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ABSTRACT 

Obesity is a metabolic disorder that predisposes to numerous diseases and has become a 

major global public-health concern. Cafeteria diet (CAF) is the animal model used for the study 

of obesity that more closely reflects western diet habits. Previously we described that CAF 

administration for 60 days induces obesity in female rats and theirs fetuses develop 

macrosomia. Given that in our model rats are not genetically modified and that obese mothers 

were fed standard chow during pregnancy, the aim of the current study was to test the 

hypothesis that obesity alters the intrauterine environment prior to pregnancy; and this may 

explain the exacerbated fetal weight gain. We found that uteri from obese rats during the 

oestrous phase developed insulin resistance through mechanisms that involve the induction of 

uterine hypoxia and the downregulation of the insulin receptor gene. Moreover, uterine cell 

proliferation was induced by obesity concomitantly with the reduction in the uterine 

contractile response to a 2 AR agonist, Salbutamol; and this may be consequence of the 

downregulation in the uterine 2 AR expression. We conclude that CAF-induced obesity alters 

the uterine environment in rats during the oestrous phase and may cause the fetal 

macrosomia previously described by us in obese animals.  The lower sensitivity of the uterus to 

a relaxation stimulus (Salbutamol) is not a minor fact given that for implantation to occur the 

uterus must be relaxed for embryo nidation. Thus, the alteration in the uterine quiescence 

may impair implantation and, consequently, the foregoing pregnancy. 

 

Keywords: Obesity; Uterus; Insulin; Glucose; adrenergic receptor; uterine contractile activity. 
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INTRODUCTION 

The global epidemic of obesity includes an alarming rise in the number of reproductive aged 

women who are overweight (body mass index [BMI]≥25 kg/m2) or obese (BMI≥30 kg/m2). The 

National Health and Nutrition Examination Survey found that the 60% of women in the United 

States are overweight or obese upon entering pregnancy [1]. This trend has serious 

implications for the general health of women as well as their reproductive potential. Obese 

women are three times more likely to suffer from anovulatory infertility than patients with a 

normal BMI [2]. Even when they do ovulate, the time to conception is two-fold longer in 

overweight patients [3]. Moreover, obesity negatively impacts assisted reproduction outcomes 

by lowering implantation and clinical pregnancy rates, increasing miscarriage rates, and 

decreasing live birth rates when compared with normal-weight women [4-8]. However, it is 

still unclear whether these negative pregnancy outcomes are due to factors affecting the 

oocyte/embryo quality, the endometrium, or both. Regarding the latter, it has been described 

that insulin is implicated in the regulation of endometrial development, metabolism, and 

receptivity [9, 10]. Insulin resistance is commonly exhibited by obese women and it negatively 

influences implantation and subsequent pregnancy. It has been shown that obese women with 

normal glucose tolerance had a 40% decrease in the expression of GLUT4 in adipocyte 

membranes when compared with lean controls [11], suggesting tissue specific insulin 

resistance. Insulin sensitivity is also controlled by several transcription factors, among which 

hypoxia-inducible transcription factors (HIF) and peroxisome proliferator-activated receptors 

gamma (PPARstand out regarding obesity. Hypoxic stress is associated with obesity due to 

the excessive adipose tissue deposition [12, 13] and it is known that hypoxia impairs insulin 

sensitivity [14, 15]. Hypoxia promotes the expression of HIFs both at gene and protein levels 

[16]. HIF acts as transcription factor and for functioning HIFand HIF subunits should 

heterodimerize. Among HIF isoforms (HIF1, 2 and 3HIF1 stabilizes in hypoxia 

conditions and generally rapidly degrades in a normoxic environment, while HIF1 is 
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constitutively expressed [17]. On his behalf, PPARs are a group of ligand-activated nuclear 

hormone receptors that connect the environment represented by nutritional inputs to specific 

genetic programs controlling genes involved in inflammation, adipogenesis, lipid metabolism, 

and glucose homeostasis [18]. There are three different isoforms of PPARs in mammals: 

PPARα, PPARβ/δ, and PPARγ. Despite showing structural similarities, the three isoforms exhibit 

differences in ligand specificities, tissue distribution and functions. PPARγ becomes relevant in 

conditions of obesity since it contributes to the uptake of glucose and lipids, and when 

expressed ectopically, it promotes deposition of lipids in peripheral tissues [19]. In fact, PPARγ 

agonists, such as the thiazolidinediones pioglitazone and rosiglitazone, are currently prescribed 

as anti-diabetic drugs and act as insulin sensitizers [20] 

Furthermore, obesity during pregnancy is associated with an abnormal intrauterine metabolic 

environment that has long-lasting effects on offspring, since the ability of the progeny to adapt 

to an adverse intrauterine environment is conferred prior to pregnancy [21]. In view of all the 

above, endometrial insulin resistance may potentially be one mechanism that negatively 

impacts fertility in obese patients, inducing long-lasting effects on the offspring as well. 

In previous studies of our laboratory we found that cafeteria diet-induced obesity in female 

rats induced systemic and ovarian insulin resistance [21]. Obesity also impaired the 

reproductive outcome by reducing the ovarian reserve, altering ovulation [22], decreasing 

fertility rates and delaying conception [21]. Moreover, we showed that maternal pre-

gestational obesity exacerbated fetal growth during gestation that resulted in fetal 

macrosomia despite all animals were fed standard chow during gestation, highlighting the 

importance of the maternal body weight at conception time [21]. In order to study the possible 

mechanisms responsible for these alterations, the purpose of the current study was to test the 

hypothesis that obesity alters the intrauterine environment prior to pregnancy.  

In view of all the above, we first purpose to evaluate if obesity induce the development of 

uterine insulin resistance and whether HIF and PPARare involved in this disruption. 
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Moreover, it has been shown that insulin resistance alters responsiveness and contractile 

activity of uterine tissue [27], that higher uterine contractile activity is associated to lower 

pregnancy rate after in-vitro fertilization [28] and that obesity negatively impacts outcomes of 

assisted reproduction due to lower pregnancy rates [29, 30]. The uterine contractile activity is 

known to be controlled predominantly by adrenergic receptors (ARs) [31-33], whose levels are 

altered in several tissues as consequence of obesity [34-36], however it is still unknown if their 

uterine expression are modified as consequence of obesity. So, for all the above, we also 

propose to study whether the uterine ARs levels and contractile activity are altered as a 

consequence of obesity. 

MATERIALS AND METHODS 

Animal husbandry 

Wistar rats (Rattus Norvergicus) were obtained from Bioterio Central, Facultad de Ciencias 

Exactas y Naturales, Universidad de Buenos Aires. All rats had ad libitum access to water and 

standard rodent chow diet (ACA Nutrición Animal, Argentina) and were kept on a 12:12-h light-

dark cycle at 22°C. All research animals were treated in compliance with the guidelines for the 

care and use of animals approved by the Comité Institucional de Cuidado y Uso de Animales de 

Experimentación (CICUAL, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos 

Aires) in accordance to principles of laboratory animal care (NIH Guide for the Care and Use of 

Laboratory Animals, Institute of Laboratory Animal Resources, National Research Council, 

Washington, D.C.).  

Animal diets  

Twenty-two days old female Wistar rats weighing 120-130 g were divided randomly into two 

groups distinguished by dietary composition: (1) Control Group was fed only standard rodent 

chow diet; (2) Obese Group was also offered with “cafeteria-style” (CAF) diet (a varying menu 

of highly palatable human foods comprising sausages, cheese, snacks, peanuts, vanilla and 
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chocolate biscuits). This animal model was described by other authors [23], has been 

previously successfully adapted and implemented by us, and showed that obesity is induced 

after 60 days of CAF diet administration [22]. Weight gain, abdominal circumference and body 

length were monitored twice a week.  

Anesthesia and tissue collection 

Animals were sacrificed when reach the first estrus stage after 60 days of diet protocols. For 

that purpose, anesthesia was performed using 50 mg/kg solution of ketamine (Brouwer, 

Buenos Aires, Argentina) associated with 10 mg/kg xylazine (Alfasan, Woerden, Holland) that 

were injected intraperitoneally into the inner side of one of the hind legs. Afterwards, 

euthanasia was performed by cardiac exsanguination and uteri were removed, divided in 

pieces and pieces were: (1) used fresh for myometrial contractile studies, (2) used fresh for 

uptake glucose analysis, (3) frozen for subsequent RNA extraction, (4) lysed for western 

blotting or (5) fixed in 4% (w/v) formaldehyde for 24 h, dehydrated, embedded in paraffin and 

cut into seven-micron sections. Sections were mounted on gelatin-coated glass slides and 

subsequent used for immunohistochemical studies. 

Uterine glucose uptake  

Glucose uptake measurement was adapted from previous works [24]. Briefly, one uterine horn 

from each animal (n=8 rats/group) was isolated and divided into two halves that were 

incubated in Krebs-Ringer bicarbonate (KRB) buffer (117 mMNaCl, 4.7 mMKCl, 2.5 mM CaCl2, 

1.2 mM KH2PO4, 1.2 mM MgSO4, 24.6 mM NaHCO3, pH 7.4) containing 2 mM pyruvate with 

or without insulin (0.1 mU/ml) for 50 min at 37°C. Tisuues were transferred to KRB containing 

1 mM 2-deoxy-D-[1,2-3 H(N)]glucose (3 mCi) and incubated for an additional 10 min with or 

without insulin at 30°C. Incubation and transport buffers were continuously gassed with 95% 

O2-5% CO2. Transport was terminated by immersion in ice-cold KRB containing 80 mM 

cytochalasin B. Uteri were frozen in liquid nitrogen and processed as previously described by 
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us [21]. Aliquots of the lysate were used for protein measurement using Bradford and 

radioactivity in the solubilized tissue was measured in a liquid scintillation spectrometer. 

Uterine homogenates and Western blotting 

Uterine pieces (n=5 rats/group) were homogenized in Tris-buffer (100 mM NaCl, 10 mM Tris, 

pH 7.4, 1 mM EDTA, 0.5% NP40, 1% Triton, 1 mM PMSF) containing 1X protease inhibitor 

cocktail (Sigma-Aldrich, St. Louis, MO, USA). The lysate was centrifuged at 4°C for 10 min at 10 

000 × g, and the pellet was discarded. Protein concentrations in the supernatant were 

measured by Bradford assay (Bio-Rad, Hercules, CA, USA). After boiling for 5 min the uterine 

lysates, 90 µg of protein from each sample was applied to an SDS-polyacrylamide gel (10%) 

and electrophoresis was performed at 100 V for 1.5 h. The separated proteins were 

transferred onto PDVF membranes in transfer buffer (20% methanol, vol/vol; 0.19 M glycine; 

0.025 M Tris-Base, pH = 8.3) for 1 h at 4°C. Blots were blocked for 1.5 h in TBS (4 mM Tris–HCl, 

pH = 7.5, 100 mM NaCl) containing bovine serum albumin (0.1%) at room temperature as 

previously described [25]. The primary antibodies used were: rabbit polyclonal anti-β2 AR 

(adrenergic receptor 2) (1:1000, overnight; Santa Cruz Biotechnology Inc., USA, sc: 9042), 

rabbit polyclonal anti-PPARγ (peroxisome proliferator-activated receptor ) (1:500, overnight; 

Santa Cruz Biotechnology Inc., sc: 7196) and mouse monoclonal anti -Glyceraldehyde-3-PDH 

(GAPDH) (1:500, overnight; Millipore, USA, MAB374) that was used as an internal control. The 

identity of the bands was established by the use of molecular weight standards (14.3–200 kDa, 

Bio-Rad), which allows the identification of the bands of interest: β2 AR (56-85 kDa), PPARγ 

(54-57 kDa) and GADPH (38 kDa); which were absent in the negative control experiments 

performed in the absence of primary antibodies. Afterwards, blots were incubated for 1h with 

biotin-conjugated secondary antibodies: anti-rabbit IgG (1:2000; Millipore) or anti-mouse 

(1:500; DakoCytomation, USA, Eo-354) followed by streptavidin–peroxidase complex 

(1:2000; DakoCytomation). The specific signals were visualized using ECL detection solution 
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(Thermo Scientific, Illinois, USA) and acquired in an ImageQuant RT ECL (General Electric, 

Amersham Bioscience, Argentina) and software and quantified with Image J software (version 

1.42q, National Institute of Health, USA). Densitometry analysis was performed with ImageJ 

software. Results are expressed as the relative intensity of β2 AR and PPARγ normalized 

against GAPDH. 

Uterine RNA extraction and retrotranscription  

Total RNA was extracted from uteri (n= 5 rats/group) using Trizol reagent (Invitrogen, CA, USA) 

according to the manufacturer’s protocol. cDNA was synthesized by incubating 2 μg of 

extracted RNA in a buffer containing 3U AMV Reverse transcriptase (Promega, Madison, WI, 

USA), 1uM oligo d(T)15 Primer (Dongsheng Biotech, Guangdong, China) and 1Mm Mix dNTPS 

(Dongsheng Biotech). The reaction mixture was incubated for 60 min at 42°C followed by 

15 min at 70°C.  

Polymerase Chain Reaction (PCR) 

cDNA (2 μl, selected to work within the linear range) was amplified by PCR in a buffer 

containing: 0.5 U Taq-DNA polymerase (Invitrogen), 0.2 mM of each primer (Invitrogen), 0.2 

mM of each dNTP, 1.5 mM MgCl2 and each specific primer. Primer sets used are detailed in 

table 1, where the specific annealing temperature and the number of cycles used for each pair 

of primers are also included. The optimum cycle number was determined for each primer pair, 

so that signals were always in the exponential portion of the amplification curve. Each cycle 

consisted of: denaturation at 95°C for 15 s, primer annealing at the specific temperature for 

30 s and extension at 72°C for 15 s. PCR products were electrophoresed on 2% agarose 

(Biodynamics, Buenos Aires, Argentina) gels. Gel images were taken with the ImageQuant 

RT ECL (General Electric) and software and quantified using Image J software (version 1.42q, 

National Institute of Health, USA). Density of the bands of interest was normalized to that of 
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GADPH in each sample. Negative controls were performed without reverse transcriptase or 

RNA. 

Real time PCR (qPCR) 

cDNA samples were diluted 1:2 before use. Quantitative real-time PCR (qPCR) was performed 

in a DNA Engine Opticon 2 Real-Time Cycler (Roche Applied Science) following the standard 

curve using FastStart Universal SYBR Green Master Mix (Roche) and primers at a final 

concentration of 0.9 µM. Primer sequences are shown in table 1. L30 gene was used to 

normalize for differences in concentrations of β2 AR cDNA samples.  

Immunohistochemistry 

Uteri cellular proliferation was assessed by immunohistochemical quantification of 

proliferating cell nuclear antigen (PCNA) [26]. For that purpose, uterine slides (n=5 rats/group) 

were incubated with 5% (w/v) non-fat milk at room temperature for 30 min for background 

blocking. Afterwards, endogenous peroxidase activity were blocked by incubation with 3% 

(v/v) hydrogen peroxide at room temperature for 15 min. Tissue sections were then incubated 

at 4°C overnight with mouse monoclonal anti-PCNA (1:200, overnight; Millipore, MAB424) as 

primary antibody. Controls were performed by omitting the primary antibody. Sections were, 

then, incubated with rabbit anti-mouse (1:300; DakoCytomation, Eo-354) at room 

temperature for 40 min; and, afterwards, incubation for 40 min with streptavidin–biotin 

horseradish peroxidase complex reagent (1:500; DakoCytomation) was used. Color 

development was performed with a solution containing 3,3′-diaminobenzidine 

(DakoCytomation) and sections were counterstained with hematoxylin. Finally, the sections 

were dehydrated, mounted and observed with an FV-300 Olympus light microscope and 

photographed. The number of cells with PCNA - positive (dun) nuclei present in the stroma and 

in the luminal and glandular epithelium was determined by counting 500 cells within 4 

quadrant tissue sections from each uterine sample.  
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Immunofluorescence 

Uterine localization of 2 AR were analyzed by immunofluorescence as previously described 

[27]. For that purpose, uterine slides (n=5 rats/group) were placed in a solution containing 0.01 

M citrate buffer, pH 6.2 for 5 min in a microwave oven at 100 C at 600 W for antigenic 

recovery. Afterwards, background blocking that was achieved by incubating with 5% (w/v) 

non-fat milk at room temperature for 30 min. Tissue sections were then incubated at 4°C 

overnight with rabbit polyclonal anti-β2 AR (H-73) (1:200, overnight; Santa Cruz Biotechnology 

sc: 9042) as primary antibodies. Controls were performed by omitting the primary antibody. 

Sections were, then, incubated with goat anti rabbit (1:1000; Millipore) at room temperature 

for 40 min; and, afterwards, incubation for 40 min with streptavidin–biotin Alexa Fluo 488 

conjugate (1:500; Molecular Probes) was used and nuclei were stained with propidium iodide 

(Invitrogen). Finally, sections were mounted in 50:50 PBS - glycerol and observed and 

photographed with an Olympus Bx-61 microscope for laser confocal microscopy attached to an 

Olympus FV-300 camera. 

Myometrial contractile analysis  

Small strips (∼10×5 mm) of longitudinal myometrium were dissected from each animal (n=5 

rats/group) and suspended in a separate 20 mL organ bath filled with KRB warmed at 37°C and 

gassed with 95% 02 - 5%CO2 . Each strip was set to a resting tension of 9.8 mN (1gF); its 

contractile activity was recorded using isometric force transducers (Harvard Apparatus, South 

Natick, MA) connected to a bridge amplifier, which was in turn connected to a data acquisition 

system (Data Studio Pasco). According to Chaud et. al.[28], myometrial strips were left to 

stabilize for 30 min until regular phasic contractions were achieved. Afterwards, 20 min 

spontaneous baseline contractile function was determined before the accumulative addition 

of Salbutamol (0.05 ng/ml to 5000 ng/ml)[29], a selective β 2 –adrenoceptor agonist, applied 

at 7-min intervals. Chemicals were obtained from Sigma unless stated otherwise. The resultant 
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contractile activity measurements included the amplitude and the frequency of contractions as 

well as the activity integrals (area under the time-force curve).  

Statistical analysis 

Experimental data are presented as the mean ± S.E.M unless otherwise is indicated and the 

number of animals used for each determination is indicated in the figure legends as n. 

Statistical analyses were carried out by using the Instat program (GraphPAD software, San 

Diego, CA, USA) and P<0.05 was considered statistically significant.  

For the glucose uptake measurement and PCNA analysis, comparisons between groups were 

performed using two-way analysis of variance (ANOVA) followed by Bonferroni post- tests.  

For contractile activity values (amplitude, frequency and activity integral), comparisons among 

all concentrations of Salbutamol and between control and obese rats were performed by two-

way ANOVA with repeated measures followed by the Newman–Keuls test. The significance of 

the remaining results was determined using Student's t-test. 

RESULTS 

Obesity induces uterine insulin resistance 

The results of the glucose uptake by uteri from control and obese rats are shown in Fig.1. Basal 

glucose uptake was similar in uteri from obese and control rats. On its behalf, insulin 

stimulated the uterine glucose uptake by nearly 1.6-fold in control rats (P<0.05), whereas 

insulin response was almost completely blunted in uteri from obese rats. These results show 

that uteri are insulin sensitive organs in normal conditions and that obesity induces uterine 

insulin resistance.  

The induction of uterine insulin resistance by obesity involves uterine hypoxia and the 

downregulation of the insulin receptor gene  
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The fact of finding insulin resistance at uterine level led us to; first, analyze the local expression 

of the insulin receptor (InsR) gene. Decreased InsR mRNA levels was detected in uteri from 

obese animals when compared to controls (P<0.05, Fig. 2A). This result suggests that the 

uterine insulin resistance induced by obesity is, at least in part, due to a change in the local 

transcriptional regulation of the InsR. We next analyze the expression of the main molecules 

regulating the uterine glucose intake: glucotransporters Glut-1 and Glut-4. The analysis of Glut-

1 and Glut-4 mRNA levels revealed no difference in their uterine expressions between control 

and obese rats (Fig. 2B and C).  

Hypoxic stress is commonly associated to obesity due to the excessive adipose tissue 

deposition [30]. It controls insulin sensivity as well as peroxisome proliferator-activated 

receptors (PPARs) does [31], among others. The action of hypoxic stress is mediated by 

hypoxia-inducible factor-1 a (HIF-1 ) [32]. So, we analyzed whether uterine Hif-1 and 

PPARexpressions were modified by obesity. Higher Hif-1 gene expression was detected in 

uteri from obese animals compared to controls (P<0.05, Fig. 2D). Regarding PPARitsprotein 

levels were similar in uteri from control and obese rats (Fig. 2E). 

The uterine proliferative activity is increased by obesity 

It has been described that insulin stimulates endometrial cellular proliferation [33]. Moreover, 

it is known that obesity is an independent risk factor for endometrial cancer [34] through 

mechanisms that involves increased inflammatory signaling and increased levels of insulin [35]. 

So, the uterine proliferative activity of control and obese rats was analyzed and its results are 

summarized in Fig. 3. PCNA immunostaining revealed that DNA synthesis varied between 

control and obese animals and it depends on the uterine compartment. The highest degree of 

cellular proliferation occurred in luminal epithelial cells followed by stromal cells (Fig. 3A) both 

in uteri from control (panels a and c) and obese rats (panels b and d). Both were higher in 

obese animals compared to controls (P<0.01 and P<0.05 respectively, Fig. 3B). The less mitotic 
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activity was seen in the glandular epithelial cells and no difference was detected in this 

compartment between control (panel e) and obese animals (panel f) (Fig. 3B). 

Obesity reduces the uterine contractile response to a 2 AR agonist, Salbutamol, due to a 

local downregulation of 2 AR expression  

It has been described that insulin resistance also alters responsiveness and contractile activity 

of uterine tissue [36] and the latter is known to be controlled predominantly by adrenergic 

receptors (ARs) [37-39], whose levels are altered in several tissues as consequence of obesity 

[40-42]. However the uterine expression of ARs under obesity conditions has not been studied 

so far. So, we first screened all uterine ARs isoforms in control and obese rats. 1A, 2C, 2A, 

2B and 2 AR mRNAs isoforms were detected both in uteri from obese and control animals, 

being the 2 AR isoform the dominant in both groups (Fig. 4A). Moreover, 2 AR mRNA and 

protein levels were lower in uteri from obese animals compared to controls (P<0.01 and 

P<0.001 respectively, Fig. 4B and C, respectively). Regarding its localization, 2 AR showed an 

intense myometrial localization and relatively weak expression at luminal and glandular 

epithelium (Fig. 4D) both in uteri from obese and control animals. Having found lower uterine 

levels of 2 AR in obese rats, a key factor regulating relaxation of the myometrium, we next 

analyze whether obesity alters the uterine contractile activity. Examinations were only 

performed on myometrial strips which showed regular spontaneous contractile activity. 

Spontaneous uterine contractile activities are illustrated in Fig. 5A top and bottom traces. The 

analysis of the spontaneous contractile activities revealed that obesity did not alter the 

amplitude (Fig.5B), the frequency (Fig.5C) and, consequently, neither the activity integral of 

uterine contractions (Fig.5D).  

To confirm that the lower levels of 2 AR found has a physiological role on uterine 

contractility, we next analyzed the response of the myometrium to Salbutamol, a selective 

agonist of β2 AR (Fig. 6A). Salbutamol decreased the amplitude of contractions at 0.5, 5, 50, 
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500 and 5000 ng/ml concentrations in the control group (P<0.001) and at 50, 500 and 5000 

ng/ml in the obese group compared to the spontaneous contractile activity (P<0.01-0.001; Fig. 

6B). The decrease was significantly (P<0.05-0.01) lower in the obese group after treatment at 5 

and 50 ng/ml compared to controls.  

Salbutamol administration significantly (P<0.001) decreased the frequency of contractions at 5, 

50, 500 and 5000 ng/ml concentrations only in the control group compared to the 

spontaneous contractile activity (Fig. 6C). In the obese group, the contraction frequency was 

not modified by Salbutamol when compared to the spontaneous contractile activity. The 

frequency of contractions was significantly higher after treatment at the 50ng/ml, 500 ng/ml 

and 5000 ng/ml concentrations in the obese group compared to controls (P<0.001; P<0.05 and 

P<0.01, respectively).  

When the activity integrals were calculated it was found that, in control group, Salbutamol 

induced a significant decrease at all the concentrations evaluated (0.05 to 5000 ng/ml) 

compared to the spontaneous contractile activity (P<0.001; Fig. 6D). In the obese group the 

decrease in the activity integral was detected at 5, 50, 500 and 5000 ng/ml compared to the 

spontaneous contractile activity (P<0.01-0.001). The decrease was significantly lower in the 

obese group after treatment at 0.05, 0.5, 5 and 50 ng/ml compared to controls (P<0.05, 

P<0.01, P<0.001 and P<0.001, respectively).  

DISCUSION 

It is becoming increasingly clear that the states of extreme positive energy balance and 

peripheral insulin resistance result in reproductive dysfunction [43]. In our group, we work 

with CAF induced-obesity in rats as animal model to investigate the response of reproductive 

tissues to obesity. CAF largely reflects the variety of highly palatable, energy dense foods that 

are prevalent in Western societies and that is associated with the current obesity pandemic. In 

previous works we demonstrated that CAF-induced obesity in rats is associated to peripheral 
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and ovarian insulin resistance; and that their reproductive performance is disrupted [21, 22]. 

Moreover, we showed that maternal pre-gestational obesity led to fetal macrosomia despite 

mothers fed standard chow during gestation.[21]. Therefore, the present study aimed to study  

if the uterine environment before pregnancy is also altered by CAF. Here, we show that obesity 

induces the development of uterine insulin resistance through mechanisms that involve the 

decrease in the gene expression of the InsR, without altering those of Glut-1 and Glut-4. These 

results are in accordance with those found, by us, at the ovarian level [21] and given that 

insulin controls GLUT-4 trafficking, the fact that uterine Glut-4 gene expression is not altered 

by obesity does not imply that GLUT-4 protein expression and/or trafficking is not altered in 

these animals. New experiments are being design in order to clarify that point. It has been 

postulated that differential insulin signaling of tissues leads to reproductive dysfunction [43] 

and here we describe for the first time that obesity induces uterine insulin resistance. This is 

not a minor fact, given that we have previously shown that fertility rates were lower and 

conception was delayed in the obese animals. Furthermore, we also showed that even in the 

face of a normal gestational environment, a pre-pregnancy exposure to a maternal CAF impairs 

fetal growth [21]. Thus, uterine insulin resistance may be involved in the reproductive 

alterations previously described by us in these animals. Moreover, it has been shown that the 

ability of the progeny to adapt to an adverse intrauterine environment is conferred prior to 

pregnancy and it is possible that the effects of maternal obesity may be transmitted to 

subsequent generations, having profound implications for human health [44]. All these 

evidences highlight the importance of studying how maternal obesity impairs the pre-

conception environment to further be able to propose treatments for preventing/reverting 

that disruption. Thus, the metabolic intrauterine environment here described in cycling rats 

may be responsible not only for reproductive disruptions but also for alterations in the fetal 

growth that we previously described [21].  
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It has been described that the excessive adipose tissue deposition produced by obesity leads 

to hypoxic stress [12, 13] that impairs insulin sensitivity [14, 15]. The fact of finding, here, that 

the uteri from obese rats shows higher Hif-1 expression controls shows for the first time that 

uterine hypoxia is induced by obesity. Moreover, we are showing that the uterine insulin 

resistance detected in obese animals may me consequence; not only due to decreased uterine 

InsR have levels, but it may involve the induction of uterine hypoxia. When the uterine levels 

the master regulator of glucose homeostasis, PPAR, was evaluated; no differences were 

detected between uteri from control and obese rats. The fact that PPARγ levels are not altered 

does not imply that its function is not altered; thus, new experiments are being designed in 

order to evaluate this. However, if the uterine function of this factor were not modified by 

obesity, it could be concluded that PPARγ is not involved in the alteration in the uterine uptake 

of glucose induced by obesity. 

Up to here, we show that obesity induces uterine insulin resistance due to a decrease in the 

uterine InsR levels through mechanisms that involves hypoxia/HIF1signaling; without 

altering neither the uterine gene expression of Glut-1 and Glut-4 nor uterine PPARγ levels. 

On the other hand, we cannot forget that insulin not only affects the uterine metabolism but it 

has also been described to stimulate endometrial cellular proliferation [33] and that obesity is 

an independent risk factor for endometrial cancer [34]. It has been shown that HIF1α is 

increased during carcinogenesis and progression of cervical cancer [45] and that the 

mechanisms involved in obesity-related endometrial carcinogenesis include increased levels of 

insulin [35]. Given that, here, obese rats showed higher uterine HIF1α levels as well as insulin 

resistance; the uterine proliferative activity was studied. In this regards, it is known that, as a 

mechanism to prevent cell division and immortalization, cells keep environment balance and 

self-regulation in the body by replicative senescence. Changes that occur in a link of this 

regulation process will make cells lose replicative senescence. Thus, the excessive proliferation 

of cells that carry this error induce tumors [46]. Our findings show that obesity, indeed, 
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induced higher endometrial proliferation rates, both in luminal epithelial cells and stromal cells 

than controls. These findings may be indicative of an increase in the vulnerability of the tissue 

to develop cancer. However, this increase in proliferation rates could be offset by an increase 

in the apoptosis rates; therefore additional experiments are being designed in order to 

evaluate this. The numerous uterine alterations produced by the obesity that we have 

described here led us to evaluate the impact of these on uterine function. In this regards, it has 

been shown that obesity negatively impacts outcomes of assisted reproduction due to lower 

implantation and pregnancy rates, higher miscarriage rates and decreased live birth rates as 

compared with normal-weight women [47, 48]. Here we show that the uterine contractile 

activity in response to a 2 AR agonist, Salbutamol, is reduced as a consequence of obesity. 

This indicates a lower sensitivity of the tissue to a relaxation stimulus; this is not a minor fact 

given that for implantation to occur the uterus must be relaxed, as this is a prerequisite for 

embryo nidation and decidual invasion [49]. So, the alteration in the uterine quiescence may 

impair a foregoing pregnancy. The lower sensitivity can be explained due to the 

downregulation in the 2 AR gene and protein uterine expression seen in these animals. This 

finding is consistent with those found by other authors who described an altered expression of 

ARs as a consequence of obesity in other tissues [40-42]. Estradiol is the primary utero-

stimulant; it is an increase in estradiol levels triggers an in uterine contractility [49] and we 

have previously described that obese rats shows lower serum estradiol levels than controls 

[21]. So, we cannot fail to mention that the decrease in the uterine expression of ARs2 AR 

may be a consequence of the lower levels of estradiol. Weaknesses of our study include the 

inability to demonstrate a definitive cause-and-effect relationship of altered uterine 

environment, decreased fertility rates, delayed conception and/or fetal macrosomia. However, 

our data show for the first time that CAF-induced obesity impairs the uterine response to 

insulin, increases the uterine mitotic activity and alters the regulation of myometrial 

contractile activity; and these alterations may inevitably impair the reproductive outcome. 
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Moreover, we show that the mechanism by which obesity impairs the uterine response to 

insulin involves a decrease in the uterine levels of InsR as well as hypoxia/HIF1signaling. 

Regarding the mechanisms involved in the alteration of the uterine contractile response to 

salbutamol by obesity, the downregulation in the uterine 2 AR expression is here described 

by us.  

It has been shown that difficult embryo transfer stimulates uterine contractions and this has 

been postulated to lead to non-adherence of the embryo(s) to the endometrium, expulsion of 

the embryos from the uterine cavity shortly after embryo transfer, or both [50]. The same 

finding has been reported in a small study in natural cycles [51]. Thus, given that uterine 

contractile activity is a key process for ensuring uterine receptivity, obesity may have both 

negative short-term effects by impairing implantation through this mechanism, as well as long-

term fetal effects due to inducing fetal macrosomia. If our hypothesis that the alteration in the 

uterine 2 AR levels is responsible for obesity induced implantation problems is borne out by 

further studies, the clinical implications could be important. For example, pharmacological 

agents that inhibit uterine contractions may be a potential therapeutic regimen for obese 

women with recurrent pregnancy loss or infertility, both common and increasing problems 

seen among the growing obese patient population. Using these agents may lead to an 

improvement in implantation and pregnancy rates in obese patients. 
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FIGURE CAPTIONS 

Figure 1: Uterine insulin resistance is induced by obesity. Basal 2-deoxyglucose uptake in uteri 
from control (open bars) and obese (squared bars) animals and after insulin stimulation (filled 

bars). The data are given as the means  S.E.M. (n=8). * P<0.05 respect to the basal condition. 

Figure 2: The induction of uterine hipoxia and the downregulation of the insulin receptor 
levels are involved in the obesity induced- uterine insulin resistance. (A) Peroxisome 

proliferator-activated receptors gamma (PPAR protein levels and gene expression of: (B) 
Glucotransporter type 1 (GLUT-1), (C) Glucotransporter type 4 (Glut-4), (D) Insulin Receptor 

(InsR) and by (E) hypoxia-inducible factor-1 a (HIF in uteri from control (open bars) and 
obese (squared bars) animals. Representative gels are shown in the upper panel and the 
densitometric analysis are shown in the lower pannel. Values are expressed in arbitrary units 

(a.u.) as means  S.E.M. of the specific optical density normalized against Glyceraldehyde-3-
PDH (GAPDH), as housekeeping (n=5). * P<0.05 respect to the control group. 

Figure 3: Uterine luminal epithelial and stromal cell proliferation is induced by obesity. (A) 

Cell proliferation visualized by PCNA immunostaining as dun nuclei in the uterus from control 

(a, c and e) and obese rats (b, d and f). Ge: glandular epithelium; Le: luminal epithelium. (B) 

Number of PCNA positive cells in different uterine compartments (luminal and glandular 

epithelial cells and stromal cells). Results are expressed as mean±SEM (n=5). * P<0.05 and ** 

P<0.01 respect to control group. 

Figure 4: Uterine 2 AR expression is downregulated by obesity. (A) Screening of all 

adrenergic receptors (AR) mRNA isoforms showed dominant uterine 2 AR mRNA expression 

in both control and obese rats. (B) Gene 2 AR expression is downregulated in uteri from 

obese animals compared to controls (n=6; **P<0.01 control vs. obese). (C) Protein2 AR levels 

are lower in uteri from obese animals compared to controls (n=5; ***P<0.001 control vs. 

obese). (D) 2 AR localization in the rat uterus (n=4) showed intense expression at 

myometrium and weak expression at epithelium both in control (a and c) and obese (b and d) 

animals. Alexa 488-labeled 2-AR antibody is in green, and propidium iodide-labeled nuclei are 

in red. Le: luminal epithelium; Ge: glandular epithelium; Lm: longitudinal muscular layer; Cm: 

circular muscular layer. 

Figure 5: Obesity does not alter the spontaneous uterine activity of cycling rats during the 

oestrous phase. (A) Representative recordings of spontaneous contractile activity in uteri from 

control (top trace) and obese (bottom trace) rats. (B) Amplitude, (C) frequency and (D) activity 

integral of 20 min of uterine spontaneous contractile activity of control and obese rats (n=5). 

Figure 6: The uterus becomes less sensitive to Salbutamol, a selective agonist of β2 

adrenoceptors, as a consequence of obesity. (A) Representative recordings of uterine 

contractions in control (top trace) and obese (bottom trace) rats by increasing (0.05 ng/ml to 

5000 ng/ml) concentrations of Salbutamol. Effect of increasing doses of Salbutamol on: (B) 

amplitude, (C) frequency and (D) activity integral of uterine contractions in control (open 

circles) and obese (filled circles) rats. The dose effects were analyzed for a 7 min period after 

treatments and normalized to the spontaneous activity measured during 20 min before the 

first agonist administration. Results are expressed as mean ± SEM (n=5). P<0.05, # P<0.01 

and P<0.001 indicate significant differences compared to the spontaneous activity measured 
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of each group.* P<0.05, **P<0.01 and ***P<0.001 indicate significant differences between 

control and obese groups for the same agonist concentration. 
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Gene Primer secuence (5'-3') 

Fragment  Annealing  Cycles  GenBank  

size (pb) 
temperature 

(°C) 
(no.) 

accession 
no. 

Glut-4  
F: ACTGGCGCTTTCACTGAACT 

106 55 40 NM_012751  
R: CGAGGCAAGGCTAGATTTTG 

Glut-1 
F: TGGCCAAGGAACACACGAATACTGA 

105 56 40 NM_138827.1 
R: TGGAAGAGACAGGAATGGGCGAAT 

HIF-1a 
F: CCTACTATGTCGCTTTCTTGG 

185 52 35 NM_024359.1 
R: TGTATGGGAGCATTAACTTCAC 

InsR 
F: ATCCGTCGCTCCTATGCTCTGGTGT  

279 64,5 40 NM_017071  
R: GTTGGTCTTCAGGGCAATGTCGTTC 

GAPDH 
F: CCATCAACGACCCCTTCATT 

110 57 35 NM_017008.4  
R: GACCAGCTTCCCATTCTCAG 

L30 
F: CCATCTTGGCGTCTGATCTT 

200 58 35 NM_022699.3 
R: GGCGAGGATAACCAATTTC 

α1A AR 
F:TCTTCCTAGTGATGCCCATTG 

145 55,35 40 NM_017191 
R:GCTTTCTTGAACTCCTGGCTG 

  F:CCTGTTCTCCACCCTAAAGC 
140 55,05 40 NM_016991  

α1B AR   R:ACCCAAGGATACGCATGAAG 

α1D AR 
F:AAAAGGCTGCCAAGACGT 

133 55 40 NM_024483  
R:AAGATGACCTTGAAGACACCC 

  F:GCGAGATCTACTTGGCCCTC 
258 57 40 NM_012739.3 

α2A AR R:CGTTAATCTTGCAGCTCGGC 

  F:GTCTTCAACCAGGACTTCCG 
147 55,6 40 NM_138505.2 

α2B AR R:AGAGACTGTGGAGGTGGG 

  F:TTCAAGCACATCCTCTTCCG 
143 55,3 40 NM_138506.1 

α2C AR  R:GAACTCTGGAGAAGCCACAC 

β1 AR 
F:CTGCTACAACGACCCCAAG 

146 54,2 40 NM_012701.1 
R:TCTTCACCTGTTTCTGGGC 

β2 AR 
F: GTACTGTGCCTAGCCTTAGC 

118 58 40 NM_012492.2 
R: GGTTAGTGTCCTGTCAGGGAGG 

β3 AR 
F:AGAACTCACCGCTCAACAG 

137 54,65 40 NM_013108.2 
R:CATGGACGTTGCTTGTCTTTC 

Table 1: Details of primers used for PCR. 
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