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Polarization propagator’s theory and the entanglement
between MO excitations

Leonardo A. Millána,b, Claudia G. Giribet c,d and Gustavo A. Aucar∗a,b

Entanglement is at the core of quantum physics and so, one may conjecture that it should have
some influence on atomic and molecular response properties. The usual way of treating en-
tanglement is by applying information theory via the von Newman entropy. Being the principal
propagator the operator that contain the physical information that arises due to the transmission
of the effects of two external perturbations through the electronic framework of a quantum system,
it should have in it the information necessary to quantify the likely entanglement among molecular
orbital excitations. In this article we first propose a proper density matrix and from it, the way to
quantify entangled excitations by using information theory. The NMR J-couplings are among the
best candidates to learn about the potentialities of this formalism. We applied this new tool to an-
alyze the famous Karplus rule and found a relationship among the dihedral angular dependence
with the entanglement. We also found that the entangled excitations are related with electron
correlation. The new formalism can be applied to all other response properties

Introduction
The transmission of quantum information consists in the propaga-
tion of quantum systems between two different apparatus, being
the quantum information stored in quantum states.1 According
to Raimond and coauthors:2 when two systems are in an entan-
gled state each one of them can reveal information about the other,
behaving as a measuring device. Thus, to perform several quantum
information tasks such as quantum information transfer or quan-
tum computation, entanglement can be used as one of its main
resource. These concepts were recently applied to many-body
quantum systems, showing that the interaction between orbitals
or electrons can be calculated by employing concepts taken from
the quantum information theory, like the von Neumann entropy
or the mutual information.3,4

Response properties arises as a consequence of the application
of external fields to the quantum system under study. Between
them, the NMR spectroscopic parameters are highly used in quan-
tum chemistry. Their understandings requires the full use of quan-
tum methods, being the polarization propagator one of the most
accurate.5 It is also usually applied to the study of other response
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properties.6 The main aim of this article is then to show that the
principal propagators of the polarization propagator formalism
are related to one of the most intriguing aspects of quantum me-
chanics, the appearance of non-local interactions and more specif-
ically to the entanglement between molecular orbital excitations.

Reiher and coauthors have proposed a new scheme to quan-
tify electron correlation effects by using entanglement measures
among molecular orbitals.7 Their analysis is based on the assess-
ment of the entanglement between any pair of orbitals and the en-
tanglement of anyone of them with all others, as encoded in a full
CI-type wave function. The single- and multireference nature of
a quantum system, can be distinguished by examining the entan-
glement patterns of the orbitals. Its analysis is comprised by the
measure of the single-orbital entropy, and the mutual information
which measures the entanglement of orbitals i and j embedded in
the environment of all other active-space orbitals.4. Reiher and
collaborators’ analysis of the bond-forming and bond-breaking
processes showed how single-orbital entropy can be employed to
monitor the cleavage of chemical bonds8 and the estimation of
bond orders of simple diatomic and polyatomic molecules.7,9 En-
tanglement is also used to estimate entangled transition states10

and dissociation process of diatomic molecules.11

If non-local quantum interactions are present in the electronic
framework of molecules, we might assume that the response
properties would depend on the information transfer carried out
by the electronic framework. One of the best candidates for
checking out such assumption, is the indirect J-couplings obtain-
able from NMR experiments. We should stress that the NMR spec-
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troscopy is one of the experimental resources applied to imple-
ment and verify quantum algorithms.12 Furthermore it was re-
cently shown that the NMR spectroscopy can be used to prepare
and detect entangled states between an electron-spin 1/2 and a
nuclear-spin 1/2 in a molecular single cristal.13 By manipulating
both spins through NMR and ESR pulses Mehring et al obtained
entangled states from pure states. J-couplings arise as a result of
a magnetic perturbation generated by the interaction of a given
nuclear spin with its electronic environment, which is then trans-
mitted to the whole molecule through electronic excitations. All
other nuclear spins play the role of the “measurement” apparatus
of such previous interaction.14 We should be aware that such J-
coupling does not depend on the external magnetic field. Thus, it
is an internal property of the molecule that can be observed when
the system is subject to a convenient experimental measuring de-
vice.

Within a theoretical framework a novel relationship among
the behavior of the matrix elements of the principal propagator
and the Karplus rule was published in 2004.15 By applying the
CLOPPA model16–18 it was shown that most of the so called “cou-
pling pathways” follow the Karplus rule, which relates the vici-
nal NMR-J coupling with the dihedral angle of the bondings’ to
which the coupled nuclei belong. Later on, an article shared some
insights on the reasons behind such behavior.19 The matrix ele-
ments of the principal propagator involved in the transmission of
magnetic perturbations arises due to the introduction of electron
correlation and have a non-local behavior. Given that the inverse
of the principal propagator can be written as a series of its own
matrices, it was shown that some of its matrix elements also fol-
low the Karplus rule.

At that time, it was theorized that electron correlation in NMR
J-couplings should be related with entanglement. This conjecture
is partially related with the previous work of Wang and Kais, and
Esquivel and coauthors, where they showed that entanglement
is related to electron correlation in quantum chemistry calcula-
tions.20,21 However, it could not be tested due to the absence of
a proper definition of the von Newman entropy within the polar-
ization propagator formalism.

In our pursuit to improve the applications of this formalism we
were led to investigate the feasibility of using it to learn about
one of the most intriguing facets of quantum theory: the entan-
glement. One of the aims of this work was to find out a way
to relate each pair of excitations between localized molecular or-
bitals, LMO, to a non-local transmission of information. In this
article we will show how the von Newman entropy can be ex-
pressed as a function of one density function that naturally arises
from the polarization propagator formalism. To figure out what
the form of such density function would be, it was of paramount
importance the previous derivation of polarization propagators
from the Feynman approach to quantum mechanics.22

Another aim of this work was to search about a likely relation-
ship among the Karplus rule and the entangled transmission of
those elementary MO excitations, when they are located close to
the coupled nuclei.

Bellow, we include a Theory section to supply the basic con-
cepts related with non-relativistic polarization propagators, some

exchange operators and the CLOPPA model. We also give for the
first time a definition of a polarization propagator density ma-
trix which is afterwards used to define the mutual information
among pairs of LMOs. In the following section we apply this gen-
eral formalism to analyze the origin of the Karplus rule in the
ethane molecule. There, we show that both elements of the main
coupling pathways are entangled and have a dihedral angular de-
pendence. The main conclusions are given in the last Section.

Theory
To the best of our knowledge, this is the first article in which
the polarization propagator formalism is applied to analyze the
entanglement that may appear in atomic or molecular electronic
frameworks. We started this research program some years ago
developing a formalism from which we could analyze the entan-
gled MO excitations. The first step was to find a relationship be-
tween polarization propagators and electronic density functions,
and only then could information theory be applied to quantify
those likely entangled excitations.

In order to introduce this new formalism, we will overview the
polarization propagator formalism at random phase level of ap-
proach, RPA, alongside with its application to the calculations
of NMR J-couplings. We will then show that some of the two-
electron matrices that belong to the principal propagator have a
non-local character. Afterwards we will briefly sketch the usual
way in which entanglement is quantified in a quantum system by
using von Newman entropy, and then we will introduce some of
the mathematical apparatus necessary to define the von Newman
entropy within the polarization propagator theory. The definition
of the density matrix and the way it shall be used to calculate
the entangled MO excitations will also be given at the end of this
Section.

The polarization propagator and the principal propagator

Propagators are formal objects well known in both, quantum
physics23 and quantum chemistry.14,22,24 They are as fundamen-
tal objects as wave functions are. In principle, with them one can
describe the whole behavior of a given quantum system.

According to information theory the quantum information is
stored in quantum states which are carried out by quantum sys-
tems. The transmission is accomplished by the propagation of
the carriers between one place where a perturbation occurs and
the place where the perturbation is absorbed or measured. In ad-
dition, it is known that quantum information can also be stored
in the correlation between subsystems, which in our case are the
coupled nuclear spins or the perturbation related with the inter-
action between them and the surrounding electrons.

The propagation of a bosonic perturbation, from one space-
time point to another one in a given electronic molecular frame-
work, can be described by using polarization propagators which
are double-time Green functions. Their explicit expressions are
obtained as a solution of the propagator’s equation of motion.24

When applying both, the superoperator algebra and the inner pro-
jection technique,25 their solutions are expressed as a product of
two kind of terms that contain different information about the
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physical process under investigation.19 The actual polarization
propagator that arises from the two perturbative operators, V P

and V Q, is written as

〈〈V P;V Q〉〉E =
(

V P†|h
)(

h̃|EÎ− Ĥ|h
)−1

(
h̃|V Q

)
=
(

V P†|h
)

M−1
(

h̃|V Q
) (1)

where M−1 = P is known as the principal propagator matrix and
h is a complete operator manifold that contain basic excitation
operators from which it is possible to obtain the whole branch
of excited states that may be built from a reference state, |0〉.
The perturbative operators VP and VQ should also be described
in terms of basic excitation operators that belong to that excita-
tion manifold, and from the binary product

(
V P†|h

)
one obtains

the perturbators. Each response property is related to some given
perturbative operators. For example, the theoretical explanation
of the NMR spectroscopic parameters hangs on a non relativis-
tic, NR, theory proposed by Norman Ramsey.26,27 Within this
domain there are four electronic mechanisms that are involved
in the indirect J-couplings. The response operators are known
as: Fermi-contact, FC, Spin-dipolar, SD and Paramagnetic spin or-
bital, PSO.14 The fourth contribution, known as Diamagnetic spin
orbital, DSO, is calculated as a ground-state expectation value.

Approximate polarization propagators are obtained using per-
turbation theory. Its order depends on the number of times
the fluctuational potential appears in each of the three terms of
eqn.(1).24 The consistent first order level of approach, known as
random phase approximation or RPA, requires that the reference
state be the Hartee-Fock, HF, state, and h = {h2}=

{
q†

ia,q jb

}
={

a†
aai,a

†
j ab

}
. Subindices a and b refer to unoccupied HF molecu-

lar orbitals and i and j to occupied MO ones.

The matrix of the principal propagator is

M =

(
MA MB

MB∗ MA∗

)
(2)

being

MA;ia, jb =
(

q†
ia, |EÎ− Ĥ|q†

jb

)
=−

〈
0
∣∣∣[a†

i aa,
[
a†

ba j,H
]]∣∣∣0〉

= A(0,1)
ia, jb = δabδi j (εa− εi)+ 〈a j || ib〉

(3)

and

MB;ia, jb =
(

qia, |EÎ− Ĥ|q†
jb

)
=−

〈
0
∣∣∣[a†

aai,
[
a†

ba j,H
]]∣∣∣0〉

= B(1)
ia, jb = 〈ab || i j〉

(4)

One of the perturbators of Eq.(1) is defined as the following bi-
nary product,

(
V P†|q†

ia
)
, which is explicitly given by

V P†
ia =

〈
a
∣∣∣V P
∣∣∣ i〉 (5)

For convenience we rewrite equation (1) as

〈〈V P;V Q〉〉E;ia, jb =
[
VP

ia,V
P∗
ia

]( 〈〈q̃ia;q†
jb〉〉E 〈〈q̃ia;q jb〉〉E

〈〈q̃†
ia;q†

jb〉〉E 〈〈q̃†
ia;q jb〉〉E

)−1[
VQ

jb

VQ∗
jb

]
(6)

Replacing VP by q̃ia and VQ by q†
jb we get

〈〈q̃ia;q†
jb〉〉E = [1 , 0]

(
〈〈q̃ia;q†

jb〉〉E 〈〈q̃ia;q jb〉〉E
〈〈q̃†

ia;q†
jb〉〉E 〈〈q̃†

ia;q jb〉〉E

)−1[
1
0

]
(7)

and so

〈〈q̃ia;q†
jb〉〉E=0 = (q†

ia | Ĥ | q
†
jb) =

〈
0
∣∣∣[qia,

[
H,q†

jb

]]
|0
〉

= δabδi j〈0|H|0〉+ 〈0|a†
i aaHa†

ba j|0〉

= δabδi j (εa− εi)+ 〈a j || ib〉

(8)

Then, each matrix element (ia, jb) of the principal propagator
represent the response of the system to a given perturbative po-
larization (say V Q

jb) of unitary intensity that becomes a different
polarization (V P

ia) whose intensity is also equal to one. This is
the usual meaning of a Green function though in this case such
a function correlates two basic excitations. Both perturbative po-
larizations, VP

ia and VQ
jb, are related with local perturbations as

happens for the magnetic perturbations considered to get theo-
retically both NMR spectroscopic parameters.

Non relativistic polarization propagators at different levels of
approach

The FC electronic mechanism is one of the most important for
coupling among hydrogen nucleus. Its perturbative Hamiltonian
is

HFC = (8/3)πµBh̄ge ∑
K

γN ∑
i

δ (riK) si · IK = ∑
K

γKIk ·VFC
K (9)

where µB is the nuclear magneton, γK is the gyromagnetic con-
stant of nucleus K, ge is the electronic g-factor, and

VFC
K = (8/3)πµBh̄ge ∑

i
δ (riK) si (10)

The Fermi contact perturbative Hamiltonian of Eq.(9) depends
on the electronic density at the site of the nuclei. One should
include two of these Hamiltonians for calculating the FC contri-
bution to the NMR-J coupling. So this spectroscopic parameter
is straightly related to the electronic densities on the sites of two
different nuclei, say K and L.

At RPA level of approach, the explicit expression for the FC con-
tribution to the indirect NMR coupling constant between nuclei K
and L is:

JFC
KL = γKγL 〈〈VFC

K ;VFC
L 〉〉E=0 = ∑

ia, jb

[
bFC

K,ia Pia, jb bFC
L, jb

]
(11)

The principal propagator P can be factored out to make ex-
plicit its electron spin dependence. Then, the triplet-type princi-
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pal propagator is written as

3Pia, jb =
(

3M−1
)

ia, jb
=
(

3A±3 B
)−1

ia, jb
(12)

where the spin-dependent matrices are24

3Aia, jb = (εa− εi)δabδi j−〈a j|bi〉= Eia, jb−Gia, jb
3Bia, jb = 〈ab| ji〉= Hia, jb

(13)

One may use another little less accurate level of approach known
as Tamm-Dancoff or TDA, which is obtained making the matrix
elements of 3B equal to zero.

The theoretical scheme represented by Eq.(11) was introduced
more than 20 years ago by an Argentinian team lead by profes-
sor Rubén Contreras. It was coined as CLOPPA (contributions
from localized orbitals within the polarization propagator ap-
proach).16–18 It was later on implemented at ab initio level within
a modified version of the SYSMO program,28–30 for the theoreti-
cal analysis of NMR spin-spin couplings.31–34

The perturbators related with the FC mechanism accounts for
a local perturbation arising from the interaction between the nu-
clear spin with the electronic spin at the site of the coupled nu-
clei. As mentioned above, the principal propagator at RPA level of
approach arise from the inverse of a matrix whose elements are
orbital energies and two-electron integrals. The development of a
procedure to get this inversion as a series15 gave new insights to
understand the physical meaning of such a term. Several conspic-
uous aspects of the NMR spectroscopy can deeply be understood
by using this formalism.35

Working with ab initio schemes, the inverse of the principal
propagator is never calculated explicitly. This is due to the fact
that when large basis set are considered it is not possible to get
the inverse of its matrix representation by conventional meth-
ods24. The alternative schemes developed to overcome these
dificulties36,37 are such that the physical information contained
within the principal propagator (which is related with the elec-
tronic molecular structure as a whole) is lost. This is because
these procedures modify in an incontrollable manner the individ-
ual elements which participate in the calculation.

In order to maintain the advantages of getting the inverse ex-
plicitly, a new procedure which is a generalization of a previous
one31,38, was developed.19,39 In this new scheme the matrix ele-
ments of triplet principal propagators are written as power series

(3PS
)

ia, jb ≈
(

E−1
∑

p
n=0
(3NE−1)n

)
ia, jb

(14)

where p stands for the number of terms in each series correspond-
ing to a given coupling pathway; E is a diagonal matrix, built from
the difference of MO energies when canonical orbitals are used,
and 3N is the addition of the two matrices of two-electron inte-
grals of Eq.(13). Given that each element of the E matrix is larger
than any of the elements of the mN matrix, one can expand each
element of mP in a power series.25,40 When p→∞ the summation
of Eq.(14) converge to 3P.

The 3PS matrix elements can be written in terms of localized
or canonical MOs. When localized orbitals are used 3E is non-

diagonal. In such a case one can always use the same procedure
as that used for calculation of 3PS matrix elements.

Generalized exchange operators

Let’s have a look on the meaning of both triplet-type matrices: 3A
and 3B. Each matrix element 〈a j|bi〉 of the matrix A is related
with the following two-electron integral

〈a j|bi〉=
∫

dr1r2ψ
∗
a (1)ψ

∗
j (2)r

−1
12 ψb(1)ψi(2) (15)

Defining a new exchange operator as

K jb(1)ψi(1) =
[∫

dr2ψ
∗
j (2)r

−1
12 ψi(2)

]
ψb(1) (16)

then〈
ψa(1)|K jb(1)|ψi(1)

〉
=
∫

dr1r2ψ
∗
a (1)ψ

∗
j (2)r

−1
12 ψi(2)ψb(1)≡ Gia, jb

(17)
For subindice j = i and b = a we find that 〈a j|bi〉 → 〈ai|ai〉. Then

〈ai|ai〉= 〈ψa(1)|Kia(1)|ψi(1)〉

=
∫

dr1dr2ψ
∗
a (1)ψa(1)r−1

12 ψ
∗
i (2)ψi(2)

=
∫

dr1dr2|ψa(1)|2r−1
12 |ψi(2)|2

(18)

which shows explicitly that the interaction it refers to is Coulom-
bic.

We should also remember that the triplet excitation energy that
arise from the MO expression of indirect J-coupling is:

∆
3Ei→a = (εi− εa) = εi− εa− Jai (19)

with
Jai =

∫
dr1dr2ψ

∗
a (1)ψa(1)r−1

12 ψ
∗
i (2)ψi(2) (20)

which is equal to Eq.(18).
The triplet-type B matrix is

3Bia, jb = 〈ab| ji〉=
∫

dr1dr2ψ
∗
a (1)ψ

∗
b (2)r

−1
12 ψ j(1)ψi(2) (21)

so that we can define another exchange operator as

Kb j(1)ψi(1) =
[∫

dr2ψ
∗
b (2)r

−1
12 ψi(2)

]
ψ j(1) (22)

and then〈
ψa(1)|Kb j(1)|ψi(1)

〉
=
∫

dr1r2ψ
∗
a (1)ψ

∗
b (2)r

−1
12 ψ j(1)ψi(2)≡ Hia, jb

(23)
We find two generalized non-local or exchange operators arising
from the matrices 3Aia, jb and 3Bia, jb, meaning that one cannot
obtain a simple potential, be it K jb(x1) or Kb j(x1) for which one
needs to consider only a local point in space, x1. In other words,
the result of operating with K jb(x1) or Kb j(x1) on ψi(x1) depends
on the value of ψi in the whole space through the integral on
electron 2, and so, not just at x1.
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CLOPPA model and Karplus rule

The CLOPPA model was developed as a tool to decompose
the analysis of NMR-J couplings in term of “local” contribu-
tions, meaning the contribution from individual coupling path-
ways which involves two virtual excitations i→ a and j→ b with
i, j (a, b) occupied (vacant) MOs that belongs to the local frag-
ment "L" of interest:

JMN = ∑
ia, jb

JL(X)
MN;ia, jb (24)

being X the specific magnetic perturbation (X = FC, SD or PSO).
The CLOPPA model was at the beginning written at the RPA

level of approach but recently it was extended to include second-
order or SOPPA.24,37 Localized MOs are mostly used because one
wants to analyze the influence of local regions or given coupling
pathways on the total J couplings.17–19

Each term of the sum in eqn.(24) can be written as (see Eq.
(11))

JX
MN;ia, jb =

(
UX

M,iaUX
N, jb + UX

N,iaUX
M, jb

)
mPia, jb (25)

where the perturbator UX
M,ia is a measure of the strength of the

virtual excitation i→ a that arises due to the perturbation X, and
m=3 (1) for X = FC or SD (PSO). The principal propagator mPia, jb

gives the response of the molecule that connects the two virtual
excitations: i→ a and j→ b.

In the case of the vicinal couplings, which means the coupling
through three bonds, there is a well-known empirical rule, the
Karplus rule,41,42 that relate the total value of J with the dihedral
angle among the bonds of the coupled nuclei. In Fig. 1 we show
the H-H coupling and the dihedral angle for the ethane molecule.

Fig. 1 Scheme of the ethane molecule

The vicinal J coupling has an harmonic dependence with the
dihedral angle φ , being such a dependence independent of the
nature of the coupled nuclei. The Karplus rule can be written as

3J = acos2φ +bcos φ + c (26)

where a, b and c are empirical parameters whose values depend
on the coupled nuclei and the substituents involved.

In previous works19 we found that the Karplus rule is repro-
duced at RPA level of approach. We also found that each coupling

pathway of Eq.(24) follow the same pattern. The main coupling
pathways together with the corresponding principal propagator
matrix elements follow the same pattern, as the total coupling
pathway do. In those cases the matrix elements Gia, jb and Hia, jb

have a Karplus-type dependence with the dihedral angle. For the
main coupling path they are written as

Gia, jb −→ Gσ1σ ∗1 ,σ2σ ∗2
=
∫

σ
∗
1 (1)σ

∗
2 (1)r

−1
12 σ2(2)σ1(2)dr1dr2 (27)

and

Hia, jb −→ Hσ1σ ∗1 ,σ2σ ∗2
=
∫

σ
∗
1 (1)σ2(1)r−1

12 σ
∗
2 (2)σ1(2)dr1dr2 (28)

We can see that in both matrix elements, electron 1 is described
by two different LMOs being one and the other close to the two
different coupled nuclei, i.e. ψ∗σ1

(1) and ψ∗σ2
(1) or ψ∗σ1

(1) and
ψσ2(1). Quite a similar dependence is observed for electron 2.
The non-local dependence of both electrons is then apparent.

There are terms for which their principal propagator matrix ele-
ments do not follows a Karplus curve. They are such that neither
electron 1 nor electron 2 do has a non-local dependence with
the LMOs. We show it from an example. Their Coulombic and
Exchange matrix elements of the (σ1 → σ∗1 ; σ1 → σ∗1 ) coupling
pathway are

Gσ1σ ∗1 ,σ1σ ∗1
=
∫
|σ∗1 (1)|

2 r−1
12 |σ1(2)|2 dr1dr2 (29)

and
Hσ1σ ∗1 ,σ1σ ∗1

=
∫

σ
∗
1 (1)σ1(1)r−1

12 σ
∗
1 (2)σ1(2)dr1dr2 (30)

The Coulombic matrix element gets from here its name. It express
a Coulombic interaction between electron 1 and electron 2 de-
scribed by the electronic probability densities given by

∣∣ψ∗σ1
(1)
∣∣2

and |ψσ1(2)|
2.

The polarization propagator density matrix

To our knowledge nobody has proposed till now a density oper-
ator which is valid within the polarization propagator formalism.
In order to quantify the quantum entanglement that likely ap-
pears in an electronic molecular system, we need to find out an
expression for the density operator that fulfill the requirements of
such operators.

Since we know that all the information of the system is carried
out by the principal propagator P, and that the integrals G and H
are the ones that present a non-local behaviour, we assume that
this new definition of the density operator must be expressed as
a function of the principal propagator matrices.

The Feynman propagator and so, the 2-point Green function,
can be also obtained from the path integral formalism. It can be
proven that (see chap 14 of Ref.43)

〈0, t f | T [q(tA)q(tB)] | 0, ti〉= N
∫

Dqq(tA)q(tB)e
i
h̄

∫ t f
ti Ldt (31)

when ti→−∞ and t f →∞ the last equation becomes the defini-
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tion of the path integral of the Feynman propagator.
From the last fundamental identity one can obtain a relation

between the generating functional and the Feynman propagator.

Z0[J] =
∫

Dφe
i
h̄

∫
d4x(L+Jφ) (32)

where J is a perturbation over the ground state of the system
and Z0[J] is the generating functional of the Green function that
include all connected and disconnected Feynman diagrams.

Then it is sound to define, using the superoperator formalism, a
generating functional for the polarization propagator formalism.
In the case of the FC mechanism of J-couplings this generating
functional can be written as22

Z[V FC
K ,V FC

L ] =
∫

D | h̃)D(h | e|h̃)(h|EÎ−Ĥ0|h̃)(h|+(V FC
K |h̃)(h|+(V FC

L |h̃)(h|

= Z[V FC
K =0,V FC

L =0]e
W

[V FC
K ,V FC

L ] (33)

where

W[V FC
K ,V FC

L ] = (V FC
K |h̃)(h|EÎ− ĤSch

0 |h̃)
−1(h|V FC

L ) (34)

is the generating functional of the polarization propagator that
has no disconnected part. The Hamiltonian ĤSch

0 is the NR
Schrödinger Hamiltonian for the unperturbed atomic or molec-
ular system.

The generating functional of Eq.(33) is analogue to the par-
tition function of the statistical thermodynamics.44 Using such
partition function (meaning Z = Tr(e−β Ĥ)), the density operator
of the system can be written as

ρ̂ =
e−β Ĥ

Z
(35)

Our ansatz for a polarization propagator density matrix follows
the same physical grounds. So

ρ =
e|h̃)(h|EÎ−Ĥ0|h̃)(h|

Z[V FC
K =0,V FC

L =0]
=

e|h̃)(h|EÎ−Ĥ0|h̃)(h|

Z[0]
(36)

where Z[0] is the partition function for the unperturbed system.
This new density function is written in terms of the inverse of
the principal propagator P = M−1, being M = (h|EÎ− ĤSch

0 |h̃),
and carry all the information about the excitations of the system.
When calculations are performed at RPA level of approach (see
Eqs. (12) and (13)), each matrix element of M is

Mia, jb = (E−G−H)ia, jb (37)

The polarization propagator density matrix of Eq. (36) fulfill
the properties of a density matrix:

1. Tr ρ = 1 and

2. ρ ≥ 0 or (h|ρ|h) ≥ 0.
It is straightforward to show that both properties are fulfilled.

In the case of the first one it is clear that

Trρ =
∑k(hk|e|h̃)(h|EÎ−Ĥ0|h̃)(h||hk)

Z[0]
= 1 (38)

In the case of the second property it is enough to be aware that
the polarization propagator density matrix arises as the quotient
of two positive definite magnitudes, and the exponents are all real
numbers. Given that the exponential of a real variable is always
positive, and since Z[0] is, in our case, the sum of exponentials,
it is straightforward to show that ρ > 0.

Matrix ρ of Eq.(36) is also non-idempotent.

ρ
2 = (

e|h̃)(h|EÎ−Ĥ0|h̃)(h|

Z[0]
)(

e|h̃)(h|EÎ−Ĥ0|h̃)(h|

Z[0]
)

=
1

Z2
[0]

[∑
k

(|h̃)(h|EÎ− Ĥ0|h̃)(h|)k

k!
][∑

l

(|h̃)(h|EÎ− Ĥ0|h̃)(h|)l

l!
]

=
1

Z2
[0]

[h̃)∑
k

|h̃)(h|EÎ− Ĥ0|h̃)k

k!
(h|][h̃)∑

l

|h̃)(h|EÎ− Ĥ0|h̃)l

l!
(h|]

=
1

Z2
[0]

h̃)e(h|EÎ−Ĥ0|h̃)

1︷ ︸︸ ︷
(h|h̃)e(h|EÎ−Ĥ0|h̃)(h|

=
1

Z2
[0]

h̃)e2(h|EÎ−Ĥ0|h̃)(h| 6= ρ (39)

Quantification of entangled states and entangled LMO excita-
tions

The influence of the measurement of the state of a qubit that
affect the state of another, as happens in an entangled state, may
have a non-local character.45.

In a many-particle system the von Newman entropy can be used
as a measure of the correlation strength,46,47 and also as a quan-
titative measure of the entanglement.48 As mentioned above the
entanglement is a quantum mechanical property that describes
a correlation between quantum mechanical systems that has no
classical analog. So it was suggested more than one decade ago
that it might be useful as an alternative measure of electron-
electron correlation in quantum chemistry calculations.48

The Von Newman entropy is defined as

S =−Tr(ρ lnρ) (40)

being ρ the density matrix of the whole quantum system.

Dividing the system in two parts, say A and B, one can find the
entanglement between them in terms of the density matrices of
each subsystem. The interaction between those two parts can be
quantified by using the entanglement entropy SA|B which uses a
reduced density matrix, RDM, of each part.

When looking for quantifying the interaction among two or-
bitals, say, orbitals i and j, one must define the single-orbital en-
tropy, S(1)i and the two-orbital entropy, S(2)i, j. They are given
in terms of the elements λα;i and λα;i, j which are the eigenvalues
of the single-orbital RDM and the two-orbital RDM, respectively.
Those RDM are obtained by tracing out all other orbitals degree
of freedom except those of the orbitals i, and orbitals i and j.49
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Then,
S(1)i =−∑

α

λα;i lnλα;i (41)

and

S(2)i, j =−∑
α

λα;i, j lnλα;i, j (42)

The total amount of electron correlation, meaning classical and
quantum, can be evaluated by using the orbital-pair mutual infor-
mation. Given that any entanglement between the orbitals i and j
reduces S(2)i, j with respect to the sum of S(1)i and S(1) j, Rissler
and collaborators defined it by4

Ii, j =
1
2
(
S(1)i +S(1) j−S(2)i, j) (1−δi j

)
0 (43)

where δi j is the Kronecker delta and the factor 1/2 prevents in-
teractions from being counted twice.

In previous studies, Rissler et al identified entanglement with
orbital interactions,4 and Reiher and collaborators used or-
bital entanglement as a measure to evaluate the single- and
multireference- character of any molecular structure in a given
orbital basis set.50 They also used it as a measure of the entan-
glement between orbitals i and j embedded in the environment
of all other active-space orbitals.50,51 In other words, they used
Ii, j as a measure of how much more information is stored in the
composite system than in the subsystems.

There is another way of measuring the electronic entanglement
of N-electron systems. This is given by the measure,11

ζvN = S(ρr)− lnN (44)

where ρr is the single-particle reduced density matrix associated
with N-fermion pure state, and S(ρr) is the von Newman entropy
of ρr. ζvN ≥ 0, being zero for non-entangled fermionic systems
(states with Slater rank one).10

We are now able to extend the applications of the quantum
information theory to quantify the likely entanglement between
pairs of LMO excitations using polarization propagators. As men-
tioned in previous sections they were also expressed applying per-
turbation theory in such a way that we can include different levels
of correlation for the interaction among orbital excitations.

Quantum information can be stored in the correlation between
subsystems.1 In our case the subsystems are the nuclear spins
or the excitations between electronic states that arise from the
interaction of electron spins or its orbital angular momentum with
the nuclear spins. In short, our subsystems A and B are built from
a set of excitations between LMOs.

In line with this reasoning we should be aware that, in the NMR
experiment, one is performing non-local measurements because
one use an apparatus that carry on instantaneous measurements
on two or more subsystems altogether (being them nuclear spins
or electronic excitations). The result of the NMR experiment can-
not be obtained by carrying out measurements separately on each
individual subsystem.

So, we search for the correlation between two MO excita-
tions that occur simultaneously in two different regions of the
molecule, being them of the kind i→ a, j → b. The localized

molecular orbitals i and j are occupied states and a and b are un-
occupied states. In Fig. 2 we have shown the ethane molecule
and also highlighted only two excitations, σ1 → σ∗1 , and σ2 →
σ∗2 , that are likely entangled.

Fig. 2 Two local excitations that are considered in our treatment of the
mutual information

From the definition of the polarization propagator density ma-
trix of Eq. (36), the reduced density matrix of two given excita-
tions, lets say, i→ a and j→ b, will be given by

ρia, jb =
eMia, jb

Z[0]
(45)

Given that we will use the same formal expression of the mu-
tual information of Eq. (43) to calculate the entanglement among
those two excitations, we shall also need to define the following
single excitation reduced polarization propagator density matrix

ρia =
eMia

Z[0]
(46)

The next step is to define the appropriate single-excitation en-
tropy, S(1)i→a and the two-excitation entropy, S(2)i→a, j→b. So,

S(1)i→a =−∑
α

λα;(i,a) lnλα;(i,a) (47)

and
S(2)i→a, j→b =−∑

α

λα;(i,a),( j,b) lnλα;(i,a),( j,b) (48)

The elements λα;(i,a),( j,b) and λα;(i,a) are the eigenvalues of the
reduced density matrices of Eqs (45) and (46), respectively.

It should also be mentioned that the entropy of the molecular
system at RPA level of approach is written in terms of the integrals
G and H.

Results and discussion

In this section we shall show the first results of the theory shown
above. We do it applying it to the study of vicinal 3J(H-H) cou-
pling in the ethane molecule. We shall evaluate it as a function of
the dihedral angle φ (See Fig. 1), and then quantify the mutual
information and the one-excitation entropy, that give new insights
about the origin of the Karplus rule.
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Karplus rule and main coupling pathways

At the beginning we show the dependence of the vicinal H-H J-
coupling with the dihedral angle at three levels of approach, RPA,
TDA and HF. Each one of them is related with the principal propa-
gator. At RPA level we use the whole matrix elements of Eqs (12)
and (13). The other two approximations arises when the matrix
B = 0 (TDA) and the HF approximation requires that matrix G =
0 and matrix H = 0 (see Eq. (13)).

In Fig. 3 we show the dependence of 3J(H1-H2) with φ . It fol-
lows the Karplus rule at all three levels of approach. The TDA
values are almost half of the RPA ones, and the HF values are dif-
ferent from zero. It is worth to highlight that the value of 3J(H1-
H2) for φ = 90 is zero in the last two levels of approach. Further-
more, as previously shown working with semiempirical methods
in Refs.15,19,35 such a dependence is followed by most of the cou-
pling pathways.

Fig. 3 Total 3J(H1-H2) dependence with the dihedral angle at RPA, TDA
and HF level of approach

Then it follows that there must be a Karplus-type dependence
with the principal propagator. We calculated the matrix elements
corresponding to the coupling pathway σ1 → σ∗1 ; σ2 → σ∗2 for the
principal propagator and its inverse. They both follow a Karplus-
type dependence with φ , which is shown in Fig. 4. This indicates
that non-local interactions occur.

Fig. 4 Dependence of the main coupling pathway of the principal propa-
gator and its inverse with the dihedral angle

The dependence with φ of the matrix elements of matrices G
and H, shown in Fig. 4, arises from eight excitations of LMO.
In that figure we show that the sum of them follows the Karplus
rule. This is due the fact that, using the basis set we selected four
unoccupied LMOs for each occupied LMO. They are included in
each LMO named as σ∗ in Fig. 1.

Entangled LMO excitations in ethane

The next step is to apply our theory to the analysis of the likely
entanglement between those excitations.

In order to do that we calculated the matrix elements of both,
the density matrix of Eq. (45) and the reduced density matrix
of Eq. (46). Since the inverse of the propagator, M, can be di-
agonalized, we can easily obtain the eigenvalues of ρ from the
eigenvalues of M. All those eigenvalues are given as Additional
Information.

Once the density matrix elements are obtained, the quantum
entanglement between the excitations σ1 → σ1, σ2 → σ2 are
quantified by using the definition of mutual information of Eq.
(43).

Fig. 5 Scheme of the reduced matrix density used to calculate the mutual
information

In our case we consider only the matrices G and H because
they have an explicit non-local character. Then, given that at RPA
level of approach one include also the E matrix, what we did was
to take out the contribution of this last matrix of Eq. (13). The
scheme used to calculate the eigenvalues of the reduced density
matrix is shown in Fig. 5.

Results of calculation of the corresponding mutual information
are shown in Fig. 6. We observe that the excitations show a quan-
tum entanglement between them, and that the dependence with
the dihedral angle is related with the symmetry of the molecule.
The highest value of entanglement appears when the molecule is
in its eclipsed symmetry and the minimum, when it is staggered.

The entanglement between the excitations of the studied
LMOs is larger when more correlation is included, meaning that
Iσ1,σ ∗1 ;σ2,σ ∗2

(RPA) > Iσ1,σ ∗1 ;σ2,σ ∗2
(TDA).

Rissler et al have given an interpretation for one-orbital en-
tropies: each Si describes the entanglement of the orbital i with
the rest of the environment.4 In our case the one-orbital excita-
tion entropy, S(1)i→a, is related with the entanglement of each
LMO excitation with the whole set of excitations in the molecule.
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Fig. 6 Mutual information as a function of the dihedral angle for the
ethane molecule

One way to check the measurement of entanglement by mu-
tual information is through the calculation of ζvN of Eq.(44). In
Fig.7 we show the dependence of ζvN with the dihedral angle,
and also its relationship with Iσ1,σ ∗1 ;σ2,σ ∗2

at RPA level. We observe
that both descriptors have the same pattern, and so, it confirms
our proposal.

Fig. 7 Measurement of entanglement as a function of the dihedral angle
for the ethane molecule

We were also interested to see whether the S(1)i→a entropy
shows a φ -dependence. As shown in Fig. 8, the one-orbital ex-
citation entropy of one of the main excited LMOs that contribute
to the main coupling pathway in the vicinal J-coupling we are
working on, has a φ -dependence that is similar to the mutual in-
formation function of Fig. 6.

Fig. 8 One-orbital excitation entropy for the excitation σ1→ σ∗1

Concluding remarks

As was previously shown in recent literature, the picture of inter-
acting orbitals give new insights about the mechanisms of chem-
ical reactions and chemical bonding. Besides, an entanglement
analysis requires the use from the outset of correlated wavefunc-
tions. That means that the orbital entanglement does not provide
bonding information from one-determinant wavefunctions, like
Hartree – Fock and Kohn – Sham density functional theory. From
this basis we wanted to go one step further and apply similar con-
cepts for describing the interaction between two molecular orbital
excitations.

We show in this article a new theory that introduce information
theory to the analysis of the electronic origin of response proper-
ties. We have used the fact that the principal propagator of the
polarization propagators is a basic element of the quantum sys-
tem that has the same nature as the wavefunction. Then, given
that polarization propagators can be derived from the path in-
tegral formalism, we were able to define a density matrix that
depends on the inverse of the principal propagator.

Once this density matrix is found, one-excitation orbital and
two-excitation orbitals are easily derived. So, the mutual infor-
mation between pair of orbital excitations is then straightly de-
fined. Mutual information is also related with another descriptor
of entanglement known as ζvN .

This theory is concerned about the quantum transmission of
MO excitations (we considered localized MOs, LMO). They be-
long to the set of all “coupling pathways” that are the natural
excitations of the unperturbed quantum system. Once the ex-
ternal perturbations are applied to the system, their effects are
transmitted by those “coupling pathways” to the whole quantum
system.

As a first example we applied this theory to the analysis of the
origin of the famous and empirical Karplus rule of the NMR spec-
troscopy. This rule regards about a dihedral-angular dependence
of the vicinal J-coupling, which does not depend on the molecu-
lar system under study. We have chosen in this study the ethane
molecule.

We analyzed the vicinal H-H coupling in terms of the entangle-
ment among the main LMO excitations that are involved in such
J-coupling. They were written as σ1 → σ∗1 , and σ2 → σ∗2 . We
found that they are entangled, and it grows as more electron cor-
relation is included. In other words, the entanglement is larger at
RPA than at TDA level of approach.

We summarize our findings as:
i) The principal propagator matrix describe the transmission of
the interaction between nuclear spins. Some of its elements re-
flect non-local interactions.
ii) A density matrix can be properly defined from the theory of po-
larization propagators. This matrix can be used to apply the quan-
tum information tools to explain the electronic origin of atomic
and molecular response properties.
iii) The Karplus rule, which express a dihedral-angular depen-
dence of the vicinal J-couplings, arises as a consequence of the
entanglement of pairs of LMOs excitations.
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The likely quantum entanglement among excitations of MOs are described by using the
polarization propagator formalism. Its first application to NMR-J couplings give new under-
standings about the way external perturbations are transmitted within molecular systems.
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