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Abstract The fitting of a plane to data points is essential to the geosciences. However, it is recognized
that the reliability of these best fit planes depends upon the point set distribution and geometry,
evaluated in terms of the eigen-based parameters derived from the moment of inertia analysis. Despite its
significance, few studies have addressed the uncertainties of the analysis, which can adversely affect
the reproduction of results one of the cornerstones of scientific endeavor. Aiming to contribute toward
the neglected issue of the moment of inertia precision, we have developed a bootstrap resampling
scheme to empirically discover the distribution of uncertainties in the orientation of best fit planes.
Dispersion of the bootstrapped normal vectors to the best fit plane is regarded as a measure of precision,
evaluated with the maximum angular distance from the optimal solution. This rationale was tested using
Monte Carlo-generated samples covering a comprehensive range of shape parameters to assess the
dependence between eigen parameters and their inherent bias. Our results show that the oblateness of
the point cloud is a robust parameter to assess the reliability of the best fit plane. Given this, the method
was then applied to a publicly available lidar data set. We argue that georeferenced point clouds with
an oblateness parameter greater than 3 and 1.5 may be placed at 95% confidence levels of 5° and 10°,
respectively. We propose using these values as thresholds to obtain robust best fit planes, guaranteeing
reproducible results for scientific research.

1. Introduction

The reproduction of research is one of the cornerstones of the scientific endeavor. However, a growing lack of
reproducibility is causing concern over common statistical methods (e.g., Baker, 2016; Benjamin et al., 2018).
Our aim is to understand the population involved in a study and whether or not our results can be repro-
duced. Alternatives to common statistical methods to assess the precision and variability are
therefore needed.

Motivated by a plethora of modern key digital technologies, we are now on the threshold of significant
improvements in three-dimensional spatial resolution in general geoscience (McCaffrey et al., 2005). The
new techniques include the digital outcrop and terrestrial altimetry acquisition of three-dimensional point
clouds with improved precision and accuracy (e.g., terrestrial lidar, terrestrial digital photogrammetry or
unmanned aerial vehicle-based digital photogrammetry; see Telling et al., 2017, and references therein).

A major application of these methods includes the characterization of structural heterogeneities, such as
faults, joints, or fractures. The characterization of those features makes the description of fracture networks
possible. Also, it can be critical for assessing rock mass stability (e.g., Riquelme et al., 2015), fluid flow (e.g.,
Wilson et al., 2011), or naturally fractured reservoirs (e.g., Biber et al., 2018).

Several manual, semiautomated, and unsupervised procedures have been developed for structural data
reduction, allowing three-dimensional representations of structural traces (Lato et al., 2009; Li et al., 2016;
Seers & Hodgetts, 2016a; Vasuki et al., 2014), as well as points of near-planar geological surfaces (Chen
et al., 2016; García-Sellés et al., 2011; Gomes et al., 2016; Lato et al., 2009; Riquelme et al., 2014; Seers &
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Hodgetts, 2014; Slob et al., 2005; Thiele et al., 2017; Wang et al., 2013). These representations of facets permit
best fit plane appraisal to be made in order to estimate the corresponding orientation (Dueholm & Olsen,
1993; Pringle et al., 2006).

The approach to obtain an orientation from a set of points consists of estimating the moment of inertia of a
set of nodes and using the axis of maximum moment of inertia as the pole to the best fit plane (i.e., the least
squares plane: Fernández, 2005; Woodcock, 1977). The eigen decomposition of vertex covariance matrices is
widely used, but the precision of the analysis is a neglected issue.

By using the spatial location of earthquakes, this method is also able to reconstruct the structure of the active
part of a fault network (e.g., Ouillon et al., 2008; Wang et al., 2013). The extraction of information on bedding
planes for the assessment of its influence on landslide abundance (e.g., Santangelo et al., 2015) is evaluated
through this analysis, which is also commonly used in archeological studies (McPherron, 2017) and even in
biomedical research (Palit et al., 2017).

Going beyond surfaces, the analysis of the moment of inertia has a much wider application in the geos-
ciences. Adopted as a useful way of summarizing three-dimensional orientation data, it is useful for quantify-
ing fabric shape in sedimentary data (Benn, 1994), grain fabric or crystallographic preferred orientation in
computed tomography images (e.g., Chatzaras et al., 2016; Ketcham, 2005), and it is even used to classify
ice crystal shapes (Gough et al., 2012). Furthermore, this procedure is commonly used to estimate lines
and planes of best fit along demagnetization paths from paleomagnetic data (Kirschvink, 1980) and to calcu-
late the intersection of great circles (e.g., Gallo et al., 2017).

The robustness of the best fit plane is highly dependent upon the underlying distribution of the point cloud.
The precision decreases as the distribution of the data set moves away from the ideal planar distribution
toward a collinear configuration (Fernández, 2005; Seers & Hodgetts, 2016b). Thus, the impact of collinear
configurations results in least squares planes being less resolved and prone to noise. The extent to which this
may be the case has not been explored and relatively few studies address the uncertainties in the analysis of
the moment of inertia (e.g., Seers & Hodgetts, 2016b; Jones et al., 2016).

In this paper, we introduce a novel nonparametric bootstrap procedure for evaluating the uncertainty of
the best fit plane estimate, we quantify its robustness using a resampling scheme to empirically dis-
cover the distribution of uncertainties for the oriented planes, without any prior information. Our
new method enables us to assess the estimation error and construct reliable confidence intervals in
a fully data-driven way. When analyzing the data, the estimated uncertainty can be used to rank the
measured data and thus develop more accurate models with the understanding of the nature and
limitations of the estimates. The bootstrap method can be used to provide accurate estimates of the
variability of the desired parameters and avoids the necessity for making strong assumptions about
the distribution of the data.

To test the validity of the bootstrap statistics we apply the resampling scheme to stochastically generated
(i.e., Monte Carlo simulated) point cloud and surface samples with a wide spectrum of spatial underlying dis-
tributions and also to a publicly available lidar data set.

2. Moment of Inertia Analysis for Best Fit Plane Estimates and Its Inherent Bias

Several methods exist for extracting the best fit plane directly from a point cloud, including multiple planar
regressions (see equations in Press et al., 1986) and random sample consensus algorithms (Fischler & Bolles,
1981), based on the iterative segmentation of the point cloud to refine equation coefficients by least squares
estimation after outlier removal (Chen et al., 2016; Ferrero et al., 2009).

In this study, we consider the eigenvalue decomposition of the covariance matrix to estimate the best fit
plane. This approach follows the process used in standard structural analysis to define girdle distributions
(Woodcock, 1977). Since the algorithm works directly on the point cloud, no data structuring (triangulation
or approximation) is required. The moment of inertia of a set of nodes is estimated from the vectors, linking
each point to the point cloud center of mass, [ x;y; z ] (Figure 1). Denote T to the orientation matrix
(Scheidegger, 1965):
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since T/(n � 1) is the point cloud empirical covariance matrix, T is a positive definite symmetric matrix and is
therefore amenable to eigen decomposition. Let λ1, λ2, and λ3 be T’s eigenvalues, which are positive, assume
that λ1 ≥ λ2 ≥ λ3, and denote ν1,ν2, and ν3 to the corresponding base of orthogonal eigenvectors. The axis of
maximum moment of inertia (ν3) is the pole to the best fit plane (Figure 1), a hyperplane spanned by the
eigenvectors ν1 and ν2, that contains the point cloud center of mass [x; y ; z ].

Eigenvalues of T have been widely used as indicators of fabric shape assuming that the mean of the unit
vectors (i.e., observations regarded as points of unit mass) coincides with the origin [0, 0, 0] (Woodcock,

1977). Hereafter, we assume that the origin has been shifted to the center
of mass, and we use the logarithm of the ratios between the eigenvalues
to characterize the point cloud’s shape and orientation, as stated by
Woodcock (1977). The oblateness (O) is defined as ln(ʎ2/ʎ3), while the pro-
lateness (P) is given by ln(ʎ1/ʎ2). Following the convention stated by Flinn
(1962), the prolateness versus the oblateness is plotted in Figure 2.
Uniaxial symmetric clusters are plotted along the line ln(ʎ2/ʎ3) = 0, while
axially symmetric oblate distributions are plotted along the line ln(ʎ1/
ʎ2) = 0. The graph shows configurations that have both oblate and prolate
tendencies, which are quantified by vertex collinearity [K = ln (ʎ1/ʎ2)/
ln (ʎ2/ʎ3)]. The parameter M [M = ln (ʎ1/ʎ3)] is an estimate of the vertex
coplanarity and a measure of the strength of the preferred orientation.
These two parameters aim to describe the goodness of fit and the reliabil-
ity of the fittedmodel. Figure 2 shows six stochastically generated distribu-
tions covering a wide range of distribution shapes.

Using the axis of maximum moment of inertia as the pole to the best fit
plane gives an estimate of the desired orientation but gives no information
about its inherent precision. Schmidt (1985) first found that for converging
great circle methods (i.e., best fit plane of normals to converging great
circles) the precision of the intersection relied upon the distribution of
the underlying data and argued that the departure from collinearity of
the normal vectors to the great circles kept the inherent bias of the
method to a minimum. Fernández (2005) indicates that for a set of highly
colinear nodes many best fit planes can be defined with a similar degree of

Figure 1. The moment of inertia of a set of nodes is estimated from the vectors, linking each point to the point cloud center of mass (red dot), [x;y; z]. The best fit
plane is the hyperplane given by the translation of subspace spanned by the eigenvectors ν1 and ν2 that contains the point cloud center of mass [x; y ; z ].

Figure 2. Spatial distribution of point data according to the different ratios
between eigenvalues. M = ln (ʎ1/ʎ3) and K = ln (ʎ1/ʎ2)/(ʎ2/ʎ3). Data points
within the clouds are independent of P and O. Modified from Woodcock
(1977).
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fit and for a perfectly linear set of points, infinite planes with different orientations can be defined. Recent
numerical Monte Carlo experiments by Seers and Hodgetts (2016b) confirmed a systematic decay in the
estimated fit plane precision commensurate with increasing lineament vertex collinearity. Consequently,
the reliability of the best fit plane is contingent upon the distribution of the point cloud.

We apply a bootstrap resampling technique to evaluate the reliability of the fit and find the dispersion of the
bootstrapped vectors normal to the best fit plane, which is used as a measure of the precision. We then test
the validity of the approach on Monte Carlo-simulated samples of point clouds covering a wide range
of distributions.

3. Evaluating the Precision of Solutions: A Bootstrap Approach

We tackle the problem of assessing the goodness of fit of the best fit plane procedure. Recently, Seers and
Hodgetts (2016b) faced a similar problem in the context of structural lineament best fit plane: They assessed
the unit vector distributions on the circle and the sphere, using both Bingham and Fisher statistics assuming
Bingham and von Mises distributions, respectively. The parametric assumptions they have made about direc-
tional statistics are thoroughly described in Fisher et al. (1987) and references therein. Adopting parametric
assumptions about directional statistics offers considerable advantages for reducing the goodness of fit pro-
blem to the estimation of a few parameters. Nonetheless, in many situations the commonly used parametric
distribution functions fail to model the data adequately, hence developing alternative, more flexible proce-
dures, is necessary. To overcome this problem, we propose a nonparametric method that has the capacity
to deal with the probability distributions that reflect complex shapes, since those are the problems that arise
in this field. Our proposal has only a mild assumption, which is the existence of the first two moments. Once
the moment of inertia analysis determines the optimal solution from a data set, the precision of the solution
can be evaluated following a resampling technique. Taking advantage of computer-intensive statistical
methods, it is not necessary to assume a prior underlying distribution, the uncertainties of the estimated sur-
face can be assessed empirically by a bootstrap scheme, which is a flexible and powerful statistical tool that
can be used to quantify the uncertainty associated with a given estimator. Such techniques (Efron, 1979) are
used in situations where it is not feasible to use an analytical method to provide estimates of variability;
repeated calculations explore possible outcomes numerically, which are used in place of complicated or
intractable theoretical development (e.g., Constable & Tauxe, 1990).

Figure 3. Procedure proposed in this article to evaluate precision of the fit applied to a synthetic data set. Dispersion of the
bootstrapped normal vectors to the best fit plane is regarded as a measure of precision, represented by the quantile 95% of
angular distance from the optimal solution.
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Themethod proceeds as follows: let X = (X1,…, Xn) be the point cloud that contains n observations. A pseudo-
sample X* = (X1

*,…, Xn
*), of n observations, is obtained by randomly drawing data (with replacement) from X.

This procedure is repeated Nb times, where Nb> > n. On each replicate the maximum moment of inertia is

computed; hence, we obtain [ν 1ð Þ
3 , …,ν Nbð Þ

3 ] (Figure 3).

3.1. Parameters That Indicate the Dispersion of the Best Fit Plane

Mapping out the variability of the bootstrapped normal vectors to the best fit plane gives us a robust esti-
mate of the precision of the fit. The less scattered the vectors are, the more accurate the fit is. Namely, the

dispersion of [ν 1ð Þ
3 , …,ν Nbð Þ

3 ] on the unit hypersphere provides a measure of precision. The uncertainty of
the optimal solution was evaluated through the following procedure:

1. Consider the bootstrapped minimum eigenvectors of X, [ν 1ð Þ
3 ,…,ν Nbð Þ

3 ], centered at [x; y ; z] on a unit hyper-
sphere. Compute its covariance matrix TB.

2. Denote μ to the eigenvector corresponding to the maximum eigenvalue (i.e., principal direction) of TB; μ
gives a robust estimate of the normal vector to the best fit plane. The uncertainty of the optimal pole
vector to the best fit plane was denoted by the spread of the unit vectors around μ.

3. Great circle distances of the unit vectors from μ were computed as the dot product between μ and each
ν ið Þ
3 , for i = 1, …, Nb.

Θ ið Þ ¼ cos�1 μ·ν ið Þ
3

� �

4. Sort the Nb vectors, [ν
1ð Þ
3 , …,ν Nbð Þ

3 ], in ascending order by their Θ values.
5. The maximum great circle distance (ΘMAX) of the bootstrapped vectors from μ at a 95% confidence level

(i.e., the quantile 95% of the Θ(i)) was represented excluding 5% of the vectors that were the most distant
(Yamaji et al., 2010). That is, let n be the maximum integer satisfying n ≤ 0.95Nb, then Θ(n) = ΘMAX.

The dispersion has a maximum at ΘMAX = 180° when the distribution is uniform over the sphere, meaning
that the orientation of the plane is not constrained at all. Precisely determined best fit planes have small
ΘMAX values.

4. Testing the Power of the Approach on Monte Carlo-Simulated Samples

Correlating the dispersion measure, ΘMAX, with the point cloud underlying distribution would enable the
assessment of the incidence of the shape parameters on the precision of the best fit plane. The purpose is
to study the relationship between the ratios of the eigenvalues of T that characterize the underlying point
cloud shape (oblateness, prolateness, collinearity, and coplanarity) with the dispersion measure, ΘMAX.
Given this, aim two Monte Carlo simulation studies were conducted. The procedure involves the generation
of synthetic point clouds. For each replicate, we generate a random sample (i.e., point cloud/surface) with its
corresponding shape metric. The outcome covers a wide range of distributions of eigen characteristics of the
points clouds. For each replicate, the generated point cloud random sample was then assessed by the boot-
strap procedure described on section 3.

In order to eliminate a possible dependence between the sample size and the dispersion, for each replicate
the sample size n was uniformly randomly chosen between 50 and 10,000 (which are regular samples sizes
for these types of problems). The number of bootstrap resamples were chosen at random between 1,000
and 10,000, since no rules of thumb regarding the number of resamples have been established. Taking
advantage of parallel programming, the simulation was run in eight parallel processes. Thirty-one thousand
nine hundred fifty-nine replicates were generated with its inherent bootstrap approach on a typical quad-
core desktop computer in a week. The subroutines written in Visual Basic.NET are included as
supporting information).

In this section we describe in this section the construction of three-dimensional point clouds based on two
sample generator routines. Our first aim is to thoroughly cover all the possible eigenvalues of T since those
parameters give a measure of goodness of fit of the best fit plane. We generated uniform random samples in
random boxes; even though this approach lacks realism it fulfills our needs. In the second part of the
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simulation study we focused on the analysis of more realistic surfaces, and for this, we generated fractional
Brownian surfaces (fBS), which is an established approach (see Fournier et al., 1982; Seers & Hodgetts, 2016b).

4.1. Uniform Random Distribution in Boxes

For each replicate, n points Xi = (x1, x2, x3)iwere generated, following a coordinate-wise independent uniform
distribution in the interval U(�τj, τj), where τj(0 < τj ≤ 1) is a scaling parameter that constrains the eigen
characteristics of each sample, for j = 1, 2, 3. For each sample, components parameters τj are independent;
over the successive iterations, multiple combinations of scaling factors are considered. Figure 4 shows the
distribution of the eigen characteristic of the simulated samples.

4.2. The fBS

To simulate 2-D spatial distributions we apply the randommidpoint displacement fractal algorithm (Fournier
et al., 1982) also known as the diamond-square algorithm, for generation of fBS, which can be related directly
to geological structures (e.g., Méheust & Schmttbuhl, 2001; Seers & Hodgetts, 2016b). The roughness of the
topography created by the algorithm is controlled by the Hurst parameter H that varies from 0 to 1, and it
determines the fractal dimension of the surface. In this study we cover a wide range of Hurst exponents.
To generate the fBS we employed the iterative diamond-square algorithm. With the aim of enriching the
study, going through a greater range of eigen parameters, in each iteration we studied the adjustment in
subsets of the generated surfaces. Figure 5 shows the distribution of the eigen characteristic of the
simulated samples.

4.3. Linking Shape and Uncertainty With the Maximal Information Coefficient

On each replicate of the corresponding simulation study, the orientation matrix T is computed from its vertex
list with the best fit plane normal (v3) and the eigen parameters (M, K,O, and P) to characterize the point cloud
shape and orientation. Then, as explained in section 3, the bootstrap procedure is conducted in order to
calculate the dispersion parameter ΘMAX.

Finally, we proceeded to compare the dispersion value ΘMAX with the eigen parameters obtained from T.
There are several ways to measure the dependence between variables. The Pearson correlation coefficient
(R) is by far the most widely used measure of the dependence between two stochastic variables.

Figure 4. Eigenvalue ratio plots (Woodcock, 1977) showing the orientation tensors of Monte Carlo-simulated samples (see text for details). Data are displayed using
ggplot2 (Wickham, 2016) and rgl libraries of R language.
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Nonetheless, it is a known fact that it can only correctly assess dependencewhen the relationship between the
variables being studied is linear. At first glance, if the variables are dependent, one may attempt to transform
the variables to obtain linear relationships. Then, the Pearson correlation coefficient will still be an appropriate
measure of dependence. However, if the variables are dependent but no clear transformation can be done to
get a linear dependence, then someothermeasure of dependence between two variables should be used. This
matter has been studied in depth over the last few decades and the novel maximal information coefficient
(MIC) introduced by Reshef et al. (2011). This nonparametric coefficient measures the association between
two variables, even when they are correlated in nonlinear fashions. MIC has been largely proven to be the
most adequate and flexible dependence measure (Speed, 2011). The main idea is to locally analyze the
mutual information between two variables. The MIC coefficient is symmetrical and normalized into a range
[0, 1]. An MIC value approaching 1 suggests a dependency between the investigated variables, whereas
MIC = 0 describes the relationship between two independent variables.

5. Results

The results of the simulation were stored in a multivariate matrix (a full breakdown is included in the support-
ing information). The fundamental aim of this study was to assess the quality of the best fit solution by the
eigen characteristics of the underlying point cloud. Given this purpose, we explore the relationship between
these characteristics and the dispersion of the best fit plane, regarded as a measure of precision. Scatterplots
for each of the shape parameters versus the dispersion of the best fit summarize the results (Figure 6). No
correlation with dispersion was found in the number of bootstrap resampling (MIC = 0.11) nor in the sample
size (MIC = 0.12), ruling out possible flaws in the procedure.

Overall, comparisons of values ofΘMAX suggest a rise in the precision of the best fit plane with increasing ver-
tex coplanarity (MIC = 0.51 and 0.53) and oblateness (MIC = 0.88 and 0.76), while the prolateness did not show
significant dependence (MIC = 0.12 and 0.17), as shown in Figure 6. Surprisingly, collinearity (K), regarded in
previous studies as a measure of precision, is found to be a flawed parameter to assess reliability since the
correlation is not straightforward (MIC = 0.42 and 0.53).

In summary, the straightforward correlation found between oblateness of the point cloud underlying distri-
bution and dispersion allows it to be proposed as a good predictor of reliability. Figure 7 summarizes the

Figure 5. Eigenvalue ratio plots (Woodcock, 1977) showing the orientation tensors of the Monte Carlo-simulated subsets of
fractional Brownian surfaces with Hurst exponents indicative of persistent behavior, 0.8 < H < 1 (see text for details). Data
are displayed using ggplot2 (Wickham, 2016) and rgl libraries of R language.
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Figure 7. Eigenvalue ratio plots (Woodcock, 1977) showing the orientation tensors of Monte Carlo-simulated samples with
their corresponding dispersion parameter ΘMAX at 95% confidence level. Data are displayed using ggplot2 (Wickham,
2016) library of R language.

Figure 6. Scatter plot showing the relationship between the eigen characteristics lineation, foliation, collinearity, and
coplanarity with dispersion of the best fit plane, represented by the quantile 95% of the Θ(b) on a logarithmic scale (see
text for details) for the simulations described in section 4.1 (brown dots) and section 4.2 (red dots). Note that the
straightforward correlation, assessed by the maximal information coefficient (MIC; Reshef et al., 2011) between oblateness
and dispersion allows it to be proposed as a potent predictor of reliability. Data are displayed using ggplot2 (Wickham,
2016) library of R language.
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Figure 8. (a) Image of the road cut slope from the Rockbench repository. (b) Discontinuity planar facets extracted with the method proposed by Riquelme et al.
(2014). The color indicates different sets of joints. (c) Point cloud oblateness [O = ln (ʎ2/ʎ3)] versus prolateness [O = ln (ʎ1/ʎ2)]. The variability of the bootstrapped
parameters was used to estimate the 95% confidence bounds (vertical and horizontal lines), which lies between the 2.5% and 97.5% values of the empirical
cumulative distribution functions (see text for details). Dependence, estimated using the maximal information coefficient (MIC), of ΘMAX with respect to oblateness
(d), coplanarity (e), and collinearity (f) of the extracted planar facets (red dots); blue dots represent the results of the Monte Carlo simulations.
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precision of the solutions in the two-axis ratio graph of Woodcock (1977). This simulation study strongly
suggests that the method proposed in this paper is valid and produces accurate results to a 95% level of
confidence. Our results show that point clouds with oblateness parameter greater than 3 and 1.5 may be
placed at 95% confidence levels of 5° and 10°, respectively.

6. Application to Planar Facets of a Real Outcrop

The method introduced in this work was applied to publicly available lidar data using a standalone program
written in Visual Basic.NET that performs the bootstrap statistics developed in this contribution for each pla-
nar facet. This case is located in Ouray, Colorado, USA (Figure 8a). The data sets—which are publicly available
at Rockbench.org (Lato et al., 2013)—consist of a 3-D point cloud on a quartzitic road cut in Ouray (Colorado).
The planar facets were extracted with the method proposed by Riquelme et al. (2014; supporting information
S2). The extracted discontinuity planes have very different eigen characteristics (Figure 8c, supporting infor-
mation S3). The bootstrap resamplingmethod described generates sets of bootstrap eigen estimates and the
cumulative distribution function for each planar facet. A 95% bootstrap percentile confidence interval (see
Chernik, 1999, for details) for these estimates is obtained by taking the 2.5th and 97.5th percentiles (between
which 95% of the data lie) of the eigen estimates empirical cumulative distribution function. The bootstrap
procedure is conducted in order to calculate the dispersion parameter ΘMAX of each planar facet.

After performing the bootstrap of the maximum moment of inertia of the data, ΘMAX dependence with obl-
ateness is evaluated, with two considerations to highlight. First, it is found that 83%(96%) of the extracted
facets may be placed at 95% confidence levels of 5°(10°), respectively (Figure 8d). Second, it is found a strong
dependence of ΘMAX with respect to oblateness (MIC = 0.82), as observed in the Monte Carlo-simulated
samples. The results allowed the comparisons between the Monte Carlo-simulated samples and planar facets
and verify the dependence of the precision upon the oblateness parameter.

7. Conclusions

The analysis of the moment of inertia has diverse useful applications in the geosciences. A great advance in
three-dimensional orientation data came from the proliferation of digital outcrop acquisition techniques and
the moment of inertia approach is a widely used way to define best fit planes from many of these types of
referenced points. However, the reliability of a best fit plane relies upon the distribution of the underlying
point cloud. The eigenvalues derived from the analysis proved to be a way to assess the reliability of the
fit (Fernández, 2005; Seers & Hodgetts, 2016b), but its probabilistic constraining necessitates making strong
assumptions about distribution statistics. To ensure the accuracy and precision of the orientation estimates,
collinearity/coplanarity (K/M) were the chosen ratios to assess precision although no other alternative was
sensibly tested. Here a bootstrap method for estimating the reliability of a best plane was presented. The
variability of the bootstrapped vectors normal to the best fit plane, evaluated with the maximum distance
from the optimal solution, gives us a robust estimate of the precision of the fit. A noteworthy result of this
study is the contrasting correlation between oblateness of the point cloud and dispersion of the results. As
discussed by Jones et al. (2016), we find experimentally that neither M nor K (functions of ʎ1) is suitable for
assessing the quality of a best fit. Instead it is argued that oblateness (O = ln (ʎ2/ʎ3)) is a suitable parameter
to assess precision. We argue that georeferenced point clouds with an oblateness (O) parameter greater than
3 and 1.5 may be placed at 95% confidence levels of 5° and 10°, respectively, and we propose using these
values as thresholds to obtain robust best fit planes from georeferenced data, guaranteeing reproducible
results for scientific research.
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