensus sequence (C - GAA - TTC – G) (Pelham 1982) were found 

three times in the gene promoter of P. radiata (Saloheimo et al.1991) showing homologies of 

6/8, 5/8 and 6/8 with the consensus sequence. However, heat-shock regulation should be 

investigated in the case of Phlebia brevispora BAFC 633 lac I gene. 

Another element (TGACNNNGC) also detected in the lac I gene of P. brevispora BAFC 633 was 

ARE. Although XRE (xenobiotic response element) was not found in the promoter fragment 

obtained in this study, XRE and ARE have been found in promoters of genes related to 

xenobiotic aromatic hydrocarbon degradation, such as in fungal laccase genes (Soden and 
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Dobson 2003), CytP450 genes, glutathione-S-transferase and NAD(P)H: quinone oxido-reductase 

of eukaryotes (Kuramoto et al. 2002; Nguyen et al. 2003). XRE and ARE sequences increase (in 

cis) transcription of genes related to oxidative stress. Genes regulated by ARE and XRE encode 

proteins that help controlling redox state of cells and thus defend against oxidative damage 

(Kuramoto et al. 2002). 

Moreover, regulatory elements such as Mig and Nit2, involved in the regulation by carbon and 

nitrogen respectively during fungal genes expression, have been reported in promoter regions 

of P. sajor-caju (Soden and Dobson 2003) and other fungal species. In the present study, only 

one NIT could be found in P. brevispora BAFC 633. In this regard, a number of structural genes 

involved in the nitrate assimilation, purine metabolism, amino acid metabolism, protein 

catabolism and acetamide utilization showed to require NIT2 for protein expression (Marzluf 

et al.1997). Thus, NIT homologous may regulate lac I expression in response to cultural 

nitrogen changes in P. brevispora BAFC 633. 

The identified P. brevispora BAFC 633 laccase gene (lac I) contains 12 introns with splicing 

junctions and internal lariat formation sites adhering to the GT-AG rule (Padgett et al. 1984). 

Intron positions were inferred from comparison with other genes and the consensus. The 

introns size obtained was conserved, which is typical for most fungal introns (Padgett et al. 

1984). 

The lac I deduced protein product displays a high aminoacidic sequence similarity (62-75%) 

with other basidiomycetous laccases characterized so far. The in-silico predicted Lac I 

polypeptide shares 72% identity with Lac2 of P. radiata and both laccases carry the conserved 

copper binding sites, laccase signature-sequence regions L1, L2, L3 and L4 (Gurr et al. 1987), 

and four substrate binding loops (Kumar et al. 2013). The aa residue located 10 aa 

downstream the conserved Cys would have an important effect on the redox potential of the 

T1-copper at the active site (Canters and Gilardi 1993). Based on the difference of this residue, 

laccases are proposed to be classified into three types: class 1 (Met), class 2 (Leu), and class 3 
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(Phe) in increasing order of redox potential (Eggert et al. 1998). The phylogenetic analysis 

indicates that P. brevispora BAFC 633 and P. radiata laccases are closely related and belong to 

the same branch in the tree (Figure 2). Both P. brevispora BAFC 633 and P. radiata laccase-

encoding genes are apparently ortologus as a speciation event. As depicted in Figure 2, P. 

brevispora BAFC 633 Lac I (calculated pI 5.53) and P. radiata Lac2 (calculated pI 5.7) (Mäkelä et 

al. 2006) are evolutionarily related fungi. 

The lac I cDNA sequence from P. brevispora identified in this study that encoding novel laccase 

enzyme in P. brevispora BAFC 633 was successfully expressed in P. pastoris under the control 

of the tightly regulated alcohol oxidase promoter (PAOX1) induced by methanol. There are 

several strategies used to increase the expression level of heterologous proteins in Pichia, such 

as the use of native promoters and multiple gene copies, codon optimization, altering of 

secretory signal sequences, and optimization of culture conditions (Gu et al. 2014). In this 

study lac I cDNA cloned using the α-factor signal peptide from S. cerevisiae was more efficient 

to direct the secretion of the recombinant protein than the native signal sequence. However, 

in other species such as Pleurotus and Trametes the use of native laccase signal sequences 

proved to be more alternative to the α-factor signal peptide to drive the secretion of 

recombinant proteins in P. pastoris (Colao et al. 2006, Brown et al. 2002, Jönsson et al. 1997; 

Soden et al. 2002).  

The high molecular weight of Lac I expressed in P. pastoris should be attributed to the 

presence of hyperglycosylation. The biochemical parameters of various purified recombinant 

laccases were revealed in recent publications (Mate et al. 2013, Gu et al. 2014), showing some 

similar characteristics, such as increased activity at acid pH (between 3 and 4) and at 

temperatures close to 50 °C. The Lac I activity was highest with ABTS than DMP which is typical 

for laccases and reflects the different oxidation mechanisms that depend on the substrate (Boa 

et al. 2012). The turnover rates (kcat) for Lac I was the highest kcat/Km value towards ABTS, 

followed DMP as reported for others recombinant laccase (Boa et al. 2012, Gu et al. 2014).  
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The Lac I was stable at temperature of 40 and 50ºC for 4 h which is crucial during the 

biotechnological process (Fonseca et al. 2014b) 

Lac I ability to maintain their activity at pH higher than the optimum, along with pH stability, 

represents an advantage from the biotechnological standpoint since enzymes stable near 

neutrality would allow minimizing the risk of equipment corrosion during industrial processing 

Fonseca et al. 2015). 

The effects of metal ions and inhibitors on Lac I activity were tested. It was very sensitive to 

SDS and observing the same for the SDS to recombinant laccase of Coprinus comatus (Boa et 

al. 2012). Sodium dodecyl sulphate (SDS) is a strong protein denaturant that inactivates most 

laccases even at a low concentration (Gu et al 2014). The activity level of Lac I could be 

significantly influenced by the metal ions such as Ca2+, K+, NH4+, Mn2+ increased the Lac I 

activity while Zn2+ and Cu2+ decreased the activity. In this sense recombinant laccase of 

Coprinus comatus was strongly inhibited by Fe2+, Mn2+, Zn2+, Fe3+ and Co2+ and activated in 

presence of K+ (Boa et al. 2012).  

Lac I exhibited higher tolerance towards various water-miscible organic solvents. Garg et al. 

(2012) reported a correlate the tolerance to organic solvents as a by-product of this altered 

glycosylation pattern and this property is important for its use in organic synthesis work. It has 

been observed that laccase structure, stability and activity are affected by water miscible 

solvents through direct interaction with enzyme and through its effect on water activity 

(Rodapiewicz-Novak 2000).  

Higher resistance to chloride was observed for the Lac I. Laccases are generally inhibited by 

chloride ions, an important component in dye wastewaters, which limits its use in treatment 

plants (Garg et al. 2012). 

The broad decolorization specificity of Lac I rendered great potential in industrial applications, 

such as degradation of dyes from textile effluents. Not all the dyes were oxidized by Lac1 at 

the same extent. The differences in dyes oxidation could be explained by the different electron 
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donating properties of the substituents and their locations on the phenolic ring (Colao et al. 

2006).  So the different chemical structures of dyes might explain these differences in the 

decolorization efficiencies (Moldes et al. 2003). In this work it was not possible to establish a 

correlation between the type of dye and the degree of discoloration, as reported for a laccase 

of Coprinopsis cinerea cloned on P. Pastoris (Bao et al. 2013). This work provides evidence for 

the efficient role of laccase for the decolorization of dyes such as thymol blue, a 

triarylmethane type dye, which is used in dyes manufacturing. 

In conclusion the corresponding lac I-encoding gene was successfully sequenced allowing 

finding cis-acting elements located at the lac I regulatory region. These results may provide a 

further insight into potential ways of optimizing fermentation for fungal Lacs production, and 

also open new frontiers for engineering strong promoters for Lac production. Also in this 

study lac1 cDNA was expressed in P. pastoris using the α-factor signal peptide from S. 

cerevisiae which was more efficient to direct the secretion of the recombinant protein that the 

native signal sequence. Lac I exhibited higher tolerance towards various water-miscible organic 

solvents. This property is important for its use in organic synthesis work. Synthetic dyes could 

be degraded to different degrees, the broad decolorization specificity of Lac I indicates their 

great potentials in industrial applications, such as degradation of dyes from textile effluents. 
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TABLE 1 Oligonucleotide primers used in this study 

Primer 

name 

Oligonucleotide sequence 5´- 3´ Purpose Reference 

LacII-S ACN TTT TGG TAY CAY AGY CA Used for cloning 

a fragment of II and III copper-binding 

regions 

This work 

LacIII-AS KCC GTG KAG GTG GAA KGG RTG Used for cloning 

a fragment of II and III copper-binding 

regions 

This work 

LacI-S CAK TGG CAK GGN TTK TTK CA Used for cloning 

a fragment of I and IV copper-binding regions 

D’Souza et 

al. 1996 

LacIV-AS TGR AAR TCD ATR TGR CAR TG Used for cloning 

a fragment of I and IV copper-binding regions 

This work 

LacInv-S TGRAARAANCCRTGCCARTG Used for LD-IPCR This work 

LacInv-AS CAYTGYCAYATHGAYTTYCA Used for 

LD-IPCR 

This work 

LacEs-S TATACAGTTGGTGGTTCACCT Used for cloning 

and confirmation of lac I sequence 

This work 

LacEs-AS TATGGGACAGAGYTGSTCCCAAGC Used for cloning 

and confirmation of lac I sequence 

This work 

NlacIs/ps-

S 

CTCGAGGAATTCATCACAGGACCTA

TTGGG 

Used for cloning 

cDNA lac I sequence without the signal 

peptide 

This work 

NlacI CTCGAGGAATTCGAGAGATGCTCTC Used for cloning This work 
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CCTAGTTCTTGTCGCA cDNA lac I sequence with the signal peptide 

NlacKL-

AS1 

GGTCTAGCGGCCGCTTAGTTTTGTC

CCAGAACCTTCTG 

Used for cloning 

cDNA lac I sequence 

This work 

    

Y = C/T, N = A/G/C/T, R = A/G, D = A/G/T 

 

Table 2: Effects of ions and inhibitors on Lac I activity. 

 

Inhibitor Concentration 

(mM) 

Relative activity 

(%) 

None - 100 

EDTA 5 80 

 25 75 

 50 67 

 75 59 

 100 50 

SDS 5 15 

 25 10 

 50 5 

 75 0 

 100 0 

Ca2+ 1 145 

Cu2+ 1 38 

K+ 1 137 

Mn2+ 1 118 

NH4+ 1 110 
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Zn2+ 1 39 

Values are the mean of triplicate determinations and standard deviation in less 5%  

 

 

Table 3: Substrate specificity and kinetic constants of purified Lac I secreted by P. pastoris. 

 

 

 

Table 4: Decolorization of synthetic dyes with recombinant Lac I after incubation for 12 h. 

Dyes Wavelength (nm) Type of dyes Decolorization (%) 

Blue Dextran 624 Triazine  50±0.2 

Bromophenol Blue 590 Triphenylmethane 60±0.2 

Comassie R-250 595 Triphenylmethane 50±0.5 

Congo Red 488 Azo 50±0.9 

Gentian Violet 590      Triarylmethane  15±0.5 

Methylene blue 668 Thiazine 15±0.5 

Orange G 476 Azo 25±0.5 

Phenol Red 430 Triarylmethane 28±0.8 

Safranin 495 Phenazines 35±0.6 

Thymol Blue 590 Triarylmethane 91±0.4 

 % of enzymatic 

activity (a 

Km  

(µM ) 

Vmáx 

(µM  min-1) 

kcat  

(s1) 

kcat/Km  

(s-1 µmol l -1 ) 

 ABTS DMP ABTS DMP ABTS DMP ABTS DMP ABTS DMP 

Lac I 
100 ± 

1 
60 ± 1 727 425 169.2 48.45 

1.1× 

106 

3.2× 

104 
158 77 
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Victoria Blue 592 Triarylmethane 10±0.1 

Values are the mean of triplicate determinations and standard deviation in less 5%  

 

Supporting Information 

 

Figure S1: Nucleotide and deduced amino acid sequences of lac I and the corresponding Lac 

product, respectively, from P. brevispora BAFC 633. TATA boxes, CAAT boxes, and two putative 

CAAT inverted boxes are denoted in bold. A putative ACE1 transcription factor binding site is 

shown in the box. Metal inverted element response is shown in dark gray (MER) (), a heat 

responsive element is shown in light gray (HSE) (), an antioxidant response element is shown 

in dashed lines (ARE) (---), a nitrogen responsive element is shown in doubled underlined lines 

(NIT ) (     ). Introns are denoted in lowercase. All 8 putative glycosylation sites are indicated in 

dotted lines and the stop codon with (*). The 20 underlined amino acids correspond to the 

signal peptide.   

Figure S2: In-silico deduced amino acid sequences alignment of laccase of Phlebia brevispora 

BAFC633 with other fungal laccases. Black boxes represent the Cys residues present in 

disulphide bridges. Red boxes include the 10 His residues at the conserved copper binding 

domains. 
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